47#define LV_NAME "loop-vectorize"
48#define DEBUG_TYPE LV_NAME
54 case VPInstructionSC: {
57 if (VPI->getOpcode() == Instruction::Load)
59 return VPI->opcodeMayReadOrWriteFromMemory();
61 case VPInterleaveEVLSC:
64 case VPWidenStoreEVLSC:
72 ->getCalledScalarFunction()
74 case VPWidenIntrinsicSC:
76 case VPActiveLaneMaskPHISC:
77 case VPCanonicalIVPHISC:
78 case VPBranchOnMaskSC:
80 case VPFirstOrderRecurrencePHISC:
81 case VPReductionPHISC:
82 case VPScalarIVStepsSC:
86 case VPReductionEVLSC:
88 case VPVectorPointerSC:
89 case VPWidenCanonicalIVSC:
92 case VPWidenIntOrFpInductionSC:
93 case VPWidenLoadEVLSC:
96 case VPWidenPointerInductionSC:
101 assert((!
I || !
I->mayWriteToMemory()) &&
102 "underlying instruction may write to memory");
114 case VPInstructionSC:
116 case VPWidenLoadEVLSC:
121 ->mayReadFromMemory();
124 ->getCalledScalarFunction()
125 ->onlyWritesMemory();
126 case VPWidenIntrinsicSC:
128 case VPBranchOnMaskSC:
130 case VPFirstOrderRecurrencePHISC:
131 case VPReductionPHISC:
132 case VPPredInstPHISC:
133 case VPScalarIVStepsSC:
134 case VPWidenStoreEVLSC:
138 case VPReductionEVLSC:
140 case VPVectorPointerSC:
141 case VPWidenCanonicalIVSC:
144 case VPWidenIntOrFpInductionSC:
146 case VPWidenPointerInductionSC:
151 assert((!
I || !
I->mayReadFromMemory()) &&
152 "underlying instruction may read from memory");
165 case VPActiveLaneMaskPHISC:
167 case VPFirstOrderRecurrencePHISC:
168 case VPReductionPHISC:
169 case VPPredInstPHISC:
170 case VPVectorEndPointerSC:
172 case VPInstructionSC: {
179 case VPWidenCallSC: {
183 case VPWidenIntrinsicSC:
186 case VPReductionEVLSC:
188 case VPScalarIVStepsSC:
189 case VPVectorPointerSC:
190 case VPWidenCanonicalIVSC:
193 case VPWidenIntOrFpInductionSC:
195 case VPWidenPointerInductionSC:
200 assert((!
I || !
I->mayHaveSideEffects()) &&
201 "underlying instruction has side-effects");
204 case VPInterleaveEVLSC:
207 case VPWidenLoadEVLSC:
209 case VPWidenStoreEVLSC:
214 "mayHaveSideffects result for ingredient differs from this "
217 case VPReplicateSC: {
219 return R->getUnderlyingInstr()->mayHaveSideEffects();
227 assert(!Parent &&
"Recipe already in some VPBasicBlock");
229 "Insertion position not in any VPBasicBlock");
235 assert(!Parent &&
"Recipe already in some VPBasicBlock");
241 assert(!Parent &&
"Recipe already in some VPBasicBlock");
243 "Insertion position not in any VPBasicBlock");
278 UI = IG->getInsertPos();
280 UI = &WidenMem->getIngredient();
283 if (UI && Ctx.skipCostComputation(UI, VF.
isVector())) {
297 dbgs() <<
"Cost of " << RecipeCost <<
" for VF " << VF <<
": ";
319 assert(OpType == Other.OpType &&
"OpType must match");
321 case OperationType::OverflowingBinOp:
322 WrapFlags.HasNUW &= Other.WrapFlags.HasNUW;
323 WrapFlags.HasNSW &= Other.WrapFlags.HasNSW;
325 case OperationType::Trunc:
329 case OperationType::DisjointOp:
332 case OperationType::PossiblyExactOp:
333 ExactFlags.IsExact &= Other.ExactFlags.IsExact;
335 case OperationType::GEPOp:
338 case OperationType::FPMathOp:
339 case OperationType::FCmp:
340 assert((OpType != OperationType::FCmp ||
341 FCmpFlags.Pred == Other.FCmpFlags.Pred) &&
342 "Cannot drop CmpPredicate");
343 getFMFsRef().NoNaNs &= Other.getFMFsRef().NoNaNs;
344 getFMFsRef().NoInfs &= Other.getFMFsRef().NoInfs;
346 case OperationType::NonNegOp:
349 case OperationType::Cmp:
352 case OperationType::ReductionOp:
354 "Cannot change RecurKind");
356 "Cannot change IsOrdered");
358 "Cannot change IsInLoop");
359 getFMFsRef().NoNaNs &= Other.getFMFsRef().NoNaNs;
360 getFMFsRef().NoInfs &= Other.getFMFsRef().NoInfs;
362 case OperationType::Other:
369 assert((OpType == OperationType::FPMathOp || OpType == OperationType::FCmp ||
370 OpType == OperationType::ReductionOp) &&
371 "recipe doesn't have fast math flags");
372 const FastMathFlagsTy &
F = getFMFsRef();
384#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
400template <
unsigned PartOpIdx>
403 if (U.getNumOperands() == PartOpIdx + 1)
404 return U.getOperand(PartOpIdx);
408template <
unsigned PartOpIdx>
427 "Set flags not supported for the provided opcode");
430 "number of operands does not match opcode");
445 case Instruction::Alloca:
446 case Instruction::ExtractValue:
447 case Instruction::Freeze:
448 case Instruction::Load:
465 case Instruction::ICmp:
466 case Instruction::FCmp:
467 case Instruction::ExtractElement:
468 case Instruction::Store:
477 case Instruction::Select:
483 case Instruction::Call:
484 case Instruction::GetElementPtr:
485 case Instruction::PHI:
486 case Instruction::Switch:
504bool VPInstruction::canGenerateScalarForFirstLane()
const {
510 case Instruction::Freeze:
511 case Instruction::ICmp:
512 case Instruction::PHI:
513 case Instruction::Select:
530 IRBuilderBase &Builder = State.
Builder;
549 case Instruction::ExtractElement: {
552 return State.
get(
getOperand(0), VPLane(Idx->getZExtValue()));
557 case Instruction::Freeze: {
561 case Instruction::FCmp:
562 case Instruction::ICmp: {
568 case Instruction::PHI: {
571 case Instruction::Select: {
597 {VIVElem0, ScalarTC},
nullptr, Name);
613 if (!V1->getType()->isVectorTy())
633 "Requested vector length should be an integer.");
639 Builder.
getInt32Ty(), Intrinsic::experimental_get_vector_length,
640 {AVL, VFArg, Builder.getTrue()});
646 assert(Part != 0 &&
"Must have a positive part");
659 VPBasicBlock *SecondVPSucc =
681 for (
unsigned FieldIndex = 0; FieldIndex != StructTy->getNumElements();
705 IRBuilderBase::FastMathFlagGuard FMFG(Builder);
722 ReducedResult,
"bin.rdx");
729 return Builder.
CreateSelect(ReducedResult, NewVal, Start,
"rdx.select");
736 "FindIV should use min/max reduction kinds");
741 for (
unsigned Part = 0; Part < NumOperandsToReduce; ++Part)
744 IRBuilderBase::FastMathFlagGuard FMFG(Builder);
749 Value *ReducedPartRdx = RdxParts[0];
751 ReducedPartRdx = RdxParts[NumOperandsToReduce - 1];
754 for (
unsigned Part = 1; Part < NumOperandsToReduce; ++Part) {
755 Value *RdxPart = RdxParts[Part];
757 ReducedPartRdx =
createMinMaxOp(Builder, RK, ReducedPartRdx, RdxPart);
766 Builder.
CreateBinOp(Opcode, RdxPart, ReducedPartRdx,
"bin.rdx");
780 return ReducedPartRdx;
789 "invalid offset to extract from");
794 assert(
Offset <= 1 &&
"invalid offset to extract from");
808 "can only generate first lane for PtrAdd");
827 "simplified to ExtractElement.");
830 Value *Res =
nullptr;
835 Builder.
CreateMul(RuntimeVF, ConstantInt::get(IdxTy, Idx - 1));
836 Value *VectorIdx = Idx == 1
838 : Builder.
CreateSub(LaneToExtract, VectorStart);
863 Value *Res =
nullptr;
864 for (
int Idx = LastOpIdx; Idx >= 0; --Idx) {
865 Value *TrailingZeros =
896 Intrinsic::experimental_vector_extract_last_active, {VTy},
906 Type *ScalarTy = Ctx.Types.inferScalarType(
this);
909 case Instruction::FNeg:
910 return Ctx.TTI.getArithmeticInstrCost(Opcode, ResultTy, Ctx.CostKind);
911 case Instruction::UDiv:
912 case Instruction::SDiv:
913 case Instruction::SRem:
914 case Instruction::URem:
915 case Instruction::Add:
916 case Instruction::FAdd:
917 case Instruction::Sub:
918 case Instruction::FSub:
919 case Instruction::Mul:
920 case Instruction::FMul:
921 case Instruction::FDiv:
922 case Instruction::FRem:
923 case Instruction::Shl:
924 case Instruction::LShr:
925 case Instruction::AShr:
926 case Instruction::And:
927 case Instruction::Or:
928 case Instruction::Xor: {
936 RHSInfo = Ctx.getOperandInfo(RHS);
947 return Ctx.TTI.getArithmeticInstrCost(
948 Opcode, ResultTy, Ctx.CostKind,
949 {TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None},
950 RHSInfo, Operands, CtxI, &Ctx.TLI);
952 case Instruction::Freeze:
954 return Ctx.TTI.getArithmeticInstrCost(Instruction::Mul, ResultTy,
956 case Instruction::ExtractValue:
957 return Ctx.TTI.getInsertExtractValueCost(Instruction::ExtractValue,
959 case Instruction::ICmp:
960 case Instruction::FCmp: {
964 return Ctx.TTI.getCmpSelInstrCost(
966 Ctx.CostKind, {TTI::OK_AnyValue, TTI::OP_None},
967 {TTI::OK_AnyValue, TTI::OP_None}, CtxI);
969 case Instruction::BitCast: {
970 Type *ScalarTy = Ctx.Types.inferScalarType(
this);
975 case Instruction::SExt:
976 case Instruction::ZExt:
977 case Instruction::FPToUI:
978 case Instruction::FPToSI:
979 case Instruction::FPExt:
980 case Instruction::PtrToInt:
981 case Instruction::PtrToAddr:
982 case Instruction::IntToPtr:
983 case Instruction::SIToFP:
984 case Instruction::UIToFP:
985 case Instruction::Trunc:
986 case Instruction::FPTrunc:
987 case Instruction::AddrSpaceCast: {
1002 if (WidenMemoryRecipe ==
nullptr)
1006 if (!WidenMemoryRecipe->isConsecutive())
1008 if (WidenMemoryRecipe->isReverse())
1010 if (WidenMemoryRecipe->isMasked())
1018 if (Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) {
1020 if (R->getNumUsers() == 0 || R->hasMoreThanOneUniqueUser())
1028 CCH = ComputeCCH(Recipe);
1032 else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt ||
1033 Opcode == Instruction::FPExt) {
1039 CCH = ComputeCCH(Recipe);
1043 auto *ScalarSrcTy = Ctx.Types.inferScalarType(Operand);
1046 return Ctx.TTI.getCastInstrCost(
1047 Opcode, ResultTy, SrcTy, CCH, Ctx.CostKind,
1050 case Instruction::Select: {
1053 Type *ScalarTy = Ctx.Types.inferScalarType(
this);
1068 (IsLogicalAnd || IsLogicalOr)) {
1071 const auto [Op1VK, Op1VP] = Ctx.getOperandInfo(Op0);
1072 const auto [Op2VK, Op2VP] = Ctx.getOperandInfo(Op1);
1076 [](
VPValue *
Op) {
return Op->getUnderlyingValue(); }))
1078 return Ctx.TTI.getArithmeticInstrCost(
1079 IsLogicalOr ? Instruction::Or : Instruction::And, ResultTy,
1080 Ctx.CostKind, {Op1VK, Op1VP}, {Op2VK, Op2VP}, Operands,
SI);
1091 Pred = Cmp->getPredicate();
1092 Type *VectorTy =
toVectorTy(Ctx.Types.inferScalarType(
this), VF);
1093 return Ctx.TTI.getCmpSelInstrCost(
1094 Instruction::Select, VectorTy, CondTy, Pred, Ctx.CostKind,
1095 {TTI::OK_AnyValue, TTI::OP_None}, {TTI::OK_AnyValue, TTI::OP_None},
SI);
1111 "Should only generate a vector value or single scalar, not scalars "
1119 case Instruction::Select: {
1122 auto *CondTy = Ctx.Types.inferScalarType(
getOperand(0));
1123 auto *VecTy = Ctx.Types.inferScalarType(
getOperand(1));
1128 return Ctx.TTI.getCmpSelInstrCost(Instruction::Select, VecTy, CondTy, Pred,
1131 case Instruction::ExtractElement:
1141 return Ctx.TTI.getVectorInstrCost(Instruction::ExtractElement, VecTy,
1145 auto *VecTy =
toVectorTy(Ctx.Types.inferScalarType(
this), VF);
1146 return Ctx.TTI.getArithmeticReductionCost(
1152 return Ctx.TTI.getCmpSelInstrCost(Instruction::ICmp, ScalarTy,
1159 {PredTy, Type::getInt1Ty(Ctx.LLVMCtx)});
1160 return Ctx.TTI.getIntrinsicInstrCost(Attrs, Ctx.CostKind);
1165 return Ctx.TTI.getCmpSelInstrCost(Instruction::ICmp, ScalarTy,
1172 {PredTy, Type::getInt1Ty(Ctx.LLVMCtx)});
1175 Cost += Ctx.TTI.getArithmeticInstrCost(
1176 Instruction::Xor, PredTy, Ctx.CostKind,
1177 {TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None},
1178 {TargetTransformInfo::OK_UniformConstantValue,
1179 TargetTransformInfo::OP_None});
1181 Cost += Ctx.TTI.getArithmeticInstrCost(
1186 Type *ScalarTy = Ctx.Types.inferScalarType(
this);
1190 Intrinsic::experimental_vector_extract_last_active, ScalarTy,
1191 {VecTy, MaskTy, ScalarTy});
1192 return Ctx.TTI.getIntrinsicInstrCost(ICA, Ctx.CostKind);
1198 Type *VectorTy =
toVectorTy(Ctx.Types.inferScalarType(
this), VF);
1211 return Ctx.TTI.getIntrinsicInstrCost(Attrs, Ctx.CostKind);
1218 I32Ty, {Arg0Ty, I32Ty, I1Ty});
1219 return Ctx.TTI.getIntrinsicInstrCost(Attrs, Ctx.CostKind);
1222 assert(VF.
