LLVM 22.0.0git
LoopVectorize.cpp
Go to the documentation of this file.
1//===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops
10// and generates target-independent LLVM-IR.
11// The vectorizer uses the TargetTransformInfo analysis to estimate the costs
12// of instructions in order to estimate the profitability of vectorization.
13//
14// The loop vectorizer combines consecutive loop iterations into a single
15// 'wide' iteration. After this transformation the index is incremented
16// by the SIMD vector width, and not by one.
17//
18// This pass has three parts:
19// 1. The main loop pass that drives the different parts.
20// 2. LoopVectorizationLegality - A unit that checks for the legality
21// of the vectorization.
22// 3. InnerLoopVectorizer - A unit that performs the actual
23// widening of instructions.
24// 4. LoopVectorizationCostModel - A unit that checks for the profitability
25// of vectorization. It decides on the optimal vector width, which
26// can be one, if vectorization is not profitable.
27//
28// There is a development effort going on to migrate loop vectorizer to the
29// VPlan infrastructure and to introduce outer loop vectorization support (see
30// docs/VectorizationPlan.rst and
31// http://lists.llvm.org/pipermail/llvm-dev/2017-December/119523.html). For this
32// purpose, we temporarily introduced the VPlan-native vectorization path: an
33// alternative vectorization path that is natively implemented on top of the
34// VPlan infrastructure. See EnableVPlanNativePath for enabling.
35//
36//===----------------------------------------------------------------------===//
37//
38// The reduction-variable vectorization is based on the paper:
39// D. Nuzman and R. Henderson. Multi-platform Auto-vectorization.
40//
41// Variable uniformity checks are inspired by:
42// Karrenberg, R. and Hack, S. Whole Function Vectorization.
43//
44// The interleaved access vectorization is based on the paper:
45// Dorit Nuzman, Ira Rosen and Ayal Zaks. Auto-Vectorization of Interleaved
46// Data for SIMD
47//
48// Other ideas/concepts are from:
49// A. Zaks and D. Nuzman. Autovectorization in GCC-two years later.
50//
51// S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua. An Evaluation of
52// Vectorizing Compilers.
53//
54//===----------------------------------------------------------------------===//
55
58#include "VPRecipeBuilder.h"
59#include "VPlan.h"
60#include "VPlanAnalysis.h"
61#include "VPlanCFG.h"
62#include "VPlanHelpers.h"
63#include "VPlanPatternMatch.h"
64#include "VPlanTransforms.h"
65#include "VPlanUtils.h"
66#include "VPlanVerifier.h"
67#include "llvm/ADT/APInt.h"
68#include "llvm/ADT/ArrayRef.h"
69#include "llvm/ADT/DenseMap.h"
71#include "llvm/ADT/Hashing.h"
72#include "llvm/ADT/MapVector.h"
73#include "llvm/ADT/STLExtras.h"
76#include "llvm/ADT/Statistic.h"
77#include "llvm/ADT/StringRef.h"
78#include "llvm/ADT/Twine.h"
79#include "llvm/ADT/TypeSwitch.h"
84#include "llvm/Analysis/CFG.h"
101#include "llvm/IR/Attributes.h"
102#include "llvm/IR/BasicBlock.h"
103#include "llvm/IR/CFG.h"
104#include "llvm/IR/Constant.h"
105#include "llvm/IR/Constants.h"
106#include "llvm/IR/DataLayout.h"
107#include "llvm/IR/DebugInfo.h"
108#include "llvm/IR/DebugLoc.h"
109#include "llvm/IR/DerivedTypes.h"
111#include "llvm/IR/Dominators.h"
112#include "llvm/IR/Function.h"
113#include "llvm/IR/IRBuilder.h"
114#include "llvm/IR/InstrTypes.h"
115#include "llvm/IR/Instruction.h"
116#include "llvm/IR/Instructions.h"
118#include "llvm/IR/Intrinsics.h"
119#include "llvm/IR/MDBuilder.h"
120#include "llvm/IR/Metadata.h"
121#include "llvm/IR/Module.h"
122#include "llvm/IR/Operator.h"
123#include "llvm/IR/PatternMatch.h"
125#include "llvm/IR/Type.h"
126#include "llvm/IR/Use.h"
127#include "llvm/IR/User.h"
128#include "llvm/IR/Value.h"
129#include "llvm/IR/Verifier.h"
130#include "llvm/Support/Casting.h"
132#include "llvm/Support/Debug.h"
147#include <algorithm>
148#include <cassert>
149#include <cmath>
150#include <cstdint>
151#include <functional>
152#include <iterator>
153#include <limits>
154#include <memory>
155#include <string>
156#include <tuple>
157#include <utility>
158
159using namespace llvm;
160using namespace SCEVPatternMatch;
161
162#define LV_NAME "loop-vectorize"
163#define DEBUG_TYPE LV_NAME
164
165#ifndef NDEBUG
166const char VerboseDebug[] = DEBUG_TYPE "-verbose";
167#endif
168
169STATISTIC(LoopsVectorized, "Number of loops vectorized");
170STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization");
171STATISTIC(LoopsEpilogueVectorized, "Number of epilogues vectorized");
172STATISTIC(LoopsEarlyExitVectorized, "Number of early exit loops vectorized");
173
175 "enable-epilogue-vectorization", cl::init(true), cl::Hidden,
176 cl::desc("Enable vectorization of epilogue loops."));
177
179 "epilogue-vectorization-force-VF", cl::init(1), cl::Hidden,
180 cl::desc("When epilogue vectorization is enabled, and a value greater than "
181 "1 is specified, forces the given VF for all applicable epilogue "
182 "loops."));
183
185 "epilogue-vectorization-minimum-VF", cl::Hidden,
186 cl::desc("Only loops with vectorization factor equal to or larger than "
187 "the specified value are considered for epilogue vectorization."));
188
189/// Loops with a known constant trip count below this number are vectorized only
190/// if no scalar iteration overheads are incurred.
192 "vectorizer-min-trip-count", cl::init(16), cl::Hidden,
193 cl::desc("Loops with a constant trip count that is smaller than this "
194 "value are vectorized only if no scalar iteration overheads "
195 "are incurred."));
196
198 "vectorize-memory-check-threshold", cl::init(128), cl::Hidden,
199 cl::desc("The maximum allowed number of runtime memory checks"));
200
201// Option prefer-predicate-over-epilogue indicates that an epilogue is undesired,
202// that predication is preferred, and this lists all options. I.e., the
203// vectorizer will try to fold the tail-loop (epilogue) into the vector body
204// and predicate the instructions accordingly. If tail-folding fails, there are
205// different fallback strategies depending on these values:
212} // namespace PreferPredicateTy
213
215 "prefer-predicate-over-epilogue",
218 cl::desc("Tail-folding and predication preferences over creating a scalar "
219 "epilogue loop."),
221 "scalar-epilogue",
222 "Don't tail-predicate loops, create scalar epilogue"),
224 "predicate-else-scalar-epilogue",
225 "prefer tail-folding, create scalar epilogue if tail "
226 "folding fails."),
228 "predicate-dont-vectorize",
229 "prefers tail-folding, don't attempt vectorization if "
230 "tail-folding fails.")));
231
233 "force-tail-folding-style", cl::desc("Force the tail folding style"),
236 clEnumValN(TailFoldingStyle::None, "none", "Disable tail folding"),
239 "Create lane mask for data only, using active.lane.mask intrinsic"),
241 "data-without-lane-mask",
242 "Create lane mask with compare/stepvector"),
244 "Create lane mask using active.lane.mask intrinsic, and use "
245 "it for both data and control flow"),
247 "data-and-control-without-rt-check",
248 "Similar to data-and-control, but remove the runtime check"),
250 "Use predicated EVL instructions for tail folding. If EVL "
251 "is unsupported, fallback to data-without-lane-mask.")));
252
254 "enable-wide-lane-mask", cl::init(false), cl::Hidden,
255 cl::desc("Enable use of wide lane masks when used for control flow in "
256 "tail-folded loops"));
257
259 "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden,
260 cl::desc("Maximize bandwidth when selecting vectorization factor which "
261 "will be determined by the smallest type in loop."));
262
264 "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden,
265 cl::desc("Enable vectorization on interleaved memory accesses in a loop"));
266
267/// An interleave-group may need masking if it resides in a block that needs
268/// predication, or in order to mask away gaps.
270 "enable-masked-interleaved-mem-accesses", cl::init(false), cl::Hidden,
271 cl::desc("Enable vectorization on masked interleaved memory accesses in a loop"));
272
274 "force-target-num-scalar-regs", cl::init(0), cl::Hidden,
275 cl::desc("A flag that overrides the target's number of scalar registers."));
276
278 "force-target-num-vector-regs", cl::init(0), cl::Hidden,
279 cl::desc("A flag that overrides the target's number of vector registers."));
280
282 "force-target-max-scalar-interleave", cl::init(0), cl::Hidden,
283 cl::desc("A flag that overrides the target's max interleave factor for "
284 "scalar loops."));
285
287 "force-target-max-vector-interleave", cl::init(0), cl::Hidden,
288 cl::desc("A flag that overrides the target's max interleave factor for "
289 "vectorized loops."));
290
292 "force-target-instruction-cost", cl::init(0), cl::Hidden,
293 cl::desc("A flag that overrides the target's expected cost for "
294 "an instruction to a single constant value. Mostly "
295 "useful for getting consistent testing."));
296
298 "force-target-supports-scalable-vectors", cl::init(false), cl::Hidden,
299 cl::desc(
300 "Pretend that scalable vectors are supported, even if the target does "
301 "not support them. This flag should only be used for testing."));
302
304 "small-loop-cost", cl::init(20), cl::Hidden,
305 cl::desc(
306 "The cost of a loop that is considered 'small' by the interleaver."));
307
309 "loop-vectorize-with-block-frequency", cl::init(true), cl::Hidden,
310 cl::desc("Enable the use of the block frequency analysis to access PGO "
311 "heuristics minimizing code growth in cold regions and being more "
312 "aggressive in hot regions."));
313
314// Runtime interleave loops for load/store throughput.
316 "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden,
317 cl::desc(
318 "Enable runtime interleaving until load/store ports are saturated"));
319
320/// The number of stores in a loop that are allowed to need predication.
322 "vectorize-num-stores-pred", cl::init(1), cl::Hidden,
323 cl::desc("Max number of stores to be predicated behind an if."));
324
326 "enable-ind-var-reg-heur", cl::init(true), cl::Hidden,
327 cl::desc("Count the induction variable only once when interleaving"));
328
330 "enable-cond-stores-vec", cl::init(true), cl::Hidden,
331 cl::desc("Enable if predication of stores during vectorization."));
332
334 "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden,
335 cl::desc("The maximum interleave count to use when interleaving a scalar "
336 "reduction in a nested loop."));
337
338static cl::opt<bool>
339 PreferInLoopReductions("prefer-inloop-reductions", cl::init(false),
341 cl::desc("Prefer in-loop vector reductions, "
342 "overriding the targets preference."));
343
345 "force-ordered-reductions", cl::init(false), cl::Hidden,
346 cl::desc("Enable the vectorisation of loops with in-order (strict) "
347 "FP reductions"));
348
350 "prefer-predicated-reduction-select", cl::init(false), cl::Hidden,
351 cl::desc(
352 "Prefer predicating a reduction operation over an after loop select."));
353
355 "enable-vplan-native-path", cl::Hidden,
356 cl::desc("Enable VPlan-native vectorization path with "
357 "support for outer loop vectorization."));
358
360 llvm::VerifyEachVPlan("vplan-verify-each",
361#ifdef EXPENSIVE_CHECKS
362 cl::init(true),
363#else
364 cl::init(false),
365#endif
367 cl::desc("Verfiy VPlans after VPlan transforms."));
368
369// This flag enables the stress testing of the VPlan H-CFG construction in the
370// VPlan-native vectorization path. It must be used in conjuction with
371// -enable-vplan-native-path. -vplan-verify-hcfg can also be used to enable the
372// verification of the H-CFGs built.
374 "vplan-build-stress-test", cl::init(false), cl::Hidden,
375 cl::desc(
376 "Build VPlan for every supported loop nest in the function and bail "
377 "out right after the build (stress test the VPlan H-CFG construction "
378 "in the VPlan-native vectorization path)."));
379
381 "interleave-loops", cl::init(true), cl::Hidden,
382 cl::desc("Enable loop interleaving in Loop vectorization passes"));
384 "vectorize-loops", cl::init(true), cl::Hidden,
385 cl::desc("Run the Loop vectorization passes"));
386
388 "force-widen-divrem-via-safe-divisor", cl::Hidden,
389 cl::desc(
390 "Override cost based safe divisor widening for div/rem instructions"));
391
393 "vectorizer-maximize-bandwidth-for-vector-calls", cl::init(true),
395 cl::desc("Try wider VFs if they enable the use of vector variants"));
396
398 "enable-early-exit-vectorization", cl::init(true), cl::Hidden,
399 cl::desc(
400 "Enable vectorization of early exit loops with uncountable exits."));
401
403 "vectorizer-consider-reg-pressure", cl::init(false), cl::Hidden,
404 cl::desc("Discard VFs if their register pressure is too high."));
405
406// Likelyhood of bypassing the vectorized loop because there are zero trips left
407// after prolog. See `emitIterationCountCheck`.
408static constexpr uint32_t MinItersBypassWeights[] = {1, 127};
409
410/// A helper function that returns true if the given type is irregular. The
411/// type is irregular if its allocated size doesn't equal the store size of an
412/// element of the corresponding vector type.
413static bool hasIrregularType(Type *Ty, const DataLayout &DL) {
414 // Determine if an array of N elements of type Ty is "bitcast compatible"
415 // with a <N x Ty> vector.
416 // This is only true if there is no padding between the array elements.
417 return DL.getTypeAllocSizeInBits(Ty) != DL.getTypeSizeInBits(Ty);
418}
419
420/// A version of ScalarEvolution::getSmallConstantTripCount that returns an
421/// ElementCount to include loops whose trip count is a function of vscale.
423 const Loop *L) {
424 if (unsigned ExpectedTC = SE->getSmallConstantTripCount(L))
425 return ElementCount::getFixed(ExpectedTC);
426
427 const SCEV *BTC = SE->getBackedgeTakenCount(L);
429 return ElementCount::getFixed(0);
430
431 const SCEV *ExitCount = SE->getTripCountFromExitCount(BTC, BTC->getType(), L);
432 if (isa<SCEVVScale>(ExitCount))
434
435 const APInt *Scale;
436 if (match(ExitCount, m_scev_Mul(m_scev_APInt(Scale), m_SCEVVScale())))
437 if (cast<SCEVMulExpr>(ExitCount)->hasNoUnsignedWrap())
438 if (Scale->getActiveBits() <= 32)
440
441 return ElementCount::getFixed(0);
442}
443
444/// Returns "best known" trip count, which is either a valid positive trip count
445/// or std::nullopt when an estimate cannot be made (including when the trip
446/// count would overflow), for the specified loop \p L as defined by the
447/// following procedure:
448/// 1) Returns exact trip count if it is known.
449/// 2) Returns expected trip count according to profile data if any.
450/// 3) Returns upper bound estimate if known, and if \p CanUseConstantMax.
451/// 4) Returns std::nullopt if all of the above failed.
452static std::optional<ElementCount>
454 bool CanUseConstantMax = true) {
455 // Check if exact trip count is known.
456 if (auto ExpectedTC = getSmallConstantTripCount(PSE.getSE(), L))
457 return ExpectedTC;
458
459 // Check if there is an expected trip count available from profile data.
461 if (auto EstimatedTC = getLoopEstimatedTripCount(L))
462 return ElementCount::getFixed(*EstimatedTC);
463
464 if (!CanUseConstantMax)
465 return std::nullopt;
466
467 // Check if upper bound estimate is known.
468 if (unsigned ExpectedTC = PSE.getSmallConstantMaxTripCount())
469 return ElementCount::getFixed(ExpectedTC);
470
471 return std::nullopt;
472}
473
474namespace {
475// Forward declare GeneratedRTChecks.
476class GeneratedRTChecks;
477
478using SCEV2ValueTy = DenseMap<const SCEV *, Value *>;
479} // namespace
480
481namespace llvm {
482
484
485/// InnerLoopVectorizer vectorizes loops which contain only one basic
486/// block to a specified vectorization factor (VF).
487/// This class performs the widening of scalars into vectors, or multiple
488/// scalars. This class also implements the following features:
489/// * It inserts an epilogue loop for handling loops that don't have iteration
490/// counts that are known to be a multiple of the vectorization factor.
491/// * It handles the code generation for reduction variables.
492/// * Scalarization (implementation using scalars) of un-vectorizable
493/// instructions.
494/// InnerLoopVectorizer does not perform any vectorization-legality
495/// checks, and relies on the caller to check for the different legality
496/// aspects. The InnerLoopVectorizer relies on the
497/// LoopVectorizationLegality class to provide information about the induction
498/// and reduction variables that were found to a given vectorization factor.
500public:
504 ElementCount VecWidth, unsigned UnrollFactor,
506 GeneratedRTChecks &RTChecks, VPlan &Plan)
507 : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TTI(TTI), AC(AC),
508 VF(VecWidth), UF(UnrollFactor), Builder(PSE.getSE()->getContext()),
511 Plan.getVectorLoopRegion()->getSinglePredecessor())) {}
512
513 virtual ~InnerLoopVectorizer() = default;
514
515 /// Creates a basic block for the scalar preheader. Both
516 /// EpilogueVectorizerMainLoop and EpilogueVectorizerEpilogueLoop overwrite
517 /// the method to create additional blocks and checks needed for epilogue
518 /// vectorization.
520
521 /// Fix the vectorized code, taking care of header phi's, and more.
523
524 /// Fix the non-induction PHIs in \p Plan.
526
527 /// Returns the original loop trip count.
528 Value *getTripCount() const { return TripCount; }
529
530 /// Used to set the trip count after ILV's construction and after the
531 /// preheader block has been executed. Note that this always holds the trip
532 /// count of the original loop for both main loop and epilogue vectorization.
533 void setTripCount(Value *TC) { TripCount = TC; }
534
535protected:
537
538 /// Create and return a new IR basic block for the scalar preheader whose name
539 /// is prefixed with \p Prefix.
541
542 /// Allow subclasses to override and print debug traces before/after vplan
543 /// execution, when trace information is requested.
544 virtual void printDebugTracesAtStart() {}
545 virtual void printDebugTracesAtEnd() {}
546
547 /// The original loop.
549
550 /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies
551 /// dynamic knowledge to simplify SCEV expressions and converts them to a
552 /// more usable form.
554
555 /// Loop Info.
557
558 /// Dominator Tree.
560
561 /// Target Transform Info.
563
564 /// Assumption Cache.
566
567 /// The vectorization SIMD factor to use. Each vector will have this many
568 /// vector elements.
570
571 /// The vectorization unroll factor to use. Each scalar is vectorized to this
572 /// many different vector instructions.
573 unsigned UF;
574
575 /// The builder that we use
577
578 // --- Vectorization state ---
579
580 /// Trip count of the original loop.
581 Value *TripCount = nullptr;
582
583 /// The profitablity analysis.
585
586 /// Structure to hold information about generated runtime checks, responsible
587 /// for cleaning the checks, if vectorization turns out unprofitable.
588 GeneratedRTChecks &RTChecks;
589
591
592 /// The vector preheader block of \p Plan, used as target for check blocks
593 /// introduced during skeleton creation.
595};
596
597/// Encapsulate information regarding vectorization of a loop and its epilogue.
598/// This information is meant to be updated and used across two stages of
599/// epilogue vectorization.
602 unsigned MainLoopUF = 0;
604 unsigned EpilogueUF = 0;
607 Value *TripCount = nullptr;
610
612 ElementCount EVF, unsigned EUF,
614 : MainLoopVF(MVF), MainLoopUF(MUF), EpilogueVF(EVF), EpilogueUF(EUF),
616 assert(EUF == 1 &&
617 "A high UF for the epilogue loop is likely not beneficial.");
618 }
619};
620
621/// An extension of the inner loop vectorizer that creates a skeleton for a
622/// vectorized loop that has its epilogue (residual) also vectorized.
623/// The idea is to run the vplan on a given loop twice, firstly to setup the
624/// skeleton and vectorize the main loop, and secondly to complete the skeleton
625/// from the first step and vectorize the epilogue. This is achieved by
626/// deriving two concrete strategy classes from this base class and invoking
627/// them in succession from the loop vectorizer planner.
629public:
639
640 /// Holds and updates state information required to vectorize the main loop
641 /// and its epilogue in two separate passes. This setup helps us avoid
642 /// regenerating and recomputing runtime safety checks. It also helps us to
643 /// shorten the iteration-count-check path length for the cases where the
644 /// iteration count of the loop is so small that the main vector loop is
645 /// completely skipped.
647
648protected:
650};
651
652/// A specialized derived class of inner loop vectorizer that performs
653/// vectorization of *main* loops in the process of vectorizing loops and their
654/// epilogues.
656public:
667 /// Implements the interface for creating a vectorized skeleton using the
668 /// *main loop* strategy (i.e., the first pass of VPlan execution).
670
671protected:
672 /// Introduces a new VPIRBasicBlock for \p CheckIRBB to Plan between the
673 /// vector preheader and its predecessor, also connecting the new block to the
674 /// scalar preheader.
675 void introduceCheckBlockInVPlan(BasicBlock *CheckIRBB);
676
677 // Create a check to see if the main vector loop should be executed
679 unsigned UF) const;
680
681 /// Emits an iteration count bypass check once for the main loop (when \p
682 /// ForEpilogue is false) and once for the epilogue loop (when \p
683 /// ForEpilogue is true).
685 bool ForEpilogue);
686 void printDebugTracesAtStart() override;
687 void printDebugTracesAtEnd() override;
688};
689
690// A specialized derived class of inner loop vectorizer that performs
691// vectorization of *epilogue* loops in the process of vectorizing loops and
692// their epilogues.
694public:
701 GeneratedRTChecks &Checks, VPlan &Plan)
703 Checks, Plan, EPI.EpilogueVF,
704 EPI.EpilogueVF, EPI.EpilogueUF) {}
705 /// Implements the interface for creating a vectorized skeleton using the
706 /// *epilogue loop* strategy (i.e., the second pass of VPlan execution).
708
709protected:
710 void printDebugTracesAtStart() override;
711 void printDebugTracesAtEnd() override;
712};
713} // end namespace llvm
714
715/// Look for a meaningful debug location on the instruction or its operands.
717 if (!I)
718 return DebugLoc::getUnknown();
719
721 if (I->getDebugLoc() != Empty)
722 return I->getDebugLoc();
723
724 for (Use &Op : I->operands()) {
725 if (Instruction *OpInst = dyn_cast<Instruction>(Op))
726 if (OpInst->getDebugLoc() != Empty)
727 return OpInst->getDebugLoc();
728 }
729
730 return I->getDebugLoc();
731}
732
733/// Write a \p DebugMsg about vectorization to the debug output stream. If \p I
734/// is passed, the message relates to that particular instruction.
735#ifndef NDEBUG
736static void debugVectorizationMessage(const StringRef Prefix,
737 const StringRef DebugMsg,
738 Instruction *I) {
739 dbgs() << "LV: " << Prefix << DebugMsg;
740 if (I != nullptr)
741 dbgs() << " " << *I;
742 else
743 dbgs() << '.';
744 dbgs() << '\n';
745}
746#endif
747
748/// Create an analysis remark that explains why vectorization failed
749///
750/// \p PassName is the name of the pass (e.g. can be AlwaysPrint). \p
751/// RemarkName is the identifier for the remark. If \p I is passed it is an
752/// instruction that prevents vectorization. Otherwise \p TheLoop is used for
753/// the location of the remark. If \p DL is passed, use it as debug location for
754/// the remark. \return the remark object that can be streamed to.
755static OptimizationRemarkAnalysis
756createLVAnalysis(const char *PassName, StringRef RemarkName, Loop *TheLoop,
757 Instruction *I, DebugLoc DL = {}) {
758 BasicBlock *CodeRegion = I ? I->getParent() : TheLoop->getHeader();
759 // If debug location is attached to the instruction, use it. Otherwise if DL
760 // was not provided, use the loop's.
761 if (I && I->getDebugLoc())
762 DL = I->getDebugLoc();
763 else if (!DL)
764 DL = TheLoop->getStartLoc();
765
766 return OptimizationRemarkAnalysis(PassName, RemarkName, DL, CodeRegion);
767}
768
769namespace llvm {
770
771/// Return a value for Step multiplied by VF.
773 int64_t Step) {
774 assert(Ty->isIntegerTy() && "Expected an integer step");
775 ElementCount VFxStep = VF.multiplyCoefficientBy(Step);
776 assert(isPowerOf2_64(VF.getKnownMinValue()) && "must pass power-of-2 VF");
777 if (VF.isScalable() && isPowerOf2_64(Step)) {
778 return B.CreateShl(
779 B.CreateVScale(Ty),
780 ConstantInt::get(Ty, Log2_64(VFxStep.getKnownMinValue())), "", true);
781 }
782 return B.CreateElementCount(Ty, VFxStep);
783}
784
785/// Return the runtime value for VF.
787 return B.CreateElementCount(Ty, VF);
788}
789
791 const StringRef OREMsg, const StringRef ORETag,
792 OptimizationRemarkEmitter *ORE, Loop *TheLoop,
793 Instruction *I) {
794 LLVM_DEBUG(debugVectorizationMessage("Not vectorizing: ", DebugMsg, I));
795 LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE);
796 ORE->emit(
797 createLVAnalysis(Hints.vectorizeAnalysisPassName(), ORETag, TheLoop, I)
798 << "loop not vectorized: " << OREMsg);
799}
800
801/// Reports an informative message: print \p Msg for debugging purposes as well
802/// as an optimization remark. Uses either \p I as location of the remark, or
803/// otherwise \p TheLoop. If \p DL is passed, use it as debug location for the
804/// remark. If \p DL is passed, use it as debug location for the remark.
