LLVM 22.0.0git
VPlanRecipes.cpp
Go to the documentation of this file.
1//===- VPlanRecipes.cpp - Implementations for VPlan recipes ---------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8///
9/// \file
10/// This file contains implementations for different VPlan recipes.
11///
12//===----------------------------------------------------------------------===//
13
15#include "VPlan.h"
16#include "VPlanAnalysis.h"
17#include "VPlanHelpers.h"
18#include "VPlanPatternMatch.h"
19#include "VPlanUtils.h"
20#include "llvm/ADT/STLExtras.h"
22#include "llvm/ADT/Twine.h"
26#include "llvm/IR/BasicBlock.h"
27#include "llvm/IR/IRBuilder.h"
28#include "llvm/IR/Instruction.h"
30#include "llvm/IR/Intrinsics.h"
31#include "llvm/IR/Type.h"
32#include "llvm/IR/Value.h"
35#include "llvm/Support/Debug.h"
39#include <cassert>
40
41using namespace llvm;
42using namespace llvm::VPlanPatternMatch;
43
45
46#define LV_NAME "loop-vectorize"
47#define DEBUG_TYPE LV_NAME
48
50 switch (getVPDefID()) {
51 case VPExpressionSC:
52 return cast<VPExpressionRecipe>(this)->mayReadOrWriteMemory();
53 case VPInstructionSC: {
54 auto *VPI = cast<VPInstruction>(this);
55 // Loads read from memory but don't write to memory.
56 if (VPI->getOpcode() == Instruction::Load)
57 return false;
58 return VPI->opcodeMayReadOrWriteFromMemory();
59 }
60 case VPInterleaveEVLSC:
61 case VPInterleaveSC:
62 return cast<VPInterleaveBase>(this)->getNumStoreOperands() > 0;
63 case VPWidenStoreEVLSC:
64 case VPWidenStoreSC:
65 return true;
66 case VPReplicateSC:
67 return cast<Instruction>(getVPSingleValue()->getUnderlyingValue())
68 ->mayWriteToMemory();
69 case VPWidenCallSC:
70 return !cast<VPWidenCallRecipe>(this)
71 ->getCalledScalarFunction()
72 ->onlyReadsMemory();
73 case VPWidenIntrinsicSC:
74 return cast<VPWidenIntrinsicRecipe>(this)->mayWriteToMemory();
75 case VPCanonicalIVPHISC:
76 case VPBranchOnMaskSC:
77 case VPDerivedIVSC:
78 case VPFirstOrderRecurrencePHISC:
79 case VPReductionPHISC:
80 case VPScalarIVStepsSC:
81 case VPPredInstPHISC:
82 return false;
83 case VPBlendSC:
84 case VPReductionEVLSC:
85 case VPReductionSC:
86 case VPVectorPointerSC:
87 case VPWidenCanonicalIVSC:
88 case VPWidenCastSC:
89 case VPWidenGEPSC:
90 case VPWidenIntOrFpInductionSC:
91 case VPWidenLoadEVLSC:
92 case VPWidenLoadSC:
93 case VPWidenPHISC:
94 case VPWidenPointerInductionSC:
95 case VPWidenSC:
96 case VPWidenSelectSC: {
97 const Instruction *I =
98 dyn_cast_or_null<Instruction>(getVPSingleValue()->getUnderlyingValue());
99 (void)I;
100 assert((!I || !I->mayWriteToMemory()) &&
101 "underlying instruction may write to memory");
102 return false;
103 }
104 default:
105 return true;
106 }
107}
108
110 switch (getVPDefID()) {
111 case VPExpressionSC:
112 return cast<VPExpressionRecipe>(this)->mayReadOrWriteMemory();
113 case VPInstructionSC:
114 return cast<VPInstruction>(this)->opcodeMayReadOrWriteFromMemory();
115 case VPWidenLoadEVLSC:
116 case VPWidenLoadSC:
117 return true;
118 case VPReplicateSC:
119 return cast<Instruction>(getVPSingleValue()->getUnderlyingValue())
120 ->mayReadFromMemory();
121 case VPWidenCallSC:
122 return !cast<VPWidenCallRecipe>(this)
123 ->getCalledScalarFunction()
124 ->onlyWritesMemory();
125 case VPWidenIntrinsicSC:
126 return cast<VPWidenIntrinsicRecipe>(this)->mayReadFromMemory();
127 case VPBranchOnMaskSC:
128 case VPDerivedIVSC:
129 case VPFirstOrderRecurrencePHISC:
130 case VPPredInstPHISC:
131 case VPScalarIVStepsSC:
132 case VPWidenStoreEVLSC:
133 case VPWidenStoreSC:
134 return false;
135 case VPBlendSC:
136 case VPReductionEVLSC:
137 case VPReductionSC:
138 case VPVectorPointerSC:
139 case VPWidenCanonicalIVSC:
140 case VPWidenCastSC:
141 case VPWidenGEPSC:
142 case VPWidenIntOrFpInductionSC:
143 case VPWidenPHISC:
144 case VPWidenPointerInductionSC:
145 case VPWidenSC:
146 case VPWidenSelectSC: {
147 const Instruction *I =
148 dyn_cast_or_null<Instruction>(getVPSingleValue()->getUnderlyingValue());
149 (void)I;
150 assert((!I || !I->mayReadFromMemory()) &&
151 "underlying instruction may read from memory");
152 return false;
153 }
154 default:
155 // FIXME: Return false if the recipe represents an interleaved store.
156 return true;
157 }
158}
159
161 switch (getVPDefID()) {
162 case VPExpressionSC:
163 return cast<VPExpressionRecipe>(this)->mayHaveSideEffects();
164 case VPDerivedIVSC:
165 case VPFirstOrderRecurrencePHISC:
166 case VPPredInstPHISC:
167 case VPVectorEndPointerSC:
168 return false;
169 case VPInstructionSC: {
170 auto *VPI = cast<VPInstruction>(this);
171 return mayWriteToMemory() ||
172 VPI->getOpcode() == VPInstruction::BranchOnCount ||
173 VPI->getOpcode() == VPInstruction::BranchOnCond;
174 }
175 case VPWidenCallSC: {
176 Function *Fn = cast<VPWidenCallRecipe>(this)->getCalledScalarFunction();
177 return mayWriteToMemory() || !Fn->doesNotThrow() || !Fn->willReturn();
178 }
179 case VPWidenIntrinsicSC:
180 return cast<VPWidenIntrinsicRecipe>(this)->mayHaveSideEffects();
181 case VPBlendSC:
182 case VPReductionEVLSC:
183 case VPReductionSC:
184 case VPScalarIVStepsSC:
185 case VPVectorPointerSC:
186 case VPWidenCanonicalIVSC:
187 case VPWidenCastSC:
188 case VPWidenGEPSC:
189 case VPWidenIntOrFpInductionSC:
190 case VPWidenPHISC:
191 case VPWidenPointerInductionSC:
192 case VPWidenSC:
193 case VPWidenSelectSC: {
194 const Instruction *I =
195 dyn_cast_or_null<Instruction>(getVPSingleValue()->getUnderlyingValue());
196 (void)I;
197 assert((!I || !I->mayHaveSideEffects()) &&
198 "underlying instruction has side-effects");
199 return false;
200 }
201 case VPInterleaveEVLSC:
202 case VPInterleaveSC:
203 return mayWriteToMemory();
204 case VPWidenLoadEVLSC:
205 case VPWidenLoadSC:
206 case VPWidenStoreEVLSC:
207 case VPWidenStoreSC:
208 assert(
209 cast<VPWidenMemoryRecipe>(this)->getIngredient().mayHaveSideEffects() ==
211 "mayHaveSideffects result for ingredient differs from this "
212 "implementation");
213 return mayWriteToMemory();
214 case VPReplicateSC: {
215 auto *R = cast<VPReplicateRecipe>(this);
216 return R->getUnderlyingInstr()->mayHaveSideEffects();
217 }
218 default:
219 return true;
220 }
221}
222
224 assert(!Parent && "Recipe already in some VPBasicBlock");
225 assert(InsertPos->getParent() &&
226 "Insertion position not in any VPBasicBlock");
227 InsertPos->getParent()->insert(this, InsertPos->getIterator());
228}
229
230void VPRecipeBase::insertBefore(VPBasicBlock &BB,
232 assert(!Parent && "Recipe already in some VPBasicBlock");
233 assert(I == BB.end() || I->getParent() == &BB);
234 BB.insert(this, I);
235}
236
238 assert(!Parent && "Recipe already in some VPBasicBlock");
239 assert(InsertPos->getParent() &&
240 "Insertion position not in any VPBasicBlock");
241 InsertPos->getParent()->insert(this, std::next(InsertPos->getIterator()));
242}
243
245 assert(getParent() && "Recipe not in any VPBasicBlock");
247 Parent = nullptr;
248}
249
251 assert(getParent() && "Recipe not in any VPBasicBlock");
253}
254
257 insertAfter(InsertPos);
258}
259
265
267 // Get the underlying instruction for the recipe, if there is one. It is used
268 // to
269 // * decide if cost computation should be skipped for this recipe,
270 // * apply forced target instruction cost.
271 Instruction *UI = nullptr;
272 if (auto *S = dyn_cast<VPSingleDefRecipe>(this))
273 UI = dyn_cast_or_null<Instruction>(S->getUnderlyingValue());
274 else if (auto *IG = dyn_cast<VPInterleaveBase>(this))
275 UI = IG->getInsertPos();
276 else if (auto *WidenMem = dyn_cast<VPWidenMemoryRecipe>(this))
277 UI = &WidenMem->getIngredient();
278
279 InstructionCost RecipeCost;
280 if (UI && Ctx.skipCostComputation(UI, VF.isVector())) {
281 RecipeCost = 0;
282 } else {
283 RecipeCost = computeCost(VF, Ctx);
284 if (ForceTargetInstructionCost.getNumOccurrences() > 0 &&
285 RecipeCost.isValid()) {
286 if (UI)
288 else
289 RecipeCost = InstructionCost(0);
290 }
291 }
292
293 LLVM_DEBUG({
294 dbgs() << "Cost of " << RecipeCost << " for VF " << VF << ": ";
295 dump();
296 });
297 return RecipeCost;
298}
299
301 VPCostContext &Ctx) const {
302 llvm_unreachable("subclasses should implement computeCost");
303}
304
306 return (getVPDefID() >= VPFirstPHISC && getVPDefID() <= VPLastPHISC) ||
308}
309
311 auto *VPI = dyn_cast<VPInstruction>(this);
312 return VPI && Instruction::isCast(VPI->getOpcode());
313}
314
316 assert(OpType == Other.OpType && "OpType must match");
317 switch (OpType) {
318 case OperationType::OverflowingBinOp:
319 WrapFlags.HasNUW &= Other.WrapFlags.HasNUW;
320 WrapFlags.HasNSW &= Other.WrapFlags.HasNSW;
321 break;
322 case OperationType::Trunc:
323 TruncFlags.HasNUW &= Other.TruncFlags.HasNUW;
324 TruncFlags.HasNSW &= Other.TruncFlags.HasNSW;
325 break;
326 case OperationType::DisjointOp:
327 DisjointFlags.IsDisjoint &= Other.DisjointFlags.IsDisjoint;
328 break;
329 case OperationType::PossiblyExactOp:
330 ExactFlags.IsExact &= Other.ExactFlags.IsExact;
331 break;
332 case OperationType::GEPOp:
333 GEPFlags &= Other.GEPFlags;
334 break;
335 case OperationType::FPMathOp:
336 case OperationType::FCmp:
337 assert((OpType != OperationType::FCmp ||
338 FCmpFlags.Pred == Other.FCmpFlags.Pred) &&
339 "Cannot drop CmpPredicate");
340 getFMFsRef().NoNaNs &= Other.getFMFsRef().NoNaNs;
341 getFMFsRef().NoInfs &= Other.getFMFsRef().NoInfs;
342 break;
343 case OperationType::NonNegOp:
344 NonNegFlags.NonNeg &= Other.NonNegFlags.NonNeg;
345 break;
346 case OperationType::Cmp:
347 assert(CmpPredicate == Other.CmpPredicate && "Cannot drop CmpPredicate");
348 break;
349 case OperationType::Other:
350 assert(AllFlags == Other.AllFlags && "Cannot drop other flags");
351 break;
352 }
353}
354
356 assert((OpType == OperationType::FPMathOp || OpType == OperationType::FCmp) &&
357 "recipe doesn't have fast math flags");
358 const FastMathFlagsTy &F = getFMFsRef();
359 FastMathFlags Res;
360 Res.setAllowReassoc(F.AllowReassoc);
361 Res.setNoNaNs(F.NoNaNs);
362 Res.setNoInfs(F.NoInfs);
363 Res.setNoSignedZeros(F.NoSignedZeros);
364 Res.setAllowReciprocal(F.AllowReciprocal);
365 Res.setAllowContract(F.AllowContract);
366 Res.setApproxFunc(F.ApproxFunc);
367 return Res;
368}
369
370#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
372
373void VPRecipeBase::print(raw_ostream &O, const Twine &Indent,
374 VPSlotTracker &SlotTracker) const {
375 printRecipe(O, Indent, SlotTracker);
376 if (auto DL = getDebugLoc()) {
377 O << ", !dbg ";
378 DL.print(O);
379 }
380
381 if (auto *Metadata = dyn_cast<VPIRMetadata>(this))
383}
384#endif
385
386template <unsigned PartOpIdx>
387VPValue *
389 if (U.getNumOperands() == PartOpIdx + 1)
390 return U.getOperand(PartOpIdx);
391 return nullptr;
392}
393
394template <unsigned PartOpIdx>
396 if (auto *UnrollPartOp = getUnrollPartOperand(U))
397 return cast<ConstantInt>(UnrollPartOp->getLiveInIRValue())->getZExtValue();
398 return 0;
399}
400
401namespace llvm {
402template class VPUnrollPartAccessor<1>;
403template class VPUnrollPartAccessor<2>;
404template class VPUnrollPartAccessor<3>;
405}
406
408 const VPIRFlags &Flags, const VPIRMetadata &MD,
409 DebugLoc DL, const Twine &Name)
410 : VPRecipeWithIRFlags(VPDef::VPInstructionSC, Operands, Flags, DL),
411 VPIRMetadata(MD), Opcode(Opcode), Name(Name.str()) {
413 "Set flags not supported for the provided opcode");
414 assert((getNumOperandsForOpcode(Opcode) == -1u ||
415 getNumOperandsForOpcode(Opcode) == getNumOperands()) &&
416 "number of operands does not match opcode");
417}
418
419#ifndef NDEBUG
420unsigned VPInstruction::getNumOperandsForOpcode(unsigned Opcode) {
421 if (Instruction::isUnaryOp(Opcode) || Instruction::isCast(Opcode))
422 return 1;
423
424 if (Instruction::isBinaryOp(Opcode))
425 return 2;
426
427 switch (Opcode) {
430 return 0;
431 case Instruction::Alloca:
432 case Instruction::ExtractValue:
433 case Instruction::Freeze:
434 case Instruction::Load:
448 return 1;
449 case Instruction::ICmp:
450 case Instruction::FCmp:
451 case Instruction::ExtractElement:
452 case Instruction::Store:
461 return 2;
462 case Instruction::Select:
466 return 3;
468 return 4;
469 case Instruction::Call:
470 case Instruction::GetElementPtr:
471 case Instruction::PHI:
472 case Instruction::Switch:
478 // Cannot determine the number of operands from the opcode.
479 return -1u;
480 }
481 llvm_unreachable("all cases should be handled above");
482}
483#endif
484
488
489bool VPInstruction::canGenerateScalarForFirstLane() const {
491 return true;
493 return true;
494 switch (Opcode) {
495 case Instruction::Freeze:
496 case Instruction::ICmp:
497 case Instruction::PHI:
498 case Instruction::Select:
507 return true;
508 default:
509 return false;
510 }
511}
512
513Value *VPInstruction::generate(VPTransformState &State) {
514 IRBuilderBase &Builder = State.Builder;
515
517 bool OnlyFirstLaneUsed = vputils::onlyFirstLaneUsed(this);
518 Value *A = State.get(getOperand(0), OnlyFirstLaneUsed);
519 Value *B = State.get(getOperand(1), OnlyFirstLaneUsed);
520 auto *Res =
521 Builder.CreateBinOp((Instruction::BinaryOps)getOpcode(), A, B, Name);
522 if (auto *I = dyn_cast<Instruction>(Res))
523 applyFlags(*I);
524 return Res;
525 }
526
527 switch (getOpcode()) {
528 case VPInstruction::Not: {
529 bool OnlyFirstLaneUsed = vputils::onlyFirstLaneUsed(this);
530 Value *A = State.get(getOperand(0), OnlyFirstLaneUsed);
531 return Builder.CreateNot(A, Name);
532 }
533 case Instruction::ExtractElement: {
534 assert(State.VF.isVector() && "Only extract elements from vectors");
535 if (getOperand(1)->isLiveIn()) {
536 unsigned IdxToExtract =
537 cast<ConstantInt>(getOperand(1)->getLiveInIRValue())->getZExtValue();
538 return State.get(getOperand(0), VPLane(IdxToExtract));
539 }
540 Value *Vec = State.get(getOperand(0));
541 Value *Idx = State.get(getOperand(1), /*IsScalar=*/true);
542 return Builder.CreateExtractElement(Vec, Idx, Name);
543 }
544 case Instruction::Freeze: {
546 return Builder.CreateFreeze(Op, Name);
547 }
548 case Instruction::FCmp:
549 case Instruction::ICmp: {
550 bool OnlyFirstLaneUsed = vputils::onlyFirstLaneUsed(this);
551 Value *A = State.get(getOperand(0), OnlyFirstLaneUsed);
552 Value *B = State.get(getOperand(1), OnlyFirstLaneUsed);
553 return Builder.CreateCmp(getPredicate(), A, B, Name);
554 }
555 case Instruction::PHI: {
556 llvm_unreachable("should be handled by VPPhi::execute");
557 }
558 case Instruction::Select: {
559 bool OnlyFirstLaneUsed = vputils::onlyFirstLaneUsed(this);
560 Value *Cond =
561 State.get(getOperand(0),
562 OnlyFirstLaneUsed || vputils::isSingleScalar(getOperand(0)));
563 Value *Op1 = State.get(getOperand(1), OnlyFirstLaneUsed);
564 Value *Op2 = State.get(getOperand(2), OnlyFirstLaneUsed);
565 return Builder.CreateSelect(Cond, Op1, Op2, Name);
566 }
568 // Get first lane of vector induction variable.
569 Value *VIVElem0 = State.get(getOperand(0), VPLane(0));
570 // Get the original loop tripcount.
571 Value *ScalarTC = State.get(getOperand(1), VPLane(0));
572
573 // If this part of the active lane mask is scalar, generate the CMP directly
574 // to avoid unnecessary extracts.
575 if (State.VF.isScalar())
576 return Builder.CreateCmp(CmpInst::Predicate::ICMP_ULT, VIVElem0, ScalarTC,
577 Name);
578
579 ElementCount EC = State.VF.multiplyCoefficientBy(
580 cast<ConstantInt>(getOperand(2)->getLiveInIRValue())->getZExtValue());
581 auto *PredTy = VectorType::get(Builder.getInt1Ty(), EC);
582 return Builder.CreateIntrinsic(Intrinsic::get_active_lane_mask,
583 {PredTy, ScalarTC->getType()},
584 {VIVElem0, ScalarTC}, nullptr, Name);
585 }
587 // Generate code to combine the previous and current values in vector v3.
588 //
589 // vector.ph:
590 // v_init = vector(..., ..., ..., a[-1])
591 // br vector.body
592 //
593 // vector.body
594 // i = phi [0, vector.ph], [i+4, vector.body]
595 // v1 = phi [v_init, vector.ph], [v2, vector.body]
596 // v2 = a[i, i+1, i+2, i+3];
597 // v3 = vector(v1(3), v2(0, 1, 2))
598
599 auto *V1 = State.get(getOperand(0));
600 if (!V1->getType()->isVectorTy())
601 return V1;
602 Value *V2 = State.get(getOperand(1));
603 return Builder.CreateVectorSplice(V1, V2, -1, Name);
604 }
606 unsigned UF = getParent()->getPlan()->getUF();
607 Value *ScalarTC = State.get(getOperand(0), VPLane(0));
608 Value *Step = createStepForVF(Builder, ScalarTC->getType(), State.VF, UF);
609 Value *Sub = Builder.CreateSub(ScalarTC, Step);
610 Value *Cmp = Builder.CreateICmp(CmpInst::Predicate::ICMP_UGT, ScalarTC, Step);
612 return Builder.CreateSelect(Cmp, Sub, Zero);
613 }
615 // TODO: Restructure this code with an explicit remainder loop, vsetvli can
616 // be outside of the main loop.
617 Value *AVL = State.get(getOperand(0), /*IsScalar*/ true);
618 // Compute EVL
619 assert(AVL->getType()->isIntegerTy() &&
620 "Requested vector length should be an integer.");
621
622 assert(State.VF.isScalable() && "Expected scalable vector factor.");
623 Value *VFArg = Builder.getInt32(State.VF.getKnownMinValue());
624
625 Value *EVL = Builder.CreateIntrinsic(
626 Builder.getInt32Ty(), Intrinsic::experimental_get_vector_length,
627 {AVL, VFArg, Builder.getTrue()});
628 return EVL;
629 }
631 unsigned Part = getUnrollPart(*this);
632 auto *IV = State.get(getOperand(0), VPLane(0));
633 assert(Part != 0 && "Must have a positive part");
634 // The canonical IV is incremented by the vectorization factor (num of
635 // SIMD elements) times the unroll part.
636 Value *Step = createStepForVF(Builder, IV->getType(), State.VF, Part);
637 return Builder.CreateAdd(IV, Step, Name, hasNoUnsignedWrap(),
639 }
641 Value *Cond = State.get(getOperand(0), VPLane(0));
642 // Replace the temporary unreachable terminator with a new conditional
643 // branch, hooking it up to backward destination for latch blocks now, and
644 // to forward destination(s) later when they are created.
645 // Second successor may be backwards - iff it is already in VPBB2IRBB.
646 VPBasicBlock *SecondVPSucc =
647 cast<VPBasicBlock>(getParent()->getSuccessors()[1]);
648 BasicBlock *SecondIRSucc = State.CFG.VPBB2IRBB.lookup(SecondVPSucc);
649 BasicBlock *IRBB = State.CFG.VPBB2IRBB[getParent()];
650 auto *Br = Builder.CreateCondBr(Cond, IRBB, SecondIRSucc);
651 // First successor is always forward, reset it to nullptr.
652 Br->setSuccessor(0, nullptr);
654 applyMetadata(*Br);
655 return Br;
656 }
658 return Builder.CreateVectorSplat(
659 State.VF, State.get(getOperand(0), /*IsScalar*/ true), "broadcast");
660 }
662 // For struct types, we need to build a new 'wide' struct type, where each
663 // element is widened, i.e., we create a struct of vectors.
664 auto *StructTy =
666 Value *Res = PoisonValue::get(toVectorizedTy(StructTy, State.VF));
667 for (const auto &[LaneIndex, Op] : enumerate(operands())) {
668 for (unsigned FieldIndex = 0; FieldIndex != StructTy->getNumElements();
669 FieldIndex++) {
670 Value *ScalarValue =
671 Builder.CreateExtractValue(State.get(Op, true), FieldIndex);
672 Value *VectorValue = Builder.CreateExtractValue(Res, FieldIndex);
673 VectorValue =
674 Builder.CreateInsertElement(VectorValue, ScalarValue, LaneIndex);
675 Res = Builder.CreateInsertValue(Res, VectorValue, FieldIndex);
676 }
677 }
678 return Res;
679 }
681 auto *ScalarTy = State.TypeAnalysis.inferScalarType(getOperand(0));
682 auto NumOfElements = ElementCount::getFixed(getNumOperands());
683 Value *Res = PoisonValue::get(toVectorizedTy(ScalarTy, NumOfElements));
684 for (const auto &[Idx, Op] : enumerate(operands()))
685 Res = Builder.CreateInsertElement(Res, State.get(Op, true),
686 Builder.getInt32(Idx));
687 return Res;
688 }
690 if (State.VF.isScalar())
691 return State.get(getOperand(0), true);
692 IRBuilderBase::FastMathFlagGuard FMFG(Builder);
694 // If this start vector is scaled then it should produce a vector with fewer
695 // elements than the VF.
696 ElementCount VF = State.VF.divideCoefficientBy(
697 cast<ConstantInt>(getOperand(2)->getLiveInIRValue())->getZExtValue());
698 auto *Iden = Builder.CreateVectorSplat(VF, State.get(getOperand(1), true));
699 return Builder.CreateInsertElement(Iden, State.get(getOperand(0), true),
700 Builder.getInt32(0));
701 }
703 // FIXME: The cross-recipe dependency on VPReductionPHIRecipe is temporary
704 // and will be removed by breaking up the recipe further.
705 auto *PhiR = cast<VPReductionPHIRecipe>(getOperand(0));
706 auto *OrigPhi = cast<PHINode>(PhiR->getUnderlyingValue());
707 Value *ReducedPartRdx = State.get(getOperand(2));
708 for (unsigned Idx = 3; Idx < getNumOperands(); ++Idx)
709 ReducedPartRdx =
710 Builder.CreateBinOp(Instruction::Or, State.get(getOperand(Idx)),
711 ReducedPartRdx, "bin.rdx");
712 return createAnyOfReduction(Builder, ReducedPartRdx,
713 State.get(getOperand(1), VPLane(0)), OrigPhi);
714 }
716 // FIXME: The cross-recipe dependency on VPReductionPHIRecipe is temporary
717 // and will be removed by breaking up the recipe further.
718 auto *PhiR = cast<VPReductionPHIRecipe>(getOperand(0));
719 // Get its reduction variable descriptor.
720 RecurKind RK = PhiR->getRecurrenceKind();
722 "Unexpected reduction kind");
723 assert(!PhiR->isInLoop() &&
724 "In-loop FindLastIV reduction is not supported yet");
725
726 // The recipe's operands are the reduction phi, the start value, the
727 // sentinel value, followed by one operand for each part of the reduction.
728 unsigned UF = getNumOperands() - 3;
729 Value *ReducedPartRdx = State.get(getOperand(3));
730 RecurKind MinMaxKind;
733 MinMaxKind = IsSigned ? RecurKind::SMax : RecurKind::UMax;
734 else
735 MinMaxKind = IsSigned ? RecurKind::SMin : RecurKind::UMin;
736 for (unsigned Part = 1; Part < UF; ++Part)
737 ReducedPartRdx = createMinMaxOp(Builder, MinMaxKind, ReducedPartRdx,
738 State.get(getOperand(3 + Part)));
739
740 Value *Start = State.get(getOperand(1), true);
742 return createFindLastIVReduction(Builder, ReducedPartRdx, RK, Start,
743 Sentinel);
744 }
746 // FIXME: The cross-recipe dependency on VPReductionPHIRecipe is temporary
747 // and will be removed by breaking up the recipe further.
748 auto *PhiR = cast<VPReductionPHIRecipe>(getOperand(0));
749 // Get its reduction variable descriptor.
750
751 RecurKind RK = PhiR->getRecurrenceKind();
753 "should be handled by ComputeFindIVResult");
754
755 // The recipe's operands are the reduction phi, followed by one operand for
756 // each part of the reduction.
757 unsigned UF = getNumOperands() - 1;
758 VectorParts RdxParts(UF);
759 for (unsigned Part = 0; Part < UF; ++Part)
760 RdxParts[Part] = State.get(getOperand(1 + Part), PhiR->isInLoop());
761
762 IRBuilderBase::FastMathFlagGuard FMFG(Builder);
763 if (hasFastMathFlags())
765
766 // Reduce all of the unrolled parts into a single vector.
767 Value *ReducedPartRdx = RdxParts[0];
768 if (PhiR->isOrdered()) {
769 ReducedPartRdx = RdxParts[UF - 1];
770 } else {
771 // Floating-point operations should have some FMF to enable the reduction.