isVector() &&
"Reverse operation must be vector type");
1226 VectorTy, {}, Ctx.CostKind,
1232 return Ctx.TTI.getIndexedVectorInstrCostFromEnd(Instruction::ExtractElement,
1233 VecTy, Ctx.CostKind, 0);
1243 "unexpected VPInstruction witht underlying value");
1251 getOpcode() == Instruction::ExtractElement ||
1263 case Instruction::PHI:
1274 assert(!State.Lane &&
"VPInstruction executing an Lane");
1277 "Set flags not supported for the provided opcode");
1280 Value *GeneratedValue = generate(State);
1283 assert(GeneratedValue &&
"generate must produce a value");
1284 bool GeneratesPerFirstLaneOnly = canGenerateScalarForFirstLane() &&
1289 !GeneratesPerFirstLaneOnly) ||
1290 State.VF.isScalar()) &&
1291 "scalar value but not only first lane defined");
1292 State.set(
this, GeneratedValue,
1293 GeneratesPerFirstLaneOnly);
1300 case Instruction::GetElementPtr:
1301 case Instruction::ExtractElement:
1302 case Instruction::Freeze:
1303 case Instruction::FCmp:
1304 case Instruction::ICmp:
1305 case Instruction::Select:
1306 case Instruction::PHI:
1350 case Instruction::ExtractElement:
1352 case Instruction::PHI:
1354 case Instruction::FCmp:
1355 case Instruction::ICmp:
1356 case Instruction::Select:
1357 case Instruction::Or:
1358 case Instruction::Freeze:
1398 case Instruction::FCmp:
1399 case Instruction::ICmp:
1400 case Instruction::Select:
1411#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1419 O << Indent <<
"EMIT" << (
isSingleScalar() ?
"-SCALAR" :
"") <<
" ";
1431 O <<
"combined load";
1434 O <<
"combined store";
1437 O <<
"active lane mask";
1440 O <<
"EXPLICIT-VECTOR-LENGTH";
1443 O <<
"first-order splice";
1446 O <<
"branch-on-cond";
1449 O <<
"branch-on-two-conds";
1452 O <<
"TC > VF ? TC - VF : 0";
1458 O <<
"branch-on-count";
1464 O <<
"buildstructvector";
1470 O <<
"extract-lane";
1473 O <<
"extract-last-lane";
1476 O <<
"extract-last-part";
1479 O <<
"extract-penultimate-element";
1482 O <<
"compute-anyof-result";
1485 O <<
"compute-reduction-result";
1500 O <<
"first-active-lane";
1503 O <<
"last-active-lane";
1506 O <<
"reduction-start-vector";
1509 O <<
"resume-for-epilogue";
1518 O <<
"extract-last-active";
1535 State.set(
this, Cast,
VPLane(0));
1546 Value *
VScale = State.Builder.CreateVScale(ResultTy);
1547 State.set(
this,
VScale,
true);
1556#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1559 O << Indent <<
"EMIT" << (
isSingleScalar() ?
"-SCALAR" :
"") <<
" ";
1565 O <<
"wide-iv-step ";
1569 O <<
"step-vector " << *ResultTy;
1572 O <<
"vscale " << *ResultTy;
1578 O <<
" to " << *ResultTy;
1585 PHINode *NewPhi = State.Builder.CreatePHI(
1586 State.TypeAnalysis.inferScalarType(
this), 2,
getName());
1593 for (
unsigned Idx = 0; Idx != NumIncoming; ++Idx) {
1598 State.set(
this, NewPhi,
VPLane(0));
1601#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1604 O << Indent <<
"EMIT" << (
isSingleScalar() ?
"-SCALAR" :
"") <<
" ";
1619 "PHINodes must be handled by VPIRPhi");
1622 State.Builder.SetInsertPoint(I.getParent(), std::next(I.getIterator()));
1635 "can only update exiting operands to phi nodes");
1646#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1649 O << Indent <<
"IR " << I;
1661 auto *PredVPBB = Pred->getExitingBasicBlock();
1662 BasicBlock *PredBB = State.CFG.VPBB2IRBB[PredVPBB];
1669 if (Phi->getBasicBlockIndex(PredBB) == -1)
1670 Phi->addIncoming(V, PredBB);
1672 Phi->setIncomingValueForBlock(PredBB, V);
1677 State.Builder.SetInsertPoint(Phi->getParent(), std::next(Phi->getIterator()));
1682 assert(R->getNumOperands() == R->getParent()->getNumPredecessors() &&
1683 "Number of phi operands must match number of predecessors");
1684 unsigned Position = R->getParent()->getIndexForPredecessor(IncomingBlock);
1685 R->removeOperand(Position);
1688#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1702#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1708 O <<
" (extra operand" << (
getNumOperands() > 1 ?
"s" :
"") <<
": ";
1713 std::get<1>(
Op)->printAsOperand(O);
1721 for (
const auto &[Kind,
Node] : Metadata)
1722 I.setMetadata(Kind,
Node);
1727 for (
const auto &[KindA, MDA] : Metadata) {
1728 for (
const auto &[KindB, MDB] :
Other.Metadata) {
1729 if (KindA == KindB && MDA == MDB) {
1735 Metadata = std::move(MetadataIntersection);
1738#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1741 if (Metadata.empty() || !M)
1747 auto [Kind,
Node] = KindNodePair;
1749 "Unexpected unnamed metadata kind");
1750 O <<
"!" << MDNames[Kind] <<
" ";
1758 assert(State.VF.isVector() &&
"not widening");
1759 assert(Variant !=
nullptr &&
"Can't create vector function.");
1770 Arg = State.get(
I.value(),
VPLane(0));
1773 Args.push_back(Arg);
1779 CI->getOperandBundlesAsDefs(OpBundles);
1781 CallInst *V = State.Builder.CreateCall(Variant, Args, OpBundles);
1784 V->setCallingConv(Variant->getCallingConv());
1786 if (!V->getType()->isVoidTy())
1792 return Ctx.TTI.getCallInstrCost(
nullptr, Variant->getReturnType(),
1793 Variant->getFunctionType()->params(),
1797#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1800 O << Indent <<
"WIDEN-CALL ";
1812 O <<
" @" << CalledFn->
getName() <<
"(";
1818 O <<
" (using library function";
1819 if (Variant->hasName())
1820 O <<
": " << Variant->getName();
1826 assert(State.VF.isVector() &&
"not widening");
1834 for (
auto [Idx, Ty] :
enumerate(ContainedTys)) {
1847 Arg = State.get(
I.value(),
VPLane(0));
1853 Args.push_back(Arg);
1857 Module *M = State.Builder.GetInsertBlock()->getModule();
1861 "Can't retrieve vector intrinsic or vector-predication intrinsics.");
1866 CI->getOperandBundlesAsDefs(OpBundles);
1868 CallInst *V = State.Builder.CreateCall(VectorF, Args, OpBundles);
1873 if (!V->getType()->isVoidTy())
1889 for (
const auto &[Idx,
Op] :
enumerate(Operands)) {
1890 auto *V =
Op->getUnderlyingValue();
1893 Arguments.push_back(UI->getArgOperand(Idx));
1902 Type *ScalarRetTy = Ctx.Types.inferScalarType(&R);
1908 : Ctx.Types.inferScalarType(
Op));
1913 R.hasFastMathFlags() ? R.getFastMathFlags() :
FastMathFlags();
1918 return Ctx.TTI.getIntrinsicInstrCost(CostAttrs, Ctx.CostKind);
1940#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1943 O << Indent <<
"WIDEN-INTRINSIC ";
1944 if (ResultTy->isVoidTy()) {
1972 Value *Mask =
nullptr;
1974 Mask = State.get(VPMask);
1977 Builder.CreateVectorSplat(VTy->
getElementCount(), Builder.getInt1(1));
1981 if (Opcode == Instruction::Sub)
1982 IncAmt = Builder.CreateNeg(IncAmt);
1984 assert(Opcode == Instruction::Add &&
"only add or sub supported for now");
1986 State.Builder.CreateIntrinsic(Intrinsic::experimental_vector_histogram_add,
2001 Type *IncTy = Ctx.Types.inferScalarType(IncAmt);
2007 Ctx.TTI.getArithmeticInstrCost(Instruction::Mul, VTy, Ctx.CostKind);
2017 {PtrTy, IncTy, MaskTy});
2020 return Ctx.TTI.getIntrinsicInstrCost(ICA, Ctx.CostKind) + MulCost +
2021 Ctx.TTI.getArithmeticInstrCost(Opcode, VTy, Ctx.CostKind);
2024#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2027 O << Indent <<
"WIDEN-HISTOGRAM buckets: ";
2030 if (Opcode == Instruction::Sub)
2033 assert(Opcode == Instruction::Add);
2045VPIRFlags::FastMathFlagsTy::FastMathFlagsTy(
const FastMathFlags &FMF) {
2058 case OperationType::OverflowingBinOp:
2059 return Opcode == Instruction::Add || Opcode == Instruction::Sub ||
2060 Opcode == Instruction::Mul || Opcode == Instruction::Shl ||
2061 Opcode == VPInstruction::VPInstruction::CanonicalIVIncrementForPart;
2062 case OperationType::Trunc:
2063 return Opcode == Instruction::Trunc;
2064 case OperationType::DisjointOp:
2065 return Opcode == Instruction::Or;
2066 case OperationType::PossiblyExactOp:
2067 return Opcode == Instruction::AShr || Opcode == Instruction::LShr ||
2068 Opcode == Instruction::UDiv || Opcode == Instruction::SDiv;
2069 case OperationType::GEPOp:
2070 return Opcode == Instruction::GetElementPtr ||
2073 case OperationType::FPMathOp:
2074 return Opcode == Instruction::Call || Opcode == Instruction::FAdd ||
2075 Opcode == Instruction::FMul || Opcode == Instruction::FSub ||
2076 Opcode == Instruction::FNeg || Opcode == Instruction::FDiv ||
2077 Opcode == Instruction::FRem || Opcode == Instruction::FPExt ||
2078 Opcode == Instruction::FPTrunc || Opcode == Instruction::Select ||
2081 case OperationType::FCmp:
2082 return Opcode == Instruction::FCmp;
2083 case OperationType::NonNegOp:
2084 return Opcode == Instruction::ZExt || Opcode == Instruction::UIToFP;
2085 case OperationType::Cmp:
2086 return Opcode == Instruction::FCmp || Opcode == Instruction::ICmp;
2087 case OperationType::ReductionOp:
2089 case OperationType::Other:
2096#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2099 case OperationType::Cmp:
2102 case OperationType::FCmp:
2106 case OperationType::DisjointOp:
2110 case OperationType::PossiblyExactOp:
2114 case OperationType::OverflowingBinOp:
2120 case OperationType::Trunc:
2126 case OperationType::FPMathOp:
2129 case OperationType::GEPOp:
2132 else if (
GEPFlags.hasNoUnsignedSignedWrap())
2137 case OperationType::NonNegOp:
2141 case OperationType::ReductionOp: {
2190 case OperationType::Other:
2198 auto &Builder = State.Builder;
2200 case Instruction::Call:
2201 case Instruction::Br:
2202 case Instruction::PHI:
2203 case Instruction::GetElementPtr:
2205 case Instruction::UDiv:
2206 case Instruction::SDiv:
2207 case Instruction::SRem:
2208 case Instruction::URem:
2209 case Instruction::Add:
2210 case Instruction::FAdd:
2211 case Instruction::Sub:
2212 case Instruction::FSub:
2213 case Instruction::FNeg:
2214 case Instruction::Mul:
2215 case Instruction::FMul:
2216 case Instruction::FDiv:
2217 case Instruction::FRem:
2218 case Instruction::Shl:
2219 case Instruction::LShr:
2220 case Instruction::AShr:
2221 case Instruction::And:
2222 case Instruction::Or:
2223 case Instruction::Xor: {
2227 Ops.push_back(State.get(VPOp));
2229 Value *V = Builder.CreateNAryOp(Opcode,
Ops);
2240 case Instruction::ExtractValue: {