805static void reportVectorizationInfo(const StringRef Msg, const StringRef ORETag,
807 Loop *TheLoop, Instruction *I = nullptr,
808 DebugLoc DL = {}) {
810 LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE);
811 ORE->emit(createLVAnalysis(Hints.vectorizeAnalysisPassName(), ORETag, TheLoop,
812 I, DL)
813 << Msg);
814}
815
816/// Report successful vectorization of the loop. In case an outer loop is
817/// vectorized, prepend "outer" to the vectorization remark.
819 VectorizationFactor VF, unsigned IC) {
821 "Vectorizing: ", TheLoop->isInnermost() ? "innermost loop" : "outer loop",
822 nullptr));
823 StringRef LoopType = TheLoop->isInnermost() ? "" : "outer ";
824 ORE->emit([&]() {
825 return OptimizationRemark(LV_NAME, "Vectorized", TheLoop->getStartLoc(),
826 TheLoop->getHeader())
827 << "vectorized " << LoopType << "loop (vectorization width: "
828 << ore::NV("VectorizationFactor", VF.Width)
829 << ", interleaved count: " << ore::NV("InterleaveCount", IC) << ")";
830 });
831}
832
833} // end namespace llvm
834
835namespace llvm {
836
837// Loop vectorization cost-model hints how the scalar epilogue loop should be
838// lowered.
840
841 // The default: allowing scalar epilogues.
843
844 // Vectorization with OptForSize: don't allow epilogues.
846
847 // A special case of vectorisation with OptForSize: loops with a very small
848 // trip count are considered for vectorization under OptForSize, thereby
849 // making sure the cost of their loop body is dominant, free of runtime
850 // guards and scalar iteration overheads.
852
853 // Loop hint predicate indicating an epilogue is undesired.
855
856 // Directive indicating we must either tail fold or not vectorize
858};
859
860/// LoopVectorizationCostModel - estimates the expected speedups due to
861/// vectorization.
862/// In many cases vectorization is not profitable. This can happen because of
863/// a number of reasons. In this class we mainly attempt to predict the
864/// expected speedup/slowdowns due to the supported instruction set. We use the
865/// TargetTransformInfo to query the different backends for the cost of
866/// different operations.
869
870public:
878 std::function<BlockFrequencyInfo &()> GetBFI,
879 const Function *F, const LoopVectorizeHints *Hints,
881 : ScalarEpilogueStatus(SEL), TheLoop(L), PSE(PSE), LI(LI), Legal(Legal),
882 TTI(TTI), TLI(TLI), DB(DB), AC(AC), ORE(ORE), GetBFI(GetBFI),
885 if (TTI.supportsScalableVectors() || ForceTargetSupportsScalableVectors)
886 initializeVScaleForTuning();
888 }
889
890 /// \return An upper bound for the vectorization factors (both fixed and
891 /// scalable). If the factors are 0, vectorization and interleaving should be
892 /// avoided up front.
893 FixedScalableVFPair computeMaxVF(ElementCount UserVF, unsigned UserIC);
894
895 /// \return True if runtime checks are required for vectorization, and false
896 /// otherwise.
897 bool runtimeChecksRequired();
898
899 /// Setup cost-based decisions for user vectorization factor.
900 /// \return true if the UserVF is a feasible VF to be chosen.
903 return expectedCost(UserVF).isValid();
904 }
905
906 /// \return True if maximizing vector bandwidth is enabled by the target or
907 /// user options, for the given register kind.
908 bool useMaxBandwidth(TargetTransformInfo::RegisterKind RegKind);
909
910 /// \return True if register pressure should be considered for the given VF.
911 bool shouldConsiderRegPressureForVF(ElementCount VF);
912
913 /// \return The size (in bits) of the smallest and widest types in the code
914 /// that needs to be vectorized. We ignore values that remain scalar such as
915 /// 64 bit loop indices.
916 std::pair<unsigned, unsigned> getSmallestAndWidestTypes();
917
918 /// Memory access instruction may be vectorized in more than one way.
919 /// Form of instruction after vectorization depends on cost.
920 /// This function takes cost-based decisions for Load/Store instructions
921 /// and collects them in a map. This decisions map is used for building
922 /// the lists of loop-uniform and loop-scalar instructions.
923 /// The calculated cost is saved with widening decision in order to
924 /// avoid redundant calculations.
925 void setCostBasedWideningDecision(ElementCount VF);
926
927 /// A call may be vectorized in different ways depending on whether we have
928 /// vectorized variants available and whether the target supports masking.
929 /// This function analyzes all calls in the function at the supplied VF,
930 /// makes a decision based on the costs of available options, and stores that
931 /// decision in a map for use in planning and plan execution.
932 void setVectorizedCallDecision(ElementCount VF);
933
934 /// Collect values we want to ignore in the cost model.
935 void collectValuesToIgnore();
936
937 /// Collect all element types in the loop for which widening is needed.
938 void collectElementTypesForWidening();
939
940 /// Split reductions into those that happen in the loop, and those that happen
941 /// outside. In loop reductions are collected into InLoopReductions.
942 void collectInLoopReductions();
943
944 /// Returns true if we should use strict in-order reductions for the given
945 /// RdxDesc. This is true if the -enable-strict-reductions flag is passed,
946 /// the IsOrdered flag of RdxDesc is set and we do not allow reordering
947 /// of FP operations.
948 bool useOrderedReductions(const RecurrenceDescriptor &RdxDesc) const {
949 return !Hints->allowReordering() && RdxDesc.isOrdered();
950 }
951
952 /// \returns The smallest bitwidth each instruction can be represented with.
953 /// The vector equivalents of these instructions should be truncated to this
954 /// type.
956 return MinBWs;
957 }
958
959 /// \returns True if it is more profitable to scalarize instruction \p I for
960 /// vectorization factor \p VF.
962 assert(VF.isVector() &&
963 "Profitable to scalarize relevant only for VF > 1.");
964 assert(
965 TheLoop->isInnermost() &&
966 "cost-model should not be used for outer loops (in VPlan-native path)");
967
968 auto Scalars = InstsToScalarize.find(VF);
969 assert(Scalars != InstsToScalarize.end() &&
970 "VF not yet analyzed for scalarization profitability");
971 return Scalars->second.contains(I);
972 }
973
974 /// Returns true if \p I is known to be uniform after vectorization.
976 assert(
977 TheLoop->isInnermost() &&
978 "cost-model should not be used for outer loops (in VPlan-native path)");
979 // Pseudo probe needs to be duplicated for each unrolled iteration and
980 // vector lane so that profiled loop trip count can be accurately
981 // accumulated instead of being under counted.
983 return false;
984
985 if (VF.isScalar())
986 return true;
987
988 auto UniformsPerVF = Uniforms.find(VF);
989 assert(UniformsPerVF != Uniforms.end() &&
990 "VF not yet analyzed for uniformity");
991 return UniformsPerVF->second.count(I);
992 }
993
994 /// Returns true if \p I is known to be scalar after vectorization.
996 assert(
997 TheLoop->isInnermost() &&
998 "cost-model should not be used for outer loops (in VPlan-native path)");
999 if (VF.isScalar())
1000 return true;
1001
1002 auto ScalarsPerVF = Scalars.find(VF);
1003 assert(ScalarsPerVF != Scalars.end() &&
1004 "Scalar values are not calculated for VF");
1005 return ScalarsPerVF->second.count(I);
1006 }
1007
1008 /// \returns True if instruction \p I can be truncated to a smaller bitwidth
1009 /// for vectorization factor \p VF.
1011 // Truncs must truncate at most to their destination type.
1012 if (isa_and_nonnull<TruncInst>(I) && MinBWs.contains(I) &&
1013 I->getType()->getScalarSizeInBits() < MinBWs.lookup(I))
1014 return false;
1015 return VF.isVector() && MinBWs.contains(I) &&
1016 !isProfitableToScalarize(I, VF) &&
1018 }
1019
1020 /// Decision that was taken during cost calculation for memory instruction.
1023 CM_Widen, // For consecutive accesses with stride +1.
1024 CM_Widen_Reverse, // For consecutive accesses with stride -1.
1030 };
1031
1032 /// Save vectorization decision \p W and \p Cost taken by the cost model for
1033 /// instruction \p I and vector width \p VF.
1036 assert(VF.isVector() && "Expected VF >=2");
1037 WideningDecisions[{I, VF}] = {W, Cost};
1038 }
1039
1040 /// Save vectorization decision \p W and \p Cost taken by the cost model for
1041 /// interleaving group \p Grp and vector width \p VF.
1045 assert(VF.isVector() && "Expected VF >=2");
1046 /// Broadcast this decicion to all instructions inside the group.
1047 /// When interleaving, the cost will only be assigned one instruction, the
1048 /// insert position. For other cases, add the appropriate fraction of the
1049 /// total cost to each instruction. This ensures accurate costs are used,
1050 /// even if the insert position instruction is not used.
1051 InstructionCost InsertPosCost = Cost;
1052 InstructionCost OtherMemberCost = 0;
1053 if (W != CM_Interleave)
1054 OtherMemberCost = InsertPosCost = Cost / Grp->getNumMembers();
1055 ;
1056 for (unsigned Idx = 0; Idx < Grp->getFactor(); ++Idx) {
1057 if (auto *I = Grp->getMember(Idx)) {
1058 if (Grp->getInsertPos() == I)
1059 WideningDecisions[{I, VF}] = {W, InsertPosCost};
1060 else
1061 WideningDecisions[{I, VF}] = {W, OtherMemberCost};
1062 }
1063 }
1064 }
1065
1066 /// Return the cost model decision for the given instruction \p I and vector
1067 /// width \p VF. Return CM_Unknown if this instruction did not pass
1068 /// through the cost modeling.
1070 assert(VF.isVector() && "Expected VF to be a vector VF");
1071 assert(
1072 TheLoop->isInnermost() &&
1073 "cost-model should not be used for outer loops (in VPlan-native path)");
1074
1075 std::pair<Instruction *, ElementCount> InstOnVF(I, VF);
1076 auto Itr = WideningDecisions.find(InstOnVF);
1077 if (Itr == WideningDecisions.end())
1078 return CM_Unknown;
1079 return Itr->second.first;
1080 }
1081
1082 /// Return the vectorization cost for the given instruction \p I and vector
1083 /// width \p VF.
1085 assert(VF.isVector() && "Expected VF >=2");
1086 std::pair<Instruction *, ElementCount> InstOnVF(I, VF);
1087 assert(WideningDecisions.contains(InstOnVF) &&
1088 "The cost is not calculated");
1089 return WideningDecisions[InstOnVF].second;
1090 }
1091
1099
1101 Function *Variant, Intrinsic::ID IID,
1102 std::optional<unsigned> MaskPos,
1104 assert(!VF.isScalar() && "Expected vector VF");
1105 CallWideningDecisions[{CI, VF}] = {Kind, Variant, IID, MaskPos, Cost};
1106 }
1107
1109 ElementCount VF) const {
1110 assert(!VF.isScalar() && "Expected vector VF");
1111 auto I = CallWideningDecisions.find({CI, VF});
1112 if (I == CallWideningDecisions.end())
1113 return {CM_Unknown, nullptr, Intrinsic::not_intrinsic, std::nullopt, 0};
1114 return I->second;
1115 }
1116
1117 /// Return True if instruction \p I is an optimizable truncate whose operand
1118 /// is an induction variable. Such a truncate will be removed by adding a new
1119 /// induction variable with the destination type.
1121 // If the instruction is not a truncate, return false.
1122 auto *Trunc = dyn_cast<TruncInst>(I);
1123 if (!Trunc)
1124 return false;
1125
1126 // Get the source and destination types of the truncate.
1127 Type *SrcTy = toVectorTy(Trunc->getSrcTy(), VF);
1128 Type *DestTy = toVectorTy(Trunc->getDestTy(), VF);
1129
1130 // If the truncate is free for the given types, return false. Replacing a
1131 // free truncate with an induction variable would add an induction variable
1132 // update instruction to each iteration of the loop. We exclude from this
1133 // check the primary induction variable since it will need an update
1134 // instruction regardless.
1135 Value *Op = Trunc->getOperand(0);
1136 if (Op != Legal->getPrimaryInduction() && TTI.isTruncateFree(SrcTy, DestTy))
1137 return false;
1138
1139 // If the truncated value is not an induction variable, return false.
1140 return Legal->isInductionPhi(Op);
1141 }
1142
1143 /// Collects the instructions to scalarize for each predicated instruction in
1144 /// the loop.
1145 void collectInstsToScalarize(ElementCount VF);
1146
1147 /// Collect values that will not be widened, including Uniforms, Scalars, and
1148 /// Instructions to Scalarize for the given \p VF.
1149 /// The sets depend on CM decision for Load/Store instructions
1150 /// that may be vectorized as interleave, gather-scatter or scalarized.
1151 /// Also make a decision on what to do about call instructions in the loop
1152 /// at that VF -- scalarize, call a known vector routine, or call a
1153 /// vector intrinsic.
1155 // Do the analysis once.
1156 if (VF.isScalar() || Uniforms.contains(VF))
1157 return;
1159 collectLoopUniforms(VF);
1161 collectLoopScalars(VF);
1163 }
1164
1165 /// Returns true if the target machine supports masked store operation
1166 /// for the given \p DataType and kind of access to \p Ptr.
1167 bool isLegalMaskedStore(Type *DataType, Value *Ptr, Align Alignment,
1168 unsigned AddressSpace) const {
1169 return Legal->isConsecutivePtr(DataType, Ptr) &&
1170 TTI.isLegalMaskedStore(DataType, Alignment, AddressSpace);
1171 }
1172
1173 /// Returns true if the target machine supports masked load operation
1174 /// for the given \p DataType and kind of access to \p Ptr.
1175 bool isLegalMaskedLoad(Type *DataType, Value *Ptr, Align Alignment,
1176 unsigned AddressSpace) const {
1177 return Legal->isConsecutivePtr(DataType, Ptr) &&
1178 TTI.isLegalMaskedLoad(DataType, Alignment, AddressSpace);
1179 }
1180
1181 /// Returns true if the target machine can represent \p V as a masked gather
1182 /// or scatter operation.
1184 bool LI = isa<LoadInst>(V);
1185 bool SI = isa<StoreInst>(V);
1186 if (!LI && !SI)
1187 return false;
1188 auto *Ty = getLoadStoreType(V);
1190 if (VF.isVector())
1191 Ty = VectorType::get(Ty, VF);
1192 return (LI && TTI.isLegalMaskedGather(Ty, Align)) ||
1193 (SI && TTI.isLegalMaskedScatter(Ty, Align));
1194 }
1195
1196 /// Returns true if the target machine supports all of the reduction
1197 /// variables found for the given VF.
1199 return (all_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool {
1200 const RecurrenceDescriptor &RdxDesc = Reduction.second;
1201 return TTI.isLegalToVectorizeReduction(RdxDesc, VF);
1202 }));
1203 }
1204
1205 /// Given costs for both strategies, return true if the scalar predication
1206 /// lowering should be used for div/rem. This incorporates an override
1207 /// option so it is not simply a cost comparison.
1209 InstructionCost SafeDivisorCost) const {
1210 switch (ForceSafeDivisor) {
1211 case cl::BOU_UNSET:
1212 return ScalarCost < SafeDivisorCost;
1213 case cl::BOU_TRUE:
1214 return false;
1215 case cl::BOU_FALSE:
1216 return true;
1217 }
1218 llvm_unreachable("impossible case value");
1219 }
1220
1221 /// Returns true if \p I is an instruction which requires predication and
1222 /// for which our chosen predication strategy is scalarization (i.e. we
1223 /// don't have an alternate strategy such as masking available).
1224 /// \p VF is the vectorization factor that will be used to vectorize \p I.
1225 bool isScalarWithPredication(Instruction *I, ElementCount VF);
1226
1227 /// Returns true if \p I is an instruction that needs to be predicated
1228 /// at runtime. The result is independent of the predication mechanism.
1229 /// Superset of instructions that return true for isScalarWithPredication.
1230 bool isPredicatedInst(Instruction *I) const;
1231
1232 /// A helper function that returns how much we should divide the cost of a
1233 /// predicated block by. Typically this is the reciprocal of the block
1234 /// probability, i.e. if we return X we are assuming the predicated block will
1235 /// execute once for every X iterations of the loop header so the block should
1236 /// only contribute 1/X of its cost to the total cost calculation, but when
1237 /// optimizing for code size it will just be 1 as code size costs don't depend
1238 /// on execution probabilities.
1239 ///
1240 /// Note that if a block wasn't originally predicated but was predicated due
1241 /// to tail folding, the divisor will still be 1 because it will execute for
1242 /// every iteration of the loop header.
1243 inline uint64_t
1244 getPredBlockCostDivisor(TargetTransformInfo::TargetCostKind CostKind,
1245 const BasicBlock *BB);
1246
1247 /// Return the costs for our two available strategies for lowering a
1248 /// div/rem operation which requires speculating at least one lane.
1249 /// First result is for scalarization (will be invalid for scalable
1250 /// vectors); second is for the safe-divisor strategy.
1251 std::pair<InstructionCost, InstructionCost>
1252 getDivRemSpeculationCost(Instruction *I, ElementCount VF);
1253
1254 /// Returns true if \p I is a memory instruction with consecutive memory
1255 /// access that can be widened.
1256 bool memoryInstructionCanBeWidened(Instruction *I, ElementCount VF);
1257
1258 /// Returns true if \p I is a memory instruction in an interleaved-group
1259 /// of memory accesses that can be vectorized with wide vector loads/stores
1260 /// and shuffles.
1261 bool interleavedAccessCanBeWidened(Instruction *I, ElementCount VF) const;
1262
1263 /// Check if \p Instr belongs to any interleaved access group.
1265 return InterleaveInfo.isInterleaved(Instr);
1266 }
1267
1268 /// Get the interleaved access group that \p Instr belongs to.
1271 return InterleaveInfo.getInterleaveGroup(Instr);
1272 }
1273
1274 /// Returns true if we're required to use a scalar epilogue for at least
1275 /// the final iteration of the original loop.
1276 bool requiresScalarEpilogue(bool IsVectorizing) const {
1277 if (!isScalarEpilogueAllowed()) {
1278 LLVM_DEBUG(dbgs() << "LV: Loop does not require scalar epilogue\n");
1279 return false;
1280 }
1281 // If we might exit from anywhere but the latch and early exit vectorization
1282 // is disabled, we must run the exiting iteration in scalar form.
1283 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch() &&
1284 !(EnableEarlyExitVectorization && Legal->hasUncountableEarlyExit())) {
1285 LLVM_DEBUG(dbgs() << "LV: Loop requires scalar epilogue: not exiting "
1286 "from latch block\n");
1287 return true;
1288 }
1289 if (IsVectorizing && InterleaveInfo.requiresScalarEpilogue()) {
1290 LLVM_DEBUG(dbgs() << "LV: Loop requires scalar epilogue: "
1291 "interleaved group requires scalar epilogue\n");
1292 return true;
1293 }
1294 LLVM_DEBUG(dbgs() << "LV: Loop does not require scalar epilogue\n");
1295 return false;
1296 }
1297
1298 /// Returns true if a scalar epilogue is not allowed due to optsize or a
1299 /// loop hint annotation.
1301 return ScalarEpilogueStatus == CM_ScalarEpilogueAllowed;
1302 }
1303
1304 /// Returns true if tail-folding is preferred over a scalar epilogue.
1306 return ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate ||
1307 ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedUsePredicate;
1308 }
1309
1310 /// Returns the TailFoldingStyle that is best for the current loop.
1311 TailFoldingStyle getTailFoldingStyle(bool IVUpdateMayOverflow = true) const {
1312 if (!ChosenTailFoldingStyle)
1314 return IVUpdateMayOverflow ? ChosenTailFoldingStyle->first
1315 : ChosenTailFoldingStyle->second;
1316 }
1317
1318 /// Selects and saves TailFoldingStyle for 2 options - if IV update may
1319 /// overflow or not.
1320 /// \param IsScalableVF true if scalable vector factors enabled.
1321 /// \param UserIC User specific interleave count.
1322 void setTailFoldingStyles(bool IsScalableVF, unsigned UserIC) {
1323 assert(!ChosenTailFoldingStyle && "Tail folding must not be selected yet.");
1324 if (!Legal->canFoldTailByMasking()) {
1325 ChosenTailFoldingStyle = {TailFoldingStyle::None, TailFoldingStyle::None};
1326 return;
1327 }
1328
1329 // Default to TTI preference, but allow command line override.
1330 ChosenTailFoldingStyle = {
1331 TTI.getPreferredTailFoldingStyle(/*IVUpdateMayOverflow=*/true),
1332 TTI.getPreferredTailFoldingStyle(/*IVUpdateMayOverflow=*/false)};
1333 if (ForceTailFoldingStyle.getNumOccurrences())
1334 ChosenTailFoldingStyle = {ForceTailFoldingStyle.getValue(),
1335 ForceTailFoldingStyle.getValue()};
1336
1337 if (ChosenTailFoldingStyle->first != TailFoldingStyle::DataWithEVL &&
1338 ChosenTailFoldingStyle->second != TailFoldingStyle::DataWithEVL)
1339 return;
1340 // Override EVL styles if needed.
1341 // FIXME: Investigate opportunity for fixed vector factor.
1342 bool EVLIsLegal = UserIC <= 1 && IsScalableVF &&
1343 TTI.hasActiveVectorLength() && !EnableVPlanNativePath;
1344 if (EVLIsLegal)
1345 return;
1346 // If for some reason EVL mode is unsupported, fallback to a scalar epilogue
1347 // if it's allowed, or DataWithoutLaneMask otherwise.
1348 if (ScalarEpilogueStatus == CM_ScalarEpilogueAllowed ||
1349 ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate)
1350 ChosenTailFoldingStyle = {TailFoldingStyle::None, TailFoldingStyle::None};
1351 else
1352 ChosenTailFoldingStyle = {TailFoldingStyle::DataWithoutLaneMask,
1354
1355 LLVM_DEBUG(
1356 dbgs() << "LV: Preference for VP intrinsics indicated. Will "
1357 "not try to generate VP Intrinsics "
1358 << (UserIC > 1
1359 ? "since interleave count specified is greater than 1.\n"
1360 : "due to non-interleaving reasons.\n"));
1361 }
1362
1363 /// Returns true if all loop blocks should be masked to fold tail loop.
1364 bool foldTailByMasking() const {
1365 // TODO: check if it is possible to check for None style independent of
1366 // IVUpdateMayOverflow flag in getTailFoldingStyle.
1368 }
1369
1370 /// Returns true if the use of wide lane masks is requested and the loop is
1371 /// using tail-folding with a lane mask for control flow.
1380
1381 /// Return maximum safe number of elements to be processed per vector
1382 /// iteration, which do not prevent store-load forwarding and are safe with
1383 /// regard to the memory dependencies. Required for EVL-based VPlans to
1384 /// correctly calculate AVL (application vector length) as min(remaining AVL,
1385 /// MaxSafeElements).
1386 /// TODO: need to consider adjusting cost model to use this value as a
1387 /// vectorization factor for EVL-based vectorization.
1388 std::optional<unsigned> getMaxSafeElements() const { return MaxSafeElements; }
1389
1390 /// Returns true if the instructions in this block requires predication
1391 /// for any reason, e.g. because tail folding now requires a predicate
1392 /// or because the block in the original loop was predicated.
1394 return foldTailByMasking() || Legal->blockNeedsPredication(BB);
1395 }
1396
1397 /// Returns true if VP intrinsics with explicit vector length support should
1398 /// be generated in the tail folded loop.
1402
1403 /// Returns true if the Phi is part of an inloop reduction.
1404 bool isInLoopReduction(PHINode *Phi) const {
1405 return InLoopReductions.contains(Phi);
1406 }
1407
1408 /// Returns the set of in-loop reduction PHIs.
1410 return InLoopReductions;
1411 }
1412
1413 /// Returns true if the predicated reduction select should be used to set the
1414 /// incoming value for the reduction phi.
1416 // Force to use predicated reduction select since the EVL of the
1417 // second-to-last iteration might not be VF*UF.
1418 if (foldTailWithEVL())
1419 return true;
1421 TTI.preferPredicatedReductionSelect();
1422 }
1423
1424 /// Estimate cost of an intrinsic call instruction CI if it were vectorized
1425 /// with factor VF. Return the cost of the instruction, including
1426 /// scalarization overhead if it's needed.
1427 InstructionCost getVectorIntrinsicCost(CallInst *CI, ElementCount VF) const;
1428
1429 /// Estimate cost of a call instruction CI if it were vectorized with factor
1430 /// VF. Return the cost of the instruction, including scalarization overhead
1431 /// if it's needed.
1432 InstructionCost getVectorCallCost(CallInst *CI, ElementCount VF) const;
1433
1434 /// Invalidates decisions already taken by the cost model.
1436 WideningDecisions.clear();
1437 CallWideningDecisions.clear();
1438 Uniforms.clear();
1439 Scalars.clear();
1440 }
1441
1442 /// Returns the expected execution cost. The unit of the cost does
1443 /// not matter because we use the 'cost' units to compare different
1444 /// vector widths. The cost that is returned is *not* normalized by
1445 /// the factor width.
1446 InstructionCost expectedCost(ElementCount VF);
1447
1448 bool hasPredStores() const { return NumPredStores > 0; }
1449
1450 /// Returns true if epilogue vectorization is considered profitable, and
1451 /// false otherwise.
1452 /// \p VF is the vectorization factor chosen for the original loop.
1453 /// \p Multiplier is an aditional scaling factor applied to VF before
1454 /// comparing to EpilogueVectorizationMinVF.
1455 bool isEpilogueVectorizationProfitable(const ElementCount VF,
1456 const unsigned IC) const;
1457
1458 /// Returns the execution time cost of an instruction for a given vector
1459 /// width. Vector width of one means scalar.
1460 InstructionCost getInstructionCost(Instruction *I, ElementCount VF);
1461
1462 /// Return the cost of instructions in an inloop reduction pattern, if I is
1463 /// part of that pattern.
1464 std::optional<InstructionCost> getReductionPatternCost(Instruction *I,
1465 ElementCount VF,
1466 Type *VectorTy) const;
1467
1468 /// Returns true if \p Op should be considered invariant and if it is
1469 /// trivially hoistable.
1470 bool shouldConsiderInvariant(Value *Op);
1471
1472 /// Return the value of vscale used for tuning the cost model.