772 for (unsigned Part = 1; Part < UF; ++Part) {
773 Value *RdxPart = RdxParts[Part];
775 ReducedPartRdx = createMinMaxOp(Builder, RK, ReducedPartRdx, RdxPart);
776 else {
777 // For sub-recurrences, each UF's reduction variable is already
778 // negative, we need to do: reduce.add(-acc_uf0 + -acc_uf1)
780 RK == RecurKind::Sub
781 ? Instruction::Add
783 ReducedPartRdx =
784 Builder.CreateBinOp(Opcode, RdxPart, ReducedPartRdx, "bin.rdx");
785 }
786 }
787 }
788
789 // Create the reduction after the loop. Note that inloop reductions create
790 // the target reduction in the loop using a Reduction recipe.
791 if (State.VF.isVector() && !PhiR->isInLoop()) {
792 // TODO: Support in-order reductions based on the recurrence descriptor.
793 // All ops in the reduction inherit fast-math-flags from the recurrence
794 // descriptor.
795 ReducedPartRdx = createSimpleReduction(Builder, ReducedPartRdx, RK);
796 }
797
798 return ReducedPartRdx;
799 }
802 unsigned Offset =
804 Value *Res;
805 if (State.VF.isVector()) {
806 assert(Offset <= State.VF.getKnownMinValue() &&
807 "invalid offset to extract from");
808 // Extract lane VF - Offset from the operand.
809 Res = State.get(getOperand(0), VPLane::getLaneFromEnd(State.VF, Offset));
810 } else {
811 // TODO: Remove ExtractLastLane for scalar VFs.
812 assert(Offset <= 1 && "invalid offset to extract from");
813 Res = State.get(getOperand(0));
814 }
816 Res->setName(Name);
817 return Res;
818 }
820 Value *A = State.get(getOperand(0));
821 Value *B = State.get(getOperand(1));
822 return Builder.CreateLogicalAnd(A, B, Name);
823 }
826 "can only generate first lane for PtrAdd");
827 Value *Ptr = State.get(getOperand(0), VPLane(0));
828 Value *Addend = State.get(getOperand(1), VPLane(0));
829 return Builder.CreatePtrAdd(Ptr, Addend, Name, getGEPNoWrapFlags());
830 }
832 Value *Ptr =
834 Value *Addend = State.get(getOperand(1));
835 return Builder.CreatePtrAdd(Ptr, Addend, Name, getGEPNoWrapFlags());
836 }
838 Value *Res = Builder.CreateFreeze(State.get(getOperand(0)));
839 for (VPValue *Op : drop_begin(operands()))
840 Res = Builder.CreateOr(Res, Builder.CreateFreeze(State.get(Op)));
841 return State.VF.isScalar() ? Res : Builder.CreateOrReduce(Res);
842 }
844 Value *LaneToExtract = State.get(getOperand(0), true);
845 Type *IdxTy = State.TypeAnalysis.inferScalarType(getOperand(0));
846 Value *Res = nullptr;
847 Value *RuntimeVF = getRuntimeVF(Builder, IdxTy, State.VF);
848
849 for (unsigned Idx = 1; Idx != getNumOperands(); ++Idx) {
850 Value *VectorStart =
851 Builder.CreateMul(RuntimeVF, ConstantInt::get(IdxTy, Idx - 1));
852 Value *VectorIdx = Idx == 1
853 ? LaneToExtract
854 : Builder.CreateSub(LaneToExtract, VectorStart);
855 Value *Ext = State.VF.isScalar()
856 ? State.get(getOperand(Idx))
857 : Builder.CreateExtractElement(
858 State.get(getOperand(Idx)), VectorIdx);
859 if (Res) {
860 Value *Cmp = Builder.CreateICmpUGE(LaneToExtract, VectorStart);
861 Res = Builder.CreateSelect(Cmp, Ext, Res);
862 } else {
863 Res = Ext;
864 }
865 }
866 return Res;
867 }
869 if (getNumOperands() == 1) {
870 Value *Mask = State.get(getOperand(0));
871 return Builder.CreateCountTrailingZeroElems(Builder.getInt64Ty(), Mask,
872 /*ZeroIsPoison=*/false, Name);
873 }
874 // If there are multiple operands, create a chain of selects to pick the
875 // first operand with an active lane and add the number of lanes of the
876 // preceding operands.
877 Value *RuntimeVF = getRuntimeVF(Builder, Builder.getInt64Ty(), State.VF);
878 unsigned LastOpIdx = getNumOperands() - 1;
879 Value *Res = nullptr;
880 for (int Idx = LastOpIdx; Idx >= 0; --Idx) {
881 Value *TrailingZeros =
882 State.VF.isScalar()
883 ? Builder.CreateZExt(
884 Builder.CreateICmpEQ(State.get(getOperand(Idx)),
885 Builder.getFalse()),
886 Builder.getInt64Ty())
888 Builder.getInt64Ty(), State.get(getOperand(Idx)),
889 /*ZeroIsPoison=*/false, Name);
890 Value *Current = Builder.CreateAdd(
891 Builder.CreateMul(RuntimeVF, Builder.getInt64(Idx)), TrailingZeros);
892 if (Res) {
893 Value *Cmp = Builder.CreateICmpNE(TrailingZeros, RuntimeVF);
894 Res = Builder.CreateSelect(Cmp, Current, Res);
895 } else {
896 Res = Current;
897 }
898 }
899
900 return Res;
901 }
903 return State.get(getOperand(0), true);
904 default:
905 llvm_unreachable("Unsupported opcode for instruction");
906 }
907}
908
910 unsigned Opcode, ElementCount VF, VPCostContext &Ctx) const {
911 Type *ScalarTy = Ctx.Types.inferScalarType(this);
912 Type *ResultTy = VF.isVector() ? toVectorTy(ScalarTy, VF) : ScalarTy;
913 switch (Opcode) {
914 case Instruction::FNeg:
915 return Ctx.TTI.getArithmeticInstrCost(Opcode, ResultTy, Ctx.CostKind);
916 case Instruction::UDiv:
917 case Instruction::SDiv:
918 case Instruction::SRem:
919 case Instruction::URem:
920 case Instruction::Add:
921 case Instruction::FAdd:
922 case Instruction::Sub:
923 case Instruction::FSub:
924 case Instruction::Mul:
925 case Instruction::FMul:
926 case Instruction::FDiv:
927 case Instruction::FRem:
928 case Instruction::Shl:
929 case Instruction::LShr:
930 case Instruction::AShr:
931 case Instruction::And:
932 case Instruction::Or:
933 case Instruction::Xor: {
936
937 if (VF.isVector()) {
938 // Certain instructions can be cheaper to vectorize if they have a
939 // constant second vector operand. One example of this are shifts on x86.
940 VPValue *RHS = getOperand(1);
941 RHSInfo = Ctx.getOperandInfo(RHS);
942
943 if (RHSInfo.Kind == TargetTransformInfo::OK_AnyValue &&
946 }
947
950 if (CtxI)
951 Operands.append(CtxI->value_op_begin(), CtxI->value_op_end());
952 return Ctx.TTI.getArithmeticInstrCost(
953 Opcode, ResultTy, Ctx.CostKind,
954 {TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None},
955 RHSInfo, Operands, CtxI, &Ctx.TLI);
956 }
957 case Instruction::Freeze:
958 // This opcode is unknown. Assume that it is the same as 'mul'.
959 return Ctx.TTI.getArithmeticInstrCost(Instruction::Mul, ResultTy,
960 Ctx.CostKind);
961 case Instruction::ExtractValue:
962 return Ctx.TTI.getInsertExtractValueCost(Instruction::ExtractValue,
963 Ctx.CostKind);
964 case Instruction::ICmp:
965 case Instruction::FCmp: {
966 Type *ScalarOpTy = Ctx.Types.inferScalarType(getOperand(0));
967 Type *OpTy = VF.isVector() ? toVectorTy(ScalarOpTy, VF) : ScalarOpTy;
969 return Ctx.TTI.getCmpSelInstrCost(
970 Opcode, OpTy, CmpInst::makeCmpResultType(OpTy), getPredicate(),
971 Ctx.CostKind, {TTI::OK_AnyValue, TTI::OP_None},
972 {TTI::OK_AnyValue, TTI::OP_None}, CtxI);
973 }
975 llvm_unreachable("called for unsupported opcode");
976}
979 VPCostContext &Ctx) const {
981 if (!getUnderlyingValue() && getOpcode() != Instruction::FMul) {
982 // TODO: Compute cost for VPInstructions without underlying values once
983 // the legacy cost model has been retired.
984 return 0;
985 }
986
988 "Should only generate a vector value or single scalar, not scalars "
989 "for all lanes.");
991 getOpcode(),
993 }
994
995 switch (getOpcode()) {
996 case Instruction::Select: {
998 match(getOperand(0), m_Cmp(Pred, m_VPValue(), m_VPValue()));
999 auto *CondTy = Ctx.Types.inferScalarType(getOperand(0));
1000 auto *VecTy = Ctx.Types.inferScalarType(getOperand(1));
1001 if (!vputils::onlyFirstLaneUsed(this)) {
1002 CondTy = toVectorTy(CondTy, VF);
1003 VecTy = toVectorTy(VecTy, VF);
1004 }
1005 return Ctx.TTI.getCmpSelInstrCost(Instruction::Select, VecTy, CondTy, Pred,
1006 Ctx.CostKind);
1007 }
1008 case Instruction::ExtractElement:
1010 if (VF.isScalar()) {
1011 // ExtractLane with VF=1 takes care of handling extracting across multiple
1012 // parts.
1013 return 0;
1014 }
1015
1016 // Add on the cost of extracting the element.
1017 auto *VecTy = toVectorTy(Ctx.Types.inferScalarType(getOperand(0)), VF);
1018 return Ctx.TTI.getVectorInstrCost(Instruction::ExtractElement, VecTy,
1019 Ctx.CostKind);
1020 }
1021 case VPInstruction::AnyOf: {
1022 auto *VecTy = toVectorTy(Ctx.Types.inferScalarType(this), VF);
1023 return Ctx.TTI.getArithmeticReductionCost(
1024 Instruction::Or, cast<VectorType>(VecTy), std::nullopt, Ctx.CostKind);
1025 }
1027 Type *ScalarTy = Ctx.Types.inferScalarType(getOperand(0));
1028 if (VF.isScalar())
1029 return Ctx.TTI.getCmpSelInstrCost(Instruction::ICmp, ScalarTy,
1031 CmpInst::ICMP_EQ, Ctx.CostKind);
1032 // Calculate the cost of determining the lane index.
1033 auto *PredTy = toVectorTy(ScalarTy, VF);
1034 IntrinsicCostAttributes Attrs(Intrinsic::experimental_cttz_elts,
1035 Type::getInt64Ty(Ctx.LLVMCtx),
1036 {PredTy, Type::getInt1Ty(Ctx.LLVMCtx)});
1037 return Ctx.TTI.getIntrinsicInstrCost(Attrs, Ctx.CostKind);
1038 }
1040 Type *ScalarTy = Ctx.Types.inferScalarType(getOperand(0));
1041 if (VF.isScalar())
1042 return Ctx.TTI.getCmpSelInstrCost(Instruction::ICmp, ScalarTy,
1044 CmpInst::ICMP_EQ, Ctx.CostKind);
1045 // Calculate the cost of determining the lane index: NOT + cttz_elts + SUB.
1046 auto *PredTy = toVectorTy(ScalarTy, VF);
1047 IntrinsicCostAttributes Attrs(Intrinsic::experimental_cttz_elts,
1048 Type::getInt64Ty(Ctx.LLVMCtx),
1049 {PredTy, Type::getInt1Ty(Ctx.LLVMCtx)});
1050 InstructionCost Cost = Ctx.TTI.getIntrinsicInstrCost(Attrs, Ctx.CostKind);
1051 // Add cost of NOT operation on the predicate.
1052 Cost += Ctx.TTI.getArithmeticInstrCost(
1053 Instruction::Xor, PredTy, Ctx.CostKind,
1054 {TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None},
1055 {TargetTransformInfo::OK_UniformConstantValue,
1056 TargetTransformInfo::OP_None});
1057 // Add cost of SUB operation on the index.
1058 Cost += Ctx.TTI.getArithmeticInstrCost(
1059 Instruction::Sub, Type::getInt64Ty(Ctx.LLVMCtx), Ctx.CostKind);
1060 return Cost;
1061 }
1063 assert(VF.isVector() && "Scalar FirstOrderRecurrenceSplice?");
1065 std::iota(Mask.begin(), Mask.end(), VF.getKnownMinValue() - 1);
1066 Type *VectorTy = toVectorTy(Ctx.Types.inferScalarType(this), VF);
1067
1068 return Ctx.TTI.getShuffleCost(TargetTransformInfo::SK_Splice,
1069 cast<VectorType>(VectorTy),
1070 cast<VectorType>(VectorTy), Mask,
1071 Ctx.CostKind, VF.getKnownMinValue() - 1);
1072 }
1074 Type *ArgTy = Ctx.Types.inferScalarType(getOperand(0));
1075 unsigned Multiplier =
1076 cast<ConstantInt>(getOperand(2)->getLiveInIRValue())->getZExtValue();
1077 Type *RetTy = toVectorTy(Type::getInt1Ty(Ctx.LLVMCtx), VF * Multiplier);
1078 IntrinsicCostAttributes Attrs(Intrinsic::get_active_lane_mask, RetTy,
1079 {ArgTy, ArgTy});
1080 return Ctx.TTI.getIntrinsicInstrCost(Attrs, Ctx.CostKind);
1081 }
1083 Type *Arg0Ty = Ctx.Types.inferScalarType(getOperand(0));
1084 Type *I32Ty = Type::getInt32Ty(Ctx.LLVMCtx);
1085 Type *I1Ty = Type::getInt1Ty(Ctx.LLVMCtx);
1086 IntrinsicCostAttributes Attrs(Intrinsic::experimental_get_vector_length,
1087 I32Ty, {Arg0Ty, I32Ty, I1Ty});
1088 return Ctx.TTI.getIntrinsicInstrCost(Attrs, Ctx.CostKind);
1089 }
1091 // Add on the cost of extracting the element.
1092 auto *VecTy = toVectorTy(Ctx.Types.inferScalarType(getOperand(0)), VF);
1093 return Ctx.TTI.getIndexedVectorInstrCostFromEnd(Instruction::ExtractElement,
1094 VecTy, Ctx.CostKind, 0);
1095 }
1097 if (VF == ElementCount::getScalable(1))
1099 [[fallthrough]];
1100 default:
1101 // TODO: Compute cost other VPInstructions once the legacy cost model has
1102 // been retired.
1104 "unexpected VPInstruction witht underlying value");
1105 return 0;
1106 }
1107}
1108
1121
1123 switch (getOpcode()) {
1124 case Instruction::PHI:
1128 return true;
1129 default:
1130 return isScalarCast();
1131 }
1132}
1133
1135 assert(!State.Lane && "VPInstruction executing an Lane");
1136 IRBuilderBase::FastMathFlagGuard FMFGuard(State.Builder);
1138 "Set flags not supported for the provided opcode");
1139 if (hasFastMathFlags())
1140 State.Builder.setFastMathFlags(getFastMathFlags());
1141 Value *GeneratedValue = generate(State);
1142 if (!hasResult())
1143 return;
1144 assert(GeneratedValue && "generate must produce a value");
1145 bool GeneratesPerFirstLaneOnly = canGenerateScalarForFirstLane() &&
1148 assert((((GeneratedValue->getType()->isVectorTy() ||
1149 GeneratedValue->getType()->isStructTy()) ==
1150 !GeneratesPerFirstLaneOnly) ||
1151 State.VF.isScalar()) &&
1152 "scalar value but not only first lane defined");
1153 State.set(this, GeneratedValue,
1154 /*IsScalar*/ GeneratesPerFirstLaneOnly);
1155}
1156
1159 return false;
1160 switch (getOpcode()) {
1161 case Instruction::GetElementPtr:
1162 case Instruction::ExtractElement:
1163 case Instruction::Freeze:
1164 case Instruction::FCmp:
1165 case Instruction::ICmp:
1166 case Instruction::Select:
1167 case Instruction::PHI:
1186 case VPInstruction::Not:
1194 return false;
1195 default:
1196 return true;
1197 }
1198}
1199
1201 assert(is_contained(operands(), Op) && "Op must be an operand of the recipe");
1203 return vputils::onlyFirstLaneUsed(this);
1204
1205 switch (getOpcode()) {
1206 default:
1207 return false;
1208 case Instruction::ExtractElement:
1209 return Op == getOperand(1);
1210 case Instruction::PHI:
1211 return true;
1212 case Instruction::FCmp:
1213 case Instruction::ICmp:
1214 case Instruction::Select:
1215 case Instruction::Or:
1216 case Instruction::Freeze:
1217 case VPInstruction::Not:
1218 // TODO: Cover additional opcodes.
1219 return vputils::onlyFirstLaneUsed(this);
1228 return true;
1231 // Before replicating by VF, Build(Struct)Vector uses all lanes of the
1232 // operand, after replicating its operands only the first lane is used.
1233 // Before replicating, it will have only a single operand.
1234 return getNumOperands() > 1;
1236 return Op == getOperand(0) || vputils::onlyFirstLaneUsed(this);
1238 // WidePtrAdd supports scalar and vector base addresses.
1239 return false;
1242 return Op == getOperand(1);
1244 return Op == getOperand(0);
1245 };
1246 llvm_unreachable("switch should return");
1247}
1248
1250 assert(is_contained(operands(), Op) && "Op must be an operand of the recipe");
1252 return vputils::onlyFirstPartUsed(this);
1253
1254 switch (getOpcode()) {
1255 default:
1256 return false;
1257 case Instruction::FCmp:
1258 case Instruction::ICmp:
1259 case Instruction::Select:
1260 return vputils::onlyFirstPartUsed(this);
1264 return true;
1265 };
1266 llvm_unreachable("switch should return");
1267}
1268
1269#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1271 VPSlotTracker SlotTracker(getParent()->getPlan());
1273}
1274
1276 VPSlotTracker &SlotTracker) const {
1277 O << Indent << "EMIT" << (isSingleScalar() ? "-SCALAR" : "") << " ";
1278
1279 if (hasResult()) {
1281 O << " = ";
1282 }
1283
1284 switch (getOpcode()) {
1285 case VPInstruction::Not:
1286 O << "not";
1287 break;
1289 O << "combined load";
1290 break;
1292 O << "combined store";
1293 break;
1295 O << "active lane mask";
1296 break;
1298 O << "EXPLICIT-VECTOR-LENGTH";
1299 break;
1301 O << "first-order splice";
1302 break;
1304 O << "branch-on-cond";
1305 break;
1307 O << "TC > VF ? TC - VF : 0";
1308 break;
1310 O << "VF * Part +";
1311 break;
1313 O << "branch-on-count";
1314 break;
1316 O << "broadcast";
1317 break;
1319 O << "buildstructvector";
1320 break;
1322 O << "buildvector";
1323 break;
1325 O << "extract-lane";
1326 break;
1328 O << "extract-last-lane";
1329 break;
1331 O << "extract-last-part";
1332 break;
1334 O << "extract-penultimate-element";
1335 break;
1337 O << "compute-anyof-result";
1338 break;
1340 O << "compute-find-iv-result";
1341 break;
1343 O << "compute-reduction-result";
1344 break;
1346 O << "logical-and";
1347 break;
1349 O << "ptradd";
1350 break;
1352 O << "wide-ptradd";
1353 break;
1355 O << "any-of";
1356 break;
1358 O << "first-active-lane";
1359 break;
1361 O << "last-active-lane";
1362 break;
1364 O << "reduction-start-vector";
1365 break;
1367 O << "resume-for-epilogue";
1368 break;
1370 O << "unpack";
1371 break;
1372 default:
1374 }
1375
1376 printFlags(O);
1378}
1379#endif
1380
1382 State.setDebugLocFrom(getDebugLoc());
1383 if (isScalarCast()) {
1384 Value *Op = State.get(getOperand(0), VPLane(0));
1385 Value *Cast = State.Builder.CreateCast(Instruction::CastOps(getOpcode()),
1386 Op, ResultTy);
1387 State.set(this, Cast, VPLane(0));
1388 return;
1389 }
1390 switch (getOpcode()) {
1392 Value *StepVector =
1393 State.Builder.CreateStepVector(VectorType::get(ResultTy, State.VF));
1394 State.set(this, StepVector);
1395 break;
1396 }
1397 case VPInstruction::VScale: {
1398 Value *VScale = State.Builder.CreateVScale(ResultTy);
1399 State.set(this, VScale, true);
1400 break;
1401 }
1402
1403 default:
1404 llvm_unreachable("opcode not implemented yet");
1405 }
1406}
1407
1408#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1410 VPSlotTracker &SlotTracker) const {
1411 O << Indent << "EMIT" << (isSingleScalar() ? "-SCALAR" : "") << " ";
1413 O << " = ";
1414
1415 switch (getOpcode()) {
1417 O << "wide-iv-step ";
1419 break;
1421 O << "step-vector " << *ResultTy;
1422 break;
1424 O << "vscale " << *ResultTy;
1425 break;
1426 default:
1427 assert(Instruction::isCast(getOpcode()) && "unhandled opcode");
1430 O << " to " << *ResultTy;
1431 }
1432}
1433#endif
1434
1436 State.setDebugLocFrom(getDebugLoc());
1437 PHINode *NewPhi = State.Builder.CreatePHI(
1438 State.TypeAnalysis.inferScalarType(this), 2, getName());
1439 unsigned NumIncoming = getNumIncoming();
1440 if (getParent() != getParent()->getPlan()->getScalarPreheader()) {
1441 // TODO: Fixup all incoming values of header phis once recipes defining them
1442 // are introduced.
1443 NumIncoming = 1;
1444 }
1445 for (unsigned Idx = 0; Idx != NumIncoming; ++Idx) {
1446 Value *IncV = State.get(getIncomingValue(Idx), VPLane(0));
1447 BasicBlock *PredBB = State.CFG.VPBB2IRBB.at(getIncomingBlock(Idx));
1448 NewPhi->addIncoming(IncV, PredBB);
1449 }
1450 State.set(this, NewPhi, VPLane(0));
1451}
1452
1453#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1454void VPPhi::printRecipe(raw_ostream &O, const Twine &Indent,
1455 VPSlotTracker &SlotTracker) const {
1456 O << Indent << "EMIT" << (isSingleScalar() ? "-SCALAR" : "") << " ";
1458 O << " = phi ";
1460}
1461#endif
1462
1463VPIRInstruction *VPIRInstruction ::create(Instruction &I) {
1464 if (auto *Phi = dyn_cast<PHINode>(&I))
1465 return new VPIRPhi(*Phi);
1466 return new VPIRInstruction(I);
1467}
1468
1470 assert(!isa<VPIRPhi>(this) && getNumOperands() == 0 &&
1471 "PHINodes must be handled by VPIRPhi");
1472 // Advance the insert point after the wrapped IR instruction. This allows
1473 // interleaving VPIRInstructions and other recipes.
1474 State.Builder.SetInsertPoint(I.getParent(), std::next(I.getIterator()));
1475}
1476
1478 VPCostContext &Ctx) const {
1479 // The recipe wraps an existing IR instruction on the border of VPlan's scope,
1480 // hence it does not contribute to the cost-modeling for the VPlan.
1481 return 0;
1482}
1483
1485 VPBuilder &Builder) {
1487 "can only update exiting operands to phi nodes");
1488 assert(getNumOperands() > 0 && "must have at least one operand");
1489 VPValue *Exiting = getOperand(0);
1490 if (Exiting->isLiveIn())
1491 return;
1492
1493 Exiting = Builder.createNaryOp(VPInstruction::ExtractLastPart, Exiting);
1494 Exiting = Builder.createNaryOp(VPInstruction::ExtractLastLane, Exiting);
1495 setOperand(0, Exiting);
1496}
1497
1498#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1500 VPSlotTracker &SlotTracker) const {
1501 O << Indent << "IR " << I;
1502}
1503#endif
1504
1506 PHINode *Phi = &getIRPhi();
1507 for (const auto &[Idx, Op] : enumerate(operands())) {
1508 VPValue *ExitValue = Op;
1509 auto Lane = vputils::isSingleScalar(ExitValue)
1511 : VPLane::getLastLaneForVF(State.VF);
1512 VPBlockBase *Pred = getParent()->getPredecessors()[Idx];
1513 auto *PredVPBB = Pred->getExitingBasicBlock();
1514 BasicBlock *PredBB = State.CFG.VPBB2IRBB[PredVPBB];
1515 // Set insertion point in PredBB in case an extract needs to be generated.
1516 // TODO: Model extracts explicitly.
1517 State.Builder.SetInsertPoint(PredBB, PredBB->getFirstNonPHIIt());
1518 Value *V = State.get(ExitValue, VPLane(Lane));
1519 // If there is no existing block for PredBB in the phi, add a new incoming
1520 // value. Otherwise update the existing incoming value for PredBB.
1521 if (Phi->getBasicBlockIndex(PredBB) == -1)
1522 Phi->addIncoming(V, PredBB);
1523 else
1524 Phi->setIncomingValueForBlock(PredBB, V);
1525 }
1526
1527 // Advance the insert point after the wrapped IR instruction. This allows
1528 // interleaving VPIRInstructions and other recipes.
1529 State.Builder.SetInsertPoint(Phi->getParent(), std::next(Phi->getIterator()));
1530}
1531
1533 VPRecipeBase *R = const_cast<VPRecipeBase *>(getAsRecipe());
1534 assert(R->getNumOperands() == R->getParent()->getNumPredecessors() &&
1535 "Number of phi operands must match number of predecessors");
1536 unsigned Position = R->getParent()->getIndexForPredecessor(IncomingBlock);
1537 R->removeOperand(Position);
1538}
1539
1540#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1542 VPSlotTracker &SlotTracker) const {
1543 interleaveComma(enumerate(getAsRecipe()->operands()), O,
1544 [this, &O, &SlotTracker](auto Op) {
1545 O << "[ ";
1546 Op.value()->printAsOperand(O, SlotTracker);
1547 O << ", ";
1548 getIncomingBlock(Op.index())->printAsOperand(O);
1549 O << " ]";
1550 });
1551}
1552#endif
1553
1554#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1556 VPSlotTracker &SlotTracker) const {
1558
1559 if (getNumOperands() != 0) {
1560 O << " (extra operand" << (getNumOperands() > 1 ? "s" : "") << ": ";
1562 [&O, &SlotTracker](auto Op) {
1563 std::get<0>(Op)->printAsOperand(O, SlotTracker);
1564 O << " from ";
1565 std::get<1>(Op)->printAsOperand(O);
1566 });
1567 O << ")";
1568 }
1569}
1570#endif
1571
1573 for (const auto &[Kind, Node] : Metadata)
1574 I.setMetadata(Kind, Node);
1575}
1576
1578 SmallVector<std::pair<unsigned, MDNode *>> MetadataIntersection;
1579 for (const auto &[KindA, MDA] : Metadata) {
1580 for (const auto &[KindB, MDB] : Other.Metadata) {
1581 if (KindA == KindB && MDA == MDB) {
1582 MetadataIntersection.emplace_back(KindA, MDA);
1583 break;
1584 }
1585 }
1586 }
1587 Metadata = std::move(MetadataIntersection);
1588}
1589
1590#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1592 const Module *M = SlotTracker.getModule();
1593 if (Metadata.empty() || !M)
1594 return;
1595
1596 ArrayRef<StringRef> MDNames = SlotTracker.getMDNames();
1597 O << " (";
1598 interleaveComma(Metadata, O, [&](const auto &KindNodePair) {
1599 auto [Kind, Node] = KindNodePair;
1600 assert(Kind < MDNames.size() && !MDNames[Kind].empty() &&
1601 "Unexpected unnamed metadata kind");
1602 O << "!" << MDNames[Kind] << " ";
1603 Node->printAsOperand(O, M);
1604 });
1605 O << ")";
1606}
1607#endif
1608
1610 assert(State.VF.isVector() && "not widening");
1611 assert(Variant != nullptr && "Can't create vector function.");
1612
1613 FunctionType *VFTy = Variant->getFunctionType();
1614 // Add return type if intrinsic is overloaded on it.