2243 Value *Extract = Builder.CreateExtractValue(
2245 State.set(
this, Extract);
2248 case Instruction::Freeze: {
2250 Value *Freeze = Builder.CreateFreeze(
Op);
2251 State.set(
this, Freeze);
2254 case Instruction::ICmp:
2255 case Instruction::FCmp: {
2257 bool FCmp = Opcode == Instruction::FCmp;
2273 case Instruction::Select: {
2278 Value *Sel = State.Builder.CreateSelect(
Cond, Op0, Op1);
2279 State.set(
this, Sel);
2298 State.get(
this)->getType() &&
2299 "inferred type and type from generated instructions do not match");
2306 case Instruction::UDiv:
2307 case Instruction::SDiv:
2308 case Instruction::SRem:
2309 case Instruction::URem:
2314 case Instruction::FNeg:
2315 case Instruction::Add:
2316 case Instruction::FAdd:
2317 case Instruction::Sub:
2318 case Instruction::FSub:
2319 case Instruction::Mul:
2320 case Instruction::FMul:
2321 case Instruction::FDiv:
2322 case Instruction::FRem:
2323 case Instruction::Shl:
2324 case Instruction::LShr:
2325 case Instruction::AShr:
2326 case Instruction::And:
2327 case Instruction::Or:
2328 case Instruction::Xor:
2329 case Instruction::Freeze:
2330 case Instruction::ExtractValue:
2331 case Instruction::ICmp:
2332 case Instruction::FCmp:
2333 case Instruction::Select:
2340#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2343 O << Indent <<
"WIDEN ";
2352 auto &Builder = State.Builder;
2354 assert(State.VF.isVector() &&
"Not vectorizing?");
2359 State.set(
this, Cast);
2376#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2379 O << Indent <<
"WIDEN-CAST ";
2390 return Ctx.TTI.getCFInstrCost(Instruction::PHI, Ctx.CostKind);
2393#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2398 O <<
" = WIDEN-INDUCTION";
2403 O <<
" (truncated to " << *TI->getType() <<
")";
2413 return StartC && StartC->isZero() && StepC && StepC->isOne() &&
2418 assert(!State.Lane &&
"VPDerivedIVRecipe being replicated.");
2423 State.Builder.setFastMathFlags(FPBinOp->getFastMathFlags());
2431 State.set(
this, DerivedIV,
VPLane(0));
2434#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2439 O <<
" = DERIVED-IV ";
2463 assert(BaseIVTy == Step->
getType() &&
"Types of BaseIV and Step must match!");
2470 AddOp = Instruction::Add;
2471 MulOp = Instruction::Mul;
2473 AddOp = InductionOpcode;
2474 MulOp = Instruction::FMul;
2481 unsigned StartLane = 0;
2482 unsigned EndLane = FirstLaneOnly ? 1 : State.VF.getKnownMinValue();
2484 StartLane = State.Lane->getKnownLane();
2485 EndLane = StartLane + 1;
2490 for (
unsigned Lane = StartLane; Lane < EndLane; ++Lane) {
2495 ? ConstantInt::get(BaseIVTy, Lane,
false,
2497 : ConstantFP::get(BaseIVTy, Lane);
2498 Value *StartIdx = Builder.CreateBinOp(AddOp, StartIdx0, LaneValue);
2502 "Expected StartIdx to be folded to a constant when VF is not "
2504 auto *
Mul = Builder.CreateBinOp(MulOp, StartIdx, Step);
2505 auto *
Add = Builder.CreateBinOp(AddOp, BaseIV,
Mul);
2510#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2515 O <<
" = SCALAR-STEPS ";
2526 assert(State.VF.isVector() &&
"not widening");
2534 return Op->isDefinedOutsideLoopRegions();
2536 if (AllOperandsAreInvariant) {
2551 Value *
Splat = State.Builder.CreateVectorSplat(State.VF, NewGEP);
2552 State.set(
this,
Splat);
2560 auto *Ptr = State.get(
getOperand(0), isPointerLoopInvariant());
2567 Indices.
push_back(State.get(Operand, isIndexLoopInvariant(
I - 1)));
2574 assert((State.VF.isScalar() || NewGEP->getType()->isVectorTy()) &&
2575 "NewGEP is not a pointer vector");
2576 State.set(
this, NewGEP);
2579#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2582 O << Indent <<
"WIDEN-GEP ";
2583 O << (isPointerLoopInvariant() ?
"Inv" :
"Var");
2585 O <<
"[" << (isIndexLoopInvariant(
I) ?
"Inv" :
"Var") <<
"]";
2589 O <<
" = getelementptr";
2596 auto &Builder = State.Builder;
2598 const DataLayout &DL = Builder.GetInsertBlock()->getDataLayout();
2599 Type *IndexTy = DL.getIndexType(State.TypeAnalysis.inferScalarType(
this));
2603 if (IndexTy != RunTimeVF->
getType())
2604 RunTimeVF = Builder.CreateZExtOrTrunc(RunTimeVF, IndexTy);
2606 Value *NumElt = Builder.CreateMul(
2610 Value *LastLane = Builder.CreateSub(RunTimeVF, ConstantInt::get(IndexTy, 1));
2617 ResultPtr = Builder.CreateGEP(IndexedTy, ResultPtr, LastLane,
"",
2620 State.set(
this, ResultPtr,
true);
2623#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2628 O <<
" = vector-end-pointer";
2635 auto &Builder = State.Builder;
2637 "Expected prior simplification of recipe without offset");
2642 State.set(
this, ResultPtr,
true);
2645#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2650 O <<
" = vector-pointer";
2663 Type *ResultTy =
toVectorTy(Ctx.Types.inferScalarType(
this), VF);
2666 Ctx.TTI.getCmpSelInstrCost(Instruction::Select, ResultTy, CmpTy,
2670#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2673 O << Indent <<
"BLEND ";
2695 assert(!State.Lane &&
"Reduction being replicated.");
2698 "In-loop AnyOf reductions aren't currently supported");
2704 Value *NewCond = State.get(
Cond, State.VF.isScalar());
2709 if (State.VF.isVector())
2710 Start = State.Builder.CreateVectorSplat(VecTy->
getElementCount(), Start);
2712 Value *
Select = State.Builder.CreateSelect(NewCond, NewVecOp, Start);
2719 if (State.VF.isVector())
2723 NewRed = State.Builder.CreateBinOp(
2725 PrevInChain, NewVecOp);
2726 PrevInChain = NewRed;
2727 NextInChain = NewRed;
2730 "Unexpected partial reduction kind");
2732 NewRed = State.Builder.CreateIntrinsic(
2735 : Intrinsic::vector_partial_reduce_fadd,
2736 {PrevInChain, NewVecOp}, State.Builder.getFastMathFlags(),
2738 PrevInChain = NewRed;
2739 NextInChain = NewRed;
2742 "The reduction must either be ordered, partial or in-loop");
2746 NextInChain =
createMinMaxOp(State.Builder, Kind, NewRed, PrevInChain);
2748 NextInChain = State.Builder.CreateBinOp(
2750 PrevInChain, NewRed);
2756 assert(!State.Lane &&
"Reduction being replicated.");
2758 auto &Builder = State.Builder;
2770 Mask = State.get(CondOp);
2772 Mask = Builder.CreateVectorSplat(State.VF, Builder.getTrue());
2782 NewRed = Builder.CreateBinOp(
2786 State.set(
this, NewRed,
true);
2792 Type *ElementTy = Ctx.Types.inferScalarType(
this);
2796 std::optional<FastMathFlags> OptionalFMF =
2805 CondCost = Ctx.TTI.getCmpSelInstrCost(Instruction::Select, VectorTy,
2806 CondTy, Pred, Ctx.CostKind);
2808 return CondCost + Ctx.TTI.getPartialReductionCost(
2809 Opcode, ElementTy, ElementTy, ElementTy, VF,
2818 "Any-of reduction not implemented in VPlan-based cost model currently.");
2824 return Ctx.TTI.getMinMaxReductionCost(Id, VectorTy,
FMFs, Ctx.CostKind);
2829 return Ctx.TTI.getArithmeticReductionCost(Opcode, VectorTy, OptionalFMF,
2833VPExpressionRecipe::VPExpressionRecipe(
2834 ExpressionTypes ExpressionType,
2837 ExpressionRecipes(ExpressionRecipes),
ExpressionType(ExpressionType) {
2838 assert(!ExpressionRecipes.empty() &&
"Nothing to combine?");
2842 "expression cannot contain recipes with side-effects");
2846 for (
auto *R : ExpressionRecipes)
2847 ExpressionRecipesAsSetOfUsers.
insert(R);
2853 if (R != ExpressionRecipes.back() &&
2854 any_of(
R->users(), [&ExpressionRecipesAsSetOfUsers](
VPUser *U) {
2855 return !ExpressionRecipesAsSetOfUsers.contains(U);
2860 R->replaceUsesWithIf(CopyForExtUsers, [&ExpressionRecipesAsSetOfUsers](
2862 return !ExpressionRecipesAsSetOfUsers.contains(&U);
2867 R->removeFromParent();
2874 for (
auto *R : ExpressionRecipes) {
2875 for (
const auto &[Idx,
Op] :
enumerate(
R->operands())) {
2876 auto *
Def =
Op->getDefiningRecipe();
2877 if (Def && ExpressionRecipesAsSetOfUsers.contains(Def))
2886 for (
auto *R : ExpressionRecipes)
2887 for (
auto const &[LiveIn, Tmp] :
zip(operands(), LiveInPlaceholders))
2888 R->replaceUsesOfWith(LiveIn, Tmp);
2892 for (
auto *R : ExpressionRecipes)
2895 if (!R->getParent())
2896 R->insertBefore(
this);
2899 LiveInPlaceholders[Idx]->replaceAllUsesWith(
Op);
2902 ExpressionRecipes.clear();
2907 Type *RedTy = Ctx.Types.inferScalarType(
this);
2912 switch (ExpressionType) {
2913 case ExpressionTypes::ExtendedReduction: {
2919 if (RedR->isPartialReduction())
2920 return Ctx.TTI.getPartialReductionCost(
2921 Opcode, Ctx.Types.inferScalarType(
getOperand(0)),
nullptr, RedTy, VF,
2928 return Ctx.TTI.getExtendedReductionCost(
2929 Opcode, ExtR->getOpcode() == Instruction::ZExt, RedTy, SrcVecTy,
2930 std::nullopt, Ctx.CostKind);
2934 case ExpressionTypes::MulAccReduction:
2935 return Ctx.TTI.getMulAccReductionCost(
false, Opcode, RedTy, SrcVecTy,
2938 case ExpressionTypes::ExtNegatedMulAccReduction:
2939 assert(Opcode == Instruction::Add &&
"Unexpected opcode");
2940 Opcode = Instruction::Sub;
2942 case ExpressionTypes::ExtMulAccReduction: {
2944 if (RedR->isPartialReduction()) {
2948 return Ctx.TTI.getPartialReductionCost(
2949 Opcode, Ctx.Types.inferScalarType(
getOperand(0)),
2950 Ctx.Types.inferScalarType(
getOperand(1)), RedTy, VF,
2952 Ext0R->getOpcode()),
2954 Ext1R->getOpcode()),
2955 Mul->getOpcode(), Ctx.CostKind,
2959 return Ctx.TTI.getMulAccReductionCost(
2962 Opcode, RedTy, SrcVecTy, Ctx.CostKind);
2970 return R->mayReadFromMemory() || R->mayWriteToMemory();
2978 "expression cannot contain recipes with side-effects");
2986 return RR && !RR->isPartialReduction();
2989#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2993 O << Indent <<
"EXPRESSION ";
2999 switch (ExpressionType) {
3000 case ExpressionTypes::ExtendedReduction: {
3002 O <<
" + " << (Red->isPartialReduction() ?
"partial." :
"") <<
"reduce.";
3009 << *Ext0->getResultType();
3010 if (Red->isConditional()) {
3017 case ExpressionTypes::ExtNegatedMulAccReduction: {
3019 O <<
" + " << (Red->isPartialReduction() ?
"partial." :
"") <<
"reduce.";
3029 << *Ext0->getResultType() <<
"), (";
3033 << *Ext1->getResultType() <<
")";
3034 if (Red->isConditional()) {
3041 case ExpressionTypes::MulAccReduction:
3042 case ExpressionTypes::ExtMulAccReduction: {
3044 O <<
" + " << (Red->isPartialReduction() ?