1473 std::optional<unsigned> getVScaleForTuning() const { return VScaleForTuning; }
1474
1475private:
1476 unsigned NumPredStores = 0;
1477
1478 /// Used to store the value of vscale used for tuning the cost model. It is
1479 /// initialized during object construction.
1480 std::optional<unsigned> VScaleForTuning;
1481
1482 /// Initializes the value of vscale used for tuning the cost model. If
1483 /// vscale_range.min == vscale_range.max then return vscale_range.max, else
1484 /// return the value returned by the corresponding TTI method.
1485 void initializeVScaleForTuning() {
1486 const Function *Fn = TheLoop->getHeader()->getParent();
1487 if (Fn->hasFnAttribute(Attribute::VScaleRange)) {
1488 auto Attr = Fn->getFnAttribute(Attribute::VScaleRange);
1489 auto Min = Attr.getVScaleRangeMin();
1490 auto Max = Attr.getVScaleRangeMax();
1491 if (Max && Min == Max) {
1492 VScaleForTuning = Max;
1493 return;
1494 }
1495 }
1496
1497 VScaleForTuning = TTI.getVScaleForTuning();
1498 }
1499
1500 /// \return An upper bound for the vectorization factors for both
1501 /// fixed and scalable vectorization, where the minimum-known number of
1502 /// elements is a power-of-2 larger than zero. If scalable vectorization is
1503 /// disabled or unsupported, then the scalable part will be equal to
1504 /// ElementCount::getScalable(0).
1505 FixedScalableVFPair computeFeasibleMaxVF(unsigned MaxTripCount,
1506 ElementCount UserVF,
1507 bool FoldTailByMasking);
1508
1509 /// If \p VF > MaxTripcount, clamps it to the next lower VF that is <=
1510 /// MaxTripCount.
1511 ElementCount clampVFByMaxTripCount(ElementCount VF, unsigned MaxTripCount,
1512 bool FoldTailByMasking) const;
1513
1514 /// \return the maximized element count based on the targets vector
1515 /// registers and the loop trip-count, but limited to a maximum safe VF.
1516 /// This is a helper function of computeFeasibleMaxVF.
1517 ElementCount getMaximizedVFForTarget(unsigned MaxTripCount,
1518 unsigned SmallestType,
1519 unsigned WidestType,
1520 ElementCount MaxSafeVF,
1521 bool FoldTailByMasking);
1522
1523 /// Checks if scalable vectorization is supported and enabled. Caches the
1524 /// result to avoid repeated debug dumps for repeated queries.
1525 bool isScalableVectorizationAllowed();
1526
1527 /// \return the maximum legal scalable VF, based on the safe max number
1528 /// of elements.
1529 ElementCount getMaxLegalScalableVF(unsigned MaxSafeElements);
1530
1531 /// Calculate vectorization cost of memory instruction \p I.
1532 InstructionCost getMemoryInstructionCost(Instruction *I, ElementCount VF);
1533
1534 /// The cost computation for scalarized memory instruction.
1535 InstructionCost getMemInstScalarizationCost(Instruction *I, ElementCount VF);
1536
1537 /// The cost computation for interleaving group of memory instructions.
1538 InstructionCost getInterleaveGroupCost(Instruction *I, ElementCount VF);
1539
1540 /// The cost computation for Gather/Scatter instruction.
1541 InstructionCost getGatherScatterCost(Instruction *I, ElementCount VF);
1542
1543 /// The cost computation for widening instruction \p I with consecutive
1544 /// memory access.
1545 InstructionCost getConsecutiveMemOpCost(Instruction *I, ElementCount VF);
1546
1547 /// The cost calculation for Load/Store instruction \p I with uniform pointer -
1548 /// Load: scalar load + broadcast.
1549 /// Store: scalar store + (loop invariant value stored? 0 : extract of last
1550 /// element)
1551 InstructionCost getUniformMemOpCost(Instruction *I, ElementCount VF);
1552
1553 /// Estimate the overhead of scalarizing an instruction. This is a
1554 /// convenience wrapper for the type-based getScalarizationOverhead API.
1556 ElementCount VF) const;
1557
1558 /// Returns true if an artificially high cost for emulated masked memrefs
1559 /// should be used.
1560 bool useEmulatedMaskMemRefHack(Instruction *I, ElementCount VF);
1561
1562 /// Map of scalar integer values to the smallest bitwidth they can be legally
1563 /// represented as. The vector equivalents of these values should be truncated
1564 /// to this type.
1565 MapVector<Instruction *, uint64_t> MinBWs;
1566
1567 /// A type representing the costs for instructions if they were to be
1568 /// scalarized rather than vectorized. The entries are Instruction-Cost
1569 /// pairs.
1570 using ScalarCostsTy = MapVector<Instruction *, InstructionCost>;
1571
1572 /// A set containing all BasicBlocks that are known to present after
1573 /// vectorization as a predicated block.
1574 DenseMap<ElementCount, SmallPtrSet<BasicBlock *, 4>>
1575 PredicatedBBsAfterVectorization;
1576
1577 /// Records whether it is allowed to have the original scalar loop execute at
1578 /// least once. This may be needed as a fallback loop in case runtime
1579 /// aliasing/dependence checks fail, or to handle the tail/remainder
1580 /// iterations when the trip count is unknown or doesn't divide by the VF,
1581 /// or as a peel-loop to handle gaps in interleave-groups.
1582 /// Under optsize and when the trip count is very small we don't allow any
1583 /// iterations to execute in the scalar loop.
1584 ScalarEpilogueLowering ScalarEpilogueStatus = CM_ScalarEpilogueAllowed;
1585
1586 /// Control finally chosen tail folding style. The first element is used if
1587 /// the IV update may overflow, the second element - if it does not.
1588 std::optional<std::pair<TailFoldingStyle, TailFoldingStyle>>
1589 ChosenTailFoldingStyle;
1590
1591 /// true if scalable vectorization is supported and enabled.
1592 std::optional<bool> IsScalableVectorizationAllowed;
1593
1594 /// Maximum safe number of elements to be processed per vector iteration,
1595 /// which do not prevent store-load forwarding and are safe with regard to the
1596 /// memory dependencies. Required for EVL-based veectorization, where this
1597 /// value is used as the upper bound of the safe AVL.
1598 std::optional<unsigned> MaxSafeElements;
1599
1600 /// A map holding scalar costs for different vectorization factors. The
1601 /// presence of a cost for an instruction in the mapping indicates that the
1602 /// instruction will be scalarized when vectorizing with the associated
1603 /// vectorization factor. The entries are VF-ScalarCostTy pairs.
1604 MapVector<ElementCount, ScalarCostsTy> InstsToScalarize;
1605
1606 /// Holds the instructions known to be uniform after vectorization.
1607 /// The data is collected per VF.
1608 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Uniforms;
1609
1610 /// Holds the instructions known to be scalar after vectorization.
1611 /// The data is collected per VF.
1612 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Scalars;
1613
1614 /// Holds the instructions (address computations) that are forced to be
1615 /// scalarized.
1616 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> ForcedScalars;
1617
1618 /// PHINodes of the reductions that should be expanded in-loop.
1619 SmallPtrSet<PHINode *, 4> InLoopReductions;
1620
1621 /// A Map of inloop reduction operations and their immediate chain operand.
1622 /// FIXME: This can be removed once reductions can be costed correctly in
1623 /// VPlan. This was added to allow quick lookup of the inloop operations.
1624 DenseMap<Instruction *, Instruction *> InLoopReductionImmediateChains;
1625
1626 /// Returns the expected difference in cost from scalarizing the expression
1627 /// feeding a predicated instruction \p PredInst. The instructions to
1628 /// scalarize and their scalar costs are collected in \p ScalarCosts. A
1629 /// non-negative return value implies the expression will be scalarized.
1630 /// Currently, only single-use chains are considered for scalarization.
1631 InstructionCost computePredInstDiscount(Instruction *PredInst,
1632 ScalarCostsTy &ScalarCosts,
1633 ElementCount VF);
1634
1635 /// Collect the instructions that are uniform after vectorization. An
1636 /// instruction is uniform if we represent it with a single scalar value in
1637 /// the vectorized loop corresponding to each vector iteration. Examples of
1638 /// uniform instructions include pointer operands of consecutive or
1639 /// interleaved memory accesses. Note that although uniformity implies an
1640 /// instruction will be scalar, the reverse is not true. In general, a
1641 /// scalarized instruction will be represented by VF scalar values in the
1642 /// vectorized loop, each corresponding to an iteration of the original
1643 /// scalar loop.
1644 void collectLoopUniforms(ElementCount VF);
1645
1646 /// Collect the instructions that are scalar after vectorization. An
1647 /// instruction is scalar if it is known to be uniform or will be scalarized
1648 /// during vectorization. collectLoopScalars should only add non-uniform nodes
1649 /// to the list if they are used by a load/store instruction that is marked as
1650 /// CM_Scalarize. Non-uniform scalarized instructions will be represented by
1651 /// VF values in the vectorized loop, each corresponding to an iteration of
1652 /// the original scalar loop.
1653 void collectLoopScalars(ElementCount VF);
1654
1655 /// Keeps cost model vectorization decision and cost for instructions.
1656 /// Right now it is used for memory instructions only.
1657 using DecisionList = DenseMap<std::pair<Instruction *, ElementCount>,
1658 std::pair<InstWidening, InstructionCost>>;
1659
1660 DecisionList WideningDecisions;
1661
1662 using CallDecisionList =
1663 DenseMap<std::pair<CallInst *, ElementCount>, CallWideningDecision>;
1664
1665 CallDecisionList CallWideningDecisions;
1666
1667 /// Returns true if \p V is expected to be vectorized and it needs to be
1668 /// extracted.
1669 bool needsExtract(Value *V, ElementCount VF) const {
1671 if (VF.isScalar() || !I || !TheLoop->contains(I) ||
1672 TheLoop->isLoopInvariant(I) ||
1673 getWideningDecision(I, VF) == CM_Scalarize ||
1674 (isa<CallInst>(I) &&
1675 getCallWideningDecision(cast<CallInst>(I), VF).Kind == CM_Scalarize))
1676 return false;
1677
1678 // Assume we can vectorize V (and hence we need extraction) if the
1679 // scalars are not computed yet. This can happen, because it is called
1680 // via getScalarizationOverhead from setCostBasedWideningDecision, before
1681 // the scalars are collected. That should be a safe assumption in most
1682 // cases, because we check if the operands have vectorizable types
1683 // beforehand in LoopVectorizationLegality.
1684 return !Scalars.contains(VF) || !isScalarAfterVectorization(I, VF);
1685 };
1686
1687 /// Returns a range containing only operands needing to be extracted.
1688 SmallVector<Value *, 4> filterExtractingOperands(Instruction::op_range Ops,
1689 ElementCount VF) const {
1690
1691 SmallPtrSet<const Value *, 4> UniqueOperands;
1693 for (Value *Op : Ops) {
1694 if (isa<Constant>(Op) || !UniqueOperands.insert(Op).second ||
1695 !needsExtract(Op, VF))
1696 continue;
1697 Res.push_back(Op);
1698 }
1699 return Res;
1700 }
1701
1702public:
1703 /// The loop that we evaluate.
1705
1706 /// Predicated scalar evolution analysis.
1708
1709 /// Loop Info analysis.
1711
1712 /// Vectorization legality.
1714
1715 /// Vector target information.
1717
1718 /// Target Library Info.
1720
1721 /// Demanded bits analysis.
1723
1724 /// Assumption cache.
1726
1727 /// Interface to emit optimization remarks.
1729
1730 /// A function to lazily fetch BlockFrequencyInfo. This avoids computing it
1731 /// unless necessary, e.g. when the loop isn't legal to vectorize or when
1732 /// there is no predication.
1733 std::function<BlockFrequencyInfo &()> GetBFI;
1734 /// The BlockFrequencyInfo returned from GetBFI.
1736 /// Returns the BlockFrequencyInfo for the function if cached, otherwise
1737 /// fetches it via GetBFI. Avoids an indirect call to the std::function.
1739 if (!BFI)
1740 BFI = &GetBFI();
1741 return *BFI;
1742 }
1743
1745
1746 /// Loop Vectorize Hint.
1748
1749 /// The interleave access information contains groups of interleaved accesses
1750 /// with the same stride and close to each other.
1752
1753 /// Values to ignore in the cost model.
1755
1756 /// Values to ignore in the cost model when VF > 1.
1758
1759 /// All element types found in the loop.
1761
1762 /// The kind of cost that we are calculating
1764
1765 /// Whether this loop should be optimized for size based on function attribute
1766 /// or profile information.
1768
1769 /// The highest VF possible for this loop, without using MaxBandwidth.
1771};
1772} // end namespace llvm
1773
1774namespace {
1775/// Helper struct to manage generating runtime checks for vectorization.
1776///
1777/// The runtime checks are created up-front in temporary blocks to allow better
1778/// estimating the cost and un-linked from the existing IR. After deciding to
1779/// vectorize, the checks are moved back. If deciding not to vectorize, the
1780/// temporary blocks are completely removed.
1781class GeneratedRTChecks {
1782 /// Basic block which contains the generated SCEV checks, if any.
1783 BasicBlock *SCEVCheckBlock = nullptr;
1784
1785 /// The value representing the result of the generated SCEV checks. If it is
1786 /// nullptr no SCEV checks have been generated.
1787 Value *SCEVCheckCond = nullptr;
1788
1789 /// Basic block which contains the generated memory runtime checks, if any.
1790 BasicBlock *MemCheckBlock = nullptr;
1791
1792 /// The value representing the result of the generated memory runtime checks.
1793 /// If it is nullptr no memory runtime checks have been generated.
1794 Value *MemRuntimeCheckCond = nullptr;
1795
1796 DominatorTree *DT;
1797 LoopInfo *LI;
1799
1800 SCEVExpander SCEVExp;
1801 SCEVExpander MemCheckExp;
1802
1803 bool CostTooHigh = false;
1804
1805 Loop *OuterLoop = nullptr;
1806
1808
1809 /// The kind of cost that we are calculating
1811
1812public:
1813 GeneratedRTChecks(PredicatedScalarEvolution &PSE, DominatorTree *DT,
1816 : DT(DT), LI(LI), TTI(TTI),
1817 SCEVExp(*PSE.getSE(), "scev.check", /*PreserveLCSSA=*/false),
1818 MemCheckExp(*PSE.getSE(), "scev.check", /*PreserveLCSSA=*/false),
1819 PSE(PSE), CostKind(CostKind) {}
1820
1821 /// Generate runtime checks in SCEVCheckBlock and MemCheckBlock, so we can
1822 /// accurately estimate the cost of the runtime checks. The blocks are
1823 /// un-linked from the IR and are added back during vector code generation. If
1824 /// there is no vector code generation, the check blocks are removed
1825 /// completely.
1826 void create(Loop *L, const LoopAccessInfo &LAI,
1827 const SCEVPredicate &UnionPred, ElementCount VF, unsigned IC) {
1828
1829 // Hard cutoff to limit compile-time increase in case a very large number of
1830 // runtime checks needs to be generated.
1831 // TODO: Skip cutoff if the loop is guaranteed to execute, e.g. due to
1832 // profile info.
1833 CostTooHigh =
1835 if (CostTooHigh)
1836 return;
1837
1838 BasicBlock *LoopHeader = L->getHeader();
1839 BasicBlock *Preheader = L->getLoopPreheader();
1840
1841 // Use SplitBlock to create blocks for SCEV & memory runtime checks to
1842 // ensure the blocks are properly added to LoopInfo & DominatorTree. Those
1843 // may be used by SCEVExpander. The blocks will be un-linked from their
1844 // predecessors and removed from LI & DT at the end of the function.
1845 if (!UnionPred.isAlwaysTrue()) {
1846 SCEVCheckBlock = SplitBlock(Preheader, Preheader->getTerminator(), DT, LI,
1847 nullptr, "vector.scevcheck");
1848
1849 SCEVCheckCond = SCEVExp.expandCodeForPredicate(
1850 &UnionPred, SCEVCheckBlock->getTerminator());
1851 if (isa<Constant>(SCEVCheckCond)) {
1852 // Clean up directly after expanding the predicate to a constant, to
1853 // avoid further expansions re-using anything left over from SCEVExp.
1854 SCEVExpanderCleaner SCEVCleaner(SCEVExp);
1855 SCEVCleaner.cleanup();
1856 }
1857 }
1858
1859 const auto &RtPtrChecking = *LAI.getRuntimePointerChecking();
1860 if (RtPtrChecking.Need) {
1861 auto *Pred = SCEVCheckBlock ? SCEVCheckBlock : Preheader;
1862 MemCheckBlock = SplitBlock(Pred, Pred->getTerminator(), DT, LI, nullptr,
1863 "vector.memcheck");
1864
1865 auto DiffChecks = RtPtrChecking.getDiffChecks();
1866 if (DiffChecks) {
1867 Value *RuntimeVF = nullptr;
1868 MemRuntimeCheckCond = addDiffRuntimeChecks(
1869 MemCheckBlock->getTerminator(), *DiffChecks, MemCheckExp,
1870 [VF, &RuntimeVF](IRBuilderBase &B, unsigned Bits) {
1871 if (!RuntimeVF)
1872 RuntimeVF = getRuntimeVF(B, B.getIntNTy(Bits), VF);
1873 return RuntimeVF;
1874 },
1875 IC);
1876 } else {
1877 MemRuntimeCheckCond = addRuntimeChecks(
1878 MemCheckBlock->getTerminator(), L, RtPtrChecking.getChecks(),
1880 }
1881 assert(MemRuntimeCheckCond &&
1882 "no RT checks generated although RtPtrChecking "
1883 "claimed checks are required");
1884 }
1885
1886 SCEVExp.eraseDeadInstructions(SCEVCheckCond);
1887
1888 if (!MemCheckBlock && !SCEVCheckBlock)
1889 return;
1890
1891 // Unhook the temporary block with the checks, update various places
1892 // accordingly.
1893 if (SCEVCheckBlock)
1894 SCEVCheckBlock->replaceAllUsesWith(Preheader);
1895 if (MemCheckBlock)
1896 MemCheckBlock->replaceAllUsesWith(Preheader);
1897
1898 if (SCEVCheckBlock) {
1899 SCEVCheckBlock->getTerminator()->moveBefore(
1900 Preheader->getTerminator()->getIterator());
1901 auto *UI = new UnreachableInst(Preheader->getContext(), SCEVCheckBlock);
1902 UI->setDebugLoc(DebugLoc::getTemporary());
1903 Preheader->getTerminator()->eraseFromParent();
1904 }
1905 if (MemCheckBlock) {
1906 MemCheckBlock->getTerminator()->moveBefore(
1907 Preheader->getTerminator()->getIterator());
1908 auto *UI = new UnreachableInst(Preheader->getContext(), MemCheckBlock);
1909 UI->setDebugLoc(DebugLoc::getTemporary());
1910 Preheader->getTerminator()->eraseFromParent();
1911 }
1912
1913 DT->changeImmediateDominator(LoopHeader, Preheader);
1914 if (MemCheckBlock) {
1915 DT->eraseNode(MemCheckBlock);
1916 LI->removeBlock(MemCheckBlock);
1917 }
1918 if (SCEVCheckBlock) {
1919 DT->eraseNode(SCEVCheckBlock);
1920 LI->removeBlock(SCEVCheckBlock);
1921 }
1922
1923 // Outer loop is used as part of the later cost calculations.
1924 OuterLoop = L->getParentLoop();
1925 }
1926
1928 if (SCEVCheckBlock || MemCheckBlock)
1929 LLVM_DEBUG(dbgs() << "Calculating cost of runtime checks:\n");
1930
1931 if (CostTooHigh) {
1933 Cost.setInvalid();
1934 LLVM_DEBUG(dbgs() << " number of checks exceeded threshold\n");
1935 return Cost;
1936 }
1937
1938 InstructionCost RTCheckCost = 0;
1939 if (SCEVCheckBlock)
1940 for (Instruction &I : *SCEVCheckBlock) {
1941 if (SCEVCheckBlock->getTerminator() == &I)
1942 continue;
1944 LLVM_DEBUG(dbgs() << " " << C << " for " << I << "\n");
1945 RTCheckCost += C;
1946 }
1947 if (MemCheckBlock) {
1948 InstructionCost MemCheckCost = 0;
1949 for (Instruction &I : *MemCheckBlock) {
1950 if (MemCheckBlock->getTerminator() == &I)
1951 continue;
1953 LLVM_DEBUG(dbgs() << " " << C << " for " << I << "\n");
1954 MemCheckCost += C;
1955 }
1956
1957 // If the runtime memory checks are being created inside an outer loop
1958 // we should find out if these checks are outer loop invariant. If so,
1959 // the checks will likely be hoisted out and so the effective cost will
1960 // reduce according to the outer loop trip count.
1961 if (OuterLoop) {
1962 ScalarEvolution *SE = MemCheckExp.getSE();
1963 // TODO: If profitable, we could refine this further by analysing every
1964 // individual memory check, since there could be a mixture of loop
1965 // variant and invariant checks that mean the final condition is
1966 // variant.
1967 const SCEV *Cond = SE->getSCEV(MemRuntimeCheckCond);
1968 if (SE->isLoopInvariant(Cond, OuterLoop)) {
1969 // It seems reasonable to assume that we can reduce the effective
1970 // cost of the checks even when we know nothing about the trip
1971 // count. Assume that the outer loop executes at least twice.
1972 unsigned BestTripCount = 2;
1973
1974 // Get the best known TC estimate.
1975 if (auto EstimatedTC = getSmallBestKnownTC(
1976 PSE, OuterLoop, /* CanUseConstantMax = */ false))
1977 if (EstimatedTC->isFixed())
1978 BestTripCount = EstimatedTC->getFixedValue();
1979
1980 InstructionCost NewMemCheckCost = MemCheckCost / BestTripCount;
1981
1982 // Let's ensure the cost is always at least 1.
1983 NewMemCheckCost = std::max(NewMemCheckCost.getValue(),
1984 (InstructionCost::CostType)1);
1985
1986 if (BestTripCount > 1)
1988 << "We expect runtime memory checks to be hoisted "
1989 << "out of the outer loop. Cost reduced from "
1990 << MemCheckCost << " to " << NewMemCheckCost << '\n');
1991
1992 MemCheckCost = NewMemCheckCost;
1993 }
1994 }
1995
1996 RTCheckCost += MemCheckCost;
1997 }
1998
1999 if (SCEVCheckBlock || MemCheckBlock)
2000 LLVM_DEBUG(dbgs() << "Total cost of runtime checks: " << RTCheckCost
2001 << "\n");
2002
2003 return RTCheckCost;
2004 }
2005
2006 /// Remove the created SCEV & memory runtime check blocks & instructions, if
2007 /// unused.
2008 ~GeneratedRTChecks() {
2009 SCEVExpanderCleaner SCEVCleaner(SCEVExp);
2010 SCEVExpanderCleaner MemCheckCleaner(MemCheckExp);
2011 bool SCEVChecksUsed = !SCEVCheckBlock || !pred_empty(SCEVCheckBlock);
2012 bool MemChecksUsed = !MemCheckBlock || !pred_empty(MemCheckBlock);
2013 if (SCEVChecksUsed)
2014 SCEVCleaner.markResultUsed();
2015
2016 if (MemChecksUsed) {
2017 MemCheckCleaner.markResultUsed();
2018 } else {
2019 auto &SE = *MemCheckExp.getSE();
2020 // Memory runtime check generation creates compares that use expanded
2021 // values. Remove them before running the SCEVExpanderCleaners.
2022 for (auto &I : make_early_inc_range(reverse(*MemCheckBlock))) {
2023 if (MemCheckExp.isInsertedInstruction(&I))
2024 continue;
2025 SE.forgetValue(&I);
2026 I.eraseFromParent();
2027 }
2028 }
2029 MemCheckCleaner.cleanup();
2030 SCEVCleaner.cleanup();
2031
2032 if (!SCEVChecksUsed)
2033 SCEVCheckBlock->eraseFromParent();
2034 if (!MemChecksUsed)
2035 MemCheckBlock->eraseFromParent();
2036 }
2037
2038 /// Retrieves the SCEVCheckCond and SCEVCheckBlock that were generated as IR
2039 /// outside VPlan.
2040 std::pair<Value *, BasicBlock *> getSCEVChecks() const {
2041 using namespace llvm::PatternMatch;
2042 if (!SCEVCheckCond || match(SCEVCheckCond, m_ZeroInt()))
2043 return {nullptr, nullptr};
2044
2045 return {SCEVCheckCond, SCEVCheckBlock};
2046 }
2047
2048 /// Retrieves the MemCheckCond and MemCheckBlock that were generated as IR
2049 /// outside VPlan.
2050 std::pair<Value *, BasicBlock *> getMemRuntimeChecks() const {
2051 using namespace llvm::PatternMatch;
2052 if (MemRuntimeCheckCond && match(MemRuntimeCheckCond, m_ZeroInt()))
2053 return {nullptr, nullptr};
2054 return {MemRuntimeCheckCond, MemCheckBlock};
2055 }
2056
2057 /// Return true if any runtime checks have been added
2058 bool hasChecks() const {
2059 return getSCEVChecks().first || getMemRuntimeChecks().first;
2060 }
2061};
2062} // namespace
2063
2069
2074
2075// Return true if \p OuterLp is an outer loop annotated with hints for explicit
2076// vectorization. The loop needs to be annotated with #pragma omp simd
2077// simdlen(#) or #pragma clang vectorize(enable) vectorize_width(#). If the
2078// vector length information is not provided, vectorization is not considered
2079// explicit. Interleave hints are not allowed either. These limitations will be
2080// relaxed in the future.
2081// Please, note that we are currently forced to abuse the pragma 'clang
2082// vectorize' semantics. This pragma provides *auto-vectorization hints*
2083// (i.e., LV must check that vectorization is legal) whereas pragma 'omp simd'
2084// provides *explicit vectorization hints* (LV can bypass legal checks and
2085// assume that vectorization is legal). However, both hints are implemented
2086// using the same metadata (llvm.loop.vectorize, processed by
2087// LoopVectorizeHints). This will be fixed in the future when the native IR
2088// representation for pragma 'omp simd' is introduced.
