46#define LV_NAME "loop-vectorize"
47#define DEBUG_TYPE LV_NAME
53 case VPInstructionSC: {
56 if (VPI->getOpcode() == Instruction::Load)
58 return VPI->opcodeMayReadOrWriteFromMemory();
60 case VPInterleaveEVLSC:
63 case VPWidenStoreEVLSC:
71 ->getCalledScalarFunction()
73 case VPWidenIntrinsicSC:
75 case VPCanonicalIVPHISC:
76 case VPBranchOnMaskSC:
78 case VPFirstOrderRecurrencePHISC:
79 case VPReductionPHISC:
80 case VPScalarIVStepsSC:
84 case VPReductionEVLSC:
86 case VPVectorPointerSC:
87 case VPWidenCanonicalIVSC:
90 case VPWidenIntOrFpInductionSC:
91 case VPWidenLoadEVLSC:
94 case VPWidenPointerInductionSC:
96 case VPWidenSelectSC: {
100 assert((!
I || !
I->mayWriteToMemory()) &&
101 "underlying instruction may write to memory");
113 case VPInstructionSC:
115 case VPWidenLoadEVLSC:
120 ->mayReadFromMemory();
123 ->getCalledScalarFunction()
124 ->onlyWritesMemory();
125 case VPWidenIntrinsicSC:
127 case VPBranchOnMaskSC:
129 case VPFirstOrderRecurrencePHISC:
130 case VPPredInstPHISC:
131 case VPScalarIVStepsSC:
132 case VPWidenStoreEVLSC:
136 case VPReductionEVLSC:
138 case VPVectorPointerSC:
139 case VPWidenCanonicalIVSC:
142 case VPWidenIntOrFpInductionSC:
144 case VPWidenPointerInductionSC:
146 case VPWidenSelectSC: {
150 assert((!
I || !
I->mayReadFromMemory()) &&
151 "underlying instruction may read from memory");
165 case VPFirstOrderRecurrencePHISC:
166 case VPPredInstPHISC:
167 case VPVectorEndPointerSC:
169 case VPInstructionSC: {
175 case VPWidenCallSC: {
179 case VPWidenIntrinsicSC:
182 case VPReductionEVLSC:
184 case VPScalarIVStepsSC:
185 case VPVectorPointerSC:
186 case VPWidenCanonicalIVSC:
189 case VPWidenIntOrFpInductionSC:
191 case VPWidenPointerInductionSC:
193 case VPWidenSelectSC: {
197 assert((!
I || !
I->mayHaveSideEffects()) &&
198 "underlying instruction has side-effects");
201 case VPInterleaveEVLSC:
204 case VPWidenLoadEVLSC:
206 case VPWidenStoreEVLSC:
211 "mayHaveSideffects result for ingredient differs from this "
214 case VPReplicateSC: {
216 return R->getUnderlyingInstr()->mayHaveSideEffects();
224 assert(!Parent &&
"Recipe already in some VPBasicBlock");
226 "Insertion position not in any VPBasicBlock");
232 assert(!Parent &&
"Recipe already in some VPBasicBlock");
238 assert(!Parent &&
"Recipe already in some VPBasicBlock");
240 "Insertion position not in any VPBasicBlock");
275 UI = IG->getInsertPos();
277 UI = &WidenMem->getIngredient();
280 if (UI && Ctx.skipCostComputation(UI, VF.
isVector())) {
294 dbgs() <<
"Cost of " << RecipeCost <<
" for VF " << VF <<
": ";
316 assert(OpType == Other.OpType &&
"OpType must match");
318 case OperationType::OverflowingBinOp:
319 WrapFlags.HasNUW &= Other.WrapFlags.HasNUW;
320 WrapFlags.HasNSW &= Other.WrapFlags.HasNSW;
322 case OperationType::Trunc:
326 case OperationType::DisjointOp:
329 case OperationType::PossiblyExactOp:
330 ExactFlags.IsExact &= Other.ExactFlags.IsExact;
332 case OperationType::GEPOp:
335 case OperationType::FPMathOp:
336 case OperationType::FCmp:
337 assert((OpType != OperationType::FCmp ||
338 FCmpFlags.Pred == Other.FCmpFlags.Pred) &&
339 "Cannot drop CmpPredicate");
340 getFMFsRef().NoNaNs &= Other.getFMFsRef().NoNaNs;
341 getFMFsRef().NoInfs &= Other.getFMFsRef().NoInfs;
343 case OperationType::NonNegOp:
346 case OperationType::Cmp:
349 case OperationType::Other:
356 assert((OpType == OperationType::FPMathOp || OpType == OperationType::FCmp) &&
357 "recipe doesn't have fast math flags");
358 const FastMathFlagsTy &
F = getFMFsRef();
370#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
386template <
unsigned PartOpIdx>
389 if (U.getNumOperands() == PartOpIdx + 1)
390 return U.getOperand(PartOpIdx);
394template <
unsigned PartOpIdx>
413 "Set flags not supported for the provided opcode");
414 assert((getNumOperandsForOpcode(Opcode) == -1u ||
416 "number of operands does not match opcode");
420unsigned VPInstruction::getNumOperandsForOpcode(
unsigned Opcode) {
431 case Instruction::Alloca:
432 case Instruction::ExtractValue:
433 case Instruction::Freeze:
434 case Instruction::Load:
450 case Instruction::ICmp:
451 case Instruction::FCmp:
452 case Instruction::ExtractElement:
453 case Instruction::Store:
463 case Instruction::Select:
470 case Instruction::Call:
471 case Instruction::GetElementPtr:
472 case Instruction::PHI:
473 case Instruction::Switch:
490bool VPInstruction::canGenerateScalarForFirstLane()
const {
496 case Instruction::Freeze:
497 case Instruction::ICmp:
498 case Instruction::PHI:
499 case Instruction::Select:
515 IRBuilderBase &Builder = State.
Builder;
534 case Instruction::ExtractElement: {
537 unsigned IdxToExtract =
545 case Instruction::Freeze: {
549 case Instruction::FCmp:
550 case Instruction::ICmp: {
556 case Instruction::PHI: {
559 case Instruction::Select: {
585 {VIVElem0, ScalarTC},
nullptr, Name);
601 if (!V1->getType()->isVectorTy())
621 "Requested vector length should be an integer.");
627 Builder.
getInt32Ty(), Intrinsic::experimental_get_vector_length,
628 {AVL, VFArg, Builder.getTrue()});
634 assert(Part != 0 &&
"Must have a positive part");
647 VPBasicBlock *SecondVPSucc =
669 for (
unsigned FieldIndex = 0; FieldIndex != StructTy->getNumElements();
693 IRBuilderBase::FastMathFlagGuard FMFG(Builder);
712 ReducedPartRdx,
"bin.rdx");
721 RecurKind RK = PhiR->getRecurrenceKind();
723 "Unexpected reduction kind");
724 assert(!PhiR->isInLoop() &&
725 "In-loop FindLastIV reduction is not supported yet");
737 for (
unsigned Part = 1; Part <
UF; ++Part)
738 ReducedPartRdx =
createMinMaxOp(Builder, MinMaxKind, ReducedPartRdx,
752 RecurKind RK = PhiR->getRecurrenceKind();
754 "should be handled by ComputeFindIVResult");
760 for (
unsigned Part = 0; Part <
UF; ++Part)
761 RdxParts[Part] = State.
get(
getOperand(1 + Part), PhiR->isInLoop());
763 IRBuilderBase::FastMathFlagGuard FMFG(Builder);
768 Value *ReducedPartRdx = RdxParts[0];
769 if (PhiR->isOrdered()) {
770 ReducedPartRdx = RdxParts[
UF - 1];
773 for (
unsigned Part = 1; Part <
UF; ++Part) {
774 Value *RdxPart = RdxParts[Part];
776 ReducedPartRdx =
createMinMaxOp(Builder, RK, ReducedPartRdx, RdxPart);
785 Builder.
CreateBinOp(Opcode, RdxPart, ReducedPartRdx,
"bin.rdx");
792 if (State.
VF.
isVector() && !PhiR->isInLoop()) {
799 return ReducedPartRdx;
808 "invalid offset to extract from");
813 assert(
Offset <= 1 &&
"invalid offset to extract from");
827 "can only generate first lane for PtrAdd");
847 Value *Res =
nullptr;
852 Builder.
CreateMul(RuntimeVF, ConstantInt::get(IdxTy, Idx - 1));
853 Value *VectorIdx = Idx == 1
855 : Builder.
CreateSub(LaneToExtract, VectorStart);
880 Value *Res =
nullptr;
881 for (
int Idx = LastOpIdx; Idx >= 0; --Idx) {
882 Value *TrailingZeros =
914 Type *ScalarTy = Ctx.Types.inferScalarType(
this);
917 case Instruction::FNeg:
918 return Ctx.TTI.getArithmeticInstrCost(Opcode, ResultTy, Ctx.CostKind);
919 case Instruction::UDiv:
920 case Instruction::SDiv:
921 case Instruction::SRem:
922 case Instruction::URem:
923 case Instruction::Add:
924 case Instruction::FAdd:
925 case Instruction::Sub:
926 case Instruction::FSub:
927 case Instruction::Mul:
928 case Instruction::FMul:
929 case Instruction::FDiv:
930 case Instruction::FRem:
931 case Instruction::Shl:
932 case Instruction::LShr:
933 case Instruction::AShr:
934 case Instruction::And:
935 case Instruction::Or:
936 case Instruction::Xor: {
944 RHSInfo = Ctx.getOperandInfo(RHS);
955 return Ctx.TTI.getArithmeticInstrCost(
956 Opcode, ResultTy, Ctx.CostKind,
957 {TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None},
958 RHSInfo, Operands, CtxI, &Ctx.TLI);
960 case Instruction::Freeze:
962 return Ctx.TTI.getArithmeticInstrCost(Instruction::Mul, ResultTy,
964 case Instruction::ExtractValue:
965 return Ctx.TTI.getInsertExtractValueCost(Instruction::ExtractValue,
967 case Instruction::ICmp:
968 case Instruction::FCmp: {
972 return Ctx.TTI.getCmpSelInstrCost(
974 Ctx.CostKind, {TTI::OK_AnyValue, TTI::OP_None},
975 {TTI::OK_AnyValue, TTI::OP_None}, CtxI);
991 "Should only generate a vector value or single scalar, not scalars "
999 case Instruction::Select: {
1002 auto *CondTy = Ctx.Types.inferScalarType(
getOperand(0));
1003 auto *VecTy = Ctx.Types.inferScalarType(
getOperand(1));
1008 return Ctx.TTI.getCmpSelInstrCost(Instruction::Select, VecTy, CondTy, Pred,
1011 case Instruction::ExtractElement:
1021 return Ctx.TTI.getVectorInstrCost(Instruction::ExtractElement, VecTy,
1025 auto *VecTy =
toVectorTy(Ctx.Types.inferScalarType(
this), VF);
1026 return Ctx.TTI.getArithmeticReductionCost(
1032 return Ctx.TTI.getCmpSelInstrCost(Instruction::ICmp, ScalarTy,
1039 {PredTy, Type::getInt1Ty(Ctx.LLVMCtx)});
1040 return Ctx.TTI.getIntrinsicInstrCost(Attrs, Ctx.CostKind);
1045 return Ctx.TTI.getCmpSelInstrCost(Instruction::ICmp, ScalarTy,
1052 {PredTy, Type::getInt1Ty(Ctx.LLVMCtx)});
1055 Cost += Ctx.TTI.getArithmeticInstrCost(
1056 Instruction::Xor, PredTy, Ctx.CostKind,
1057 {TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None},
1058 {TargetTransformInfo::OK_UniformConstantValue,
1059 TargetTransformInfo::OP_None});
1061 Cost += Ctx.TTI.getArithmeticInstrCost(
1069 Type *VectorTy =
toVectorTy(Ctx.Types.inferScalarType(
this), VF);
1078 unsigned Multiplier =
1083 return Ctx.TTI.getIntrinsicInstrCost(Attrs, Ctx.CostKind);
1090 I32Ty, {Arg0Ty, I32Ty, I1Ty});
1091 return Ctx.TTI.getIntrinsicInstrCost(Attrs, Ctx.CostKind);
1094 assert(VF.
isVector() &&
"Reverse operation must be vector type");
1098 VectorTy, {}, Ctx.CostKind,
1104 return Ctx.TTI.getIndexedVectorInstrCostFromEnd(Instruction::ExtractElement,
1105 VecTy, Ctx.CostKind, 0);
1115 "unexpected VPInstruction witht underlying value");
1123 getOpcode() == Instruction::ExtractElement ||
1135 case Instruction::PHI:
1146 assert(!State.Lane &&
"VPInstruction executing an Lane");
1149 "Set flags not supported for the provided opcode");
1152 Value *GeneratedValue = generate(State);
1155 assert(GeneratedValue &&
"generate must produce a value");
1156 bool GeneratesPerFirstLaneOnly = canGenerateScalarForFirstLane() &&
1161 !GeneratesPerFirstLaneOnly) ||
1162 State.VF.isScalar()) &&
1163 "scalar value but not only first lane defined");
1164 State.set(
this, GeneratedValue,
1165 GeneratesPerFirstLaneOnly);
1172 case Instruction::GetElementPtr:
1173 case Instruction::ExtractElement:
1174 case Instruction::Freeze:
1175 case Instruction::FCmp:
1176 case Instruction::ICmp:
1177 case Instruction::Select:
1178 case Instruction::PHI:
1220 case Instruction::ExtractElement:
1222 case Instruction::PHI:
1224 case Instruction::FCmp:
1225 case Instruction::ICmp:
1226 case Instruction::Select:
1227 case Instruction::Or:
1228 case Instruction::Freeze:
1269 case Instruction::FCmp:
1270 case Instruction::ICmp:
1271 case Instruction::Select:
1281#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1289 O << Indent <<
"EMIT" << (
isSingleScalar() ?