"partial." :
"") <<
"reduce.";
3049 bool IsExtended = ExpressionType == ExpressionTypes::ExtMulAccReduction;
3051 : ExpressionRecipes[0]);
3059 << *Ext0->getResultType() <<
"), (";
3067 << *Ext1->getResultType() <<
")";
3069 if (Red->isConditional()) {
3082 O << Indent <<
"PARTIAL-REDUCE ";
3084 O << Indent <<
"REDUCE ";
3104 O << Indent <<
"REDUCE ";
3132 assert((!Instr->getType()->isAggregateType() ||
3134 "Expected vectorizable or non-aggregate type.");
3137 bool IsVoidRetTy = Instr->getType()->isVoidTy();
3141 Cloned->
setName(Instr->getName() +
".cloned");
3142 Type *ResultTy = State.TypeAnalysis.inferScalarType(RepRecipe);
3146 if (ResultTy != Cloned->
getType())
3157 State.setDebugLocFrom(
DL);
3162 auto InputLane = Lane;
3166 Cloned->
setOperand(
I.index(), State.get(Operand, InputLane));
3170 State.Builder.Insert(Cloned);
3172 State.set(RepRecipe, Cloned, Lane);
3176 State.AC->registerAssumption(
II);
3182 [](
VPValue *
Op) { return Op->isDefinedOutsideLoopRegions(); })) &&
3183 "Expected a recipe is either within a region or all of its operands "
3184 "are defined outside the vectorized region.");
3191 assert(IsSingleScalar &&
"VPReplicateRecipes outside replicate regions "
3192 "must have already been unrolled");
3198 "uniform recipe shouldn't be predicated");
3199 assert(!State.VF.isScalable() &&
"Can't scalarize a scalable vector");
3204 State.Lane->isFirstLane()
3207 State.set(
this, State.packScalarIntoVectorizedValue(
this, WideValue,
3243 while (!WorkList.
empty()) {
3245 if (!Cur || !Seen.
insert(Cur).second)
3253 return Seen.contains(
3254 Blend->getIncomingValue(I)->getDefiningRecipe());
3258 for (
VPUser *U : Cur->users()) {
3260 if (InterleaveR->getAddr() == Cur)
3263 if (RepR->getOpcode() == Instruction::Load &&
3264 RepR->getOperand(0) == Cur)
3266 if (RepR->getOpcode() == Instruction::Store &&
3267 RepR->getOperand(1) == Cur)
3271 if (MemR->getAddr() == Cur && MemR->isConsecutive())
3292 Ctx.SkipCostComputation.insert(UI);
3298 case Instruction::Alloca:
3301 return Ctx.TTI.getArithmeticInstrCost(
3302 Instruction::Mul, Ctx.Types.inferScalarType(
this), Ctx.CostKind);
3303 case Instruction::GetElementPtr:
3309 case Instruction::Call: {
3315 for (
const VPValue *ArgOp : ArgOps)
3316 Tys.
push_back(Ctx.Types.inferScalarType(ArgOp));
3318 if (CalledFn->isIntrinsic())
3321 switch (CalledFn->getIntrinsicID()) {
3322 case Intrinsic::assume:
3323 case Intrinsic::lifetime_end:
3324 case Intrinsic::lifetime_start:
3325 case Intrinsic::sideeffect:
3326 case Intrinsic::pseudoprobe:
3327 case Intrinsic::experimental_noalias_scope_decl: {
3330 "scalarizing intrinsic should be free");
3337 Type *ResultTy = Ctx.Types.inferScalarType(
this);
3339 Ctx.TTI.getCallInstrCost(CalledFn, ResultTy, Tys, Ctx.CostKind);
3341 if (CalledFn->isIntrinsic())
3342 ScalarCallCost = std::min(
3346 return ScalarCallCost;
3350 Ctx.getScalarizationOverhead(ResultTy, ArgOps, VF);
3352 case Instruction::Add:
3353 case Instruction::Sub:
3354 case Instruction::FAdd:
3355 case Instruction::FSub:
3356 case Instruction::Mul:
3357 case Instruction::FMul:
3358 case Instruction::FDiv:
3359 case Instruction::FRem:
3360 case Instruction::Shl:
3361 case Instruction::LShr:
3362 case Instruction::AShr:
3363 case Instruction::And:
3364 case Instruction::Or:
3365 case Instruction::Xor:
3366 case Instruction::ICmp:
3367 case Instruction::FCmp:
3371 case Instruction::SDiv:
3372 case Instruction::UDiv:
3373 case Instruction::SRem:
3374 case Instruction::URem: {
3387 return Ctx.skipCostComputation(
3389 PredR->getOperand(0)->getUnderlyingValue()),
3395 Ctx.getScalarizationOverhead(Ctx.Types.inferScalarType(
this),
3404 Ctx.TTI.getCFInstrCost(Instruction::PHI, Ctx.CostKind);
3408 ScalarCost /= Ctx.getPredBlockCostDivisor(UI->
getParent());
3411 case Instruction::Load:
3412 case Instruction::Store: {
3419 bool IsLoad = UI->
getOpcode() == Instruction::Load;
3425 Type *ValTy = Ctx.Types.inferScalarType(IsLoad ?
this :
getOperand(0));
3426 Type *ScalarPtrTy = Ctx.Types.inferScalarType(PtrOp);
3431 UI->
getOpcode(), ValTy, Alignment, AS, Ctx.CostKind, OpInfo);
3434 bool PreferVectorizedAddressing = Ctx.TTI.prefersVectorizedAddressing();
3435 bool UsedByLoadStoreAddress =
3439 Ctx.TTI.getAddressComputationCost(
3440 PtrTy, UsedByLoadStoreAddress ?
nullptr : Ctx.PSE.getSE(), PtrSCEV,
3451 if (!UsedByLoadStoreAddress) {
3452 bool EfficientVectorLoadStore =
3453 Ctx.TTI.supportsEfficientVectorElementLoadStore();
3454 if (!(IsLoad && !PreferVectorizedAddressing) &&
3455 !(!IsLoad && EfficientVectorLoadStore))
3458 if (!EfficientVectorLoadStore)
3459 ResultTy = Ctx.Types.inferScalarType(
this);
3465 Ctx.getScalarizationOverhead(ResultTy, OpsToScalarize, VF, VIC,
3468 case Instruction::SExt:
3469 case Instruction::ZExt:
3470 case Instruction::FPToUI:
3471 case Instruction::FPToSI:
3472 case Instruction::FPExt:
3473 case Instruction::PtrToInt:
3474 case Instruction::PtrToAddr:
3475 case Instruction::IntToPtr:
3476 case Instruction::SIToFP:
3477 case Instruction::UIToFP:
3478 case Instruction::Trunc:
3479 case Instruction::FPTrunc:
3480 case Instruction::AddrSpaceCast: {
3485 case Instruction::ExtractValue:
3486 case Instruction::InsertValue:
3487 return Ctx.TTI.getInsertExtractValueCost(
getOpcode(), Ctx.CostKind);
3490 return Ctx.getLegacyCost(UI, VF);
3493#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
3496 O << Indent << (IsSingleScalar ?
"CLONE " :
"REPLICATE ");
3505 O <<
"@" << CB->getCalledFunction()->getName() <<
"(";
3523 assert(State.Lane &&
"Branch on Mask works only on single instance.");
3526 Value *ConditionBit = State.get(BlockInMask, *State.Lane);
3530 auto *CurrentTerminator = State.CFG.PrevBB->getTerminator();
3532 "Expected to replace unreachable terminator with conditional branch.");
3534 State.Builder.CreateCondBr(ConditionBit, State.CFG.PrevBB,
nullptr);
3535 CondBr->setSuccessor(0,
nullptr);
3536 CurrentTerminator->eraseFromParent();
3548 assert(State.Lane &&
"Predicated instruction PHI works per instance.");
3553 assert(PredicatingBB &&
"Predicated block has no single predecessor.");
3555 "operand must be VPReplicateRecipe");
3566 "Packed operands must generate an insertelement or insertvalue");
3574 for (
unsigned I = 0;
I < StructTy->getNumContainedTypes() - 1;
I++)
3577 PHINode *VPhi = State.Builder.CreatePHI(VecI->getType(), 2);
3578 VPhi->
addIncoming(VecI->getOperand(0), PredicatingBB);
3580 if (State.hasVectorValue(
this))
3581 State.reset(
this, VPhi);
3583 State.set(
this, VPhi);
3591 Type *PredInstType = State.TypeAnalysis.inferScalarType(
getOperand(0));
3592 PHINode *Phi = State.Builder.CreatePHI(PredInstType, 2);
3595 Phi->addIncoming(ScalarPredInst, PredicatedBB);
3596 if (State.hasScalarValue(
this, *State.Lane))
3597 State.reset(
this, Phi, *State.Lane);
3599 State.set(
this, Phi, *State.Lane);
3602 State.reset(
getOperand(0), Phi, *State.Lane);
3606#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
3609 O << Indent <<
"PHI-PREDICATED-INSTRUCTION ";
3620 ->getAddressSpace();
3623 : Instruction::Store;
3630 "Inconsecutive memory access should not have the order.");
3643 : Intrinsic::vp_scatter;
3644 return Ctx.TTI.getAddressComputationCost(PtrTy,
nullptr,
nullptr,
3646 Ctx.TTI.getMemIntrinsicInstrCost(
3655 : Intrinsic::masked_store;
3656 Cost += Ctx.TTI.getMemIntrinsicInstrCost(
3662 Cost += Ctx.TTI.getMemoryOpCost(Opcode, Ty,
Alignment, AS, Ctx.CostKind,
3673 auto &Builder = State.Builder;
3674 Value *Mask =
nullptr;
3675 if (
auto *VPMask =
getMask()) {
3678 Mask = State.get(VPMask);
3680 Mask = Builder.CreateVectorReverse(Mask,
"reverse");
3686 NewLI = Builder.CreateMaskedGather(DataTy, Addr,
Alignment, Mask,
nullptr,
3687 "wide.masked.gather");
3690 Builder.CreateMaskedLoad(DataTy, Addr,
Alignment, Mask,
3693 NewLI = Builder.CreateAlignedLoad(DataTy, Addr,
Alignment,
"wide.load");
3696 State.set(
this, NewLI);
3699#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
3702 O << Indent <<
"WIDEN ";
3714 Value *AllTrueMask =
3715 Builder.CreateVectorSplat(ValTy->getElementCount(), Builder.getTrue());
3716 return Builder.CreateIntrinsic(ValTy, Intrinsic::experimental_vp_reverse,
3717 {Operand, AllTrueMask, EVL},
nullptr, Name);
3725 auto &Builder = State.Builder;
3729 Value *Mask =
nullptr;
3731 Mask = State.get(VPMask);
3735 Mask = Builder.CreateVectorSplat(State.VF, Builder.getTrue());
3740 Builder.CreateIntrinsic(DataTy, Intrinsic::vp_gather, {Addr, Mask, EVL},
3741 nullptr,
"wide.masked.gather");
3743 NewLI = Builder.CreateIntrinsic(DataTy, Intrinsic::vp_load,
3744 {Addr, Mask, EVL},
nullptr,
"vp.op.load");
3750 State.set(
this, Res);
3765 ->getAddressSpace();
3766 return Ctx.TTI.getMemIntrinsicInstrCost(
3771#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
3774 O << Indent <<
"WIDEN ";
3785 auto &Builder = State.Builder;
3787 Value *Mask =
nullptr;
3788 if (
auto *VPMask =
getMask()) {
3791 Mask = State.get(VPMask);
3793 Mask = Builder.CreateVectorReverse(Mask,
"reverse");
3796 Value *StoredVal = State.get(StoredVPValue);
3800 NewSI = Builder.CreateMaskedScatter(StoredVal, Addr,
Alignment, Mask);
3802 NewSI = Builder.CreateMaskedStore(StoredVal, Addr,
Alignment, Mask);
3804 NewSI = Builder.CreateAlignedStore(StoredVal, Addr,
Alignment);
3808#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
3811 O << Indent <<
"WIDEN store ";
3820 auto &Builder = State.Builder;
3823 Value *StoredVal = State.get(StoredValue);
3825 Value *Mask =
nullptr;
3827 Mask = State.get(VPMask);
3831 Mask = Builder.CreateVectorSplat(State.VF, Builder.getTrue());
3834 if (CreateScatter) {
3836 Intrinsic::vp_scatter,
3837 {StoredVal, Addr, Mask, EVL});
3840 Intrinsic::vp_store,
3841 {StoredVal, Addr, Mask, EVL});
3860 ->getAddressSpace();
3861 return Ctx.TTI.getMemIntrinsicInstrCost(
3866#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
3869 O << Indent <<
"WIDEN vp.store ";
3877 auto VF = DstVTy->getElementCount();
3879 assert(VF == SrcVecTy->getElementCount() &&
"Vector dimensions do not match");
3880 Type *SrcElemTy = SrcVecTy->getElementType();
3881 Type *DstElemTy = DstVTy->getElementType();
3882 assert((
DL.getTypeSizeInBits(SrcElemTy) ==
DL.getTypeSizeInBits(DstElemTy)) &&
3883 "Vector elements must have same size");
3887 return Builder.CreateBitOrPointerCast(V, DstVTy);
3894 "Only one type should be a pointer type");
3896 "Only one type should be a floating point type");
3900 Value *CastVal = Builder.CreateBitOrPointerCast(V, VecIntTy);
3901 return Builder.CreateBitOrPointerCast(CastVal, DstVTy);
3907 const Twine &Name) {
3908 unsigned Factor = Vals.