2089static bool isExplicitVecOuterLoop(Loop *OuterLp,
2091 assert(!OuterLp->isInnermost() && "This is not an outer loop");
2092 LoopVectorizeHints Hints(OuterLp, true /*DisableInterleaving*/, *ORE);
2093
2094 // Only outer loops with an explicit vectorization hint are supported.
2095 // Unannotated outer loops are ignored.
2097 return false;
2098
2099 Function *Fn = OuterLp->getHeader()->getParent();
2100 if (!Hints.allowVectorization(Fn, OuterLp,
2101 true /*VectorizeOnlyWhenForced*/)) {
2102 LLVM_DEBUG(dbgs() << "LV: Loop hints prevent outer loop vectorization.\n");
2103 return false;
2104 }
2105
2106 if (Hints.getInterleave() > 1) {
2107 // TODO: Interleave support is future work.
2108 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Interleave is not supported for "
2109 "outer loops.\n");
2110 Hints.emitRemarkWithHints();
2111 return false;
2112 }
2113
2114 return true;
2115}
2116
2120 // Collect inner loops and outer loops without irreducible control flow. For
2121 // now, only collect outer loops that have explicit vectorization hints. If we
2122 // are stress testing the VPlan H-CFG construction, we collect the outermost
2123 // loop of every loop nest.
2124 if (L.isInnermost() || VPlanBuildStressTest ||
2126 LoopBlocksRPO RPOT(&L);
2127 RPOT.perform(LI);
2129 V.push_back(&L);
2130 // TODO: Collect inner loops inside marked outer loops in case
2131 // vectorization fails for the outer loop. Do not invoke
2132 // 'containsIrreducibleCFG' again for inner loops when the outer loop is
2133 // already known to be reducible. We can use an inherited attribute for
2134 // that.
2135 return;
2136 }
2137 }
2138 for (Loop *InnerL : L)
2139 collectSupportedLoops(*InnerL, LI, ORE, V);
2140}
2141
2142//===----------------------------------------------------------------------===//
2143// Implementation of LoopVectorizationLegality, InnerLoopVectorizer and
2144// LoopVectorizationCostModel and LoopVectorizationPlanner.
2145//===----------------------------------------------------------------------===//
2146
2147/// Compute the transformed value of Index at offset StartValue using step
2148/// StepValue.
2149/// For integer induction, returns StartValue + Index * StepValue.
2150/// For pointer induction, returns StartValue[Index * StepValue].
2151/// FIXME: The newly created binary instructions should contain nsw/nuw
2152/// flags, which can be found from the original scalar operations.
2153static Value *
2155 Value *Step,
2157 const BinaryOperator *InductionBinOp) {
2158 using namespace llvm::PatternMatch;
2159 Type *StepTy = Step->getType();
2160 Value *CastedIndex = StepTy->isIntegerTy()
2161 ? B.CreateSExtOrTrunc(Index, StepTy)
2162 : B.CreateCast(Instruction::SIToFP, Index, StepTy);
2163 if (CastedIndex != Index) {
2164 CastedIndex->setName(CastedIndex->getName() + ".cast");
2165 Index = CastedIndex;
2166 }
2167
2168 // Note: the IR at this point is broken. We cannot use SE to create any new
2169 // SCEV and then expand it, hoping that SCEV's simplification will give us
2170 // a more optimal code. Unfortunately, attempt of doing so on invalid IR may
2171 // lead to various SCEV crashes. So all we can do is to use builder and rely
2172 // on InstCombine for future simplifications. Here we handle some trivial
2173 // cases only.
2174 auto CreateAdd = [&B](Value *X, Value *Y) {
2175 assert(X->getType() == Y->getType() && "Types don't match!");
2176 if (match(X, m_ZeroInt()))
2177 return Y;
2178 if (match(Y, m_ZeroInt()))
2179 return X;
2180 return B.CreateAdd(X, Y);
2181 };
2182
2183 // We allow X to be a vector type, in which case Y will potentially be
2184 // splatted into a vector with the same element count.
2185 auto CreateMul = [&B](Value *X, Value *Y) {
2186 assert(X->getType()->getScalarType() == Y->getType() &&
2187 "Types don't match!");
2188 if (match(X, m_One()))
2189 return Y;
2190 if (match(Y, m_One()))
2191 return X;
2192 VectorType *XVTy = dyn_cast<VectorType>(X->getType());
2193 if (XVTy && !isa<VectorType>(Y->getType()))
2194 Y = B.CreateVectorSplat(XVTy->getElementCount(), Y);
2195 return B.CreateMul(X, Y);
2196 };
2197
2198 switch (InductionKind) {
2200 assert(!isa<VectorType>(Index->getType()) &&
2201 "Vector indices not supported for integer inductions yet");
2202 assert(Index->getType() == StartValue->getType() &&
2203 "Index type does not match StartValue type");
2204 if (isa<ConstantInt>(Step) && cast<ConstantInt>(Step)->isMinusOne())
2205 return B.CreateSub(StartValue, Index);
2206 auto *Offset = CreateMul(Index, Step);
2207 return CreateAdd(StartValue, Offset);
2208 }
2210 return B.CreatePtrAdd(StartValue, CreateMul(Index, Step));
2212 assert(!isa<VectorType>(Index->getType()) &&
2213 "Vector indices not supported for FP inductions yet");
2214 assert(Step->getType()->isFloatingPointTy() && "Expected FP Step value");
2215 assert(InductionBinOp &&
2216 (InductionBinOp->getOpcode() == Instruction::FAdd ||
2217 InductionBinOp->getOpcode() == Instruction::FSub) &&
2218 "Original bin op should be defined for FP induction");
2219
2220 Value *MulExp = B.CreateFMul(Step, Index);
2221 return B.CreateBinOp(InductionBinOp->getOpcode(), StartValue, MulExp,
2222 "induction");
2223 }
2225 return nullptr;
2226 }
2227 llvm_unreachable("invalid enum");
2228}
2229
2230static std::optional<unsigned> getMaxVScale(const Function &F,
2231 const TargetTransformInfo &TTI) {
2232 if (std::optional<unsigned> MaxVScale = TTI.getMaxVScale())
2233 return MaxVScale;
2234
2235 if (F.hasFnAttribute(Attribute::VScaleRange))
2236 return F.getFnAttribute(Attribute::VScaleRange).getVScaleRangeMax();
2237
2238 return std::nullopt;
2239}
2240
2241/// For the given VF and UF and maximum trip count computed for the loop, return
2242/// whether the induction variable might overflow in the vectorized loop. If not,
2243/// then we know a runtime overflow check always evaluates to false and can be
2244/// removed.
2246 const LoopVectorizationCostModel *Cost,
2247 ElementCount VF, std::optional<unsigned> UF = std::nullopt) {
2248 // Always be conservative if we don't know the exact unroll factor.
2249 unsigned MaxUF = UF ? *UF : Cost->TTI.getMaxInterleaveFactor(VF);
2250
2251 IntegerType *IdxTy = Cost->Legal->getWidestInductionType();
2252 APInt MaxUIntTripCount = IdxTy->getMask();
2253
2254 // We know the runtime overflow check is known false iff the (max) trip-count
2255 // is known and (max) trip-count + (VF * UF) does not overflow in the type of
2256 // the vector loop induction variable.
2257 if (unsigned TC = Cost->PSE.getSmallConstantMaxTripCount()) {
2258 uint64_t MaxVF = VF.getKnownMinValue();
2259 if (VF.isScalable()) {
2260 std::optional<unsigned> MaxVScale =
2261 getMaxVScale(*Cost->TheFunction, Cost->TTI);
2262 if (!MaxVScale)
2263 return false;
2264 MaxVF *= *MaxVScale;
2265 }
2266
2267 return (MaxUIntTripCount - TC).ugt(MaxVF * MaxUF);
2268 }
2269
2270 return false;
2271}
2272
2273// Return whether we allow using masked interleave-groups (for dealing with
2274// strided loads/stores that reside in predicated blocks, or for dealing
2275// with gaps).
2277 // If an override option has been passed in for interleaved accesses, use it.
2278 if (EnableMaskedInterleavedMemAccesses.getNumOccurrences() > 0)
2280
2281 return TTI.enableMaskedInterleavedAccessVectorization();
2282}
2283
2285 BasicBlock *CheckIRBB) {
2286 // Note: The block with the minimum trip-count check is already connected
2287 // during earlier VPlan construction.
2288 VPBlockBase *ScalarPH = Plan.getScalarPreheader();
2289 VPBlockBase *PreVectorPH = VectorPHVPBB->getSinglePredecessor();
2290 assert(PreVectorPH->getNumSuccessors() == 2 && "Expected 2 successors");
2291 assert(PreVectorPH->getSuccessors()[0] == ScalarPH && "Unexpected successor");
2292 VPIRBasicBlock *CheckVPIRBB = Plan.createVPIRBasicBlock(CheckIRBB);
2293 VPBlockUtils::insertOnEdge(PreVectorPH, VectorPHVPBB, CheckVPIRBB);
2294 PreVectorPH = CheckVPIRBB;
2295 VPBlockUtils::connectBlocks(PreVectorPH, ScalarPH);
2296 PreVectorPH->swapSuccessors();
2297
2298 // We just connected a new block to the scalar preheader. Update all
2299 // VPPhis by adding an incoming value for it, replicating the last value.
2300 unsigned NumPredecessors = ScalarPH->getNumPredecessors();
2301 for (VPRecipeBase &R : cast<VPBasicBlock>(ScalarPH)->phis()) {
2302 assert(isa<VPPhi>(&R) && "Phi expected to be VPPhi");
2303 assert(cast<VPPhi>(&R)->getNumIncoming() == NumPredecessors - 1 &&
2304 "must have incoming values for all operands");
2305 R.addOperand(R.getOperand(NumPredecessors - 2));
2306 }
2307}
2308
2310 BasicBlock *VectorPH, ElementCount VF, unsigned UF) const {
2311 // Generate code to check if the loop's trip count is less than VF * UF, or
2312 // equal to it in case a scalar epilogue is required; this implies that the
2313 // vector trip count is zero. This check also covers the case where adding one
2314 // to the backedge-taken count overflowed leading to an incorrect trip count
2315 // of zero. In this case we will also jump to the scalar loop.
2316 auto P = Cost->requiresScalarEpilogue(VF.isVector()) ? ICmpInst::ICMP_ULE
2318
2319 // Reuse existing vector loop preheader for TC checks.
2320 // Note that new preheader block is generated for vector loop.
2321 BasicBlock *const TCCheckBlock = VectorPH;
2323 TCCheckBlock->getContext(),
2324 InstSimplifyFolder(TCCheckBlock->getDataLayout()));
2325 Builder.SetInsertPoint(TCCheckBlock->getTerminator());
2326
2327 // If tail is to be folded, vector loop takes care of all iterations.
2329 Type *CountTy = Count->getType();
2330 Value *CheckMinIters = Builder.getFalse();
2331 auto CreateStep = [&]() -> Value * {
2332 // Create step with max(MinProTripCount, UF * VF).
2333 if (UF * VF.getKnownMinValue() >= MinProfitableTripCount.getKnownMinValue())
2334 return createStepForVF(Builder, CountTy, VF, UF);
2335
2336 Value *MinProfTC =
2337 Builder.CreateElementCount(CountTy, MinProfitableTripCount);
2338 if (!VF.isScalable())
2339 return MinProfTC;
2340 return Builder.CreateBinaryIntrinsic(
2341 Intrinsic::umax, MinProfTC, createStepForVF(Builder, CountTy, VF, UF));
2342 };
2343
2344 TailFoldingStyle Style = Cost->getTailFoldingStyle();
2345 if (Style == TailFoldingStyle::None) {
2346 Value *Step = CreateStep();
2347 ScalarEvolution &SE = *PSE.getSE();
2348 // TODO: Emit unconditional branch to vector preheader instead of
2349 // conditional branch with known condition.
2350 const SCEV *TripCountSCEV = SE.applyLoopGuards(SE.getSCEV(Count), OrigLoop);
2351 // Check if the trip count is < the step.
2352 if (SE.isKnownPredicate(P, TripCountSCEV, SE.getSCEV(Step))) {
2353 // TODO: Ensure step is at most the trip count when determining max VF and
2354 // UF, w/o tail folding.
2355 CheckMinIters = Builder.getTrue();
2357 TripCountSCEV, SE.getSCEV(Step))) {
2358 // Generate the minimum iteration check only if we cannot prove the
2359 // check is known to be true, or known to be false.
2360 CheckMinIters = Builder.CreateICmp(P, Count, Step, "min.iters.check");
2361 } // else step known to be < trip count, use CheckMinIters preset to false.
2362 } else if (VF.isScalable() && !TTI->isVScaleKnownToBeAPowerOfTwo() &&
2365 // vscale is not necessarily a power-of-2, which means we cannot guarantee
2366 // an overflow to zero when updating induction variables and so an
2367 // additional overflow check is required before entering the vector loop.
2368
2369 // Get the maximum unsigned value for the type.
2370 Value *MaxUIntTripCount =
2371 ConstantInt::get(CountTy, cast<IntegerType>(CountTy)->getMask());
2372 Value *LHS = Builder.CreateSub(MaxUIntTripCount, Count);
2373
2374 // Don't execute the vector loop if (UMax - n) < (VF * UF).
2375 CheckMinIters = Builder.CreateICmp(ICmpInst::ICMP_ULT, LHS, CreateStep());
2376 }
2377 return CheckMinIters;
2378}
2379
2380/// Replace \p VPBB with a VPIRBasicBlock wrapping \p IRBB. All recipes from \p
2381/// VPBB are moved to the end of the newly created VPIRBasicBlock. All
2382/// predecessors and successors of VPBB, if any, are rewired to the new
2383/// VPIRBasicBlock. If \p VPBB may be unreachable, \p Plan must be passed.
2385 BasicBlock *IRBB,
2386 VPlan *Plan = nullptr) {
2387 if (!Plan)
2388 Plan = VPBB->getPlan();
2389 VPIRBasicBlock *IRVPBB = Plan->createVPIRBasicBlock(IRBB);
2390 auto IP = IRVPBB->begin();
2391 for (auto &R : make_early_inc_range(VPBB->phis()))
2392 R.moveBefore(*IRVPBB, IP);
2393
2394 for (auto &R :
2396 R.moveBefore(*IRVPBB, IRVPBB->end());
2397
2398 VPBlockUtils::reassociateBlocks(VPBB, IRVPBB);
2399 // VPBB is now dead and will be cleaned up when the plan gets destroyed.
2400 return IRVPBB;
2401}
2402
2404 BasicBlock *VectorPH = OrigLoop->getLoopPreheader();
2405 assert(VectorPH && "Invalid loop structure");
2406 assert((OrigLoop->getUniqueLatchExitBlock() ||
2407 Cost->requiresScalarEpilogue(VF.isVector())) &&
2408 "loops not exiting via the latch without required epilogue?");
2409
2410 // NOTE: The Plan's scalar preheader VPBB isn't replaced with a VPIRBasicBlock
2411 // wrapping the newly created scalar preheader here at the moment, because the
2412 // Plan's scalar preheader may be unreachable at this point. Instead it is
2413 // replaced in executePlan.
2414 return SplitBlock(VectorPH, VectorPH->getTerminator(), DT, LI, nullptr,
2415 Twine(Prefix) + "scalar.ph");
2416}
2417
2418/// Return the expanded step for \p ID using \p ExpandedSCEVs to look up SCEV
2419/// expansion results.
2421 const SCEV2ValueTy &ExpandedSCEVs) {
2422 const SCEV *Step = ID.getStep();
2423 if (auto *C = dyn_cast<SCEVConstant>(Step))
2424 return C->getValue();
2425 if (auto *U = dyn_cast<SCEVUnknown>(Step))
2426 return U->getValue();
2427 Value *V = ExpandedSCEVs.lookup(Step);
2428 assert(V && "SCEV must be expanded at this point");
2429 return V;
2430}
2431
2432/// Knowing that loop \p L executes a single vector iteration, add instructions
2433/// that will get simplified and thus should not have any cost to \p
2434/// InstsToIgnore.
2437 SmallPtrSetImpl<Instruction *> &InstsToIgnore) {
2438 auto *Cmp = L->getLatchCmpInst();
2439 if (Cmp)
2440 InstsToIgnore.insert(Cmp);
2441 for (const auto &KV : IL) {
2442 // Extract the key by hand so that it can be used in the lambda below. Note
2443 // that captured structured bindings are a C++20 extension.
2444 const PHINode *IV = KV.first;
2445
2446 // Get next iteration value of the induction variable.
2447 Instruction *IVInst =
2448 cast<Instruction>(IV->getIncomingValueForBlock(L->getLoopLatch()));
2449 if (all_of(IVInst->users(),
2450 [&](const User *U) { return U == IV || U == Cmp; }))
2451 InstsToIgnore.insert(IVInst);
2452 }
2453}
2454
2456 // Create a new IR basic block for the scalar preheader.
2457 BasicBlock *ScalarPH = createScalarPreheader("");
2458 return ScalarPH->getSinglePredecessor();
2459}
2460
2461namespace {
2462
2463struct CSEDenseMapInfo {
2464 static bool canHandle(const Instruction *I) {
2467 }
2468
2469 static inline Instruction *getEmptyKey() {
2471 }
2472
2473 static inline Instruction *getTombstoneKey() {
2474 return DenseMapInfo<Instruction *>::getTombstoneKey();
2475 }
2476
2477 static unsigned getHashValue(const Instruction *I) {
2478 assert(canHandle(I) && "Unknown instruction!");
2479 return hash_combine(I->getOpcode(),
2480 hash_combine_range(I->operand_values()));
2481 }
2482
2483 static bool isEqual(const Instruction *LHS, const Instruction *RHS) {
2484 if (LHS == getEmptyKey() || RHS == getEmptyKey() ||
2485 LHS == getTombstoneKey() || RHS == getTombstoneKey())
2486 return LHS == RHS;
2487 return LHS->isIdenticalTo(RHS);
2488 }
2489};
2490
2491} // end anonymous namespace
2492
2493/// FIXME: This legacy common-subexpression-elimination routine is scheduled for
2494/// removal, in favor of the VPlan-based one.
2495static void legacyCSE(BasicBlock *BB) {
2496 // Perform simple cse.
2498 for (Instruction &In : llvm::make_early_inc_range(*BB)) {
2499 if (!CSEDenseMapInfo::canHandle(&In))
2500 continue;
2501
2502 // Check if we can replace this instruction with any of the
2503 // visited instructions.
2504 if (Instruction *V = CSEMap.lookup(&In)) {
2505 In.replaceAllUsesWith(V);
2506 In.eraseFromParent();
2507 continue;
2508 }
2509
2510 CSEMap[&In] = &In;
2511 }
2512}
2513
2514/// This function attempts to return a value that represents the ElementCount
2515/// at runtime. For fixed-width VFs we know this precisely at compile
2516/// time, but for scalable VFs we calculate it based on an estimate of the
2517/// vscale value.
2519 std::optional<unsigned> VScale) {
2520 unsigned EstimatedVF = VF.getKnownMinValue();
2521 if (VF.isScalable())
2522 if (VScale)
2523 EstimatedVF *= *VScale;
2524 assert(EstimatedVF >= 1 && "Estimated VF shouldn't be less than 1");
2525 return EstimatedVF;
2526}
2527
2530 ElementCount VF) const {
2531 // We only need to calculate a cost if the VF is scalar; for actual vectors
2532 // we should already have a pre-calculated cost at each VF.
2533 if (!VF.isScalar())
2534 return getCallWideningDecision(CI, VF).Cost;
2535
2536 Type *RetTy = CI->getType();
2538 if (auto RedCost = getReductionPatternCost(CI, VF, RetTy))
2539 return *RedCost;
2540
2542 for (auto &ArgOp : CI->args())
2543 Tys.push_back(ArgOp->getType());
2544
2545 InstructionCost ScalarCallCost =
2546 TTI.getCallInstrCost(CI->getCalledFunction(), RetTy, Tys, CostKind);
2547
2548 // If this is an intrinsic we may have a lower cost for it.
2551 return std::min(ScalarCallCost, IntrinsicCost);
2552 }
2553 return ScalarCallCost;
2554}
2555
2557 if (VF.isScalar() || !canVectorizeTy(Ty))
2558 return Ty;
2559 return toVectorizedTy(Ty, VF);
2560}
2561
2564 ElementCount VF) const {
2566 assert(ID && "Expected intrinsic call!");
2567 Type *RetTy = maybeVectorizeType(CI->getType(), VF);
2568 FastMathFlags FMF;
2569 if (auto *FPMO = dyn_cast<FPMathOperator>(CI))
2570 FMF = FPMO->getFastMathFlags();
2571
2574 SmallVector<Type *> ParamTys;
2575 std::transform(FTy->param_begin(), FTy->param_end(),
2576 std::back_inserter(ParamTys),
2577 [&](Type *Ty) { return maybeVectorizeType(Ty, VF); });
2578
2579 IntrinsicCostAttributes CostAttrs(ID, RetTy, Arguments, ParamTys, FMF,
2582 return TTI.getIntrinsicInstrCost(CostAttrs, CostKind);
2583}
2584
2586 // Fix widened non-induction PHIs by setting up the PHI operands.
2587 fixNonInductionPHIs(State);
2588
2589 // Don't apply optimizations below when no (vector) loop remains, as they all
2590 // require one at the moment.
2591 VPBasicBlock *HeaderVPBB =
2592 vputils::getFirstLoopHeader(*State.Plan, State.VPDT);
2593 if (!HeaderVPBB)
2594 return;
2595
2596 BasicBlock *HeaderBB = State.CFG.VPBB2IRBB[HeaderVPBB];
2597
2598 // Remove redundant induction instructions.
2599 legacyCSE(HeaderBB);
2600}
2601
2603 auto Iter = vp_depth_first_shallow(Plan.getEntry());
2605 for (VPRecipeBase &P : VPBB->phis()) {
2607 if (!VPPhi)
2608 continue;
2609 PHINode *NewPhi = cast<PHINode>(State.get(VPPhi));
2610 // Make sure the builder has a valid insert point.
2611 Builder.SetInsertPoint(NewPhi);
2612 for (const auto &[Inc, VPBB] : VPPhi->incoming_values_and_blocks())
2613 NewPhi->addIncoming(State.get(Inc), State.CFG.VPBB2IRBB[VPBB]);
2614 }
2615 }
2616}
2617
2618void LoopVectorizationCostModel::collectLoopScalars(ElementCount VF) {
2619 // We should not collect Scalars more than once per VF. Right now, this
2620 // function is called from collectUniformsAndScalars(), which already does
2621 // this check. Collecting Scalars for VF=1 does not make any sense.
2622 assert(VF.isVector() && !Scalars.contains(VF) &&
2623 "This function should not be visited twice for the same VF");
2624
2625 // This avoids any chances of creating a REPLICATE recipe during planning
2626 // since that would result in generation of scalarized code during execution,
2627 // which is not supported for scalable vectors.
2628 if (VF.isScalable()) {
2629 Scalars[VF].insert_range(Uniforms[VF]);
2630 return;
2631 }
2632
2634
2635 // These sets are used to seed the analysis with pointers used by memory
2636 // accesses that will remain scalar.
2638 SmallPtrSet<Instruction *, 8> PossibleNonScalarPtrs;
2639 auto *Latch = TheLoop->getLoopLatch();
2640
2641 // A helper that returns true if the use of Ptr by MemAccess will be scalar.
2642 // The pointer operands of loads and stores will be scalar as long as the
2643 // memory access is not a gather or scatter operation. The value operand of a
2644 // store will remain scalar if the store is scalarized.
2645 auto IsScalarUse = [&](Instruction *MemAccess, Value *Ptr) {
2646 InstWidening WideningDecision = getWideningDecision(MemAccess, VF);
2647 assert(WideningDecision != CM_Unknown &&
2648 "Widening decision should be ready at this moment");
2649 if (auto *Store = dyn_cast<StoreInst>(MemAccess))
2650 if (Ptr == Store->getValueOperand())
2651 return WideningDecision == CM_Scalarize;
2652 assert(Ptr == getLoadStorePointerOperand(MemAccess) &&
2653 "Ptr is neither a value or pointer operand");
2654 return WideningDecision != CM_GatherScatter;
2655 };
2656
2657 // A helper that returns true if the given value is a getelementptr
2658 // instruction contained in the loop.
2659 auto IsLoopVaryingGEP = [&](Value *V) {
2660 return isa<GetElementPtrInst>(V) && !TheLoop->isLoopInvariant(V);
2661 };
2662
2663 // A helper that evaluates a memory access's use of a pointer. If the use will
2664 // be a scalar use and the pointer is only used by memory accesses, we place
2665 // the pointer in ScalarPtrs. Otherwise, the pointer is placed in
2666 // PossibleNonScalarPtrs.
2667 auto EvaluatePtrUse = [&](Instruction *MemAccess, Value *Ptr) {
2668 // We only care about bitcast and getelementptr instructions contained in
2669 // the loop.
2670 if (!IsLoopVaryingGEP(Ptr))
2671 return;
2672
2673 // If the pointer has already been identified as scalar (e.g., if it was
2674 // also identified as uniform), there's nothing to do.
2675 auto *I = cast<Instruction>(Ptr);
2676 if (Worklist.count(I))
2677 return;
2678
2679 // If the use of the pointer will be a scalar use, and all users of the
2680 // pointer are memory accesses, place the pointer in ScalarPtrs. Otherwise,
2681 // place the pointer in PossibleNonScalarPtrs.
2682 if (IsScalarUse(MemAccess, Ptr) &&
2684 ScalarPtrs.insert(I);
2685 else
2686 PossibleNonScalarPtrs.insert(I);
2687 };
2688
2689 // We seed the scalars analysis with three classes of instructions: (1)
2690 // instructions marked uniform-after-vectorization and (2) bitcast,
2691 // getelementptr and (pointer) phi instructions used by memory accesses
2692 // requiring a scalar use.
2693 //
2694 // (1) Add to the worklist all instructions that have been identified as
2695 // uniform-after-vectorization.
2696 Worklist.insert_range(Uniforms[VF]);
2697
2698 // (2) Add to the worklist all bitcast and getelementptr instructions used by
2699 // memory accesses requiring a scalar use. The pointer operands of loads and
2700 // stores will be scalar unless the operation is a gather or scatter.
2701 // The value operand of a store will remain scalar if the store is scalarized.