1616 for (const auto &I : enumerate(args())) {
1617 Value *Arg;
1618 // Some vectorized function variants may also take a scalar argument,
1619 // e.g. linear parameters for pointers. This needs to be the scalar value
1620 // from the start of the respective part when interleaving.
1621 if (!VFTy->getParamType(I.index())->isVectorTy())
1622 Arg = State.get(I.value(), VPLane(0));
1623 else
1624 Arg = State.get(I.value(), usesFirstLaneOnly(I.value()));
1625 Args.push_back(Arg);
1626 }
1627
1630 if (CI)
1631 CI->getOperandBundlesAsDefs(OpBundles);
1632
1633 CallInst *V = State.Builder.CreateCall(Variant, Args, OpBundles);
1634 applyFlags(*V);
1635 applyMetadata(*V);
1636 V->setCallingConv(Variant->getCallingConv());
1637
1638 if (!V->getType()->isVoidTy())
1639 State.set(this, V);
1640}
1641
1643 VPCostContext &Ctx) const {
1644 return Ctx.TTI.getCallInstrCost(nullptr, Variant->getReturnType(),
1645 Variant->getFunctionType()->params(),
1646 Ctx.CostKind);
1647}
1648
1649#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1651 VPSlotTracker &SlotTracker) const {
1652 O << Indent << "WIDEN-CALL ";
1653
1654 Function *CalledFn = getCalledScalarFunction();
1655 if (CalledFn->getReturnType()->isVoidTy())
1656 O << "void ";
1657 else {
1659 O << " = ";
1660 }
1661
1662 O << "call";
1663 printFlags(O);
1664 O << " @" << CalledFn->getName() << "(";
1665 interleaveComma(args(), O, [&O, &SlotTracker](VPValue *Op) {
1666 Op->printAsOperand(O, SlotTracker);
1667 });
1668 O << ")";
1669
1670 O << " (using library function";
1671 if (Variant->hasName())
1672 O << ": " << Variant->getName();
1673 O << ")";
1674}
1675#endif
1676
1678 assert(State.VF.isVector() && "not widening");
1679
1680 SmallVector<Type *, 2> TysForDecl;
1681 // Add return type if intrinsic is overloaded on it.
1682 if (isVectorIntrinsicWithOverloadTypeAtArg(VectorIntrinsicID, -1, State.TTI))
1683 TysForDecl.push_back(VectorType::get(getResultType(), State.VF));
1685 for (const auto &I : enumerate(operands())) {
1686 // Some intrinsics have a scalar argument - don't replace it with a
1687 // vector.
1688 Value *Arg;
1689 if (isVectorIntrinsicWithScalarOpAtArg(VectorIntrinsicID, I.index(),
1690 State.TTI))
1691 Arg = State.get(I.value(), VPLane(0));
1692 else
1693 Arg = State.get(I.value(), usesFirstLaneOnly(I.value()));
1694 if (isVectorIntrinsicWithOverloadTypeAtArg(VectorIntrinsicID, I.index(),
1695 State.TTI))
1696 TysForDecl.push_back(Arg->getType());
1697 Args.push_back(Arg);
1698 }
1699
1700 // Use vector version of the intrinsic.
1701 Module *M = State.Builder.GetInsertBlock()->getModule();
1702 Function *VectorF =
1703 Intrinsic::getOrInsertDeclaration(M, VectorIntrinsicID, TysForDecl);
1704 assert(VectorF &&
1705 "Can't retrieve vector intrinsic or vector-predication intrinsics.");
1706
1709 if (CI)
1710 CI->getOperandBundlesAsDefs(OpBundles);
1711
1712 CallInst *V = State.Builder.CreateCall(VectorF, Args, OpBundles);
1713
1714 applyFlags(*V);
1715 applyMetadata(*V);
1716
1717 if (!V->getType()->isVoidTy())
1718 State.set(this, V);
1719}
1720
1721/// Compute the cost for the intrinsic \p ID with \p Operands, produced by \p R.
1724 const VPRecipeWithIRFlags &R,
1725 ElementCount VF,
1726 VPCostContext &Ctx) {
1727 // Some backends analyze intrinsic arguments to determine cost. Use the
1728 // underlying value for the operand if it has one. Otherwise try to use the
1729 // operand of the underlying call instruction, if there is one. Otherwise
1730 // clear Arguments.
1731 // TODO: Rework TTI interface to be independent of concrete IR values.
1733 for (const auto &[Idx, Op] : enumerate(Operands)) {
1734 auto *V = Op->getUnderlyingValue();
1735 if (!V) {
1736 if (auto *UI = dyn_cast_or_null<CallBase>(R.getUnderlyingValue())) {
1737 Arguments.push_back(UI->getArgOperand(Idx));
1738 continue;
1739 }
1740 Arguments.clear();
1741 break;
1742 }
1743 Arguments.push_back(V);
1744 }
1745
1746 Type *ScalarRetTy = Ctx.Types.inferScalarType(&R);
1747 Type *RetTy = VF.isVector() ? toVectorizedTy(ScalarRetTy, VF) : ScalarRetTy;
1748 SmallVector<Type *> ParamTys;
1749 for (const VPValue *Op : Operands) {
1750 ParamTys.push_back(VF.isVector()
1751 ? toVectorTy(Ctx.Types.inferScalarType(Op), VF)
1752 : Ctx.Types.inferScalarType(Op));
1753 }
1754
1755 // TODO: Rework TTI interface to avoid reliance on underlying IntrinsicInst.
1756 FastMathFlags FMF =
1757 R.hasFastMathFlags() ? R.getFastMathFlags() : FastMathFlags();
1758 IntrinsicCostAttributes CostAttrs(
1759 ID, RetTy, Arguments, ParamTys, FMF,
1760 dyn_cast_or_null<IntrinsicInst>(R.getUnderlyingValue()),
1761 InstructionCost::getInvalid(), &Ctx.TLI);
1762 return Ctx.TTI.getIntrinsicInstrCost(CostAttrs, Ctx.CostKind);
1763}
1764
1766 VPCostContext &Ctx) const {
1768 return getCostForIntrinsics(VectorIntrinsicID, ArgOps, *this, VF, Ctx);
1769}
1770
1772 return Intrinsic::getBaseName(VectorIntrinsicID);
1773}
1774
1776 assert(is_contained(operands(), Op) && "Op must be an operand of the recipe");
1777 return all_of(enumerate(operands()), [this, &Op](const auto &X) {
1778 auto [Idx, V] = X;
1780 Idx, nullptr);
1781 });
1782}
1783
1784#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1786 VPSlotTracker &SlotTracker) const {
1787 O << Indent << "WIDEN-INTRINSIC ";
1788 if (ResultTy->isVoidTy()) {
1789 O << "void ";
1790 } else {
1792 O << " = ";
1793 }
1794
1795 O << "call";
1796 printFlags(O);
1797 O << getIntrinsicName() << "(";
1798
1800 Op->printAsOperand(O, SlotTracker);
1801 });
1802 O << ")";
1803}
1804#endif
1805
1807 IRBuilderBase &Builder = State.Builder;
1808
1809 Value *Address = State.get(getOperand(0));
1810 Value *IncAmt = State.get(getOperand(1), /*IsScalar=*/true);
1811 VectorType *VTy = cast<VectorType>(Address->getType());
1812
1813 // The histogram intrinsic requires a mask even if the recipe doesn't;
1814 // if the mask operand was omitted then all lanes should be executed and
1815 // we just need to synthesize an all-true mask.
1816 Value *Mask = nullptr;
1817 if (VPValue *VPMask = getMask())
1818 Mask = State.get(VPMask);
1819 else
1820 Mask =
1821 Builder.CreateVectorSplat(VTy->getElementCount(), Builder.getInt1(1));
1822
1823 // If this is a subtract, we want to invert the increment amount. We may
1824 // add a separate intrinsic in future, but for now we'll try this.
1825 if (Opcode == Instruction::Sub)
1826 IncAmt = Builder.CreateNeg(IncAmt);
1827 else
1828 assert(Opcode == Instruction::Add && "only add or sub supported for now");
1829
1830 State.Builder.CreateIntrinsic(Intrinsic::experimental_vector_histogram_add,
1831 {VTy, IncAmt->getType()},
1832 {Address, IncAmt, Mask});
1833}
1834
1836 VPCostContext &Ctx) const {
1837 // FIXME: Take the gather and scatter into account as well. For now we're
1838 // generating the same cost as the fallback path, but we'll likely
1839 // need to create a new TTI method for determining the cost, including
1840 // whether we can use base + vec-of-smaller-indices or just
1841 // vec-of-pointers.
1842 assert(VF.isVector() && "Invalid VF for histogram cost");
1843 Type *AddressTy = Ctx.Types.inferScalarType(getOperand(0));
1844 VPValue *IncAmt = getOperand(1);
1845 Type *IncTy = Ctx.Types.inferScalarType(IncAmt);
1846 VectorType *VTy = VectorType::get(IncTy, VF);
1847
1848 // Assume that a non-constant update value (or a constant != 1) requires
1849 // a multiply, and add that into the cost.
1850 InstructionCost MulCost =
1851 Ctx.TTI.getArithmeticInstrCost(Instruction::Mul, VTy, Ctx.CostKind);
1852 if (IncAmt->isLiveIn()) {
1854
1855 if (CI && CI->getZExtValue() == 1)
1856 MulCost = TTI::TCC_Free;
1857 }
1858
1859 // Find the cost of the histogram operation itself.
1860 Type *PtrTy = VectorType::get(AddressTy, VF);
1861 Type *MaskTy = VectorType::get(Type::getInt1Ty(Ctx.LLVMCtx), VF);
1862 IntrinsicCostAttributes ICA(Intrinsic::experimental_vector_histogram_add,
1863 Type::getVoidTy(Ctx.LLVMCtx),
1864 {PtrTy, IncTy, MaskTy});
1865
1866 // Add the costs together with the add/sub operation.
1867 return Ctx.TTI.getIntrinsicInstrCost(ICA, Ctx.CostKind) + MulCost +
1868 Ctx.TTI.getArithmeticInstrCost(Opcode, VTy, Ctx.CostKind);
1869}
1870
1871#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1873 VPSlotTracker &SlotTracker) const {
1874 O << Indent << "WIDEN-HISTOGRAM buckets: ";
1876
1877 if (Opcode == Instruction::Sub)
1878 O << ", dec: ";
1879 else {
1880 assert(Opcode == Instruction::Add);
1881 O << ", inc: ";
1882 }
1884
1885 if (VPValue *Mask = getMask()) {
1886 O << ", mask: ";
1887 Mask->printAsOperand(O, SlotTracker);
1888 }
1889}
1890
1892 VPSlotTracker &SlotTracker) const {
1893 O << Indent << "WIDEN-SELECT ";
1895 O << " = select";
1896 printFlags(O);
1898 O << ", ";
1900 O << ", ";
1902 O << (vputils::isSingleScalar(getCond()) ? " (condition is single-scalar)"
1903 : "");
1904}
1905#endif
1906
1908 Value *Cond = State.get(getCond(), vputils::isSingleScalar(getCond()));
1909
1910 Value *Op0 = State.get(getOperand(1));
1911 Value *Op1 = State.get(getOperand(2));
1912 Value *Sel = State.Builder.CreateSelect(Cond, Op0, Op1);
1913 State.set(this, Sel);
1914 if (auto *I = dyn_cast<Instruction>(Sel)) {
1916 applyFlags(*I);
1917 applyMetadata(*I);
1918 }
1919}
1920
1922 VPCostContext &Ctx) const {
1924 bool ScalarCond = getOperand(0)->isDefinedOutsideLoopRegions();
1925 Type *ScalarTy = Ctx.Types.inferScalarType(this);
1926 Type *VectorTy = toVectorTy(Ctx.Types.inferScalarType(this), VF);
1927
1928 VPValue *Op0, *Op1;
1929 if (!ScalarCond && ScalarTy->getScalarSizeInBits() == 1 &&
1930 (match(this, m_LogicalAnd(m_VPValue(Op0), m_VPValue(Op1))) ||
1931 match(this, m_LogicalOr(m_VPValue(Op0), m_VPValue(Op1))))) {
1932 // select x, y, false --> x & y
1933 // select x, true, y --> x | y
1934 const auto [Op1VK, Op1VP] = Ctx.getOperandInfo(Op0);
1935 const auto [Op2VK, Op2VP] = Ctx.getOperandInfo(Op1);
1936
1938 if (all_of(operands(),
1939 [](VPValue *Op) { return Op->getUnderlyingValue(); }))
1940 Operands.append(SI->op_begin(), SI->op_end());
1941 bool IsLogicalOr = match(this, m_LogicalOr(m_VPValue(Op0), m_VPValue(Op1)));
1942 return Ctx.TTI.getArithmeticInstrCost(
1943 IsLogicalOr ? Instruction::Or : Instruction::And, VectorTy,
1944 Ctx.CostKind, {Op1VK, Op1VP}, {Op2VK, Op2VP}, Operands, SI);
1945 }
1946
1947 Type *CondTy = Ctx.Types.inferScalarType(getOperand(0));
1948 if (!ScalarCond)
1949 CondTy = VectorType::get(CondTy, VF);
1950
1952 if (auto *Cmp = dyn_cast<CmpInst>(SI->getCondition()))
1953 Pred = Cmp->getPredicate();
1954 return Ctx.TTI.getCmpSelInstrCost(
1955 Instruction::Select, VectorTy, CondTy, Pred, Ctx.CostKind,
1956 {TTI::OK_AnyValue, TTI::OP_None}, {TTI::OK_AnyValue, TTI::OP_None}, SI);
1957}
1958
1959VPIRFlags::FastMathFlagsTy::FastMathFlagsTy(const FastMathFlags &FMF) {
1960 AllowReassoc = FMF.allowReassoc();
1961 NoNaNs = FMF.noNaNs();
1962 NoInfs = FMF.noInfs();
1963 NoSignedZeros = FMF.noSignedZeros();
1964 AllowReciprocal = FMF.allowReciprocal();
1965 AllowContract = FMF.allowContract();
1966 ApproxFunc = FMF.approxFunc();
1967}
1968
1969#if !defined(NDEBUG)
1970bool VPIRFlags::flagsValidForOpcode(unsigned Opcode) const {
1971 switch (OpType) {
1972 case OperationType::OverflowingBinOp:
1973 return Opcode == Instruction::Add || Opcode == Instruction::Sub ||
1974 Opcode == Instruction::Mul || Opcode == Instruction::Shl ||
1975 Opcode == VPInstruction::VPInstruction::CanonicalIVIncrementForPart;
1976 case OperationType::Trunc:
1977 return Opcode == Instruction::Trunc;
1978 case OperationType::DisjointOp:
1979 return Opcode == Instruction::Or;
1980 case OperationType::PossiblyExactOp:
1981 return Opcode == Instruction::AShr || Opcode == Instruction::LShr ||
1982 Opcode == Instruction::UDiv || Opcode == Instruction::SDiv;
1983 case OperationType::GEPOp:
1984 return Opcode == Instruction::GetElementPtr ||
1985 Opcode == VPInstruction::PtrAdd ||
1986 Opcode == VPInstruction::WidePtrAdd;
1987 case OperationType::FPMathOp:
1988 return Opcode == Instruction::Call || Opcode == Instruction::FAdd ||
1989 Opcode == Instruction::FMul || Opcode == Instruction::FSub ||
1990 Opcode == Instruction::FNeg || Opcode == Instruction::FDiv ||
1991 Opcode == Instruction::FRem || Opcode == Instruction::FPExt ||
1992 Opcode == Instruction::FPTrunc || Opcode == Instruction::Select ||
1993 Opcode == VPInstruction::WideIVStep ||
1996 case OperationType::FCmp:
1997 return Opcode == Instruction::FCmp;
1998 case OperationType::NonNegOp:
1999 return Opcode == Instruction::ZExt || Opcode == Instruction::UIToFP;
2000 case OperationType::Cmp:
2001 return Opcode == Instruction::FCmp || Opcode == Instruction::ICmp;
2002 case OperationType::Other:
2003 return true;
2004 }
2005 llvm_unreachable("Unknown OperationType enum");
2006}
2007#endif
2008
2009#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2011 switch (OpType) {
2012 case OperationType::Cmp:
2014 break;
2015 case OperationType::FCmp:
2018 break;
2019 case OperationType::DisjointOp:
2020 if (DisjointFlags.IsDisjoint)
2021 O << " disjoint";
2022 break;
2023 case OperationType::PossiblyExactOp:
2024 if (ExactFlags.IsExact)
2025 O << " exact";
2026 break;
2027 case OperationType::OverflowingBinOp:
2028 if (WrapFlags.HasNUW)
2029 O << " nuw";
2030 if (WrapFlags.HasNSW)
2031 O << " nsw";
2032 break;
2033 case OperationType::Trunc:
2034 if (TruncFlags.HasNUW)
2035 O << " nuw";
2036 if (TruncFlags.HasNSW)
2037 O << " nsw";
2038 break;
2039 case OperationType::FPMathOp:
2041 break;
2042 case OperationType::GEPOp:
2043 if (GEPFlags.isInBounds())
2044 O << " inbounds";
2045 else if (GEPFlags.hasNoUnsignedSignedWrap())
2046 O << " nusw";
2047 if (GEPFlags.hasNoUnsignedWrap())
2048 O << " nuw";
2049 break;
2050 case OperationType::NonNegOp:
2051 if (NonNegFlags.NonNeg)
2052 O << " nneg";
2053 break;
2054 case OperationType::Other:
2055 break;
2056 }
2057 O << " ";
2058}
2059#endif
2060
2062 auto &Builder = State.Builder;
2063 switch (Opcode) {
2064 case Instruction::Call:
2065 case Instruction::Br:
2066 case Instruction::PHI:
2067 case Instruction::GetElementPtr:
2068 case Instruction::Select:
2069 llvm_unreachable("This instruction is handled by a different recipe.");
2070 case Instruction::UDiv:
2071 case Instruction::SDiv:
2072 case Instruction::SRem:
2073 case Instruction::URem:
2074 case Instruction::Add:
2075 case Instruction::FAdd:
2076 case Instruction::Sub:
2077 case Instruction::FSub:
2078 case Instruction::FNeg:
2079 case Instruction::Mul:
2080 case Instruction::FMul:
2081 case Instruction::FDiv:
2082 case Instruction::FRem:
2083 case Instruction::Shl:
2084 case Instruction::LShr:
2085 case Instruction::AShr:
2086 case Instruction::And:
2087 case Instruction::Or:
2088 case Instruction::Xor: {
2089 // Just widen unops and binops.
2091 for (VPValue *VPOp : operands())
2092 Ops.push_back(State.get(VPOp));
2093
2094 Value *V = Builder.CreateNAryOp(Opcode, Ops);
2095
2096 if (auto *VecOp = dyn_cast<Instruction>(V)) {
2097 applyFlags(*VecOp);
2098 applyMetadata(*VecOp);
2099 }
2100
2101 // Use this vector value for all users of the original instruction.
2102 State.set(this, V);
2103 break;
2104 }
2105 case Instruction::ExtractValue: {
2106 assert(getNumOperands() == 2 && "expected single level extractvalue");
2107 Value *Op = State.get(getOperand(0));
2109 Value *Extract = Builder.CreateExtractValue(Op, CI->getZExtValue());
2110 State.set(this, Extract);
2111 break;
2112 }
2113 case Instruction::Freeze: {
2114 Value *Op = State.get(getOperand(0));
2115 Value *Freeze = Builder.CreateFreeze(Op);
2116 State.set(this, Freeze);
2117 break;
2118 }
2119 case Instruction::ICmp:
2120 case Instruction::FCmp: {
2121 // Widen compares. Generate vector compares.
2122 bool FCmp = Opcode == Instruction::FCmp;
2123 Value *A = State.get(getOperand(0));
2124 Value *B = State.get(getOperand(1));
2125 Value *C = nullptr;
2126 if (FCmp) {
2127 C = Builder.CreateFCmp(getPredicate(), A, B);
2128 } else {
2129 C = Builder.CreateICmp(getPredicate(), A, B);
2130 }
2131 if (auto *I = dyn_cast<Instruction>(C)) {
2132 applyFlags(*I);
2133 applyMetadata(*I);
2134 }
2135 State.set(this, C);
2136 break;
2137 }
2138 default:
2139 // This instruction is not vectorized by simple widening.
2140 LLVM_DEBUG(dbgs() << "LV: Found an unhandled opcode : "
2141 << Instruction::getOpcodeName(Opcode));
2142 llvm_unreachable("Unhandled instruction!");
2143 } // end of switch.
2144
2145#if !defined(NDEBUG)
2146 // Verify that VPlan type inference results agree with the type of the
2147 // generated values.
2148 assert(VectorType::get(State.TypeAnalysis.inferScalarType(this), State.VF) ==
2149 State.get(this)->getType() &&
2150 "inferred type and type from generated instructions do not match");
2151#endif
2152}
2153
2155 VPCostContext &Ctx) const {
2156 switch (Opcode) {
2157 case Instruction::UDiv:
2158 case Instruction::SDiv:
2159 case Instruction::SRem:
2160 case Instruction::URem:
2161 // If the div/rem operation isn't safe to speculate and requires
2162 // predication, then the only way we can even create a vplan is to insert
2163 // a select on the second input operand to ensure we use the value of 1
2164 // for the inactive lanes. The select will be costed separately.
2165 case Instruction::FNeg:
2166 case Instruction::Add:
2167 case Instruction::FAdd:
2168 case Instruction::Sub:
2169 case Instruction::FSub:
2170 case Instruction::Mul:
2171 case Instruction::FMul:
2172 case Instruction::FDiv:
2173 case Instruction::FRem:
2174 case Instruction::Shl:
2175 case Instruction::LShr:
2176 case Instruction::AShr:
2177 case Instruction::And:
2178 case Instruction::Or:
2179 case Instruction::Xor:
2180 case Instruction::Freeze:
2181 case Instruction::ExtractValue:
2182 case Instruction::ICmp:
2183 case Instruction::FCmp:
2184 return getCostForRecipeWithOpcode(getOpcode(), VF, Ctx);
2185 default:
2186 llvm_unreachable("Unsupported opcode for instruction");
2187 }
2188}
2189
2190#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2192 VPSlotTracker &SlotTracker) const {
2193 O << Indent << "WIDEN ";
2195 O << " = " << Instruction::getOpcodeName(Opcode);
2196 printFlags(O);
2198}
2199#endif
2200
2202 auto &Builder = State.Builder;
2203 /// Vectorize casts.
2204 assert(State.VF.isVector() && "Not vectorizing?");
2205 Type *DestTy = VectorType::get(getResultType(), State.VF);
2206 VPValue *Op = getOperand(0);
2207 Value *A = State.get(Op);
2208 Value *Cast = Builder.CreateCast(Instruction::CastOps(Opcode), A, DestTy);
2209 State.set(this, Cast);
2210 if (auto *CastOp = dyn_cast<Instruction>(Cast)) {
2211 applyFlags(*CastOp);
2212 applyMetadata(*CastOp);
2213 }
2214}
2215
2217 VPCostContext &Ctx) const {
2218 // TODO: In some cases, VPWidenCastRecipes are created but not considered in
2219 // the legacy cost model, including truncates/extends when evaluating a
2220 // reduction in a smaller type.
2221 if (!getUnderlyingValue())
2222 return 0;
2223 // Computes the CastContextHint from a recipes that may access memory.
2224 auto ComputeCCH = [&](const VPRecipeBase *R) -> TTI::CastContextHint {
2225 if (VF.isScalar())
2227 if (isa<VPInterleaveBase>(R))
2229 if (const auto *ReplicateRecipe = dyn_cast<VPReplicateRecipe>(R))
2230 return ReplicateRecipe->isPredicated() ? TTI::CastContextHint::Masked
2232 const auto *WidenMemoryRecipe = dyn_cast<VPWidenMemoryRecipe>(R);
2233 if (WidenMemoryRecipe == nullptr)
2235 if (!WidenMemoryRecipe->isConsecutive())
2237 if (WidenMemoryRecipe->isReverse())
2239 if (WidenMemoryRecipe->isMasked())
2242 };
2243
2244 VPValue *Operand = getOperand(0);
2246 // For Trunc/FPTrunc, get the context from the only user.
2247 if ((Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) &&
2249 if (auto *StoreRecipe = dyn_cast<VPRecipeBase>(*user_begin()))
2250 CCH = ComputeCCH(StoreRecipe);
2251 }
2252 // For Z/Sext, get the context from the operand.
2253 else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt ||
2254 Opcode == Instruction::FPExt) {
2255 if (Operand->isLiveIn())
2257 else if (Operand->getDefiningRecipe())
2258 CCH = ComputeCCH(Operand->getDefiningRecipe());
2259 }
2260
2261 auto *SrcTy =
2262 cast<VectorType>(toVectorTy(Ctx.Types.inferScalarType(Operand), VF));
2263 auto *DestTy = cast<VectorType>(toVectorTy(getResultType(), VF));
2264 // Arm TTI will use the underlying instruction to determine the cost.
2265 return Ctx.TTI.getCastInstrCost(
2266 Opcode, DestTy, SrcTy, CCH, Ctx.CostKind,
2268}
2269
2270#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2272 VPSlotTracker &SlotTracker) const {
2273 O << Indent << "WIDEN-CAST ";
2275 O << " = " << Instruction::getOpcodeName(Opcode);
2276 printFlags(O);
2278 O << " to " << *getResultType();
2279}
2280#endif
2281
2283 VPCostContext &Ctx) const {
2284 return Ctx.TTI.getCFInstrCost(Instruction::PHI, Ctx.CostKind);
2285}
2286
2287/// A helper function that returns an integer or floating-point constant with
2288/// value C.
2290 return Ty->isIntegerTy() ? ConstantInt::getSigned(Ty, C)
2291 : ConstantFP::get(Ty, C);
2292}
2293
2294#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2296 raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const {
2297 O << Indent;
2299 O << " = WIDEN-INDUCTION";
2300 printFlags(O);
2302
2303 if (auto *TI = getTruncInst())
2304 O << " (truncated to " << *TI->getType() << ")";
2305}
2306#endif
2307
2309 // The step may be defined by a recipe in the preheader (e.g. if it requires
2310 // SCEV expansion), but for the canonical induction the step is required to be
2311 // 1, which is represented as live-in.
2313 return false;
2316 return StartC && StartC->isZero() && StepC && StepC->isOne() &&
2317 getScalarType() == getRegion()->getCanonicalIVType();
2318}
2319
2320#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2322 VPSlotTracker &SlotTracker) const {
2323 O << Indent;
2325 O << " = DERIVED-IV ";
2326 getStartValue()->printAsOperand(O, SlotTracker);
2327 O << " + ";
2328 getOperand(1)->printAsOperand(O, SlotTracker);
2329 O << " * ";
2330 getStepValue()->printAsOperand(O, SlotTracker);
2331}
2332#endif
2333
2335 // Fast-math-flags propagate from the original induction instruction.
2336 IRBuilder<>::FastMathFlagGuard FMFG(State.Builder);
2337 if (hasFastMathFlags())
2338 State.Builder.setFastMathFlags(getFastMathFlags());
2339
2340 /// Compute scalar induction steps. \p ScalarIV is the scalar induction
2341 /// variable on which to base the steps, \p Step is the size of the step.
2342
2343 Value *BaseIV = State.get(getOperand(0), VPLane(0));
2344 Value *Step = State.get(getStepValue(), VPLane(0));
2345 IRBuilderBase &Builder = State.Builder;
2346
2347 // Ensure step has the same type as that of scalar IV.