size();
3909 assert(Factor > 1 &&
"Tried to interleave invalid number of vectors");
3913 for (
Value *Val : Vals)
3914 assert(Val->getType() == VecTy &&
"Tried to interleave mismatched types");
3919 if (VecTy->isScalableTy()) {
3920 assert(Factor <= 8 &&
"Unsupported interleave factor for scalable vectors");
3921 return Builder.CreateVectorInterleave(Vals, Name);
3928 const unsigned NumElts = VecTy->getElementCount().getFixedValue();
3929 return Builder.CreateShuffleVector(
3962 assert(!State.Lane &&
"Interleave group being replicated.");
3964 "Masking gaps for scalable vectors is not yet supported.");
3970 unsigned InterleaveFactor = Group->
getFactor();
3977 auto CreateGroupMask = [&BlockInMask, &State,
3978 &InterleaveFactor](
Value *MaskForGaps) ->
Value * {
3979 if (State.VF.isScalable()) {
3980 assert(!MaskForGaps &&
"Interleaved groups with gaps are not supported.");
3981 assert(InterleaveFactor <= 8 &&
3982 "Unsupported deinterleave factor for scalable vectors");
3983 auto *ResBlockInMask = State.get(BlockInMask);
3991 Value *ResBlockInMask = State.get(BlockInMask);
3992 Value *ShuffledMask = State.Builder.CreateShuffleVector(
3995 "interleaved.mask");
3996 return MaskForGaps ? State.Builder.CreateBinOp(Instruction::And,
3997 ShuffledMask, MaskForGaps)
4001 const DataLayout &DL = Instr->getDataLayout();
4004 Value *MaskForGaps =
nullptr;
4008 assert(MaskForGaps &&
"Mask for Gaps is required but it is null");
4012 if (BlockInMask || MaskForGaps) {
4013 Value *GroupMask = CreateGroupMask(MaskForGaps);
4015 NewLoad = State.Builder.CreateMaskedLoad(VecTy, ResAddr,
4017 PoisonVec,
"wide.masked.vec");
4019 NewLoad = State.Builder.CreateAlignedLoad(VecTy, ResAddr,
4026 if (VecTy->isScalableTy()) {
4029 assert(InterleaveFactor <= 8 &&
4030 "Unsupported deinterleave factor for scalable vectors");
4031 NewLoad = State.Builder.CreateIntrinsic(
4034 nullptr,
"strided.vec");
4037 auto CreateStridedVector = [&InterleaveFactor, &State,
4038 &NewLoad](
unsigned Index) ->
Value * {
4039 assert(Index < InterleaveFactor &&
"Illegal group index");
4040 if (State.VF.isScalable())
4041 return State.Builder.CreateExtractValue(NewLoad, Index);
4047 return State.Builder.CreateShuffleVector(NewLoad, StrideMask,
4051 for (
unsigned I = 0, J = 0;
I < InterleaveFactor; ++
I) {
4058 Value *StridedVec = CreateStridedVector(
I);
4061 if (Member->getType() != ScalarTy) {
4068 StridedVec = State.Builder.CreateVectorReverse(StridedVec,
"reverse");
4070 State.set(VPDefs[J], StridedVec);
4080 Value *MaskForGaps =
4083 "Mismatch between NeedsMaskForGaps and MaskForGaps");
4087 unsigned StoredIdx = 0;
4088 for (
unsigned i = 0; i < InterleaveFactor; i++) {
4090 "Fail to get a member from an interleaved store group");
4100 Value *StoredVec = State.get(StoredValues[StoredIdx]);
4104 StoredVec = State.Builder.CreateVectorReverse(StoredVec,
"reverse");
4108 if (StoredVec->
getType() != SubVT)
4117 if (BlockInMask || MaskForGaps) {
4118 Value *GroupMask = CreateGroupMask(MaskForGaps);
4119 NewStoreInstr = State.Builder.CreateMaskedStore(
4120 IVec, ResAddr, Group->
getAlign(), GroupMask);
4123 State.Builder.CreateAlignedStore(IVec, ResAddr, Group->
getAlign());
4130#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4134 O << Indent <<
"INTERLEAVE-GROUP with factor " << IG->getFactor() <<
" at ";
4135 IG->getInsertPos()->printAsOperand(O,
false);
4145 for (
unsigned i = 0; i < IG->getFactor(); ++i) {
4146 if (!IG->getMember(i))
4149 O <<
"\n" << Indent <<
" store ";
4151 O <<
" to index " << i;
4153 O <<
"\n" << Indent <<
" ";
4155 O <<
" = load from index " << i;
4163 assert(!State.Lane &&
"Interleave group being replicated.");
4164 assert(State.VF.isScalable() &&
4165 "Only support scalable VF for EVL tail-folding.");
4167 "Masking gaps for scalable vectors is not yet supported.");
4173 unsigned InterleaveFactor = Group->
getFactor();
4174 assert(InterleaveFactor <= 8 &&
4175 "Unsupported deinterleave/interleave factor for scalable vectors");
4182 Value *InterleaveEVL = State.Builder.CreateMul(
4183 EVL, ConstantInt::get(EVL->
getType(), InterleaveFactor),
"interleave.evl",
4187 Value *GroupMask =
nullptr;
4193 State.Builder.CreateVectorSplat(WideVF, State.Builder.getTrue());
4198 CallInst *NewLoad = State.Builder.CreateIntrinsic(
4199 VecTy, Intrinsic::vp_load, {ResAddr, GroupMask, InterleaveEVL},
nullptr,
4210 NewLoad = State.Builder.CreateIntrinsic(
4213 nullptr,
"strided.vec");
4215 const DataLayout &DL = Instr->getDataLayout();
4216 for (
unsigned I = 0, J = 0;
I < InterleaveFactor; ++
I) {
4222 Value *StridedVec = State.Builder.CreateExtractValue(NewLoad,
I);
4224 if (Member->getType() != ScalarTy) {
4242 const DataLayout &DL = Instr->getDataLayout();
4243 for (
unsigned I = 0, StoredIdx = 0;
I < InterleaveFactor;
I++) {
4251 Value *StoredVec = State.get(StoredValues[StoredIdx]);
4253 if (StoredVec->
getType() != SubVT)
4263 State.Builder.CreateIntrinsic(
Type::getVoidTy(Ctx), Intrinsic::vp_store,
4264 {IVec, ResAddr, GroupMask, InterleaveEVL});
4273#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4277 O << Indent <<
"INTERLEAVE-GROUP with factor " << IG->getFactor() <<
" at ";
4278 IG->getInsertPos()->printAsOperand(O,
false);
4289 for (
unsigned i = 0; i < IG->getFactor(); ++i) {
4290 if (!IG->getMember(i))
4293 O <<
"\n" << Indent <<
" vp.store ";
4295 O <<
" to index " << i;
4297 O <<
"\n" << Indent <<
" ";
4299 O <<
" = vp.load from index " << i;
4310 unsigned InsertPosIdx = 0;
4311 for (
unsigned Idx = 0; IG->getFactor(); ++Idx)
4312 if (
auto *Member = IG->getMember(Idx)) {
4313 if (Member == InsertPos)
4317 Type *ValTy = Ctx.Types.inferScalarType(
4322 ->getAddressSpace();
4324 unsigned InterleaveFactor = IG->getFactor();
4329 for (
unsigned IF = 0; IF < InterleaveFactor; IF++)
4330 if (IG->getMember(IF))
4335 InsertPos->
getOpcode(), WideVecTy, IG->getFactor(), Indices,
4336 IG->getAlign(), AS, Ctx.CostKind,
getMask(), NeedsMaskForGaps);
4338 if (!IG->isReverse())
4341 return Cost + IG->getNumMembers() *
4343 VectorTy, VectorTy, {}, Ctx.CostKind,
4347#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4350 O << Indent <<
"EMIT ";
4352 O <<
" = CANONICAL-INDUCTION ";
4362#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4366 "unexpected number of operands");
4367 O << Indent <<
"EMIT ";
4369 O <<
" = WIDEN-POINTER-INDUCTION ";
4385 O << Indent <<
"EMIT ";
4387 O <<
" = EXPAND SCEV " << *Expr;
4394 IRBuilder<> Builder(State.CFG.PrevBB->getTerminator());
4398 : Builder.CreateVectorSplat(VF, CanonicalIV,
"broadcast");
4401 VStep = Builder.CreateVectorSplat(VF, VStep);
4403 Builder.CreateAdd(VStep, Builder.CreateStepVector(VStep->
getType()));
4405 Value *CanonicalVectorIV = Builder.CreateAdd(VStart, VStep,
"vec.iv");
4406 State.set(
this, CanonicalVectorIV);
4409#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4412 O << Indent <<
"EMIT ";
4414 O <<
" = WIDEN-CANONICAL-INDUCTION ";
4420 auto &Builder = State.Builder;
4424 Type *VecTy = State.VF.isScalar()
4425 ? VectorInit->getType()
4429 State.CFG.VPBB2IRBB.at(
getParent()->getCFGPredecessor(0));
4430 if (State.VF.isVector()) {
4432 auto *One = ConstantInt::get(IdxTy, 1);
4435 auto *RuntimeVF =
getRuntimeVF(Builder, IdxTy, State.VF);
4436 auto *LastIdx = Builder.CreateSub(RuntimeVF, One);
4437 VectorInit = Builder.CreateInsertElement(
4443 Phi->insertBefore(State.CFG.PrevBB->getFirstInsertionPt());
4444 Phi->addIncoming(VectorInit, VectorPH);
4445 State.set(
this, Phi);
4452 return Ctx.TTI.getCFInstrCost(Instruction::PHI, Ctx.CostKind);
4457#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4460 O << Indent <<
"FIRST-ORDER-RECURRENCE-PHI ";
4477 State.CFG.VPBB2IRBB.at(
getParent()->getCFGPredecessor(0));
4478 bool ScalarPHI = State.VF.isScalar() ||
isInLoop();
4479 Value *StartV = State.get(StartVPV, ScalarPHI);
4483 assert(State.CurrentParentLoop->getHeader() == HeaderBB &&
4484 "recipe must be in the vector loop header");
4489 Phi->addIncoming(StartV, VectorPH);
4492#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4495 O << Indent <<
"WIDEN-REDUCTION-PHI ";
4508 Instruction *VecPhi = State.Builder.CreatePHI(VecTy, 2, Name);
4509 State.set(
this, VecPhi);
4514 return Ctx.TTI.getCFInstrCost(Instruction::PHI, Ctx.CostKind);
4517#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4520 O << Indent <<
"WIDEN-PHI ";
4530 State.CFG.VPBB2IRBB.at(
getParent()->getCFGPredecessor(0));
4533 State.Builder.CreatePHI(StartMask->
getType(), 2,
"active.lane.mask");
4534 Phi->addIncoming(StartMask, VectorPH);
4535 State.set(
this, Phi);
4538#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4541 O << Indent <<
"ACTIVE-LANE-MASK-PHI ";
4549#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4552 O << Indent <<
"EXPLICIT-VECTOR-LENGTH-BASED-IV-PHI ";
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
static MCDisassembler::DecodeStatus addOperand(MCInst &Inst, const MCOperand &Opnd)
AMDGPU Lower Kernel Arguments
AMDGPU Register Bank Select
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
static std::pair< Value *, APInt > getMask(Value *WideMask, unsigned Factor, ElementCount LeafValueEC)
const AbstractManglingParser< Derived, Alloc >::OperatorInfo AbstractManglingParser< Derived, Alloc >::Ops[]
This file provides a LoopVectorizationPlanner class.
static const SCEV * getAddressAccessSCEV(Value *Ptr, PredicatedScalarEvolution &PSE, const Loop *TheLoop)
Gets the address access SCEV for Ptr, if it should be used for cost modeling according to isAddressSC...
static bool isOrdered(const Instruction *I)
MachineInstr unsigned OpIdx
uint64_t IntrinsicInst * II
const SmallVectorImpl< MachineOperand > & Cond
This file defines the SmallVector class.
static TableGen::Emitter::OptClass< SkeletonEmitter > X("gen-skeleton-class", "Generate example skeleton class")
static SymbolRef::Type getType(const Symbol *Sym)
This file contains the declarations of different VPlan-related auxiliary helpers.
static Instruction * createReverseEVL(IRBuilderBase &Builder, Value *Operand, Value *EVL, const Twine &Name)
Use all-true mask for reverse rather than actual mask, as it avoids a dependence w/o affecting the re...
static Value * interleaveVectors(IRBuilderBase &Builder, ArrayRef< Value * > Vals, const Twine &Name)
Return a vector containing interleaved elements from multiple smaller input vectors.
static InstructionCost getCostForIntrinsics(Intrinsic::ID ID, ArrayRef< const VPValue * > Operands, const VPRecipeWithIRFlags &R, ElementCount VF, VPCostContext &Ctx)
Compute the cost for the intrinsic ID with Operands, produced by R.
static Value * createBitOrPointerCast(IRBuilderBase &Builder, Value *V, VectorType *DstVTy, const DataLayout &DL)
SmallVector< Value *, 2 > VectorParts
static bool isUsedByLoadStoreAddress(const VPUser *V)
Returns true if V is used as part of the address of another load or store.
static void scalarizeInstruction(const Instruction *Instr, VPReplicateRecipe *RepRecipe, const VPLane &Lane, VPTransformState &State)
A helper function to scalarize a single Instruction in the innermost loop.
static std::optional< unsigned > getOpcode(ArrayRef< VPValue * > Values)
Returns the opcode of Values or ~0 if they do not all agree.
This file contains the declarations of the Vectorization Plan base classes:
static const uint32_t IV[8]
void printAsOperand(OutputBuffer &OB, Prec P=Prec::Default, bool StrictlyWorse=false) const
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
size_t size() const
size - Get the array size.
bool empty() const
empty - Check if the array is empty.
static LLVM_ABI Attribute getWithAlignment(LLVMContext &Context, Align Alignment)
Return a uniquified Attribute object that has the specific alignment set.
LLVM Basic Block Representation.
