47#define LV_NAME "loop-vectorize"
48#define DEBUG_TYPE LV_NAME
54 case VPInstructionSC: {
57 if (VPI->getOpcode() == Instruction::Load)
59 return VPI->opcodeMayReadOrWriteFromMemory();
61 case VPInterleaveEVLSC:
64 case VPWidenStoreEVLSC:
72 ->getCalledScalarFunction()
74 case VPWidenIntrinsicSC:
76 case VPCanonicalIVPHISC:
77 case VPBranchOnMaskSC:
79 case VPFirstOrderRecurrencePHISC:
80 case VPReductionPHISC:
81 case VPScalarIVStepsSC:
85 case VPReductionEVLSC:
87 case VPVectorPointerSC:
88 case VPWidenCanonicalIVSC:
91 case VPWidenIntOrFpInductionSC:
92 case VPWidenLoadEVLSC:
95 case VPWidenPointerInductionSC:
100 assert((!
I || !
I->mayWriteToMemory()) &&
101 "underlying instruction may write to memory");
113 case VPInstructionSC:
115 case VPWidenLoadEVLSC:
120 ->mayReadFromMemory();
123 ->getCalledScalarFunction()
124 ->onlyWritesMemory();
125 case VPWidenIntrinsicSC:
127 case VPBranchOnMaskSC:
129 case VPFirstOrderRecurrencePHISC:
130 case VPPredInstPHISC:
131 case VPScalarIVStepsSC:
132 case VPWidenStoreEVLSC:
136 case VPReductionEVLSC:
138 case VPVectorPointerSC:
139 case VPWidenCanonicalIVSC:
142 case VPWidenIntOrFpInductionSC:
144 case VPWidenPointerInductionSC:
149 assert((!
I || !
I->mayReadFromMemory()) &&
150 "underlying instruction may read from memory");
164 case VPFirstOrderRecurrencePHISC:
165 case VPPredInstPHISC:
166 case VPVectorEndPointerSC:
168 case VPInstructionSC: {
175 case VPWidenCallSC: {
179 case VPWidenIntrinsicSC:
182 case VPReductionEVLSC:
184 case VPScalarIVStepsSC:
185 case VPVectorPointerSC:
186 case VPWidenCanonicalIVSC:
189 case VPWidenIntOrFpInductionSC:
191 case VPWidenPointerInductionSC:
196 assert((!
I || !
I->mayHaveSideEffects()) &&
197 "underlying instruction has side-effects");
200 case VPInterleaveEVLSC:
203 case VPWidenLoadEVLSC:
205 case VPWidenStoreEVLSC:
210 "mayHaveSideffects result for ingredient differs from this "
213 case VPReplicateSC: {
215 return R->getUnderlyingInstr()->mayHaveSideEffects();
223 assert(!Parent &&
"Recipe already in some VPBasicBlock");
225 "Insertion position not in any VPBasicBlock");
231 assert(!Parent &&
"Recipe already in some VPBasicBlock");
237 assert(!Parent &&
"Recipe already in some VPBasicBlock");
239 "Insertion position not in any VPBasicBlock");
274 UI = IG->getInsertPos();
276 UI = &WidenMem->getIngredient();
279 if (UI && Ctx.skipCostComputation(UI, VF.
isVector())) {
293 dbgs() <<
"Cost of " << RecipeCost <<
" for VF " << VF <<
": ";
315 assert(OpType == Other.OpType &&
"OpType must match");
317 case OperationType::OverflowingBinOp:
318 WrapFlags.HasNUW &= Other.WrapFlags.HasNUW;
319 WrapFlags.HasNSW &= Other.WrapFlags.HasNSW;
321 case OperationType::Trunc:
325 case OperationType::DisjointOp:
328 case OperationType::PossiblyExactOp:
329 ExactFlags.IsExact &= Other.ExactFlags.IsExact;
331 case OperationType::GEPOp:
334 case OperationType::FPMathOp:
335 case OperationType::FCmp:
336 assert((OpType != OperationType::FCmp ||
337 FCmpFlags.Pred == Other.FCmpFlags.Pred) &&
338 "Cannot drop CmpPredicate");
339 getFMFsRef().NoNaNs &= Other.getFMFsRef().NoNaNs;
340 getFMFsRef().NoInfs &= Other.getFMFsRef().NoInfs;
342 case OperationType::NonNegOp:
345 case OperationType::Cmp:
348 case OperationType::Other:
355 assert((OpType == OperationType::FPMathOp || OpType == OperationType::FCmp) &&
356 "recipe doesn't have fast math flags");
357 const FastMathFlagsTy &
F = getFMFsRef();
369#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
385template <
unsigned PartOpIdx>
388 if (U.getNumOperands() == PartOpIdx + 1)
389 return U.getOperand(PartOpIdx);
393template <
unsigned PartOpIdx>
412 "Set flags not supported for the provided opcode");
413 assert((getNumOperandsForOpcode(Opcode) == -1u ||
415 "number of operands does not match opcode");
419unsigned VPInstruction::getNumOperandsForOpcode(
unsigned Opcode) {
430 case Instruction::Alloca:
431 case Instruction::ExtractValue:
432 case Instruction::Freeze:
433 case Instruction::Load:
449 case Instruction::ICmp:
450 case Instruction::FCmp:
451 case Instruction::ExtractElement:
452 case Instruction::Store:
463 case Instruction::Select:
470 case Instruction::Call:
471 case Instruction::GetElementPtr:
472 case Instruction::PHI:
473 case Instruction::Switch:
490bool VPInstruction::canGenerateScalarForFirstLane()
const {
496 case Instruction::Freeze:
497 case Instruction::ICmp:
498 case Instruction::PHI:
499 case Instruction::Select:
516 IRBuilderBase &Builder = State.
Builder;
535 case Instruction::ExtractElement: {
538 unsigned IdxToExtract =
546 case Instruction::Freeze: {
550 case Instruction::FCmp:
551 case Instruction::ICmp: {
557 case Instruction::PHI: {
560 case Instruction::Select: {
586 {VIVElem0, ScalarTC},
nullptr, Name);
602 if (!V1->getType()->isVectorTy())
622 "Requested vector length should be an integer.");
628 Builder.
getInt32Ty(), Intrinsic::experimental_get_vector_length,
629 {AVL, VFArg, Builder.getTrue()});
635 assert(Part != 0 &&
"Must have a positive part");
648 VPBasicBlock *SecondVPSucc =
670 for (
unsigned FieldIndex = 0; FieldIndex != StructTy->getNumElements();
694 IRBuilderBase::FastMathFlagGuard FMFG(Builder);
713 ReducedPartRdx,
"bin.rdx");
722 RecurKind RK = PhiR->getRecurrenceKind();
724 "Unexpected reduction kind");
725 assert(!PhiR->isInLoop() &&
726 "In-loop FindLastIV reduction is not supported yet");
738 for (
unsigned Part = 1; Part <
UF; ++Part)
739 ReducedPartRdx =
createMinMaxOp(Builder, MinMaxKind, ReducedPartRdx,
756 return Builder.
CreateSelect(Cmp, ReducedIV, Start,
"rdx.select");
764 RecurKind RK = PhiR->getRecurrenceKind();
766 "should be handled by ComputeFindIVResult");
772 for (
unsigned Part = 0; Part <
UF; ++Part)
773 RdxParts[Part] = State.
get(
getOperand(1 + Part), PhiR->isInLoop());
775 IRBuilderBase::FastMathFlagGuard FMFG(Builder);
780 Value *ReducedPartRdx = RdxParts[0];
781 if (PhiR->isOrdered()) {
782 ReducedPartRdx = RdxParts[
UF - 1];
785 for (
unsigned Part = 1; Part <
UF; ++Part) {
786 Value *RdxPart = RdxParts[Part];
788 ReducedPartRdx =
createMinMaxOp(Builder, RK, ReducedPartRdx, RdxPart);
797 Builder.
CreateBinOp(Opcode, RdxPart, ReducedPartRdx,
"bin.rdx");
804 if (State.
VF.
isVector() && !PhiR->isInLoop()) {
811 return ReducedPartRdx;
820 "invalid offset to extract from");
825 assert(
Offset <= 1 &&
"invalid offset to extract from");
839 "can only generate first lane for PtrAdd");
859 Value *Res =
nullptr;
864 Builder.
CreateMul(RuntimeVF, ConstantInt::get(IdxTy, Idx - 1));
865 Value *VectorIdx = Idx == 1
867 : Builder.
CreateSub(LaneToExtract, VectorStart);
892 Value *Res =
nullptr;
893 for (
int Idx = LastOpIdx; Idx >= 0; --Idx) {
894 Value *TrailingZeros =
926 Type *ScalarTy = Ctx.Types.inferScalarType(
this);
929 case Instruction::FNeg:
930 return Ctx.TTI.getArithmeticInstrCost(Opcode, ResultTy, Ctx.CostKind);
931 case Instruction::UDiv:
932 case Instruction::SDiv:
933 case Instruction::SRem:
934 case Instruction::URem:
935 case Instruction::Add:
936 case Instruction::FAdd:
937 case Instruction::Sub:
938 case Instruction::FSub:
939 case Instruction::Mul:
940 case Instruction::FMul:
941 case Instruction::FDiv:
942 case Instruction::FRem:
943 case Instruction::Shl:
944 case Instruction::LShr:
945 case Instruction::AShr:
946 case Instruction::And:
947 case Instruction::Or:
948 case Instruction::Xor: {
956 RHSInfo = Ctx.getOperandInfo(RHS);
967 return Ctx.TTI.getArithmeticInstrCost(
968 Opcode, ResultTy, Ctx.CostKind,
969 {TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None},
970 RHSInfo, Operands, CtxI, &Ctx.TLI);
972 case Instruction::Freeze:
974 return Ctx.TTI.getArithmeticInstrCost(Instruction::Mul, ResultTy,
976 case Instruction::ExtractValue:
977 return Ctx.TTI.getInsertExtractValueCost(Instruction::ExtractValue,
979 case Instruction::ICmp:
980 case Instruction::FCmp: {
984 return Ctx.TTI.getCmpSelInstrCost(
986 Ctx.CostKind, {TTI::OK_AnyValue, TTI::OP_None},
987 {TTI::OK_AnyValue, TTI::OP_None}, CtxI);
989 case Instruction::BitCast: {
990 Type *ScalarTy = Ctx.Types.inferScalarType(
this);
995 case Instruction::SExt:
996 case Instruction::ZExt:
997 case Instruction::FPToUI:
998 case Instruction::FPToSI:
999 case Instruction::FPExt:
1000 case Instruction::PtrToInt:
1001 case Instruction::PtrToAddr:
1002 case Instruction::IntToPtr:
1003 case Instruction::SIToFP:
1004 case Instruction::UIToFP:
1005 case Instruction::Trunc:
1006 case Instruction::FPTrunc:
1007 case Instruction::AddrSpaceCast: {
1022 if (WidenMemoryRecipe ==
nullptr)
1026 if (!WidenMemoryRecipe->isConsecutive())
1028 if (WidenMemoryRecipe->isReverse())
1030 if (WidenMemoryRecipe->isMasked())
1038 if (Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) {
1040 if (
R->getNumUsers() == 0 ||
R->hasMoreThanOneUniqueUser())
1048 CCH = ComputeCCH(Recipe);
1052 else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt ||
1053 Opcode == Instruction::FPExt) {
1059 CCH = ComputeCCH(Recipe);
1067 Opcode, ResultTy, SrcTy, CCH, Ctx.
CostKind,
1070 case Instruction::Select: {
1081 (IsLogicalAnd || IsLogicalOr)) {
1087 SmallVector<const Value *, 2> Operands;
1089 [](
VPValue *
Op) {
return Op->getUnderlyingValue(); }))
1092 IsLogicalOr ? Instruction::Or : Instruction::And, ResultTy,
1093 Ctx.
CostKind, {Op1VK, Op1VP}, {Op2VK, Op2VP}, Operands, SI);
1100 llvm::CmpPredicate Pred;
1104 Pred = Cmp->getPredicate();
1107 Instruction::Select, VectorTy, CondTy, Pred, Ctx.
CostKind,
1108 {TTI::OK_AnyValue, TTI::OP_None}, {TTI::OK_AnyValue, TTI::OP_None}, SI);
1124 "Should only generate a vector value or single scalar, not scalars "
1132 case Instruction::Select: {
1135 auto *CondTy = Ctx.Types.inferScalarType(
getOperand(0));
1136 auto *VecTy = Ctx.Types.inferScalarType(
getOperand(1));
1141 return Ctx.TTI.getCmpSelInstrCost(Instruction::Select, VecTy, CondTy, Pred,
1144 case Instruction::ExtractElement:
1154 return Ctx.TTI.getVectorInstrCost(Instruction::ExtractElement, VecTy,
1158 auto *VecTy =
toVectorTy(Ctx.Types.inferScalarType(
this), VF);
1159 return Ctx.TTI.getArithmeticReductionCost(
1165 return Ctx.TTI.getCmpSelInstrCost(Instruction::ICmp, ScalarTy,
1172 {PredTy, Type::getInt1Ty(Ctx.LLVMCtx)});
1173 return Ctx.TTI.getIntrinsicInstrCost(Attrs, Ctx.CostKind);
1178 return Ctx.TTI.getCmpSelInstrCost(Instruction::ICmp, ScalarTy,
1185 {PredTy, Type::getInt1Ty(Ctx.LLVMCtx)});
1188 Cost += Ctx.TTI.getArithmeticInstrCost(
1189 Instruction::Xor, PredTy, Ctx.CostKind,
1190 {TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None},
1191 {TargetTransformInfo::OK_UniformConstantValue,
1192 TargetTransformInfo::OP_None});
1194 Cost += Ctx.TTI.getArithmeticInstrCost(
1202 Type *VectorTy =
toVectorTy(Ctx.Types.inferScalarType(
this), VF);
1211 unsigned Multiplier =
1216 return Ctx.TTI.getIntrinsicInstrCost(Attrs, Ctx.CostKind);
1223 I32Ty, {Arg0Ty, I32Ty, I1Ty});
1224 return Ctx.TTI.getIntrinsicInstrCost(Attrs, Ctx.CostKind);
1227 assert(VF.