2348 Type *BaseIVTy = BaseIV->getType()->getScalarType();
2349 assert(BaseIVTy == Step->getType() && "Types of BaseIV and Step must match!");
2350
2351 // We build scalar steps for both integer and floating-point induction
2352 // variables. Here, we determine the kind of arithmetic we will perform.
2355 if (BaseIVTy->isIntegerTy()) {
2356 AddOp = Instruction::Add;
2357 MulOp = Instruction::Mul;
2358 } else {
2359 AddOp = InductionOpcode;
2360 MulOp = Instruction::FMul;
2361 }
2362
2363 // Determine the number of scalars we need to generate for each unroll
2364 // iteration.
2365 bool FirstLaneOnly = vputils::onlyFirstLaneUsed(this);
2366 // Compute the scalar steps and save the results in State.
2367 Type *IntStepTy =
2368 IntegerType::get(BaseIVTy->getContext(), BaseIVTy->getScalarSizeInBits());
2369
2370 unsigned StartLane = 0;
2371 unsigned EndLane = FirstLaneOnly ? 1 : State.VF.getKnownMinValue();
2372 if (State.Lane) {
2373 StartLane = State.Lane->getKnownLane();
2374 EndLane = StartLane + 1;
2375 }
2376 Value *StartIdx0;
2377 if (getUnrollPart(*this) == 0)
2378 StartIdx0 = ConstantInt::get(IntStepTy, 0);
2379 else {
2380 StartIdx0 = State.get(getOperand(2), true);
2381 if (getUnrollPart(*this) != 1) {
2382 StartIdx0 =
2383 Builder.CreateMul(StartIdx0, ConstantInt::get(StartIdx0->getType(),
2384 getUnrollPart(*this)));
2385 }
2386 StartIdx0 = Builder.CreateSExtOrTrunc(StartIdx0, IntStepTy);
2387 }
2388
2389 if (BaseIVTy->isFloatingPointTy())
2390 StartIdx0 = Builder.CreateSIToFP(StartIdx0, BaseIVTy);
2391
2392 for (unsigned Lane = StartLane; Lane < EndLane; ++Lane) {
2393 Value *StartIdx = Builder.CreateBinOp(
2394 AddOp, StartIdx0, getSignedIntOrFpConstant(BaseIVTy, Lane));
2395 // The step returned by `createStepForVF` is a runtime-evaluated value
2396 // when VF is scalable. Otherwise, it should be folded into a Constant.
2397 assert((State.VF.isScalable() || isa<Constant>(StartIdx)) &&
2398 "Expected StartIdx to be folded to a constant when VF is not "
2399 "scalable");
2400 auto *Mul = Builder.CreateBinOp(MulOp, StartIdx, Step);
2401 auto *Add = Builder.CreateBinOp(AddOp, BaseIV, Mul);
2402 State.set(this, Add, VPLane(Lane));
2403 }
2404}
2405
2406#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2408 VPSlotTracker &SlotTracker) const {
2409 O << Indent;
2411 O << " = SCALAR-STEPS ";
2413}
2414#endif
2415
2417 assert(is_contained(operands(), Op) && "Op must be an operand of the recipe");
2419}
2420
2422 assert(State.VF.isVector() && "not widening");
2423 // Construct a vector GEP by widening the operands of the scalar GEP as
2424 // necessary. We mark the vector GEP 'inbounds' if appropriate. A GEP
2425 // results in a vector of pointers when at least one operand of the GEP
2426 // is vector-typed. Thus, to keep the representation compact, we only use
2427 // vector-typed operands for loop-varying values.
2428
2429 assert(
2430 any_of(operands(),
2431 [](VPValue *Op) { return !Op->isDefinedOutsideLoopRegions(); }) &&
2432 "Expected at least one loop-variant operand");
2433
2434 // If the GEP has at least one loop-varying operand, we are sure to
2435 // produce a vector of pointers unless VF is scalar.
2436 // The pointer operand of the new GEP. If it's loop-invariant, we
2437 // won't broadcast it.
2438 auto *Ptr = State.get(getOperand(0), isPointerLoopInvariant());
2439
2440 // Collect all the indices for the new GEP. If any index is
2441 // loop-invariant, we won't broadcast it.
2443 for (unsigned I = 1, E = getNumOperands(); I < E; I++) {
2444 VPValue *Operand = getOperand(I);
2445 Indices.push_back(State.get(Operand, isIndexLoopInvariant(I - 1)));
2446 }
2447
2448 // Create the new GEP. Note that this GEP may be a scalar if VF == 1,
2449 // but it should be a vector, otherwise.
2450 auto *NewGEP = State.Builder.CreateGEP(getSourceElementType(), Ptr, Indices,
2451 "", getGEPNoWrapFlags());
2452 assert((State.VF.isScalar() || NewGEP->getType()->isVectorTy()) &&
2453 "NewGEP is not a pointer vector");
2454 State.set(this, NewGEP);
2455}
2456
2457#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2459 VPSlotTracker &SlotTracker) const {
2460 O << Indent << "WIDEN-GEP ";
2461 O << (isPointerLoopInvariant() ? "Inv" : "Var");
2462 for (size_t I = 0; I < getNumOperands() - 1; ++I)
2463 O << "[" << (isIndexLoopInvariant(I) ? "Inv" : "Var") << "]";
2464
2465 O << " ";
2467 O << " = getelementptr";
2468 printFlags(O);
2470}
2471#endif
2472
2474 auto &Builder = State.Builder;
2475 unsigned CurrentPart = getUnrollPart(*this);
2476 const DataLayout &DL = Builder.GetInsertBlock()->getDataLayout();
2477 Type *IndexTy = DL.getIndexType(State.TypeAnalysis.inferScalarType(this));
2478
2479 // The wide store needs to start at the last vector element.
2480 Value *RunTimeVF = State.get(getVFValue(), VPLane(0));
2481 if (IndexTy != RunTimeVF->getType())
2482 RunTimeVF = Builder.CreateZExtOrTrunc(RunTimeVF, IndexTy);
2483 // NumElt = Stride * CurrentPart * RunTimeVF
2484 Value *NumElt = Builder.CreateMul(
2485 ConstantInt::get(IndexTy, Stride * (int64_t)CurrentPart), RunTimeVF);
2486 // LastLane = Stride * (RunTimeVF - 1)
2487 Value *LastLane = Builder.CreateSub(RunTimeVF, ConstantInt::get(IndexTy, 1));
2488 if (Stride != 1)
2489 LastLane =
2490 Builder.CreateMul(ConstantInt::getSigned(IndexTy, Stride), LastLane);
2491 Value *Ptr = State.get(getOperand(0), VPLane(0));
2492 Value *ResultPtr =
2493 Builder.CreateGEP(IndexedTy, Ptr, NumElt, "", getGEPNoWrapFlags());
2494 ResultPtr = Builder.CreateGEP(IndexedTy, ResultPtr, LastLane, "",
2496
2497 State.set(this, ResultPtr, /*IsScalar*/ true);
2498}
2499
2500#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2502 VPSlotTracker &SlotTracker) const {
2503 O << Indent;
2505 O << " = vector-end-pointer";
2506 printFlags(O);
2508}
2509#endif
2510
2512 auto &Builder = State.Builder;
2513 assert(getOffset() &&
2514 "Expected prior simplification of recipe without offset");
2515 Value *Ptr = State.get(getOperand(0), VPLane(0));
2516 Value *Offset = State.get(getOffset(), true);
2517 Value *ResultPtr = Builder.CreateGEP(getSourceElementType(), Ptr, Offset, "",
2519 State.set(this, ResultPtr, /*IsScalar*/ true);
2520}
2521
2522#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2524 VPSlotTracker &SlotTracker) const {
2525 O << Indent;
2527 O << " = vector-pointer";
2528 printFlags(O);
2530}
2531#endif
2532
2534 VPCostContext &Ctx) const {
2535 // A blend will be expanded to a select VPInstruction, which will generate a
2536 // scalar select if only the first lane is used.
2538 VF = ElementCount::getFixed(1);
2539
2540 Type *ResultTy = toVectorTy(Ctx.Types.inferScalarType(this), VF);
2541 Type *CmpTy = toVectorTy(Type::getInt1Ty(Ctx.Types.getContext()), VF);
2542 return (getNumIncomingValues() - 1) *
2543 Ctx.TTI.getCmpSelInstrCost(Instruction::Select, ResultTy, CmpTy,
2544 CmpInst::BAD_ICMP_PREDICATE, Ctx.CostKind);
2545}
2546
2547#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2549 VPSlotTracker &SlotTracker) const {
2550 O << Indent << "BLEND ";
2552 O << " =";
2553 if (getNumIncomingValues() == 1) {
2554 // Not a User of any mask: not really blending, this is a
2555 // single-predecessor phi.
2556 O << " ";
2557 getIncomingValue(0)->printAsOperand(O, SlotTracker);
2558 } else {
2559 for (unsigned I = 0, E = getNumIncomingValues(); I < E; ++I) {
2560 O << " ";
2561 getIncomingValue(I)->printAsOperand(O, SlotTracker);
2562 if (I == 0)
2563 continue;
2564 O << "/";
2565 getMask(I)->printAsOperand(O, SlotTracker);
2566 }
2567 }
2568}
2569#endif
2570
2572 assert(!State.Lane && "Reduction being replicated.");
2575 "In-loop AnyOf reductions aren't currently supported");
2576 // Propagate the fast-math flags carried by the underlying instruction.
2577 IRBuilderBase::FastMathFlagGuard FMFGuard(State.Builder);
2578 State.Builder.setFastMathFlags(getFastMathFlags());
2579 Value *NewVecOp = State.get(getVecOp());
2580 if (VPValue *Cond = getCondOp()) {
2581 Value *NewCond = State.get(Cond, State.VF.isScalar());
2582 VectorType *VecTy = dyn_cast<VectorType>(NewVecOp->getType());
2583 Type *ElementTy = VecTy ? VecTy->getElementType() : NewVecOp->getType();
2584
2585 Value *Start = getRecurrenceIdentity(Kind, ElementTy, getFastMathFlags());
2586 if (State.VF.isVector())
2587 Start = State.Builder.CreateVectorSplat(VecTy->getElementCount(), Start);
2588
2589 Value *Select = State.Builder.CreateSelect(NewCond, NewVecOp, Start);
2590 NewVecOp = Select;
2591 }
2592 Value *NewRed;
2593 Value *NextInChain;
2594 if (isOrdered()) {
2595 Value *PrevInChain = State.get(getChainOp(), /*IsScalar*/ true);
2596 if (State.VF.isVector())
2597 NewRed =
2598 createOrderedReduction(State.Builder, Kind, NewVecOp, PrevInChain);
2599 else
2600 NewRed = State.Builder.CreateBinOp(
2602 PrevInChain, NewVecOp);
2603 PrevInChain = NewRed;
2604 NextInChain = NewRed;
2605 } else if (isPartialReduction()) {
2606 assert(Kind == RecurKind::Add && "Unexpected partial reduction kind");
2607 Value *PrevInChain = State.get(getChainOp(), /*IsScalar*/ false);
2608 NewRed = State.Builder.CreateIntrinsic(
2609 PrevInChain->getType(), Intrinsic::vector_partial_reduce_add,
2610 {PrevInChain, NewVecOp}, nullptr, "partial.reduce");
2611 PrevInChain = NewRed;
2612 NextInChain = NewRed;
2613 } else {
2614 assert(isInLoop() &&
2615 "The reduction must either be ordered, partial or in-loop");
2616 Value *PrevInChain = State.get(getChainOp(), /*IsScalar*/ true);
2617 NewRed = createSimpleReduction(State.Builder, NewVecOp, Kind);
2619 NextInChain = createMinMaxOp(State.Builder, Kind, NewRed, PrevInChain);
2620 else
2621 NextInChain = State.Builder.CreateBinOp(
2623 PrevInChain, NewRed);
2624 }
2625 State.set(this, NextInChain, /*IsScalar*/ !isPartialReduction());
2626}
2627
2629 assert(!State.Lane && "Reduction being replicated.");
2630
2631 auto &Builder = State.Builder;
2632 // Propagate the fast-math flags carried by the underlying instruction.
2633 IRBuilderBase::FastMathFlagGuard FMFGuard(Builder);
2634 Builder.setFastMathFlags(getFastMathFlags());
2635
2637 Value *Prev = State.get(getChainOp(), /*IsScalar*/ true);
2638 Value *VecOp = State.get(getVecOp());
2639 Value *EVL = State.get(getEVL(), VPLane(0));
2640
2641 Value *Mask;
2642 if (VPValue *CondOp = getCondOp())
2643 Mask = State.get(CondOp);
2644 else
2645 Mask = Builder.CreateVectorSplat(State.VF, Builder.getTrue());
2646
2647 Value *NewRed;
2648 if (isOrdered()) {
2649 NewRed = createOrderedReduction(Builder, Kind, VecOp, Prev, Mask, EVL);
2650 } else {
2651 NewRed = createSimpleReduction(Builder, VecOp, Kind, Mask, EVL);
2653 NewRed = createMinMaxOp(Builder, Kind, NewRed, Prev);
2654 else
2655 NewRed = Builder.CreateBinOp(
2657 Prev);
2658 }
2659 State.set(this, NewRed, /*IsScalar*/ true);
2660}
2661
2663 VPCostContext &Ctx) const {
2664 RecurKind RdxKind = getRecurrenceKind();
2665 Type *ElementTy = Ctx.Types.inferScalarType(this);
2666 auto *VectorTy = cast<VectorType>(toVectorTy(ElementTy, VF));
2667 unsigned Opcode = RecurrenceDescriptor::getOpcode(RdxKind);
2669 std::optional<FastMathFlags> OptionalFMF =
2670 ElementTy->isFloatingPointTy() ? std::make_optional(FMFs) : std::nullopt;
2671
2672 if (isPartialReduction()) {
2673 InstructionCost CondCost = 0;
2674 if (isConditional()) {
2676 auto *CondTy = cast<VectorType>(
2677 toVectorTy(Ctx.Types.inferScalarType(getCondOp()), VF));
2678 CondCost = Ctx.TTI.getCmpSelInstrCost(Instruction::Select, VectorTy,
2679 CondTy, Pred, Ctx.CostKind);
2680 }
2681 return CondCost + Ctx.TTI.getPartialReductionCost(
2682 Opcode, ElementTy, ElementTy, ElementTy, VF,
2684 TargetTransformInfo::PR_None, std::nullopt,
2685 Ctx.CostKind);
2686 }
2687
2688 // TODO: Support any-of reductions.
2689 assert(
2691 ForceTargetInstructionCost.getNumOccurrences() > 0) &&
2692 "Any-of reduction not implemented in VPlan-based cost model currently.");
2693
2694 // Note that TTI should model the cost of moving result to the scalar register
2695 // and the BinOp cost in the getMinMaxReductionCost().
2698 return Ctx.TTI.getMinMaxReductionCost(Id, VectorTy, FMFs, Ctx.CostKind);
2699 }
2700
2701 // Note that TTI should model the cost of moving result to the scalar register
2702 // and the BinOp cost in the getArithmeticReductionCost().
2703 return Ctx.TTI.getArithmeticReductionCost(Opcode, VectorTy, OptionalFMF,
2704 Ctx.CostKind);
2705}
2706
2708 ExpressionTypes ExpressionType,
2709 ArrayRef<VPSingleDefRecipe *> ExpressionRecipes)
2710 : VPSingleDefRecipe(VPDef::VPExpressionSC, {}, {}),
2711 ExpressionRecipes(ExpressionRecipes), ExpressionType(ExpressionType) {
2712 assert(!ExpressionRecipes.empty() && "Nothing to combine?");
2713 assert(
2714 none_of(ExpressionRecipes,
2715 [](VPSingleDefRecipe *R) { return R->mayHaveSideEffects(); }) &&
2716 "expression cannot contain recipes with side-effects");
2717
2718 // Maintain a copy of the expression recipes as a set of users.
2719 SmallPtrSet<VPUser *, 4> ExpressionRecipesAsSetOfUsers;
2720 for (auto *R : ExpressionRecipes)
2721 ExpressionRecipesAsSetOfUsers.insert(R);
2722
2723 // Recipes in the expression, except the last one, must only be used by
2724 // (other) recipes inside the expression. If there are other users, external
2725 // to the expression, use a clone of the recipe for external users.
2726 for (VPSingleDefRecipe *R : reverse(ExpressionRecipes)) {
2727 if (R != ExpressionRecipes.back() &&
2728 any_of(R->users(), [&ExpressionRecipesAsSetOfUsers](VPUser *U) {
2729 return !ExpressionRecipesAsSetOfUsers.contains(U);
2730 })) {
2731 // There are users outside of the expression. Clone the recipe and use the
2732 // clone those external users.
2733 VPSingleDefRecipe *CopyForExtUsers = R->clone();
2734 R->replaceUsesWithIf(CopyForExtUsers, [&ExpressionRecipesAsSetOfUsers](
2735 VPUser &U, unsigned) {
2736 return !ExpressionRecipesAsSetOfUsers.contains(&U);
2737 });
2738 CopyForExtUsers->insertBefore(R);
2739 }
2740 if (R->getParent())
2741 R->removeFromParent();
2742 }
2743
2744 // Internalize all external operands to the expression recipes. To do so,
2745 // create new temporary VPValues for all operands defined by a recipe outside
2746 // the expression. The original operands are added as operands of the
2747 // VPExpressionRecipe itself.
2748 for (auto *R : ExpressionRecipes) {
2749 for (const auto &[Idx, Op] : enumerate(R->operands())) {
2750 auto *Def = Op->getDefiningRecipe();
2751 if (Def && ExpressionRecipesAsSetOfUsers.contains(Def))
2752 continue;
2753 addOperand(Op);
2754 LiveInPlaceholders.push_back(new VPValue());
2755 }
2756 }
2757
2758 // Replace each external operand with the first one created for it in
2759 // LiveInPlaceholders.
2760 for (auto *R : ExpressionRecipes)
2761 for (auto const &[LiveIn, Tmp] : zip(operands(), LiveInPlaceholders))
2762 R->replaceUsesOfWith(LiveIn, Tmp);
2763}
2764
2766 for (auto *R : ExpressionRecipes)
2767 // Since the list could contain duplicates, make sure the recipe hasn't
2768 // already been inserted.
2769 if (!R->getParent())
2770 R->insertBefore(this);
2771
2772 for (const auto &[Idx, Op] : enumerate(operands()))
2773 LiveInPlaceholders[Idx]->replaceAllUsesWith(Op);
2774
2775 replaceAllUsesWith(ExpressionRecipes.back());
2776 ExpressionRecipes.clear();
2777}
2778
2780 VPCostContext &Ctx) const {
2781 Type *RedTy = Ctx.Types.inferScalarType(this);
2782 auto *SrcVecTy = cast<VectorType>(
2783 toVectorTy(Ctx.Types.inferScalarType(getOperand(0)), VF));
2784 assert(RedTy->isIntegerTy() &&
2785 "VPExpressionRecipe only supports integer types currently.");
2786 unsigned Opcode = RecurrenceDescriptor::getOpcode(
2787 cast<VPReductionRecipe>(ExpressionRecipes.back())->getRecurrenceKind());
2788 switch (ExpressionType) {
2789 case ExpressionTypes::ExtendedReduction: {
2790 unsigned Opcode = RecurrenceDescriptor::getOpcode(
2791 cast<VPReductionRecipe>(ExpressionRecipes[1])->getRecurrenceKind());
2792 auto *ExtR = cast<VPWidenCastRecipe>(ExpressionRecipes[0]);
2793
2794 return cast<VPReductionRecipe>(ExpressionRecipes.back())
2795 ->isPartialReduction()
2796 ? Ctx.TTI.getPartialReductionCost(
2797 Opcode, Ctx.Types.inferScalarType(getOperand(0)), nullptr,
2798 RedTy, VF,
2800 ExtR->getOpcode()),
2801 TargetTransformInfo::PR_None, std::nullopt, Ctx.CostKind)
2802 : Ctx.TTI.getExtendedReductionCost(
2803 Opcode, ExtR->getOpcode() == Instruction::ZExt, RedTy,
2804 SrcVecTy, std::nullopt, Ctx.CostKind);
2805 }
2806 case ExpressionTypes::MulAccReduction:
2807 return Ctx.TTI.getMulAccReductionCost(false, Opcode, RedTy, SrcVecTy,
2808 Ctx.CostKind);
2809
2810 case ExpressionTypes::ExtNegatedMulAccReduction:
2811 assert(Opcode == Instruction::Add && "Unexpected opcode");
2812 Opcode = Instruction::Sub;
2813 [[fallthrough]];
2814 case ExpressionTypes::ExtMulAccReduction: {
2815 auto *RedR = cast<VPReductionRecipe>(ExpressionRecipes.back());
2816 if (RedR->isPartialReduction()) {
2817 auto *Ext0R = cast<VPWidenCastRecipe>(ExpressionRecipes[0]);
2818 auto *Ext1R = cast<VPWidenCastRecipe>(ExpressionRecipes[1]);
2819 auto *Mul = cast<VPWidenRecipe>(ExpressionRecipes[2]);
2820 return Ctx.TTI.getPartialReductionCost(
2821 Opcode, Ctx.Types.inferScalarType(getOperand(0)),
2822 Ctx.Types.inferScalarType(getOperand(1)), RedTy, VF,
2824 Ext0R->getOpcode()),
2826 Ext1R->getOpcode()),
2827 Mul->getOpcode(), Ctx.CostKind);
2828 }
2829 return Ctx.TTI.getMulAccReductionCost(
2830 cast<VPWidenCastRecipe>(ExpressionRecipes.front())->getOpcode() ==
2831 Instruction::ZExt,
2832 Opcode, RedTy, SrcVecTy, Ctx.CostKind);
2833 }
2834 }
2835 llvm_unreachable("Unknown VPExpressionRecipe::ExpressionTypes enum");
2836}
2837
2839 return any_of(ExpressionRecipes, [](VPSingleDefRecipe *R) {
2840 return R->mayReadFromMemory() || R->mayWriteToMemory();
2841 });
2842}
2843
2845 assert(
2846 none_of(ExpressionRecipes,
2847 [](VPSingleDefRecipe *R) { return R->mayHaveSideEffects(); }) &&
2848 "expression cannot contain recipes with side-effects");
2849 return false;
2850}
2851
2853 // Cannot use vputils::isSingleScalar(), because all external operands
2854 // of the expression will be live-ins while bundled.
2855 auto *RR = dyn_cast<VPReductionRecipe>(ExpressionRecipes.back());
2856 return RR && !RR->isPartialReduction();
2857}
2858
2859#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2860
2862 VPSlotTracker &SlotTracker) const {
2863 O << Indent << "EXPRESSION ";
2865 O << " = ";
2866 auto *Red = cast<VPReductionRecipe>(ExpressionRecipes.back());
2867 unsigned Opcode = RecurrenceDescriptor::getOpcode(Red->getRecurrenceKind());
2868
2869 switch (ExpressionType) {
2870 case ExpressionTypes::ExtendedReduction: {
2872 O << " + " << (Red->isPartialReduction() ? "partial." : "") << "reduce.";
2873 O << Instruction::getOpcodeName(Opcode) << " (";
2875 Red->printFlags(O);
2876
2877 auto *Ext0 = cast<VPWidenCastRecipe>(ExpressionRecipes[0]);
2878 O << Instruction::getOpcodeName(Ext0->getOpcode()) << " to "
2879 << *Ext0->getResultType();
2880 if (Red->isConditional()) {
2881 O << ", ";
2882 Red->getCondOp()->printAsOperand(O, SlotTracker);
2883 }
2884 O << ")";
2885 break;
2886 }
2887 case ExpressionTypes::ExtNegatedMulAccReduction: {
2889 O << " + " << (Red->isPartialReduction() ? "partial." : "") << "reduce.";
2891 RecurrenceDescriptor::getOpcode(Red->getRecurrenceKind()))
2892 << " (sub (0, mul";
2893 auto *Mul = cast<VPWidenRecipe>(ExpressionRecipes[2]);
2894 Mul->printFlags(O);
2895 O << "(";
2897 auto *Ext0 = cast<VPWidenCastRecipe>(ExpressionRecipes[0]);
2898 O << " " << Instruction::getOpcodeName(Ext0->getOpcode()) << " to "
2899 << *Ext0->getResultType() << "), (";
2901 auto *Ext1 = cast<VPWidenCastRecipe>(ExpressionRecipes[1]);
2902 O << " " << Instruction::getOpcodeName(Ext1->getOpcode()) << " to "
2903 << *Ext1->getResultType() << ")";
2904 if (Red->isConditional()) {
2905 O << ", ";
2906 Red->getCondOp()->printAsOperand(O, SlotTracker);
2907 }
2908 O << "))";
2909 break;
2910 }
2911 case ExpressionTypes::MulAccReduction:
2912 case ExpressionTypes::ExtMulAccReduction: {
2914 O << " + " << (Red->isPartialReduction() ? "partial." : "") << "reduce.";
2916 RecurrenceDescriptor::getOpcode(Red->getRecurrenceKind()))
2917 << " (";
2918 O << "mul";
2919 bool IsExtended = ExpressionType == ExpressionTypes::ExtMulAccReduction;
2920 auto *Mul = cast<VPWidenRecipe>(IsExtended ? ExpressionRecipes[2]
2921 : ExpressionRecipes[0]);
2922 Mul->printFlags(O);
2923 if (IsExtended)
2924 O << "(";
2926 if (IsExtended) {
2927 auto *Ext0 = cast<VPWidenCastRecipe>(ExpressionRecipes[0]);
2928 O << " " << Instruction::getOpcodeName(Ext0->getOpcode()) << " to "
2929 << *Ext0->getResultType() << "), (";
2930 } else {
2931 O << ", ";
2932 }
2934 if (IsExtended) {
2935 auto *Ext1 = cast<VPWidenCastRecipe>(ExpressionRecipes[1]);
2936 O << " " << Instruction::getOpcodeName(Ext1->getOpcode()) << " to "
2937 << *Ext1->getResultType() << ")";
2938 }
2939 if (Red->isConditional()) {
2940 O << ", ";
2941 Red->getCondOp()->printAsOperand(O, SlotTracker);
2942 }
2943 O << ")";
2944 break;
2945 }
2946 }
2947}
2948
2950 VPSlotTracker &SlotTracker) const {
2951 if (isPartialReduction())
2952 O << Indent << "PARTIAL-REDUCE ";
2953 else
2954 O << Indent << "REDUCE ";
2956 O << " = ";
2958 O << " +";
2959 printFlags(O);
2960 O << " reduce."
2963 << " (";
2965 if (isConditional()) {
2966 O << ", ";
2968 }
2969 O << ")";
2970}
2971
2973 VPSlotTracker &SlotTracker) const {
2974 O << Indent << "REDUCE ";
2976 O << " = ";
2978 O << " +";
2979 printFlags(O);
2980 O << " vp.reduce."
2983 << " (";
2985 O << ", ";
2987 if (isConditional()) {
2988 O << ", ";
2990 }
2991 O << ")";
2992}
2993
2994#endif
2995
2996/// A helper function to scalarize a single Instruction in the innermost loop.
2997/// Generates a sequence of scalar instances for lane \p Lane. Uses the VPValue
2998/// operands from \p RepRecipe instead of \p Instr's operands.
2999static void scalarizeInstruction(const Instruction *Instr,
3000 VPReplicateRecipe *RepRecipe,
3001 const VPLane &Lane, VPTransformState &State) {
3002 assert((!Instr->getType()->isAggregateType() ||
3003 canVectorizeTy(Instr->getType())) &&
3004 "Expected vectorizable or non-aggregate type.");
3005
3006 // Does this instruction return a value ?
3007 bool IsVoidRetTy = Instr->getType()->isVoidTy();
3008
3009 Instruction *Cloned = Instr->clone();
3010 if (!IsVoidRetTy) {
3011 Cloned->setName(Instr->getName() + ".cloned");
3012 Type *ResultTy = State.TypeAnalysis.inferScalarType(RepRecipe);
3013 // The operands of the replicate recipe may have been narrowed, resulting in
3014 // a narrower result type. Update the type of the cloned instruction to the
3015 // correct type.