LLVM_ABI const_iterator getFirstInsertionPt() const
Returns an iterator to the first instruction in this block that is suitable for inserting a non-PHI i...
LLVM_ABI InstListType::const_iterator getFirstNonPHIIt() const
Returns an iterator to the first instruction in this block that is not a PHINode instruction.
LLVM_ABI const BasicBlock * getSinglePredecessor() const
Return the predecessor of this block if it has a single predecessor block.
const Instruction * getTerminator() const LLVM_READONLY
Returns the terminator instruction if the block is well formed or null if the block is not well forme...
void setSuccessor(unsigned idx, BasicBlock *NewSucc)
void addParamAttr(unsigned ArgNo, Attribute::AttrKind Kind)
Adds the attribute to the indicated argument.
This class represents a function call, abstracting a target machine's calling convention.
static LLVM_ABI bool isBitOrNoopPointerCastable(Type *SrcTy, Type *DestTy, const DataLayout &DL)
Check whether a bitcast, inttoptr, or ptrtoint cast between these types is valid and a no-op.
static Type * makeCmpResultType(Type *opnd_type)
Create a result type for fcmp/icmp.
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
@ ICMP_UGT
unsigned greater than
@ ICMP_ULT
unsigned less than
static LLVM_ABI StringRef getPredicateName(Predicate P)
An abstraction over a floating-point predicate, and a pack of an integer predicate with samesign info...
static ConstantInt * getSigned(IntegerType *Ty, int64_t V, bool ImplicitTrunc=false)
Return a ConstantInt with the specified value for the specified type.
This is an important base class in LLVM.
static LLVM_ABI Constant * getNullValue(Type *Ty)
Constructor to create a '0' constant of arbitrary type.
A parsed version of the target data layout string in and methods for querying it.
constexpr bool isVector() const
One or more elements.
static constexpr ElementCount getScalable(ScalarTy MinVal)
static constexpr ElementCount getFixed(ScalarTy MinVal)
constexpr bool isScalar() const
Exactly one element.
Convenience struct for specifying and reasoning about fast-math flags.
LLVM_ABI void print(raw_ostream &O) const
Print fast-math flags to O.
void setAllowContract(bool B=true)
bool noSignedZeros() const
void setAllowReciprocal(bool B=true)
bool allowReciprocal() const
void setNoSignedZeros(bool B=true)
bool allowReassoc() const
Flag queries.
void setNoNaNs(bool B=true)
void setAllowReassoc(bool B=true)
Flag setters.
void setApproxFunc(bool B=true)
void setNoInfs(bool B=true)
bool allowContract() const
Class to represent function types.
Type * getParamType(unsigned i) const
Parameter type accessors.
bool willReturn() const
Determine if the function will return.
bool doesNotThrow() const
Determine if the function cannot unwind.
Type * getReturnType() const
Returns the type of the ret val.
Common base class shared among various IRBuilders.
Value * CreateInsertElement(Type *VecTy, Value *NewElt, Value *Idx, const Twine &Name="")
IntegerType * getInt1Ty()
Fetch the type representing a single bit.
Value * CreateInsertValue(Value *Agg, Value *Val, ArrayRef< unsigned > Idxs, const Twine &Name="")
Value * CreateExtractElement(Value *Vec, Value *Idx, const Twine &Name="")
LLVM_ABI Value * CreateVectorSpliceRight(Value *V1, Value *V2, Value *Offset, const Twine &Name="")
Create a vector.splice.right intrinsic call, or a shufflevector that produces the same result if the ...
LLVM_ABI Value * CreateVectorSplat(unsigned NumElts, Value *V, const Twine &Name="")
Return a vector value that contains.
Value * CreateExtractValue(Value *Agg, ArrayRef< unsigned > Idxs, const Twine &Name="")
LLVM_ABI Value * CreateSelect(Value *C, Value *True, Value *False, const Twine &Name="", Instruction *MDFrom=nullptr)
Value * CreateFreeze(Value *V, const Twine &Name="")
IntegerType * getInt32Ty()
Fetch the type representing a 32-bit integer.
Value * CreatePtrAdd(Value *Ptr, Value *Offset, const Twine &Name="", GEPNoWrapFlags NW=GEPNoWrapFlags::none())
void setFastMathFlags(FastMathFlags NewFMF)
Set the fast-math flags to be used with generated fp-math operators.
IntegerType * getInt64Ty()
Fetch the type representing a 64-bit integer.
LLVM_ABI Value * CreateVectorReverse(Value *V, const Twine &Name="")
Return a vector value that contains the vector V reversed.
Value * CreateICmpNE(Value *LHS, Value *RHS, const Twine &Name="")
ConstantInt * getInt64(uint64_t C)
Get a constant 64-bit value.
LLVM_ABI CallInst * CreateOrReduce(Value *Src)
Create a vector int OR reduction intrinsic of the source vector.
Value * CreateLogicalAnd(Value *Cond1, Value *Cond2, const Twine &Name="", Instruction *MDFrom=nullptr)
LLVM_ABI CallInst * CreateIntrinsic(Intrinsic::ID ID, ArrayRef< Type * > Types, ArrayRef< Value * > Args, FMFSource FMFSource={}, const Twine &Name="")
Create a call to intrinsic ID with Args, mangled using Types.
ConstantInt * getInt32(uint32_t C)
Get a constant 32-bit value.
Value * CreateCmp(CmpInst::Predicate Pred, Value *LHS, Value *RHS, const Twine &Name="", MDNode *FPMathTag=nullptr)
Value * CreateNot(Value *V, const Twine &Name="")
Value * CreateICmpEQ(Value *LHS, Value *RHS, const Twine &Name="")
Value * CreateCountTrailingZeroElems(Type *ResTy, Value *Mask, bool ZeroIsPoison=true, const Twine &Name="")
Create a call to llvm.experimental_cttz_elts.
Value * CreateSub(Value *LHS, Value *RHS, const Twine &Name="", bool HasNUW=false, bool HasNSW=false)
BranchInst * CreateCondBr(Value *Cond, BasicBlock *True, BasicBlock *False, MDNode *BranchWeights=nullptr, MDNode *Unpredictable=nullptr)
Create a conditional 'br Cond, TrueDest, FalseDest' instruction.
Value * CreateZExt(Value *V, Type *DestTy, const Twine &Name="", bool IsNonNeg=false)
Value * CreateAdd(Value *LHS, Value *RHS, const Twine &Name="", bool HasNUW=false, bool HasNSW=false)
ConstantInt * getFalse()
Get the constant value for i1 false.
Value * CreateBinOp(Instruction::BinaryOps Opc, Value *LHS, Value *RHS, const Twine &Name="", MDNode *FPMathTag=nullptr)
Value * CreateICmpUGE(Value *LHS, Value *RHS, const Twine &Name="")
Value * CreateICmp(CmpInst::Predicate P, Value *LHS, Value *RHS, const Twine &Name="")
Value * CreateOr(Value *LHS, Value *RHS, const Twine &Name="", bool IsDisjoint=false)
Value * CreateMul(Value *LHS, Value *RHS, const Twine &Name="", bool HasNUW=false, bool HasNSW=false)
This provides a uniform API for creating instructions and inserting them into a basic block: either a...
static InstructionCost getInvalid(CostType Val=0)
LLVM_ABI InstListType::iterator eraseFromParent()
This method unlinks 'this' from the containing basic block and deletes it.
const char * getOpcodeName() const
unsigned getOpcode() const
Returns a member of one of the enums like Instruction::Add.
The group of interleaved loads/stores sharing the same stride and close to each other.
uint32_t getFactor() const
InstTy * getMember(uint32_t Index) const
Get the member with the given index Index.
InstTy * getInsertPos() const
void addMetadata(InstTy *NewInst) const
Add metadata (e.g.
This is an important class for using LLVM in a threaded context.
Represents a single loop in the control flow graph.
Information for memory intrinsic cost model.
A Module instance is used to store all the information related to an LLVM module.
void addIncoming(Value *V, BasicBlock *BB)
Add an incoming value to the end of the PHI list.
static PHINode * Create(Type *Ty, unsigned NumReservedValues, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
Constructors - NumReservedValues is a hint for the number of incoming edges that this phi node will h...
static LLVM_ABI PoisonValue * get(Type *T)
Static factory methods - Return an 'poison' object of the specified type.
An interface layer with SCEV used to manage how we see SCEV expressions for values in the context of ...
ScalarEvolution * getSE() const
Returns the ScalarEvolution analysis used.
static LLVM_ABI unsigned getOpcode(RecurKind Kind)
Returns the opcode corresponding to the RecurrenceKind.
unsigned getOpcode() const
static bool isAnyOfRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is of the form select(cmp(),x,y) where one of (x,...
static bool isFindIVRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is of the form select(cmp(),x,y) where one of (x,...
static bool isMinMaxRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is any min/max kind.
This class represents an analyzed expression in the program.
This class represents the LLVM 'select' instruction.
This class provides computation of slot numbers for LLVM Assembly writing.
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
reference emplace_back(ArgTypes &&... Args)
void append(ItTy in_start, ItTy in_end)
Add the specified range to the end of the SmallVector.
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
StringRef - Represent a constant reference to a string, i.e.
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
The instances of the Type class are immutable: once they are created, they are never changed.
static LLVM_ABI IntegerType * getInt64Ty(LLVMContext &C)
bool isVectorTy() const
True if this is an instance of VectorType.
static LLVM_ABI IntegerType * getInt32Ty(LLVMContext &C)
bool isPointerTy() const
True if this is an instance of PointerType.
static LLVM_ABI Type * getVoidTy(LLVMContext &C)
Type * getScalarType() const
If this is a vector type, return the element type, otherwise return 'this'.
bool isStructTy() const
True if this is an instance of StructType.
LLVMContext & getContext() const
Return the LLVMContext in which this type was uniqued.
LLVM_ABI unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type.
static LLVM_ABI IntegerType * getInt1Ty(LLVMContext &C)
bool isFloatingPointTy() const
Return true if this is one of the floating-point types.
bool isIntegerTy() const
True if this is an instance of IntegerType.
static LLVM_ABI IntegerType * getIntNTy(LLVMContext &C, unsigned N)
bool isVoidTy() const
Return true if this is 'void'.
value_op_iterator value_op_end()
void setOperand(unsigned i, Value *Val)
Value * getOperand(unsigned i) const
value_op_iterator value_op_begin()
void execute(VPTransformState &State) override
Generate the active lane mask phi of the vector loop.
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
RecipeListTy & getRecipeList()
Returns a reference to the list of recipes.
void insert(VPRecipeBase *Recipe, iterator InsertPt)
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPWidenMemoryRecipe.
VPValue * getIncomingValue(unsigned Idx) const
Return incoming value number Idx.
unsigned getNumIncomingValues() const
Return the number of incoming values, taking into account when normalized the first incoming value wi...
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
VPBlockBase is the building block of the Hierarchical Control-Flow Graph.
const VPBlocksTy & getPredecessors() const
void printAsOperand(raw_ostream &OS, bool PrintType=false) const
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPBranchOnMaskRecipe.
void execute(VPTransformState &State) override
Generate the extraction of the appropriate bit from the block mask and the conditional branch.
VPlan-based builder utility analogous to IRBuilder.
LLVM_ABI_FOR_TEST void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
unsigned getNumDefinedValues() const
Returns the number of values defined by the VPDef.
VPValue * getVPSingleValue()
Returns the only VPValue defined by the VPDef.
VPValue * getVPValue(unsigned I)
Returns the VPValue with index I defined by the VPDef.
ArrayRef< VPRecipeValue * > definedValues()
Returns an ArrayRef of the values defined by the VPDef.
void execute(VPTransformState &State) override
Generate the transformed value of the induction at offset StartValue (1.
VPIRValue * getStartValue() const
VPValue * getStepValue() const
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
LLVM_ABI_FOR_TEST void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void decompose()
Insert the recipes of the expression back into the VPlan, directly before the current recipe.
bool isSingleScalar() const
Returns true if the result of this VPExpressionRecipe is a single-scalar.
bool mayHaveSideEffects() const
Returns true if this expression contains recipes that may have side effects.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Compute the cost of this recipe either using a recipe's specialized implementation or using the legac...
bool mayReadOrWriteMemory() const
Returns true if this expression contains recipes that may read from or write to memory.
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void execute(VPTransformState &State) override
Produce a vectorized histogram operation.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPHistogramRecipe.
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
VPValue * getMask() const
Return the mask operand if one was provided, or a null pointer if all lanes should be executed uncond...
Class to record and manage LLVM IR flags.
ReductionFlagsTy ReductionFlags
LLVM_ABI_FOR_TEST bool flagsValidForOpcode(unsigned Opcode) const
Returns true if the set flags are valid for Opcode.
CmpInst::Predicate CmpPredicate
void printFlags(raw_ostream &O) const
bool hasFastMathFlags() const
Returns true if the recipe has fast-math flags.
LLVM_ABI_FOR_TEST FastMathFlags getFastMathFlags() const
bool isReductionOrdered() const
CmpInst::Predicate getPredicate() const
bool hasNoSignedWrap() const
void intersectFlags(const VPIRFlags &Other)
Only keep flags also present in Other.
GEPNoWrapFlags getGEPNoWrapFlags() const
bool hasPredicate() const
Returns true if the recipe has a comparison predicate.