"-SCALAR" :
"") <<
" ";
1301 O <<
"combined load";
1304 O <<
"combined store";
1307 O <<
"active lane mask";
1310 O <<
"EXPLICIT-VECTOR-LENGTH";
1313 O <<
"first-order splice";
1316 O <<
"branch-on-cond";
1319 O <<
"TC > VF ? TC - VF : 0";
1325 O <<
"branch-on-count";
1331 O <<
"buildstructvector";
1337 O <<
"extract-lane";
1340 O <<
"extract-last-lane";
1343 O <<
"extract-last-part";
1346 O <<
"extract-penultimate-element";
1349 O <<
"compute-anyof-result";
1352 O <<
"compute-find-iv-result";
1355 O <<
"compute-reduction-result";
1370 O <<
"first-active-lane";
1373 O <<
"last-active-lane";
1376 O <<
"reduction-start-vector";
1379 O <<
"resume-for-epilogue";
1402 State.set(
this, Cast,
VPLane(0));
1413 Value *
VScale = State.Builder.CreateVScale(ResultTy);
1414 State.set(
this,
VScale,
true);
1423#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1426 O << Indent <<
"EMIT" << (
isSingleScalar() ?
"-SCALAR" :
"") <<
" ";
1432 O <<
"wide-iv-step ";
1436 O <<
"step-vector " << *ResultTy;
1439 O <<
"vscale " << *ResultTy;
1445 O <<
" to " << *ResultTy;
1452 PHINode *NewPhi = State.Builder.CreatePHI(
1453 State.TypeAnalysis.inferScalarType(
this), 2,
getName());
1460 for (
unsigned Idx = 0; Idx != NumIncoming; ++Idx) {
1465 State.set(
this, NewPhi,
VPLane(0));
1468#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1471 O << Indent <<
"EMIT" << (
isSingleScalar() ?
"-SCALAR" :
"") <<
" ";
1486 "PHINodes must be handled by VPIRPhi");
1489 State.Builder.SetInsertPoint(I.getParent(), std::next(I.getIterator()));
1502 "can only update exiting operands to phi nodes");
1513#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1516 O << Indent <<
"IR " << I;
1528 auto *PredVPBB = Pred->getExitingBasicBlock();
1529 BasicBlock *PredBB = State.CFG.VPBB2IRBB[PredVPBB];
1536 if (Phi->getBasicBlockIndex(PredBB) == -1)
1537 Phi->addIncoming(V, PredBB);
1539 Phi->setIncomingValueForBlock(PredBB, V);
1544 State.Builder.SetInsertPoint(Phi->getParent(), std::next(Phi->getIterator()));
1549 assert(R->getNumOperands() == R->getParent()->getNumPredecessors() &&
1550 "Number of phi operands must match number of predecessors");
1551 unsigned Position = R->getParent()->getIndexForPredecessor(IncomingBlock);
1552 R->removeOperand(Position);
1555#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1569#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1575 O <<
" (extra operand" << (
getNumOperands() > 1 ?
"s" :
"") <<
": ";
1580 std::get<1>(
Op)->printAsOperand(O);
1588 for (
const auto &[Kind,
Node] : Metadata)
1589 I.setMetadata(Kind,
Node);
1594 for (
const auto &[KindA, MDA] : Metadata) {
1595 for (
const auto &[KindB, MDB] :
Other.Metadata) {
1596 if (KindA == KindB && MDA == MDB) {
1602 Metadata = std::move(MetadataIntersection);
1605#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1608 if (Metadata.empty() || !M)
1614 auto [Kind,
Node] = KindNodePair;
1616 "Unexpected unnamed metadata kind");
1617 O <<
"!" << MDNames[Kind] <<
" ";
1625 assert(State.VF.isVector() &&
"not widening");
1626 assert(Variant !=
nullptr &&
"Can't create vector function.");
1637 Arg = State.get(
I.value(),
VPLane(0));
1640 Args.push_back(Arg);
1646 CI->getOperandBundlesAsDefs(OpBundles);
1648 CallInst *V = State.Builder.CreateCall(Variant, Args, OpBundles);
1651 V->setCallingConv(Variant->getCallingConv());
1653 if (!V->getType()->isVoidTy())
1659 return Ctx.TTI.getCallInstrCost(
nullptr, Variant->getReturnType(),
1660 Variant->getFunctionType()->params(),
1664#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1667 O << Indent <<
"WIDEN-CALL ";
1679 O <<
" @" << CalledFn->
getName() <<
"(";
1685 O <<
" (using library function";
1686 if (Variant->hasName())
1687 O <<
": " << Variant->getName();
1693 assert(State.VF.isVector() &&
"not widening");
1706 Arg = State.get(
I.value(),
VPLane(0));
1712 Args.push_back(Arg);
1716 Module *M = State.Builder.GetInsertBlock()->getModule();
1720 "Can't retrieve vector intrinsic or vector-predication intrinsics.");
1725 CI->getOperandBundlesAsDefs(OpBundles);
1727 CallInst *V = State.Builder.CreateCall(VectorF, Args, OpBundles);
1732 if (!V->getType()->isVoidTy())
1748 for (
const auto &[Idx,
Op] :
enumerate(Operands)) {
1749 auto *V =
Op->getUnderlyingValue();
1752 Arguments.push_back(UI->getArgOperand(Idx));
1761 Type *ScalarRetTy = Ctx.Types.inferScalarType(&R);
1767 : Ctx.Types.inferScalarType(
Op));
1772 R.hasFastMathFlags() ? R.getFastMathFlags() :
FastMathFlags();
1777 return Ctx.TTI.getIntrinsicInstrCost(CostAttrs, Ctx.CostKind);
1799#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1802 O << Indent <<
"WIDEN-INTRINSIC ";
1803 if (ResultTy->isVoidTy()) {
1831 Value *Mask =
nullptr;
1833 Mask = State.get(VPMask);
1836 Builder.CreateVectorSplat(VTy->
getElementCount(), Builder.getInt1(1));
1840 if (Opcode == Instruction::Sub)
1841 IncAmt = Builder.CreateNeg(IncAmt);
1843 assert(Opcode == Instruction::Add &&
"only add or sub supported for now");
1845 State.Builder.CreateIntrinsic(Intrinsic::experimental_vector_histogram_add,
1860 Type *IncTy = Ctx.Types.inferScalarType(IncAmt);
1866 Ctx.TTI.getArithmeticInstrCost(Instruction::Mul, VTy, Ctx.CostKind);
1879 {PtrTy, IncTy, MaskTy});
1882 return Ctx.TTI.getIntrinsicInstrCost(ICA, Ctx.CostKind) + MulCost +
1883 Ctx.TTI.getArithmeticInstrCost(Opcode, VTy, Ctx.CostKind);
1886#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1889 O << Indent <<
"WIDEN-HISTOGRAM buckets: ";
1892 if (Opcode == Instruction::Sub)
1895 assert(Opcode == Instruction::Add);
1908 O << Indent <<
"WIDEN-SELECT ";
1927 Value *Sel = State.Builder.CreateSelect(
Cond, Op0, Op1);
1928 State.set(
this, Sel);
1940 Type *ScalarTy = Ctx.Types.inferScalarType(
this);
1941 Type *VectorTy =
toVectorTy(Ctx.Types.inferScalarType(
this), VF);
1949 const auto [Op1VK, Op1VP] = Ctx.getOperandInfo(Op0);
1950 const auto [Op2VK, Op2VP] = Ctx.getOperandInfo(Op1);
1954 [](
VPValue *
Op) {
return Op->getUnderlyingValue(); }))
1955 Operands.
append(
SI->op_begin(),
SI->op_end());
1957 return Ctx.TTI.getArithmeticInstrCost(
1958 IsLogicalOr ? Instruction::Or : Instruction::And, VectorTy,
1959 Ctx.CostKind, {Op1VK, Op1VP}, {Op2VK, Op2VP}, Operands,
SI);
1968 Pred = Cmp->getPredicate();
1969 return Ctx.TTI.getCmpSelInstrCost(
1970 Instruction::Select, VectorTy, CondTy, Pred, Ctx.CostKind,
1971 {TTI::OK_AnyValue, TTI::OP_None}, {TTI::OK_AnyValue, TTI::OP_None},
SI);
1974VPIRFlags::FastMathFlagsTy::FastMathFlagsTy(
const FastMathFlags &FMF) {
1987 case OperationType::OverflowingBinOp:
1988 return Opcode == Instruction::Add || Opcode == Instruction::Sub ||
1989 Opcode == Instruction::Mul || Opcode == Instruction::Shl ||
1990 Opcode == VPInstruction::VPInstruction::CanonicalIVIncrementForPart;
1991 case OperationType::Trunc:
1992 return Opcode == Instruction::Trunc;
1993 case OperationType::DisjointOp:
1994 return Opcode == Instruction::Or;
1995 case OperationType::PossiblyExactOp:
1996 return Opcode == Instruction::AShr || Opcode == Instruction::LShr ||
1997 Opcode == Instruction::UDiv || Opcode == Instruction::SDiv;
1998 case OperationType::GEPOp:
1999 return Opcode == Instruction::GetElementPtr ||
2002 case OperationType::FPMathOp:
2003 return Opcode == Instruction::Call || Opcode == Instruction::FAdd ||
2004 Opcode == Instruction::FMul || Opcode == Instruction::FSub ||
2005 Opcode == Instruction::FNeg || Opcode == Instruction::FDiv ||
2006 Opcode == Instruction::FRem || Opcode == Instruction::FPExt ||
2007 Opcode == Instruction::FPTrunc || Opcode == Instruction::Select ||
2011 case OperationType::FCmp:
2012 return Opcode == Instruction::FCmp;
2013 case OperationType::NonNegOp:
2014 return Opcode == Instruction::ZExt || Opcode == Instruction::UIToFP;
2015 case OperationType::Cmp:
2016 return Opcode == Instruction::FCmp || Opcode == Instruction::ICmp;
2017 case OperationType::Other:
2024#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2027 case OperationType::Cmp:
2030 case OperationType::FCmp:
2034 case OperationType::DisjointOp:
2038 case OperationType::PossiblyExactOp:
2042 case OperationType::OverflowingBinOp:
2048 case OperationType::Trunc:
2054 case OperationType::FPMathOp:
2057 case OperationType::GEPOp:
2060 else if (
GEPFlags.hasNoUnsignedSignedWrap())
2065 case OperationType::NonNegOp:
2069 case OperationType::Other:
2077 auto &Builder = State.Builder;
2079 case Instruction::Call:
2080 case Instruction::Br:
2081 case Instruction::PHI:
2082 case Instruction::GetElementPtr:
2083 case Instruction::Select:
2085 case Instruction::UDiv:
2086 case Instruction::SDiv:
2087 case Instruction::SRem:
2088 case Instruction::URem:
2089 case Instruction::Add:
2090 case Instruction::FAdd:
2091 case Instruction::Sub:
2092 case Instruction::FSub:
2093 case Instruction::FNeg:
2094 case Instruction::Mul:
2095 case Instruction::FMul:
2096 case Instruction::FDiv:
2097 case Instruction::FRem:
2098 case Instruction::Shl:
2099 case Instruction::LShr:
2100 case Instruction::AShr:
2101 case Instruction::And:
2102 case Instruction::Or:
2103 case Instruction::Xor: {
2107 Ops.push_back(State.get(VPOp));
2109 Value *V = Builder.CreateNAryOp(Opcode,
Ops);
2120 case Instruction::ExtractValue: {
2124 Value *Extract = Builder.CreateExtractValue(
Op, CI->getZExtValue());
2125 State.set(
this, Extract);
2128 case Instruction::Freeze: {
2130 Value *Freeze = Builder.CreateFreeze(
Op);
2131 State.set(
this, Freeze);
2134 case Instruction::ICmp:
2135 case Instruction::FCmp: {
2137 bool FCmp = Opcode == Instruction::FCmp;
2164 State.get(
this)->getType() &&
2165 "inferred type and type from generated instructions do not match");
2172 case Instruction::UDiv:
2173 case Instruction::SDiv:
2174 case Instruction::SRem:
2175 case Instruction::URem:
2180 case Instruction::FNeg:
2181 case Instruction::Add:
2182 case Instruction::FAdd:
2183 case Instruction::Sub:
2184 case Instruction::FSub:
2185 case Instruction::Mul:
2186 case Instruction::FMul:
2187 case Instruction::FDiv:
2188 case Instruction::FRem:
2189 case Instruction::Shl:
2190 case Instruction::LShr:
2191 case Instruction::AShr:
2192 case Instruction::And:
2193 case Instruction::Or:
2194 case Instruction::Xor:
2195 case Instruction::Freeze:
2196 case Instruction::ExtractValue:
2197 case Instruction::ICmp:
2198 case Instruction::FCmp:
2205#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2208 O << Indent <<
"WIDEN ";
2217 auto &Builder = State.Builder;
2219 assert(State.VF.isVector() &&
"Not vectorizing?");
2224 State.set(
this, Cast);
2248 if (WidenMemoryRecipe ==
nullptr)
2250 if (!WidenMemoryRecipe->isConsecutive())
2252 if (WidenMemoryRecipe->isReverse())
2254 if (WidenMemoryRecipe->isMasked())
2262 if (Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) {
2264 if (R->getNumUsers() == 0 || R->hasMoreThanOneUniqueUser())
2273 CCH = ComputeCCH(Recipe);
2277 else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt ||
2278 Opcode == Instruction::FPExt) {
2286 CCH = ComputeCCH(Recipe);
2294 return Ctx.TTI.getCastInstrCost(
2295 Opcode, DestTy, SrcTy, CCH, Ctx.CostKind,
2299#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2302 O << Indent <<
"WIDEN-CAST ";
2313 return Ctx.TTI.getCFInstrCost(Instruction::PHI, Ctx.CostKind);
2320 : ConstantFP::get(Ty,
C);
2323#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2328 O <<
" = WIDEN-INDUCTION";
2333 O <<
" (truncated to " << *TI->getType() <<
")";
2345 return StartC && StartC->isZero() && StepC && StepC->isOne() &&
2349#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2354 O <<
" = DERIVED-IV ";
2378 assert(BaseIVTy == Step->
getType() &&
"Types of BaseIV and Step must match!");
2385 AddOp = Instruction::Add;
2386 MulOp = Instruction::Mul;
2388 AddOp = InductionOpcode;
2389 MulOp = Instruction::FMul;
2399 unsigned StartLane = 0;
2400 unsigned EndLane = FirstLaneOnly ? 1 : State.VF.getKnownMinValue();
2402 StartLane = State.Lane->getKnownLane();
2403 EndLane = StartLane + 1;
2407 StartIdx0 = ConstantInt::get(IntStepTy, 0);
2412 Builder.CreateMul(StartIdx0, ConstantInt::get(StartIdx0->
getType(),
2415 StartIdx0 = Builder.CreateSExtOrTrunc(StartIdx0, IntStepTy);
2419 StartIdx0 = Builder.CreateSIToFP(StartIdx0, BaseIVTy);
2421 for (
unsigned Lane = StartLane; Lane < EndLane; ++Lane) {
2422 Value *StartIdx = Builder.CreateBinOp(
2427 "Expected StartIdx to be folded to a constant when VF is not "
2429 auto *
Mul = Builder.CreateBinOp(MulOp, StartIdx, Step);
2430 auto *
Add = Builder.CreateBinOp(AddOp, BaseIV,
Mul);
2435#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2440 O <<
" = SCALAR-STEPS ";
2451 assert(State.VF.isVector() &&
"not widening");
2460 [](
VPValue *
Op) {
return !