2702 for (auto *BB : TheLoop->blocks())
2703 for (auto &I : *BB) {
2704 if (auto *Load = dyn_cast<LoadInst>(&I)) {
2705 EvaluatePtrUse(Load, Load->getPointerOperand());
2706 } else if (auto *Store = dyn_cast<StoreInst>(&I)) {
2707 EvaluatePtrUse(Store, Store->getPointerOperand());
2708 EvaluatePtrUse(Store, Store->getValueOperand());
2709 }
2710 }
2711 for (auto *I : ScalarPtrs)
2712 if (!PossibleNonScalarPtrs.count(I)) {
2713 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *I << "\n");
2714 Worklist.insert(I);
2715 }
2716
2717 // Insert the forced scalars.
2718 // FIXME: Currently VPWidenPHIRecipe() often creates a dead vector
2719 // induction variable when the PHI user is scalarized.
2720 auto ForcedScalar = ForcedScalars.find(VF);
2721 if (ForcedScalar != ForcedScalars.end())
2722 for (auto *I : ForcedScalar->second) {
2723 LLVM_DEBUG(dbgs() << "LV: Found (forced) scalar instruction: " << *I << "\n");
2724 Worklist.insert(I);
2725 }
2726
2727 // Expand the worklist by looking through any bitcasts and getelementptr
2728 // instructions we've already identified as scalar. This is similar to the
2729 // expansion step in collectLoopUniforms(); however, here we're only
2730 // expanding to include additional bitcasts and getelementptr instructions.
2731 unsigned Idx = 0;
2732 while (Idx != Worklist.size()) {
2733 Instruction *Dst = Worklist[Idx++];
2734 if (!IsLoopVaryingGEP(Dst->getOperand(0)))
2735 continue;
2736 auto *Src = cast<Instruction>(Dst->getOperand(0));
2737 if (llvm::all_of(Src->users(), [&](User *U) -> bool {
2738 auto *J = cast<Instruction>(U);
2739 return !TheLoop->contains(J) || Worklist.count(J) ||
2740 ((isa<LoadInst>(J) || isa<StoreInst>(J)) &&
2741 IsScalarUse(J, Src));
2742 })) {
2743 Worklist.insert(Src);
2744 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Src << "\n");
2745 }
2746 }
2747
2748 // An induction variable will remain scalar if all users of the induction
2749 // variable and induction variable update remain scalar.
2750 for (const auto &Induction : Legal->getInductionVars()) {
2751 auto *Ind = Induction.first;
2752 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
2753
2754 // If tail-folding is applied, the primary induction variable will be used
2755 // to feed a vector compare.
2756 if (Ind == Legal->getPrimaryInduction() && foldTailByMasking())
2757 continue;
2758
2759 // Returns true if \p Indvar is a pointer induction that is used directly by
2760 // load/store instruction \p I.
2761 auto IsDirectLoadStoreFromPtrIndvar = [&](Instruction *Indvar,
2762 Instruction *I) {
2763 return Induction.second.getKind() ==
2766 Indvar == getLoadStorePointerOperand(I) && IsScalarUse(I, Indvar);
2767 };
2768
2769 // Determine if all users of the induction variable are scalar after
2770 // vectorization.
2771 bool ScalarInd = all_of(Ind->users(), [&](User *U) -> bool {
2772 auto *I = cast<Instruction>(U);
2773 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) ||
2774 IsDirectLoadStoreFromPtrIndvar(Ind, I);
2775 });
2776 if (!ScalarInd)
2777 continue;
2778
2779 // If the induction variable update is a fixed-order recurrence, neither the
2780 // induction variable or its update should be marked scalar after
2781 // vectorization.
2782 auto *IndUpdatePhi = dyn_cast<PHINode>(IndUpdate);
2783 if (IndUpdatePhi && Legal->isFixedOrderRecurrence(IndUpdatePhi))
2784 continue;
2785
2786 // Determine if all users of the induction variable update instruction are
2787 // scalar after vectorization.
2788 bool ScalarIndUpdate = all_of(IndUpdate->users(), [&](User *U) -> bool {
2789 auto *I = cast<Instruction>(U);
2790 return I == Ind || !TheLoop->contains(I) || Worklist.count(I) ||
2791 IsDirectLoadStoreFromPtrIndvar(IndUpdate, I);
2792 });
2793 if (!ScalarIndUpdate)
2794 continue;
2795
2796 // The induction variable and its update instruction will remain scalar.
2797 Worklist.insert(Ind);
2798 Worklist.insert(IndUpdate);
2799 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n");
2800 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate
2801 << "\n");
2802 }
2803
2804 Scalars[VF].insert_range(Worklist);
2805}
2806
2808 ElementCount VF) {
2809 if (!isPredicatedInst(I))
2810 return false;
2811
2812 // Do we have a non-scalar lowering for this predicated
2813 // instruction? No - it is scalar with predication.
2814 switch(I->getOpcode()) {
2815 default:
2816 return true;
2817 case Instruction::Call:
2818 if (VF.isScalar())
2819 return true;
2821 case Instruction::Load:
2822 case Instruction::Store: {
2823 auto *Ptr = getLoadStorePointerOperand(I);
2824 auto *Ty = getLoadStoreType(I);
2825 unsigned AS = getLoadStoreAddressSpace(I);
2826 Type *VTy = Ty;
2827 if (VF.isVector())
2828 VTy = VectorType::get(Ty, VF);
2829 const Align Alignment = getLoadStoreAlignment(I);
2830 return isa<LoadInst>(I) ? !(isLegalMaskedLoad(Ty, Ptr, Alignment, AS) ||
2831 TTI.isLegalMaskedGather(VTy, Alignment))
2832 : !(isLegalMaskedStore(Ty, Ptr, Alignment, AS) ||
2833 TTI.isLegalMaskedScatter(VTy, Alignment));
2834 }
2835 case Instruction::UDiv:
2836 case Instruction::SDiv:
2837 case Instruction::SRem:
2838 case Instruction::URem: {
2839 // We have the option to use the safe-divisor idiom to avoid predication.
2840 // The cost based decision here will always select safe-divisor for
2841 // scalable vectors as scalarization isn't legal.
2842 const auto [ScalarCost, SafeDivisorCost] = getDivRemSpeculationCost(I, VF);
2843 return isDivRemScalarWithPredication(ScalarCost, SafeDivisorCost);
2844 }
2845 }
2846}
2847
2848// TODO: Fold into LoopVectorizationLegality::isMaskRequired.
2850 // TODO: We can use the loop-preheader as context point here and get
2851 // context sensitive reasoning for isSafeToSpeculativelyExecute.
2853 (isa<LoadInst, StoreInst, CallInst>(I) && !Legal->isMaskRequired(I)) ||
2855 return false;
2856
2857 // If the instruction was executed conditionally in the original scalar loop,
2858 // predication is needed with a mask whose lanes are all possibly inactive.
2859 if (Legal->blockNeedsPredication(I->getParent()))
2860 return true;
2861
2862 // If we're not folding the tail by masking, predication is unnecessary.
2863 if (!foldTailByMasking())
2864 return false;
2865
2866 // All that remain are instructions with side-effects originally executed in
2867 // the loop unconditionally, but now execute under a tail-fold mask (only)
2868 // having at least one active lane (the first). If the side-effects of the
2869 // instruction are invariant, executing it w/o (the tail-folding) mask is safe
2870 // - it will cause the same side-effects as when masked.
2871 switch(I->getOpcode()) {
2872 default:
2874 "instruction should have been considered by earlier checks");
2875 case Instruction::Call:
2876 // Side-effects of a Call are assumed to be non-invariant, needing a
2877 // (fold-tail) mask.
2878 assert(Legal->isMaskRequired(I) &&
2879 "should have returned earlier for calls not needing a mask");
2880 return true;
2881 case Instruction::Load:
2882 // If the address is loop invariant no predication is needed.
2883 return !Legal->isInvariant(getLoadStorePointerOperand(I));
2884 case Instruction::Store: {
2885 // For stores, we need to prove both speculation safety (which follows from
2886 // the same argument as loads), but also must prove the value being stored
2887 // is correct. The easiest form of the later is to require that all values
2888 // stored are the same.
2889 return !(Legal->isInvariant(getLoadStorePointerOperand(I)) &&
2890 TheLoop->isLoopInvariant(cast<StoreInst>(I)->getValueOperand()));
2891 }
2892 case Instruction::UDiv:
2893 case Instruction::SDiv:
2894 case Instruction::SRem:
2895 case Instruction::URem:
2896 // If the divisor is loop-invariant no predication is needed.
2897 return !Legal->isInvariant(I->getOperand(1));
2898 }
2899}
2900
2904 return 1;
2905 // If the block wasn't originally predicated then return early to avoid
2906 // computing BlockFrequencyInfo unnecessarily.
2907 if (!Legal->blockNeedsPredication(BB))
2908 return 1;
2909
2910 uint64_t HeaderFreq =
2911 getBFI().getBlockFreq(TheLoop->getHeader()).getFrequency();
2912 uint64_t BBFreq = getBFI().getBlockFreq(BB).getFrequency();
2913 assert(HeaderFreq >= BBFreq &&
2914 "Header has smaller block freq than dominated BB?");
2915 return std::round((double)HeaderFreq / BBFreq);
2916}
2917
2918std::pair<InstructionCost, InstructionCost>
2920 ElementCount VF) {
2921 assert(I->getOpcode() == Instruction::UDiv ||
2922 I->getOpcode() == Instruction::SDiv ||
2923 I->getOpcode() == Instruction::SRem ||
2924 I->getOpcode() == Instruction::URem);
2926
2927 // Scalarization isn't legal for scalable vector types
2928 InstructionCost ScalarizationCost = InstructionCost::getInvalid();
2929 if (!VF.isScalable()) {
2930 // Get the scalarization cost and scale this amount by the probability of
2931 // executing the predicated block. If the instruction is not predicated,
2932 // we fall through to the next case.
2933 ScalarizationCost = 0;
2934
2935 // These instructions have a non-void type, so account for the phi nodes
2936 // that we will create. This cost is likely to be zero. The phi node
2937 // cost, if any, should be scaled by the block probability because it
2938 // models a copy at the end of each predicated block.
2939 ScalarizationCost +=
2940 VF.getFixedValue() * TTI.getCFInstrCost(Instruction::PHI, CostKind);
2941
2942 // The cost of the non-predicated instruction.
2943 ScalarizationCost +=
2944 VF.getFixedValue() *
2945 TTI.getArithmeticInstrCost(I->getOpcode(), I->getType(), CostKind);
2946
2947 // The cost of insertelement and extractelement instructions needed for
2948 // scalarization.
2949 ScalarizationCost += getScalarizationOverhead(I, VF);
2950
2951 // Scale the cost by the probability of executing the predicated blocks.
2952 // This assumes the predicated block for each vector lane is equally
2953 // likely.
2954 ScalarizationCost =
2955 ScalarizationCost / getPredBlockCostDivisor(CostKind, I->getParent());
2956 }
2957
2958 InstructionCost SafeDivisorCost = 0;
2959 auto *VecTy = toVectorTy(I->getType(), VF);
2960 // The cost of the select guard to ensure all lanes are well defined
2961 // after we speculate above any internal control flow.
2962 SafeDivisorCost +=
2963 TTI.getCmpSelInstrCost(Instruction::Select, VecTy,
2964 toVectorTy(Type::getInt1Ty(I->getContext()), VF),
2966
2967 SmallVector<const Value *, 4> Operands(I->operand_values());
2968 SafeDivisorCost += TTI.getArithmeticInstrCost(
2969 I->getOpcode(), VecTy, CostKind,
2970 {TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None},
2971 {TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None},
2972 Operands, I);
2973 return {ScalarizationCost, SafeDivisorCost};
2974}
2975
2977 Instruction *I, ElementCount VF) const {
2978 assert(isAccessInterleaved(I) && "Expecting interleaved access.");
2980 "Decision should not be set yet.");
2981 auto *Group = getInterleavedAccessGroup(I);
2982 assert(Group && "Must have a group.");
2983 unsigned InterleaveFactor = Group->getFactor();
2984
2985 // If the instruction's allocated size doesn't equal its type size, it
2986 // requires padding and will be scalarized.
2987 auto &DL = I->getDataLayout();
2988 auto *ScalarTy = getLoadStoreType(I);
2989 if (hasIrregularType(ScalarTy, DL))
2990 return false;
2991
2992 // For scalable vectors, the interleave factors must be <= 8 since we require
2993 // the (de)interleaveN intrinsics instead of shufflevectors.
2994 if (VF.isScalable() && InterleaveFactor > 8)
2995 return false;
2996
2997 // If the group involves a non-integral pointer, we may not be able to
2998 // losslessly cast all values to a common type.
2999 bool ScalarNI = DL.isNonIntegralPointerType(ScalarTy);
3000 for (unsigned Idx = 0; Idx < InterleaveFactor; Idx++) {
3001 Instruction *Member = Group->getMember(Idx);
3002 if (!Member)
3003 continue;
3004 auto *MemberTy = getLoadStoreType(Member);
3005 bool MemberNI = DL.isNonIntegralPointerType(MemberTy);
3006 // Don't coerce non-integral pointers to integers or vice versa.
3007 if (MemberNI != ScalarNI)
3008 // TODO: Consider adding special nullptr value case here
3009 return false;
3010 if (MemberNI && ScalarNI &&
3011 ScalarTy->getPointerAddressSpace() !=
3012 MemberTy->getPointerAddressSpace())
3013 return false;
3014 }
3015
3016 // Check if masking is required.
3017 // A Group may need masking for one of two reasons: it resides in a block that
3018 // needs predication, or it was decided to use masking to deal with gaps
3019 // (either a gap at the end of a load-access that may result in a speculative
3020 // load, or any gaps in a store-access).
3021 bool PredicatedAccessRequiresMasking =
3022 blockNeedsPredicationForAnyReason(I->getParent()) &&
3023 Legal->isMaskRequired(I);
3024 bool LoadAccessWithGapsRequiresEpilogMasking =
3025 isa<LoadInst>(I) && Group->requiresScalarEpilogue() &&
3027 bool StoreAccessWithGapsRequiresMasking =
3028 isa<StoreInst>(I) && !Group->isFull();
3029 if (!PredicatedAccessRequiresMasking &&
3030 !LoadAccessWithGapsRequiresEpilogMasking &&
3031 !StoreAccessWithGapsRequiresMasking)
3032 return true;
3033
3034 // If masked interleaving is required, we expect that the user/target had
3035 // enabled it, because otherwise it either wouldn't have been created or
3036 // it should have been invalidated by the CostModel.
3038 "Masked interleave-groups for predicated accesses are not enabled.");
3039
3040 if (Group->isReverse())
3041 return false;
3042
3043 // TODO: Support interleaved access that requires a gap mask for scalable VFs.
3044 bool NeedsMaskForGaps = LoadAccessWithGapsRequiresEpilogMasking ||
3045 StoreAccessWithGapsRequiresMasking;
3046 if (VF.isScalable() && NeedsMaskForGaps)
3047 return false;
3048
3049 auto *Ty = getLoadStoreType(I);
3050 const Align Alignment = getLoadStoreAlignment(I);
3051 unsigned AS = getLoadStoreAddressSpace(I);
3052 return isa<LoadInst>(I) ? TTI.isLegalMaskedLoad(Ty, Alignment, AS)
3053 : TTI.isLegalMaskedStore(Ty, Alignment, AS);
3054}
3055
3057 Instruction *I, ElementCount VF) {
3058 // Get and ensure we have a valid memory instruction.
3059 assert((isa<LoadInst, StoreInst>(I)) && "Invalid memory instruction");
3060
3061 auto *Ptr = getLoadStorePointerOperand(I);
3062 auto *ScalarTy = getLoadStoreType(I);
3063
3064 // In order to be widened, the pointer should be consecutive, first of all.
3065 if (!Legal->isConsecutivePtr(ScalarTy, Ptr))
3066 return false;
3067
3068 // If the instruction is a store located in a predicated block, it will be
3069 // scalarized.
3070 if (isScalarWithPredication(I, VF))
3071 return false;
3072
3073 // If the instruction's allocated size doesn't equal it's type size, it
3074 // requires padding and will be scalarized.
3075 auto &DL = I->getDataLayout();
3076 if (hasIrregularType(ScalarTy, DL))
3077 return false;
3078
3079 return true;
3080}
3081
3082void LoopVectorizationCostModel::collectLoopUniforms(ElementCount VF) {
3083 // We should not collect Uniforms more than once per VF. Right now,
3084 // this function is called from collectUniformsAndScalars(), which
3085 // already does this check. Collecting Uniforms for VF=1 does not make any
3086 // sense.
3087
3088 assert(VF.isVector() && !Uniforms.contains(VF) &&
3089 "This function should not be visited twice for the same VF");
3090
3091 // Visit the list of Uniforms. If we find no uniform value, we won't
3092 // analyze again. Uniforms.count(VF) will return 1.
3093 Uniforms[VF].clear();
3094
3095 // Now we know that the loop is vectorizable!
3096 // Collect instructions inside the loop that will remain uniform after
3097 // vectorization.
3098
3099 // Global values, params and instructions outside of current loop are out of
3100 // scope.
3101 auto IsOutOfScope = [&](Value *V) -> bool {
3103 return (!I || !TheLoop->contains(I));
3104 };
3105
3106 // Worklist containing uniform instructions demanding lane 0.
3107 SetVector<Instruction *> Worklist;
3108
3109 // Add uniform instructions demanding lane 0 to the worklist. Instructions
3110 // that require predication must not be considered uniform after
3111 // vectorization, because that would create an erroneous replicating region
3112 // where only a single instance out of VF should be formed.
3113 auto AddToWorklistIfAllowed = [&](Instruction *I) -> void {
3114 if (IsOutOfScope(I)) {
3115 LLVM_DEBUG(dbgs() << "LV: Found not uniform due to scope: "
3116 << *I << "\n");
3117 return;
3118 }
3119 if (isPredicatedInst(I)) {
3120 LLVM_DEBUG(
3121 dbgs() << "LV: Found not uniform due to requiring predication: " << *I
3122 << "\n");
3123 return;
3124 }
3125 LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *I << "\n");
3126 Worklist.insert(I);
3127 };
3128
3129 // Start with the conditional branches exiting the loop. If the branch
3130 // condition is an instruction contained in the loop that is only used by the
3131 // branch, it is uniform. Note conditions from uncountable early exits are not
3132 // uniform.
3134 TheLoop->getExitingBlocks(Exiting);
3135 for (BasicBlock *E : Exiting) {
3136 if (Legal->hasUncountableEarlyExit() && TheLoop->getLoopLatch() != E)
3137 continue;
3138 auto *Cmp = dyn_cast<Instruction>(E->getTerminator()->getOperand(0));
3139 if (Cmp && TheLoop->contains(Cmp) && Cmp->hasOneUse())
3140 AddToWorklistIfAllowed(Cmp);
3141 }
3142
3143 auto PrevVF = VF.divideCoefficientBy(2);
3144 // Return true if all lanes perform the same memory operation, and we can
3145 // thus choose to execute only one.
3146 auto IsUniformMemOpUse = [&](Instruction *I) {
3147 // If the value was already known to not be uniform for the previous
3148 // (smaller VF), it cannot be uniform for the larger VF.
3149 if (PrevVF.isVector()) {
3150 auto Iter = Uniforms.find(PrevVF);
3151 if (Iter != Uniforms.end() && !Iter->second.contains(I))
3152 return false;
3153 }
3154 if (!Legal->isUniformMemOp(*I, VF))
3155 return false;
3156 if (isa<LoadInst>(I))
3157 // Loading the same address always produces the same result - at least
3158 // assuming aliasing and ordering which have already been checked.
3159 return true;
3160 // Storing the same value on every iteration.
3161 return TheLoop->isLoopInvariant(cast<StoreInst>(I)->getValueOperand());
3162 };
3163
3164 auto IsUniformDecision = [&](Instruction *I, ElementCount VF) {
3165 InstWidening WideningDecision = getWideningDecision(I, VF);
3166 assert(WideningDecision != CM_Unknown &&
3167 "Widening decision should be ready at this moment");
3168
3169 if (IsUniformMemOpUse(I))
3170 return true;
3171
3172 return (WideningDecision == CM_Widen ||
3173 WideningDecision == CM_Widen_Reverse ||
3174 WideningDecision == CM_Interleave);
3175 };
3176
3177 // Returns true if Ptr is the pointer operand of a memory access instruction
3178 // I, I is known to not require scalarization, and the pointer is not also
3179 // stored.
3180 auto IsVectorizedMemAccessUse = [&](Instruction *I, Value *Ptr) -> bool {
3181 if (isa<StoreInst>(I) && I->getOperand(0) == Ptr)
3182 return false;
3183 return getLoadStorePointerOperand(I) == Ptr &&
3184 (IsUniformDecision(I, VF) || Legal->isInvariant(Ptr));
3185 };
3186
3187 // Holds a list of values which are known to have at least one uniform use.
3188 // Note that there may be other uses which aren't uniform. A "uniform use"
3189 // here is something which only demands lane 0 of the unrolled iterations;
3190 // it does not imply that all lanes produce the same value (e.g. this is not
3191 // the usual meaning of uniform)
3192 SetVector<Value *> HasUniformUse;
3193
3194 // Scan the loop for instructions which are either a) known to have only
3195 // lane 0 demanded or b) are uses which demand only lane 0 of their operand.
3196 for (auto *BB : TheLoop->blocks())
3197 for (auto &I : *BB) {
3198 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I)) {
3199 switch (II->getIntrinsicID()) {
3200 case Intrinsic::sideeffect:
3201 case Intrinsic::experimental_noalias_scope_decl:
3202 case Intrinsic::assume:
3203 case Intrinsic::lifetime_start:
3204 case Intrinsic::lifetime_end:
3205 if (TheLoop->hasLoopInvariantOperands(&I))
3206 AddToWorklistIfAllowed(&I);
3207 break;
3208 default:
3209 break;
3210 }
3211 }
3212
3213 if (auto *EVI = dyn_cast<ExtractValueInst>(&I)) {
3214 if (IsOutOfScope(EVI->getAggregateOperand())) {
3215 AddToWorklistIfAllowed(EVI);
3216 continue;
3217 }
3218 // Only ExtractValue instructions where the aggregate value comes from a
3219 // call are allowed to be non-uniform.
3220 assert(isa<CallInst>(EVI->getAggregateOperand()) &&
3221 "Expected aggregate value to be call return value");
3222 }
3223
3224 // If there's no pointer operand, there's nothing to do.
3225 auto *Ptr = getLoadStorePointerOperand(&I);
3226 if (!Ptr)
3227 continue;
3228
3229 // If the pointer can be proven to be uniform, always add it to the
3230 // worklist.
3231 if (isa<Instruction>(Ptr) && Legal->isUniform(Ptr, VF))
3232 AddToWorklistIfAllowed(cast<Instruction>(Ptr));
3233
3234 if (IsUniformMemOpUse(&I))
3235 AddToWorklistIfAllowed(&I);
3236
3237 if (IsVectorizedMemAccessUse(&I, Ptr))
3238 HasUniformUse.insert(Ptr);
3239 }
3240
3241 // Add to the worklist any operands which have *only* uniform (e.g. lane 0
3242 // demanding) users. Since loops are assumed to be in LCSSA form, this
3243 // disallows uses outside the loop as well.
3244 for (auto *V : HasUniformUse) {
3245 if (IsOutOfScope(V))
3246 continue;
3247 auto *I = cast<Instruction>(V);
3248 bool UsersAreMemAccesses = all_of(I->users(), [&](User *U) -> bool {
3249 auto *UI = cast<Instruction>(U);
3250 return TheLoop->contains(UI) && IsVectorizedMemAccessUse(UI, V);
3251 });
3252 if (UsersAreMemAccesses)
3253 AddToWorklistIfAllowed(I);
3254 }
3255
3256 // Expand Worklist in topological order: whenever a new instruction
3257 // is added , its users should be already inside Worklist. It ensures
3258 // a uniform instruction will only be used by uniform instructions.
3259 unsigned Idx = 0;
3260 while (Idx != Worklist.size()) {
3261 Instruction *I = Worklist[Idx++];
3262
3263 for (auto *OV : I->operand_values()) {
3264 // isOutOfScope operands cannot be uniform instructions.
3265 if (IsOutOfScope(OV))
3266 continue;
3267 // First order recurrence Phi's should typically be considered
3268 // non-uniform.
3269 auto *OP = dyn_cast<PHINode>(OV);
3270 if (OP && Legal->isFixedOrderRecurrence(OP))
3271 continue;
3272 // If all the users of the operand are uniform, then add the
3273 // operand into the uniform worklist.
3274 auto *OI = cast<Instruction>(OV);
3275 if (llvm::all_of(OI->users(), [&](User *U) -> bool {
3276 auto *J = cast<Instruction>(U);
3277 return Worklist.count(J) || IsVectorizedMemAccessUse(J, OI);
3278 }))
3279 AddToWorklistIfAllowed(OI);
3280 }
3281 }
3282
3283 // For an instruction to be added into Worklist above, all its users inside
3284 // the loop should also be in Worklist. However, this condition cannot be
3285 // true for phi nodes that form a cyclic dependence. We must process phi
3286 // nodes separately. An induction variable will remain uniform if all users
3287 // of the induction variable and induction variable update remain uniform.
3288 // The code below handles both pointer and non-pointer induction variables.
3289 BasicBlock *Latch = TheLoop->getLoopLatch();
3290 for (const auto &Induction : Legal->getInductionVars()) {
3291 auto *Ind = Induction.first;
3292 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
3293
3294 // Determine if all users of the induction variable are uniform after
3295 // vectorization.
3296 bool UniformInd = all_of(Ind->users(), [&](User *U) -> bool {
3297 auto *I = cast<Instruction>(U);
3298 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) ||
3299 IsVectorizedMemAccessUse(I, Ind);
3300 });
3301 if (!UniformInd)
3302 continue;
3303
3304 // Determine if all users of the induction variable update instruction are
3305 // uniform after vectorization.