DisjointFlagsTy DisjointFlags
bool hasNoUnsignedWrap() const
NonNegFlagsTy NonNegFlags
bool isReductionInLoop() const
void applyFlags(Instruction &I) const
Apply the IR flags to I.
RecurKind getRecurKind() const
Instruction & getInstruction() const
void extractLastLaneOfLastPartOfFirstOperand(VPBuilder &Builder)
Update the recipe's first operand to the last lane of the last part of the operand using Builder.
void execute(VPTransformState &State) override
The method which generates the output IR instructions that correspond to this VPRecipe,...
LLVM_ABI_FOR_TEST InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPIRInstruction.
VPIRInstruction(Instruction &I)
VPIRInstruction::create() should be used to create VPIRInstructions, as subclasses may need to be cre...
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void execute(VPTransformState &State) override
Generate the instruction.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPInstruction.
static unsigned getNumOperandsForOpcode(unsigned Opcode)
Return the number of operands determined by the opcode of the VPInstruction.
bool doesGeneratePerAllLanes() const
Returns true if this VPInstruction generates scalar values for all lanes.
@ ExtractLastActive
Extracts the lane from the first operand corresponding to the last active (non-zero) lane in the mask...
@ ExtractLane
Extracts a single lane (first operand) from a set of vector operands.
@ ComputeAnyOfResult
Compute the final result of a AnyOf reduction with select(cmp(),x,y), where one of (x,...
@ WideIVStep
Scale the first operand (vector step) by the second operand (scalar-step).
@ ExtractPenultimateElement
@ ResumeForEpilogue
Explicit user for the resume phi of the canonical induction in the main VPlan, used by the epilogue v...
@ Unpack
Extracts all lanes from its (non-scalable) vector operand.
@ FirstOrderRecurrenceSplice
@ ReductionStartVector
Start vector for reductions with 3 operands: the original start value, the identity value for the red...
@ BuildVector
Creates a fixed-width vector containing all operands.
@ BuildStructVector
Given operands of (the same) struct type, creates a struct of fixed- width vectors each containing a ...
@ VScale
Returns the value for vscale.
@ CanonicalIVIncrementForPart
@ CalculateTripCountMinusVF
bool opcodeMayReadOrWriteFromMemory() const
Returns true if the underlying opcode may read from or write to memory.
LLVM_DUMP_METHOD void dump() const
Print the VPInstruction to dbgs() (for debugging).
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the VPInstruction to O.
StringRef getName() const
Returns the symbolic name assigned to the VPInstruction.
unsigned getOpcode() const
VPInstruction(unsigned Opcode, ArrayRef< VPValue * > Operands, const VPIRFlags &Flags={}, const VPIRMetadata &MD={}, DebugLoc DL=DebugLoc::getUnknown(), const Twine &Name="")
bool usesFirstLaneOnly(const VPValue *Op) const override
Returns true if the recipe only uses the first lane of operand Op.
bool isVectorToScalar() const
Returns true if this VPInstruction produces a scalar value from a vector, e.g.
bool isSingleScalar() const
Returns true if this VPInstruction's operands are single scalars and the result is also a single scal...
void execute(VPTransformState &State) override
Generate the instruction.
bool usesFirstPartOnly(const VPValue *Op) const override
Returns true if the recipe only uses the first part of operand Op.
bool needsMaskForGaps() const
Return true if the access needs a mask because of the gaps.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this recipe.
Instruction * getInsertPos() const
const InterleaveGroup< Instruction > * getInterleaveGroup() const
VPValue * getMask() const
Return the mask used by this recipe.
ArrayRef< VPValue * > getStoredValues() const
Return the VPValues stored by this interleave group.
VPValue * getAddr() const
Return the address accessed by this recipe.
VPValue * getEVL() const
The VPValue of the explicit vector length.
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
unsigned getNumStoreOperands() const override
Returns the number of stored operands of this interleave group.
void execute(VPTransformState &State) override
Generate the wide load or store, and shuffles.
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
unsigned getNumStoreOperands() const override
Returns the number of stored operands of this interleave group.
void execute(VPTransformState &State) override
Generate the wide load or store, and shuffles.
In what follows, the term "input IR" refers to code that is fed into the vectorizer whereas the term ...
static VPLane getLastLaneForVF(const ElementCount &VF)
static VPLane getLaneFromEnd(const ElementCount &VF, unsigned Offset)
static VPLane getFirstLane()
virtual const VPRecipeBase * getAsRecipe() const =0
Return a VPRecipeBase* to the current object.
virtual unsigned getNumIncoming() const
Returns the number of incoming values, also number of incoming blocks.
void removeIncomingValueFor(VPBlockBase *IncomingBlock) const
Removes the incoming value for IncomingBlock, which must be a predecessor.
const VPBasicBlock * getIncomingBlock(unsigned Idx) const
Returns the incoming block with index Idx.
detail::zippy< llvm::detail::zip_first, VPUser::const_operand_range, const_incoming_blocks_range > incoming_values_and_blocks() const
Returns an iterator range over pairs of incoming values and corresponding incoming blocks.
VPValue * getIncomingValue(unsigned Idx) const
Returns the incoming VPValue with index Idx.
void printPhiOperands(raw_ostream &O, VPSlotTracker &SlotTracker) const
Print the recipe.
void execute(VPTransformState &State) override
Generates phi nodes for live-outs (from a replicate region) as needed to retain SSA form.
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
VPRecipeBase is a base class modeling a sequence of one or more output IR instructions.
bool mayReadFromMemory() const
Returns true if the recipe may read from memory.
bool mayHaveSideEffects() const
Returns true if the recipe may have side-effects.
virtual void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const =0
Each concrete VPRecipe prints itself, without printing common information, like debug info or metadat...
VPRegionBlock * getRegion()
LLVM_ABI_FOR_TEST void dump() const
Dump the recipe to stderr (for debugging).
bool isPhi() const
Returns true for PHI-like recipes.
bool mayWriteToMemory() const
Returns true if the recipe may write to memory.
virtual InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const
Compute the cost of this recipe either using a recipe's specialized implementation or using the legac...
VPBasicBlock * getParent()
DebugLoc getDebugLoc() const
Returns the debug location of the recipe.
void moveBefore(VPBasicBlock &BB, iplist< VPRecipeBase >::iterator I)
Unlink this recipe and insert into BB before I.
void insertBefore(VPRecipeBase *InsertPos)
Insert an unlinked recipe into a basic block immediately before the specified recipe.
void insertAfter(VPRecipeBase *InsertPos)
Insert an unlinked Recipe into a basic block immediately after the specified Recipe.
iplist< VPRecipeBase >::iterator eraseFromParent()
This method unlinks 'this' from the containing basic block and deletes it.
InstructionCost cost(ElementCount VF, VPCostContext &Ctx)
Return the cost of this recipe, taking into account if the cost computation should be skipped and the...
bool isScalarCast() const
Return true if the recipe is a scalar cast.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const
Print the recipe, delegating to printRecipe().
void removeFromParent()
This method unlinks 'this' from the containing basic block, but does not delete it.
unsigned getVPRecipeID() const
void moveAfter(VPRecipeBase *MovePos)
Unlink this recipe from its current VPBasicBlock and insert it into the VPBasicBlock that MovePos liv...
VPRecipeBase(const unsigned char SC, ArrayRef< VPValue * > Operands, DebugLoc DL=DebugLoc::getUnknown())
void execute(VPTransformState &State) override
Generate the reduction in the loop.
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
VPValue * getEVL() const
The VPValue of the explicit vector length.
unsigned getVFScaleFactor() const
Get the factor that the VF of this recipe's output should be scaled by, or 1 if it isn't scaled.
bool isInLoop() const
Returns true if the phi is part of an in-loop reduction.
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void execute(VPTransformState &State) override
Generate the phi/select nodes.
bool isConditional() const
Return true if the in-loop reduction is conditional.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of VPReductionRecipe.
VPValue * getVecOp() const
The VPValue of the vector value to be reduced.
VPValue * getCondOp() const
The VPValue of the condition for the block.
RecurKind getRecurrenceKind() const
Return the recurrence kind for the in-loop reduction.
bool isPartialReduction() const
Returns true if the reduction outputs a vector with a scaled down VF.
VPValue * getChainOp() const
The VPValue of the scalar Chain being accumulated.
bool isInLoop() const
Returns true if the reduction is in-loop.
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void execute(VPTransformState &State) override
Generate the reduction in the loop.
VPRegionBlock represents a collection of VPBasicBlocks and VPRegionBlocks which form a Single-Entry-S...
bool isReplicator() const
An indicator whether this region is to generate multiple replicated instances of output IR correspond...
VPReplicateRecipe replicates a given instruction producing multiple scalar copies of the original sca...
void execute(VPTransformState &State) override
Generate replicas of the desired Ingredient.
bool isSingleScalar() const
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPReplicateRecipe.
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
unsigned getOpcode() const
bool shouldPack() const
Returns true if the recipe is used by a widened recipe via an intervening VPPredInstPHIRecipe.
VPValue * getStepValue() const
VPValue * getStartIndex() const
Return the StartIndex, or null if known to be zero, valid only after unrolling.
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void execute(VPTransformState &State) override
Generate the scalarized versions of the phi node as needed by their users.
VPSingleDef is a base class for recipes for modeling a sequence of one or more output IR that define ...
Instruction * getUnderlyingInstr()
Returns the underlying instruction.
LLVM_ABI_FOR_TEST LLVM_DUMP_METHOD void dump() const
Print this VPSingleDefRecipe to dbgs() (for debugging).
VPSingleDefRecipe(const unsigned char SC, ArrayRef< VPValue * > Operands, DebugLoc DL=DebugLoc::getUnknown())
This class can be used to assign names to VPValues.
Type * inferScalarType(const VPValue *V)
Infer the type of V. Returns the scalar type of V.
Helper to access the operand that contains the unroll part for this recipe after unrolling.
VPValue * getUnrollPartOperand(const VPUser &U) const
Return the VPValue operand containing the unroll part or null if there is no such operand.
unsigned getUnrollPart(const VPUser &U) const
Return the unroll part.
This class augments VPValue with operands which provide the inverse def-use edges from VPValue's user...
void printOperands(raw_ostream &O, VPSlotTracker &SlotTracker) const
Print the operands to O.
void setOperand(unsigned I, VPValue *New)
unsigned getNumOperands() const
operand_iterator op_begin()
VPValue * getOperand(unsigned N) const
virtual bool usesFirstLaneOnly(const VPValue *Op) const
Returns true if the VPUser only uses the first lane of operand Op.
This is the base class of the VPlan Def/Use graph, used for modeling the data flow into,...
Value * getLiveInIRValue() const
Return the underlying IR value for a VPIRValue.
bool isDefinedOutsideLoopRegions() const
Returns true if the VPValue is defined outside any loop.
VPRecipeBase * getDefiningRecipe()
Returns the recipe defining this VPValue or nullptr if it is not defined by a recipe,...
void printAsOperand(raw_ostream &OS, VPSlotTracker &Tracker) const
Value * getUnderlyingValue() const
Return the underlying Value attached to this VPValue.
void replaceAllUsesWith(VPValue *New)
void execute(VPTransformState &State) override
The method which generates the output IR instructions that correspond to this VPRecipe,...
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
Type * getSourceElementType() const
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void execute(VPTransformState &State) override
The method which generates the output IR instructions that correspond to this VPRecipe,...
Function * getCalledScalarFunction() const
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPWidenCallRecipe.
void execute(VPTransformState &State) override
Produce a widened version of the call instruction.
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void execute(VPTransformState &State) override
Generate a canonical vector induction variable of the vector loop, with start = {<Part*VF,...
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
LLVM_ABI_FOR_TEST void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
Type * getResultType() const
Returns the result type of the cast.
LLVM_ABI_FOR_TEST void execute(VPTransformState &State) override
Produce widened copies of the cast.
LLVM_ABI_FOR_TEST InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPWidenCastRecipe.
void execute(VPTransformState &State) override
Generate the gep nodes.
Type * getSourceElementType() const
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
bool usesFirstLaneOnly(const VPValue *Op) const override
Returns true if the recipe only uses the first lane of operand Op.
VPIRValue * getStartValue() const
Returns the start value of the induction.
VPValue * getStepValue()
Returns the step value of the induction.
VPIRValue * getStartValue() const
Returns the start value of the induction.
TruncInst * getTruncInst()
Returns the first defined value as TruncInst, if it is one or nullptr otherwise.
Type * getScalarType() const
Returns the scalar type of the induction.
bool isCanonical() const
Returns true if the induction is canonical, i.e.
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
Intrinsic::ID getVectorIntrinsicID() const
Return the ID of the intrinsic.
LLVM_ABI_FOR_TEST void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
StringRef getIntrinsicName() const
Return to name of the intrinsic as string.
LLVM_ABI_FOR_TEST bool usesFirstLaneOnly(const VPValue *Op) const override
Returns true if the VPUser only uses the first lane of operand Op.
Type * getResultType() const
Return the scalar return type of the intrinsic.
LLVM_ABI_FOR_TEST void execute(VPTransformState &State) override
Produce a widened version of the vector intrinsic.
LLVM_ABI_FOR_TEST InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this vector intrinsic.
bool IsMasked
Whether the memory access is masked.
bool Reverse
Whether the consecutive accessed addresses are in reverse order.
bool isConsecutive() const
Return whether the loaded-from / stored-to addresses are consecutive.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPWidenMemoryRecipe.
bool Consecutive
Whether the accessed addresses are consecutive.