Op->isDefinedOutsideLoopRegions(); }) &&
2461 "Expected at least one loop-variant operand");
2467 auto *Ptr = State.get(
getOperand(0), isPointerLoopInvariant());
2474 Indices.
push_back(State.get(Operand, isIndexLoopInvariant(
I - 1)));
2481 assert((State.VF.isScalar() || NewGEP->getType()->isVectorTy()) &&
2482 "NewGEP is not a pointer vector");
2483 State.set(
this, NewGEP);
2486#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2489 O << Indent <<
"WIDEN-GEP ";
2490 O << (isPointerLoopInvariant() ?
"Inv" :
"Var");
2492 O <<
"[" << (isIndexLoopInvariant(
I) ?
"Inv" :
"Var") <<
"]";
2496 O <<
" = getelementptr";
2503 auto &Builder = State.Builder;
2505 const DataLayout &DL = Builder.GetInsertBlock()->getDataLayout();
2506 Type *IndexTy = DL.getIndexType(State.TypeAnalysis.inferScalarType(
this));
2510 if (IndexTy != RunTimeVF->
getType())
2511 RunTimeVF = Builder.CreateZExtOrTrunc(RunTimeVF, IndexTy);
2513 Value *NumElt = Builder.CreateMul(
2514 ConstantInt::get(IndexTy, Stride * (int64_t)CurrentPart), RunTimeVF);
2516 Value *LastLane = Builder.CreateSub(RunTimeVF, ConstantInt::get(IndexTy, 1));
2523 ResultPtr = Builder.CreateGEP(IndexedTy, ResultPtr, LastLane,
"",
2526 State.set(
this, ResultPtr,
true);
2529#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2534 O <<
" = vector-end-pointer";
2541 auto &Builder = State.Builder;
2543 "Expected prior simplification of recipe without offset");
2548 State.set(
this, ResultPtr,
true);
2551#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2556 O <<
" = vector-pointer";
2569 Type *ResultTy =
toVectorTy(Ctx.Types.inferScalarType(
this), VF);
2572 Ctx.TTI.getCmpSelInstrCost(Instruction::Select, ResultTy, CmpTy,
2576#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2579 O << Indent <<
"BLEND ";
2601 assert(!State.Lane &&
"Reduction being replicated.");
2604 "In-loop AnyOf reductions aren't currently supported");
2610 Value *NewCond = State.get(
Cond, State.VF.isScalar());
2615 if (State.VF.isVector())
2616 Start = State.Builder.CreateVectorSplat(VecTy->
getElementCount(), Start);
2618 Value *
Select = State.Builder.CreateSelect(NewCond, NewVecOp, Start);
2625 if (State.VF.isVector())
2629 NewRed = State.Builder.CreateBinOp(
2631 PrevInChain, NewVecOp);
2632 PrevInChain = NewRed;
2633 NextInChain = NewRed;
2637 NewRed = State.Builder.CreateIntrinsic(
2638 PrevInChain->
getType(), Intrinsic::vector_partial_reduce_add,
2639 {PrevInChain, NewVecOp},
nullptr,
"partial.reduce");
2640 PrevInChain = NewRed;
2641 NextInChain = NewRed;
2644 "The reduction must either be ordered, partial or in-loop");
2648 NextInChain =
createMinMaxOp(State.Builder, Kind, NewRed, PrevInChain);
2650 NextInChain = State.Builder.CreateBinOp(
2652 PrevInChain, NewRed);
2658 assert(!State.Lane &&
"Reduction being replicated.");
2660 auto &Builder = State.Builder;
2672 Mask = State.get(CondOp);
2674 Mask = Builder.CreateVectorSplat(State.VF, Builder.getTrue());
2684 NewRed = Builder.CreateBinOp(
2688 State.set(
this, NewRed,
true);
2694 Type *ElementTy = Ctx.Types.inferScalarType(
this);
2698 std::optional<FastMathFlags> OptionalFMF =
2707 CondCost = Ctx.TTI.getCmpSelInstrCost(Instruction::Select, VectorTy,
2708 CondTy, Pred, Ctx.CostKind);
2710 return CondCost + Ctx.TTI.getPartialReductionCost(
2711 Opcode, ElementTy, ElementTy, ElementTy, VF,
2721 "Any-of reduction not implemented in VPlan-based cost model currently.");
2727 return Ctx.TTI.getMinMaxReductionCost(Id, VectorTy,
FMFs, Ctx.CostKind);
2732 return Ctx.TTI.getArithmeticReductionCost(Opcode, VectorTy, OptionalFMF,
2737 ExpressionTypes ExpressionType,
2740 ExpressionRecipes(ExpressionRecipes),
ExpressionType(ExpressionType) {
2741 assert(!ExpressionRecipes.empty() &&
"Nothing to combine?");
2745 "expression cannot contain recipes with side-effects");
2749 for (
auto *R : ExpressionRecipes)
2750 ExpressionRecipesAsSetOfUsers.
insert(R);
2756 if (R != ExpressionRecipes.back() &&
2757 any_of(
R->users(), [&ExpressionRecipesAsSetOfUsers](
VPUser *U) {
2758 return !ExpressionRecipesAsSetOfUsers.contains(U);
2763 R->replaceUsesWithIf(CopyForExtUsers, [&ExpressionRecipesAsSetOfUsers](
2765 return !ExpressionRecipesAsSetOfUsers.contains(&U);
2770 R->removeFromParent();
2777 for (
auto *R : ExpressionRecipes) {
2778 for (
const auto &[Idx,
Op] :
enumerate(
R->operands())) {
2779 auto *
Def =
Op->getDefiningRecipe();
2780 if (Def && ExpressionRecipesAsSetOfUsers.contains(Def))
2783 LiveInPlaceholders.push_back(
new VPValue());
2789 for (
auto *R : ExpressionRecipes)
2790 for (
auto const &[LiveIn, Tmp] :
zip(operands(), LiveInPlaceholders))
2791 R->replaceUsesOfWith(LiveIn, Tmp);
2795 for (
auto *R : ExpressionRecipes)
2798 if (!R->getParent())
2799 R->insertBefore(
this);
2802 LiveInPlaceholders[Idx]->replaceAllUsesWith(
Op);
2805 ExpressionRecipes.clear();
2810 Type *RedTy = Ctx.Types.inferScalarType(
this);
2814 "VPExpressionRecipe only supports integer types currently.");
2817 switch (ExpressionType) {
2818 case ExpressionTypes::ExtendedReduction: {
2824 ->isPartialReduction()
2825 ? Ctx.TTI.getPartialReductionCost(
2826 Opcode, Ctx.Types.inferScalarType(
getOperand(0)),
nullptr,
2831 : Ctx.TTI.getExtendedReductionCost(
2832 Opcode, ExtR->getOpcode() == Instruction::ZExt, RedTy,
2833 SrcVecTy, std::nullopt, Ctx.CostKind);
2835 case ExpressionTypes::MulAccReduction:
2836 return Ctx.TTI.getMulAccReductionCost(
false, Opcode, RedTy, SrcVecTy,
2839 case ExpressionTypes::ExtNegatedMulAccReduction:
2840 assert(Opcode == Instruction::Add &&
"Unexpected opcode");
2841 Opcode = Instruction::Sub;
2843 case ExpressionTypes::ExtMulAccReduction: {
2845 if (RedR->isPartialReduction()) {
2849 return Ctx.TTI.getPartialReductionCost(
2850 Opcode, Ctx.Types.inferScalarType(
getOperand(0)),
2851 Ctx.Types.inferScalarType(
getOperand(1)), RedTy, VF,
2853 Ext0R->getOpcode()),
2855 Ext1R->getOpcode()),
2856 Mul->getOpcode(), Ctx.CostKind);
2858 return Ctx.TTI.getMulAccReductionCost(
2861 Opcode, RedTy, SrcVecTy, Ctx.CostKind);
2869 return R->mayReadFromMemory() || R->mayWriteToMemory();
2877 "expression cannot contain recipes with side-effects");
2885 return RR && !RR->isPartialReduction();
2888#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2892 O << Indent <<
"EXPRESSION ";
2898 switch (ExpressionType) {
2899 case ExpressionTypes::ExtendedReduction: {
2901 O <<
" + " << (Red->isPartialReduction() ?
"partial." :
"") <<
"reduce.";
2908 << *Ext0->getResultType();
2909 if (Red->isConditional()) {
2916 case ExpressionTypes::ExtNegatedMulAccReduction: {
2918 O <<
" + " << (Red->isPartialReduction() ?
"partial." :
"") <<
"reduce.";
2928 << *Ext0->getResultType() <<
"), (";
2932 << *Ext1->getResultType() <<
")";
2933 if (Red->isConditional()) {
2940 case ExpressionTypes::MulAccReduction:
2941 case ExpressionTypes::ExtMulAccReduction: {
2943 O <<
" + " << (Red->isPartialReduction() ?