isVector() &&
"Reverse operation must be vector type");
1231 VectorTy, {}, Ctx.CostKind,
1237 return Ctx.TTI.getIndexedVectorInstrCostFromEnd(Instruction::ExtractElement,
1238 VecTy, Ctx.CostKind, 0);
1248 "unexpected VPInstruction witht underlying value");
1256 getOpcode() == Instruction::ExtractElement ||
1268 case Instruction::PHI:
1279 assert(!State.Lane &&
"VPInstruction executing an Lane");
1282 "Set flags not supported for the provided opcode");
1285 Value *GeneratedValue = generate(State);
1288 assert(GeneratedValue &&
"generate must produce a value");
1289 bool GeneratesPerFirstLaneOnly = canGenerateScalarForFirstLane() &&
1294 !GeneratesPerFirstLaneOnly) ||
1295 State.VF.isScalar()) &&
1296 "scalar value but not only first lane defined");
1297 State.set(
this, GeneratedValue,
1298 GeneratesPerFirstLaneOnly);
1305 case Instruction::GetElementPtr:
1306 case Instruction::ExtractElement:
1307 case Instruction::Freeze:
1308 case Instruction::FCmp:
1309 case Instruction::ICmp:
1310 case Instruction::Select:
1311 case Instruction::PHI:
1354 case Instruction::ExtractElement:
1356 case Instruction::PHI:
1358 case Instruction::FCmp:
1359 case Instruction::ICmp:
1360 case Instruction::Select:
1361 case Instruction::Or:
1362 case Instruction::Freeze:
1403 case Instruction::FCmp:
1404 case Instruction::ICmp:
1405 case Instruction::Select:
1416#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1424 O << Indent <<
"EMIT" << (
isSingleScalar() ?
"-SCALAR" :
"") <<
" ";
1436 O <<
"combined load";
1439 O <<
"combined store";
1442 O <<
"active lane mask";
1445 O <<
"EXPLICIT-VECTOR-LENGTH";
1448 O <<
"first-order splice";
1451 O <<
"branch-on-cond";
1454 O <<
"branch-on-two-conds";
1457 O <<
"TC > VF ? TC - VF : 0";
1463 O <<
"branch-on-count";
1469 O <<
"buildstructvector";
1475 O <<
"extract-lane";
1478 O <<
"extract-last-lane";
1481 O <<
"extract-last-part";
1484 O <<
"extract-penultimate-element";
1487 O <<
"compute-anyof-result";
1490 O <<
"compute-find-iv-result";
1493 O <<
"compute-reduction-result";
1508 O <<
"first-active-lane";
1511 O <<
"last-active-lane";
1514 O <<
"reduction-start-vector";
1517 O <<
"resume-for-epilogue";
1540 State.set(
this, Cast,
VPLane(0));
1551 Value *
VScale = State.Builder.CreateVScale(ResultTy);
1552 State.set(
this,
VScale,
true);
1561#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1564 O << Indent <<
"EMIT" << (
isSingleScalar() ?
"-SCALAR" :
"") <<
" ";
1570 O <<
"wide-iv-step ";
1574 O <<
"step-vector " << *ResultTy;
1577 O <<
"vscale " << *ResultTy;
1583 O <<
" to " << *ResultTy;
1590 PHINode *NewPhi = State.Builder.CreatePHI(
1591 State.TypeAnalysis.inferScalarType(
this), 2,
getName());
1598 for (
unsigned Idx = 0; Idx != NumIncoming; ++Idx) {
1603 State.set(
this, NewPhi,
VPLane(0));
1606#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1609 O << Indent <<
"EMIT" << (
isSingleScalar() ?
"-SCALAR" :
"") <<
" ";
1624 "PHINodes must be handled by VPIRPhi");
1627 State.Builder.SetInsertPoint(I.getParent(), std::next(I.getIterator()));
1640 "can only update exiting operands to phi nodes");
1651#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1654 O << Indent <<
"IR " << I;
1666 auto *PredVPBB = Pred->getExitingBasicBlock();
1667 BasicBlock *PredBB = State.CFG.VPBB2IRBB[PredVPBB];
1674 if (Phi->getBasicBlockIndex(PredBB) == -1)
1675 Phi->addIncoming(V, PredBB);
1677 Phi->setIncomingValueForBlock(PredBB, V);
1682 State.Builder.SetInsertPoint(Phi->getParent(), std::next(Phi->getIterator()));
1687 assert(R->getNumOperands() == R->getParent()->getNumPredecessors() &&
1688 "Number of phi operands must match number of predecessors");
1689 unsigned Position = R->getParent()->getIndexForPredecessor(IncomingBlock);
1690 R->removeOperand(Position);
1693#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1707#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1713 O <<
" (extra operand" << (
getNumOperands() > 1 ?
"s" :
"") <<
": ";
1718 std::get<1>(
Op)->printAsOperand(O);
1726 for (
const auto &[Kind,
Node] : Metadata)
1727 I.setMetadata(Kind,
Node);
1732 for (
const auto &[KindA, MDA] : Metadata) {
1733 for (
const auto &[KindB, MDB] :
Other.Metadata) {
1734 if (KindA == KindB && MDA == MDB) {
1740 Metadata = std::move(MetadataIntersection);
1743#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1746 if (Metadata.empty() || !M)
1752 auto [Kind,
Node] = KindNodePair;
1754 "Unexpected unnamed metadata kind");
1755 O <<
"!" << MDNames[Kind] <<
" ";
1763 assert(State.VF.isVector() &&
"not widening");
1764 assert(Variant !=
nullptr &&
"Can't create vector function.");
1775 Arg = State.get(
I.value(),
VPLane(0));
1778 Args.push_back(Arg);
1784 CI->getOperandBundlesAsDefs(OpBundles);
1786 CallInst *V = State.Builder.CreateCall(Variant, Args, OpBundles);
1789 V->setCallingConv(Variant->getCallingConv());
1791 if (!V->getType()->isVoidTy())
1797 return Ctx.TTI.getCallInstrCost(
nullptr, Variant->getReturnType(),
1798 Variant->getFunctionType()->params(),
1802#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1805 O << Indent <<
"WIDEN-CALL ";
1817 O <<
" @" << CalledFn->
getName() <<
"(";
1823 O <<
" (using library function";
1824 if (Variant->hasName())
1825 O <<
": " << Variant->getName();
1831 assert(State.VF.isVector() &&
"not widening");
1847 Arg = State.get(
I.value(),
VPLane(0));
1853 Args.push_back(Arg);
1857 Module *M = State.Builder.GetInsertBlock()->getModule();
1861 "Can't retrieve vector intrinsic or vector-predication intrinsics.");
1866 CI->getOperandBundlesAsDefs(OpBundles);
1868 CallInst *V = State.Builder.CreateCall(VectorF, Args, OpBundles);
1873 if (!V->getType()->isVoidTy())
1889 for (
const auto &[Idx,
Op] :
enumerate(Operands)) {
1890 auto *V =
Op->getUnderlyingValue();
1893 Arguments.push_back(UI->getArgOperand(Idx));
1902 Type *ScalarRetTy = Ctx.Types.inferScalarType(&R);
1908 : Ctx.Types.inferScalarType(
Op));
1913 R.hasFastMathFlags() ? R.getFastMathFlags() :
FastMathFlags();
1918 return Ctx.TTI.getIntrinsicInstrCost(CostAttrs, Ctx.CostKind);
1940#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1943 O << Indent <<
"WIDEN-INTRINSIC ";
1944 if (ResultTy->isVoidTy()) {
1972 Value *Mask =
nullptr;
1974 Mask = State.get(VPMask);
1977 Builder.CreateVectorSplat(VTy->
getElementCount(), Builder.getInt1(1));
1981 if (Opcode == Instruction::Sub)
1982 IncAmt = Builder.CreateNeg(IncAmt);
1984 assert(Opcode == Instruction::Add &&
"only add or sub supported for now");
1986 State.Builder.CreateIntrinsic(Intrinsic::experimental_vector_histogram_add,
2001 Type *IncTy = Ctx.Types.inferScalarType(IncAmt);
2007 Ctx.TTI.getArithmeticInstrCost(Instruction::Mul, VTy, Ctx.CostKind);
2020 {PtrTy, IncTy, MaskTy});
2023 return Ctx.TTI.getIntrinsicInstrCost(ICA, Ctx.CostKind) + MulCost +
2024 Ctx.TTI.getArithmeticInstrCost(Opcode, VTy, Ctx.CostKind);
2027#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2030 O << Indent <<
"WIDEN-HISTOGRAM buckets: ";
2033 if (Opcode == Instruction::Sub)
2036 assert(Opcode == Instruction::Add);
2048VPIRFlags::FastMathFlagsTy::FastMathFlagsTy(
const FastMathFlags &FMF) {
2061 case OperationType::OverflowingBinOp:
2062 return Opcode == Instruction::Add || Opcode == Instruction::Sub ||
2063 Opcode == Instruction::Mul || Opcode == Instruction::Shl ||
2064 Opcode == VPInstruction::VPInstruction::CanonicalIVIncrementForPart;
2065 case OperationType::Trunc:
2066 return Opcode == Instruction::Trunc;
2067 case OperationType::DisjointOp:
2068 return Opcode == Instruction::Or;
2069 case OperationType::PossiblyExactOp:
2070 return Opcode == Instruction::AShr || Opcode == Instruction::LShr ||
2071 Opcode == Instruction::UDiv || Opcode == Instruction::SDiv;
2072 case OperationType::GEPOp:
2073 return Opcode == Instruction::GetElementPtr ||
2076 case OperationType::FPMathOp:
2077 return Opcode == Instruction::Call || Opcode == Instruction::FAdd ||
2078 Opcode == Instruction::FMul || Opcode == Instruction::FSub ||
2079 Opcode == Instruction::FNeg || Opcode == Instruction::FDiv ||
2080 Opcode == Instruction::FRem || Opcode == Instruction::FPExt ||
2081 Opcode == Instruction::FPTrunc || Opcode == Instruction::Select ||
2085 case OperationType::FCmp:
2086 return Opcode == Instruction::FCmp;
2087 case OperationType::NonNegOp:
2088 return Opcode == Instruction::ZExt || Opcode == Instruction::UIToFP;
2089 case OperationType::Cmp:
2090 return Opcode == Instruction::FCmp || Opcode == Instruction::ICmp;
2091 case OperationType::Other:
2098#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2101 case OperationType::Cmp:
2104 case OperationType::FCmp:
2108 case OperationType::DisjointOp:
2112 case OperationType::PossiblyExactOp:
2116 case OperationType::OverflowingBinOp:
2122 case OperationType::Trunc:
2128 case OperationType::FPMathOp:
2131 case OperationType::GEPOp:
2134 else if (
GEPFlags.hasNoUnsignedSignedWrap())
2139 case OperationType::NonNegOp:
2143 case OperationType::Other:
2151 auto &Builder = State.Builder;
2153 case Instruction::Call:
2154 case Instruction::Br:
2155 case Instruction::PHI:
2156 case Instruction::GetElementPtr:
2158 case Instruction::UDiv:
2159 case Instruction::SDiv:
2160 case Instruction::SRem:
2161 case Instruction::URem:
2162 case Instruction::Add:
2163 case Instruction::FAdd:
2164 case Instruction::Sub:
2165 case Instruction::FSub:
2166 case Instruction::FNeg:
2167 case Instruction::Mul:
2168 case Instruction::FMul:
2169 case Instruction::FDiv:
2170 case Instruction::FRem:
2171 case Instruction::Shl:
2172 case Instruction::LShr:
2173 case Instruction::AShr:
2174 case Instruction::And:
2175 case Instruction::Or:
2176 case Instruction::Xor: {
2180 Ops.push_back(State.get(VPOp));
2182 Value *V = Builder.CreateNAryOp(Opcode,
Ops);
2193 case Instruction::ExtractValue: {
2197 Value *Extract = Builder.CreateExtractValue(
Op, CI->getZExtValue());
2198 State.set(
this, Extract);
2201 case Instruction::Freeze: {
2203 Value *Freeze = Builder.CreateFreeze(
Op);
2204 State.set(
this, Freeze);
2207 case Instruction::ICmp:
2208 case Instruction::FCmp: {
2210 bool FCmp = Opcode == Instruction::FCmp;
2226 case Instruction::Select: {
2231 Value *Sel = State.Builder.CreateSelect(
Cond, Op0, Op1);
2232 State.set(
this, Sel);
2251 State.get(
this)->getType() &&
2252 "inferred type and type from generated instructions do not match");
2259 case Instruction::UDiv:
2260 case Instruction::SDiv:
2261 case Instruction::SRem:
2262 case Instruction::URem:
2267 case Instruction::FNeg:
2268 case Instruction::Add:
2269 case Instruction::FAdd:
2270 case Instruction::Sub:
2271 case Instruction::FSub:
2272 case Instruction::Mul:
2273 case Instruction::FMul:
2274 case Instruction::FDiv:
2275 case Instruction::FRem:
2276 case Instruction::Shl:
2277 case Instruction::LShr:
2278 case Instruction::AShr:
2279 case Instruction::And:
2280 case Instruction::Or:
2281 case Instruction::Xor:
2282 case Instruction::Freeze:
2283 case Instruction::ExtractValue:
2284 case Instruction::ICmp:
2285 case Instruction::FCmp:
2287 case Instruction::Select:
2294#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2297 O << Indent <<
"WIDEN ";
2306 auto &Builder = State.Builder;
2308 assert(State.VF.isVector() &&
"Not vectorizing?");
2313 State.set(
this, Cast);
2330#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2333 O << Indent <<
"WIDEN-CAST ";
2344 return Ctx.TTI.getCFInstrCost(Instruction::PHI, Ctx.CostKind);
2351 : ConstantFP::get(Ty,
C);
2354#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2359 O <<
" = WIDEN-INDUCTION";
2364 O <<
" (truncated to " << *TI->getType() <<
")";
2378 return StartC && StartC->isZero() && StepC && StepC->isOne() &&
2382#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2387 O <<
" = DERIVED-IV ";
2411 assert(BaseIVTy == Step->
getType() &&
"Types of BaseIV and Step must match!");
2418 AddOp = Instruction::Add;
2419 MulOp = Instruction::Mul;
2421 AddOp = InductionOpcode;
2422 MulOp = Instruction::FMul;
2432 unsigned StartLane = 0;
2433 unsigned EndLane = FirstLaneOnly ? 1 : State.VF.getKnownMinValue();
2435 StartLane = State.Lane->getKnownLane();
2436 EndLane = StartLane + 1;
2440 StartIdx0 = ConstantInt::get(IntStepTy, 0);
2445 Builder.CreateMul(StartIdx0, ConstantInt::get(StartIdx0->
getType(),
2448 StartIdx0 = Builder.CreateSExtOrTrunc(StartIdx0, IntStepTy);
2452 StartIdx0 = Builder.CreateSIToFP(StartIdx0, BaseIVTy);
2454 for (
unsigned Lane = StartLane; Lane < EndLane; ++Lane) {
2455 Value *StartIdx = Builder.CreateBinOp(
2460 "Expected StartIdx to be folded to a constant when VF is not "
2462 auto *
Mul = Builder.CreateBinOp(MulOp, StartIdx, Step);
2463 auto *
Add = Builder.CreateBinOp(AddOp, BaseIV,
Mul);
2468#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2473 O <<
" = SCALAR-STEPS ";
2484 assert(State.VF.isVector() &&
"not widening");
2492 return Op->isDefinedOutsideLoopRegions();
2494 if (AllOperandsAreInvariant) {
2509 Value *
Splat = State.Builder.CreateVectorSplat(State.VF, NewGEP);
2510 State.set(
this,
Splat);
2518 auto *Ptr = State.get(
getOperand(0), isPointerLoopInvariant());