3016 if (ResultTy != Cloned->getType())
3017 Cloned->mutateType(ResultTy);
3018 }
3019
3020 RepRecipe->applyFlags(*Cloned);
3021 RepRecipe->applyMetadata(*Cloned);
3022
3023 if (RepRecipe->hasPredicate())
3024 cast<CmpInst>(Cloned)->setPredicate(RepRecipe->getPredicate());
3025
3026 if (auto DL = RepRecipe->getDebugLoc())
3027 State.setDebugLocFrom(DL);
3028
3029 // Replace the operands of the cloned instructions with their scalar
3030 // equivalents in the new loop.
3031 for (const auto &I : enumerate(RepRecipe->operands())) {
3032 auto InputLane = Lane;
3033 VPValue *Operand = I.value();
3034 if (vputils::isSingleScalar(Operand))
3035 InputLane = VPLane::getFirstLane();
3036 Cloned->setOperand(I.index(), State.get(Operand, InputLane));
3037 }
3038
3039 // Place the cloned scalar in the new loop.
3040 State.Builder.Insert(Cloned);
3041
3042 State.set(RepRecipe, Cloned, Lane);
3043
3044 // If we just cloned a new assumption, add it the assumption cache.
3045 if (auto *II = dyn_cast<AssumeInst>(Cloned))
3046 State.AC->registerAssumption(II);
3047
3048 assert(
3049 (RepRecipe->getRegion() ||
3050 !RepRecipe->getParent()->getPlan()->getVectorLoopRegion() ||
3051 all_of(RepRecipe->operands(),
3052 [](VPValue *Op) { return Op->isDefinedOutsideLoopRegions(); })) &&
3053 "Expected a recipe is either within a region or all of its operands "
3054 "are defined outside the vectorized region.");
3055}
3056
3059
3060 if (!State.Lane) {
3061 assert(IsSingleScalar && "VPReplicateRecipes outside replicate regions "
3062 "must have already been unrolled");
3063 scalarizeInstruction(UI, this, VPLane(0), State);
3064 return;
3065 }
3066
3067 assert((State.VF.isScalar() || !isSingleScalar()) &&
3068 "uniform recipe shouldn't be predicated");
3069 assert(!State.VF.isScalable() && "Can't scalarize a scalable vector");
3070 scalarizeInstruction(UI, this, *State.Lane, State);
3071 // Insert scalar instance packing it into a vector.
3072 if (State.VF.isVector() && shouldPack()) {
3073 Value *WideValue =
3074 State.Lane->isFirstLane()
3075 ? PoisonValue::get(toVectorizedTy(UI->getType(), State.VF))
3076 : State.get(this);
3077 State.set(this, State.packScalarIntoVectorizedValue(this, WideValue,
3078 *State.Lane));
3079 }
3080}
3081
3083 // Find if the recipe is used by a widened recipe via an intervening
3084 // VPPredInstPHIRecipe. In this case, also pack the scalar values in a vector.
3085 return any_of(users(), [](const VPUser *U) {
3086 if (auto *PredR = dyn_cast<VPPredInstPHIRecipe>(U))
3087 return !vputils::onlyScalarValuesUsed(PredR);
3088 return false;
3089 });
3090}
3091
3092/// Returns a SCEV expression for \p Ptr if it is a pointer computation for
3093/// which the legacy cost model computes a SCEV expression when computing the
3094/// address cost. Computing SCEVs for VPValues is incomplete and returns
3095/// SCEVCouldNotCompute in cases the legacy cost model can compute SCEVs. In
3096/// those cases we fall back to the legacy cost model. Otherwise return nullptr.
3097static const SCEV *getAddressAccessSCEV(const VPValue *Ptr, ScalarEvolution &SE,
3098 const Loop *L) {
3099 auto *PtrR = Ptr->getDefiningRecipe();
3100 if (!PtrR || !((isa<VPReplicateRecipe>(Ptr) &&
3102 Instruction::GetElementPtr) ||
3103 isa<VPWidenGEPRecipe>(Ptr) ||
3105 return nullptr;
3106
3107 // We are looking for a GEP where all indices are either loop invariant or
3108 // inductions.
3109 for (VPValue *Opd : drop_begin(PtrR->operands())) {
3110 if (!Opd->isDefinedOutsideLoopRegions() &&
3112 return nullptr;
3113 }
3114
3115 return vputils::getSCEVExprForVPValue(Ptr, SE, L);
3116}
3117
3118/// Returns true if \p V is used as part of the address of another load or
3119/// store.
3120static bool isUsedByLoadStoreAddress(const VPUser *V) {
3122 SmallVector<const VPUser *> WorkList = {V};
3123
3124 while (!WorkList.empty()) {
3125 auto *Cur = dyn_cast<VPSingleDefRecipe>(WorkList.pop_back_val());
3126 if (!Cur || !Seen.insert(Cur).second)
3127 continue;
3128
3129 auto *Blend = dyn_cast<VPBlendRecipe>(Cur);
3130 // Skip blends that use V only through a compare by checking if any incoming
3131 // value was already visited.
3132 if (Blend && none_of(seq<unsigned>(0, Blend->getNumIncomingValues()),
3133 [&](unsigned I) {
3134 return Seen.contains(
3135 Blend->getIncomingValue(I)->getDefiningRecipe());
3136 }))
3137 continue;
3138
3139 for (VPUser *U : Cur->users()) {
3140 if (auto *InterleaveR = dyn_cast<VPInterleaveBase>(U))
3141 if (InterleaveR->getAddr() == Cur)
3142 return true;
3143 if (auto *RepR = dyn_cast<VPReplicateRecipe>(U)) {
3144 if (RepR->getOpcode() == Instruction::Load &&
3145 RepR->getOperand(0) == Cur)
3146 return true;
3147 if (RepR->getOpcode() == Instruction::Store &&
3148 RepR->getOperand(1) == Cur)
3149 return true;
3150 }
3151 if (auto *MemR = dyn_cast<VPWidenMemoryRecipe>(U)) {
3152 if (MemR->getAddr() == Cur && MemR->isConsecutive())
3153 return true;
3154 }
3155 }
3156
3157 // The legacy cost model only supports scalarization loads/stores with phi
3158 // addresses, if the phi is directly used as load/store address. Don't
3159 // traverse further for Blends.
3160 if (Blend)
3161 continue;
3162
3163 append_range(WorkList, Cur->users());
3164 }
3165 return false;
3166}
3167
3169 VPCostContext &Ctx) const {
3171 // VPReplicateRecipe may be cloned as part of an existing VPlan-to-VPlan
3172 // transform, avoid computing their cost multiple times for now.
3173 Ctx.SkipCostComputation.insert(UI);
3174
3175 if (VF.isScalable() && !isSingleScalar())
3177
3178 switch (UI->getOpcode()) {
3179 case Instruction::GetElementPtr:
3180 // We mark this instruction as zero-cost because the cost of GEPs in
3181 // vectorized code depends on whether the corresponding memory instruction
3182 // is scalarized or not. Therefore, we handle GEPs with the memory
3183 // instruction cost.
3184 return 0;
3185 case Instruction::Call: {
3186 auto *CalledFn =
3188
3191 for (const VPValue *ArgOp : ArgOps)
3192 Tys.push_back(Ctx.Types.inferScalarType(ArgOp));
3193
3194 if (CalledFn->isIntrinsic())
3195 // Various pseudo-intrinsics with costs of 0 are scalarized instead of
3196 // vectorized via VPWidenIntrinsicRecipe. Return 0 for them early.
3197 switch (CalledFn->getIntrinsicID()) {
3198 case Intrinsic::assume:
3199 case Intrinsic::lifetime_end:
3200 case Intrinsic::lifetime_start:
3201 case Intrinsic::sideeffect:
3202 case Intrinsic::pseudoprobe:
3203 case Intrinsic::experimental_noalias_scope_decl: {
3204 assert(getCostForIntrinsics(CalledFn->getIntrinsicID(), ArgOps, *this,
3205 ElementCount::getFixed(1), Ctx) == 0 &&
3206 "scalarizing intrinsic should be free");
3207 return InstructionCost(0);
3208 }
3209 default:
3210 break;
3211 }
3212
3213 Type *ResultTy = Ctx.Types.inferScalarType(this);
3214 InstructionCost ScalarCallCost =
3215 Ctx.TTI.getCallInstrCost(CalledFn, ResultTy, Tys, Ctx.CostKind);
3216 if (isSingleScalar()) {
3217 if (CalledFn->isIntrinsic())
3218 ScalarCallCost = std::min(
3219 ScalarCallCost,
3220 getCostForIntrinsics(CalledFn->getIntrinsicID(), ArgOps, *this,
3221 ElementCount::getFixed(1), Ctx));
3222 return ScalarCallCost;
3223 }
3224
3225 return ScalarCallCost * VF.getFixedValue() +
3226 Ctx.getScalarizationOverhead(ResultTy, ArgOps, VF);
3227 }
3228 case Instruction::Add:
3229 case Instruction::Sub:
3230 case Instruction::FAdd:
3231 case Instruction::FSub:
3232 case Instruction::Mul:
3233 case Instruction::FMul:
3234 case Instruction::FDiv:
3235 case Instruction::FRem:
3236 case Instruction::Shl:
3237 case Instruction::LShr:
3238 case Instruction::AShr:
3239 case Instruction::And:
3240 case Instruction::Or:
3241 case Instruction::Xor:
3242 case Instruction::ICmp:
3243 case Instruction::FCmp:
3245 Ctx) *
3246 (isSingleScalar() ? 1 : VF.getFixedValue());
3247 case Instruction::SDiv:
3248 case Instruction::UDiv:
3249 case Instruction::SRem:
3250 case Instruction::URem: {
3251 InstructionCost ScalarCost =
3253 if (isSingleScalar())
3254 return ScalarCost;
3255
3256 ScalarCost = ScalarCost * VF.getFixedValue() +
3257 Ctx.getScalarizationOverhead(Ctx.Types.inferScalarType(this),
3258 to_vector(operands()), VF);
3259 // If the recipe is not predicated (i.e. not in a replicate region), return
3260 // the scalar cost. Otherwise handle predicated cost.
3261 if (!getRegion()->isReplicator())
3262 return ScalarCost;
3263
3264 // Account for the phi nodes that we will create.
3265 ScalarCost += VF.getFixedValue() *
3266 Ctx.TTI.getCFInstrCost(Instruction::PHI, Ctx.CostKind);
3267 // Scale the cost by the probability of executing the predicated blocks.
3268 // This assumes the predicated block for each vector lane is equally
3269 // likely.
3270 ScalarCost /= Ctx.getPredBlockCostDivisor(UI->getParent());
3271 return ScalarCost;
3272 }
3273 case Instruction::Load:
3274 case Instruction::Store: {
3275 // TODO: See getMemInstScalarizationCost for how to handle replicating and
3276 // predicated cases.
3277 const VPRegionBlock *ParentRegion = getRegion();
3278 if (ParentRegion && ParentRegion->isReplicator())
3279 break;
3280
3281 bool IsLoad = UI->getOpcode() == Instruction::Load;
3282 const VPValue *PtrOp = getOperand(!IsLoad);
3283 const SCEV *PtrSCEV = getAddressAccessSCEV(PtrOp, Ctx.SE, Ctx.L);
3285 break;
3286
3287 Type *ValTy = Ctx.Types.inferScalarType(IsLoad ? this : getOperand(0));
3288 Type *ScalarPtrTy = Ctx.Types.inferScalarType(PtrOp);
3289 const Align Alignment = getLoadStoreAlignment(UI);
3290 unsigned AS = cast<PointerType>(ScalarPtrTy)->getAddressSpace();
3292 InstructionCost ScalarMemOpCost = Ctx.TTI.getMemoryOpCost(
3293 UI->getOpcode(), ValTy, Alignment, AS, Ctx.CostKind, OpInfo);
3294
3295 Type *PtrTy = isSingleScalar() ? ScalarPtrTy : toVectorTy(ScalarPtrTy, VF);
3296 bool PreferVectorizedAddressing = Ctx.TTI.prefersVectorizedAddressing();
3297 bool UsedByLoadStoreAddress =
3298 !PreferVectorizedAddressing && isUsedByLoadStoreAddress(this);
3299 InstructionCost ScalarCost =
3300 ScalarMemOpCost + Ctx.TTI.getAddressComputationCost(
3301 PtrTy, UsedByLoadStoreAddress ? nullptr : &Ctx.SE,
3302 PtrSCEV, Ctx.CostKind);
3303 if (isSingleScalar())
3304 return ScalarCost;
3305
3306 SmallVector<const VPValue *> OpsToScalarize;
3307 Type *ResultTy = Type::getVoidTy(PtrTy->getContext());
3308 // Set ResultTy and OpsToScalarize, if scalarization is needed. Currently we
3309 // don't assign scalarization overhead in general, if the target prefers
3310 // vectorized addressing or the loaded value is used as part of an address
3311 // of another load or store.
3312 if (!UsedByLoadStoreAddress) {
3313 bool EfficientVectorLoadStore =
3314 Ctx.TTI.supportsEfficientVectorElementLoadStore();
3315 if (!(IsLoad && !PreferVectorizedAddressing) &&
3316 !(!IsLoad && EfficientVectorLoadStore))
3317 append_range(OpsToScalarize, operands());
3318
3319 if (!EfficientVectorLoadStore)
3320 ResultTy = Ctx.Types.inferScalarType(this);
3321 }
3322
3323 return (ScalarCost * VF.getFixedValue()) +
3324 Ctx.getScalarizationOverhead(ResultTy, OpsToScalarize, VF, true);
3325 }
3326 }
3327
3328 return Ctx.getLegacyCost(UI, VF);
3329}
3330
3331#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
3333 VPSlotTracker &SlotTracker) const {
3334 O << Indent << (IsSingleScalar ? "CLONE " : "REPLICATE ");
3335
3336 if (!getUnderlyingInstr()->getType()->isVoidTy()) {
3338 O << " = ";
3339 }
3340 if (auto *CB = dyn_cast<CallBase>(getUnderlyingInstr())) {
3341 O << "call";
3342 printFlags(O);
3343 O << "@" << CB->getCalledFunction()->getName() << "(";
3345 O, [&O, &SlotTracker](VPValue *Op) {
3346 Op->printAsOperand(O, SlotTracker);
3347 });
3348 O << ")";
3349 } else {
3351 printFlags(O);
3353 }
3354
3355 if (shouldPack())
3356 O << " (S->V)";
3357}
3358#endif
3359
3361 assert(State.Lane && "Branch on Mask works only on single instance.");
3362
3363 VPValue *BlockInMask = getOperand(0);
3364 Value *ConditionBit = State.get(BlockInMask, *State.Lane);
3365
3366 // Replace the temporary unreachable terminator with a new conditional branch,
3367 // whose two destinations will be set later when they are created.
3368 auto *CurrentTerminator = State.CFG.PrevBB->getTerminator();
3369 assert(isa<UnreachableInst>(CurrentTerminator) &&
3370 "Expected to replace unreachable terminator with conditional branch.");
3371 auto CondBr =
3372 State.Builder.CreateCondBr(ConditionBit, State.CFG.PrevBB, nullptr);
3373 CondBr->setSuccessor(0, nullptr);
3374 CurrentTerminator->eraseFromParent();
3375}
3376
3378 VPCostContext &Ctx) const {
3379 // The legacy cost model doesn't assign costs to branches for individual
3380 // replicate regions. Match the current behavior in the VPlan cost model for
3381 // now.
3382 return 0;
3383}
3384
3386 assert(State.Lane && "Predicated instruction PHI works per instance.");
3387 Instruction *ScalarPredInst =
3388 cast<Instruction>(State.get(getOperand(0), *State.Lane));
3389 BasicBlock *PredicatedBB = ScalarPredInst->getParent();
3390 BasicBlock *PredicatingBB = PredicatedBB->getSinglePredecessor();
3391 assert(PredicatingBB && "Predicated block has no single predecessor.");
3393 "operand must be VPReplicateRecipe");
3394
3395 // By current pack/unpack logic we need to generate only a single phi node: if
3396 // a vector value for the predicated instruction exists at this point it means
3397 // the instruction has vector users only, and a phi for the vector value is
3398 // needed. In this case the recipe of the predicated instruction is marked to
3399 // also do that packing, thereby "hoisting" the insert-element sequence.
3400 // Otherwise, a phi node for the scalar value is needed.
3401 if (State.hasVectorValue(getOperand(0))) {
3402 auto *VecI = cast<Instruction>(State.get(getOperand(0)));
3404 "Packed operands must generate an insertelement or insertvalue");
3405
3406 // If VectorI is a struct, it will be a sequence like:
3407 // %1 = insertvalue %unmodified, %x, 0
3408 // %2 = insertvalue %1, %y, 1
3409 // %VectorI = insertvalue %2, %z, 2
3410 // To get the unmodified vector we need to look through the chain.
3411 if (auto *StructTy = dyn_cast<StructType>(VecI->getType()))
3412 for (unsigned I = 0; I < StructTy->getNumContainedTypes() - 1; I++)
3413 VecI = cast<InsertValueInst>(VecI->getOperand(0));
3414
3415 PHINode *VPhi = State.Builder.CreatePHI(VecI->getType(), 2);
3416 VPhi->addIncoming(VecI->getOperand(0), PredicatingBB); // Unmodified vector.
3417 VPhi->addIncoming(VecI, PredicatedBB); // New vector with inserted element.
3418 if (State.hasVectorValue(this))
3419 State.reset(this, VPhi);
3420 else
3421 State.set(this, VPhi);
3422 // NOTE: Currently we need to update the value of the operand, so the next
3423 // predicated iteration inserts its generated value in the correct vector.
3424 State.reset(getOperand(0), VPhi);
3425 } else {
3426 if (vputils::onlyFirstLaneUsed(this) && !State.Lane->isFirstLane())
3427 return;
3428
3429 Type *PredInstType = State.TypeAnalysis.inferScalarType(getOperand(0));
3430 PHINode *Phi = State.Builder.CreatePHI(PredInstType, 2);
3431 Phi->addIncoming(PoisonValue::get(ScalarPredInst->getType()),
3432 PredicatingBB);
3433 Phi->addIncoming(ScalarPredInst, PredicatedBB);
3434 if (State.hasScalarValue(this, *State.Lane))
3435 State.reset(this, Phi, *State.Lane);
3436 else
3437 State.set(this, Phi, *State.Lane);
3438 // NOTE: Currently we need to update the value of the operand, so the next
3439 // predicated iteration inserts its generated value in the correct vector.
3440 State.reset(getOperand(0), Phi, *State.Lane);
3441 }
3442}
3443
3444#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
3446 VPSlotTracker &SlotTracker) const {
3447 O << Indent << "PHI-PREDICATED-INSTRUCTION ";
3449 O << " = ";
3451}
3452#endif
3453
3455 VPCostContext &Ctx) const {
3457 unsigned AS = cast<PointerType>(Ctx.Types.inferScalarType(getAddr()))
3458 ->getAddressSpace();
3459 unsigned Opcode = isa<VPWidenLoadRecipe, VPWidenLoadEVLRecipe>(this)
3460 ? Instruction::Load
3461 : Instruction::Store;
3462
3463 if (!Consecutive) {
3464 // TODO: Using the original IR may not be accurate.
3465 // Currently, ARM will use the underlying IR to calculate gather/scatter
3466 // instruction cost.
3467 assert(!Reverse &&
3468 "Inconsecutive memory access should not have the order.");
3469
3471 Type *PtrTy = Ptr->getType();
3472
3473 // If the address value is uniform across all lanes, then the address can be
3474 // calculated with scalar type and broadcast.
3476 PtrTy = toVectorTy(PtrTy, VF);
3477
3478 unsigned IID = isa<VPWidenLoadRecipe>(this) ? Intrinsic::masked_gather
3479 : isa<VPWidenStoreRecipe>(this) ? Intrinsic::masked_scatter
3480 : isa<VPWidenLoadEVLRecipe>(this) ? Intrinsic::vp_gather
3481 : Intrinsic::vp_scatter;
3482 return Ctx.TTI.getAddressComputationCost(PtrTy, nullptr, nullptr,
3483 Ctx.CostKind) +
3484 Ctx.TTI.getMemIntrinsicInstrCost(
3486 &Ingredient),
3487 Ctx.CostKind);
3488 }
3489
3491 if (IsMasked) {
3492 unsigned IID = isa<VPWidenLoadRecipe>(this) ? Intrinsic::masked_load
3493 : Intrinsic::masked_store;
3494 Cost += Ctx.TTI.getMemIntrinsicInstrCost(
3495 MemIntrinsicCostAttributes(IID, Ty, Alignment, AS), Ctx.CostKind);
3496 } else {
3497 TTI::OperandValueInfo OpInfo = Ctx.getOperandInfo(
3499 : getOperand(1));
3500 Cost += Ctx.TTI.getMemoryOpCost(Opcode, Ty, Alignment, AS, Ctx.CostKind,
3501 OpInfo, &Ingredient);
3502 }
3503 if (!Reverse)
3504 return Cost;
3505
3506 return Cost += Ctx.TTI.getShuffleCost(
3508 cast<VectorType>(Ty), {}, Ctx.CostKind, 0);
3509}
3510
3512 Type *ScalarDataTy = getLoadStoreType(&Ingredient);
3513 auto *DataTy = VectorType::get(ScalarDataTy, State.VF);
3514 bool CreateGather = !isConsecutive();
3515
3516 auto &Builder = State.Builder;
3517 Value *Mask = nullptr;
3518 if (auto *VPMask = getMask()) {
3519 // Mask reversal is only needed for non-all-one (null) masks, as reverse
3520 // of a null all-one mask is a null mask.
3521 Mask = State.get(VPMask);
3522 if (isReverse())
3523 Mask = Builder.CreateVectorReverse(Mask, "reverse");
3524 }
3525
3526 Value *Addr = State.get(getAddr(), /*IsScalar*/ !CreateGather);
3527 Value *NewLI;
3528 if (CreateGather) {
3529 NewLI = Builder.CreateMaskedGather(DataTy, Addr, Alignment, Mask, nullptr,
3530 "wide.masked.gather");
3531 } else if (Mask) {
3532 NewLI =
3533 Builder.CreateMaskedLoad(DataTy, Addr, Alignment, Mask,
3534 PoisonValue::get(DataTy), "wide.masked.load");
3535 } else {
3536 NewLI = Builder.CreateAlignedLoad(DataTy, Addr, Alignment, "wide.load");
3537 }
3539 if (Reverse)
3540 NewLI = Builder.CreateVectorReverse(NewLI, "reverse");
3541 State.set(this, NewLI);
3542}
3543
3544#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
3546 VPSlotTracker &SlotTracker) const {
3547 O << Indent << "WIDEN ";
3549 O << " = load ";
3551}
3552#endif
3553
3554/// Use all-true mask for reverse rather than actual mask, as it avoids a
3555/// dependence w/o affecting the result.
3557 Value *EVL, const Twine &Name) {
3558 VectorType *ValTy = cast<VectorType>(Operand->getType());
3559 Value *AllTrueMask =
3560 Builder.CreateVectorSplat(ValTy->getElementCount(), Builder.getTrue());
3561 return Builder.CreateIntrinsic(ValTy, Intrinsic::experimental_vp_reverse,
3562 {Operand, AllTrueMask, EVL}, nullptr, Name);
3563}
3564
3566 Type *ScalarDataTy = getLoadStoreType(&Ingredient);
3567 auto *DataTy = VectorType::get(ScalarDataTy, State.VF);
3568 bool CreateGather = !isConsecutive();
3569
3570 auto &Builder = State.Builder;
3571 CallInst *NewLI;
3572 Value *EVL = State.get(getEVL(), VPLane(0));
3573 Value *Addr = State.get(getAddr(), !CreateGather);
3574 Value *Mask = nullptr;
3575 if (VPValue *VPMask = getMask()) {
3576 Mask = State.get(VPMask);
3577 if (isReverse())
3578 Mask = createReverseEVL(Builder, Mask, EVL, "vp.reverse.mask");
3579 } else {
3580 Mask = Builder.CreateVectorSplat(State.VF, Builder.getTrue());
3581 }
3582
3583 if (CreateGather) {
3584 NewLI =
3585 Builder.CreateIntrinsic(DataTy, Intrinsic::vp_gather, {Addr, Mask, EVL},
3586 nullptr, "wide.masked.gather");
3587 } else {
3588 NewLI = Builder.CreateIntrinsic(DataTy, Intrinsic::vp_load,
3589 {Addr, Mask, EVL}, nullptr, "vp.op.load");
3590 }
3591 NewLI->addParamAttr(
3593 applyMetadata(*NewLI);
3594 Instruction *Res = NewLI;
3595 if (isReverse())
3596 Res = createReverseEVL(Builder, Res, EVL, "vp.reverse");
3597 State.set(this, Res);
3598}
3599
3601 VPCostContext &Ctx) const {
3602 if (!Consecutive || IsMasked)
3603 return VPWidenMemoryRecipe::computeCost(VF, Ctx);
3604
3605 // We need to use the getMemIntrinsicInstrCost() instead of getMemoryOpCost()
3606 // here because the EVL recipes using EVL to replace the tail mask. But in the
3607 // legacy model, it will always calculate the cost of mask.
3608 // TODO: Using getMemoryOpCost() instead of getMemIntrinsicInstrCost when we
3609 // don't need to compare to the legacy cost model.
3611 unsigned AS = cast<PointerType>(Ctx.Types.inferScalarType(getAddr()))
3612 ->getAddressSpace();
3613 InstructionCost Cost = Ctx.TTI.getMemIntrinsicInstrCost(
3614 MemIntrinsicCostAttributes(Intrinsic::vp_load, Ty, Alignment, AS),
3615 Ctx.CostKind);
3616 if (!Reverse)
3617 return Cost;
3618
3619 return Cost + Ctx.TTI.getShuffleCost(
3621 cast<VectorType>(Ty), {}, Ctx.CostKind, 0);
3622}
3623
3624#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
3626 VPSlotTracker &SlotTracker) const {
3627 O << Indent << "WIDEN ";
3629 O << " = vp.load ";
3631}
3632#endif
3633
3635 VPValue *StoredVPValue = getStoredValue();
3636 bool CreateScatter = !isConsecutive();
3637
3638 auto &Builder = State.Builder;
3639
3640 Value *Mask = nullptr;
3641 if (auto *VPMask = getMask()) {
3642 // Mask reversal is only needed for non-all-one (null) masks, as reverse
3643 // of a null all-one mask is a null mask.
3644 Mask = State.get(VPMask);
3645 if (isReverse())
3646 Mask = Builder.CreateVectorReverse(Mask, "reverse");
3647 }
3648
3649 Value *StoredVal = State.get(StoredVPValue);
3650 if (isReverse()) {
3651 // If we store to reverse consecutive memory locations, then we need
3652 // to reverse the order of elements in the stored value.
3653 StoredVal = Builder.CreateVectorReverse(StoredVal, "reverse");
3654 // We don't want to update the value in the map as it might be used in
3655 // another expression. So don't call resetVectorValue(StoredVal).