"partial." :
"") <<
"reduce.";
2948 bool IsExtended = ExpressionType == ExpressionTypes::ExtMulAccReduction;
2950 : ExpressionRecipes[0]);
2958 << *Ext0->getResultType() <<
"), (";
2966 << *Ext1->getResultType() <<
")";
2968 if (Red->isConditional()) {
2981 O << Indent <<
"PARTIAL-REDUCE ";
2983 O << Indent <<
"REDUCE ";
3003 O << Indent <<
"REDUCE ";
3031 assert((!Instr->getType()->isAggregateType() ||
3033 "Expected vectorizable or non-aggregate type.");
3036 bool IsVoidRetTy = Instr->getType()->isVoidTy();
3040 Cloned->
setName(Instr->getName() +
".cloned");
3041 Type *ResultTy = State.TypeAnalysis.inferScalarType(RepRecipe);
3045 if (ResultTy != Cloned->
getType())
3056 State.setDebugLocFrom(
DL);
3061 auto InputLane = Lane;
3065 Cloned->
setOperand(
I.index(), State.get(Operand, InputLane));
3069 State.Builder.Insert(Cloned);
3071 State.set(RepRecipe, Cloned, Lane);
3075 State.AC->registerAssumption(
II);
3081 [](
VPValue *
Op) { return Op->isDefinedOutsideLoopRegions(); })) &&
3082 "Expected a recipe is either within a region or all of its operands "
3083 "are defined outside the vectorized region.");
3090 assert(IsSingleScalar &&
"VPReplicateRecipes outside replicate regions "
3091 "must have already been unrolled");
3097 "uniform recipe shouldn't be predicated");
3098 assert(!State.VF.isScalable() &&
"Can't scalarize a scalable vector");
3103 State.Lane->isFirstLane()
3106 State.set(
this, State.packScalarIntoVectorizedValue(
this, WideValue,
3131 Instruction::GetElementPtr) ||
3139 if (!Opd->isDefinedOutsideLoopRegions() &&
3153 while (!WorkList.
empty()) {
3155 if (!Cur || !Seen.
insert(Cur).second)
3163 return Seen.contains(
3164 Blend->getIncomingValue(I)->getDefiningRecipe());
3168 for (
VPUser *U : Cur->users()) {
3170 if (InterleaveR->getAddr() == Cur)
3173 if (RepR->getOpcode() == Instruction::Load &&
3174 RepR->getOperand(0) == Cur)
3176 if (RepR->getOpcode() == Instruction::Store &&
3177 RepR->getOperand(1) == Cur)
3181 if (MemR->getAddr() == Cur && MemR->isConsecutive())
3202 Ctx.SkipCostComputation.insert(UI);
3208 case Instruction::GetElementPtr:
3214 case Instruction::Call: {
3220 for (
const VPValue *ArgOp : ArgOps)
3221 Tys.
push_back(Ctx.Types.inferScalarType(ArgOp));
3223 if (CalledFn->isIntrinsic())
3226 switch (CalledFn->getIntrinsicID()) {
3227 case Intrinsic::assume:
3228 case Intrinsic::lifetime_end:
3229 case Intrinsic::lifetime_start:
3230 case Intrinsic::sideeffect:
3231 case Intrinsic::pseudoprobe:
3232 case Intrinsic::experimental_noalias_scope_decl: {
3235 "scalarizing intrinsic should be free");
3242 Type *ResultTy = Ctx.Types.inferScalarType(
this);
3244 Ctx.TTI.getCallInstrCost(CalledFn, ResultTy, Tys, Ctx.CostKind);
3246 if (CalledFn->isIntrinsic())
3247 ScalarCallCost = std::min(
3251 return ScalarCallCost;
3255 Ctx.getScalarizationOverhead(ResultTy, ArgOps, VF);
3257 case Instruction::Add:
3258 case Instruction::Sub:
3259 case Instruction::FAdd:
3260 case Instruction::FSub:
3261 case Instruction::Mul:
3262 case Instruction::FMul:
3263 case Instruction::FDiv:
3264 case Instruction::FRem:
3265 case Instruction::Shl:
3266 case Instruction::LShr:
3267 case Instruction::AShr:
3268 case Instruction::And:
3269 case Instruction::Or:
3270 case Instruction::Xor:
3271 case Instruction::ICmp:
3272 case Instruction::FCmp:
3276 case Instruction::SDiv:
3277 case Instruction::UDiv:
3278 case Instruction::SRem:
3279 case Instruction::URem: {
3286 Ctx.getScalarizationOverhead(Ctx.Types.inferScalarType(
this),
3295 Ctx.TTI.getCFInstrCost(Instruction::PHI, Ctx.CostKind);
3299 ScalarCost /= Ctx.getPredBlockCostDivisor(UI->
getParent());
3302 case Instruction::Load:
3303 case Instruction::Store: {
3310 bool IsLoad = UI->
getOpcode() == Instruction::Load;
3316 Type *ValTy = Ctx.Types.inferScalarType(IsLoad ?
this :
getOperand(0));
3317 Type *ScalarPtrTy = Ctx.Types.inferScalarType(PtrOp);
3322 UI->
getOpcode(), ValTy, Alignment, AS, Ctx.CostKind, OpInfo);
3325 bool PreferVectorizedAddressing = Ctx.TTI.prefersVectorizedAddressing();
3326 bool UsedByLoadStoreAddress =
3329 ScalarMemOpCost + Ctx.TTI.getAddressComputationCost(
3330 PtrTy, UsedByLoadStoreAddress ?
nullptr : &Ctx.SE,
3331 PtrSCEV, Ctx.CostKind);
3341 if (!UsedByLoadStoreAddress) {
3342 bool EfficientVectorLoadStore =
3343 Ctx.TTI.supportsEfficientVectorElementLoadStore();
3344 if (!(IsLoad && !PreferVectorizedAddressing) &&
3345 !(!IsLoad && EfficientVectorLoadStore))
3348 if (!EfficientVectorLoadStore)
3349 ResultTy = Ctx.Types.inferScalarType(
this);
3353 Ctx.getScalarizationOverhead(ResultTy, OpsToScalarize, VF,
true);
3357 return Ctx.getLegacyCost(UI, VF);
3360#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
3363 O << Indent << (IsSingleScalar ?
"CLONE " :
"REPLICATE ");
3372 O <<
"@" << CB->getCalledFunction()->getName() <<
"(";
3390 assert(State.Lane &&
"Branch on Mask works only on single instance.");
3393 Value *ConditionBit = State.get(BlockInMask, *State.Lane);
3397 auto *CurrentTerminator = State.CFG.PrevBB->getTerminator();
3399 "Expected to replace unreachable terminator with conditional branch.");
3401 State.Builder.CreateCondBr(ConditionBit, State.CFG.PrevBB,
nullptr);
3402 CondBr->setSuccessor(0,
nullptr);
3403 CurrentTerminator->eraseFromParent();
3415 assert(State.Lane &&
"Predicated instruction PHI works per instance.");
3420 assert(PredicatingBB &&
"Predicated block has no single predecessor.");
3422 "operand must be VPReplicateRecipe");
3433 "Packed operands must generate an insertelement or insertvalue");
3441 for (
unsigned I = 0;
I < StructTy->getNumContainedTypes() - 1;
I++)
3444 PHINode *VPhi = State.Builder.CreatePHI(VecI->getType(), 2);
3445 VPhi->
addIncoming(VecI->getOperand(0), PredicatingBB);
3447 if (State.hasVectorValue(
this))
3448 State.reset(
this, VPhi);
3450 State.set(
this, VPhi);
3458 Type *PredInstType = State.TypeAnalysis.inferScalarType(
getOperand(0));
3459 PHINode *Phi = State.Builder.CreatePHI(PredInstType, 2);
3462 Phi->addIncoming(ScalarPredInst, PredicatedBB);
3463 if (State.hasScalarValue(
this, *State.Lane))
3464 State.reset(
this, Phi, *State.Lane);
3466 State.set(
this, Phi, *State.Lane);
3469 State.reset(
getOperand(0), Phi, *State.Lane);
3473#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
3476 O << Indent <<
"PHI-PREDICATED-INSTRUCTION ";
3487 ->getAddressSpace();
3490 : Instruction::Store;
3497 "Inconsecutive memory access should not have the order.");
3510 : Intrinsic::vp_scatter;
3511 return Ctx.TTI.getAddressComputationCost(PtrTy,
nullptr,
nullptr,
3513 Ctx.TTI.getMemIntrinsicInstrCost(
3522 : Intrinsic::masked_store;
3523 Cost += Ctx.TTI.getMemIntrinsicInstrCost(
3529 Cost += Ctx.TTI.getMemoryOpCost(Opcode, Ty,
Alignment, AS, Ctx.CostKind,
3540 auto &Builder = State.Builder;
3541 Value *Mask =
nullptr;
3542 if (
auto *VPMask =
getMask()) {
3545 Mask = State.get(VPMask);
3547 Mask = Builder.CreateVectorReverse(Mask,
"reverse");
3553 NewLI = Builder.CreateMaskedGather(DataTy, Addr,
Alignment, Mask,
nullptr,
3554 "wide.masked.gather");
3557 Builder.CreateMaskedLoad(DataTy, Addr,
Alignment, Mask,
3560 NewLI = Builder.CreateAlignedLoad(DataTy, Addr,
Alignment,
"wide.load");
3563 State.set(
this, NewLI);
3566#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
3569 O << Indent <<
"WIDEN ";
3581 Value *AllTrueMask =
3582 Builder.CreateVectorSplat(ValTy->getElementCount(), Builder.getTrue());
3583 return Builder.CreateIntrinsic(ValTy, Intrinsic::experimental_vp_reverse,
3584 {Operand, AllTrueMask, EVL},
nullptr, Name);
3592 auto &Builder = State.Builder;
3596 Value *Mask =
nullptr;
3598 Mask = State.get(VPMask);
3602 Mask = Builder.CreateVectorSplat(State.VF, Builder.getTrue());
3607 Builder.CreateIntrinsic(DataTy, Intrinsic::vp_gather, {Addr, Mask, EVL},
3608 nullptr,
"wide.masked.gather");
3610 NewLI = Builder.CreateIntrinsic(DataTy, Intrinsic::vp_load,
3611 {Addr, Mask, EVL},
nullptr,
"vp.op.load");
3617 State.set(
this, Res);
3632 ->getAddressSpace();
3633 return Ctx.TTI.getMemIntrinsicInstrCost(
3638#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
3641 O << Indent <<
"WIDEN ";
3652 auto &Builder = State.Builder;
3654 Value *Mask =
nullptr;
3655 if (
auto *VPMask =
getMask()) {
3658 Mask = State.get(VPMask);
3660 Mask = Builder.CreateVectorReverse(Mask,
"reverse");
3663 Value *StoredVal = State.get(StoredVPValue);
3667 NewSI = Builder.CreateMaskedScatter(StoredVal, Addr,
Alignment, Mask);
3669 NewSI = Builder.CreateMaskedStore(StoredVal, Addr,
Alignment, Mask);
3671 NewSI = Builder.CreateAlignedStore(StoredVal, Addr,
Alignment);
3675#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
3678 O << Indent <<
"WIDEN store ";
3687 auto &Builder = State.Builder;
3690 Value *StoredVal = State.get(StoredValue);
3692 Value *Mask =
nullptr;
3694 Mask = State.get(VPMask);
3698 Mask = Builder.CreateVectorSplat(State.VF, Builder.getTrue());
3701 if (CreateScatter) {
3703 Intrinsic::vp_scatter,
3704 {StoredVal, Addr, Mask, EVL});
3707 Intrinsic::vp_store,
3708 {StoredVal, Addr, Mask, EVL});
3727 ->getAddressSpace();
3728 return Ctx.TTI.getMemIntrinsicInstrCost(
3733#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
3736 O << Indent <<
"WIDEN vp.store ";
3744 auto VF = DstVTy->getElementCount();
3746 assert(VF == SrcVecTy->getElementCount() &&
"Vector dimensions do not match");
3747 Type *SrcElemTy = SrcVecTy->getElementType();
3748 Type *DstElemTy = DstVTy->getElementType();
3749 assert((
DL.getTypeSizeInBits(SrcElemTy) ==
DL.getTypeSizeInBits(DstElemTy)) &&
3750 "Vector elements must have same size");
3754 return Builder.CreateBitOrPointerCast(V, DstVTy);
3761 "Only one type should be a pointer type");
3763 "Only one type should be a floating point type");
3767 Value *CastVal = Builder.CreateBitOrPointerCast(V, VecIntTy);
3768 return Builder.CreateBitOrPointerCast(CastVal, DstVTy);
3774 const Twine &Name) {
3775 unsigned Factor = Vals.