2525 Indices.
push_back(State.get(Operand, isIndexLoopInvariant(
I - 1)));
2532 assert((State.VF.isScalar() || NewGEP->getType()->isVectorTy()) &&
2533 "NewGEP is not a pointer vector");
2534 State.set(
this, NewGEP);
2537#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2540 O << Indent <<
"WIDEN-GEP ";
2541 O << (isPointerLoopInvariant() ?
"Inv" :
"Var");
2543 O <<
"[" << (isIndexLoopInvariant(
I) ?
"Inv" :
"Var") <<
"]";
2547 O <<
" = getelementptr";
2554 auto &Builder = State.Builder;
2556 const DataLayout &DL = Builder.GetInsertBlock()->getDataLayout();
2557 Type *IndexTy = DL.getIndexType(State.TypeAnalysis.inferScalarType(
this));
2561 if (IndexTy != RunTimeVF->
getType())
2562 RunTimeVF = Builder.CreateZExtOrTrunc(RunTimeVF, IndexTy);
2564 Value *NumElt = Builder.CreateMul(
2568 Value *LastLane = Builder.CreateSub(RunTimeVF, ConstantInt::get(IndexTy, 1));
2575 ResultPtr = Builder.CreateGEP(IndexedTy, ResultPtr, LastLane,
"",
2578 State.set(
this, ResultPtr,
true);
2581#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2586 O <<
" = vector-end-pointer";
2593 auto &Builder = State.Builder;
2595 "Expected prior simplification of recipe without offset");
2600 State.set(
this, ResultPtr,
true);
2603#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2608 O <<
" = vector-pointer";
2621 Type *ResultTy =
toVectorTy(Ctx.Types.inferScalarType(
this), VF);
2624 Ctx.TTI.getCmpSelInstrCost(Instruction::Select, ResultTy, CmpTy,
2628#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2631 O << Indent <<
"BLEND ";
2653 assert(!State.Lane &&
"Reduction being replicated.");
2656 "In-loop AnyOf reductions aren't currently supported");
2662 Value *NewCond = State.get(
Cond, State.VF.isScalar());
2667 if (State.VF.isVector())
2668 Start = State.Builder.CreateVectorSplat(VecTy->
getElementCount(), Start);
2670 Value *
Select = State.Builder.CreateSelect(NewCond, NewVecOp, Start);
2677 if (State.VF.isVector())
2681 NewRed = State.Builder.CreateBinOp(
2683 PrevInChain, NewVecOp);
2684 PrevInChain = NewRed;
2685 NextInChain = NewRed;
2689 NewRed = State.Builder.CreateIntrinsic(
2690 PrevInChain->
getType(), Intrinsic::vector_partial_reduce_add,
2691 {PrevInChain, NewVecOp},
nullptr,
"partial.reduce");
2692 PrevInChain = NewRed;
2693 NextInChain = NewRed;
2696 "The reduction must either be ordered, partial or in-loop");
2700 NextInChain =
createMinMaxOp(State.Builder, Kind, NewRed, PrevInChain);
2702 NextInChain = State.Builder.CreateBinOp(
2704 PrevInChain, NewRed);
2710 assert(!State.Lane &&
"Reduction being replicated.");
2712 auto &Builder = State.Builder;
2724 Mask = State.get(CondOp);
2726 Mask = Builder.CreateVectorSplat(State.VF, Builder.getTrue());
2736 NewRed = Builder.CreateBinOp(
2740 State.set(
this, NewRed,
true);
2746 Type *ElementTy = Ctx.Types.inferScalarType(
this);
2750 std::optional<FastMathFlags> OptionalFMF =
2759 CondCost = Ctx.TTI.getCmpSelInstrCost(Instruction::Select, VectorTy,
2760 CondTy, Pred, Ctx.CostKind);
2762 return CondCost + Ctx.TTI.getPartialReductionCost(
2763 Opcode, ElementTy, ElementTy, ElementTy, VF,
2773 "Any-of reduction not implemented in VPlan-based cost model currently.");
2779 return Ctx.TTI.getMinMaxReductionCost(Id, VectorTy,
FMFs, Ctx.CostKind);
2784 return Ctx.TTI.getArithmeticReductionCost(Opcode, VectorTy, OptionalFMF,
2788VPExpressionRecipe::VPExpressionRecipe(
2789 ExpressionTypes ExpressionType,
2792 ExpressionRecipes(ExpressionRecipes),
ExpressionType(ExpressionType) {
2793 assert(!ExpressionRecipes.empty() &&
"Nothing to combine?");
2797 "expression cannot contain recipes with side-effects");
2801 for (
auto *R : ExpressionRecipes)
2802 ExpressionRecipesAsSetOfUsers.
insert(R);
2808 if (R != ExpressionRecipes.back() &&
2809 any_of(
R->users(), [&ExpressionRecipesAsSetOfUsers](
VPUser *U) {
2810 return !ExpressionRecipesAsSetOfUsers.contains(U);
2815 R->replaceUsesWithIf(CopyForExtUsers, [&ExpressionRecipesAsSetOfUsers](
2817 return !ExpressionRecipesAsSetOfUsers.contains(&U);
2822 R->removeFromParent();
2829 for (
auto *R : ExpressionRecipes) {
2830 for (
const auto &[Idx,
Op] :
enumerate(
R->operands())) {
2831 auto *
Def =
Op->getDefiningRecipe();
2832 if (Def && ExpressionRecipesAsSetOfUsers.contains(Def))
2841 for (
auto *R : ExpressionRecipes)
2842 for (
auto const &[LiveIn, Tmp] :
zip(operands(), LiveInPlaceholders))
2843 R->replaceUsesOfWith(LiveIn, Tmp);
2847 for (
auto *R : ExpressionRecipes)
2850 if (!R->getParent())
2851 R->insertBefore(
this);
2854 LiveInPlaceholders[Idx]->replaceAllUsesWith(
Op);
2857 ExpressionRecipes.clear();
2862 Type *RedTy = Ctx.Types.inferScalarType(
this);
2866 "VPExpressionRecipe only supports integer types currently.");
2869 switch (ExpressionType) {
2870 case ExpressionTypes::ExtendedReduction: {
2876 ->isPartialReduction()
2877 ? Ctx.TTI.getPartialReductionCost(
2878 Opcode, Ctx.Types.inferScalarType(
getOperand(0)),
nullptr,
2883 : Ctx.TTI.getExtendedReductionCost(
2884 Opcode, ExtR->getOpcode() == Instruction::ZExt, RedTy,
2885 SrcVecTy, std::nullopt, Ctx.CostKind);
2887 case ExpressionTypes::MulAccReduction:
2888 return Ctx.TTI.getMulAccReductionCost(
false, Opcode, RedTy, SrcVecTy,
2891 case ExpressionTypes::ExtNegatedMulAccReduction:
2892 assert(Opcode == Instruction::Add &&
"Unexpected opcode");
2893 Opcode = Instruction::Sub;
2895 case ExpressionTypes::ExtMulAccReduction: {
2897 if (RedR->isPartialReduction()) {
2901 return Ctx.TTI.getPartialReductionCost(
2902 Opcode, Ctx.Types.inferScalarType(
getOperand(0)),
2903 Ctx.Types.inferScalarType(
getOperand(1)), RedTy, VF,
2905 Ext0R->getOpcode()),
2907 Ext1R->getOpcode()),
2908 Mul->getOpcode(), Ctx.CostKind);
2910 return Ctx.TTI.getMulAccReductionCost(
2913 Opcode, RedTy, SrcVecTy, Ctx.CostKind);
2921 return R->mayReadFromMemory() || R->mayWriteToMemory();
2929 "expression cannot contain recipes with side-effects");
2937 return RR && !RR->isPartialReduction();
2940#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2944 O << Indent <<
"EXPRESSION ";
2950 switch (ExpressionType) {
2951 case ExpressionTypes::ExtendedReduction: {
2953 O <<
" + " << (Red->isPartialReduction() ?
"partial." :
"") <<
"reduce.";
2960 << *Ext0->getResultType();
2961 if (Red->isConditional()) {
2968 case ExpressionTypes::ExtNegatedMulAccReduction: {
2970 O <<
" + " << (Red->isPartialReduction() ?
"partial." :
"") <<
"reduce.";
2980 << *Ext0->getResultType() <<
"), (";
2984 << *Ext1->getResultType() <<
")";
2985 if (Red->isConditional()) {
2992 case ExpressionTypes::MulAccReduction:
2993 case ExpressionTypes::ExtMulAccReduction: {
2995 O <<
" + " << (Red->isPartialReduction() ?