3306 bool UniformIndUpdate = all_of(IndUpdate->users(), [&](User *U) -> bool {
3307 auto *I = cast<Instruction>(U);
3308 return I == Ind || Worklist.count(I) ||
3309 IsVectorizedMemAccessUse(I, IndUpdate);
3310 });
3311 if (!UniformIndUpdate)
3312 continue;
3313
3314 // The induction variable and its update instruction will remain uniform.
3315 AddToWorklistIfAllowed(Ind);
3316 AddToWorklistIfAllowed(IndUpdate);
3317 }
3318
3319 Uniforms[VF].insert_range(Worklist);
3320}
3321
3323 LLVM_DEBUG(dbgs() << "LV: Performing code size checks.\n");
3324
3325 if (Legal->getRuntimePointerChecking()->Need) {
3326 reportVectorizationFailure("Runtime ptr check is required with -Os/-Oz",
3327 "runtime pointer checks needed. Enable vectorization of this "
3328 "loop with '#pragma clang loop vectorize(enable)' when "
3329 "compiling with -Os/-Oz",
3330 "CantVersionLoopWithOptForSize", ORE, TheLoop);
3331 return true;
3332 }
3333
3334 if (!PSE.getPredicate().isAlwaysTrue()) {
3335 reportVectorizationFailure("Runtime SCEV check is required with -Os/-Oz",
3336 "runtime SCEV checks needed. Enable vectorization of this "
3337 "loop with '#pragma clang loop vectorize(enable)' when "
3338 "compiling with -Os/-Oz",
3339 "CantVersionLoopWithOptForSize", ORE, TheLoop);
3340 return true;
3341 }
3342
3343 // FIXME: Avoid specializing for stride==1 instead of bailing out.
3344 if (!Legal->getLAI()->getSymbolicStrides().empty()) {
3345 reportVectorizationFailure("Runtime stride check for small trip count",
3346 "runtime stride == 1 checks needed. Enable vectorization of "
3347 "this loop without such check by compiling with -Os/-Oz",
3348 "CantVersionLoopWithOptForSize", ORE, TheLoop);
3349 return true;
3350 }
3351
3352 return false;
3353}
3354
3355bool LoopVectorizationCostModel::isScalableVectorizationAllowed() {
3356 if (IsScalableVectorizationAllowed)
3357 return *IsScalableVectorizationAllowed;
3358
3359 IsScalableVectorizationAllowed = false;
3360 if (!TTI.supportsScalableVectors() && !ForceTargetSupportsScalableVectors)
3361 return false;
3362
3363 if (Hints->isScalableVectorizationDisabled()) {
3364 reportVectorizationInfo("Scalable vectorization is explicitly disabled",
3365 "ScalableVectorizationDisabled", ORE, TheLoop);
3366 return false;
3367 }
3368
3369 LLVM_DEBUG(dbgs() << "LV: Scalable vectorization is available\n");
3370
3371 auto MaxScalableVF = ElementCount::getScalable(
3372 std::numeric_limits<ElementCount::ScalarTy>::max());
3373
3374 // Test that the loop-vectorizer can legalize all operations for this MaxVF.
3375 // FIXME: While for scalable vectors this is currently sufficient, this should
3376 // be replaced by a more detailed mechanism that filters out specific VFs,
3377 // instead of invalidating vectorization for a whole set of VFs based on the
3378 // MaxVF.
3379
3380 // Disable scalable vectorization if the loop contains unsupported reductions.
3381 if (!canVectorizeReductions(MaxScalableVF)) {
3383 "Scalable vectorization not supported for the reduction "
3384 "operations found in this loop.",
3385 "ScalableVFUnfeasible", ORE, TheLoop);
3386 return false;
3387 }
3388
3389 // Disable scalable vectorization if the loop contains any instructions
3390 // with element types not supported for scalable vectors.
3391 if (any_of(ElementTypesInLoop, [&](Type *Ty) {
3392 return !Ty->isVoidTy() &&
3394 })) {
3395 reportVectorizationInfo("Scalable vectorization is not supported "
3396 "for all element types found in this loop.",
3397 "ScalableVFUnfeasible", ORE, TheLoop);
3398 return false;
3399 }
3400
3401 if (!Legal->isSafeForAnyVectorWidth() && !getMaxVScale(*TheFunction, TTI)) {
3402 reportVectorizationInfo("The target does not provide maximum vscale value "
3403 "for safe distance analysis.",
3404 "ScalableVFUnfeasible", ORE, TheLoop);
3405 return false;
3406 }
3407
3408 IsScalableVectorizationAllowed = true;
3409 return true;
3410}
3411
3412ElementCount
3413LoopVectorizationCostModel::getMaxLegalScalableVF(unsigned MaxSafeElements) {
3414 if (!isScalableVectorizationAllowed())
3415 return ElementCount::getScalable(0);
3416
3417 auto MaxScalableVF = ElementCount::getScalable(
3418 std::numeric_limits<ElementCount::ScalarTy>::max());
3419 if (Legal->isSafeForAnyVectorWidth())
3420 return MaxScalableVF;
3421
3422 std::optional<unsigned> MaxVScale = getMaxVScale(*TheFunction, TTI);
3423 // Limit MaxScalableVF by the maximum safe dependence distance.
3424 MaxScalableVF = ElementCount::getScalable(MaxSafeElements / *MaxVScale);
3425
3426 if (!MaxScalableVF)
3428 "Max legal vector width too small, scalable vectorization "
3429 "unfeasible.",
3430 "ScalableVFUnfeasible", ORE, TheLoop);
3431
3432 return MaxScalableVF;
3433}
3434
3435FixedScalableVFPair LoopVectorizationCostModel::computeFeasibleMaxVF(
3436 unsigned MaxTripCount, ElementCount UserVF, bool FoldTailByMasking) {
3437 MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI);
3438 unsigned SmallestType, WidestType;
3439 std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes();
3440
3441 // Get the maximum safe dependence distance in bits computed by LAA.
3442 // It is computed by MaxVF * sizeOf(type) * 8, where type is taken from
3443 // the memory accesses that is most restrictive (involved in the smallest
3444 // dependence distance).
3445 unsigned MaxSafeElementsPowerOf2 =
3446 bit_floor(Legal->getMaxSafeVectorWidthInBits() / WidestType);
3447 if (!Legal->isSafeForAnyStoreLoadForwardDistances()) {
3448 unsigned SLDist = Legal->getMaxStoreLoadForwardSafeDistanceInBits();
3449 MaxSafeElementsPowerOf2 =
3450 std::min(MaxSafeElementsPowerOf2, SLDist / WidestType);
3451 }
3452 auto MaxSafeFixedVF = ElementCount::getFixed(MaxSafeElementsPowerOf2);
3453 auto MaxSafeScalableVF = getMaxLegalScalableVF(MaxSafeElementsPowerOf2);
3454
3455 if (!Legal->isSafeForAnyVectorWidth())
3456 this->MaxSafeElements = MaxSafeElementsPowerOf2;
3457
3458 LLVM_DEBUG(dbgs() << "LV: The max safe fixed VF is: " << MaxSafeFixedVF
3459 << ".\n");
3460 LLVM_DEBUG(dbgs() << "LV: The max safe scalable VF is: " << MaxSafeScalableVF
3461 << ".\n");
3462
3463 // First analyze the UserVF, fall back if the UserVF should be ignored.
3464 if (UserVF) {
3465 auto MaxSafeUserVF =
3466 UserVF.isScalable() ? MaxSafeScalableVF : MaxSafeFixedVF;
3467
3468 if (ElementCount::isKnownLE(UserVF, MaxSafeUserVF)) {
3469 // If `VF=vscale x N` is safe, then so is `VF=N`
3470 if (UserVF.isScalable())
3471 return FixedScalableVFPair(
3472 ElementCount::getFixed(UserVF.getKnownMinValue()), UserVF);
3473
3474 return UserVF;
3475 }
3476
3477 assert(ElementCount::isKnownGT(UserVF, MaxSafeUserVF));
3478
3479 // Only clamp if the UserVF is not scalable. If the UserVF is scalable, it
3480 // is better to ignore the hint and let the compiler choose a suitable VF.
3481 if (!UserVF.isScalable()) {
3482 LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF
3483 << " is unsafe, clamping to max safe VF="
3484 << MaxSafeFixedVF << ".\n");
3485 ORE->emit([&]() {
3486 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor",
3487 TheLoop->getStartLoc(),
3488 TheLoop->getHeader())
3489 << "User-specified vectorization factor "
3490 << ore::NV("UserVectorizationFactor", UserVF)
3491 << " is unsafe, clamping to maximum safe vectorization factor "
3492 << ore::NV("VectorizationFactor", MaxSafeFixedVF);
3493 });
3494 return MaxSafeFixedVF;
3495 }
3496
3498 LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF
3499 << " is ignored because scalable vectors are not "
3500 "available.\n");
3501 ORE->emit([&]() {
3502 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor",
3503 TheLoop->getStartLoc(),
3504 TheLoop->getHeader())
3505 << "User-specified vectorization factor "
3506 << ore::NV("UserVectorizationFactor", UserVF)
3507 << " is ignored because the target does not support scalable "
3508 "vectors. The compiler will pick a more suitable value.";
3509 });
3510 } else {
3511 LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF
3512 << " is unsafe. Ignoring scalable UserVF.\n");
3513 ORE->emit([&]() {
3514 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor",
3515 TheLoop->getStartLoc(),
3516 TheLoop->getHeader())
3517 << "User-specified vectorization factor "
3518 << ore::NV("UserVectorizationFactor", UserVF)
3519 << " is unsafe. Ignoring the hint to let the compiler pick a "
3520 "more suitable value.";
3521 });
3522 }
3523 }
3524
3525 LLVM_DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType
3526 << " / " << WidestType << " bits.\n");
3527
3528 FixedScalableVFPair Result(ElementCount::getFixed(1),
3530 if (auto MaxVF =
3531 getMaximizedVFForTarget(MaxTripCount, SmallestType, WidestType,
3532 MaxSafeFixedVF, FoldTailByMasking))
3533 Result.FixedVF = MaxVF;
3534
3535 if (auto MaxVF =
3536 getMaximizedVFForTarget(MaxTripCount, SmallestType, WidestType,
3537 MaxSafeScalableVF, FoldTailByMasking))
3538 if (MaxVF.isScalable()) {
3539 Result.ScalableVF = MaxVF;
3540 LLVM_DEBUG(dbgs() << "LV: Found feasible scalable VF = " << MaxVF
3541 << "\n");
3542 }
3543
3544 return Result;
3545}
3546
3547FixedScalableVFPair
3549 if (Legal->getRuntimePointerChecking()->Need && TTI.hasBranchDivergence()) {
3550 // TODO: It may be useful to do since it's still likely to be dynamically
3551 // uniform if the target can skip.
3553 "Not inserting runtime ptr check for divergent target",
3554 "runtime pointer checks needed. Not enabled for divergent target",
3555 "CantVersionLoopWithDivergentTarget", ORE, TheLoop);
3557 }
3558
3559 ScalarEvolution *SE = PSE.getSE();
3561 unsigned MaxTC = PSE.getSmallConstantMaxTripCount();
3562 LLVM_DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n');
3563 if (TC != ElementCount::getFixed(MaxTC))
3564 LLVM_DEBUG(dbgs() << "LV: Found maximum trip count: " << MaxTC << '\n');
3565 if (TC.isScalar()) {
3566 reportVectorizationFailure("Single iteration (non) loop",
3567 "loop trip count is one, irrelevant for vectorization",
3568 "SingleIterationLoop", ORE, TheLoop);
3570 }
3571
3572 // If BTC matches the widest induction type and is -1 then the trip count
3573 // computation will wrap to 0 and the vector trip count will be 0. Do not try
3574 // to vectorize.
3575 const SCEV *BTC = SE->getBackedgeTakenCount(TheLoop);
3576 if (!isa<SCEVCouldNotCompute>(BTC) &&
3577 BTC->getType()->getScalarSizeInBits() >=
3578 Legal->getWidestInductionType()->getScalarSizeInBits() &&
3580 SE->getMinusOne(BTC->getType()))) {
3582 "Trip count computation wrapped",
3583 "backedge-taken count is -1, loop trip count wrapped to 0",
3584 "TripCountWrapped", ORE, TheLoop);
3586 }
3587
3588 switch (ScalarEpilogueStatus) {
3590 return computeFeasibleMaxVF(MaxTC, UserVF, false);
3592 [[fallthrough]];
3594 LLVM_DEBUG(
3595 dbgs() << "LV: vector predicate hint/switch found.\n"
3596 << "LV: Not allowing scalar epilogue, creating predicated "
3597 << "vector loop.\n");
3598 break;
3600 // fallthrough as a special case of OptForSize
3602 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedOptSize)
3603 LLVM_DEBUG(
3604 dbgs() << "LV: Not allowing scalar epilogue due to -Os/-Oz.\n");
3605 else
3606 LLVM_DEBUG(dbgs() << "LV: Not allowing scalar epilogue due to low trip "
3607 << "count.\n");
3608
3609 // Bail if runtime checks are required, which are not good when optimising
3610 // for size.
3613
3614 break;
3615 }
3616
3617 // Now try the tail folding
3618
3619 // Invalidate interleave groups that require an epilogue if we can't mask
3620 // the interleave-group.
3622 assert(WideningDecisions.empty() && Uniforms.empty() && Scalars.empty() &&
3623 "No decisions should have been taken at this point");
3624 // Note: There is no need to invalidate any cost modeling decisions here, as
3625 // none were taken so far.
3626 InterleaveInfo.invalidateGroupsRequiringScalarEpilogue();
3627 }
3628
3629 FixedScalableVFPair MaxFactors = computeFeasibleMaxVF(MaxTC, UserVF, true);
3630
3631 // Avoid tail folding if the trip count is known to be a multiple of any VF
3632 // we choose.
3633 std::optional<unsigned> MaxPowerOf2RuntimeVF =
3634 MaxFactors.FixedVF.getFixedValue();
3635 if (MaxFactors.ScalableVF) {
3636 std::optional<unsigned> MaxVScale = getMaxVScale(*TheFunction, TTI);
3637 if (MaxVScale && TTI.isVScaleKnownToBeAPowerOfTwo()) {
3638 MaxPowerOf2RuntimeVF = std::max<unsigned>(
3639 *MaxPowerOf2RuntimeVF,
3640 *MaxVScale * MaxFactors.ScalableVF.getKnownMinValue());
3641 } else
3642 MaxPowerOf2RuntimeVF = std::nullopt; // Stick with tail-folding for now.
3643 }
3644
3645 auto NoScalarEpilogueNeeded = [this, &UserIC](unsigned MaxVF) {
3646 // Return false if the loop is neither a single-latch-exit loop nor an
3647 // early-exit loop as tail-folding is not supported in that case.
3648 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch() &&
3649 !Legal->hasUncountableEarlyExit())
3650 return false;
3651 unsigned MaxVFtimesIC = UserIC ? MaxVF * UserIC : MaxVF;
3652 ScalarEvolution *SE = PSE.getSE();
3653 // Calling getSymbolicMaxBackedgeTakenCount enables support for loops
3654 // with uncountable exits. For countable loops, the symbolic maximum must
3655 // remain identical to the known back-edge taken count.
3656 const SCEV *BackedgeTakenCount = PSE.getSymbolicMaxBackedgeTakenCount();
3657 assert((Legal->hasUncountableEarlyExit() ||
3658 BackedgeTakenCount == PSE.getBackedgeTakenCount()) &&
3659 "Invalid loop count");
3660 const SCEV *ExitCount = SE->getAddExpr(
3661 BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType()));
3662 const SCEV *Rem = SE->getURemExpr(
3663 SE->applyLoopGuards(ExitCount, TheLoop),
3664 SE->getConstant(BackedgeTakenCount->getType(), MaxVFtimesIC));
3665 return Rem->isZero();
3666 };
3667
3668 if (MaxPowerOf2RuntimeVF > 0u) {
3669 assert((UserVF.isNonZero() || isPowerOf2_32(*MaxPowerOf2RuntimeVF)) &&
3670 "MaxFixedVF must be a power of 2");
3671 if (NoScalarEpilogueNeeded(*MaxPowerOf2RuntimeVF)) {
3672 // Accept MaxFixedVF if we do not have a tail.
3673 LLVM_DEBUG(dbgs() << "LV: No tail will remain for any chosen VF.\n");
3674 return MaxFactors;
3675 }
3676 }
3677
3678 auto ExpectedTC = getSmallBestKnownTC(PSE, TheLoop);
3679 if (ExpectedTC && ExpectedTC->isFixed() &&
3680 ExpectedTC->getFixedValue() <=
3681 TTI.getMinTripCountTailFoldingThreshold()) {
3682 if (MaxPowerOf2RuntimeVF > 0u) {
3683 // If we have a low-trip-count, and the fixed-width VF is known to divide
3684 // the trip count but the scalable factor does not, use the fixed-width
3685 // factor in preference to allow the generation of a non-predicated loop.
3686 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedLowTripLoop &&
3687 NoScalarEpilogueNeeded(MaxFactors.FixedVF.getFixedValue())) {
3688 LLVM_DEBUG(dbgs() << "LV: Picking a fixed-width so that no tail will "
3689 "remain for any chosen VF.\n");
3690 MaxFactors.ScalableVF = ElementCount::getScalable(0);
3691 return MaxFactors;
3692 }
3693 }
3694
3696 "The trip count is below the minial threshold value.",
3697 "loop trip count is too low, avoiding vectorization", "LowTripCount",
3698 ORE, TheLoop);
3700 }
3701
3702 // If we don't know the precise trip count, or if the trip count that we
3703 // found modulo the vectorization factor is not zero, try to fold the tail
3704 // by masking.
3705 // FIXME: look for a smaller MaxVF that does divide TC rather than masking.
3706 bool ContainsScalableVF = MaxFactors.ScalableVF.isNonZero();
3707 setTailFoldingStyles(ContainsScalableVF, UserIC);
3708 if (foldTailByMasking()) {
3709 if (foldTailWithEVL()) {
3710 LLVM_DEBUG(
3711 dbgs()
3712 << "LV: tail is folded with EVL, forcing unroll factor to be 1. Will "
3713 "try to generate VP Intrinsics with scalable vector "
3714 "factors only.\n");
3715 // Tail folded loop using VP intrinsics restricts the VF to be scalable
3716 // for now.
3717 // TODO: extend it for fixed vectors, if required.
3718 assert(ContainsScalableVF && "Expected scalable vector factor.");
3719
3720 MaxFactors.FixedVF = ElementCount::getFixed(1);
3721 }
3722 return MaxFactors;
3723 }
3724
3725 // If there was a tail-folding hint/switch, but we can't fold the tail by
3726 // masking, fallback to a vectorization with a scalar epilogue.
3727 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) {
3728 LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a "
3729 "scalar epilogue instead.\n");
3730 ScalarEpilogueStatus = CM_ScalarEpilogueAllowed;
3731 return MaxFactors;
3732 }
3733
3734 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedUsePredicate) {
3735 LLVM_DEBUG(dbgs() << "LV: Can't fold tail by masking: don't vectorize\n");
3737 }
3738
3739 if (TC.isZero()) {
3741 "unable to calculate the loop count due to complex control flow",
3742 "UnknownLoopCountComplexCFG", ORE, TheLoop);
3744 }
3745
3747 "Cannot optimize for size and vectorize at the same time.",
3748 "cannot optimize for size and vectorize at the same time. "
3749 "Enable vectorization of this loop with '#pragma clang loop "
3750 "vectorize(enable)' when compiling with -Os/-Oz",
3751 "NoTailLoopWithOptForSize", ORE, TheLoop);
3753}
3754
3756 ElementCount VF) {
3757 if (ConsiderRegPressure.getNumOccurrences())
3758 return ConsiderRegPressure;
3759
3760 // TODO: We should eventually consider register pressure for all targets. The
3761 // TTI hook is temporary whilst target-specific issues are being fixed.
3762 if (TTI.shouldConsiderVectorizationRegPressure())
3763 return true;
3764
3765 if (!useMaxBandwidth(VF.isScalable()
3768 return false;
3769 // Only calculate register pressure for VFs enabled by MaxBandwidth.
3771 VF, VF.isScalable() ? MaxPermissibleVFWithoutMaxBW.ScalableVF
3773}
3774
3777 return MaximizeBandwidth || (MaximizeBandwidth.getNumOccurrences() == 0 &&
3778 (TTI.shouldMaximizeVectorBandwidth(RegKind) ||
3780 Legal->hasVectorCallVariants())));
3781}
3782
3783ElementCount LoopVectorizationCostModel::clampVFByMaxTripCount(
3784 ElementCount VF, unsigned MaxTripCount, bool FoldTailByMasking) const {
3785 unsigned EstimatedVF = VF.getKnownMinValue();
3786 if (VF.isScalable() && TheFunction->hasFnAttribute(Attribute::VScaleRange)) {
3787 auto Attr = TheFunction->getFnAttribute(Attribute::VScaleRange);
3788 auto Min = Attr.getVScaleRangeMin();
3789 EstimatedVF *= Min;
3790 }
3791
3792 // When a scalar epilogue is required, at least one iteration of the scalar
3793 // loop has to execute. Adjust MaxTripCount accordingly to avoid picking a
3794 // max VF that results in a dead vector loop.
3795 if (MaxTripCount > 0 && requiresScalarEpilogue(true))
3796 MaxTripCount -= 1;
3797
3798 if (MaxTripCount && MaxTripCount <= EstimatedVF &&
3799 (!FoldTailByMasking || isPowerOf2_32(MaxTripCount))) {
3800 // If upper bound loop trip count (TC) is known at compile time there is no
3801 // point in choosing VF greater than TC (as done in the loop below). Select
3802 // maximum power of two which doesn't exceed TC. If VF is
3803 // scalable, we only fall back on a fixed VF when the TC is less than or
3804 // equal to the known number of lanes.
3805 auto ClampedUpperTripCount = llvm::bit_floor(MaxTripCount);
3806 LLVM_DEBUG(dbgs() << "LV: Clamping the MaxVF to maximum power of two not "
3807 "exceeding the constant trip count: "
3808 << ClampedUpperTripCount << "\n");
3809 return ElementCount::get(ClampedUpperTripCount,
3810 FoldTailByMasking ? VF.isScalable() : false);
3811 }
3812 return VF;
3813}
3814
3815ElementCount LoopVectorizationCostModel::getMaximizedVFForTarget(
3816 unsigned MaxTripCount, unsigned SmallestType, unsigned WidestType,
3817 ElementCount MaxSafeVF, bool FoldTailByMasking) {
3818 bool ComputeScalableMaxVF = MaxSafeVF.isScalable();
3819 const TypeSize WidestRegister = TTI.getRegisterBitWidth(
3820 ComputeScalableMaxVF ? TargetTransformInfo::RGK_ScalableVector
3822
3823 // Convenience function to return the minimum of two ElementCounts.
3824 auto MinVF = [](const ElementCount &LHS, const ElementCount &RHS) {
3825 assert((LHS.isScalable() == RHS.isScalable()) &&
3826 "Scalable flags must match");
3827 return ElementCount::isKnownLT(LHS, RHS) ? LHS : RHS;
3828 };
3829
3830 // Ensure MaxVF is a power of 2; the dependence distance bound may not be.
3831 // Note that both WidestRegister and WidestType may not be a powers of 2.
3832 auto MaxVectorElementCount = ElementCount::get(
3833 llvm::bit_floor(WidestRegister.getKnownMinValue() / WidestType),
3834 ComputeScalableMaxVF);
3835 MaxVectorElementCount = MinVF(MaxVectorElementCount, MaxSafeVF);
3836 LLVM_DEBUG(dbgs() << "LV: The Widest register safe to use is: "
3837 << (MaxVectorElementCount * WidestType) << " bits.\n");
3838
3839 if (!MaxVectorElementCount) {
3840 LLVM_DEBUG(dbgs() << "LV: The target has no "
3841 << (ComputeScalableMaxVF ? "scalable" : "fixed")
3842 << " vector registers.\n");
3843 return ElementCount::getFixed(1);
3844 }
3845
3846 ElementCount MaxVF = clampVFByMaxTripCount(MaxVectorElementCount,
3847 MaxTripCount, FoldTailByMasking);
3848 // If the MaxVF was already clamped, there's no point in trying to pick a
3849 // larger one.
3850 if (MaxVF != MaxVectorElementCount)
3851 return MaxVF;
3852
3854 ComputeScalableMaxVF ? TargetTransformInfo::RGK_ScalableVector
3856
3857 if (MaxVF.isScalable())
3858 MaxPermissibleVFWithoutMaxBW.ScalableVF = MaxVF;
3859 else
3860 MaxPermissibleVFWithoutMaxBW.FixedVF = MaxVF;
3861
3862 if (useMaxBandwidth(RegKind)) {
3863 auto MaxVectorElementCountMaxBW = ElementCount::get(
3864 llvm::bit_floor(WidestRegister.getKnownMinValue() / SmallestType),
3865 ComputeScalableMaxVF);
3866 MaxVF = MinVF(MaxVectorElementCountMaxBW, MaxSafeVF);
3867
3868 if (ElementCount MinVF =
3869 TTI.getMinimumVF(SmallestType, ComputeScalableMaxVF)) {
3870 if (ElementCount::isKnownLT(MaxVF, MinVF)) {
3871 LLVM_DEBUG(dbgs() << "LV: Overriding calculated MaxVF(" << MaxVF
3872 << ") with target's minimum: " << MinVF << '\n');
3873 MaxVF = MinVF;
3874 }
3875 }
3876
3877 MaxVF = clampVFByMaxTripCount(MaxVF, MaxTripCount, FoldTailByMasking);
3878
3879 if (MaxVectorElementCount != MaxVF) {
3880 // Invalidate any widening decisions we might have made, in case the loop
3881 // requires prediction (decided later), but we have already made some
3882 // load/store widening decisions.
3883 invalidateCostModelingDecisions();
3884 }
3885 }
3886 return MaxVF;
3887}
3888
3889bool LoopVectorizationPlanner::isMoreProfitable(const VectorizationFactor &A,
3890 const VectorizationFactor &B,
3891 const unsigned MaxTripCount,
3892 bool HasTail,
3893 bool IsEpilogue) const {
3894 InstructionCost CostA = A.Cost;
3895 InstructionCost CostB = B.Cost;
3896
3897 // Improve estimate for the vector width if it is scalable.