size();
3776 assert(Factor > 1 &&
"Tried to interleave invalid number of vectors");
3780 for (
Value *Val : Vals)
3781 assert(Val->getType() == VecTy &&
"Tried to interleave mismatched types");
3786 if (VecTy->isScalableTy()) {
3787 assert(Factor <= 8 &&
"Unsupported interleave factor for scalable vectors");
3788 return Builder.CreateVectorInterleave(Vals, Name);
3795 const unsigned NumElts = VecTy->getElementCount().getFixedValue();
3796 return Builder.CreateShuffleVector(
3829 assert(!State.Lane &&
"Interleave group being replicated.");
3831 "Masking gaps for scalable vectors is not yet supported.");
3837 unsigned InterleaveFactor = Group->
getFactor();
3844 auto CreateGroupMask = [&BlockInMask, &State,
3845 &InterleaveFactor](
Value *MaskForGaps) ->
Value * {
3846 if (State.VF.isScalable()) {
3847 assert(!MaskForGaps &&
"Interleaved groups with gaps are not supported.");
3848 assert(InterleaveFactor <= 8 &&
3849 "Unsupported deinterleave factor for scalable vectors");
3850 auto *ResBlockInMask = State.get(BlockInMask);
3858 Value *ResBlockInMask = State.get(BlockInMask);
3859 Value *ShuffledMask = State.Builder.CreateShuffleVector(
3862 "interleaved.mask");
3863 return MaskForGaps ? State.Builder.CreateBinOp(Instruction::And,
3864 ShuffledMask, MaskForGaps)
3868 const DataLayout &DL = Instr->getDataLayout();
3871 Value *MaskForGaps =
nullptr;
3875 assert(MaskForGaps &&
"Mask for Gaps is required but it is null");
3879 if (BlockInMask || MaskForGaps) {
3880 Value *GroupMask = CreateGroupMask(MaskForGaps);
3882 NewLoad = State.Builder.CreateMaskedLoad(VecTy, ResAddr,
3884 PoisonVec,
"wide.masked.vec");
3886 NewLoad = State.Builder.CreateAlignedLoad(VecTy, ResAddr,
3893 if (VecTy->isScalableTy()) {
3896 assert(InterleaveFactor <= 8 &&
3897 "Unsupported deinterleave factor for scalable vectors");
3898 NewLoad = State.Builder.CreateIntrinsic(
3901 nullptr,
"strided.vec");
3904 auto CreateStridedVector = [&InterleaveFactor, &State,
3905 &NewLoad](
unsigned Index) ->
Value * {
3906 assert(Index < InterleaveFactor &&
"Illegal group index");
3907 if (State.VF.isScalable())
3908 return State.Builder.CreateExtractValue(NewLoad, Index);
3914 return State.Builder.CreateShuffleVector(NewLoad, StrideMask,
3918 for (
unsigned I = 0, J = 0;
I < InterleaveFactor; ++
I) {
3925 Value *StridedVec = CreateStridedVector(
I);
3928 if (Member->getType() != ScalarTy) {
3935 StridedVec = State.Builder.CreateVectorReverse(StridedVec,
"reverse");
3937 State.set(VPDefs[J], StridedVec);
3947 Value *MaskForGaps =
3950 "Mismatch between NeedsMaskForGaps and MaskForGaps");
3954 unsigned StoredIdx = 0;
3955 for (
unsigned i = 0; i < InterleaveFactor; i++) {
3957 "Fail to get a member from an interleaved store group");
3967 Value *StoredVec = State.get(StoredValues[StoredIdx]);
3971 StoredVec = State.Builder.CreateVectorReverse(StoredVec,
"reverse");
3975 if (StoredVec->
getType() != SubVT)
3984 if (BlockInMask || MaskForGaps) {
3985 Value *GroupMask = CreateGroupMask(MaskForGaps);
3986 NewStoreInstr = State.Builder.CreateMaskedStore(
3987 IVec, ResAddr, Group->
getAlign(), GroupMask);
3990 State.Builder.CreateAlignedStore(IVec, ResAddr, Group->
getAlign());
3997#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4001 O << Indent <<
"INTERLEAVE-GROUP with factor " << IG->getFactor() <<
" at ";
4002 IG->getInsertPos()->printAsOperand(O,
false);
4012 for (
unsigned i = 0; i < IG->getFactor(); ++i) {
4013 if (!IG->getMember(i))
4016 O <<
"\n" << Indent <<
" store ";
4018 O <<
" to index " << i;
4020 O <<
"\n" << Indent <<
" ";
4022 O <<
" = load from index " << i;
4030 assert(!State.Lane &&
"Interleave group being replicated.");
4031 assert(State.VF.isScalable() &&
4032 "Only support scalable VF for EVL tail-folding.");
4034 "Masking gaps for scalable vectors is not yet supported.");
4040 unsigned InterleaveFactor = Group->
getFactor();
4041 assert(InterleaveFactor <= 8 &&
4042 "Unsupported deinterleave/interleave factor for scalable vectors");
4049 Value *InterleaveEVL = State.Builder.CreateMul(
4050 EVL, ConstantInt::get(EVL->
getType(), InterleaveFactor),
"interleave.evl",
4054 Value *GroupMask =
nullptr;
4060 State.Builder.CreateVectorSplat(WideVF, State.Builder.getTrue());
4065 CallInst *NewLoad = State.Builder.CreateIntrinsic(
4066 VecTy, Intrinsic::vp_load, {ResAddr, GroupMask, InterleaveEVL},
nullptr,
4077 NewLoad = State.Builder.CreateIntrinsic(
4080 nullptr,
"strided.vec");
4082 const DataLayout &DL = Instr->getDataLayout();
4083 for (
unsigned I = 0, J = 0;
I < InterleaveFactor; ++
I) {
4089 Value *StridedVec = State.Builder.CreateExtractValue(NewLoad,
I);
4091 if (Member->getType() != ScalarTy) {
4109 const DataLayout &DL = Instr->getDataLayout();
4110 for (
unsigned I = 0, StoredIdx = 0;
I < InterleaveFactor;
I++) {
4118 Value *StoredVec = State.get(StoredValues[StoredIdx]);
4120 if (StoredVec->
getType() != SubVT)
4130 State.Builder.CreateIntrinsic(
Type::getVoidTy(Ctx), Intrinsic::vp_store,
4131 {IVec, ResAddr, GroupMask, InterleaveEVL});
4140#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4144 O << Indent <<
"INTERLEAVE-GROUP with factor " << IG->getFactor() <<
" at ";
4145 IG->getInsertPos()->printAsOperand(O,
false);
4156 for (
unsigned i = 0; i < IG->getFactor(); ++i) {
4157 if (!IG->getMember(i))
4160 O <<
"\n" << Indent <<
" vp.store ";
4162 O <<
" to index " << i;
4164 O <<
"\n" << Indent <<
" ";
4166 O <<
" = vp.load from index " << i;
4177 unsigned InsertPosIdx = 0;
4178 for (
unsigned Idx = 0; IG->getFactor(); ++Idx)
4179 if (
auto *Member = IG->getMember(Idx)) {
4180 if (Member == InsertPos)
4184 Type *ValTy = Ctx.Types.inferScalarType(
4189 ->getAddressSpace();
4191 unsigned InterleaveFactor = IG->getFactor();
4196 for (
unsigned IF = 0; IF < InterleaveFactor; IF++)
4197 if (IG->getMember(IF))
4202 InsertPos->
getOpcode(), WideVecTy, IG->getFactor(), Indices,
4203 IG->getAlign(), AS, Ctx.CostKind,
getMask(), NeedsMaskForGaps);
4205 if (!IG->isReverse())
4208 return Cost + IG->getNumMembers() *
4210 VectorTy, VectorTy, {}, Ctx.CostKind,
4214#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4217 O << Indent <<
"EMIT ";
4219 O <<
" = CANONICAL-INDUCTION ";
4229#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4233 "unexpected number of operands");
4234 O << Indent <<
"EMIT ";
4236 O <<
" = WIDEN-POINTER-INDUCTION ";
4252 O << Indent <<
"EMIT ";
4254 O <<
" = EXPAND SCEV " << *Expr;
4261 IRBuilder<> Builder(State.CFG.PrevBB->getTerminator());
4265 : Builder.CreateVectorSplat(VF, CanonicalIV,
"broadcast");
4268 VStep = Builder.CreateVectorSplat(VF, VStep);
4270 Builder.CreateAdd(VStep, Builder.CreateStepVector(VStep->
getType()));
4272 Value *CanonicalVectorIV = Builder.CreateAdd(VStart, VStep,
"vec.iv");
4273 State.set(
this, CanonicalVectorIV);
4276#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4279 O << Indent <<
"EMIT ";
4281 O <<
" = WIDEN-CANONICAL-INDUCTION ";
4287 auto &Builder = State.Builder;
4291 Type *VecTy = State.VF.isScalar()
4292 ? VectorInit->getType()
4296 State.CFG.VPBB2IRBB.at(
getParent()->getCFGPredecessor(0));
4297 if (State.VF.isVector()) {
4299 auto *One = ConstantInt::get(IdxTy, 1);
4302 auto *RuntimeVF =
getRuntimeVF(Builder, IdxTy, State.VF);
4303 auto *LastIdx = Builder.CreateSub(RuntimeVF, One);
4304 VectorInit = Builder.CreateInsertElement(
4310 Phi->insertBefore(State.CFG.PrevBB->getFirstInsertionPt());
4311 Phi->addIncoming(VectorInit, VectorPH);
4312 State.set(
this, Phi);
4319 return Ctx.TTI.getCFInstrCost(Instruction::PHI, Ctx.CostKind);
4324#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4327 O << Indent <<
"FIRST-ORDER-RECURRENCE-PHI ";
4344 State.CFG.VPBB2IRBB.at(
getParent()->getCFGPredecessor(0));
4345 bool ScalarPHI = State.VF.isScalar() ||
isInLoop();
4346 Value *StartV = State.get(StartVPV, ScalarPHI);
4350 assert(State.CurrentParentLoop->getHeader() == HeaderBB &&
4351 "recipe must be in the vector loop header");
4356 Phi->addIncoming(StartV, VectorPH);
4359#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4362 O << Indent <<
"WIDEN-REDUCTION-PHI ";
4375 Instruction *VecPhi = State.Builder.CreatePHI(VecTy, 2, Name);
4376 State.set(
this, VecPhi);
4379#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4382 O << Indent <<
"WIDEN-PHI ";
4392 State.CFG.VPBB2IRBB.at(
getParent()->getCFGPredecessor(0));
4395 State.Builder.CreatePHI(StartMask->
getType(), 2,
"active.lane.mask");
4396 Phi->addIncoming(StartMask, VectorPH);
4397 State.set(
this, Phi);
4400#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4403 O << Indent <<
"ACTIVE-LANE-MASK-PHI ";
4411#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4414 O << Indent <<
"EXPLICIT-VECTOR-LENGTH-BASED-IV-PHI ";
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
static MCDisassembler::DecodeStatus addOperand(MCInst &Inst, const MCOperand &Opnd)
AMDGPU Lower Kernel Arguments
AMDGPU Register Bank Select
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
static std::pair< Value *, APInt > getMask(Value *WideMask, unsigned Factor, ElementCount LeafValueEC)
const AbstractManglingParser< Derived, Alloc >::OperatorInfo AbstractManglingParser< Derived, Alloc >::Ops[]
This file provides a LoopVectorizationPlanner class.
static const SCEV * getAddressAccessSCEV(Value *Ptr, LoopVectorizationLegality *Legal, PredicatedScalarEvolution &PSE, const Loop *TheLoop)
Gets Address Access SCEV after verifying that the access pattern is loop invariant except the inducti...
static bool isOrdered(const Instruction *I)
MachineInstr unsigned OpIdx
uint64_t IntrinsicInst * II
const SmallVectorImpl< MachineOperand > & Cond
This file defines the SmallVector class.
static TableGen::Emitter::OptClass< SkeletonEmitter > X("gen-skeleton-class", "Generate example skeleton class")
static SymbolRef::Type getType(const Symbol *Sym)
This file contains the declarations of different VPlan-related auxiliary helpers.
static Instruction * createReverseEVL(IRBuilderBase &Builder, Value *Operand, Value *EVL, const Twine &Name)
Use all-true mask for reverse rather than actual mask, as it avoids a dependence w/o affecting the re...
static Value * interleaveVectors(IRBuilderBase &Builder, ArrayRef< Value * > Vals, const Twine &Name)
Return a vector containing interleaved elements from multiple smaller input vectors.
static InstructionCost getCostForIntrinsics(Intrinsic::ID ID, ArrayRef< const VPValue * > Operands, const VPRecipeWithIRFlags &R, ElementCount VF, VPCostContext &Ctx)
Compute the cost for the intrinsic ID with Operands, produced by R.
static Value * createBitOrPointerCast(IRBuilderBase &Builder, Value *V, VectorType *DstVTy, const DataLayout &DL)
SmallVector< Value *, 2 > VectorParts
static bool isUsedByLoadStoreAddress(const VPUser *V)
Returns true if V is used as part of the address of another load or store.
static void scalarizeInstruction(const Instruction *Instr, VPReplicateRecipe *RepRecipe, const VPLane &Lane, VPTransformState &State)
A helper function to scalarize a single Instruction in the innermost loop.
static Constant * getSignedIntOrFpConstant(Type *Ty, int64_t C)
A helper function that returns an integer or floating-point constant with value C.
static std::optional< unsigned > getOpcode(ArrayRef< VPValue * > Values)
Returns the opcode of Values or ~0 if they do not all agree.
This file contains the declarations of the Vectorization Plan base classes:
static const uint32_t IV[8]
void printAsOperand(OutputBuffer &OB, Prec P=Prec::Default, bool StrictlyWorse=false) const
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
size_t size() const
size - Get the array size.
bool empty() const
empty - Check if the array is empty.
static LLVM_ABI Attribute getWithAlignment(LLVMContext &Context, Align Alignment)
Return a uniquified Attribute object that has the specific alignment set.