"partial." :
"") <<
"reduce.";
3000 bool IsExtended = ExpressionType == ExpressionTypes::ExtMulAccReduction;
3002 : ExpressionRecipes[0]);
3010 << *Ext0->getResultType() <<
"), (";
3018 << *Ext1->getResultType() <<
")";
3020 if (Red->isConditional()) {
3033 O << Indent <<
"PARTIAL-REDUCE ";
3035 O << Indent <<
"REDUCE ";
3055 O << Indent <<
"REDUCE ";
3083 assert((!Instr->getType()->isAggregateType() ||
3085 "Expected vectorizable or non-aggregate type.");
3088 bool IsVoidRetTy = Instr->getType()->isVoidTy();
3092 Cloned->
setName(Instr->getName() +
".cloned");
3093 Type *ResultTy = State.TypeAnalysis.inferScalarType(RepRecipe);
3097 if (ResultTy != Cloned->
getType())
3108 State.setDebugLocFrom(
DL);
3113 auto InputLane = Lane;
3117 Cloned->
setOperand(
I.index(), State.get(Operand, InputLane));
3121 State.Builder.Insert(Cloned);
3123 State.set(RepRecipe, Cloned, Lane);
3127 State.AC->registerAssumption(
II);
3133 [](
VPValue *
Op) { return Op->isDefinedOutsideLoopRegions(); })) &&
3134 "Expected a recipe is either within a region or all of its operands "
3135 "are defined outside the vectorized region.");
3142 assert(IsSingleScalar &&
"VPReplicateRecipes outside replicate regions "
3143 "must have already been unrolled");
3149 "uniform recipe shouldn't be predicated");
3150 assert(!State.VF.isScalable() &&
"Can't scalarize a scalable vector");
3155 State.Lane->isFirstLane()
3158 State.set(
this, State.packScalarIntoVectorizedValue(
this, WideValue,
3194 while (!WorkList.
empty()) {
3196 if (!Cur || !Seen.
insert(Cur).second)
3204 return Seen.contains(
3205 Blend->getIncomingValue(I)->getDefiningRecipe());
3209 for (
VPUser *U : Cur->users()) {
3211 if (InterleaveR->getAddr() == Cur)
3214 if (RepR->getOpcode() == Instruction::Load &&
3215 RepR->getOperand(0) == Cur)
3217 if (RepR->getOpcode() == Instruction::Store &&
3218 RepR->getOperand(1) == Cur)
3222 if (MemR->getAddr() == Cur && MemR->isConsecutive())
3243 Ctx.SkipCostComputation.insert(UI);
3249 case Instruction::Alloca:
3252 return Ctx.TTI.getArithmeticInstrCost(
3253 Instruction::Mul, Ctx.Types.inferScalarType(
this), Ctx.CostKind);
3254 case Instruction::GetElementPtr:
3260 case Instruction::Call: {
3266 for (
const VPValue *ArgOp : ArgOps)
3267 Tys.
push_back(Ctx.Types.inferScalarType(ArgOp));
3269 if (CalledFn->isIntrinsic())
3272 switch (CalledFn->getIntrinsicID()) {
3273 case Intrinsic::assume:
3274 case Intrinsic::lifetime_end:
3275 case Intrinsic::lifetime_start:
3276 case Intrinsic::sideeffect:
3277 case Intrinsic::pseudoprobe:
3278 case Intrinsic::experimental_noalias_scope_decl: {
3281 "scalarizing intrinsic should be free");
3288 Type *ResultTy = Ctx.Types.inferScalarType(
this);
3290 Ctx.TTI.getCallInstrCost(CalledFn, ResultTy, Tys, Ctx.CostKind);
3292 if (CalledFn->isIntrinsic())
3293 ScalarCallCost = std::min(
3297 return ScalarCallCost;
3301 Ctx.getScalarizationOverhead(ResultTy, ArgOps, VF);
3303 case Instruction::Add:
3304 case Instruction::Sub:
3305 case Instruction::FAdd:
3306 case Instruction::FSub:
3307 case Instruction::Mul:
3308 case Instruction::FMul:
3309 case Instruction::FDiv:
3310 case Instruction::FRem:
3311 case Instruction::Shl:
3312 case Instruction::LShr:
3313 case Instruction::AShr:
3314 case Instruction::And:
3315 case Instruction::Or:
3316 case Instruction::Xor:
3317 case Instruction::ICmp:
3318 case Instruction::FCmp:
3322 case Instruction::SDiv:
3323 case Instruction::UDiv:
3324 case Instruction::SRem:
3325 case Instruction::URem: {
3332 Ctx.getScalarizationOverhead(Ctx.Types.inferScalarType(
this),
3341 Ctx.TTI.getCFInstrCost(Instruction::PHI, Ctx.CostKind);
3345 ScalarCost /= Ctx.getPredBlockCostDivisor(UI->
getParent());
3348 case Instruction::Load:
3349 case Instruction::Store: {
3356 bool IsLoad = UI->
getOpcode() == Instruction::Load;
3362 Type *ValTy = Ctx.Types.inferScalarType(IsLoad ?
this :
getOperand(0));
3363 Type *ScalarPtrTy = Ctx.Types.inferScalarType(PtrOp);
3368 UI->
getOpcode(), ValTy, Alignment, AS, Ctx.CostKind, OpInfo);
3371 bool PreferVectorizedAddressing = Ctx.TTI.prefersVectorizedAddressing();
3372 bool UsedByLoadStoreAddress =
3376 Ctx.TTI.getAddressComputationCost(
3377 PtrTy, UsedByLoadStoreAddress ?
nullptr : Ctx.PSE.getSE(), PtrSCEV,
3388 if (!UsedByLoadStoreAddress) {
3389 bool EfficientVectorLoadStore =
3390 Ctx.TTI.supportsEfficientVectorElementLoadStore();
3391 if (!(IsLoad && !PreferVectorizedAddressing) &&
3392 !(!IsLoad && EfficientVectorLoadStore))
3395 if (!EfficientVectorLoadStore)
3396 ResultTy = Ctx.Types.inferScalarType(
this);
3400 Ctx.getScalarizationOverhead(ResultTy, OpsToScalarize, VF,
true);
3402 case Instruction::SExt:
3403 case Instruction::ZExt:
3404 case Instruction::FPToUI:
3405 case Instruction::FPToSI:
3406 case Instruction::FPExt:
3407 case Instruction::PtrToInt:
3408 case Instruction::PtrToAddr:
3409 case Instruction::IntToPtr:
3410 case Instruction::SIToFP:
3411 case Instruction::UIToFP:
3412 case Instruction::Trunc:
3413 case Instruction::FPTrunc:
3414 case Instruction::AddrSpaceCast: {
3419 case Instruction::ExtractValue:
3420 case Instruction::InsertValue:
3421 return Ctx.TTI.getInsertExtractValueCost(
getOpcode(), Ctx.CostKind);
3424 return Ctx.getLegacyCost(UI, VF);
3427#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
3430 O << Indent << (IsSingleScalar ?
"CLONE " :
"REPLICATE ");
3439 O <<
"@" << CB->getCalledFunction()->getName() <<
"(";
3457 assert(State.Lane &&
"Branch on Mask works only on single instance.");
3460 Value *ConditionBit = State.get(BlockInMask, *State.Lane);
3464 auto *CurrentTerminator = State.CFG.PrevBB->getTerminator();
3466 "Expected to replace unreachable terminator with conditional branch.");
3468 State.Builder.CreateCondBr(ConditionBit, State.CFG.PrevBB,
nullptr);
3469 CondBr->setSuccessor(0,
nullptr);
3470 CurrentTerminator->eraseFromParent();
3482 assert(State.Lane &&
"Predicated instruction PHI works per instance.");
3487 assert(PredicatingBB &&
"Predicated block has no single predecessor.");
3489 "operand must be VPReplicateRecipe");
3500 "Packed operands must generate an insertelement or insertvalue");
3508 for (
unsigned I = 0;
I < StructTy->getNumContainedTypes() - 1;
I++)
3511 PHINode *VPhi = State.Builder.CreatePHI(VecI->getType(), 2);
3512 VPhi->
addIncoming(VecI->getOperand(0), PredicatingBB);
3514 if (State.hasVectorValue(
this))
3515 State.reset(
this, VPhi);
3517 State.set(
this, VPhi);
3525 Type *PredInstType = State.TypeAnalysis.inferScalarType(
getOperand(0));
3526 PHINode *Phi = State.Builder.CreatePHI(PredInstType, 2);
3529 Phi->addIncoming(ScalarPredInst, PredicatedBB);
3530 if (State.hasScalarValue(
this, *State.Lane))
3531 State.reset(
this, Phi, *State.Lane);
3533 State.set(
this, Phi, *State.Lane);
3536 State.reset(
getOperand(0), Phi, *State.Lane);
3540#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
3543 O << Indent <<
"PHI-PREDICATED-INSTRUCTION ";
3554 ->getAddressSpace();
3557 : Instruction::Store;
3564 "Inconsecutive memory access should not have the order.");
3577 : Intrinsic::vp_scatter;
3578 return Ctx.TTI.getAddressComputationCost(PtrTy,
nullptr,
nullptr,
3580 Ctx.TTI.getMemIntrinsicInstrCost(
3589 : Intrinsic::masked_store;
3590 Cost += Ctx.TTI.getMemIntrinsicInstrCost(
3596 Cost += Ctx.TTI.getMemoryOpCost(Opcode, Ty,
Alignment, AS, Ctx.CostKind,
3607 auto &Builder = State.Builder;
3608 Value *Mask =
nullptr;
3609 if (
auto *VPMask =
getMask()) {
3612 Mask = State.get(VPMask);
3614 Mask = Builder.CreateVectorReverse(Mask,
"reverse");
3620 NewLI = Builder.CreateMaskedGather(DataTy, Addr,
Alignment, Mask,
nullptr,
3621 "wide.masked.gather");
3624 Builder.CreateMaskedLoad(DataTy, Addr,
Alignment, Mask,
3627 NewLI = Builder.CreateAlignedLoad(DataTy, Addr,
Alignment,
"wide.load");
3630 State.set(
this, NewLI);
3633#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
3636 O << Indent <<
"WIDEN ";
3648 Value *AllTrueMask =
3649 Builder.CreateVectorSplat(ValTy->getElementCount(), Builder.getTrue());
3650 return Builder.CreateIntrinsic(ValTy, Intrinsic::experimental_vp_reverse,
3651 {Operand, AllTrueMask, EVL},
nullptr, Name);
3659 auto &Builder = State.Builder;
3663 Value *Mask =
nullptr;
3665 Mask = State.get(VPMask);
3669 Mask = Builder.CreateVectorSplat(State.VF, Builder.getTrue());
3674 Builder.CreateIntrinsic(DataTy, Intrinsic::vp_gather, {Addr, Mask, EVL},
3675 nullptr,
"wide.masked.gather");
3677 NewLI = Builder.CreateIntrinsic(DataTy, Intrinsic::vp_load,
3678 {Addr, Mask, EVL},
nullptr,
"vp.op.load");
3684 State.set(
this, Res);
3699 ->getAddressSpace();
3700 return Ctx.TTI.getMemIntrinsicInstrCost(
3705#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
3708 O << Indent <<
"WIDEN ";
3719 auto &Builder = State.Builder;
3721 Value *Mask =
nullptr;
3722 if (
auto *VPMask =
getMask()) {
3725 Mask = State.get(VPMask);
3727 Mask = Builder.CreateVectorReverse(Mask,
"reverse");
3730 Value *StoredVal = State.get(StoredVPValue);
3734 NewSI = Builder.CreateMaskedScatter(StoredVal, Addr,
Alignment, Mask);
3736 NewSI = Builder.CreateMaskedStore(StoredVal, Addr,
Alignment, Mask);
3738 NewSI = Builder.CreateAlignedStore(StoredVal, Addr,
Alignment);
3742#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
3745 O << Indent <<
"WIDEN store ";
3754 auto &Builder = State.Builder;
3757 Value *StoredVal = State.get(StoredValue);
3759 Value *Mask =
nullptr;
3761 Mask = State.get(VPMask);
3765 Mask = Builder.CreateVectorSplat(State.VF, Builder.getTrue());
3768 if (CreateScatter) {
3770 Intrinsic::vp_scatter,
3771 {StoredVal, Addr, Mask, EVL});
3774 Intrinsic::vp_store,
3775 {StoredVal, Addr, Mask, EVL});
3794 ->getAddressSpace();
3795 return Ctx.TTI.getMemIntrinsicInstrCost(
3800#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
3803 O << Indent <<
"WIDEN vp.store ";
3811 auto VF = DstVTy->getElementCount();
3813 assert(VF == SrcVecTy->getElementCount() &&
"Vector dimensions do not match");
3814 Type *SrcElemTy = SrcVecTy->getElementType();
3815 Type *DstElemTy = DstVTy->getElementType();
3816 assert((
DL.getTypeSizeInBits(SrcElemTy) ==
DL.getTypeSizeInBits(DstElemTy)) &&
3817 "Vector elements must have same size");
3821 return Builder.CreateBitOrPointerCast(V, DstVTy);
3828 "Only one type should be a pointer type");
3830 "Only one type should be a floating point type");
3834 Value *CastVal = Builder.CreateBitOrPointerCast(V, VecIntTy);
3835 return Builder.CreateBitOrPointerCast(CastVal, DstVTy);
3841 const Twine &Name) {
3842 unsigned Factor = Vals.