3898 unsigned EstimatedWidthA = A.Width.getKnownMinValue();
3899 unsigned EstimatedWidthB = B.Width.getKnownMinValue();
3900 if (std::optional<unsigned> VScale = CM.getVScaleForTuning()) {
3901 if (A.Width.isScalable())
3902 EstimatedWidthA *= *VScale;
3903 if (B.Width.isScalable())
3904 EstimatedWidthB *= *VScale;
3905 }
3906
3907 // When optimizing for size choose whichever is smallest, which will be the
3908 // one with the smallest cost for the whole loop. On a tie pick the larger
3909 // vector width, on the assumption that throughput will be greater.
3910 if (CM.CostKind == TTI::TCK_CodeSize)
3911 return CostA < CostB ||
3912 (CostA == CostB && EstimatedWidthA > EstimatedWidthB);
3913
3914 // Assume vscale may be larger than 1 (or the value being tuned for),
3915 // so that scalable vectorization is slightly favorable over fixed-width
3916 // vectorization.
3917 bool PreferScalable = !TTI.preferFixedOverScalableIfEqualCost(IsEpilogue) &&
3918 A.Width.isScalable() && !B.Width.isScalable();
3919
3920 auto CmpFn = [PreferScalable](const InstructionCost &LHS,
3921 const InstructionCost &RHS) {
3922 return PreferScalable ? LHS <= RHS : LHS < RHS;
3923 };
3924
3925 // To avoid the need for FP division:
3926 // (CostA / EstimatedWidthA) < (CostB / EstimatedWidthB)
3927 // <=> (CostA * EstimatedWidthB) < (CostB * EstimatedWidthA)
3928 if (!MaxTripCount)
3929 return CmpFn(CostA * EstimatedWidthB, CostB * EstimatedWidthA);
3930
3931 auto GetCostForTC = [MaxTripCount, HasTail](unsigned VF,
3932 InstructionCost VectorCost,
3933 InstructionCost ScalarCost) {
3934 // If the trip count is a known (possibly small) constant, the trip count
3935 // will be rounded up to an integer number of iterations under
3936 // FoldTailByMasking. The total cost in that case will be
3937 // VecCost*ceil(TripCount/VF). When not folding the tail, the total
3938 // cost will be VecCost*floor(TC/VF) + ScalarCost*(TC%VF). There will be
3939 // some extra overheads, but for the purpose of comparing the costs of
3940 // different VFs we can use this to compare the total loop-body cost
3941 // expected after vectorization.
3942 if (HasTail)
3943 return VectorCost * (MaxTripCount / VF) +
3944 ScalarCost * (MaxTripCount % VF);
3945 return VectorCost * divideCeil(MaxTripCount, VF);
3946 };
3947
3948 auto RTCostA = GetCostForTC(EstimatedWidthA, CostA, A.ScalarCost);
3949 auto RTCostB = GetCostForTC(EstimatedWidthB, CostB, B.ScalarCost);
3950 return CmpFn(RTCostA, RTCostB);
3951}
3952
3953bool LoopVectorizationPlanner::isMoreProfitable(const VectorizationFactor &A,
3954 const VectorizationFactor &B,
3955 bool HasTail,
3956 bool IsEpilogue) const {
3957 const unsigned MaxTripCount = PSE.getSmallConstantMaxTripCount();
3958 return LoopVectorizationPlanner::isMoreProfitable(A, B, MaxTripCount, HasTail,
3959 IsEpilogue);
3960}
3961
3964 using RecipeVFPair = std::pair<VPRecipeBase *, ElementCount>;
3965 SmallVector<RecipeVFPair> InvalidCosts;
3966 for (const auto &Plan : VPlans) {
3967 for (ElementCount VF : Plan->vectorFactors()) {
3968 // The VPlan-based cost model is designed for computing vector cost.
3969 // Querying VPlan-based cost model with a scarlar VF will cause some
3970 // errors because we expect the VF is vector for most of the widen
3971 // recipes.
3972 if (VF.isScalar())
3973 continue;
3974
3975 VPCostContext CostCtx(CM.TTI, *CM.TLI, *Plan, CM, CM.CostKind,
3976 *CM.PSE.getSE(), OrigLoop);
3977 precomputeCosts(*Plan, VF, CostCtx);
3978 auto Iter = vp_depth_first_deep(Plan->getVectorLoopRegion()->getEntry());
3980 for (auto &R : *VPBB) {
3981 if (!R.cost(VF, CostCtx).isValid())
3982 InvalidCosts.emplace_back(&R, VF);
3983 }
3984 }
3985 }
3986 }
3987 if (InvalidCosts.empty())
3988 return;
3989
3990 // Emit a report of VFs with invalid costs in the loop.
3991
3992 // Group the remarks per recipe, keeping the recipe order from InvalidCosts.
3994 unsigned I = 0;
3995 for (auto &Pair : InvalidCosts)
3996 if (Numbering.try_emplace(Pair.first, I).second)
3997 ++I;
3998
3999 // Sort the list, first on recipe(number) then on VF.
4000 sort(InvalidCosts, [&Numbering](RecipeVFPair &A, RecipeVFPair &B) {
4001 unsigned NA = Numbering[A.first];
4002 unsigned NB = Numbering[B.first];
4003 if (NA != NB)
4004 return NA < NB;
4005 return ElementCount::isKnownLT(A.second, B.second);
4006 });
4007
4008 // For a list of ordered recipe-VF pairs:
4009 // [(load, VF1), (load, VF2), (store, VF1)]
4010 // group the recipes together to emit separate remarks for:
4011 // load (VF1, VF2)
4012 // store (VF1)
4013 auto Tail = ArrayRef<RecipeVFPair>(InvalidCosts);
4014 auto Subset = ArrayRef<RecipeVFPair>();
4015 do {
4016 if (Subset.empty())
4017 Subset = Tail.take_front(1);
4018
4019 VPRecipeBase *R = Subset.front().first;
4020
4021 unsigned Opcode =
4024 [](const auto *R) { return Instruction::PHI; })
4025 .Case<VPWidenSelectRecipe>(
4026 [](const auto *R) { return Instruction::Select; })
4027 .Case<VPWidenStoreRecipe>(
4028 [](const auto *R) { return Instruction::Store; })
4029 .Case<VPWidenLoadRecipe>(
4030 [](const auto *R) { return Instruction::Load; })
4031 .Case<VPWidenCallRecipe, VPWidenIntrinsicRecipe>(
4032 [](const auto *R) { return Instruction::Call; })
4035 [](const auto *R) { return R->getOpcode(); })
4036 .Case<VPInterleaveRecipe>([](const VPInterleaveRecipe *R) {
4037 return R->getStoredValues().empty() ? Instruction::Load
4038 : Instruction::Store;
4039 })
4040 .Case<VPReductionRecipe>([](const auto *R) {
4041 return RecurrenceDescriptor::getOpcode(R->getRecurrenceKind());
4042 });
4043
4044 // If the next recipe is different, or if there are no other pairs,
4045 // emit a remark for the collated subset. e.g.
4046 // [(load, VF1), (load, VF2))]
4047 // to emit:
4048 // remark: invalid costs for 'load' at VF=(VF1, VF2)
4049 if (Subset == Tail || Tail[Subset.size()].first != R) {
4050 std::string OutString;
4051 raw_string_ostream OS(OutString);
4052 assert(!Subset.empty() && "Unexpected empty range");
4053 OS << "Recipe with invalid costs prevented vectorization at VF=(";
4054 for (const auto &Pair : Subset)
4055 OS << (Pair.second == Subset.front().second ? "" : ", ") << Pair.second;
4056 OS << "):";
4057 if (Opcode == Instruction::Call) {
4058 StringRef Name = "";
4059 if (auto *Int = dyn_cast<VPWidenIntrinsicRecipe>(R)) {
4060 Name = Int->getIntrinsicName();
4061 } else {
4062 auto *WidenCall = dyn_cast<VPWidenCallRecipe>(R);
4063 Function *CalledFn =
4064 WidenCall ? WidenCall->getCalledScalarFunction()
4065 : cast<Function>(R->getOperand(R->getNumOperands() - 1)
4066 ->getLiveInIRValue());
4067 Name = CalledFn->getName();
4068 }
4069 OS << " call to " << Name;
4070 } else
4071 OS << " " << Instruction::getOpcodeName(Opcode);
4072 reportVectorizationInfo(OutString, "InvalidCost", ORE, OrigLoop, nullptr,
4073 R->getDebugLoc());
4074 Tail = Tail.drop_front(Subset.size());
4075 Subset = {};
4076 } else
4077 // Grow the subset by one element
4078 Subset = Tail.take_front(Subset.size() + 1);
4079 } while (!Tail.empty());
4080}
4081
4082/// Check if any recipe of \p Plan will generate a vector value, which will be
4083/// assigned a vector register.
4085 const TargetTransformInfo &TTI) {
4086 assert(VF.isVector() && "Checking a scalar VF?");
4087 VPTypeAnalysis TypeInfo(Plan);
4088 DenseSet<VPRecipeBase *> EphemeralRecipes;
4089 collectEphemeralRecipesForVPlan(Plan, EphemeralRecipes);
4090 // Set of already visited types.
4091 DenseSet<Type *> Visited;
4094 for (VPRecipeBase &R : *VPBB) {
4095 if (EphemeralRecipes.contains(&R))
4096 continue;
4097 // Continue early if the recipe is considered to not produce a vector
4098 // result. Note that this includes VPInstruction where some opcodes may
4099 // produce a vector, to preserve existing behavior as VPInstructions model
4100 // aspects not directly mapped to existing IR instructions.
4101 switch (R.getVPDefID()) {
4102 case VPDef::VPDerivedIVSC:
4103 case VPDef::VPScalarIVStepsSC:
4104 case VPDef::VPReplicateSC:
4105 case VPDef::VPInstructionSC:
4106 case VPDef::VPCanonicalIVPHISC:
4107 case VPDef::VPVectorPointerSC:
4108 case VPDef::VPVectorEndPointerSC:
4109 case VPDef::VPExpandSCEVSC:
4110 case VPDef::VPEVLBasedIVPHISC:
4111 case VPDef::VPPredInstPHISC:
4112 case VPDef::VPBranchOnMaskSC:
4113 continue;
4114 case VPDef::VPReductionSC:
4115 case VPDef::VPActiveLaneMaskPHISC:
4116 case VPDef::VPWidenCallSC:
4117 case VPDef::VPWidenCanonicalIVSC:
4118 case VPDef::VPWidenCastSC:
4119 case VPDef::VPWidenGEPSC:
4120 case VPDef::VPWidenIntrinsicSC:
4121 case VPDef::VPWidenSC:
4122 case VPDef::VPWidenSelectSC:
4123 case VPDef::VPBlendSC:
4124 case VPDef::VPFirstOrderRecurrencePHISC:
4125 case VPDef::VPHistogramSC:
4126 case VPDef::VPWidenPHISC:
4127 case VPDef::VPWidenIntOrFpInductionSC:
4128 case VPDef::VPWidenPointerInductionSC:
4129 case VPDef::VPReductionPHISC:
4130 case VPDef::VPInterleaveEVLSC:
4131 case VPDef::VPInterleaveSC:
4132 case VPDef::VPWidenLoadEVLSC:
4133 case VPDef::VPWidenLoadSC:
4134 case VPDef::VPWidenStoreEVLSC:
4135 case VPDef::VPWidenStoreSC:
4136 break;
4137 default:
4138 llvm_unreachable("unhandled recipe");
4139 }
4140
4141 auto WillGenerateTargetVectors = [&TTI, VF](Type *VectorTy) {
4142 unsigned NumLegalParts = TTI.getNumberOfParts(VectorTy);
4143 if (!NumLegalParts)
4144 return false;
4145 if (VF.isScalable()) {
4146 // <vscale x 1 x iN> is assumed to be profitable over iN because
4147 // scalable registers are a distinct register class from scalar
4148 // ones. If we ever find a target which wants to lower scalable
4149 // vectors back to scalars, we'll need to update this code to
4150 // explicitly ask TTI about the register class uses for each part.
4151 return NumLegalParts <= VF.getKnownMinValue();
4152 }
4153 // Two or more elements that share a register - are vectorized.
4154 return NumLegalParts < VF.getFixedValue();
4155 };
4156
4157 // If no def nor is a store, e.g., branches, continue - no value to check.
4158 if (R.getNumDefinedValues() == 0 &&
4160 continue;
4161 // For multi-def recipes, currently only interleaved loads, suffice to
4162 // check first def only.
4163 // For stores check their stored value; for interleaved stores suffice
4164 // the check first stored value only. In all cases this is the second
4165 // operand.
4166 VPValue *ToCheck =
4167 R.getNumDefinedValues() >= 1 ? R.getVPValue(0) : R.getOperand(1);
4168 Type *ScalarTy = TypeInfo.inferScalarType(ToCheck);
4169 if (!Visited.insert({ScalarTy}).second)
4170 continue;
4171 Type *WideTy = toVectorizedTy(ScalarTy, VF);
4172 if (any_of(getContainedTypes(WideTy), WillGenerateTargetVectors))
4173 return true;
4174 }
4175 }
4176
4177 return false;
4178}
4179
4180static bool hasReplicatorRegion(VPlan &Plan) {
4182 Plan.getVectorLoopRegion()->getEntry())),
4183 [](auto *VPRB) { return VPRB->isReplicator(); });
4184}
4185
4186#ifndef NDEBUG
4187VectorizationFactor LoopVectorizationPlanner::selectVectorizationFactor() {
4188 InstructionCost ExpectedCost = CM.expectedCost(ElementCount::getFixed(1));
4189 LLVM_DEBUG(dbgs() << "LV: Scalar loop costs: " << ExpectedCost << ".\n");
4190 assert(ExpectedCost.isValid() && "Unexpected invalid cost for scalar loop");
4191 assert(
4192 any_of(VPlans,
4193 [](std::unique_ptr<VPlan> &P) { return P->hasScalarVFOnly(); }) &&
4194 "Expected Scalar VF to be a candidate");
4195
4196 const VectorizationFactor ScalarCost(ElementCount::getFixed(1), ExpectedCost,
4197 ExpectedCost);
4198 VectorizationFactor ChosenFactor = ScalarCost;
4199
4200 bool ForceVectorization = Hints.getForce() == LoopVectorizeHints::FK_Enabled;
4201 if (ForceVectorization &&
4202 (VPlans.size() > 1 || !VPlans[0]->hasScalarVFOnly())) {
4203 // Ignore scalar width, because the user explicitly wants vectorization.
4204 // Initialize cost to max so that VF = 2 is, at least, chosen during cost
4205 // evaluation.
4206 ChosenFactor.Cost = InstructionCost::getMax();
4207 }
4208
4209 for (auto &P : VPlans) {
4210 ArrayRef<ElementCount> VFs(P->vectorFactors().begin(),
4211 P->vectorFactors().end());
4212
4214 if (any_of(VFs, [this](ElementCount VF) {
4215 return CM.shouldConsiderRegPressureForVF(VF);
4216 }))
4217 RUs = calculateRegisterUsageForPlan(*P, VFs, TTI, CM.ValuesToIgnore);
4218
4219 for (unsigned I = 0; I < VFs.size(); I++) {
4220 ElementCount VF = VFs[I];
4221 // The cost for scalar VF=1 is already calculated, so ignore it.
4222 if (VF.isScalar())
4223 continue;
4224
4225 /// If the register pressure needs to be considered for VF,
4226 /// don't consider the VF as valid if it exceeds the number
4227 /// of registers for the target.
4228 if (CM.shouldConsiderRegPressureForVF(VF) &&
4229 RUs[I].exceedsMaxNumRegs(TTI, ForceTargetNumVectorRegs))
4230 continue;
4231
4232 InstructionCost C = CM.expectedCost(VF);
4233
4234 // Add on other costs that are modelled in VPlan, but not in the legacy
4235 // cost model.
4236 VPCostContext CostCtx(CM.TTI, *CM.TLI, *P, CM, CM.CostKind,
4237 *CM.PSE.getSE(), OrigLoop);
4238 VPRegionBlock *VectorRegion = P->getVectorLoopRegion();
4239 assert(VectorRegion && "Expected to have a vector region!");
4240 for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(
4241 vp_depth_first_shallow(VectorRegion->getEntry()))) {
4242 for (VPRecipeBase &R : *VPBB) {
4243 auto *VPI = dyn_cast<VPInstruction>(&R);
4244 if (!VPI)
4245 continue;
4246 switch (VPI->getOpcode()) {
4247 // Selects are only modelled in the legacy cost model for safe
4248 // divisors.
4249 case Instruction::Select: {
4250 if (auto *WR =
4251 dyn_cast_or_null<VPWidenRecipe>(VPI->getSingleUser())) {
4252 switch (WR->getOpcode()) {
4253 case Instruction::UDiv:
4254 case Instruction::SDiv:
4255 case Instruction::URem:
4256 case Instruction::SRem:
4257 continue;
4258 default:
4259 break;
4260 }
4261 }
4262 C += VPI->cost(VF, CostCtx);
4263 break;
4264 }
4266 unsigned Multiplier =
4267 cast<ConstantInt>(VPI->getOperand(2)->getLiveInIRValue())
4268 ->getZExtValue();
4269 C += VPI->cost(VF * Multiplier, CostCtx);
4270 break;
4271 }
4273 C += VPI->cost(VF, CostCtx);
4274 break;
4275 default:
4276 break;
4277 }
4278 }
4279 }
4280
4281 VectorizationFactor Candidate(VF, C, ScalarCost.ScalarCost);
4282 unsigned Width =
4283 estimateElementCount(Candidate.Width, CM.getVScaleForTuning());
4284 LLVM_DEBUG(dbgs() << "LV: Vector loop of width " << VF
4285 << " costs: " << (Candidate.Cost / Width));
4286 if (VF.isScalable())
4287 LLVM_DEBUG(dbgs() << " (assuming a minimum vscale of "
4288 << CM.getVScaleForTuning().value_or(1) << ")");
4289 LLVM_DEBUG(dbgs() << ".\n");
4290
4291 if (!ForceVectorization && !willGenerateVectors(*P, VF, TTI)) {
4292 LLVM_DEBUG(
4293 dbgs()
4294 << "LV: Not considering vector loop of width " << VF
4295 << " because it will not generate any vector instructions.\n");
4296 continue;
4297 }
4298
4299 if (CM.OptForSize && !ForceVectorization && hasReplicatorRegion(*P)) {
4300 LLVM_DEBUG(
4301 dbgs()
4302 << "LV: Not considering vector loop of width " << VF
4303 << " because it would cause replicated blocks to be generated,"
4304 << " which isn't allowed when optimizing for size.\n");
4305 continue;
4306 }
4307
4308 if (isMoreProfitable(Candidate, ChosenFactor, P->hasScalarTail()))
4309 ChosenFactor = Candidate;
4310 }
4311 }
4312
4313 if (!EnableCondStoresVectorization && CM.hasPredStores()) {
4315 "There are conditional stores.",
4316 "store that is conditionally executed prevents vectorization",
4317 "ConditionalStore", ORE, OrigLoop);
4318 ChosenFactor = ScalarCost;
4319 }
4320
4321 LLVM_DEBUG(if (ForceVectorization && !ChosenFactor.Width.isScalar() &&
4322 !isMoreProfitable(ChosenFactor, ScalarCost,
4323 !CM.foldTailByMasking())) dbgs()
4324 << "LV: Vectorization seems to be not beneficial, "
4325 << "but was forced by a user.\n");
4326 return ChosenFactor;
4327}
4328#endif
4329
4330bool LoopVectorizationPlanner::isCandidateForEpilogueVectorization(
4331 ElementCount VF) const {
4332 // Cross iteration phis such as fixed-order recurrences and FMaxNum/FMinNum
4333 // reductions need special handling and are currently unsupported.
4334 if (any_of(OrigLoop->getHeader()->phis(), [&](PHINode &Phi) {
4335 if (!Legal->isReductionVariable(&Phi))
4336 return Legal->isFixedOrderRecurrence(&Phi);
4337 return RecurrenceDescriptor::isFPMinMaxNumRecurrenceKind(
4338 Legal->getRecurrenceDescriptor(&Phi).getRecurrenceKind());
4339 }))
4340 return false;
4341
4342 // Phis with uses outside of the loop require special handling and are
4343 // currently unsupported.
4344 for (const auto &Entry : Legal->getInductionVars()) {
4345 // Look for uses of the value of the induction at the last iteration.
4346 Value *PostInc =
4347 Entry.first->getIncomingValueForBlock(OrigLoop->getLoopLatch());
4348 for (User *U : PostInc->users())
4349 if (!OrigLoop->contains(cast<Instruction>(U)))
4350 return false;
4351 // Look for uses of penultimate value of the induction.
4352 for (User *U : Entry.first->users())
4353 if (!OrigLoop->contains(cast<Instruction>(U)))
4354 return false;
4355 }
4356
4357 // Epilogue vectorization code has not been auditted to ensure it handles
4358 // non-latch exits properly. It may be fine, but it needs auditted and
4359 // tested.
4360 // TODO: Add support for loops with an early exit.
4361 if (OrigLoop->getExitingBlock() != OrigLoop->getLoopLatch())
4362 return false;
4363
4364 return true;
4365}
4366
4368 const ElementCount VF, const unsigned IC) const {
4369 // FIXME: We need a much better cost-model to take different parameters such
4370 // as register pressure, code size increase and cost of extra branches into
4371 // account. For now we apply a very crude heuristic and only consider loops
4372 // with vectorization factors larger than a certain value.
4373
4374 // Allow the target to opt out entirely.
4375 if (!TTI.preferEpilogueVectorization())
4376 return false;
4377
4378 // We also consider epilogue vectorization unprofitable for targets that don't
4379 // consider interleaving beneficial (eg. MVE).
4380 if (TTI.getMaxInterleaveFactor(VF) <= 1)
4381 return false;
4382
4383 unsigned MinVFThreshold = EpilogueVectorizationMinVF.getNumOccurrences() > 0
4385 : TTI.getEpilogueVectorizationMinVF();
4386 return estimateElementCount(VF * IC, VScaleForTuning) >= MinVFThreshold;
4387}
4388
4390 const ElementCount MainLoopVF, unsigned IC) {
4393 LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization is disabled.\n");
4394 return Result;
4395 }
4396
4397 if (!CM.isScalarEpilogueAllowed()) {
4398 LLVM_DEBUG(dbgs() << "LEV: Unable to vectorize epilogue because no "
4399 "epilogue is allowed.\n");
4400 return Result;
4401 }
4402
4403 // Not really a cost consideration, but check for unsupported cases here to
4404 // simplify the logic.
4405 if (!isCandidateForEpilogueVectorization(MainLoopVF)) {
4406 LLVM_DEBUG(dbgs() << "LEV: Unable to vectorize epilogue because the loop "
4407 "is not a supported candidate.\n");
4408 return Result;
4409 }
4410
4412 LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization factor is forced.\n");
4414 if (hasPlanWithVF(ForcedEC))
4415 return {ForcedEC, 0, 0};
4416
4417 LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization forced factor is not "
4418 "viable.\n");
4419 return Result;
4420 }
4421
4422 if (OrigLoop->getHeader()->getParent()->hasOptSize()) {
4423 LLVM_DEBUG(
4424 dbgs() << "LEV: Epilogue vectorization skipped due to opt for size.\n");
4425 return Result;
4426 }
4427
4428 if (!CM.isEpilogueVectorizationProfitable(MainLoopVF, IC)) {
4429 LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization is not profitable for "
4430 "this loop\n");
4431 return Result;
4432 }
4433
4434 // If MainLoopVF = vscale x 2, and vscale is expected to be 4, then we know
4435 // the main loop handles 8 lanes per iteration. We could still benefit from
4436 // vectorizing the epilogue loop with VF=4.
4437 ElementCount EstimatedRuntimeVF = ElementCount::getFixed(
4438 estimateElementCount(MainLoopVF, CM.getVScaleForTuning()));
4439
4440 ScalarEvolution &SE = *PSE.getSE();
4441 Type *TCType = Legal->getWidestInductionType();
4442 const SCEV *RemainingIterations = nullptr;
4443 unsigned MaxTripCount = 0;
4444 const SCEV *TC =
4445 vputils::getSCEVExprForVPValue(getPlanFor(MainLoopVF).getTripCount(), SE);
4446 assert(!isa<SCEVCouldNotCompute>(TC) && "Trip count SCEV must be computable");
4447 const SCEV *KnownMinTC;
4448 bool ScalableTC = match(TC, m_scev_c_Mul(m_SCEV(KnownMinTC), m_SCEVVScale()));
4449 bool ScalableRemIter = false;
4450 // Use versions of TC and VF in which both are either scalable or fixed.
4451 if (ScalableTC == MainLoopVF.isScalable()) {
4452 ScalableRemIter = ScalableTC;
4453 RemainingIterations =
4454 SE.getURemExpr(TC, SE.getElementCount(TCType, MainLoopVF * IC));
4455 } else if (ScalableTC) {
4456 const SCEV *EstimatedTC = SE.getMulExpr(
4457 KnownMinTC,
4458 SE.getConstant(TCType, CM.getVScaleForTuning().value_or(1)));
4459 RemainingIterations = SE.getURemExpr(
4460 EstimatedTC, SE.getElementCount(TCType, MainLoopVF * IC));
4461 } else
4462 RemainingIterations =
4463 SE.getURemExpr(TC, SE.getElementCount(TCType, EstimatedRuntimeVF * IC));
4464
4465 // No iterations left to process in the epilogue.
4466 if (RemainingIterations->isZero())
4467 return Result;
4468
4469 if (MainLoopVF.isFixed()) {
4470 MaxTripCount = MainLoopVF.getFixedValue() * IC - 1;
4471 if (SE.isKnownPredicate(CmpInst::ICMP_ULT, RemainingIterations,
4472 SE.getConstant(TCType, MaxTripCount))) {
4473 MaxTripCount = SE.getUnsignedRangeMax(RemainingIterations).getZExtValue();
4474 }
4475 LLVM_DEBUG(dbgs() << "LEV: Maximum Trip Count for Epilogue: "
4476 << MaxTripCount << "\n");
4477 }
4478
4479 auto SkipVF = [&](const SCEV *VF, const SCEV *RemIter) -> bool {
4480 return SE.isKnownPredicate(CmpInst::ICMP_UGT, VF, RemIter);
4481 };
4482 for (auto &NextVF : ProfitableVFs) {
4483 // Skip candidate VFs without a corresponding VPlan.