LLVM Basic Block Representation.
LLVM_ABI const_iterator getFirstInsertionPt() const
Returns an iterator to the first instruction in this block that is suitable for inserting a non-PHI i...
LLVM_ABI InstListType::const_iterator getFirstNonPHIIt() const
Returns an iterator to the first instruction in this block that is not a PHINode instruction.
LLVM_ABI const BasicBlock * getSinglePredecessor() const
Return the predecessor of this block if it has a single predecessor block.
const Instruction * getTerminator() const LLVM_READONLY
Returns the terminator instruction if the block is well formed or null if the block is not well forme...
void setSuccessor(unsigned idx, BasicBlock *NewSucc)
void addParamAttr(unsigned ArgNo, Attribute::AttrKind Kind)
Adds the attribute to the indicated argument.
This class represents a function call, abstracting a target machine's calling convention.
static LLVM_ABI bool isBitOrNoopPointerCastable(Type *SrcTy, Type *DestTy, const DataLayout &DL)
Check whether a bitcast, inttoptr, or ptrtoint cast between these types is valid and a no-op.
static Type * makeCmpResultType(Type *opnd_type)
Create a result type for fcmp/icmp.
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
@ ICMP_UGT
unsigned greater than
@ ICMP_ULT
unsigned less than
static LLVM_ABI StringRef getPredicateName(Predicate P)
An abstraction over a floating-point predicate, and a pack of an integer predicate with samesign info...
This is the shared class of boolean and integer constants.
static ConstantInt * getSigned(IntegerType *Ty, int64_t V)
Return a ConstantInt with the specified value for the specified type.
uint64_t getZExtValue() const
Return the constant as a 64-bit unsigned integer value after it has been zero extended as appropriate...
This is an important base class in LLVM.
static LLVM_ABI Constant * getNullValue(Type *Ty)
Constructor to create a '0' constant of arbitrary type.
A parsed version of the target data layout string in and methods for querying it.
constexpr bool isVector() const
One or more elements.
static constexpr ElementCount getScalable(ScalarTy MinVal)
static constexpr ElementCount getFixed(ScalarTy MinVal)
constexpr bool isScalar() const
Exactly one element.
Convenience struct for specifying and reasoning about fast-math flags.
LLVM_ABI void print(raw_ostream &O) const
Print fast-math flags to O.
void setAllowContract(bool B=true)
bool noSignedZeros() const
void setAllowReciprocal(bool B=true)
bool allowReciprocal() const
void setNoSignedZeros(bool B=true)
bool allowReassoc() const
Flag queries.
void setNoNaNs(bool B=true)
void setAllowReassoc(bool B=true)
Flag setters.
void setApproxFunc(bool B=true)
void setNoInfs(bool B=true)
bool allowContract() const
Class to represent function types.
Type * getParamType(unsigned i) const
Parameter type accessors.
bool willReturn() const
Determine if the function will return.
bool doesNotThrow() const
Determine if the function cannot unwind.
Type * getReturnType() const
Returns the type of the ret val.
Common base class shared among various IRBuilders.
Value * CreateInsertElement(Type *VecTy, Value *NewElt, Value *Idx, const Twine &Name="")
IntegerType * getInt1Ty()
Fetch the type representing a single bit.
Value * CreateInsertValue(Value *Agg, Value *Val, ArrayRef< unsigned > Idxs, const Twine &Name="")
Value * CreateExtractElement(Value *Vec, Value *Idx, const Twine &Name="")
LLVM_ABI Value * CreateVectorSplice(Value *V1, Value *V2, int64_t Imm, const Twine &Name="")
Return a vector splice intrinsic if using scalable vectors, otherwise return a shufflevector.
LLVM_ABI Value * CreateVectorSplat(unsigned NumElts, Value *V, const Twine &Name="")
Return a vector value that contains.
Value * CreateExtractValue(Value *Agg, ArrayRef< unsigned > Idxs, const Twine &Name="")
LLVM_ABI Value * CreateSelect(Value *C, Value *True, Value *False, const Twine &Name="", Instruction *MDFrom=nullptr)
Value * CreateFreeze(Value *V, const Twine &Name="")
IntegerType * getInt32Ty()
Fetch the type representing a 32-bit integer.
Value * CreatePtrAdd(Value *Ptr, Value *Offset, const Twine &Name="", GEPNoWrapFlags NW=GEPNoWrapFlags::none())
void setFastMathFlags(FastMathFlags NewFMF)
Set the fast-math flags to be used with generated fp-math operators.
IntegerType * getInt64Ty()
Fetch the type representing a 64-bit integer.
LLVM_ABI Value * CreateVectorReverse(Value *V, const Twine &Name="")
Return a vector value that contains the vector V reversed.
Value * CreateICmpNE(Value *LHS, Value *RHS, const Twine &Name="")
ConstantInt * getInt64(uint64_t C)
Get a constant 64-bit value.
LLVM_ABI CallInst * CreateOrReduce(Value *Src)
Create a vector int OR reduction intrinsic of the source vector.
Value * CreateLogicalAnd(Value *Cond1, Value *Cond2, const Twine &Name="", Instruction *MDFrom=nullptr)
LLVM_ABI CallInst * CreateIntrinsic(Intrinsic::ID ID, ArrayRef< Type * > Types, ArrayRef< Value * > Args, FMFSource FMFSource={}, const Twine &Name="")
Create a call to intrinsic ID with Args, mangled using Types.
ConstantInt * getInt32(uint32_t C)
Get a constant 32-bit value.
Value * CreateCmp(CmpInst::Predicate Pred, Value *LHS, Value *RHS, const Twine &Name="", MDNode *FPMathTag=nullptr)
Value * CreateNot(Value *V, const Twine &Name="")
Value * CreateICmpEQ(Value *LHS, Value *RHS, const Twine &Name="")
Value * CreateCountTrailingZeroElems(Type *ResTy, Value *Mask, bool ZeroIsPoison=true, const Twine &Name="")
Create a call to llvm.experimental_cttz_elts.
Value * CreateSub(Value *LHS, Value *RHS, const Twine &Name="", bool HasNUW=false, bool HasNSW=false)
BranchInst * CreateCondBr(Value *Cond, BasicBlock *True, BasicBlock *False, MDNode *BranchWeights=nullptr, MDNode *Unpredictable=nullptr)
Create a conditional 'br Cond, TrueDest, FalseDest' instruction.
Value * CreateZExt(Value *V, Type *DestTy, const Twine &Name="", bool IsNonNeg=false)
Value * CreateAdd(Value *LHS, Value *RHS, const Twine &Name="", bool HasNUW=false, bool HasNSW=false)
ConstantInt * getFalse()
Get the constant value for i1 false.
Value * CreateBinOp(Instruction::BinaryOps Opc, Value *LHS, Value *RHS, const Twine &Name="", MDNode *FPMathTag=nullptr)
Value * CreateICmpUGE(Value *LHS, Value *RHS, const Twine &Name="")
Value * CreateICmp(CmpInst::Predicate P, Value *LHS, Value *RHS, const Twine &Name="")
Value * CreateOr(Value *LHS, Value *RHS, const Twine &Name="", bool IsDisjoint=false)
Value * CreateMul(Value *LHS, Value *RHS, const Twine &Name="", bool HasNUW=false, bool HasNSW=false)
This provides a uniform API for creating instructions and inserting them into a basic block: either a...
static InstructionCost getInvalid(CostType Val=0)
LLVM_ABI InstListType::iterator eraseFromParent()
This method unlinks 'this' from the containing basic block and deletes it.
const char * getOpcodeName() const
unsigned getOpcode() const
Returns a member of one of the enums like Instruction::Add.
static LLVM_ABI IntegerType * get(LLVMContext &C, unsigned NumBits)
This static method is the primary way of constructing an IntegerType.
The group of interleaved loads/stores sharing the same stride and close to each other.
uint32_t getFactor() const
InstTy * getMember(uint32_t Index) const
Get the member with the given index Index.
InstTy * getInsertPos() const
void addMetadata(InstTy *NewInst) const
Add metadata (e.g.
This is an important class for using LLVM in a threaded context.
Represents a single loop in the control flow graph.
Information for memory intrinsic cost model.
A Module instance is used to store all the information related to an LLVM module.
void addIncoming(Value *V, BasicBlock *BB)
Add an incoming value to the end of the PHI list.
static PHINode * Create(Type *Ty, unsigned NumReservedValues, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
Constructors - NumReservedValues is a hint for the number of incoming edges that this phi node will h...
static LLVM_ABI PoisonValue * get(Type *T)
Static factory methods - Return an 'poison' object of the specified type.
static bool isSignedRecurrenceKind(RecurKind Kind)
Returns true if recurrece kind is a signed redux kind.
static LLVM_ABI unsigned getOpcode(RecurKind Kind)
Returns the opcode corresponding to the RecurrenceKind.
unsigned getOpcode() const
static bool isAnyOfRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is of the form select(cmp(),x,y) where one of (x,...
static bool isFindLastIVRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is of the form select(cmp(),x,y) where one of (x,...
static bool isFindIVRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is of the form select(cmp(),x,y) where one of (x,...
static bool isMinMaxRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is any min/max kind.
This class represents an analyzed expression in the program.
The main scalar evolution driver.
This class represents the LLVM 'select' instruction.
This class provides computation of slot numbers for LLVM Assembly writing.
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
reference emplace_back(ArgTypes &&... Args)
void append(ItTy in_start, ItTy in_end)
Add the specified range to the end of the SmallVector.
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
StringRef - Represent a constant reference to a string, i.e.
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
The instances of the Type class are immutable: once they are created, they are never changed.
static LLVM_ABI IntegerType * getInt64Ty(LLVMContext &C)
bool isVectorTy() const
True if this is an instance of VectorType.
static LLVM_ABI IntegerType * getInt32Ty(LLVMContext &C)
bool isPointerTy() const
True if this is an instance of PointerType.
static LLVM_ABI Type * getVoidTy(LLVMContext &C)
Type * getScalarType() const
If this is a vector type, return the element type, otherwise return 'this'.
bool isStructTy() const
True if this is an instance of StructType.
LLVMContext & getContext() const
Return the LLVMContext in which this type was uniqued.
LLVM_ABI unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type.
static LLVM_ABI IntegerType * getInt1Ty(LLVMContext &C)
bool isFloatingPointTy() const
Return true if this is one of the floating-point types.
bool isIntegerTy() const
True if this is an instance of IntegerType.
static LLVM_ABI IntegerType * getIntNTy(LLVMContext &C, unsigned N)
bool isVoidTy() const
Return true if this is 'void'.
value_op_iterator value_op_end()
void setOperand(unsigned i, Value *Val)
Value * getOperand(unsigned i) const
value_op_iterator value_op_begin()
void execute(VPTransformState &State) override
Generate the active lane mask phi of the vector loop.
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
RecipeListTy & getRecipeList()
Returns a reference to the list of recipes.
void insert(VPRecipeBase *Recipe, iterator InsertPt)
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPWidenMemoryRecipe.
VPValue * getIncomingValue(unsigned Idx) const
Return incoming value number Idx.
unsigned getNumIncomingValues() const
Return the number of incoming values, taking into account when normalized the first incoming value wi...
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
VPBlockBase is the building block of the Hierarchical Control-Flow Graph.
const VPBlocksTy & getPredecessors() const
void printAsOperand(raw_ostream &OS, bool PrintType=false) const
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPBranchOnMaskRecipe.
void execute(VPTransformState &State) override
Generate the extraction of the appropriate bit from the block mask and the conditional branch.
VPlan-based builder utility analogous to IRBuilder.
LLVM_ABI_FOR_TEST void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
This class augments a recipe with a set of VPValues defined by the recipe.
LLVM_ABI_FOR_TEST void dump() const
Dump the VPDef to stderr (for debugging).
unsigned getNumDefinedValues() const
Returns the number of values defined by the VPDef.
ArrayRef< VPValue * > definedValues()
Returns an ArrayRef of the values defined by the VPDef.
VPValue * getVPSingleValue()
Returns the only VPValue defined by the VPDef.
VPValue * getVPValue(unsigned I)
Returns the VPValue with index I defined by the VPDef.
unsigned getVPDefID() const
VPValue * getStepValue() const
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
VPValue * getStartValue() const
LLVM_ABI_FOR_TEST void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void decompose()
Insert the recipes of the expression back into the VPlan, directly before the current recipe.
bool isSingleScalar() const
Returns true if the result of this VPExpressionRecipe is a single-scalar.
bool mayHaveSideEffects() const
Returns true if this expression contains recipes that may have side effects.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Compute the cost of this recipe either using a recipe's specialized implementation or using the legac...
bool mayReadOrWriteMemory() const
Returns true if this expression contains recipes that may read from or write to memory.
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void execute(VPTransformState &State) override
Produce a vectorized histogram operation.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPHistogramRecipe.
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
VPValue * getMask() const
Return the mask operand if one was provided, or a null pointer if all lanes should be executed uncond...