size();
3843 assert(Factor > 1 &&
"Tried to interleave invalid number of vectors");
3847 for (
Value *Val : Vals)
3848 assert(Val->getType() == VecTy &&
"Tried to interleave mismatched types");
3853 if (VecTy->isScalableTy()) {
3854 assert(Factor <= 8 &&
"Unsupported interleave factor for scalable vectors");
3855 return Builder.CreateVectorInterleave(Vals, Name);
3862 const unsigned NumElts = VecTy->getElementCount().getFixedValue();
3863 return Builder.CreateShuffleVector(
3896 assert(!State.Lane &&
"Interleave group being replicated.");
3898 "Masking gaps for scalable vectors is not yet supported.");
3904 unsigned InterleaveFactor = Group->
getFactor();
3911 auto CreateGroupMask = [&BlockInMask, &State,
3912 &InterleaveFactor](
Value *MaskForGaps) ->
Value * {
3913 if (State.VF.isScalable()) {
3914 assert(!MaskForGaps &&
"Interleaved groups with gaps are not supported.");
3915 assert(InterleaveFactor <= 8 &&
3916 "Unsupported deinterleave factor for scalable vectors");
3917 auto *ResBlockInMask = State.get(BlockInMask);
3925 Value *ResBlockInMask = State.get(BlockInMask);
3926 Value *ShuffledMask = State.Builder.CreateShuffleVector(
3929 "interleaved.mask");
3930 return MaskForGaps ? State.Builder.CreateBinOp(Instruction::And,
3931 ShuffledMask, MaskForGaps)
3935 const DataLayout &DL = Instr->getDataLayout();
3938 Value *MaskForGaps =
nullptr;
3942 assert(MaskForGaps &&
"Mask for Gaps is required but it is null");
3946 if (BlockInMask || MaskForGaps) {
3947 Value *GroupMask = CreateGroupMask(MaskForGaps);
3949 NewLoad = State.Builder.CreateMaskedLoad(VecTy, ResAddr,
3951 PoisonVec,
"wide.masked.vec");
3953 NewLoad = State.Builder.CreateAlignedLoad(VecTy, ResAddr,
3960 if (VecTy->isScalableTy()) {
3963 assert(InterleaveFactor <= 8 &&
3964 "Unsupported deinterleave factor for scalable vectors");
3965 NewLoad = State.Builder.CreateIntrinsic(
3968 nullptr,
"strided.vec");
3971 auto CreateStridedVector = [&InterleaveFactor, &State,
3972 &NewLoad](
unsigned Index) ->
Value * {
3973 assert(Index < InterleaveFactor &&
"Illegal group index");
3974 if (State.VF.isScalable())
3975 return State.Builder.CreateExtractValue(NewLoad, Index);
3981 return State.Builder.CreateShuffleVector(NewLoad, StrideMask,
3985 for (
unsigned I = 0, J = 0;
I < InterleaveFactor; ++
I) {
3992 Value *StridedVec = CreateStridedVector(
I);
3995 if (Member->getType() != ScalarTy) {
4002 StridedVec = State.Builder.CreateVectorReverse(StridedVec,
"reverse");
4004 State.set(VPDefs[J], StridedVec);
4014 Value *MaskForGaps =
4017 "Mismatch between NeedsMaskForGaps and MaskForGaps");
4021 unsigned StoredIdx = 0;
4022 for (
unsigned i = 0; i < InterleaveFactor; i++) {
4024 "Fail to get a member from an interleaved store group");
4034 Value *StoredVec = State.get(StoredValues[StoredIdx]);
4038 StoredVec = State.Builder.CreateVectorReverse(StoredVec,
"reverse");
4042 if (StoredVec->
getType() != SubVT)
4051 if (BlockInMask || MaskForGaps) {
4052 Value *GroupMask = CreateGroupMask(MaskForGaps);
4053 NewStoreInstr = State.Builder.CreateMaskedStore(
4054 IVec, ResAddr, Group->
getAlign(), GroupMask);
4057 State.Builder.CreateAlignedStore(IVec, ResAddr, Group->
getAlign());
4064#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4068 O << Indent <<
"INTERLEAVE-GROUP with factor " << IG->getFactor() <<
" at ";
4069 IG->getInsertPos()->printAsOperand(O,
false);
4079 for (
unsigned i = 0; i < IG->getFactor(); ++i) {
4080 if (!IG->getMember(i))
4083 O <<
"\n" << Indent <<
" store ";
4085 O <<
" to index " << i;
4087 O <<
"\n" << Indent <<
" ";
4089 O <<
" = load from index " << i;
4097 assert(!State.Lane &&
"Interleave group being replicated.");
4098 assert(State.VF.isScalable() &&
4099 "Only support scalable VF for EVL tail-folding.");
4101 "Masking gaps for scalable vectors is not yet supported.");
4107 unsigned InterleaveFactor = Group->
getFactor();
4108 assert(InterleaveFactor <= 8 &&
4109 "Unsupported deinterleave/interleave factor for scalable vectors");
4116 Value *InterleaveEVL = State.Builder.CreateMul(
4117 EVL, ConstantInt::get(EVL->
getType(), InterleaveFactor),
"interleave.evl",
4121 Value *GroupMask =
nullptr;
4127 State.Builder.CreateVectorSplat(WideVF, State.Builder.getTrue());
4132 CallInst *NewLoad = State.Builder.CreateIntrinsic(
4133 VecTy, Intrinsic::vp_load, {ResAddr, GroupMask, InterleaveEVL},
nullptr,
4144 NewLoad = State.Builder.CreateIntrinsic(
4147 nullptr,
"strided.vec");
4149 const DataLayout &DL = Instr->getDataLayout();
4150 for (
unsigned I = 0, J = 0;
I < InterleaveFactor; ++
I) {
4156 Value *StridedVec = State.Builder.CreateExtractValue(NewLoad,
I);
4158 if (Member->getType() != ScalarTy) {
4176 const DataLayout &DL = Instr->getDataLayout();
4177 for (
unsigned I = 0, StoredIdx = 0;
I < InterleaveFactor;
I++) {
4185 Value *StoredVec = State.get(StoredValues[StoredIdx]);
4187 if (StoredVec->
getType() != SubVT)
4197 State.Builder.CreateIntrinsic(
Type::getVoidTy(Ctx), Intrinsic::vp_store,
4198 {IVec, ResAddr, GroupMask, InterleaveEVL});
4207#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4211 O << Indent <<
"INTERLEAVE-GROUP with factor " << IG->getFactor() <<
" at ";
4212 IG->getInsertPos()->printAsOperand(O,
false);
4223 for (
unsigned i = 0; i < IG->getFactor(); ++i) {
4224 if (!IG->getMember(i))
4227 O <<
"\n" << Indent <<
" vp.store ";
4229 O <<
" to index " << i;
4231 O <<
"\n" << Indent <<
" ";
4233 O <<
" = vp.load from index " << i;
4244 unsigned InsertPosIdx = 0;
4245 for (
unsigned Idx = 0; IG->getFactor(); ++Idx)
4246 if (
auto *Member = IG->getMember(Idx)) {
4247 if (Member == InsertPos)
4251 Type *ValTy = Ctx.Types.inferScalarType(
4256 ->getAddressSpace();
4258 unsigned InterleaveFactor = IG->getFactor();
4263 for (
unsigned IF = 0; IF < InterleaveFactor; IF++)
4264 if (IG->getMember(IF))
4269 InsertPos->
getOpcode(), WideVecTy, IG->getFactor(), Indices,
4270 IG->getAlign(), AS, Ctx.CostKind,
getMask(), NeedsMaskForGaps);
4272 if (!IG->isReverse())
4275 return Cost + IG->getNumMembers() *
4277 VectorTy, VectorTy, {}, Ctx.CostKind,
4281#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4284 O << Indent <<
"EMIT ";
4286 O <<
" = CANONICAL-INDUCTION ";
4296#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4300 "unexpected number of operands");
4301 O << Indent <<
"EMIT ";
4303 O <<
" = WIDEN-POINTER-INDUCTION ";
4319 O << Indent <<
"EMIT ";
4321 O <<
" = EXPAND SCEV " << *Expr;
4328 IRBuilder<> Builder(State.CFG.PrevBB->getTerminator());
4332 : Builder.CreateVectorSplat(VF, CanonicalIV,
"broadcast");
4335 VStep = Builder.CreateVectorSplat(VF, VStep);
4337 Builder.CreateAdd(VStep, Builder.CreateStepVector(VStep->
getType()));
4339 Value *CanonicalVectorIV = Builder.CreateAdd(VStart, VStep,
"vec.iv");
4340 State.set(
this, CanonicalVectorIV);
4343#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4346 O << Indent <<
"EMIT ";
4348 O <<
" = WIDEN-CANONICAL-INDUCTION ";
4354 auto &Builder = State.Builder;
4358 Type *VecTy = State.VF.isScalar()
4359 ? VectorInit->getType()
4363 State.CFG.VPBB2IRBB.at(
getParent()->getCFGPredecessor(0));
4364 if (State.VF.isVector()) {
4366 auto *One = ConstantInt::get(IdxTy, 1);
4369 auto *RuntimeVF =
getRuntimeVF(Builder, IdxTy, State.VF);
4370 auto *LastIdx = Builder.CreateSub(RuntimeVF, One);
4371 VectorInit = Builder.CreateInsertElement(
4377 Phi->insertBefore(State.CFG.PrevBB->getFirstInsertionPt());
4378 Phi->addIncoming(VectorInit, VectorPH);
4379 State.set(
this, Phi);
4386 return Ctx.TTI.getCFInstrCost(Instruction::PHI, Ctx.CostKind);
4391#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4394 O << Indent <<
"FIRST-ORDER-RECURRENCE-PHI ";
4411 State.CFG.VPBB2IRBB.at(
getParent()->getCFGPredecessor(0));
4412 bool ScalarPHI = State.VF.isScalar() ||
isInLoop();
4413 Value *StartV = State.get(StartVPV, ScalarPHI);
4417 assert(State.CurrentParentLoop->getHeader() == HeaderBB &&
4418 "recipe must be in the vector loop header");
4423 Phi->addIncoming(StartV, VectorPH);
4426#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4429 O << Indent <<
"WIDEN-REDUCTION-PHI ";
4442 Instruction *VecPhi = State.Builder.CreatePHI(VecTy, 2, Name);
4443 State.set(
this, VecPhi);
4446#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4449 O << Indent <<
"WIDEN-PHI ";
4459 State.CFG.VPBB2IRBB.at(
getParent()->getCFGPredecessor(0));
4462 State.Builder.CreatePHI(StartMask->
getType(), 2,
"active.lane.mask");
4463 Phi->addIncoming(StartMask, VectorPH);
4464 State.set(
this, Phi);
4467#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4470 O << Indent <<
"ACTIVE-LANE-MASK-PHI ";
4478#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4481 O << Indent <<
"EXPLICIT-VECTOR-LENGTH-BASED-IV-PHI ";
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
static MCDisassembler::DecodeStatus addOperand(MCInst &Inst, const MCOperand &Opnd)
AMDGPU Lower Kernel Arguments
AMDGPU Register Bank Select
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
static std::pair< Value *, APInt > getMask(Value *WideMask, unsigned Factor, ElementCount LeafValueEC)
const AbstractManglingParser< Derived, Alloc >::OperatorInfo AbstractManglingParser< Derived, Alloc >::Ops[]
This file provides a LoopVectorizationPlanner class.
static const SCEV * getAddressAccessSCEV(Value *Ptr, LoopVectorizationLegality *Legal, PredicatedScalarEvolution &PSE, const Loop *TheLoop)
Gets Address Access SCEV after verifying that the access pattern is loop invariant except the inducti...
static bool isOrdered(const Instruction *I)
MachineInstr unsigned OpIdx
uint64_t IntrinsicInst * II
const SmallVectorImpl< MachineOperand > & Cond
This file defines the SmallVector class.
static TableGen::Emitter::OptClass< SkeletonEmitter > X("gen-skeleton-class", "Generate example skeleton class")
static SymbolRef::Type getType(const Symbol *Sym)
This file contains the declarations of different VPlan-related auxiliary helpers.
static Instruction * createReverseEVL(IRBuilderBase &Builder, Value *Operand, Value *EVL, const Twine &Name)
Use all-true mask for reverse rather than actual mask, as it avoids a dependence w/o affecting the re...
static Value * interleaveVectors(IRBuilderBase &Builder, ArrayRef< Value * > Vals, const Twine &Name)
Return a vector containing interleaved elements from multiple smaller input vectors.
static InstructionCost getCostForIntrinsics(Intrinsic::ID ID, ArrayRef< const VPValue * > Operands, const VPRecipeWithIRFlags &R, ElementCount VF, VPCostContext &Ctx)
Compute the cost for the intrinsic ID with Operands, produced by R.
static Value * createBitOrPointerCast(IRBuilderBase &Builder, Value *V, VectorType *DstVTy, const DataLayout &DL)
SmallVector< Value *, 2 > VectorParts
static bool isUsedByLoadStoreAddress(const VPUser *V)
Returns true if V is used as part of the address of another load or store.
static void scalarizeInstruction(const Instruction *Instr, VPReplicateRecipe *RepRecipe, const VPLane &Lane, VPTransformState &State)
A helper function to scalarize a single Instruction in the innermost loop.
static Constant * getSignedIntOrFpConstant(Type *Ty, int64_t C)
A helper function that returns an integer or floating-point constant with value C.
static std::optional< unsigned > getOpcode(ArrayRef< VPValue * > Values)
Returns the opcode of Values or ~0 if they do not all agree.
This file contains the declarations of the Vectorization Plan base classes:
static const uint32_t IV[8]
void printAsOperand(OutputBuffer &OB, Prec P=Prec::Default, bool StrictlyWorse=false) const
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
size_t size() const
size - Get the array size.
bool empty() const
empty - Check if the array is empty.
static LLVM_ABI Attribute getWithAlignment(LLVMContext &Context, Align Alignment)
Return a uniquified Attribute object that has the specific alignment set.