3656 }
3657 Value *Addr = State.get(getAddr(), /*IsScalar*/ !CreateScatter);
3658 Instruction *NewSI = nullptr;
3659 if (CreateScatter)
3660 NewSI = Builder.CreateMaskedScatter(StoredVal, Addr, Alignment, Mask);
3661 else if (Mask)
3662 NewSI = Builder.CreateMaskedStore(StoredVal, Addr, Alignment, Mask);
3663 else
3664 NewSI = Builder.CreateAlignedStore(StoredVal, Addr, Alignment);
3665 applyMetadata(*NewSI);
3666}
3667
3668#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
3670 VPSlotTracker &SlotTracker) const {
3671 O << Indent << "WIDEN store ";
3673}
3674#endif
3675
3677 VPValue *StoredValue = getStoredValue();
3678 bool CreateScatter = !isConsecutive();
3679
3680 auto &Builder = State.Builder;
3681
3682 CallInst *NewSI = nullptr;
3683 Value *StoredVal = State.get(StoredValue);
3684 Value *EVL = State.get(getEVL(), VPLane(0));
3685 if (isReverse())
3686 StoredVal = createReverseEVL(Builder, StoredVal, EVL, "vp.reverse");
3687 Value *Mask = nullptr;
3688 if (VPValue *VPMask = getMask()) {
3689 Mask = State.get(VPMask);
3690 if (isReverse())
3691 Mask = createReverseEVL(Builder, Mask, EVL, "vp.reverse.mask");
3692 } else {
3693 Mask = Builder.CreateVectorSplat(State.VF, Builder.getTrue());
3694 }
3695 Value *Addr = State.get(getAddr(), !CreateScatter);
3696 if (CreateScatter) {
3697 NewSI = Builder.CreateIntrinsic(Type::getVoidTy(EVL->getContext()),
3698 Intrinsic::vp_scatter,
3699 {StoredVal, Addr, Mask, EVL});
3700 } else {
3701 NewSI = Builder.CreateIntrinsic(Type::getVoidTy(EVL->getContext()),
3702 Intrinsic::vp_store,
3703 {StoredVal, Addr, Mask, EVL});
3704 }
3705 NewSI->addParamAttr(
3707 applyMetadata(*NewSI);
3708}
3709
3711 VPCostContext &Ctx) const {
3712 if (!Consecutive || IsMasked)
3713 return VPWidenMemoryRecipe::computeCost(VF, Ctx);
3714
3715 // We need to use the getMemIntrinsicInstrCost() instead of getMemoryOpCost()
3716 // here because the EVL recipes using EVL to replace the tail mask. But in the
3717 // legacy model, it will always calculate the cost of mask.
3718 // TODO: Using getMemoryOpCost() instead of getMemIntrinsicInstrCost when we
3719 // don't need to compare to the legacy cost model.
3721 unsigned AS = cast<PointerType>(Ctx.Types.inferScalarType(getAddr()))
3722 ->getAddressSpace();
3723 InstructionCost Cost = Ctx.TTI.getMemIntrinsicInstrCost(
3724 MemIntrinsicCostAttributes(Intrinsic::vp_store, Ty, Alignment, AS),
3725 Ctx.CostKind);
3726 if (!Reverse)
3727 return Cost;
3728
3729 return Cost + Ctx.TTI.getShuffleCost(
3731 cast<VectorType>(Ty), {}, Ctx.CostKind, 0);
3732}
3733
3734#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
3736 VPSlotTracker &SlotTracker) const {
3737 O << Indent << "WIDEN vp.store ";
3739}
3740#endif
3741
3743 VectorType *DstVTy, const DataLayout &DL) {
3744 // Verify that V is a vector type with same number of elements as DstVTy.
3745 auto VF = DstVTy->getElementCount();
3746 auto *SrcVecTy = cast<VectorType>(V->getType());
3747 assert(VF == SrcVecTy->getElementCount() && "Vector dimensions do not match");
3748 Type *SrcElemTy = SrcVecTy->getElementType();
3749 Type *DstElemTy = DstVTy->getElementType();
3750 assert((DL.getTypeSizeInBits(SrcElemTy) == DL.getTypeSizeInBits(DstElemTy)) &&
3751 "Vector elements must have same size");
3752
3753 // Do a direct cast if element types are castable.
3754 if (CastInst::isBitOrNoopPointerCastable(SrcElemTy, DstElemTy, DL)) {
3755 return Builder.CreateBitOrPointerCast(V, DstVTy);
3756 }
3757 // V cannot be directly casted to desired vector type.
3758 // May happen when V is a floating point vector but DstVTy is a vector of
3759 // pointers or vice-versa. Handle this using a two-step bitcast using an
3760 // intermediate Integer type for the bitcast i.e. Ptr <-> Int <-> Float.
3761 assert((DstElemTy->isPointerTy() != SrcElemTy->isPointerTy()) &&
3762 "Only one type should be a pointer type");
3763 assert((DstElemTy->isFloatingPointTy() != SrcElemTy->isFloatingPointTy()) &&
3764 "Only one type should be a floating point type");
3765 Type *IntTy =
3766 IntegerType::getIntNTy(V->getContext(), DL.getTypeSizeInBits(SrcElemTy));
3767 auto *VecIntTy = VectorType::get(IntTy, VF);
3768 Value *CastVal = Builder.CreateBitOrPointerCast(V, VecIntTy);
3769 return Builder.CreateBitOrPointerCast(CastVal, DstVTy);
3770}
3771
3772/// Return a vector containing interleaved elements from multiple
3773/// smaller input vectors.
3775 const Twine &Name) {
3776 unsigned Factor = Vals.size();
3777 assert(Factor > 1 && "Tried to interleave invalid number of vectors");
3778
3779 VectorType *VecTy = cast<VectorType>(Vals[0]->getType());
3780#ifndef NDEBUG
3781 for (Value *Val : Vals)
3782 assert(Val->getType() == VecTy && "Tried to interleave mismatched types");
3783#endif
3784
3785 // Scalable vectors cannot use arbitrary shufflevectors (only splats), so
3786 // must use intrinsics to interleave.
3787 if (VecTy->isScalableTy()) {
3788 assert(Factor <= 8 && "Unsupported interleave factor for scalable vectors");
3789 return Builder.CreateVectorInterleave(Vals, Name);
3790 }
3791
3792 // Fixed length. Start by concatenating all vectors into a wide vector.
3793 Value *WideVec = concatenateVectors(Builder, Vals);
3794
3795 // Interleave the elements into the wide vector.
3796 const unsigned NumElts = VecTy->getElementCount().getFixedValue();
3797 return Builder.CreateShuffleVector(
3798 WideVec, createInterleaveMask(NumElts, Factor), Name);
3799}
3800
3801// Try to vectorize the interleave group that \p Instr belongs to.
3802//
3803// E.g. Translate following interleaved load group (factor = 3):
3804// for (i = 0; i < N; i+=3) {
3805// R = Pic[i]; // Member of index 0
3806// G = Pic[i+1]; // Member of index 1
3807// B = Pic[i+2]; // Member of index 2
3808// ... // do something to R, G, B
3809// }
3810// To:
3811// %wide.vec = load <12 x i32> ; Read 4 tuples of R,G,B
3812// %R.vec = shuffle %wide.vec, poison, <0, 3, 6, 9> ; R elements
3813// %G.vec = shuffle %wide.vec, poison, <1, 4, 7, 10> ; G elements
3814// %B.vec = shuffle %wide.vec, poison, <2, 5, 8, 11> ; B elements
3815//
3816// Or translate following interleaved store group (factor = 3):
3817// for (i = 0; i < N; i+=3) {
3818// ... do something to R, G, B
3819// Pic[i] = R; // Member of index 0
3820// Pic[i+1] = G; // Member of index 1
3821// Pic[i+2] = B; // Member of index 2
3822// }
3823// To:
3824// %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7>
3825// %B_U.vec = shuffle %B.vec, poison, <0, 1, 2, 3, u, u, u, u>
3826// %interleaved.vec = shuffle %R_G.vec, %B_U.vec,
3827// <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11> ; Interleave R,G,B elements
3828// store <12 x i32> %interleaved.vec ; Write 4 tuples of R,G,B
3830 assert(!State.Lane && "Interleave group being replicated.");
3831 assert((!needsMaskForGaps() || !State.VF.isScalable()) &&
3832 "Masking gaps for scalable vectors is not yet supported.");
3834 Instruction *Instr = Group->getInsertPos();
3835
3836 // Prepare for the vector type of the interleaved load/store.
3837 Type *ScalarTy = getLoadStoreType(Instr);
3838 unsigned InterleaveFactor = Group->getFactor();
3839 auto *VecTy = VectorType::get(ScalarTy, State.VF * InterleaveFactor);
3840
3841 VPValue *BlockInMask = getMask();
3842 VPValue *Addr = getAddr();
3843 Value *ResAddr = State.get(Addr, VPLane(0));
3844
3845 auto CreateGroupMask = [&BlockInMask, &State,
3846 &InterleaveFactor](Value *MaskForGaps) -> Value * {
3847 if (State.VF.isScalable()) {
3848 assert(!MaskForGaps && "Interleaved groups with gaps are not supported.");
3849 assert(InterleaveFactor <= 8 &&
3850 "Unsupported deinterleave factor for scalable vectors");
3851 auto *ResBlockInMask = State.get(BlockInMask);
3852 SmallVector<Value *> Ops(InterleaveFactor, ResBlockInMask);
3853 return interleaveVectors(State.Builder, Ops, "interleaved.mask");
3854 }
3855
3856 if (!BlockInMask)
3857 return MaskForGaps;
3858
3859 Value *ResBlockInMask = State.get(BlockInMask);
3860 Value *ShuffledMask = State.Builder.CreateShuffleVector(
3861 ResBlockInMask,
3862 createReplicatedMask(InterleaveFactor, State.VF.getFixedValue()),
3863 "interleaved.mask");
3864 return MaskForGaps ? State.Builder.CreateBinOp(Instruction::And,
3865 ShuffledMask, MaskForGaps)
3866 : ShuffledMask;
3867 };
3868
3869 const DataLayout &DL = Instr->getDataLayout();
3870 // Vectorize the interleaved load group.
3871 if (isa<LoadInst>(Instr)) {
3872 Value *MaskForGaps = nullptr;
3873 if (needsMaskForGaps()) {
3874 MaskForGaps =
3875 createBitMaskForGaps(State.Builder, State.VF.getFixedValue(), *Group);
3876 assert(MaskForGaps && "Mask for Gaps is required but it is null");
3877 }
3878
3879 Instruction *NewLoad;
3880 if (BlockInMask || MaskForGaps) {
3881 Value *GroupMask = CreateGroupMask(MaskForGaps);
3882 Value *PoisonVec = PoisonValue::get(VecTy);
3883 NewLoad = State.Builder.CreateMaskedLoad(VecTy, ResAddr,
3884 Group->getAlign(), GroupMask,
3885 PoisonVec, "wide.masked.vec");
3886 } else
3887 NewLoad = State.Builder.CreateAlignedLoad(VecTy, ResAddr,
3888 Group->getAlign(), "wide.vec");
3889 applyMetadata(*NewLoad);
3890 // TODO: Also manage existing metadata using VPIRMetadata.
3891 Group->addMetadata(NewLoad);
3892
3894 if (VecTy->isScalableTy()) {
3895 // Scalable vectors cannot use arbitrary shufflevectors (only splats),
3896 // so must use intrinsics to deinterleave.
3897 assert(InterleaveFactor <= 8 &&
3898 "Unsupported deinterleave factor for scalable vectors");
3899 NewLoad = State.Builder.CreateIntrinsic(
3900 Intrinsic::getDeinterleaveIntrinsicID(InterleaveFactor),
3901 NewLoad->getType(), NewLoad,
3902 /*FMFSource=*/nullptr, "strided.vec");
3903 }
3904
3905 auto CreateStridedVector = [&InterleaveFactor, &State,
3906 &NewLoad](unsigned Index) -> Value * {
3907 assert(Index < InterleaveFactor && "Illegal group index");
3908 if (State.VF.isScalable())
3909 return State.Builder.CreateExtractValue(NewLoad, Index);
3910
3911 // For fixed length VF, use shuffle to extract the sub-vectors from the
3912 // wide load.
3913 auto StrideMask =
3914 createStrideMask(Index, InterleaveFactor, State.VF.getFixedValue());
3915 return State.Builder.CreateShuffleVector(NewLoad, StrideMask,
3916 "strided.vec");
3917 };
3918
3919 for (unsigned I = 0, J = 0; I < InterleaveFactor; ++I) {
3920 Instruction *Member = Group->getMember(I);
3921
3922 // Skip the gaps in the group.
3923 if (!Member)
3924 continue;
3925
3926 Value *StridedVec = CreateStridedVector(I);
3927
3928 // If this member has different type, cast the result type.
3929 if (Member->getType() != ScalarTy) {
3930 VectorType *OtherVTy = VectorType::get(Member->getType(), State.VF);
3931 StridedVec =
3932 createBitOrPointerCast(State.Builder, StridedVec, OtherVTy, DL);
3933 }
3934
3935 if (Group->isReverse())
3936 StridedVec = State.Builder.CreateVectorReverse(StridedVec, "reverse");
3937
3938 State.set(VPDefs[J], StridedVec);
3939 ++J;
3940 }
3941 return;
3942 }
3943
3944 // The sub vector type for current instruction.
3945 auto *SubVT = VectorType::get(ScalarTy, State.VF);
3946
3947 // Vectorize the interleaved store group.
3948 Value *MaskForGaps =
3949 createBitMaskForGaps(State.Builder, State.VF.getKnownMinValue(), *Group);
3950 assert(((MaskForGaps != nullptr) == needsMaskForGaps()) &&
3951 "Mismatch between NeedsMaskForGaps and MaskForGaps");
3952 ArrayRef<VPValue *> StoredValues = getStoredValues();
3953 // Collect the stored vector from each member.
3954 SmallVector<Value *, 4> StoredVecs;
3955 unsigned StoredIdx = 0;
3956 for (unsigned i = 0; i < InterleaveFactor; i++) {
3957 assert((Group->getMember(i) || MaskForGaps) &&
3958 "Fail to get a member from an interleaved store group");
3959 Instruction *Member = Group->getMember(i);
3960
3961 // Skip the gaps in the group.
3962 if (!Member) {
3963 Value *Undef = PoisonValue::get(SubVT);
3964 StoredVecs.push_back(Undef);
3965 continue;
3966 }
3967
3968 Value *StoredVec = State.get(StoredValues[StoredIdx]);
3969 ++StoredIdx;
3970
3971 if (Group->isReverse())
3972 StoredVec = State.Builder.CreateVectorReverse(StoredVec, "reverse");
3973
3974 // If this member has different type, cast it to a unified type.
3975
3976 if (StoredVec->getType() != SubVT)
3977 StoredVec = createBitOrPointerCast(State.Builder, StoredVec, SubVT, DL);
3978
3979 StoredVecs.push_back(StoredVec);
3980 }
3981
3982 // Interleave all the smaller vectors into one wider vector.
3983 Value *IVec = interleaveVectors(State.Builder, StoredVecs, "interleaved.vec");
3984 Instruction *NewStoreInstr;
3985 if (BlockInMask || MaskForGaps) {
3986 Value *GroupMask = CreateGroupMask(MaskForGaps);
3987 NewStoreInstr = State.Builder.CreateMaskedStore(
3988 IVec, ResAddr, Group->getAlign(), GroupMask);
3989 } else
3990 NewStoreInstr =
3991 State.Builder.CreateAlignedStore(IVec, ResAddr, Group->getAlign());
3992
3993 applyMetadata(*NewStoreInstr);
3994 // TODO: Also manage existing metadata using VPIRMetadata.
3995 Group->addMetadata(NewStoreInstr);
3996}
3997
3998#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4000 VPSlotTracker &SlotTracker) const {
4002 O << Indent << "INTERLEAVE-GROUP with factor " << IG->getFactor() << " at ";
4003 IG->getInsertPos()->printAsOperand(O, false);
4004 O << ", ";
4006 VPValue *Mask = getMask();
4007 if (Mask) {
4008 O << ", ";
4009 Mask->printAsOperand(O, SlotTracker);
4010 }
4011
4012 unsigned OpIdx = 0;
4013 for (unsigned i = 0; i < IG->getFactor(); ++i) {
4014 if (!IG->getMember(i))
4015 continue;
4016 if (getNumStoreOperands() > 0) {
4017 O << "\n" << Indent << " store ";
4019 O << " to index " << i;
4020 } else {
4021 O << "\n" << Indent << " ";
4023 O << " = load from index " << i;
4024 }
4025 ++OpIdx;
4026 }
4027}
4028#endif
4029
4031 assert(!State.Lane && "Interleave group being replicated.");
4032 assert(State.VF.isScalable() &&
4033 "Only support scalable VF for EVL tail-folding.");
4035 "Masking gaps for scalable vectors is not yet supported.");
4037 Instruction *Instr = Group->getInsertPos();
4038
4039 // Prepare for the vector type of the interleaved load/store.
4040 Type *ScalarTy = getLoadStoreType(Instr);
4041 unsigned InterleaveFactor = Group->getFactor();
4042 assert(InterleaveFactor <= 8 &&
4043 "Unsupported deinterleave/interleave factor for scalable vectors");
4044 ElementCount WideVF = State.VF * InterleaveFactor;
4045 auto *VecTy = VectorType::get(ScalarTy, WideVF);
4046
4047 VPValue *Addr = getAddr();
4048 Value *ResAddr = State.get(Addr, VPLane(0));
4049 Value *EVL = State.get(getEVL(), VPLane(0));
4050 Value *InterleaveEVL = State.Builder.CreateMul(
4051 EVL, ConstantInt::get(EVL->getType(), InterleaveFactor), "interleave.evl",
4052 /* NUW= */ true, /* NSW= */ true);
4053 LLVMContext &Ctx = State.Builder.getContext();
4054
4055 Value *GroupMask = nullptr;
4056 if (VPValue *BlockInMask = getMask()) {
4057 SmallVector<Value *> Ops(InterleaveFactor, State.get(BlockInMask));
4058 GroupMask = interleaveVectors(State.Builder, Ops, "interleaved.mask");
4059 } else {
4060 GroupMask =
4061 State.Builder.CreateVectorSplat(WideVF, State.Builder.getTrue());
4062 }
4063
4064 // Vectorize the interleaved load group.
4065 if (isa<LoadInst>(Instr)) {
4066 CallInst *NewLoad = State.Builder.CreateIntrinsic(
4067 VecTy, Intrinsic::vp_load, {ResAddr, GroupMask, InterleaveEVL}, nullptr,
4068 "wide.vp.load");
4069 NewLoad->addParamAttr(0,
4070 Attribute::getWithAlignment(Ctx, Group->getAlign()));
4071
4072 applyMetadata(*NewLoad);
4073 // TODO: Also manage existing metadata using VPIRMetadata.
4074 Group->addMetadata(NewLoad);
4075
4076 // Scalable vectors cannot use arbitrary shufflevectors (only splats),
4077 // so must use intrinsics to deinterleave.
4078 NewLoad = State.Builder.CreateIntrinsic(
4079 Intrinsic::getDeinterleaveIntrinsicID(InterleaveFactor),
4080 NewLoad->getType(), NewLoad,
4081 /*FMFSource=*/nullptr, "strided.vec");
4082
4083 const DataLayout &DL = Instr->getDataLayout();
4084 for (unsigned I = 0, J = 0; I < InterleaveFactor; ++I) {
4085 Instruction *Member = Group->getMember(I);
4086 // Skip the gaps in the group.
4087 if (!Member)
4088 continue;
4089
4090 Value *StridedVec = State.Builder.CreateExtractValue(NewLoad, I);
4091 // If this member has different type, cast the result type.
4092 if (Member->getType() != ScalarTy) {
4093 VectorType *OtherVTy = VectorType::get(Member->getType(), State.VF);
4094 StridedVec =
4095 createBitOrPointerCast(State.Builder, StridedVec, OtherVTy, DL);
4096 }
4097
4098 State.set(getVPValue(J), StridedVec);
4099 ++J;
4100 }
4101 return;
4102 } // End for interleaved load.
4103
4104 // The sub vector type for current instruction.
4105 auto *SubVT = VectorType::get(ScalarTy, State.VF);
4106 // Vectorize the interleaved store group.
4107 ArrayRef<VPValue *> StoredValues = getStoredValues();
4108 // Collect the stored vector from each member.
4109 SmallVector<Value *, 4> StoredVecs;
4110 const DataLayout &DL = Instr->getDataLayout();
4111 for (unsigned I = 0, StoredIdx = 0; I < InterleaveFactor; I++) {
4112 Instruction *Member = Group->getMember(I);
4113 // Skip the gaps in the group.
4114 if (!Member) {
4115 StoredVecs.push_back(PoisonValue::get(SubVT));
4116 continue;
4117 }
4118
4119 Value *StoredVec = State.get(StoredValues[StoredIdx]);
4120 // If this member has different type, cast it to a unified type.
4121 if (StoredVec->getType() != SubVT)
4122 StoredVec = createBitOrPointerCast(State.Builder, StoredVec, SubVT, DL);
4123
4124 StoredVecs.push_back(StoredVec);
4125 ++StoredIdx;
4126 }
4127
4128 // Interleave all the smaller vectors into one wider vector.
4129 Value *IVec = interleaveVectors(State.Builder, StoredVecs, "interleaved.vec");
4130 CallInst *NewStore =
4131 State.Builder.CreateIntrinsic(Type::getVoidTy(Ctx), Intrinsic::vp_store,
4132 {IVec, ResAddr, GroupMask, InterleaveEVL});
4133 NewStore->addParamAttr(1,
4134 Attribute::getWithAlignment(Ctx, Group->getAlign()));
4135
4136 applyMetadata(*NewStore);
4137 // TODO: Also manage existing metadata using VPIRMetadata.
4138 Group->addMetadata(NewStore);
4139}
4140
4141#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4143 VPSlotTracker &SlotTracker) const {
4145 O << Indent << "INTERLEAVE-GROUP with factor " << IG->getFactor() << " at ";
4146 IG->getInsertPos()->printAsOperand(O, false);
4147 O << ", ";
4149 O << ", ";
4151 if (VPValue *Mask = getMask()) {
4152 O << ", ";
4153 Mask->printAsOperand(O, SlotTracker);
4154 }
4155
4156 unsigned OpIdx = 0;
4157 for (unsigned i = 0; i < IG->getFactor(); ++i) {
4158 if (!IG->getMember(i))
4159 continue;
4160 if (getNumStoreOperands() > 0) {
4161 O << "\n" << Indent << " vp.store ";
4163 O << " to index " << i;
4164 } else {
4165 O << "\n" << Indent << " ";
4167 O << " = vp.load from index " << i;
4168 }
4169 ++OpIdx;
4170 }
4171}
4172#endif
4173
4175 VPCostContext &Ctx) const {
4176 Instruction *InsertPos = getInsertPos();
4177 // Find the VPValue index of the interleave group. We need to skip gaps.
4178 unsigned InsertPosIdx = 0;
4179 for (unsigned Idx = 0; IG->getFactor(); ++Idx)
4180 if (auto *Member = IG->getMember(Idx)) {
4181 if (Member == InsertPos)
4182 break;
4183 InsertPosIdx++;
4184 }
4185 Type *ValTy = Ctx.Types.inferScalarType(
4186 getNumDefinedValues() > 0 ? getVPValue(InsertPosIdx)
4187 : getStoredValues()[InsertPosIdx]);
4188 auto *VectorTy = cast<VectorType>(toVectorTy(ValTy, VF));
4189 unsigned AS = cast<PointerType>(Ctx.Types.inferScalarType(getAddr()))
4190 ->getAddressSpace();
4191
4192 unsigned InterleaveFactor = IG->getFactor();
4193 auto *WideVecTy = VectorType::get(ValTy, VF * InterleaveFactor);
4194
4195 // Holds the indices of existing members in the interleaved group.
4197 for (unsigned IF = 0; IF < InterleaveFactor; IF++)
4198 if (IG->getMember(IF))
4199 Indices.push_back(IF);
4200
4201 // Calculate the cost of the whole interleaved group.
4202 InstructionCost Cost = Ctx.TTI.getInterleavedMemoryOpCost(
4203 InsertPos->getOpcode(), WideVecTy, IG->getFactor(), Indices,
4204 IG->getAlign(), AS, Ctx.CostKind, getMask(), NeedsMaskForGaps);
4205
4206 if (!IG->isReverse())
4207 return Cost;
4208
4209 return Cost + IG->getNumMembers() *
4210 Ctx.TTI.getShuffleCost(TargetTransformInfo::SK_Reverse,
4211 VectorTy, VectorTy, {}, Ctx.CostKind,
4212 0);
4213}
4214
4215#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4217 VPSlotTracker &SlotTracker) const {
4218 O << Indent << "EMIT ";
4220 O << " = CANONICAL-INDUCTION ";
4222}
4223#endif
4224
4226 return vputils::onlyScalarValuesUsed(this) &&
4227 (!IsScalable || vputils::onlyFirstLaneUsed(this));
4228}
4229
4230#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4232 raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const {
4233 assert((getNumOperands() == 3 || getNumOperands() == 5) &&
4234 "unexpected number of operands");
4235 O << Indent << "EMIT ";
4237 O << " = WIDEN-POINTER-INDUCTION ";
4239 O << ", ";
4241 O << ", ";
4243 if (getNumOperands() == 5) {
4244 O << ", ";
4246 O << ", ";
4248 }
4249}
4250
4252 VPSlotTracker &SlotTracker) const {
4253 O << Indent << "EMIT ";
4255 O << " = EXPAND SCEV " << *Expr;
4256}
4257#endif
4258
4260 Value *CanonicalIV = State.get(getOperand(0), /*IsScalar*/ true);
4261 Type *STy = CanonicalIV->getType();
4262 IRBuilder<> Builder(State.CFG.PrevBB->getTerminator());
4263 ElementCount VF = State.VF;
4264 Value *VStart = VF.isScalar()
4265 ? CanonicalIV
4266 : Builder.CreateVectorSplat(VF, CanonicalIV, "broadcast");
4267 Value *VStep = createStepForVF(Builder, STy, VF, getUnrollPart(*this));
4268 if (VF.isVector()) {
4269 VStep = Builder.CreateVectorSplat(VF, VStep);
4270 VStep =
4271 Builder.CreateAdd(VStep, Builder.CreateStepVector(VStep->getType()));
4272 }
4273 Value *CanonicalVectorIV = Builder.CreateAdd(VStart, VStep, "vec.iv");
4274 State.set(this, CanonicalVectorIV);
4275}
4276
4277#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4279 VPSlotTracker &SlotTracker) const {
4280 O << Indent << "EMIT ";
4282 O << " = WIDEN-CANONICAL-INDUCTION ";
4284}
4285#endif
4286
4288 auto &Builder = State.Builder;
4289 // Create a vector from the initial value.
4290 auto *VectorInit = getStartValue()->getLiveInIRValue();
4291
4292 Type *VecTy = State.VF.isScalar()
4293 ? VectorInit->getType()
4294 : VectorType::get(VectorInit->getType(), State.VF);
4295
4296 BasicBlock *VectorPH =
4297 State.CFG.VPBB2IRBB.at(getParent()->getCFGPredecessor(0));
4298 if (State.VF.isVector()) {
4299 auto *IdxTy = Builder.getInt32Ty();
4300 auto *One = ConstantInt::get(IdxTy, 1);
4301 IRBuilder<>::InsertPointGuard Guard(Builder);
4302 Builder.SetInsertPoint(VectorPH->getTerminator());
4303 auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, State.VF);
4304 auto *LastIdx = Builder.CreateSub(RuntimeVF, One);
4305 VectorInit = Builder.CreateInsertElement(
4306 PoisonValue::get(VecTy), VectorInit, LastIdx, "vector.recur.init");
4307 }
4308
4309 // Create a phi node for the new recurrence.
4310 PHINode *Phi = PHINode::Create(VecTy, 2, "vector.recur");
4311 Phi->insertBefore(State.CFG.PrevBB->getFirstInsertionPt());
4312 Phi->addIncoming(VectorInit, VectorPH);
4313 State.set(this, Phi);
4314}
4315
4318 VPCostContext &Ctx) const {
4319 if (VF.isScalar())
4320 return Ctx.TTI.getCFInstrCost(Instruction::PHI, Ctx.CostKind);
4321
4322 return 0;
4323}
4324
4325#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4327 raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const {
4328 O << Indent << "FIRST-ORDER-RECURRENCE-PHI ";
4330 O << " = phi ";
4332}
4333#endif
4334
4336 // Reductions do not have to start at zero. They can start with
4337 // any loop invariant values.