Class to record and manage LLVM IR flags.
LLVM_ABI_FOR_TEST bool flagsValidForOpcode(unsigned Opcode) const
Returns true if the set flags are valid for Opcode.
CmpInst::Predicate CmpPredicate
void printFlags(raw_ostream &O) const
bool hasFastMathFlags() const
Returns true if the recipe has fast-math flags.
LLVM_ABI_FOR_TEST FastMathFlags getFastMathFlags() const
CmpInst::Predicate getPredicate() const
bool hasNoSignedWrap() const
void intersectFlags(const VPIRFlags &Other)
Only keep flags also present in Other.
GEPNoWrapFlags getGEPNoWrapFlags() const
bool hasPredicate() const
Returns true if the recipe has a comparison predicate.
DisjointFlagsTy DisjointFlags
bool hasNoUnsignedWrap() const
NonNegFlagsTy NonNegFlags
void applyFlags(Instruction &I) const
Apply the IR flags to I.
Instruction & getInstruction() const
void extractLastLaneOfLastPartOfFirstOperand(VPBuilder &Builder)
Update the recipe's first operand to the last lane of the last part of the operand using Builder.
void execute(VPTransformState &State) override
The method which generates the output IR instructions that correspond to this VPRecipe,...
LLVM_ABI_FOR_TEST InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPIRInstruction.
VPIRInstruction(Instruction &I)
VPIRInstruction::create() should be used to create VPIRInstructions, as subclasses may need to be cre...
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void execute(VPTransformState &State) override
Generate the instruction.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPInstruction.
bool doesGeneratePerAllLanes() const
Returns true if this VPInstruction generates scalar values for all lanes.
@ ExtractLane
Extracts a single lane (first operand) from a set of vector operands.
@ ComputeAnyOfResult
Compute the final result of a AnyOf reduction with select(cmp(),x,y), where one of (x,...
@ WideIVStep
Scale the first operand (vector step) by the second operand (scalar-step).
@ ExtractPenultimateElement
@ ResumeForEpilogue
Explicit user for the resume phi of the canonical induction in the main VPlan, used by the epilogue v...
@ Unpack
Extracts all lanes from its (non-scalable) vector operand.
@ FirstOrderRecurrenceSplice
@ ReductionStartVector
Start vector for reductions with 3 operands: the original start value, the identity value for the red...
@ BuildVector
Creates a fixed-width vector containing all operands.
@ BuildStructVector
Given operands of (the same) struct type, creates a struct of fixed- width vectors each containing a ...
@ VScale
Returns the value for vscale.
@ CanonicalIVIncrementForPart
@ CalculateTripCountMinusVF
bool opcodeMayReadOrWriteFromMemory() const
Returns true if the underlying opcode may read from or write to memory.
LLVM_DUMP_METHOD void dump() const
Print the VPInstruction to dbgs() (for debugging).
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the VPInstruction to O.
StringRef getName() const
Returns the symbolic name assigned to the VPInstruction.
unsigned getOpcode() const
VPInstruction(unsigned Opcode, ArrayRef< VPValue * > Operands, const VPIRFlags &Flags={}, const VPIRMetadata &MD={}, DebugLoc DL=DebugLoc::getUnknown(), const Twine &Name="")
bool usesFirstLaneOnly(const VPValue *Op) const override
Returns true if the recipe only uses the first lane of operand Op.
bool isVectorToScalar() const
Returns true if this VPInstruction produces a scalar value from a vector, e.g.
bool isSingleScalar() const
Returns true if this VPInstruction's operands are single scalars and the result is also a single scal...
void execute(VPTransformState &State) override
Generate the instruction.
bool usesFirstPartOnly(const VPValue *Op) const override
Returns true if the recipe only uses the first part of operand Op.
bool needsMaskForGaps() const
Return true if the access needs a mask because of the gaps.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this recipe.
Instruction * getInsertPos() const
const InterleaveGroup< Instruction > * getInterleaveGroup() const
VPValue * getMask() const
Return the mask used by this recipe.
ArrayRef< VPValue * > getStoredValues() const
Return the VPValues stored by this interleave group.
VPValue * getAddr() const
Return the address accessed by this recipe.
VPValue * getEVL() const
The VPValue of the explicit vector length.
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
unsigned getNumStoreOperands() const override
Returns the number of stored operands of this interleave group.
void execute(VPTransformState &State) override
Generate the wide load or store, and shuffles.
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
unsigned getNumStoreOperands() const override
Returns the number of stored operands of this interleave group.
void execute(VPTransformState &State) override
Generate the wide load or store, and shuffles.
In what follows, the term "input IR" refers to code that is fed into the vectorizer whereas the term ...
static VPLane getLastLaneForVF(const ElementCount &VF)
static VPLane getLaneFromEnd(const ElementCount &VF, unsigned Offset)
static VPLane getFirstLane()
virtual const VPRecipeBase * getAsRecipe() const =0
Return a VPRecipeBase* to the current object.
virtual unsigned getNumIncoming() const
Returns the number of incoming values, also number of incoming blocks.
void removeIncomingValueFor(VPBlockBase *IncomingBlock) const
Removes the incoming value for IncomingBlock, which must be a predecessor.
const VPBasicBlock * getIncomingBlock(unsigned Idx) const
Returns the incoming block with index Idx.
detail::zippy< llvm::detail::zip_first, VPUser::const_operand_range, const_incoming_blocks_range > incoming_values_and_blocks() const
Returns an iterator range over pairs of incoming values and corresponding incoming blocks.
VPValue * getIncomingValue(unsigned Idx) const
Returns the incoming VPValue with index Idx.
void printPhiOperands(raw_ostream &O, VPSlotTracker &SlotTracker) const
Print the recipe.
void execute(VPTransformState &State) override
Generates phi nodes for live-outs (from a replicate region) as needed to retain SSA form.
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
VPRecipeBase is a base class modeling a sequence of one or more output IR instructions.
bool mayReadFromMemory() const
Returns true if the recipe may read from memory.
bool mayHaveSideEffects() const
Returns true if the recipe may have side-effects.
virtual void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const =0
Each concrete VPRecipe prints itself, without printing common information, like debug info or metadat...
VPRegionBlock * getRegion()
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override final
Print the recipe, delegating to printRecipe().
bool isPhi() const
Returns true for PHI-like recipes.
bool mayWriteToMemory() const
Returns true if the recipe may write to memory.
virtual InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const
Compute the cost of this recipe either using a recipe's specialized implementation or using the legac...
VPBasicBlock * getParent()
DebugLoc getDebugLoc() const
Returns the debug location of the recipe.
void moveBefore(VPBasicBlock &BB, iplist< VPRecipeBase >::iterator I)
Unlink this recipe and insert into BB before I.
void insertBefore(VPRecipeBase *InsertPos)
Insert an unlinked recipe into a basic block immediately before the specified recipe.
void insertAfter(VPRecipeBase *InsertPos)
Insert an unlinked Recipe into a basic block immediately after the specified Recipe.
iplist< VPRecipeBase >::iterator eraseFromParent()
This method unlinks 'this' from the containing basic block and deletes it.
InstructionCost cost(ElementCount VF, VPCostContext &Ctx)
Return the cost of this recipe, taking into account if the cost computation should be skipped and the...
bool isScalarCast() const
Return true if the recipe is a scalar cast.
void removeFromParent()
This method unlinks 'this' from the containing basic block, but does not delete it.
void moveAfter(VPRecipeBase *MovePos)
Unlink this recipe from its current VPBasicBlock and insert it into the VPBasicBlock that MovePos liv...
VPRecipeBase(const unsigned char SC, ArrayRef< VPValue * > Operands, DebugLoc DL=DebugLoc::getUnknown())
void execute(VPTransformState &State) override
Generate the reduction in the loop.
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
VPValue * getEVL() const
The VPValue of the explicit vector length.
unsigned getVFScaleFactor() const
Get the factor that the VF of this recipe's output should be scaled by, or 1 if it isn't scaled.
bool isInLoop() const
Returns true if the phi is part of an in-loop reduction.
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void execute(VPTransformState &State) override
Generate the phi/select nodes.
bool isConditional() const
Return true if the in-loop reduction is conditional.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of VPReductionRecipe.
VPValue * getVecOp() const
The VPValue of the vector value to be reduced.
VPValue * getCondOp() const
The VPValue of the condition for the block.
RecurKind getRecurrenceKind() const
Return the recurrence kind for the in-loop reduction.
bool isPartialReduction() const
Returns true if the reduction outputs a vector with a scaled down VF.
VPValue * getChainOp() const
The VPValue of the scalar Chain being accumulated.
bool isInLoop() const
Returns true if the reduction is in-loop.
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void execute(VPTransformState &State) override
Generate the reduction in the loop.
VPRegionBlock represents a collection of VPBasicBlocks and VPRegionBlocks which form a Single-Entry-S...
bool isReplicator() const
An indicator whether this region is to generate multiple replicated instances of output IR correspond...
VPReplicateRecipe replicates a given instruction producing multiple scalar copies of the original sca...
void execute(VPTransformState &State) override
Generate replicas of the desired Ingredient.
bool isSingleScalar() const
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPReplicateRecipe.
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
unsigned getOpcode() const
bool shouldPack() const
Returns true if the recipe is used by a widened recipe via an intervening VPPredInstPHIRecipe.
VPValue * getStepValue() const
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void execute(VPTransformState &State) override
Generate the scalarized versions of the phi node as needed by their users.
VPSingleDef is a base class for recipes for modeling a sequence of one or more output IR that define ...
Instruction * getUnderlyingInstr()
Returns the underlying instruction.
LLVM_ABI_FOR_TEST LLVM_DUMP_METHOD void dump() const
Print this VPSingleDefRecipe to dbgs() (for debugging).
VPSingleDefRecipe(const unsigned char SC, ArrayRef< VPValue * > Operands, DebugLoc DL=DebugLoc::getUnknown())
This class can be used to assign names to VPValues.
Type * inferScalarType(const VPValue *V)
Infer the type of V. Returns the scalar type of V.
Helper to access the operand that contains the unroll part for this recipe after unrolling.
VPValue * getUnrollPartOperand(const VPUser &U) const
Return the VPValue operand containing the unroll part or null if there is no such operand.
unsigned getUnrollPart(const VPUser &U) const
Return the unroll part.
This class augments VPValue with operands which provide the inverse def-use edges from VPValue's user...
void printOperands(raw_ostream &O, VPSlotTracker &SlotTracker) const
Print the operands to O.
void setOperand(unsigned I, VPValue *New)
unsigned getNumOperands() const
operand_iterator op_begin()
VPValue * getOperand(unsigned N) const
virtual bool usesFirstLaneOnly(const VPValue *Op) const
Returns true if the VPUser only uses the first lane of operand Op.
This is the base class of the VPlan Def/Use graph, used for modeling the data flow into,...
bool isDefinedOutsideLoopRegions() const
Returns true if the VPValue is defined outside any loop.
VPRecipeBase * getDefiningRecipe()
Returns the recipe defining this VPValue or nullptr if it is not defined by a recipe,...
friend class VPExpressionRecipe
void printAsOperand(raw_ostream &OS, VPSlotTracker &Tracker) const
Value * getLiveInIRValue() const
Returns the underlying IR value, if this VPValue is defined outside the scope of VPlan.
Value * getUnderlyingValue() const
Return the underlying Value attached to this VPValue.
VPValue(const unsigned char SC, Value *UV=nullptr, VPDef *Def=nullptr)
void replaceAllUsesWith(VPValue *New)
bool isLiveIn() const
Returns true if this VPValue is a live-in, i.e. defined outside the VPlan.
void execute(VPTransformState &State) override
The method which generates the output IR instructions that correspond to this VPRecipe,...
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
Type * getSourceElementType() const
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void execute(VPTransformState &State) override
The method which generates the output IR instructions that correspond to this VPRecipe,...
Function * getCalledScalarFunction() const
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPWidenCallRecipe.
void execute(VPTransformState &State) override
Produce a widened version of the call instruction.
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void execute(VPTransformState &State) override
Generate a canonical vector induction variable of the vector loop, with start = {<Part*VF,...
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
LLVM_ABI_FOR_TEST void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
Type * getResultType() const
Returns the result type of the cast.
LLVM_ABI_FOR_TEST void execute(VPTransformState &State) override
Produce widened copies of the cast.
LLVM_ABI_FOR_TEST InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPWidenCastRecipe.
void execute(VPTransformState &State) override
Generate the gep nodes.
Type * getSourceElementType() const
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
bool usesFirstLaneOnly(const VPValue *Op) const override
Returns true if the recipe only uses the first lane of operand Op.
VPValue * getStepValue()
Returns the step value of the induction.
TruncInst * getTruncInst()
Returns the first defined value as TruncInst, if it is one or nullptr otherwise.
Type * getScalarType() const
Returns the scalar type of the induction.
bool isCanonical() const
Returns true if the induction is canonical, i.e.
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
Intrinsic::ID getVectorIntrinsicID() const
Return the ID of the intrinsic.