LLVM Basic Block Representation.
LLVM_ABI const_iterator getFirstInsertionPt() const
Returns an iterator to the first instruction in this block that is suitable for inserting a non-PHI i...
LLVM_ABI InstListType::const_iterator getFirstNonPHIIt() const
Returns an iterator to the first instruction in this block that is not a PHINode instruction.
LLVM_ABI const BasicBlock * getSinglePredecessor() const
Return the predecessor of this block if it has a single predecessor block.
const Instruction * getTerminator() const LLVM_READONLY
Returns the terminator instruction if the block is well formed or null if the block is not well forme...
void setSuccessor(unsigned idx, BasicBlock *NewSucc)
void addParamAttr(unsigned ArgNo, Attribute::AttrKind Kind)
Adds the attribute to the indicated argument.
This class represents a function call, abstracting a target machine's calling convention.
static LLVM_ABI bool isBitOrNoopPointerCastable(Type *SrcTy, Type *DestTy, const DataLayout &DL)
Check whether a bitcast, inttoptr, or ptrtoint cast between these types is valid and a no-op.
static Type * makeCmpResultType(Type *opnd_type)
Create a result type for fcmp/icmp.
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
@ ICMP_UGT
unsigned greater than
@ ICMP_ULT
unsigned less than
static LLVM_ABI StringRef getPredicateName(Predicate P)
An abstraction over a floating-point predicate, and a pack of an integer predicate with samesign info...
This is the shared class of boolean and integer constants.
static ConstantInt * getSigned(IntegerType *Ty, int64_t V, bool ImplicitTrunc=false)
Return a ConstantInt with the specified value for the specified type.
uint64_t getZExtValue() const
Return the constant as a 64-bit unsigned integer value after it has been zero extended as appropriate...
This is an important base class in LLVM.
static LLVM_ABI Constant * getNullValue(Type *Ty)
Constructor to create a '0' constant of arbitrary type.
A parsed version of the target data layout string in and methods for querying it.
constexpr bool isVector() const
One or more elements.
static constexpr ElementCount getScalable(ScalarTy MinVal)
static constexpr ElementCount getFixed(ScalarTy MinVal)
constexpr bool isScalar() const
Exactly one element.
Convenience struct for specifying and reasoning about fast-math flags.
LLVM_ABI void print(raw_ostream &O) const
Print fast-math flags to O.
void setAllowContract(bool B=true)
bool noSignedZeros() const
void setAllowReciprocal(bool B=true)
bool allowReciprocal() const
void setNoSignedZeros(bool B=true)
bool allowReassoc() const
Flag queries.
void setNoNaNs(bool B=true)
void setAllowReassoc(bool B=true)
Flag setters.
void setApproxFunc(bool B=true)
void setNoInfs(bool B=true)
bool allowContract() const
Class to represent function types.
Type * getParamType(unsigned i) const
Parameter type accessors.
bool willReturn() const
Determine if the function will return.
bool doesNotThrow() const
Determine if the function cannot unwind.
Type * getReturnType() const
Returns the type of the ret val.
Common base class shared among various IRBuilders.
Value * CreateInsertElement(Type *VecTy, Value *NewElt, Value *Idx, const Twine &Name="")
IntegerType * getInt1Ty()
Fetch the type representing a single bit.
Value * CreateInsertValue(Value *Agg, Value *Val, ArrayRef< unsigned > Idxs, const Twine &Name="")
Value * CreateExtractElement(Value *Vec, Value *Idx, const Twine &Name="")
LLVM_ABI Value * CreateVectorSplice(Value *V1, Value *V2, int64_t Imm, const Twine &Name="")
Return a vector splice intrinsic if using scalable vectors, otherwise return a shufflevector.
LLVM_ABI Value * CreateVectorSplat(unsigned NumElts, Value *V, const Twine &Name="")
Return a vector value that contains.
Value * CreateExtractValue(Value *Agg, ArrayRef< unsigned > Idxs, const Twine &Name="")
LLVM_ABI Value * CreateSelect(Value *C, Value *True, Value *False, const Twine &Name="", Instruction *MDFrom=nullptr)
Value * CreateFreeze(Value *V, const Twine &Name="")
IntegerType * getInt32Ty()
Fetch the type representing a 32-bit integer.
Value * CreatePtrAdd(Value *Ptr, Value *Offset, const Twine &Name="", GEPNoWrapFlags NW=GEPNoWrapFlags::none())
void setFastMathFlags(FastMathFlags NewFMF)
Set the fast-math flags to be used with generated fp-math operators.
IntegerType * getInt64Ty()
Fetch the type representing a 64-bit integer.
LLVM_ABI Value * CreateVectorReverse(Value *V, const Twine &Name="")
Return a vector value that contains the vector V reversed.
Value * CreateICmpNE(Value *LHS, Value *RHS, const Twine &Name="")
ConstantInt * getInt64(uint64_t C)
Get a constant 64-bit value.
LLVM_ABI CallInst * CreateOrReduce(Value *Src)
Create a vector int OR reduction intrinsic of the source vector.
Value * CreateLogicalAnd(Value *Cond1, Value *Cond2, const Twine &Name="", Instruction *MDFrom=nullptr)
LLVM_ABI CallInst * CreateIntrinsic(Intrinsic::ID ID, ArrayRef< Type * > Types, ArrayRef< Value * > Args, FMFSource FMFSource={}, const Twine &Name="")
Create a call to intrinsic ID with Args, mangled using Types.
ConstantInt * getInt32(uint32_t C)
Get a constant 32-bit value.
Value * CreateCmp(CmpInst::Predicate Pred, Value *LHS, Value *RHS, const Twine &Name="", MDNode *FPMathTag=nullptr)
Value * CreateNot(Value *V, const Twine &Name="")
Value * CreateICmpEQ(Value *LHS, Value *RHS, const Twine &Name="")
Value * CreateCountTrailingZeroElems(Type *ResTy, Value *Mask, bool ZeroIsPoison=true, const Twine &Name="")
Create a call to llvm.experimental_cttz_elts.
Value * CreateSub(Value *LHS, Value *RHS, const Twine &Name="", bool HasNUW=false, bool HasNSW=false)
BranchInst * CreateCondBr(Value *Cond, BasicBlock *True, BasicBlock *False, MDNode *BranchWeights=nullptr, MDNode *Unpredictable=nullptr)
Create a conditional 'br Cond, TrueDest, FalseDest' instruction.
Value * CreateZExt(Value *V, Type *DestTy, const Twine &Name="", bool IsNonNeg=false)
LLVM_ABI CallInst * CreateIntMaxReduce(Value *Src, bool IsSigned=false)
Create a vector integer max reduction intrinsic of the source vector.
Value * CreateAdd(Value *LHS, Value *RHS, const Twine &Name="", bool HasNUW=false, bool HasNSW=false)
ConstantInt * getFalse()
Get the constant value for i1 false.
Value * CreateBinOp(Instruction::BinaryOps Opc, Value *LHS, Value *RHS, const Twine &Name="", MDNode *FPMathTag=nullptr)
Value * CreateICmpUGE(Value *LHS, Value *RHS, const Twine &Name="")
LLVM_ABI CallInst * CreateIntMinReduce(Value *Src, bool IsSigned=false)
Create a vector integer min reduction intrinsic of the source vector.
Value * CreateICmp(CmpInst::Predicate P, Value *LHS, Value *RHS, const Twine &Name="")
Value * CreateOr(Value *LHS, Value *RHS, const Twine &Name="", bool IsDisjoint=false)
Value * CreateMul(Value *LHS, Value *RHS, const Twine &Name="", bool HasNUW=false, bool HasNSW=false)
This provides a uniform API for creating instructions and inserting them into a basic block: either a...
static InstructionCost getInvalid(CostType Val=0)
LLVM_ABI InstListType::iterator eraseFromParent()
This method unlinks 'this' from the containing basic block and deletes it.
const char * getOpcodeName() const
unsigned getOpcode() const
Returns a member of one of the enums like Instruction::Add.
static LLVM_ABI IntegerType * get(LLVMContext &C, unsigned NumBits)
This static method is the primary way of constructing an IntegerType.
The group of interleaved loads/stores sharing the same stride and close to each other.
uint32_t getFactor() const
InstTy * getMember(uint32_t Index) const
Get the member with the given index Index.
InstTy * getInsertPos() const
void addMetadata(InstTy *NewInst) const
Add metadata (e.g.
This is an important class for using LLVM in a threaded context.
Represents a single loop in the control flow graph.
Information for memory intrinsic cost model.
A Module instance is used to store all the information related to an LLVM module.
void addIncoming(Value *V, BasicBlock *BB)
Add an incoming value to the end of the PHI list.
static PHINode * Create(Type *Ty, unsigned NumReservedValues, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
Constructors - NumReservedValues is a hint for the number of incoming edges that this phi node will h...
static LLVM_ABI PoisonValue * get(Type *T)
Static factory methods - Return an 'poison' object of the specified type.
An interface layer with SCEV used to manage how we see SCEV expressions for values in the context of ...
ScalarEvolution * getSE() const
Returns the ScalarEvolution analysis used.
static bool isSignedRecurrenceKind(RecurKind Kind)
Returns true if recurrece kind is a signed redux kind.
static LLVM_ABI unsigned getOpcode(RecurKind Kind)
Returns the opcode corresponding to the RecurrenceKind.
unsigned getOpcode() const
static bool isAnyOfRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is of the form select(cmp(),x,y) where one of (x,...
static bool isFindLastIVRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is of the form select(cmp(),x,y) where one of (x,...
static bool isFindIVRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is of the form select(cmp(),x,y) where one of (x,...
static bool isMinMaxRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is any min/max kind.
This class represents an analyzed expression in the program.
This class provides computation of slot numbers for LLVM Assembly writing.
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
reference emplace_back(ArgTypes &&... Args)
void append(ItTy in_start, ItTy in_end)
Add the specified range to the end of the SmallVector.
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
StringRef - Represent a constant reference to a string, i.e.
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
The instances of the Type class are immutable: once they are created, they are never changed.
static LLVM_ABI IntegerType * getInt64Ty(LLVMContext &C)
bool isVectorTy() const
True if this is an instance of VectorType.
static LLVM_ABI IntegerType * getInt32Ty(LLVMContext &C)
bool isPointerTy() const
True if this is an instance of PointerType.
static LLVM_ABI Type * getVoidTy(LLVMContext &C)
Type * getScalarType() const
If this is a vector type, return the element type, otherwise return 'this'.
bool isStructTy() const
True if this is an instance of StructType.
LLVMContext & getContext() const
Return the LLVMContext in which this type was uniqued.
LLVM_ABI unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type.
static LLVM_ABI IntegerType * getInt1Ty(LLVMContext &C)
bool isFloatingPointTy() const
Return true if this is one of the floating-point types.
bool isIntegerTy() const
True if this is an instance of IntegerType.
static LLVM_ABI IntegerType * getIntNTy(LLVMContext &C, unsigned N)
bool isVoidTy() const
Return true if this is 'void'.
value_op_iterator value_op_end()
void setOperand(unsigned i, Value *Val)
Value * getOperand(unsigned i) const
value_op_iterator value_op_begin()
void execute(VPTransformState &State) override
Generate the active lane mask phi of the vector loop.
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
RecipeListTy & getRecipeList()
Returns a reference to the list of recipes.
void insert(VPRecipeBase *Recipe, iterator InsertPt)
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPWidenMemoryRecipe.
VPValue * getIncomingValue(unsigned Idx) const
Return incoming value number Idx.
unsigned getNumIncomingValues() const
Return the number of incoming values, taking into account when normalized the first incoming value wi...
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
VPBlockBase is the building block of the Hierarchical Control-Flow Graph.
const VPBlocksTy & getPredecessors() const
void printAsOperand(raw_ostream &OS, bool PrintType=false) const
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPBranchOnMaskRecipe.
void execute(VPTransformState &State) override
Generate the extraction of the appropriate bit from the block mask and the conditional branch.
VPlan-based builder utility analogous to IRBuilder.
LLVM_ABI_FOR_TEST void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
This class augments a recipe with a set of VPValues defined by the recipe.
LLVM_ABI_FOR_TEST void dump() const
Dump the VPDef to stderr (for debugging).
unsigned getNumDefinedValues() const
Returns the number of values defined by the VPDef.
VPValue * getVPSingleValue()
Returns the only VPValue defined by the VPDef.
VPValue * getVPValue(unsigned I)
Returns the VPValue with index I defined by the VPDef.
ArrayRef< VPRecipeValue * > definedValues()
Returns an ArrayRef of the values defined by the VPDef.
unsigned getVPDefID() const
VPIRValue * getStartValue() const
VPValue * getStepValue() const
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
LLVM_ABI_FOR_TEST void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void decompose()
Insert the recipes of the expression back into the VPlan, directly before the current recipe.
bool isSingleScalar() const
Returns true if the result of this VPExpressionRecipe is a single-scalar.
bool mayHaveSideEffects() const
Returns true if this expression contains recipes that may have side effects.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Compute the cost of this recipe either using a recipe's specialized implementation or using the legac...
bool mayReadOrWriteMemory() const
Returns true if this expression contains recipes that may read from or write to memory.