VPValue * getMask() const
Return the mask used by this recipe.
Align Alignment
Alignment information for this memory access.
VPValue * getAddr() const
Return the address accessed by this recipe.
bool isReverse() const
Return whether the consecutive loaded/stored addresses are in reverse order.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPWidenPHIRecipe.
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void execute(VPTransformState &State) override
Generate the phi/select nodes.
bool onlyScalarsGenerated(bool IsScalable)
Returns true if only scalar values will be generated.
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPWidenRecipe.
void execute(VPTransformState &State) override
Produce a widened instruction using the opcode and operands of the recipe, processing State....
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
LLVM_ABI_FOR_TEST VPRegionBlock * getVectorLoopRegion()
Returns the VPRegionBlock of the vector loop.
LLVM Value Representation.
Type * getType() const
All values are typed, get the type of this value.
LLVM_ABI void setName(const Twine &Name)
Change the name of the value.
LLVMContext & getContext() const
All values hold a context through their type.
void mutateType(Type *Ty)
Mutate the type of this Value to be of the specified type.
LLVM_ABI StringRef getName() const
Return a constant reference to the value's name.
Base class of all SIMD vector types.
ElementCount getElementCount() const
Return an ElementCount instance to represent the (possibly scalable) number of elements in the vector...
static LLVM_ABI VectorType * get(Type *ElementType, ElementCount EC)
This static method is the primary way to construct an VectorType.
Type * getElementType() const
constexpr ScalarTy getFixedValue() const
constexpr bool isScalable() const
Returns whether the quantity is scaled by a runtime quantity (vscale).
constexpr LeafTy multiplyCoefficientBy(ScalarTy RHS) const
constexpr ScalarTy getKnownMinValue() const
Returns the minimum value this quantity can represent.
constexpr LeafTy divideCoefficientBy(ScalarTy RHS) const
We do not provide the '/' operator here because division for polynomial types does not work in the sa...
const ParentTy * getParent() const
self_iterator getIterator()
typename base_list_type::iterator iterator
iterator erase(iterator where)
pointer remove(iterator &IT)
This class implements an extremely fast bulk output stream that can only output to a stream.
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
constexpr std::underlying_type_t< E > Mask()
Get a bitmask with 1s in all places up to the high-order bit of E's largest value.
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
@ C
The default llvm calling convention, compatible with C.
@ BasicBlock
Various leaf nodes.
LLVM_ABI Function * getOrInsertDeclaration(Module *M, ID id, ArrayRef< Type * > Tys={})
Look up the Function declaration of the intrinsic id in the Module M.
LLVM_ABI Intrinsic::ID getDeinterleaveIntrinsicID(unsigned Factor)
Returns the corresponding llvm.vector.deinterleaveN intrinsic for factor N.
LLVM_ABI StringRef getBaseName(ID id)
Return the LLVM name for an intrinsic, without encoded types for overloading, such as "llvm....
bool match(Val *V, const Pattern &P)
ThreeOps_match< Cond, LHS, RHS, Instruction::Select > m_Select(const Cond &C, const LHS &L, const RHS &R)
Matches SelectInst.
auto m_LogicalOr()
Matches L || R where L and R are arbitrary values.
class_match< CmpInst > m_Cmp()
Matches any compare instruction and ignore it.
auto m_LogicalAnd()
Matches L && R where L and R are arbitrary values.
specific_intval< 1 > m_False()
specific_intval< 1 > m_True()
class_match< VPValue > m_VPValue()
Match an arbitrary VPValue and ignore it.
VPInstruction_match< VPInstruction::Reverse, Op0_t > m_Reverse(const Op0_t &Op0)
NodeAddr< DefNode * > Def
bool isSingleScalar(const VPValue *VPV)
Returns true if VPV is a single scalar, either because it produces the same value for all lanes or on...
bool isAddressSCEVForCost(const SCEV *Addr, ScalarEvolution &SE, const Loop *L)
Returns true if Addr is an address SCEV that can be passed to TTI::getAddressComputationCost,...
bool onlyFirstPartUsed(const VPValue *Def)
Returns true if only the first part of Def is used.
bool onlyFirstLaneUsed(const VPValue *Def)
Returns true if only the first lane of Def is used.
bool onlyScalarValuesUsed(const VPValue *Def)
Returns true if only scalar values of Def are used by all users.
const SCEV * getSCEVExprForVPValue(const VPValue *V, PredicatedScalarEvolution &PSE, const Loop *L=nullptr)
Return the SCEV expression for V.
This is an optimization pass for GlobalISel generic memory operations.
auto drop_begin(T &&RangeOrContainer, size_t N=1)
Return a range covering RangeOrContainer with the first N elements excluded.
LLVM_ABI Value * createSimpleReduction(IRBuilderBase &B, Value *Src, RecurKind RdxKind)
Create a reduction of the given vector.
detail::zippy< detail::zip_shortest, T, U, Args... > zip(T &&t, U &&u, Args &&...args)
zip iterator for two or more iteratable types.
FunctionAddr VTableAddr Value
auto cast_if_present(const Y &Val)
cast_if_present<X> - Functionally identical to cast, except that a null value is accepted.
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
LLVM_ABI Intrinsic::ID getMinMaxReductionIntrinsicOp(Intrinsic::ID RdxID)
Returns the min/max intrinsic used when expanding a min/max reduction.
@ Undef
Value of the register doesn't matter.
auto enumerate(FirstRange &&First, RestRanges &&...Rest)
Given two or more input ranges, returns a new range whose values are tuples (A, B,...
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
const Value * getLoadStorePointerOperand(const Value *V)
A helper function that returns the pointer operand of a load or store instruction.
Value * getRuntimeVF(IRBuilderBase &B, Type *Ty, ElementCount VF)
Return the runtime value for VF.
auto dyn_cast_if_present(const Y &Val)
dyn_cast_if_present<X> - Functionally identical to dyn_cast, except that a null (or none in the case ...
iterator_range< T > make_range(T x, T y)
Convenience function for iterating over sub-ranges.
void append_range(Container &C, Range &&R)
Wrapper function to append range R to container C.
void interleaveComma(const Container &c, StreamT &os, UnaryFunctor each_fn)
auto cast_or_null(const Y &Val)
LLVM_ABI Value * concatenateVectors(IRBuilderBase &Builder, ArrayRef< Value * > Vecs)
Concatenate a list of vectors.
Align getLoadStoreAlignment(const Value *I)
A helper function that returns the alignment of load or store instruction.
bool isa_and_nonnull(const Y &Val)
LLVM_ABI Value * createMinMaxOp(IRBuilderBase &Builder, RecurKind RK, Value *Left, Value *Right)
Returns a Min/Max operation corresponding to MinMaxRecurrenceKind.
auto dyn_cast_or_null(const Y &Val)
static Error getOffset(const SymbolRef &Sym, SectionRef Sec, uint64_t &Result)
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
LLVM_ABI Constant * createBitMaskForGaps(IRBuilderBase &Builder, unsigned VF, const InterleaveGroup< Instruction > &Group)
Create a mask that filters the members of an interleave group where there are gaps.
LLVM_ABI llvm::SmallVector< int, 16 > createStrideMask(unsigned Start, unsigned Stride, unsigned VF)
Create a stride shuffle mask.
auto reverse(ContainerTy &&C)
LLVM_ABI llvm::SmallVector< int, 16 > createReplicatedMask(unsigned ReplicationFactor, unsigned VF)
Create a mask with replicated elements.
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
bool none_of(R &&Range, UnaryPredicate P)
Provide wrappers to std::none_of which take ranges instead of having to pass begin/end explicitly.
SmallVector< ValueTypeFromRangeType< R >, Size > to_vector(R &&Range)
Given a range of type R, iterate the entire range and return a SmallVector with elements of the vecto...
Type * toVectorizedTy(Type *Ty, ElementCount EC)
A helper for converting to vectorized types.
cl::opt< unsigned > ForceTargetInstructionCost
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
auto drop_end(T &&RangeOrContainer, size_t N=1)
Return a range covering RangeOrContainer with the last N elements excluded.
LLVM_ABI bool isVectorIntrinsicWithStructReturnOverloadAtField(Intrinsic::ID ID, int RetIdx, const TargetTransformInfo *TTI)
Identifies if the vector form of the intrinsic that returns a struct is overloaded at the struct elem...
bool canVectorizeTy(Type *Ty)
Returns true if Ty is a valid vector element type, void, or an unpacked literal struct where all elem...
FunctionAddr VTableAddr uintptr_t uintptr_t Data
LLVM_ABI llvm::SmallVector< int, 16 > createInterleaveMask(unsigned VF, unsigned NumVecs)
Create an interleave shuffle mask.
RecurKind
These are the kinds of recurrences that we support.
@ UMin
Unsigned integer min implemented in terms of select(cmp()).
@ FMinimumNum
FP min with llvm.minimumnum semantics.
@ FMinimum
FP min with llvm.minimum semantics.
@ FMaxNum
FP max with llvm.maxnum semantics including NaNs.
@ Mul
Product of integers.
@ AnyOf
AnyOf reduction with select(cmp(),x,y) where one of (x,y) is loop invariant, and both x and y are int...
@ FMaximum
FP max with llvm.maximum semantics.
@ SMax
Signed integer max implemented in terms of select(cmp()).
@ SMin
Signed integer min implemented in terms of select(cmp()).
@ FMinNum
FP min with llvm.minnum semantics including NaNs.
@ Sub
Subtraction of integers.
@ FMaximumNum
FP max with llvm.maximumnum semantics.
@ UMax
Unsigned integer max implemented in terms of select(cmp()).
LLVM_ABI bool isVectorIntrinsicWithScalarOpAtArg(Intrinsic::ID ID, unsigned ScalarOpdIdx, const TargetTransformInfo *TTI)
Identifies if the vector form of the intrinsic has a scalar operand.
LLVM_ABI Value * getRecurrenceIdentity(RecurKind K, Type *Tp, FastMathFlags FMF)
Given information about an recurrence kind, return the identity for the @llvm.vector....
DWARFExpression::Operation Op
Value * createStepForVF(IRBuilderBase &B, Type *Ty, ElementCount VF, int64_t Step)
Return a value for Step multiplied by VF.
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
Value * emitTransformedIndex(IRBuilderBase &B, Value *Index, Value *StartValue, Value *Step, InductionDescriptor::InductionKind InductionKind, const BinaryOperator *InductionBinOp)
Compute the transformed value of Index at offset StartValue using step StepValue.
bool is_contained(R &&Range, const E &Element)
Returns true if Element is found in Range.
Type * getLoadStoreType(const Value *I)
A helper function that returns the type of a load or store instruction.
LLVM_ABI Value * createOrderedReduction(IRBuilderBase &B, RecurKind RdxKind, Value *Src, Value *Start)
Create an ordered reduction intrinsic using the given recurrence kind RdxKind.
ArrayRef< Type * > getContainedTypes(Type *const &Ty)
Returns the types contained in Ty.
auto seq(T Begin, T End)
Iterate over an integral type from Begin up to - but not including - End.
Type * toVectorTy(Type *Scalar, ElementCount EC)
A helper function for converting Scalar types to vector types.
@ Default
The result values are uniform if and only if all operands are uniform.
LLVM_ABI bool isVectorIntrinsicWithOverloadTypeAtArg(Intrinsic::ID ID, int OpdIdx, const TargetTransformInfo *TTI)
Identifies if the vector form of the intrinsic is overloaded on the type of the operand at index OpdI...
This struct is a compact representation of a valid (non-zero power of two) alignment.
Struct to hold various analysis needed for cost computations.
void execute(VPTransformState &State) override
Generate the phi nodes.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this first-order recurrence phi recipe.
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
An overlay for VPIRInstructions wrapping PHI nodes enabling convenient use cast/dyn_cast/isa and exec...
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void execute(VPTransformState &State) override
The method which generates the output IR instructions that correspond to this VPRecipe,...
void execute(VPTransformState &State) override
Generate the instruction.
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
A pure-virtual common base class for recipes defining a single VPValue and using IR flags.
InstructionCost getCostForRecipeWithOpcode(unsigned Opcode, ElementCount VF, VPCostContext &Ctx) const
Compute the cost for this recipe for VF, using Opcode and Ctx.
VPRecipeWithIRFlags(const unsigned char SC, ArrayRef< VPValue * > Operands, const VPIRFlags &Flags, DebugLoc DL=DebugLoc::getUnknown())
A symbolic live-in VPValue, used for values like vector trip count, VF, and VFxUF.
LLVM_ABI_FOR_TEST void execute(VPTransformState &State) override
Generate the wide load or gather.
LLVM_ABI_FOR_TEST void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
LLVM_ABI_FOR_TEST InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPWidenLoadEVLRecipe.
VPValue * getEVL() const
Return the EVL operand.
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void execute(VPTransformState &State) override
Generate a wide load or gather.
VPValue * getStoredValue() const
Return the address accessed by this recipe.
LLVM_ABI_FOR_TEST void execute(VPTransformState &State) override
Generate the wide store or scatter.
LLVM_ABI_FOR_TEST void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
LLVM_ABI_FOR_TEST InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPWidenStoreEVLRecipe.
VPValue * getEVL() const
Return the EVL operand.
void execute(VPTransformState &State) override
Generate a wide store or scatter.
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
VPValue * getStoredValue() const
Return the value stored by this recipe.