4338 VPValue *StartVPV = getStartValue();
4339
4340 // In order to support recurrences we need to be able to vectorize Phi nodes.
4341 // Phi nodes have cycles, so we need to vectorize them in two stages. This is
4342 // stage #1: We create a new vector PHI node with no incoming edges. We'll use
4343 // this value when we vectorize all of the instructions that use the PHI.
4344 BasicBlock *VectorPH =
4345 State.CFG.VPBB2IRBB.at(getParent()->getCFGPredecessor(0));
4346 bool ScalarPHI = State.VF.isScalar() || isInLoop();
4347 Value *StartV = State.get(StartVPV, ScalarPHI);
4348 Type *VecTy = StartV->getType();
4349
4350 BasicBlock *HeaderBB = State.CFG.PrevBB;
4351 assert(State.CurrentParentLoop->getHeader() == HeaderBB &&
4352 "recipe must be in the vector loop header");
4353 auto *Phi = PHINode::Create(VecTy, 2, "vec.phi");
4354 Phi->insertBefore(HeaderBB->getFirstInsertionPt());
4355 State.set(this, Phi, isInLoop());
4356
4357 Phi->addIncoming(StartV, VectorPH);
4358}
4359
4360#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4362 VPSlotTracker &SlotTracker) const {
4363 O << Indent << "WIDEN-REDUCTION-PHI ";
4364
4366 O << " = phi ";
4368 if (getVFScaleFactor() > 1)
4369 O << " (VF scaled by 1/" << getVFScaleFactor() << ")";
4370}
4371#endif
4372
4374 Value *Op0 = State.get(getOperand(0));
4375 Type *VecTy = Op0->getType();
4376 Instruction *VecPhi = State.Builder.CreatePHI(VecTy, 2, Name);
4377 State.set(this, VecPhi);
4378}
4379
4380#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4382 VPSlotTracker &SlotTracker) const {
4383 O << Indent << "WIDEN-PHI ";
4384
4386 O << " = phi ";
4388}
4389#endif
4390
4392 BasicBlock *VectorPH =
4393 State.CFG.VPBB2IRBB.at(getParent()->getCFGPredecessor(0));
4394 Value *StartMask = State.get(getOperand(0));
4395 PHINode *Phi =
4396 State.Builder.CreatePHI(StartMask->getType(), 2, "active.lane.mask");
4397 Phi->addIncoming(StartMask, VectorPH);
4398 State.set(this, Phi);
4399}
4400
4401#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4403 VPSlotTracker &SlotTracker) const {
4404 O << Indent << "ACTIVE-LANE-MASK-PHI ";
4405
4407 O << " = phi ";
4409}
4410#endif
4411
4412#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4414 VPSlotTracker &SlotTracker) const {
4415 O << Indent << "EXPLICIT-VECTOR-LENGTH-BASED-IV-PHI ";
4416
4418 O << " = phi ";
4420}
4421#endif
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
static MCDisassembler::DecodeStatus addOperand(MCInst &Inst, const MCOperand &Opnd)
AMDGPU Lower Kernel Arguments
AMDGPU Register Bank Select
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
static std::pair< Value *, APInt > getMask(Value *WideMask, unsigned Factor, ElementCount LeafValueEC)
const AbstractManglingParser< Derived, Alloc >::OperatorInfo AbstractManglingParser< Derived, Alloc >::Ops[]
This file provides a LoopVectorizationPlanner class.
static const SCEV * getAddressAccessSCEV(Value *Ptr, LoopVectorizationLegality *Legal, PredicatedScalarEvolution &PSE, const Loop *TheLoop)
Gets Address Access SCEV after verifying that the access pattern is loop invariant except the inducti...
#define F(x, y, z)
Definition MD5.cpp:54
#define I(x, y, z)
Definition MD5.cpp:57
static bool isOrdered(const Instruction *I)
MachineInstr unsigned OpIdx
uint64_t IntrinsicInst * II
const SmallVectorImpl< MachineOperand > & Cond
This file contains some templates that are useful if you are working with the STL at all.
This file defines the SmallVector class.
#define LLVM_DEBUG(...)
Definition Debug.h:114
static TableGen::Emitter::OptClass< SkeletonEmitter > X("gen-skeleton-class", "Generate example skeleton class")
static SymbolRef::Type getType(const Symbol *Sym)
Definition TapiFile.cpp:39
This file contains the declarations of different VPlan-related auxiliary helpers.
static Instruction * createReverseEVL(IRBuilderBase &Builder, Value *Operand, Value *EVL, const Twine &Name)
Use all-true mask for reverse rather than actual mask, as it avoids a dependence w/o affecting the re...
static Value * interleaveVectors(IRBuilderBase &Builder, ArrayRef< Value * > Vals, const Twine &Name)
Return a vector containing interleaved elements from multiple smaller input vectors.
static InstructionCost getCostForIntrinsics(Intrinsic::ID ID, ArrayRef< const VPValue * > Operands, const VPRecipeWithIRFlags &R, ElementCount VF, VPCostContext &Ctx)
Compute the cost for the intrinsic ID with Operands, produced by R.
static Value * createBitOrPointerCast(IRBuilderBase &Builder, Value *V, VectorType *DstVTy, const DataLayout &DL)
SmallVector< Value *, 2 > VectorParts
static bool isUsedByLoadStoreAddress(const VPUser *V)
Returns true if V is used as part of the address of another load or store.
static void scalarizeInstruction(const Instruction *Instr, VPReplicateRecipe *RepRecipe, const VPLane &Lane, VPTransformState &State)
A helper function to scalarize a single Instruction in the innermost loop.
static Constant * getSignedIntOrFpConstant(Type *Ty, int64_t C)
A helper function that returns an integer or floating-point constant with value C.
static std::optional< unsigned > getOpcode(ArrayRef< VPValue * > Values)
Returns the opcode of Values or ~0 if they do not all agree.
Definition VPlanSLP.cpp:247
This file contains the declarations of the Vectorization Plan base classes:
static const uint32_t IV[8]
Definition blake3_impl.h:83
void printAsOperand(OutputBuffer &OB, Prec P=Prec::Default, bool StrictlyWorse=false) const
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Definition ArrayRef.h:40
size_t size() const
size - Get the array size.
Definition ArrayRef.h:142
bool empty() const
empty - Check if the array is empty.
Definition ArrayRef.h:137
static LLVM_ABI Attribute getWithAlignment(LLVMContext &Context, Align Alignment)
Return a uniquified Attribute object that has the specific alignment set.
LLVM Basic Block Representation.
Definition BasicBlock.h:62
LLVM_ABI const_iterator getFirstInsertionPt() const
Returns an iterator to the first instruction in this block that is suitable for inserting a non-PHI i...
LLVM_ABI InstListType::const_iterator getFirstNonPHIIt() const
Returns an iterator to the first instruction in this block that is not a PHINode instruction.
LLVM_ABI const BasicBlock * getSinglePredecessor() const
Return the predecessor of this block if it has a single predecessor block.
const Instruction * getTerminator() const LLVM_READONLY
Returns the terminator instruction if the block is well formed or null if the block is not well forme...
Definition BasicBlock.h:233
void setSuccessor(unsigned idx, BasicBlock *NewSucc)
void addParamAttr(unsigned ArgNo, Attribute::AttrKind Kind)
Adds the attribute to the indicated argument.
This class represents a function call, abstracting a target machine's calling convention.
static LLVM_ABI bool isBitOrNoopPointerCastable(Type *SrcTy, Type *DestTy, const DataLayout &DL)
Check whether a bitcast, inttoptr, or ptrtoint cast between these types is valid and a no-op.
static Type * makeCmpResultType(Type *opnd_type)
Create a result type for fcmp/icmp.
Definition InstrTypes.h:982
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
Definition InstrTypes.h:676
@ ICMP_UGT
unsigned greater than
Definition InstrTypes.h:699
@ ICMP_ULT
unsigned less than
Definition InstrTypes.h:701
static LLVM_ABI StringRef getPredicateName(Predicate P)
An abstraction over a floating-point predicate, and a pack of an integer predicate with samesign info...
This is the shared class of boolean and integer constants.
Definition Constants.h:87
static ConstantInt * getSigned(IntegerType *Ty, int64_t V)
Return a ConstantInt with the specified value for the specified type.
Definition Constants.h:136
uint64_t getZExtValue() const
Return the constant as a 64-bit unsigned integer value after it has been zero extended as appropriate...
Definition Constants.h:168
This is an important base class in LLVM.
Definition Constant.h:43
static LLVM_ABI Constant * getNullValue(Type *Ty)
Constructor to create a '0' constant of arbitrary type.
A parsed version of the target data layout string in and methods for querying it.
Definition DataLayout.h:64
A debug info location.
Definition DebugLoc.h:123
constexpr bool isVector() const
One or more elements.
Definition TypeSize.h:324
static constexpr ElementCount getScalable(ScalarTy MinVal)
Definition TypeSize.h:312
static constexpr ElementCount getFixed(ScalarTy MinVal)
Definition TypeSize.h:309
constexpr bool isScalar() const
Exactly one element.
Definition TypeSize.h:320
Convenience struct for specifying and reasoning about fast-math flags.
Definition FMF.h:22
LLVM_ABI void print(raw_ostream &O) const
Print fast-math flags to O.
Definition Operator.cpp:272
void setAllowContract(bool B=true)
Definition FMF.h:90
bool noSignedZeros() const
Definition FMF.h:67
bool noInfs() const
Definition FMF.h:66
void setAllowReciprocal(bool B=true)
Definition FMF.h:87
bool allowReciprocal() const
Definition FMF.h:68
void setNoSignedZeros(bool B=true)
Definition FMF.h:84
bool allowReassoc() const
Flag queries.
Definition FMF.h:64
bool approxFunc() const
Definition FMF.h:70
void setNoNaNs(bool B=true)
Definition FMF.h:78
void setAllowReassoc(bool B=true)
Flag setters.
Definition FMF.h:75
bool noNaNs() const
Definition FMF.h:65
void setApproxFunc(bool B=true)
Definition FMF.h:93
void setNoInfs(bool B=true)
Definition FMF.h:81
bool allowContract() const
Definition FMF.h:69
Class to represent function types.
Type * getParamType(unsigned i) const
Parameter type accessors.
bool willReturn() const
Determine if the function will return.
Definition Function.h:661
bool doesNotThrow() const
Determine if the function cannot unwind.
Definition Function.h:594
Type * getReturnType() const
Returns the type of the ret val.
Definition Function.h:214
Common base class shared among various IRBuilders.
Definition IRBuilder.h:114
Value * CreateInsertElement(Type *VecTy, Value *NewElt, Value *Idx, const Twine &Name="")
Definition IRBuilder.h:2579
IntegerType * getInt1Ty()
Fetch the type representing a single bit.
Definition IRBuilder.h:547
Value * CreateInsertValue(Value *Agg, Value *Val, ArrayRef< unsigned > Idxs, const Twine &Name="")
Definition IRBuilder.h:2633
Value * CreateExtractElement(Value *Vec, Value *Idx, const Twine &Name="")
Definition IRBuilder.h:2567
LLVM_ABI Value * CreateVectorSplice(Value *V1, Value *V2, int64_t Imm, const Twine &Name="")
Return a vector splice intrinsic if using scalable vectors, otherwise return a shufflevector.
LLVM_ABI Value * CreateVectorSplat(unsigned NumElts, Value *V, const Twine &Name="")
Return a vector value that contains.
Value * CreateExtractValue(Value *Agg, ArrayRef< unsigned > Idxs, const Twine &Name="")
Definition IRBuilder.h:2626
LLVM_ABI Value * CreateSelect(Value *C, Value *True, Value *False, const Twine &Name="", Instruction *MDFrom=nullptr)
Value * CreateFreeze(Value *V, const Twine &Name="")
Definition IRBuilder.h:2645
IntegerType * getInt32Ty()
Fetch the type representing a 32-bit integer.
Definition IRBuilder.h:562
Value * CreatePtrAdd(Value *Ptr, Value *Offset, const Twine &Name="", GEPNoWrapFlags NW=GEPNoWrapFlags::none())
Definition IRBuilder.h:2039
void setFastMathFlags(FastMathFlags NewFMF)
Set the fast-math flags to be used with generated fp-math operators.
Definition IRBuilder.h:345
IntegerType * getInt64Ty()
Fetch the type representing a 64-bit integer.
Definition IRBuilder.h:567
Value * CreateICmpNE(Value *LHS, Value *RHS, const Twine &Name="")
Definition IRBuilder.h:2336
ConstantInt * getInt64(uint64_t C)
Get a constant 64-bit value.
Definition IRBuilder.h:527
LLVM_ABI CallInst * CreateOrReduce(Value *Src)
Create a vector int OR reduction intrinsic of the source vector.
Value * CreateLogicalAnd(Value *Cond1, Value *Cond2, const Twine &Name="", Instruction *MDFrom=nullptr)
Definition IRBuilder.h:1725
LLVM_ABI CallInst * CreateIntrinsic(Intrinsic::ID ID, ArrayRef< Type * > Types, ArrayRef< Value * > Args, FMFSource FMFSource={}, const Twine &Name="")
Create a call to intrinsic ID with Args, mangled using Types.
ConstantInt * getInt32(uint32_t C)
Get a constant 32-bit value.
Definition IRBuilder.h:522
Value * CreateCmp(CmpInst::Predicate Pred, Value *LHS, Value *RHS, const Twine &Name="", MDNode *FPMathTag=nullptr)
Definition IRBuilder.h:2466
Value * CreateNot(Value *V, const Twine &Name="")
Definition IRBuilder.h:1808
Value * CreateICmpEQ(Value *LHS, Value *RHS, const Twine &Name="")
Definition IRBuilder.h:2332
Value * CreateCountTrailingZeroElems(Type *ResTy, Value *Mask, bool ZeroIsPoison=true, const Twine &Name="")
Create a call to llvm.experimental_cttz_elts.
Definition IRBuilder.h:1134
Value * CreateSub(Value *LHS, Value *RHS, const Twine &Name="", bool HasNUW=false, bool HasNSW=false)
Definition IRBuilder.h:1420
BranchInst * CreateCondBr(Value *Cond, BasicBlock *True, BasicBlock *False, MDNode *BranchWeights=nullptr, MDNode *Unpredictable=nullptr)
Create a conditional 'br Cond, TrueDest, FalseDest' instruction.
Definition IRBuilder.h:1197
Value * CreateZExt(Value *V, Type *DestTy, const Twine &Name="", bool IsNonNeg=false)
Definition IRBuilder.h:2085
Value * CreateAdd(Value *LHS, Value *RHS, const Twine &Name="", bool HasNUW=false, bool HasNSW=false)
Definition IRBuilder.h:1403
ConstantInt * getFalse()
Get the constant value for i1 false.
Definition IRBuilder.h:507
Value * CreateBinOp(Instruction::BinaryOps Opc, Value *LHS, Value *RHS, const Twine &Name="", MDNode *FPMathTag=nullptr)
Definition IRBuilder.h:1708
Value * CreateICmpUGE(Value *LHS, Value *RHS, const Twine &Name="")
Definition IRBuilder.h:2344
Value * CreateICmp(CmpInst::Predicate P, Value *LHS, Value *RHS, const Twine &Name="")
Definition IRBuilder.h:2442
Value * CreateOr(Value *LHS, Value *RHS, const Twine &Name="", bool IsDisjoint=false)
Definition IRBuilder.h:1573
Value * CreateMul(Value *LHS, Value *RHS, const Twine &Name="", bool HasNUW=false, bool HasNSW=false)
Definition IRBuilder.h:1437
This provides a uniform API for creating instructions and inserting them into a basic block: either a...
Definition IRBuilder.h:2788
static InstructionCost getInvalid(CostType Val=0)
bool isCast() const
bool isBinaryOp() const
LLVM_ABI InstListType::iterator eraseFromParent()
This method unlinks 'this' from the containing basic block and deletes it.
const char * getOpcodeName() const
unsigned getOpcode() const
Returns a member of one of the enums like Instruction::Add.
bool isUnaryOp() const
static LLVM_ABI IntegerType * get(LLVMContext &C, unsigned NumBits)
This static method is the primary way of constructing an IntegerType.
Definition Type.cpp:318
The group of interleaved loads/stores sharing the same stride and close to each other.
uint32_t getFactor() const
InstTy * getMember(uint32_t Index) const
Get the member with the given index Index.
bool isReverse() const
InstTy * getInsertPos() const
void addMetadata(InstTy *NewInst) const
Add metadata (e.g.
Align getAlign() const
This is an important class for using LLVM in a threaded context.
Definition LLVMContext.h:68
Represents a single loop in the control flow graph.
Definition LoopInfo.h:40
Information for memory intrinsic cost model.
Root of the metadata hierarchy.
Definition Metadata.h:64
LLVM_ABI void print(raw_ostream &OS, const Module *M=nullptr, bool IsForDebug=false) const
Print.
A Module instance is used to store all the information related to an LLVM module.
Definition Module.h:67
void addIncoming(Value *V, BasicBlock *BB)
Add an incoming value to the end of the PHI list.
static PHINode * Create(Type *Ty, unsigned NumReservedValues, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
Constructors - NumReservedValues is a hint for the number of incoming edges that this phi node will h...
static LLVM_ABI PoisonValue * get(Type *T)
Static factory methods - Return an 'poison' object of the specified type.
static bool isSignedRecurrenceKind(RecurKind Kind)
Returns true if recurrece kind is a signed redux kind.
static LLVM_ABI unsigned getOpcode(RecurKind Kind)
Returns the opcode corresponding to the RecurrenceKind.
static bool isAnyOfRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is of the form select(cmp(),x,y) where one of (x,...
static bool isFindLastIVRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is of the form select(cmp(),x,y) where one of (x,...
static bool isFindIVRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is of the form select(cmp(),x,y) where one of (x,...
static bool isMinMaxRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is any min/max kind.
This class represents an analyzed expression in the program.
The main scalar evolution driver.
This class represents the LLVM 'select' instruction.
This class provides computation of slot numbers for LLVM Assembly writing.
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
reference emplace_back(ArgTypes &&... Args)
void append(ItTy in_start, ItTy in_end)
Add the specified range to the end of the SmallVector.
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
StringRef - Represent a constant reference to a string, i.e.
Definition StringRef.h:55
static LLVM_ABI PartialReductionExtendKind getPartialReductionExtendKind(Instruction *I)
Get the kind of extension that an instruction represents.
static LLVM_ABI OperandValueInfo getOperandInfo(const Value *V)
Collect properties of V used in cost analysis, e.g. OP_PowerOf2.
@ TCC_Free
Expected to fold away in lowering.
@ SK_Splice
Concatenates elements from the first input vector with elements of the second input vector.
@ SK_Reverse
Reverse the order of the vector.
CastContextHint
Represents a hint about the context in which a cast is used.
@ Reversed
The cast is used with a reversed load/store.
@ Masked
The cast is used with a masked load/store.
@ None
The cast is not used with a load/store of any kind.
@ Normal
The cast is used with a normal load/store.
@ Interleave
The cast is used with an interleaved load/store.
@ GatherScatter
The cast is used with a gather/scatter.
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
Definition Twine.h:82
The instances of the Type class are immutable: once they are created, they are never changed.
Definition Type.h:45
static LLVM_ABI IntegerType * getInt64Ty(LLVMContext &C)
Definition Type.cpp:297
bool isVectorTy() const
True if this is an instance of VectorType.
Definition Type.h:273
static LLVM_ABI IntegerType * getInt32Ty(LLVMContext &C)
Definition Type.cpp:296
bool isPointerTy() const
True if this is an instance of PointerType.
Definition Type.h:267
static LLVM_ABI Type * getVoidTy(LLVMContext &C)
Definition Type.cpp:280
Type * getScalarType() const
If this is a vector type, return the element type, otherwise return 'this'.
Definition Type.h:352
bool isStructTy() const
True if this is an instance of StructType.
Definition Type.h:261
LLVMContext & getContext() const
Return the LLVMContext in which this type was uniqued.
Definition Type.h:128
LLVM_ABI unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type.
Definition Type.cpp:230
static LLVM_ABI IntegerType * getInt1Ty(LLVMContext &C)
Definition Type.cpp:293
bool isFloatingPointTy() const
Return true if this is one of the floating-point types.
Definition Type.h:184
bool isIntegerTy() const
True if this is an instance of IntegerType.
Definition Type.h:240
static LLVM_ABI IntegerType * getIntNTy(LLVMContext &C, unsigned N)
Definition Type.cpp:300
bool isVoidTy() const
Return true if this is 'void'.
Definition Type.h:139
value_op_iterator value_op_end()
Definition User.h:313
void setOperand(unsigned i, Value *Val)
Definition User.h:237
Value * getOperand(unsigned i) const
Definition User.h:232
value_op_iterator value_op_begin()
Definition User.h:310
void execute(VPTransformState &State) override
Generate the active lane mask phi of the vector loop.
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
RecipeListTy & getRecipeList()
Returns a reference to the list of recipes.
Definition VPlan.h:4033
iterator end()
Definition VPlan.h:4017
void insert(VPRecipeBase *Recipe, iterator InsertPt)
Definition VPlan.h:4046
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPWidenMemoryRecipe.
VPValue * getIncomingValue(unsigned Idx) const
Return incoming value number Idx.
Definition VPlan.h:2557
unsigned getNumIncomingValues() const
Return the number of incoming values, taking into account when normalized the first incoming value wi...
Definition VPlan.h:2552
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
VPBlockBase is the building block of the Hierarchical Control-Flow Graph.
Definition VPlan.h:81
const VPBlocksTy & getPredecessors() const
Definition VPlan.h:204
VPlan * getPlan()
Definition VPlan.cpp:161
void printAsOperand(raw_ostream &OS, bool PrintType=false) const
Definition VPlan.h:349
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPBranchOnMaskRecipe.
void execute(VPTransformState &State) override
Generate the extraction of the appropriate bit from the block mask and the conditional branch.
VPlan-based builder utility analogous to IRBuilder.
LLVM_ABI_FOR_TEST void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
This class augments a recipe with a set of VPValues defined by the recipe.
Definition VPlanValue.h:305
LLVM_ABI_FOR_TEST void dump() const
Dump the VPDef to stderr (for debugging).
Definition VPlan.cpp:122
unsigned getNumDefinedValues() const
Returns the number of values defined by the VPDef.
Definition VPlanValue.h:426
ArrayRef< VPValue * > definedValues()
Returns an ArrayRef of the values defined by the VPDef.
Definition VPlanValue.h:421
VPValue * getVPSingleValue()
Returns the only VPValue defined by the VPDef.
Definition VPlanValue.h:399
VPValue * getVPValue(unsigned I)
Returns the VPValue with index I defined by the VPDef.
Definition VPlanValue.h:411
friend class VPValue
Definition VPlanValue.h:306
unsigned getVPDefID() const
Definition VPlanValue.h:431
VPValue * getStepValue() const
Definition VPlan.h:3780
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
VPValue * getStartValue() const
Definition VPlan.h:3779
LLVM_ABI_FOR_TEST void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void decompose()
Insert the recipes of the expression back into the VPlan, directly before the current recipe.
bool isSingleScalar() const
Returns true if the result of this VPExpressionRecipe is a single-scalar.
bool mayHaveSideEffects() const
Returns true if this expression contains recipes that may have side effects.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Compute the cost of this recipe either using a recipe's specialized implementation or using the legac...
bool mayReadOrWriteMemory() const
Returns true if this expression contains recipes that may read from or write to memory.
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this header phi recipe.
VPValue * getStartValue()
Returns the start value of the phi, if one is set.
Definition VPlan.h:2086
void execute(VPTransformState &State) override
Produce a vectorized histogram operation.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPHistogramRecipe.
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
VPValue * getMask() const
Return the mask operand if one was provided, or a null pointer if all lanes should be executed uncond...
Definition VPlan.h:1787
Class to record and manage LLVM IR flags.
Definition VPlan.h:609
FastMathFlagsTy FMFs
Definition VPlan.h:680
LLVM_ABI_FOR_TEST bool flagsValidForOpcode(unsigned Opcode) const
Returns true if the set flags are valid for Opcode.
WrapFlagsTy WrapFlags
Definition VPlan.h:674
CmpInst::Predicate CmpPredicate
Definition VPlan.h:673
void printFlags(raw_ostream &O) const
GEPNoWrapFlags GEPFlags
Definition VPlan.h:678
bool hasFastMathFlags() const
Returns true if the recipe has fast-math flags.
Definition VPlan.h:858
LLVM_ABI_FOR_TEST FastMathFlags getFastMathFlags() const
TruncFlagsTy TruncFlags
Definition VPlan.h:675
CmpInst::Predicate getPredicate() const
Definition VPlan.h:835
ExactFlagsTy ExactFlags
Definition VPlan.h:677
bool hasNoSignedWrap() const
Definition VPlan.h:884
void intersectFlags(const VPIRFlags &Other)
Only keep flags also present in Other.
GEPNoWrapFlags getGEPNoWrapFlags() const
Definition VPlan.h:850
bool hasPredicate() const
Returns true if the recipe has a comparison predicate.
Definition VPlan.h:853
DisjointFlagsTy DisjointFlags
Definition VPlan.h:676
unsigned AllFlags
Definition VPlan.h:682
bool hasNoUnsignedWrap() const
Definition VPlan.h:873
FCmpFlagsTy FCmpFlags
Definition VPlan.h:681
NonNegFlagsTy NonNegFlags
Definition VPlan.h:679
void applyFlags(Instruction &I) const
Apply the IR flags to I.
Definition VPlan.h:795
Instruction & getInstruction() const
Definition VPlan.h:1449
void extractLastLaneOfLastPartOfFirstOperand(VPBuilder &Builder)
Update the recipe's first operand to the last lane of the last part of the operand using Builder.
void execute(VPTransformState &State) override
The method which generates the output IR instructions that correspond to this VPRecipe,...
LLVM_ABI_FOR_TEST InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPIRInstruction.
VPIRInstruction(Instruction &I)
VPIRInstruction::create() should be used to create VPIRInstructions, as subclasses may need to be cre...
Definition VPlan.h:1424
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void intersect(const VPIRMetadata &MD)
Intersect this VPIRMetadata object with MD, keeping only metadata nodes that are common to both.
VPIRMetadata()=default
void print(raw_ostream &O, VPSlotTracker &SlotTracker) const
Print metadata with node IDs.
void applyMetadata(Instruction &I) const
Add all metadata to I.
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void execute(VPTransformState &State) override
Generate the instruction.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPInstruction.
bool doesGeneratePerAllLanes() const
Returns true if this VPInstruction generates scalar values for all lanes.
@ ExtractLane
Extracts a single lane (first operand) from a set of vector operands.
Definition VPlan.h:1129
@ ComputeAnyOfResult
Compute the final result of a AnyOf reduction with select(cmp(),x,y), where one of (x,...
Definition VPlan.h:1076
@ WideIVStep
Scale the first operand (vector step) by the second operand (scalar-step).
Definition VPlan.h:1119
@ ResumeForEpilogue
Explicit user for the resume phi of the canonical induction in the main VPlan, used by the epilogue v...
Definition VPlan.h:1132
@ Unpack
Extracts all lanes from its (non-scalable) vector operand.
Definition VPlan.h:1073
@ ReductionStartVector
Start vector for reductions with 3 operands: the original start value, the identity value for the red...
Definition VPlan.h:1123
@ BuildVector
Creates a fixed-width vector containing all operands.
Definition VPlan.h:1068
@ BuildStructVector
Given operands of (the same) struct type, creates a struct of fixed- width vectors each containing a ...
Definition VPlan.h:1065
@ VScale
Returns the value for vscale.
Definition VPlan.h:1134
@ CanonicalIVIncrementForPart
Definition VPlan.h:1056
bool hasResult() const
Definition VPlan.h:1200
bool opcodeMayReadOrWriteFromMemory() const
Returns true if the underlying opcode may read from or write to memory.
LLVM_DUMP_METHOD void dump() const
Print the VPInstruction to dbgs() (for debugging).