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void execute(VPTransformState &State) override
Produce a vectorized histogram operation.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPHistogramRecipe.
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
VPValue * getMask() const
Return the mask operand if one was provided, or a null pointer if all lanes should be executed uncond...
Class to record and manage LLVM IR flags.
LLVM_ABI_FOR_TEST bool flagsValidForOpcode(unsigned Opcode) const
Returns true if the set flags are valid for Opcode.
CmpInst::Predicate CmpPredicate
void printFlags(raw_ostream &O) const
bool hasFastMathFlags() const
Returns true if the recipe has fast-math flags.
LLVM_ABI_FOR_TEST FastMathFlags getFastMathFlags() const
CmpInst::Predicate getPredicate() const
bool hasNoSignedWrap() const
void intersectFlags(const VPIRFlags &Other)
Only keep flags also present in Other.
GEPNoWrapFlags getGEPNoWrapFlags() const
bool hasPredicate() const
Returns true if the recipe has a comparison predicate.
DisjointFlagsTy DisjointFlags
bool hasNoUnsignedWrap() const
NonNegFlagsTy NonNegFlags
void applyFlags(Instruction &I) const
Apply the IR flags to I.
Instruction & getInstruction() const
void extractLastLaneOfLastPartOfFirstOperand(VPBuilder &Builder)
Update the recipe's first operand to the last lane of the last part of the operand using Builder.
void execute(VPTransformState &State) override
The method which generates the output IR instructions that correspond to this VPRecipe,...
LLVM_ABI_FOR_TEST InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPIRInstruction.
VPIRInstruction(Instruction &I)
VPIRInstruction::create() should be used to create VPIRInstructions, as subclasses may need to be cre...
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void execute(VPTransformState &State) override
Generate the instruction.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPInstruction.
bool doesGeneratePerAllLanes() const
Returns true if this VPInstruction generates scalar values for all lanes.
@ ExtractLane
Extracts a single lane (first operand) from a set of vector operands.
@ ComputeAnyOfResult
Compute the final result of a AnyOf reduction with select(cmp(),x,y), where one of (x,...
@ WideIVStep
Scale the first operand (vector step) by the second operand (scalar-step).
@ ExtractPenultimateElement
@ ResumeForEpilogue
Explicit user for the resume phi of the canonical induction in the main VPlan, used by the epilogue v...
@ Unpack
Extracts all lanes from its (non-scalable) vector operand.
@ FirstOrderRecurrenceSplice
@ ReductionStartVector
Start vector for reductions with 3 operands: the original start value, the identity value for the red...
@ BuildVector
Creates a fixed-width vector containing all operands.
@ BuildStructVector
Given operands of (the same) struct type, creates a struct of fixed- width vectors each containing a ...
@ VScale
Returns the value for vscale.
@ CanonicalIVIncrementForPart
@ CalculateTripCountMinusVF
bool opcodeMayReadOrWriteFromMemory() const
Returns true if the underlying opcode may read from or write to memory.
LLVM_DUMP_METHOD void dump() const
Print the VPInstruction to dbgs() (for debugging).
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the VPInstruction to O.
StringRef getName() const
Returns the symbolic name assigned to the VPInstruction.
unsigned getOpcode() const
VPInstruction(unsigned Opcode, ArrayRef< VPValue * > Operands, const VPIRFlags &Flags={}, const VPIRMetadata &MD={}, DebugLoc DL=DebugLoc::getUnknown(), const Twine &Name="")
bool usesFirstLaneOnly(const VPValue *Op) const override
Returns true if the recipe only uses the first lane of operand Op.
bool isVectorToScalar() const
Returns true if this VPInstruction produces a scalar value from a vector, e.g.
bool isSingleScalar() const
Returns true if this VPInstruction's operands are single scalars and the result is also a single scal...
void execute(VPTransformState &State) override
Generate the instruction.
bool usesFirstPartOnly(const VPValue *Op) const override
Returns true if the recipe only uses the first part of operand Op.
bool needsMaskForGaps() const
Return true if the access needs a mask because of the gaps.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this recipe.
Instruction * getInsertPos() const
const InterleaveGroup< Instruction > * getInterleaveGroup() const
VPValue * getMask() const
Return the mask used by this recipe.
ArrayRef< VPValue * > getStoredValues() const
Return the VPValues stored by this interleave group.
VPValue * getAddr() const
Return the address accessed by this recipe.
VPValue * getEVL() const
The VPValue of the explicit vector length.
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
unsigned getNumStoreOperands() const override
Returns the number of stored operands of this interleave group.
void execute(VPTransformState &State) override
Generate the wide load or store, and shuffles.
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
unsigned getNumStoreOperands() const override
Returns the number of stored operands of this interleave group.
void execute(VPTransformState &State) override
Generate the wide load or store, and shuffles.
In what follows, the term "input IR" refers to code that is fed into the vectorizer whereas the term ...
static VPLane getLastLaneForVF(const ElementCount &VF)
static VPLane getLaneFromEnd(const ElementCount &VF, unsigned Offset)
static VPLane getFirstLane()
virtual const VPRecipeBase * getAsRecipe() const =0
Return a VPRecipeBase* to the current object.
virtual unsigned getNumIncoming() const
Returns the number of incoming values, also number of incoming blocks.
void removeIncomingValueFor(VPBlockBase *IncomingBlock) const
Removes the incoming value for IncomingBlock, which must be a predecessor.
const VPBasicBlock * getIncomingBlock(unsigned Idx) const
Returns the incoming block with index Idx.
detail::zippy< llvm::detail::zip_first, VPUser::const_operand_range, const_incoming_blocks_range > incoming_values_and_blocks() const
Returns an iterator range over pairs of incoming values and corresponding incoming blocks.
VPValue * getIncomingValue(unsigned Idx) const
Returns the incoming VPValue with index Idx.
void printPhiOperands(raw_ostream &O, VPSlotTracker &SlotTracker) const
Print the recipe.
void execute(VPTransformState &State) override
Generates phi nodes for live-outs (from a replicate region) as needed to retain SSA form.
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
VPRecipeBase is a base class modeling a sequence of one or more output IR instructions.
bool mayReadFromMemory() const
Returns true if the recipe may read from memory.
bool mayHaveSideEffects() const
Returns true if the recipe may have side-effects.
virtual void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const =0
Each concrete VPRecipe prints itself, without printing common information, like debug info or metadat...
VPRegionBlock * getRegion()
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override final
Print the recipe, delegating to printRecipe().
bool isPhi() const
Returns true for PHI-like recipes.
bool mayWriteToMemory() const
Returns true if the recipe may write to memory.
virtual InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const
Compute the cost of this recipe either using a recipe's specialized implementation or using the legac...
VPBasicBlock * getParent()
DebugLoc getDebugLoc() const
Returns the debug location of the recipe.
void moveBefore(VPBasicBlock &BB, iplist< VPRecipeBase >::iterator I)
Unlink this recipe and insert into BB before I.
void insertBefore(VPRecipeBase *InsertPos)
Insert an unlinked recipe into a basic block immediately before the specified recipe.
void insertAfter(VPRecipeBase *InsertPos)
Insert an unlinked Recipe into a basic block immediately after the specified Recipe.
iplist< VPRecipeBase >::iterator eraseFromParent()
This method unlinks 'this' from the containing basic block and deletes it.
InstructionCost cost(ElementCount VF, VPCostContext &Ctx)
Return the cost of this recipe, taking into account if the cost computation should be skipped and the...
bool isScalarCast() const
Return true if the recipe is a scalar cast.
void removeFromParent()
This method unlinks 'this' from the containing basic block, but does not delete it.
void moveAfter(VPRecipeBase *MovePos)
Unlink this recipe from its current VPBasicBlock and insert it into the VPBasicBlock that MovePos liv...
VPRecipeBase(const unsigned char SC, ArrayRef< VPValue * > Operands, DebugLoc DL=DebugLoc::getUnknown())
void execute(VPTransformState &State) override
Generate the reduction in the loop.
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
VPValue * getEVL() const
The VPValue of the explicit vector length.
unsigned getVFScaleFactor() const
Get the factor that the VF of this recipe's output should be scaled by, or 1 if it isn't scaled.
bool isInLoop() const
Returns true if the phi is part of an in-loop reduction.
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void execute(VPTransformState &State) override
Generate the phi/select nodes.
bool isConditional() const
Return true if the in-loop reduction is conditional.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of VPReductionRecipe.
VPValue * getVecOp() const
The VPValue of the vector value to be reduced.
VPValue * getCondOp() const
The VPValue of the condition for the block.
RecurKind getRecurrenceKind() const
Return the recurrence kind for the in-loop reduction.
bool isPartialReduction() const
Returns true if the reduction outputs a vector with a scaled down VF.
VPValue * getChainOp() const
The VPValue of the scalar Chain being accumulated.
bool isInLoop() const
Returns true if the reduction is in-loop.
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void execute(VPTransformState &State) override
Generate the reduction in the loop.
VPRegionBlock represents a collection of VPBasicBlocks and VPRegionBlocks which form a Single-Entry-S...
bool isReplicator() const
An indicator whether this region is to generate multiple replicated instances of output IR correspond...
VPReplicateRecipe replicates a given instruction producing multiple scalar copies of the original sca...
void execute(VPTransformState &State) override
Generate replicas of the desired Ingredient.
bool isSingleScalar() const
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPReplicateRecipe.
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
unsigned getOpcode() const
bool shouldPack() const
Returns true if the recipe is used by a widened recipe via an intervening VPPredInstPHIRecipe.
VPValue * getStepValue() const
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void execute(VPTransformState &State) override
Generate the scalarized versions of the phi node as needed by their users.
VPSingleDef is a base class for recipes for modeling a sequence of one or more output IR that define ...
Instruction * getUnderlyingInstr()
Returns the underlying instruction.
LLVM_ABI_FOR_TEST LLVM_DUMP_METHOD void dump() const
Print this VPSingleDefRecipe to dbgs() (for debugging).
VPSingleDefRecipe(const unsigned char SC, ArrayRef< VPValue * > Operands, DebugLoc DL=DebugLoc::getUnknown())
This class can be used to assign names to VPValues.
Type * inferScalarType(const VPValue *V)
Infer the type of V. Returns the scalar type of V.
Helper to access the operand that contains the unroll part for this recipe after unrolling.
VPValue * getUnrollPartOperand(const VPUser &U) const
Return the VPValue operand containing the unroll part or null if there is no such operand.
unsigned getUnrollPart(const VPUser &U) const
Return the unroll part.
This class augments VPValue with operands which provide the inverse def-use edges from VPValue's user...
void printOperands(raw_ostream &O, VPSlotTracker &SlotTracker) const
Print the operands to O.
void setOperand(unsigned I, VPValue *New)
unsigned getNumOperands() const
operand_iterator op_begin()
VPValue * getOperand(unsigned N) const
virtual bool usesFirstLaneOnly(const VPValue *Op) const
Returns true if the VPUser only uses the first lane of operand Op.
This is the base class of the VPlan Def/Use graph, used for modeling the data flow into,...
Value * getLiveInIRValue() const
Return the underlying IR value for a VPIRValue.
bool isDefinedOutsideLoopRegions() const
Returns true if the VPValue is defined outside any loop.
VPRecipeBase * getDefiningRecipe()
Returns the recipe defining this VPValue or nullptr if it is not defined by a recipe,...
void printAsOperand(raw_ostream &OS, VPSlotTracker &Tracker) const
Value * getUnderlyingValue() const
Return the underlying Value attached to this VPValue.
void replaceAllUsesWith(VPValue *New)
void execute(VPTransformState &State) override
The method which generates the output IR instructions that correspond to this VPRecipe,...
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
Type * getSourceElementType() const
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void execute(VPTransformState &State) override
The method which generates the output IR instructions that correspond to this VPRecipe,...
Function * getCalledScalarFunction() const
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPWidenCallRecipe.
void execute(VPTransformState &State) override
Produce a widened version of the call instruction.
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void execute(VPTransformState &State) override
Generate a canonical vector induction variable of the vector loop, with start = {<Part*VF,...
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
LLVM_ABI_FOR_TEST void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
Type * getResultType() const
Returns the result type of the cast.
LLVM_ABI_FOR_TEST void execute(VPTransformState &State) override
Produce widened copies of the cast.
LLVM_ABI_FOR_TEST InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPWidenCastRecipe.
void execute(VPTransformState &State) override
Generate the gep nodes.
Type * getSourceElementType() const
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
bool usesFirstLaneOnly(const VPValue *Op) const override
Returns true if the recipe only uses the first lane of operand Op.
VPIRValue * getStartValue() const
Returns the start value of the induction.
VPValue * getStepValue()
Returns the step value of the induction.
VPIRValue * getStartValue() const
Returns the start value of the induction.
TruncInst * getTruncInst()
Returns the first defined value as TruncInst, if it is one or nullptr otherwise.
Type * getScalarType() const
Returns the scalar type of the induction.
bool isCanonical() const
Returns true if the induction is canonical, i.e.
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
Intrinsic::ID getVectorIntrinsicID() const
Return the ID of the intrinsic.