LLVM_ABI_FOR_TEST void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
StringRef getIntrinsicName() const
Return to name of the intrinsic as string.
LLVM_ABI_FOR_TEST bool usesFirstLaneOnly(const VPValue *Op) const override
Returns true if the VPUser only uses the first lane of operand Op.
Type * getResultType() const
Return the scalar return type of the intrinsic.
LLVM_ABI_FOR_TEST void execute(VPTransformState &State) override
Produce a widened version of the vector intrinsic.
LLVM_ABI_FOR_TEST InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this vector intrinsic.
bool IsMasked
Whether the memory access is masked.
bool Reverse
Whether the consecutive accessed addresses are in reverse order.
bool isConsecutive() const
Return whether the loaded-from / stored-to addresses are consecutive.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPWidenMemoryRecipe.
bool Consecutive
Whether the accessed addresses are consecutive.
VPValue * getMask() const
Return the mask used by this recipe.
Align Alignment
Alignment information for this memory access.
VPValue * getAddr() const
Return the address accessed by this recipe.
bool isReverse() const
Return whether the consecutive loaded/stored addresses are in reverse order.
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void execute(VPTransformState &State) override
Generate the phi/select nodes.
bool onlyScalarsGenerated(bool IsScalable)
Returns true if only scalar values will be generated.
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPWidenRecipe.
void execute(VPTransformState &State) override
Produce a widened instruction using the opcode and operands of the recipe, processing State....
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
LLVM_ABI_FOR_TEST VPRegionBlock * getVectorLoopRegion()
Returns the VPRegionBlock of the vector loop.
LLVM Value Representation.
Type * getType() const
All values are typed, get the type of this value.
LLVM_ABI void setName(const Twine &Name)
Change the name of the value.
LLVM_ABI LLVMContext & getContext() const
All values hold a context through their type.
void mutateType(Type *Ty)
Mutate the type of this Value to be of the specified type.
LLVM_ABI StringRef getName() const
Return a constant reference to the value's name.
Base class of all SIMD vector types.
ElementCount getElementCount() const
Return an ElementCount instance to represent the (possibly scalable) number of elements in the vector...
static LLVM_ABI VectorType * get(Type *ElementType, ElementCount EC)
This static method is the primary way to construct an VectorType.
Type * getElementType() const
constexpr ScalarTy getFixedValue() const
constexpr bool isScalable() const
Returns whether the quantity is scaled by a runtime quantity (vscale).
constexpr LeafTy multiplyCoefficientBy(ScalarTy RHS) const
constexpr ScalarTy getKnownMinValue() const
Returns the minimum value this quantity can represent.
constexpr LeafTy divideCoefficientBy(ScalarTy RHS) const
We do not provide the '/' operator here because division for polynomial types does not work in the sa...
const ParentTy * getParent() const
self_iterator getIterator()
typename base_list_type::iterator iterator
iterator erase(iterator where)
pointer remove(iterator &IT)
This class implements an extremely fast bulk output stream that can only output to a stream.
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
constexpr std::underlying_type_t< E > Mask()
Get a bitmask with 1s in all places up to the high-order bit of E's largest value.
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
@ C
The default llvm calling convention, compatible with C.
@ BasicBlock
Various leaf nodes.
LLVM_ABI Function * getOrInsertDeclaration(Module *M, ID id, ArrayRef< Type * > Tys={})
Look up the Function declaration of the intrinsic id in the Module M.
LLVM_ABI Intrinsic::ID getDeinterleaveIntrinsicID(unsigned Factor)
Returns the corresponding llvm.vector.deinterleaveN intrinsic for factor N.
LLVM_ABI StringRef getBaseName(ID id)
Return the LLVM name for an intrinsic, without encoded types for overloading, such as "llvm....
bool match(Val *V, const Pattern &P)
auto m_LogicalOr()
Matches L || R where L and R are arbitrary values.
class_match< CmpInst > m_Cmp()
Matches any compare instruction and ignore it.
auto m_LogicalAnd()
Matches L && R where L and R are arbitrary values.
GEPLikeRecipe_match< Op0_t, Op1_t > m_GetElementPtr(const Op0_t &Op0, const Op1_t &Op1)
class_match< VPValue > m_VPValue()
Match an arbitrary VPValue and ignore it.
VPInstruction_match< VPInstruction::Reverse, Op0_t > m_Reverse(const Op0_t &Op0)
NodeAddr< DefNode * > Def
bool isSingleScalar(const VPValue *VPV)
Returns true if VPV is a single scalar, either because it produces the same value for all lanes or on...
bool onlyFirstPartUsed(const VPValue *Def)
Returns true if only the first part of Def is used.
bool onlyFirstLaneUsed(const VPValue *Def)
Returns true if only the first lane of Def is used.
bool onlyScalarValuesUsed(const VPValue *Def)
Returns true if only scalar values of Def are used by all users.
const SCEV * getSCEVExprForVPValue(const VPValue *V, ScalarEvolution &SE, const Loop *L=nullptr)
Return the SCEV expression for V.
This is an optimization pass for GlobalISel generic memory operations.
auto drop_begin(T &&RangeOrContainer, size_t N=1)
Return a range covering RangeOrContainer with the first N elements excluded.
LLVM_ABI Value * createSimpleReduction(IRBuilderBase &B, Value *Src, RecurKind RdxKind)
Create a reduction of the given vector.
detail::zippy< detail::zip_shortest, T, U, Args... > zip(T &&t, U &&u, Args &&...args)
zip iterator for two or more iteratable types.
FunctionAddr VTableAddr Value
LLVM_ABI Value * createFindLastIVReduction(IRBuilderBase &B, Value *Src, RecurKind RdxKind, Value *Start, Value *Sentinel)
Create a reduction of the given vector Src for a reduction of the kind RecurKind::FindLastIV.
LLVM_ABI Intrinsic::ID getMinMaxReductionIntrinsicOp(Intrinsic::ID RdxID)
Returns the min/max intrinsic used when expanding a min/max reduction.
constexpr bool none_of(R &&Range, UnaryPredicate P)
Provide wrappers to std::none_of which take ranges instead of having to pass begin/end explicitly.
auto enumerate(FirstRange &&First, RestRanges &&...Rest)
Given two or more input ranges, returns a new range whose values are tuples (A, B,...
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
const Value * getLoadStorePointerOperand(const Value *V)
A helper function that returns the pointer operand of a load or store instruction.
Value * getRuntimeVF(IRBuilderBase &B, Type *Ty, ElementCount VF)
Return the runtime value for VF.
auto dyn_cast_if_present(const Y &Val)
dyn_cast_if_present<X> - Functionally identical to dyn_cast, except that a null (or none in the case ...
iterator_range< T > make_range(T x, T y)
Convenience function for iterating over sub-ranges.
void append_range(Container &C, Range &&R)
Wrapper function to append range R to container C.
void interleaveComma(const Container &c, StreamT &os, UnaryFunctor each_fn)
auto cast_or_null(const Y &Val)
LLVM_ABI Value * concatenateVectors(IRBuilderBase &Builder, ArrayRef< Value * > Vecs)
Concatenate a list of vectors.
Align getLoadStoreAlignment(const Value *I)
A helper function that returns the alignment of load or store instruction.
constexpr bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
bool isa_and_nonnull(const Y &Val)
LLVM_ABI Value * createMinMaxOp(IRBuilderBase &Builder, RecurKind RK, Value *Left, Value *Right)
Returns a Min/Max operation corresponding to MinMaxRecurrenceKind.
auto dyn_cast_or_null(const Y &Val)
static Error getOffset(const SymbolRef &Sym, SectionRef Sec, uint64_t &Result)
LLVM_ABI Constant * createBitMaskForGaps(IRBuilderBase &Builder, unsigned VF, const InterleaveGroup< Instruction > &Group)
Create a mask that filters the members of an interleave group where there are gaps.
LLVM_ABI llvm::SmallVector< int, 16 > createStrideMask(unsigned Start, unsigned Stride, unsigned VF)
Create a stride shuffle mask.
auto reverse(ContainerTy &&C)
LLVM_ABI llvm::SmallVector< int, 16 > createReplicatedMask(unsigned ReplicationFactor, unsigned VF)
Create a mask with replicated elements.
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
SmallVector< ValueTypeFromRangeType< R >, Size > to_vector(R &&Range)
Given a range of type R, iterate the entire range and return a SmallVector with elements of the vecto...
Type * toVectorizedTy(Type *Ty, ElementCount EC)
A helper for converting to vectorized types.
cl::opt< unsigned > ForceTargetInstructionCost
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
auto drop_end(T &&RangeOrContainer, size_t N=1)
Return a range covering RangeOrContainer with the last N elements excluded.
bool canVectorizeTy(Type *Ty)
Returns true if Ty is a valid vector element type, void, or an unpacked literal struct where all elem...
LLVM_ABI llvm::SmallVector< int, 16 > createInterleaveMask(unsigned VF, unsigned NumVecs)
Create an interleave shuffle mask.
RecurKind
These are the kinds of recurrences that we support.
@ UMin
Unsigned integer min implemented in terms of select(cmp()).
@ Mul
Product of integers.
@ SMax
Signed integer max implemented in terms of select(cmp()).
@ SMin
Signed integer min implemented in terms of select(cmp()).
@ Sub
Subtraction of integers.
@ UMax
Unsigned integer max implemented in terms of select(cmp()).
LLVM_ABI bool isVectorIntrinsicWithScalarOpAtArg(Intrinsic::ID ID, unsigned ScalarOpdIdx, const TargetTransformInfo *TTI)
Identifies if the vector form of the intrinsic has a scalar operand.
LLVM_ABI Value * getRecurrenceIdentity(RecurKind K, Type *Tp, FastMathFlags FMF)
Given information about an recurrence kind, return the identity for the @llvm.vector....
DWARFExpression::Operation Op
constexpr bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
Value * createStepForVF(IRBuilderBase &B, Type *Ty, ElementCount VF, int64_t Step)
Return a value for Step multiplied by VF.
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
bool is_contained(R &&Range, const E &Element)
Returns true if Element is found in Range.
Type * getLoadStoreType(const Value *I)
A helper function that returns the type of a load or store instruction.
LLVM_ABI Value * createOrderedReduction(IRBuilderBase &B, RecurKind RdxKind, Value *Src, Value *Start)
Create an ordered reduction intrinsic using the given recurrence kind RdxKind.
auto seq(T Begin, T End)
Iterate over an integral type from Begin up to - but not including - End.
Type * toVectorTy(Type *Scalar, ElementCount EC)
A helper function for converting Scalar types to vector types.
LLVM_ABI Value * createAnyOfReduction(IRBuilderBase &B, Value *Src, Value *InitVal, PHINode *OrigPhi)
Create a reduction of the given vector Src for a reduction of kind RecurKind::AnyOf.
LLVM_ABI bool isVectorIntrinsicWithOverloadTypeAtArg(Intrinsic::ID ID, int OpdIdx, const TargetTransformInfo *TTI)
Identifies if the vector form of the intrinsic is overloaded on the type of the operand at index OpdI...
This struct is a compact representation of a valid (non-zero power of two) alignment.
Struct to hold various analysis needed for cost computations.
void execute(VPTransformState &State) override
Generate the phi nodes.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this first-order recurrence phi recipe.
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
An overlay for VPIRInstructions wrapping PHI nodes enabling convenient use cast/dyn_cast/isa and exec...
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void execute(VPTransformState &State) override
The method which generates the output IR instructions that correspond to this VPRecipe,...
void execute(VPTransformState &State) override
Generate the instruction.
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
A pure-virtual common base class for recipes defining a single VPValue and using IR flags.
InstructionCost getCostForRecipeWithOpcode(unsigned Opcode, ElementCount VF, VPCostContext &Ctx) const
Compute the cost for this recipe for VF, using Opcode and Ctx.
VPRecipeWithIRFlags(const unsigned char SC, ArrayRef< VPValue * > Operands, const VPIRFlags &Flags, DebugLoc DL=DebugLoc::getUnknown())
LLVM_ABI_FOR_TEST void execute(VPTransformState &State) override
Generate the wide load or gather.
LLVM_ABI_FOR_TEST void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
LLVM_ABI_FOR_TEST InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPWidenLoadEVLRecipe.
VPValue * getEVL() const
Return the EVL operand.
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void execute(VPTransformState &State) override
Generate a wide load or gather.
VPValue * getCond() const
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPWidenSelectRecipe.
void execute(VPTransformState &State) override
Produce a widened version of the select instruction.
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
VPValue * getStoredValue() const
Return the address accessed by this recipe.
LLVM_ABI_FOR_TEST void execute(VPTransformState &State) override
Generate the wide store or scatter.
LLVM_ABI_FOR_TEST void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
LLVM_ABI_FOR_TEST InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPWidenStoreEVLRecipe.
VPValue * getEVL() const
Return the EVL operand.
void execute(VPTransformState &State) override
Generate a wide store or scatter.
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
VPValue * getStoredValue() const
Return the value stored by this recipe.