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the VPInstruction to O.
StringRef getName() const
Returns the symbolic name assigned to the VPInstruction.
Definition VPlan.h:1240
unsigned getOpcode() const
Definition VPlan.h:1184
VPInstruction(unsigned Opcode, ArrayRef< VPValue * > Operands, const VPIRFlags &Flags={}, const VPIRMetadata &MD={}, DebugLoc DL=DebugLoc::getUnknown(), const Twine &Name="")
bool usesFirstLaneOnly(const VPValue *Op) const override
Returns true if the recipe only uses the first lane of operand Op.
bool isVectorToScalar() const
Returns true if this VPInstruction produces a scalar value from a vector, e.g.
bool isSingleScalar() const
Returns true if this VPInstruction's operands are single scalars and the result is also a single scal...
void execute(VPTransformState &State) override
Generate the instruction.
bool usesFirstPartOnly(const VPValue *Op) const override
Returns true if the recipe only uses the first part of operand Op.
bool needsMaskForGaps() const
Return true if the access needs a mask because of the gaps.
Definition VPlan.h:2668
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this recipe.
Instruction * getInsertPos() const
Definition VPlan.h:2672
const InterleaveGroup< Instruction > * getInterleaveGroup() const
Definition VPlan.h:2670
VPValue * getMask() const
Return the mask used by this recipe.
Definition VPlan.h:2662
ArrayRef< VPValue * > getStoredValues() const
Return the VPValues stored by this interleave group.
Definition VPlan.h:2691
VPValue * getAddr() const
Return the address accessed by this recipe.
Definition VPlan.h:2656
VPValue * getEVL() const
The VPValue of the explicit vector length.
Definition VPlan.h:2766
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
unsigned getNumStoreOperands() const override
Returns the number of stored operands of this interleave group.
Definition VPlan.h:2779
void execute(VPTransformState &State) override
Generate the wide load or store, and shuffles.
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
unsigned getNumStoreOperands() const override
Returns the number of stored operands of this interleave group.
Definition VPlan.h:2729
void execute(VPTransformState &State) override
Generate the wide load or store, and shuffles.
In what follows, the term "input IR" refers to code that is fed into the vectorizer whereas the term ...
static VPLane getLastLaneForVF(const ElementCount &VF)
static VPLane getLaneFromEnd(const ElementCount &VF, unsigned Offset)
static VPLane getFirstLane()
virtual const VPRecipeBase * getAsRecipe() const =0
Return a VPRecipeBase* to the current object.
virtual unsigned getNumIncoming() const
Returns the number of incoming values, also number of incoming blocks.
Definition VPlan.h:1339
void removeIncomingValueFor(VPBlockBase *IncomingBlock) const
Removes the incoming value for IncomingBlock, which must be a predecessor.
const VPBasicBlock * getIncomingBlock(unsigned Idx) const
Returns the incoming block with index Idx.
Definition VPlan.h:4124
detail::zippy< llvm::detail::zip_first, VPUser::const_operand_range, const_incoming_blocks_range > incoming_values_and_blocks() const
Returns an iterator range over pairs of incoming values and corresponding incoming blocks.
Definition VPlan.h:1364
VPValue * getIncomingValue(unsigned Idx) const
Returns the incoming VPValue with index Idx.
Definition VPlan.h:1331
void printPhiOperands(raw_ostream &O, VPSlotTracker &SlotTracker) const
Print the recipe.
void execute(VPTransformState &State) override
Generates phi nodes for live-outs (from a replicate region) as needed to retain SSA form.
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
VPRecipeBase is a base class modeling a sequence of one or more output IR instructions.
Definition VPlan.h:387
bool mayReadFromMemory() const
Returns true if the recipe may read from memory.
bool mayHaveSideEffects() const
Returns true if the recipe may have side-effects.
virtual void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const =0
Each concrete VPRecipe prints itself, without printing common information, like debug info or metadat...
VPRegionBlock * getRegion()
Definition VPlan.h:4285
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override final
Print the recipe, delegating to printRecipe().
bool isPhi() const
Returns true for PHI-like recipes.
bool mayWriteToMemory() const
Returns true if the recipe may write to memory.
virtual InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const
Compute the cost of this recipe either using a recipe's specialized implementation or using the legac...
VPBasicBlock * getParent()
Definition VPlan.h:408
DebugLoc getDebugLoc() const
Returns the debug location of the recipe.
Definition VPlan.h:479
void moveBefore(VPBasicBlock &BB, iplist< VPRecipeBase >::iterator I)
Unlink this recipe and insert into BB before I.
void insertBefore(VPRecipeBase *InsertPos)
Insert an unlinked recipe into a basic block immediately before the specified recipe.
void insertAfter(VPRecipeBase *InsertPos)
Insert an unlinked Recipe into a basic block immediately after the specified Recipe.
iplist< VPRecipeBase >::iterator eraseFromParent()
This method unlinks 'this' from the containing basic block and deletes it.
InstructionCost cost(ElementCount VF, VPCostContext &Ctx)
Return the cost of this recipe, taking into account if the cost computation should be skipped and the...
bool isScalarCast() const
Return true if the recipe is a scalar cast.
void removeFromParent()
This method unlinks 'this' from the containing basic block, but does not delete it.
void moveAfter(VPRecipeBase *MovePos)
Unlink this recipe from its current VPBasicBlock and insert it into the VPBasicBlock that MovePos liv...
VPRecipeBase(const unsigned char SC, ArrayRef< VPValue * > Operands, DebugLoc DL=DebugLoc::getUnknown())
Definition VPlan.h:398
void execute(VPTransformState &State) override
Generate the reduction in the loop.
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
VPValue * getEVL() const
The VPValue of the explicit vector length.
Definition VPlan.h:2929
unsigned getVFScaleFactor() const
Get the factor that the VF of this recipe's output should be scaled by, or 1 if it isn't scaled.
Definition VPlan.h:2474
bool isInLoop() const
Returns true if the phi is part of an in-loop reduction.
Definition VPlan.h:2498
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void execute(VPTransformState &State) override
Generate the phi/select nodes.
bool isConditional() const
Return true if the in-loop reduction is conditional.
Definition VPlan.h:2871
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of VPReductionRecipe.
VPValue * getVecOp() const
The VPValue of the vector value to be reduced.
Definition VPlan.h:2882
VPValue * getCondOp() const
The VPValue of the condition for the block.
Definition VPlan.h:2884
RecurKind getRecurrenceKind() const
Return the recurrence kind for the in-loop reduction.
Definition VPlan.h:2867
bool isPartialReduction() const
Returns true if the reduction outputs a vector with a scaled down VF.
Definition VPlan.h:2873
VPValue * getChainOp() const
The VPValue of the scalar Chain being accumulated.
Definition VPlan.h:2880
bool isInLoop() const
Returns true if the reduction is in-loop.
Definition VPlan.h:2875
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void execute(VPTransformState &State) override
Generate the reduction in the loop.
VPRegionBlock represents a collection of VPBasicBlocks and VPRegionBlocks which form a Single-Entry-S...
Definition VPlan.h:4168
bool isReplicator() const
An indicator whether this region is to generate multiple replicated instances of output IR correspond...
Definition VPlan.h:4236
VPReplicateRecipe replicates a given instruction producing multiple scalar copies of the original sca...
Definition VPlan.h:2951
void execute(VPTransformState &State) override
Generate replicas of the desired Ingredient.
bool isSingleScalar() const
Definition VPlan.h:2992
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPReplicateRecipe.
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
unsigned getOpcode() const
Definition VPlan.h:3021
bool shouldPack() const
Returns true if the recipe is used by a widened recipe via an intervening VPPredInstPHIRecipe.
VPValue * getStepValue() const
Definition VPlan.h:3846
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void execute(VPTransformState &State) override
Generate the scalarized versions of the phi node as needed by their users.
VPSingleDef is a base class for recipes for modeling a sequence of one or more output IR that define ...
Definition VPlan.h:531
Instruction * getUnderlyingInstr()
Returns the underlying instruction.
Definition VPlan.h:595
LLVM_ABI_FOR_TEST LLVM_DUMP_METHOD void dump() const
Print this VPSingleDefRecipe to dbgs() (for debugging).
VPSingleDefRecipe(const unsigned char SC, ArrayRef< VPValue * > Operands, DebugLoc DL=DebugLoc::getUnknown())
Definition VPlan.h:533
This class can be used to assign names to VPValues.
Type * inferScalarType(const VPValue *V)
Infer the type of V. Returns the scalar type of V.
Helper to access the operand that contains the unroll part for this recipe after unrolling.
Definition VPlan.h:970
VPValue * getUnrollPartOperand(const VPUser &U) const
Return the VPValue operand containing the unroll part or null if there is no such operand.
unsigned getUnrollPart(const VPUser &U) const
Return the unroll part.
This class augments VPValue with operands which provide the inverse def-use edges from VPValue's user...
Definition VPlanValue.h:202
void printOperands(raw_ostream &O, VPSlotTracker &SlotTracker) const
Print the operands to O.
Definition VPlan.cpp:1420
operand_range operands()
Definition VPlanValue.h:270
void setOperand(unsigned I, VPValue *New)
Definition VPlanValue.h:246
unsigned getNumOperands() const
Definition VPlanValue.h:240
operand_iterator op_begin()
Definition VPlanValue.h:266
VPValue * getOperand(unsigned N) const
Definition VPlanValue.h:241
virtual bool usesFirstLaneOnly(const VPValue *Op) const
Returns true if the VPUser only uses the first lane of operand Op.
Definition VPlanValue.h:285
This is the base class of the VPlan Def/Use graph, used for modeling the data flow into,...
Definition VPlanValue.h:46
bool isDefinedOutsideLoopRegions() const
Returns true if the VPValue is defined outside any loop.
Definition VPlan.cpp:1374
VPRecipeBase * getDefiningRecipe()
Returns the recipe defining this VPValue or nullptr if it is not defined by a recipe,...
Definition VPlan.cpp:131
friend class VPExpressionRecipe
Definition VPlanValue.h:51
void printAsOperand(raw_ostream &OS, VPSlotTracker &Tracker) const
Definition VPlan.cpp:1416
bool hasMoreThanOneUniqueUser() const
Returns true if the value has more than one unique user.
Definition VPlanValue.h:138
Value * getLiveInIRValue() const
Returns the underlying IR value, if this VPValue is defined outside the scope of VPlan.
Definition VPlanValue.h:181
Value * getUnderlyingValue() const
Return the underlying Value attached to this VPValue.
Definition VPlanValue.h:83
VPValue(const unsigned char SC, Value *UV=nullptr, VPDef *Def=nullptr)
Definition VPlan.cpp:94
void replaceAllUsesWith(VPValue *New)
Definition VPlan.cpp:1377
user_iterator user_begin()
Definition VPlanValue.h:128
unsigned getNumUsers() const
Definition VPlanValue.h:111
bool isLiveIn() const
Returns true if this VPValue is a live-in, i.e. defined outside the VPlan.
Definition VPlanValue.h:176
user_range users()
Definition VPlanValue.h:132
void execute(VPTransformState &State) override
The method which generates the output IR instructions that correspond to this VPRecipe,...
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
Type * getSourceElementType() const
Definition VPlan.h:1991
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void execute(VPTransformState &State) override
The method which generates the output IR instructions that correspond to this VPRecipe,...
operand_range args()
Definition VPlan.h:1743
Function * getCalledScalarFunction() const
Definition VPlan.h:1739
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPWidenCallRecipe.
void execute(VPTransformState &State) override
Produce a widened version of the call instruction.
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void execute(VPTransformState &State) override
Generate a canonical vector induction variable of the vector loop, with start = {<Part*VF,...
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
LLVM_ABI_FOR_TEST void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
Type * getResultType() const
Returns the result type of the cast.
Definition VPlan.h:1593
LLVM_ABI_FOR_TEST void execute(VPTransformState &State) override
Produce widened copies of the cast.
LLVM_ABI_FOR_TEST InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPWidenCastRecipe.
void execute(VPTransformState &State) override
Generate the gep nodes.
Type * getSourceElementType() const
Definition VPlan.h:1889
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
bool usesFirstLaneOnly(const VPValue *Op) const override
Returns true if the recipe only uses the first lane of operand Op.
VPValue * getStepValue()
Returns the step value of the induction.
Definition VPlan.h:2149
TruncInst * getTruncInst()
Returns the first defined value as TruncInst, if it is one or nullptr otherwise.
Definition VPlan.h:2256
Type * getScalarType() const
Returns the scalar type of the induction.
Definition VPlan.h:2265
bool isCanonical() const
Returns true if the induction is canonical, i.e.
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
Intrinsic::ID getVectorIntrinsicID() const
Return the ID of the intrinsic.
Definition VPlan.h:1675
LLVM_ABI_FOR_TEST void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
StringRef getIntrinsicName() const
Return to name of the intrinsic as string.
LLVM_ABI_FOR_TEST bool usesFirstLaneOnly(const VPValue *Op) const override
Returns true if the VPUser only uses the first lane of operand Op.
Type * getResultType() const
Return the scalar return type of the intrinsic.
Definition VPlan.h:1678
LLVM_ABI_FOR_TEST void execute(VPTransformState &State) override
Produce a widened version of the vector intrinsic.
LLVM_ABI_FOR_TEST InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this vector intrinsic.
bool IsMasked
Whether the memory access is masked.
Definition VPlan.h:3276
bool Reverse
Whether the consecutive accessed addresses are in reverse order.
Definition VPlan.h:3273
bool isConsecutive() const
Return whether the loaded-from / stored-to addresses are consecutive.
Definition VPlan.h:3316
Instruction & Ingredient
Definition VPlan.h:3264
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPWidenMemoryRecipe.
bool Consecutive
Whether the accessed addresses are consecutive.
Definition VPlan.h:3270
VPValue * getMask() const
Return the mask used by this recipe.
Definition VPlan.h:3330
Align Alignment
Alignment information for this memory access.
Definition VPlan.h:3267
VPValue * getAddr() const
Return the address accessed by this recipe.
Definition VPlan.h:3323
bool isReverse() const
Return whether the consecutive loaded/stored addresses are in reverse order.
Definition VPlan.h:3320
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void execute(VPTransformState &State) override
Generate the phi/select nodes.
bool onlyScalarsGenerated(bool IsScalable)
Returns true if only scalar values will be generated.
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPWidenRecipe.
void execute(VPTransformState &State) override
Produce a widened instruction using the opcode and operands of the recipe, processing State....
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
unsigned getUF() const
Definition VPlan.h:4519
LLVM_ABI_FOR_TEST VPRegionBlock * getVectorLoopRegion()
Returns the VPRegionBlock of the vector loop.
Definition VPlan.cpp:1011
LLVM Value Representation.
Definition Value.h:75
Type * getType() const
All values are typed, get the type of this value.
Definition Value.h:256
LLVM_ABI void setName(const Twine &Name)
Change the name of the value.
Definition Value.cpp:390
LLVM_ABI LLVMContext & getContext() const
All values hold a context through their type.
Definition Value.cpp:1099
void mutateType(Type *Ty)
Mutate the type of this Value to be of the specified type.
Definition Value.h:838
LLVM_ABI StringRef getName() const
Return a constant reference to the value's name.
Definition Value.cpp:322
Base class of all SIMD vector types.
ElementCount getElementCount() const
Return an ElementCount instance to represent the (possibly scalable) number of elements in the vector...
static LLVM_ABI VectorType * get(Type *ElementType, ElementCount EC)
This static method is the primary way to construct an VectorType.
Type * getElementType() const
constexpr ScalarTy getFixedValue() const
Definition TypeSize.h:200
constexpr bool isScalable() const
Returns whether the quantity is scaled by a runtime quantity (vscale).
Definition TypeSize.h:168
constexpr LeafTy multiplyCoefficientBy(ScalarTy RHS) const
Definition TypeSize.h:256
constexpr ScalarTy getKnownMinValue() const
Returns the minimum value this quantity can represent.
Definition TypeSize.h:165
constexpr LeafTy divideCoefficientBy(ScalarTy RHS) const
We do not provide the '/' operator here because division for polynomial types does not work in the sa...
Definition TypeSize.h:252
const ParentTy * getParent() const
Definition ilist_node.h:34
self_iterator getIterator()
Definition ilist_node.h:123
iterator erase(iterator where)
Definition ilist.h:204
pointer remove(iterator &IT)
Definition ilist.h:188
This class implements an extremely fast bulk output stream that can only output to a stream.
Definition raw_ostream.h:53
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
constexpr std::underlying_type_t< E > Mask()
Get a bitmask with 1s in all places up to the high-order bit of E's largest value.
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
Definition CallingConv.h:24
@ C
The default llvm calling convention, compatible with C.
Definition CallingConv.h:34
@ BasicBlock
Various leaf nodes.
Definition ISDOpcodes.h:81
LLVM_ABI Function * getOrInsertDeclaration(Module *M, ID id, ArrayRef< Type * > Tys={})
Look up the Function declaration of the intrinsic id in the Module M.
LLVM_ABI Intrinsic::ID getDeinterleaveIntrinsicID(unsigned Factor)
Returns the corresponding llvm.vector.deinterleaveN intrinsic for factor N.
LLVM_ABI StringRef getBaseName(ID id)
Return the LLVM name for an intrinsic, without encoded types for overloading, such as "llvm....
bool match(Val *V, const Pattern &P)
auto m_LogicalOr()
Matches L || R where L and R are arbitrary values.
class_match< CmpInst > m_Cmp()
Matches any compare instruction and ignore it.
auto m_LogicalAnd()
Matches L && R where L and R are arbitrary values.
GEPLikeRecipe_match< Op0_t, Op1_t > m_GetElementPtr(const Op0_t &Op0, const Op1_t &Op1)
class_match< VPValue > m_VPValue()
Match an arbitrary VPValue and ignore it.
NodeAddr< DefNode * > Def
Definition RDFGraph.h:384
bool isSingleScalar(const VPValue *VPV)
Returns true if VPV is a single scalar, either because it produces the same value for all lanes or on...
bool onlyFirstPartUsed(const VPValue *Def)
Returns true if only the first part of Def is used.
bool onlyFirstLaneUsed(const VPValue *Def)
Returns true if only the first lane of Def is used.
bool onlyScalarValuesUsed(const VPValue *Def)
Returns true if only scalar values of Def are used by all users.
const SCEV * getSCEVExprForVPValue(const VPValue *V, ScalarEvolution &SE, const Loop *L=nullptr)
Return the SCEV expression for V.
This is an optimization pass for GlobalISel generic memory operations.
auto drop_begin(T &&RangeOrContainer, size_t N=1)
Return a range covering RangeOrContainer with the first N elements excluded.
Definition STLExtras.h:316
LLVM_ABI Value * createSimpleReduction(IRBuilderBase &B, Value *Src, RecurKind RdxKind)
Create a reduction of the given vector.
@ Offset
Definition DWP.cpp:532
detail::zippy< detail::zip_shortest, T, U, Args... > zip(T &&t, U &&u, Args &&...args)
zip iterator for two or more iteratable types.
Definition STLExtras.h:829
FunctionAddr VTableAddr Value
Definition InstrProf.h:137
LLVM_ABI Value * createFindLastIVReduction(IRBuilderBase &B, Value *Src, RecurKind RdxKind, Value *Start, Value *Sentinel)
Create a reduction of the given vector Src for a reduction of the kind RecurKind::FindLastIV.
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1737
LLVM_ABI Intrinsic::ID getMinMaxReductionIntrinsicOp(Intrinsic::ID RdxID)
Returns the min/max intrinsic used when expanding a min/max reduction.
InstructionCost Cost
auto enumerate(FirstRange &&First, RestRanges &&...Rest)
Given two or more input ranges, returns a new range whose values are tuples (A, B,...
Definition STLExtras.h:2494
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:643
const Value * getLoadStorePointerOperand(const Value *V)
A helper function that returns the pointer operand of a load or store instruction.
Value * getRuntimeVF(IRBuilderBase &B, Type *Ty, ElementCount VF)
Return the runtime value for VF.
auto dyn_cast_if_present(const Y &Val)
dyn_cast_if_present<X> - Functionally identical to dyn_cast, except that a null (or none in the case ...
Definition Casting.h:732
iterator_range< T > make_range(T x, T y)
Convenience function for iterating over sub-ranges.
void append_range(Container &C, Range &&R)
Wrapper function to append range R to container C.
Definition STLExtras.h:2148
void interleaveComma(const Container &c, StreamT &os, UnaryFunctor each_fn)
Definition STLExtras.h:2253
auto cast_or_null(const Y &Val)
Definition Casting.h:714
LLVM_ABI Value * concatenateVectors(IRBuilderBase &Builder, ArrayRef< Value * > Vecs)
Concatenate a list of vectors.
Align getLoadStoreAlignment(const Value *I)
A helper function that returns the alignment of load or store instruction.
bool isa_and_nonnull(const Y &Val)
Definition Casting.h:676
LLVM_ABI Value * createMinMaxOp(IRBuilderBase &Builder, RecurKind RK, Value *Left, Value *Right)
Returns a Min/Max operation corresponding to MinMaxRecurrenceKind.
auto dyn_cast_or_null(const Y &Val)
Definition Casting.h:753
static Error getOffset(const SymbolRef &Sym, SectionRef Sec, uint64_t &Result)
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1744
LLVM_ABI Constant * createBitMaskForGaps(IRBuilderBase &Builder, unsigned VF, const InterleaveGroup< Instruction > &Group)
Create a mask that filters the members of an interleave group where there are gaps.
LLVM_ABI llvm::SmallVector< int, 16 > createStrideMask(unsigned Start, unsigned Stride, unsigned VF)
Create a stride shuffle mask.
auto reverse(ContainerTy &&C)
Definition STLExtras.h:406
LLVM_ABI llvm::SmallVector< int, 16 > createReplicatedMask(unsigned ReplicationFactor, unsigned VF)
Create a mask with replicated elements.
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition Debug.cpp:207
bool none_of(R &&Range, UnaryPredicate P)
Provide wrappers to std::none_of which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1751
SmallVector< ValueTypeFromRangeType< R >, Size > to_vector(R &&Range)
Given a range of type R, iterate the entire range and return a SmallVector with elements of the vecto...
Type * toVectorizedTy(Type *Ty, ElementCount EC)
A helper for converting to vectorized types.
cl::opt< unsigned > ForceTargetInstructionCost
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
Definition Casting.h:547
auto drop_end(T &&RangeOrContainer, size_t N=1)
Return a range covering RangeOrContainer with the last N elements excluded.
Definition STLExtras.h:323
@ Other
Any other memory.
Definition ModRef.h:68
bool canVectorizeTy(Type *Ty)
Returns true if Ty is a valid vector element type, void, or an unpacked literal struct where all elem...
LLVM_ABI llvm::SmallVector< int, 16 > createInterleaveMask(unsigned VF, unsigned NumVecs)
Create an interleave shuffle mask.
RecurKind
These are the kinds of recurrences that we support.
@ UMin
Unsigned integer min implemented in terms of select(cmp()).
@ Mul
Product of integers.
@ SMax
Signed integer max implemented in terms of select(cmp()).
@ SMin
Signed integer min implemented in terms of select(cmp()).
@ Sub
Subtraction of integers.
@ Add
Sum of integers.
@ UMax
Unsigned integer max implemented in terms of select(cmp()).
LLVM_ABI bool isVectorIntrinsicWithScalarOpAtArg(Intrinsic::ID ID, unsigned ScalarOpdIdx, const TargetTransformInfo *TTI)
Identifies if the vector form of the intrinsic has a scalar operand.
LLVM_ABI Value * getRecurrenceIdentity(RecurKind K, Type *Tp, FastMathFlags FMF)
Given information about an recurrence kind, return the identity for the @llvm.vector....
DWARFExpression::Operation Op
Value * createStepForVF(IRBuilderBase &B, Type *Ty, ElementCount VF, int64_t Step)
Return a value for Step multiplied by VF.
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:559
bool is_contained(R &&Range, const E &Element)
Returns true if Element is found in Range.
Definition STLExtras.h:1909
Type * getLoadStoreType(const Value *I)
A helper function that returns the type of a load or store instruction.
LLVM_ABI Value * createOrderedReduction(IRBuilderBase &B, RecurKind RdxKind, Value *Src, Value *Start)
Create an ordered reduction intrinsic using the given recurrence kind RdxKind.
auto seq(T Begin, T End)
Iterate over an integral type from Begin up to - but not including - End.
Definition Sequence.h:305
Type * toVectorTy(Type *Scalar, ElementCount EC)
A helper function for converting Scalar types to vector types.
LLVM_ABI Value * createAnyOfReduction(IRBuilderBase &B, Value *Src, Value *InitVal, PHINode *OrigPhi)
Create a reduction of the given vector Src for a reduction of kind RecurKind::AnyOf.
LLVM_ABI bool isVectorIntrinsicWithOverloadTypeAtArg(Intrinsic::ID ID, int OpdIdx, const TargetTransformInfo *TTI)
Identifies if the vector form of the intrinsic is overloaded on the type of the operand at index OpdI...
This struct is a compact representation of a valid (non-zero power of two) alignment.
Definition Alignment.h:39
Struct to hold various analysis needed for cost computations.
void execute(VPTransformState &State) override
Generate the phi nodes.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this first-order recurrence phi recipe.
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
An overlay for VPIRInstructions wrapping PHI nodes enabling convenient use cast/dyn_cast/isa and exec...
Definition VPlan.h:1487
PHINode & getIRPhi()
Definition VPlan.h:1495
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void execute(VPTransformState &State) override
The method which generates the output IR instructions that correspond to this VPRecipe,...
void execute(VPTransformState &State) override
Generate the instruction.
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
A pure-virtual common base class for recipes defining a single VPValue and using IR flags.
Definition VPlan.h:923
InstructionCost getCostForRecipeWithOpcode(unsigned Opcode, ElementCount VF, VPCostContext &Ctx) const
Compute the cost for this recipe for VF, using Opcode and Ctx.
VPRecipeWithIRFlags(const unsigned char SC, ArrayRef< VPValue * > Operands, const VPIRFlags &Flags, DebugLoc DL=DebugLoc::getUnknown())
Definition VPlan.h:924
SmallDenseMap< const VPBasicBlock *, BasicBlock * > VPBB2IRBB
A mapping of each VPBasicBlock to the corresponding BasicBlock.
VPTransformState holds information passed down when "executing" a VPlan, needed for generating the ou...
VPTypeAnalysis TypeAnalysis
VPlan-based type analysis.
struct llvm::VPTransformState::CFGState CFG
Value * get(const VPValue *Def, bool IsScalar=false)
Get the generated vector Value for a given VPValue Def if IsScalar is false, otherwise return the gen...
Definition VPlan.cpp:263
IRBuilderBase & Builder
Hold a reference to the IRBuilder used to generate output IR code.
ElementCount VF
The chosen Vectorization Factor of the loop being vectorized.
LLVM_ABI_FOR_TEST void execute(VPTransformState &State) override
Generate the wide load or gather.
LLVM_ABI_FOR_TEST void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
LLVM_ABI_FOR_TEST InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPWidenLoadEVLRecipe.
VPValue * getEVL() const
Return the EVL operand.
Definition VPlan.h:3407
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void execute(VPTransformState &State) override
Generate a wide load or gather.
VPValue * getCond() const
Definition VPlan.h:1830
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPWidenSelectRecipe.
void execute(VPTransformState &State) override
Produce a widened version of the select instruction.
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
VPValue * getStoredValue() const
Return the address accessed by this recipe.
Definition VPlan.h:3490
LLVM_ABI_FOR_TEST void execute(VPTransformState &State) override
Generate the wide store or scatter.
LLVM_ABI_FOR_TEST void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
LLVM_ABI_FOR_TEST InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPWidenStoreEVLRecipe.
VPValue * getEVL() const
Return the EVL operand.
Definition VPlan.h:3493
void execute(VPTransformState &State) override
Generate a wide store or scatter.
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
VPValue * getStoredValue() const
Return the value stored by this recipe.
Definition VPlan.h:3453