LLVM_ABI_FOR_TEST void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
StringRef getIntrinsicName() const
Return to name of the intrinsic as string.
LLVM_ABI_FOR_TEST bool usesFirstLaneOnly(const VPValue *Op) const override
Returns true if the VPUser only uses the first lane of operand Op.
Type * getResultType() const
Return the scalar return type of the intrinsic.
LLVM_ABI_FOR_TEST void execute(VPTransformState &State) override
Produce a widened version of the vector intrinsic.
LLVM_ABI_FOR_TEST InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this vector intrinsic.
bool IsMasked
Whether the memory access is masked.
bool Reverse
Whether the consecutive accessed addresses are in reverse order.
bool isConsecutive() const
Return whether the loaded-from / stored-to addresses are consecutive.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPWidenMemoryRecipe.
bool Consecutive
Whether the accessed addresses are consecutive.
VPValue * getMask() const
Return the mask used by this recipe.
Align Alignment
Alignment information for this memory access.
VPValue * getAddr() const
Return the address accessed by this recipe.
bool isReverse() const
Return whether the consecutive loaded/stored addresses are in reverse order.
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void execute(VPTransformState &State) override
Generate the phi/select nodes.
bool onlyScalarsGenerated(bool IsScalable)
Returns true if only scalar values will be generated.
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPWidenRecipe.
void execute(VPTransformState &State) override
Produce a widened instruction using the opcode and operands of the recipe, processing State....
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
LLVM_ABI_FOR_TEST VPRegionBlock * getVectorLoopRegion()
Returns the VPRegionBlock of the vector loop.
LLVM Value Representation.
Type * getType() const
All values are typed, get the type of this value.
LLVM_ABI void setName(const Twine &Name)
Change the name of the value.
LLVM_ABI LLVMContext & getContext() const
All values hold a context through their type.
void mutateType(Type *Ty)
Mutate the type of this Value to be of the specified type.
LLVM_ABI StringRef getName() const
Return a constant reference to the value's name.
Base class of all SIMD vector types.
ElementCount getElementCount() const
Return an ElementCount instance to represent the (possibly scalable) number of elements in the vector...
static LLVM_ABI VectorType * get(Type *ElementType, ElementCount EC)
This static method is the primary way to construct an VectorType.
Type * getElementType() const
constexpr ScalarTy getFixedValue() const
constexpr bool isScalable() const
Returns whether the quantity is scaled by a runtime quantity (vscale).
constexpr LeafTy multiplyCoefficientBy(ScalarTy RHS) const
constexpr ScalarTy getKnownMinValue() const
Returns the minimum value this quantity can represent.
constexpr LeafTy divideCoefficientBy(ScalarTy RHS) const
We do not provide the '/' operator here because division for polynomial types does not work in the sa...
const ParentTy * getParent() const
self_iterator getIterator()
typename base_list_type::iterator iterator
iterator erase(iterator where)
pointer remove(iterator &IT)
This class implements an extremely fast bulk output stream that can only output to a stream.
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
constexpr std::underlying_type_t< E > Mask()
Get a bitmask with 1s in all places up to the high-order bit of E's largest value.
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
@ C
The default llvm calling convention, compatible with C.
@ BasicBlock
Various leaf nodes.
LLVM_ABI Function * getOrInsertDeclaration(Module *M, ID id, ArrayRef< Type * > Tys={})
Look up the Function declaration of the intrinsic id in the Module M.
LLVM_ABI Intrinsic::ID getDeinterleaveIntrinsicID(unsigned Factor)
Returns the corresponding llvm.vector.deinterleaveN intrinsic for factor N.
LLVM_ABI StringRef getBaseName(ID id)
Return the LLVM name for an intrinsic, without encoded types for overloading, such as "llvm....
bool match(Val *V, const Pattern &P)
auto m_LogicalOr()
Matches L || R where L and R are arbitrary values.
class_match< CmpInst > m_Cmp()
Matches any compare instruction and ignore it.
auto m_LogicalAnd()
Matches L && R where L and R are arbitrary values.
class_match< VPValue > m_VPValue()
Match an arbitrary VPValue and ignore it.
VPInstruction_match< VPInstruction::Reverse, Op0_t > m_Reverse(const Op0_t &Op0)
NodeAddr< DefNode * > Def
bool isSingleScalar(const VPValue *VPV)
Returns true if VPV is a single scalar, either because it produces the same value for all lanes or on...
bool isAddressSCEVForCost(const SCEV *Addr, ScalarEvolution &SE, const Loop *L)
Returns true if Addr is an address SCEV that can be passed to TTI::getAddressComputationCost,...
bool onlyFirstPartUsed(const VPValue *Def)
Returns true if only the first part of Def is used.
bool onlyFirstLaneUsed(const VPValue *Def)
Returns true if only the first lane of Def is used.
bool onlyScalarValuesUsed(const VPValue *Def)
Returns true if only scalar values of Def are used by all users.
const SCEV * getSCEVExprForVPValue(const VPValue *V, PredicatedScalarEvolution &PSE, const Loop *L=nullptr)
Return the SCEV expression for V.
This is an optimization pass for GlobalISel generic memory operations.
auto drop_begin(T &&RangeOrContainer, size_t N=1)
Return a range covering RangeOrContainer with the first N elements excluded.
LLVM_ABI Value * createSimpleReduction(IRBuilderBase &B, Value *Src, RecurKind RdxKind)
Create a reduction of the given vector.
detail::zippy< detail::zip_shortest, T, U, Args... > zip(T &&t, U &&u, Args &&...args)
zip iterator for two or more iteratable types.
FunctionAddr VTableAddr Value
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
LLVM_ABI Intrinsic::ID getMinMaxReductionIntrinsicOp(Intrinsic::ID RdxID)
Returns the min/max intrinsic used when expanding a min/max reduction.
auto enumerate(FirstRange &&First, RestRanges &&...Rest)
Given two or more input ranges, returns a new range whose values are tuples (A, B,...
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
const Value * getLoadStorePointerOperand(const Value *V)
A helper function that returns the pointer operand of a load or store instruction.
Value * getRuntimeVF(IRBuilderBase &B, Type *Ty, ElementCount VF)
Return the runtime value for VF.
auto dyn_cast_if_present(const Y &Val)
dyn_cast_if_present<X> - Functionally identical to dyn_cast, except that a null (or none in the case ...
iterator_range< T > make_range(T x, T y)
Convenience function for iterating over sub-ranges.
void append_range(Container &C, Range &&R)
Wrapper function to append range R to container C.
void interleaveComma(const Container &c, StreamT &os, UnaryFunctor each_fn)
auto cast_or_null(const Y &Val)
LLVM_ABI Value * concatenateVectors(IRBuilderBase &Builder, ArrayRef< Value * > Vecs)
Concatenate a list of vectors.
Align getLoadStoreAlignment(const Value *I)
A helper function that returns the alignment of load or store instruction.
bool isa_and_nonnull(const Y &Val)
LLVM_ABI Value * createMinMaxOp(IRBuilderBase &Builder, RecurKind RK, Value *Left, Value *Right)
Returns a Min/Max operation corresponding to MinMaxRecurrenceKind.
auto dyn_cast_or_null(const Y &Val)
static Error getOffset(const SymbolRef &Sym, SectionRef Sec, uint64_t &Result)
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
LLVM_ABI Constant * createBitMaskForGaps(IRBuilderBase &Builder, unsigned VF, const InterleaveGroup< Instruction > &Group)
Create a mask that filters the members of an interleave group where there are gaps.
LLVM_ABI llvm::SmallVector< int, 16 > createStrideMask(unsigned Start, unsigned Stride, unsigned VF)
Create a stride shuffle mask.
auto reverse(ContainerTy &&C)
LLVM_ABI llvm::SmallVector< int, 16 > createReplicatedMask(unsigned ReplicationFactor, unsigned VF)
Create a mask with replicated elements.
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
bool none_of(R &&Range, UnaryPredicate P)
Provide wrappers to std::none_of which take ranges instead of having to pass begin/end explicitly.
SmallVector< ValueTypeFromRangeType< R >, Size > to_vector(R &&Range)
Given a range of type R, iterate the entire range and return a SmallVector with elements of the vecto...
Type * toVectorizedTy(Type *Ty, ElementCount EC)
A helper for converting to vectorized types.
cl::opt< unsigned > ForceTargetInstructionCost
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
auto drop_end(T &&RangeOrContainer, size_t N=1)
Return a range covering RangeOrContainer with the last N elements excluded.
bool canVectorizeTy(Type *Ty)
Returns true if Ty is a valid vector element type, void, or an unpacked literal struct where all elem...
LLVM_ABI llvm::SmallVector< int, 16 > createInterleaveMask(unsigned VF, unsigned NumVecs)
Create an interleave shuffle mask.
RecurKind
These are the kinds of recurrences that we support.
@ UMin
Unsigned integer min implemented in terms of select(cmp()).
@ Mul
Product of integers.
@ SMax
Signed integer max implemented in terms of select(cmp()).
@ SMin
Signed integer min implemented in terms of select(cmp()).
@ Sub
Subtraction of integers.
@ UMax
Unsigned integer max implemented in terms of select(cmp()).
LLVM_ABI bool isVectorIntrinsicWithScalarOpAtArg(Intrinsic::ID ID, unsigned ScalarOpdIdx, const TargetTransformInfo *TTI)
Identifies if the vector form of the intrinsic has a scalar operand.
LLVM_ABI Value * getRecurrenceIdentity(RecurKind K, Type *Tp, FastMathFlags FMF)
Given information about an recurrence kind, return the identity for the @llvm.vector....
DWARFExpression::Operation Op
Value * createStepForVF(IRBuilderBase &B, Type *Ty, ElementCount VF, int64_t Step)
Return a value for Step multiplied by VF.
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
bool is_contained(R &&Range, const E &Element)
Returns true if Element is found in Range.
Type * getLoadStoreType(const Value *I)
A helper function that returns the type of a load or store instruction.
LLVM_ABI Value * createOrderedReduction(IRBuilderBase &B, RecurKind RdxKind, Value *Src, Value *Start)
Create an ordered reduction intrinsic using the given recurrence kind RdxKind.
ArrayRef< Type * > getContainedTypes(Type *const &Ty)
Returns the types contained in Ty.
auto seq(T Begin, T End)
Iterate over an integral type from Begin up to - but not including - End.
Type * toVectorTy(Type *Scalar, ElementCount EC)
A helper function for converting Scalar types to vector types.
LLVM_ABI Value * createAnyOfReduction(IRBuilderBase &B, Value *Src, Value *InitVal, PHINode *OrigPhi)
Create a reduction of the given vector Src for a reduction of kind RecurKind::AnyOf.
LLVM_ABI bool isVectorIntrinsicWithOverloadTypeAtArg(Intrinsic::ID ID, int OpdIdx, const TargetTransformInfo *TTI)
Identifies if the vector form of the intrinsic is overloaded on the type of the operand at index OpdI...
This struct is a compact representation of a valid (non-zero power of two) alignment.
Struct to hold various analysis needed for cost computations.
TargetTransformInfo::OperandValueInfo getOperandInfo(VPValue *V) const
Returns the OperandInfo for V, if it is a live-in.
TargetTransformInfo::TargetCostKind CostKind
const TargetTransformInfo & TTI
void execute(VPTransformState &State) override
Generate the phi nodes.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this first-order recurrence phi recipe.
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
An overlay for VPIRInstructions wrapping PHI nodes enabling convenient use cast/dyn_cast/isa and exec...
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void execute(VPTransformState &State) override
The method which generates the output IR instructions that correspond to this VPRecipe,...
A VPValue representing a live-in from the input IR or a constant.
Value * getValue() const
Returns the underlying IR value.
void execute(VPTransformState &State) override
Generate the instruction.
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
A pure-virtual common base class for recipes defining a single VPValue and using IR flags.
InstructionCost getCostForRecipeWithOpcode(unsigned Opcode, ElementCount VF, VPCostContext &Ctx) const
Compute the cost for this recipe for VF, using Opcode and Ctx.
VPRecipeWithIRFlags(const unsigned char SC, ArrayRef< VPValue * > Operands, const VPIRFlags &Flags, DebugLoc DL=DebugLoc::getUnknown())
A symbolic live-in VPValue, used for values like vector trip count, VF, and VFxUF.
LLVM_ABI_FOR_TEST void execute(VPTransformState &State) override
Generate the wide load or gather.
LLVM_ABI_FOR_TEST void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
LLVM_ABI_FOR_TEST InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPWidenLoadEVLRecipe.
VPValue * getEVL() const
Return the EVL operand.
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void execute(VPTransformState &State) override
Generate a wide load or gather.
VPValue * getStoredValue() const
Return the address accessed by this recipe.
LLVM_ABI_FOR_TEST void execute(VPTransformState &State) override
Generate the wide store or scatter.
LLVM_ABI_FOR_TEST void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
LLVM_ABI_FOR_TEST InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPWidenStoreEVLRecipe.
VPValue * getEVL() const
Return the EVL operand.
void execute(VPTransformState &State) override
Generate a wide store or scatter.
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
VPValue * getStoredValue() const
Return the value stored by this recipe.