4484 if (!hasPlanWithVF(NextVF.Width))
4485 continue;
4486
4487 // Skip candidate VFs with widths >= the (estimated) runtime VF (scalable
4488 // vectors) or > the VF of the main loop (fixed vectors).
4489 if ((!NextVF.Width.isScalable() && MainLoopVF.isScalable() &&
4490 ElementCount::isKnownGE(NextVF.Width, EstimatedRuntimeVF)) ||
4491 (NextVF.Width.isScalable() &&
4492 ElementCount::isKnownGE(NextVF.Width, MainLoopVF)) ||
4493 (!NextVF.Width.isScalable() && !MainLoopVF.isScalable() &&
4494 ElementCount::isKnownGT(NextVF.Width, MainLoopVF)))
4495 continue;
4496
4497 // If NextVF is greater than the number of remaining iterations, the
4498 // epilogue loop would be dead. Skip such factors.
4499 // TODO: We should also consider comparing against a scalable
4500 // RemainingIterations when SCEV be able to evaluate non-canonical
4501 // vscale-based expressions.
4502 if (!ScalableRemIter) {
4503 // Handle the case where NextVF and RemainingIterations are in different
4504 // numerical spaces.
4505 ElementCount EC = NextVF.Width;
4506 if (NextVF.Width.isScalable())
4508 estimateElementCount(NextVF.Width, CM.getVScaleForTuning()));
4509 if (SkipVF(SE.getElementCount(TCType, EC), RemainingIterations))
4510 continue;
4511 }
4512
4513 if (Result.Width.isScalar() ||
4514 isMoreProfitable(NextVF, Result, MaxTripCount, !CM.foldTailByMasking(),
4515 /*IsEpilogue*/ true))
4516 Result = NextVF;
4517 }
4518
4519 if (Result != VectorizationFactor::Disabled())
4520 LLVM_DEBUG(dbgs() << "LEV: Vectorizing epilogue loop with VF = "
4521 << Result.Width << "\n");
4522 return Result;
4523}
4524
4525std::pair<unsigned, unsigned>
4527 unsigned MinWidth = -1U;
4528 unsigned MaxWidth = 8;
4529 const DataLayout &DL = TheFunction->getDataLayout();
4530 // For in-loop reductions, no element types are added to ElementTypesInLoop
4531 // if there are no loads/stores in the loop. In this case, check through the
4532 // reduction variables to determine the maximum width.
4533 if (ElementTypesInLoop.empty() && !Legal->getReductionVars().empty()) {
4534 for (const auto &PhiDescriptorPair : Legal->getReductionVars()) {
4535 const RecurrenceDescriptor &RdxDesc = PhiDescriptorPair.second;
4536 // When finding the min width used by the recurrence we need to account
4537 // for casts on the input operands of the recurrence.
4538 MinWidth = std::min(
4539 MinWidth,
4540 std::min(RdxDesc.getMinWidthCastToRecurrenceTypeInBits(),
4542 MaxWidth = std::max(MaxWidth,
4544 }
4545 } else {
4546 for (Type *T : ElementTypesInLoop) {
4547 MinWidth = std::min<unsigned>(
4548 MinWidth, DL.getTypeSizeInBits(T->getScalarType()).getFixedValue());
4549 MaxWidth = std::max<unsigned>(
4550 MaxWidth, DL.getTypeSizeInBits(T->getScalarType()).getFixedValue());
4551 }
4552 }
4553 return {MinWidth, MaxWidth};
4554}
4555
4557 ElementTypesInLoop.clear();
4558 // For each block.
4559 for (BasicBlock *BB : TheLoop->blocks()) {
4560 // For each instruction in the loop.
4561 for (Instruction &I : BB->instructionsWithoutDebug()) {
4562 Type *T = I.getType();
4563
4564 // Skip ignored values.
4565 if (ValuesToIgnore.count(&I))
4566 continue;
4567
4568 // Only examine Loads, Stores and PHINodes.
4569 if (!isa<LoadInst>(I) && !isa<StoreInst>(I) && !isa<PHINode>(I))
4570 continue;
4571
4572 // Examine PHI nodes that are reduction variables. Update the type to
4573 // account for the recurrence type.
4574 if (auto *PN = dyn_cast<PHINode>(&I)) {
4575 if (!Legal->isReductionVariable(PN))
4576 continue;
4577 const RecurrenceDescriptor &RdxDesc =
4578 Legal->getRecurrenceDescriptor(PN);
4580 TTI.preferInLoopReduction(RdxDesc.getRecurrenceKind(),
4581 RdxDesc.getRecurrenceType()))
4582 continue;
4583 T = RdxDesc.getRecurrenceType();
4584 }
4585
4586 // Examine the stored values.
4587 if (auto *ST = dyn_cast<StoreInst>(&I))
4588 T = ST->getValueOperand()->getType();
4589
4590 assert(T->isSized() &&
4591 "Expected the load/store/recurrence type to be sized");
4592
4593 ElementTypesInLoop.insert(T);
4594 }
4595 }
4596}
4597
4598unsigned
4600 InstructionCost LoopCost) {
4601 // -- The interleave heuristics --
4602 // We interleave the loop in order to expose ILP and reduce the loop overhead.
4603 // There are many micro-architectural considerations that we can't predict
4604 // at this level. For example, frontend pressure (on decode or fetch) due to
4605 // code size, or the number and capabilities of the execution ports.
4606 //
4607 // We use the following heuristics to select the interleave count:
4608 // 1. If the code has reductions, then we interleave to break the cross
4609 // iteration dependency.
4610 // 2. If the loop is really small, then we interleave to reduce the loop
4611 // overhead.
4612 // 3. We don't interleave if we think that we will spill registers to memory
4613 // due to the increased register pressure.
4614
4615 // Only interleave tail-folded loops if wide lane masks are requested, as the
4616 // overhead of multiple instructions to calculate the predicate is likely
4617 // not beneficial. If a scalar epilogue is not allowed for any other reason,
4618 // do not interleave.
4619 if (!CM.isScalarEpilogueAllowed() &&
4620 !(CM.preferPredicatedLoop() && CM.useWideActiveLaneMask()))
4621 return 1;
4622
4625 LLVM_DEBUG(dbgs() << "LV: Preference for VP intrinsics indicated. "
4626 "Unroll factor forced to be 1.\n");
4627 return 1;
4628 }
4629
4630 // We used the distance for the interleave count.
4631 if (!Legal->isSafeForAnyVectorWidth())
4632 return 1;
4633
4634 // We don't attempt to perform interleaving for loops with uncountable early
4635 // exits because the VPInstruction::AnyOf code cannot currently handle
4636 // multiple parts.
4637 if (Plan.hasEarlyExit())
4638 return 1;
4639
4640 const bool HasReductions =
4643
4644 // If we did not calculate the cost for VF (because the user selected the VF)
4645 // then we calculate the cost of VF here.
4646 if (LoopCost == 0) {
4647 if (VF.isScalar())
4648 LoopCost = CM.expectedCost(VF);
4649 else
4650 LoopCost = cost(Plan, VF);
4651 assert(LoopCost.isValid() && "Expected to have chosen a VF with valid cost");
4652
4653 // Loop body is free and there is no need for interleaving.
4654 if (LoopCost == 0)
4655 return 1;
4656 }
4657
4658 VPRegisterUsage R =
4659 calculateRegisterUsageForPlan(Plan, {VF}, TTI, CM.ValuesToIgnore)[0];
4660 // We divide by these constants so assume that we have at least one
4661 // instruction that uses at least one register.
4662 for (auto &Pair : R.MaxLocalUsers) {
4663 Pair.second = std::max(Pair.second, 1U);
4664 }
4665
4666 // We calculate the interleave count using the following formula.
4667 // Subtract the number of loop invariants from the number of available
4668 // registers. These registers are used by all of the interleaved instances.
4669 // Next, divide the remaining registers by the number of registers that is
4670 // required by the loop, in order to estimate how many parallel instances
4671 // fit without causing spills. All of this is rounded down if necessary to be
4672 // a power of two. We want power of two interleave count to simplify any
4673 // addressing operations or alignment considerations.
4674 // We also want power of two interleave counts to ensure that the induction
4675 // variable of the vector loop wraps to zero, when tail is folded by masking;
4676 // this currently happens when OptForSize, in which case IC is set to 1 above.
4677 unsigned IC = UINT_MAX;
4678
4679 for (const auto &Pair : R.MaxLocalUsers) {
4680 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(Pair.first);
4681 LLVM_DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters
4682 << " registers of "
4683 << TTI.getRegisterClassName(Pair.first)
4684 << " register class\n");
4685 if (VF.isScalar()) {
4686 if (ForceTargetNumScalarRegs.getNumOccurrences() > 0)
4687 TargetNumRegisters = ForceTargetNumScalarRegs;
4688 } else {
4689 if (ForceTargetNumVectorRegs.getNumOccurrences() > 0)
4690 TargetNumRegisters = ForceTargetNumVectorRegs;
4691 }
4692 unsigned MaxLocalUsers = Pair.second;
4693 unsigned LoopInvariantRegs = 0;
4694 if (R.LoopInvariantRegs.contains(Pair.first))
4695 LoopInvariantRegs = R.LoopInvariantRegs[Pair.first];
4696
4697 unsigned TmpIC = llvm::bit_floor((TargetNumRegisters - LoopInvariantRegs) /
4698 MaxLocalUsers);
4699 // Don't count the induction variable as interleaved.
4701 TmpIC = llvm::bit_floor((TargetNumRegisters - LoopInvariantRegs - 1) /
4702 std::max(1U, (MaxLocalUsers - 1)));
4703 }
4704
4705 IC = std::min(IC, TmpIC);
4706 }
4707
4708 // Clamp the interleave ranges to reasonable counts.
4709 unsigned MaxInterleaveCount = TTI.getMaxInterleaveFactor(VF);
4710
4711 // Check if the user has overridden the max.
4712 if (VF.isScalar()) {
4713 if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0)
4714 MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor;
4715 } else {
4716 if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0)
4717 MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor;
4718 }
4719
4720 // Try to get the exact trip count, or an estimate based on profiling data or
4721 // ConstantMax from PSE, failing that.
4722 auto BestKnownTC = getSmallBestKnownTC(PSE, OrigLoop);
4723
4724 // For fixed length VFs treat a scalable trip count as unknown.
4725 if (BestKnownTC && (BestKnownTC->isFixed() || VF.isScalable())) {
4726 // Re-evaluate trip counts and VFs to be in the same numerical space.
4727 unsigned AvailableTC =
4728 estimateElementCount(*BestKnownTC, CM.getVScaleForTuning());
4729 unsigned EstimatedVF = estimateElementCount(VF, CM.getVScaleForTuning());
4730
4731 // At least one iteration must be scalar when this constraint holds. So the
4732 // maximum available iterations for interleaving is one less.
4733 if (CM.requiresScalarEpilogue(VF.isVector()))
4734 --AvailableTC;
4735
4736 unsigned InterleaveCountLB = bit_floor(std::max(
4737 1u, std::min(AvailableTC / (EstimatedVF * 2), MaxInterleaveCount)));
4738
4739 if (getSmallConstantTripCount(PSE.getSE(), OrigLoop).isNonZero()) {
4740 // If the best known trip count is exact, we select between two
4741 // prospective ICs, where
4742 //
4743 // 1) the aggressive IC is capped by the trip count divided by VF
4744 // 2) the conservative IC is capped by the trip count divided by (VF * 2)
4745 //
4746 // The final IC is selected in a way that the epilogue loop trip count is
4747 // minimized while maximizing the IC itself, so that we either run the
4748 // vector loop at least once if it generates a small epilogue loop, or
4749 // else we run the vector loop at least twice.
4750
4751 unsigned InterleaveCountUB = bit_floor(std::max(
4752 1u, std::min(AvailableTC / EstimatedVF, MaxInterleaveCount)));
4753 MaxInterleaveCount = InterleaveCountLB;
4754
4755 if (InterleaveCountUB != InterleaveCountLB) {
4756 unsigned TailTripCountUB =
4757 (AvailableTC % (EstimatedVF * InterleaveCountUB));
4758 unsigned TailTripCountLB =
4759 (AvailableTC % (EstimatedVF * InterleaveCountLB));
4760 // If both produce same scalar tail, maximize the IC to do the same work
4761 // in fewer vector loop iterations
4762 if (TailTripCountUB == TailTripCountLB)
4763 MaxInterleaveCount = InterleaveCountUB;
4764 }
4765 } else {
4766 // If trip count is an estimated compile time constant, limit the
4767 // IC to be capped by the trip count divided by VF * 2, such that the
4768 // vector loop runs at least twice to make interleaving seem profitable
4769 // when there is an epilogue loop present. Since exact Trip count is not
4770 // known we choose to be conservative in our IC estimate.
4771 MaxInterleaveCount = InterleaveCountLB;
4772 }
4773 }
4774
4775 assert(MaxInterleaveCount > 0 &&
4776 "Maximum interleave count must be greater than 0");
4777
4778 // Clamp the calculated IC to be between the 1 and the max interleave count
4779 // that the target and trip count allows.
4780 if (IC > MaxInterleaveCount)
4781 IC = MaxInterleaveCount;
4782 else
4783 // Make sure IC is greater than 0.
4784 IC = std::max(1u, IC);
4785
4786 assert(IC > 0 && "Interleave count must be greater than 0.");
4787
4788 // Interleave if we vectorized this loop and there is a reduction that could
4789 // benefit from interleaving.
4790 if (VF.isVector() && HasReductions) {
4791 LLVM_DEBUG(dbgs() << "LV: Interleaving because of reductions.\n");
4792 return IC;
4793 }
4794
4795 // For any scalar loop that either requires runtime checks or predication we
4796 // are better off leaving this to the unroller. Note that if we've already
4797 // vectorized the loop we will have done the runtime check and so interleaving
4798 // won't require further checks.
4799 bool ScalarInterleavingRequiresPredication =
4800 (VF.isScalar() && any_of(OrigLoop->blocks(), [this](BasicBlock *BB) {
4801 return Legal->blockNeedsPredication(BB);
4802 }));
4803 bool ScalarInterleavingRequiresRuntimePointerCheck =
4804 (VF.isScalar() && Legal->getRuntimePointerChecking()->Need);
4805
4806 // We want to interleave small loops in order to reduce the loop overhead and
4807 // potentially expose ILP opportunities.
4808 LLVM_DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n'
4809 << "LV: IC is " << IC << '\n'
4810 << "LV: VF is " << VF << '\n');
4811 const bool AggressivelyInterleaveReductions =
4812 TTI.enableAggressiveInterleaving(HasReductions);
4813 if (!ScalarInterleavingRequiresRuntimePointerCheck &&
4814 !ScalarInterleavingRequiresPredication && LoopCost < SmallLoopCost) {
4815 // We assume that the cost overhead is 1 and we use the cost model
4816 // to estimate the cost of the loop and interleave until the cost of the
4817 // loop overhead is about 5% of the cost of the loop.
4818 unsigned SmallIC = std::min(IC, (unsigned)llvm::bit_floor<uint64_t>(
4819 SmallLoopCost / LoopCost.getValue()));
4820
4821 // Interleave until store/load ports (estimated by max interleave count) are
4822 // saturated.
4823 unsigned NumStores = 0;
4824 unsigned NumLoads = 0;
4827 for (VPRecipeBase &R : *VPBB) {
4829 NumLoads++;
4830 continue;
4831 }
4833 NumStores++;
4834 continue;
4835 }
4836
4837 if (auto *InterleaveR = dyn_cast<VPInterleaveRecipe>(&R)) {
4838 if (unsigned StoreOps = InterleaveR->getNumStoreOperands())
4839 NumStores += StoreOps;
4840 else
4841 NumLoads += InterleaveR->getNumDefinedValues();
4842 continue;
4843 }
4844 if (auto *RepR = dyn_cast<VPReplicateRecipe>(&R)) {
4845 NumLoads += isa<LoadInst>(RepR->getUnderlyingInstr());
4846 NumStores += isa<StoreInst>(RepR->getUnderlyingInstr());
4847 continue;
4848 }
4849 if (isa<VPHistogramRecipe>(&R)) {
4850 NumLoads++;
4851 NumStores++;
4852 continue;
4853 }
4854 }
4855 }
4856 unsigned StoresIC = IC / (NumStores ? NumStores : 1);
4857 unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1);
4858
4859 // There is little point in interleaving for reductions containing selects
4860 // and compares when VF=1 since it may just create more overhead than it's
4861 // worth for loops with small trip counts. This is because we still have to
4862 // do the final reduction after the loop.
4863 bool HasSelectCmpReductions =
4864 HasReductions &&
4866 [](VPRecipeBase &R) {
4867 auto *RedR = dyn_cast<VPReductionPHIRecipe>(&R);
4868 return RedR && (RecurrenceDescriptor::isAnyOfRecurrenceKind(
4869 RedR->getRecurrenceKind()) ||
4870 RecurrenceDescriptor::isFindIVRecurrenceKind(
4871 RedR->getRecurrenceKind()));
4872 });
4873 if (HasSelectCmpReductions) {
4874 LLVM_DEBUG(dbgs() << "LV: Not interleaving select-cmp reductions.\n");
4875 return 1;
4876 }
4877
4878 // If we have a scalar reduction (vector reductions are already dealt with
4879 // by this point), we can increase the critical path length if the loop
4880 // we're interleaving is inside another loop. For tree-wise reductions
4881 // set the limit to 2, and for ordered reductions it's best to disable
4882 // interleaving entirely.
4883 if (HasReductions && OrigLoop->getLoopDepth() > 1) {
4884 bool HasOrderedReductions =
4886 [](VPRecipeBase &R) {
4887 auto *RedR = dyn_cast<VPReductionPHIRecipe>(&R);
4888
4889 return RedR && RedR->isOrdered();
4890 });
4891 if (HasOrderedReductions) {
4892 LLVM_DEBUG(
4893 dbgs() << "LV: Not interleaving scalar ordered reductions.\n");
4894 return 1;
4895 }
4896
4897 unsigned F = MaxNestedScalarReductionIC;
4898 SmallIC = std::min(SmallIC, F);
4899 StoresIC = std::min(StoresIC, F);
4900 LoadsIC = std::min(LoadsIC, F);
4901 }
4902
4904 std::max(StoresIC, LoadsIC) > SmallIC) {
4905 LLVM_DEBUG(
4906 dbgs() << "LV: Interleaving to saturate store or load ports.\n");
4907 return std::max(StoresIC, LoadsIC);
4908 }
4909
4910 // If there are scalar reductions and TTI has enabled aggressive
4911 // interleaving for reductions, we will interleave to expose ILP.
4912 if (VF.isScalar() && AggressivelyInterleaveReductions) {
4913 LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n");
4914 // Interleave no less than SmallIC but not as aggressive as the normal IC
4915 // to satisfy the rare situation when resources are too limited.
4916 return std::max(IC / 2, SmallIC);
4917 }
4918
4919 LLVM_DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n");
4920 return SmallIC;
4921 }
4922
4923 // Interleave if this is a large loop (small loops are already dealt with by
4924 // this point) that could benefit from interleaving.
4925 if (AggressivelyInterleaveReductions) {
4926 LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n");
4927 return IC;
4928 }
4929
4930 LLVM_DEBUG(dbgs() << "LV: Not Interleaving.\n");
4931 return 1;
4932}
4933
4934bool LoopVectorizationCostModel::useEmulatedMaskMemRefHack(Instruction *I,
4935 ElementCount VF) {
4936 // TODO: Cost model for emulated masked load/store is completely
4937 // broken. This hack guides the cost model to use an artificially
4938 // high enough value to practically disable vectorization with such
4939 // operations, except where previously deployed legality hack allowed
4940 // using very low cost values. This is to avoid regressions coming simply
4941 // from moving "masked load/store" check from legality to cost model.
4942 // Masked Load/Gather emulation was previously never allowed.
4943 // Limited number of Masked Store/Scatter emulation was allowed.
4944 assert((isPredicatedInst(I)) &&
4945 "Expecting a scalar emulated instruction");
4946 return isa<LoadInst>(I) ||
4947 (isa<StoreInst>(I) &&
4948 NumPredStores > NumberOfStoresToPredicate);
4949}
4950
4952 assert(VF.isVector() && "Expected VF >= 2");
4953
4954 // If we've already collected the instructions to scalarize or the predicated
4955 // BBs after vectorization, there's nothing to do. Collection may already have
4956 // occurred if we have a user-selected VF and are now computing the expected
4957 // cost for interleaving.
4958 if (InstsToScalarize.contains(VF) ||
4959 PredicatedBBsAfterVectorization.contains(VF))
4960 return;
4961
4962 // Initialize a mapping for VF in InstsToScalalarize. If we find that it's
4963 // not profitable to scalarize any instructions, the presence of VF in the
4964 // map will indicate that we've analyzed it already.
4965 ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF];
4966
4967 // Find all the instructions that are scalar with predication in the loop and
4968 // determine if it would be better to not if-convert the blocks they are in.
4969 // If so, we also record the instructions to scalarize.
4970 for (BasicBlock *BB : TheLoop->blocks()) {
4972 continue;
4973 for (Instruction &I : *BB)
4974 if (isScalarWithPredication(&I, VF)) {
4975 ScalarCostsTy ScalarCosts;
4976 // Do not apply discount logic for:
4977 // 1. Scalars after vectorization, as there will only be a single copy
4978 // of the instruction.
4979 // 2. Scalable VF, as that would lead to invalid scalarization costs.
4980 // 3. Emulated masked memrefs, if a hacked cost is needed.
4981 if (!isScalarAfterVectorization(&I, VF) && !VF.isScalable() &&
4982 !useEmulatedMaskMemRefHack(&I, VF) &&
4983 computePredInstDiscount(&I, ScalarCosts, VF) >= 0) {
4984 for (const auto &[I, IC] : ScalarCosts)
4985 ScalarCostsVF.insert({I, IC});
4986 // Check if we decided to scalarize a call. If so, update the widening
4987 // decision of the call to CM_Scalarize with the computed scalar cost.
4988 for (const auto &[I, Cost] : ScalarCosts) {
4989 auto *CI = dyn_cast<CallInst>(I);
4990 if (!CI || !CallWideningDecisions.contains({CI, VF}))
4991 continue;
4992 CallWideningDecisions[{CI, VF}].Kind = CM_Scalarize;
4993 CallWideningDecisions[{CI, VF}].Cost = Cost;
4994 }
4995 }
4996 // Remember that BB will remain after vectorization.
4997 PredicatedBBsAfterVectorization[VF].insert(BB);
4998 for (auto *Pred : predecessors(BB)) {
4999 if (Pred->getSingleSuccessor() == BB)
5000 PredicatedBBsAfterVectorization[VF].insert(Pred);
5001 }
5002 }
5003 }
5004}
5005
5006InstructionCost LoopVectorizationCostModel::computePredInstDiscount(
5007 Instruction *PredInst, ScalarCostsTy &ScalarCosts, ElementCount VF) {
5008 assert(!isUniformAfterVectorization(PredInst, VF) &&
5009 "Instruction marked uniform-after-vectorization will be predicated");
5010
5011 // Initialize the discount to zero, meaning that the scalar version and the
5012 // vector version cost the same.
5013 InstructionCost Discount = 0;
5014
5015 // Holds instructions to analyze. The instructions we visit are mapped in
5016 // ScalarCosts. Those instructions are the ones that would be scalarized if
5017 // we find that the scalar version costs less.
5019
5020 // Returns true if the given instruction can be scalarized.
5021 auto CanBeScalarized = [&](Instruction *I) -> bool {
5022 // We only attempt to scalarize instructions forming a single-use chain
5023 // from the original predicated block that would otherwise be vectorized.
5024 // Although not strictly necessary, we give up on instructions we know will
5025 // already be scalar to avoid traversing chains that are unlikely to be
5026 // beneficial.
5027 if (!I->hasOneUse() || PredInst->getParent() != I->getParent() ||
5028 isScalarAfterVectorization(I, VF))
5029 return false;
5030
5031 // If the instruction is scalar with predication, it will be analyzed
5032 // separately. We ignore it within the context of PredInst.
5033 if (isScalarWithPredication(I, VF))
5034 return false;
5035
5036 // If any of the instruction's operands are uniform after vectorization,
5037 // the instruction cannot be scalarized. This prevents, for example, a
5038 // masked load from being scalarized.
5039 //
5040 // We assume we will only emit a value for lane zero of an instruction
5041 // marked uniform after vectorization, rather than VF identical values.
5042 // Thus, if we scalarize an instruction that uses a uniform, we would
5043 // create uses of values corresponding to the lanes we aren't emitting code
5044 // for. This behavior can be changed by allowing getScalarValue to clone
5045 // the lane zero values for uniforms rather than asserting.
5046 for (Use &U : I->operands())
5047 if (auto *J = dyn_cast<Instruction>(U.get()))
5048 if (isUniformAfterVectorization(J, VF))
5049 return false;
5050
5051 // Otherwise, we can scalarize the instruction.
5052 return true;
5053 };
5054
5055 // Compute the expected cost discount from scalarizing the entire expression
5056 // feeding the predicated instruction. We currently only consider expressions
5057 // that are single-use instruction chains.
5058 Worklist.push_back(PredInst);
5059 while (!Worklist.empty()) {
5060 Instruction *I = Worklist.pop_back_val();
5061
5062 // If we've already analyzed the instruction, there's nothing to do.
5063 if (ScalarCosts.contains(I))
5064 continue;
5065
5066 // Cannot scalarize fixed-order recurrence phis at the moment.
5067 if (isa<PHINode>(I) && Legal->isFixedOrderRecurrence(cast<PHINode>(I)))
5068 continue;
5069
5070 // Compute the cost of the vector instruction. Note that this cost already
5071 // includes the scalarization overhead of the predicated instruction.
5072 InstructionCost VectorCost = getInstructionCost(I, VF);
5073
5074 // Compute the cost of the scalarized instruction. This cost is the cost of
5075 // the instruction as if it wasn't if-converted and instead remained in the
5076 // predicated block. We will scale this cost by block probability after
5077 // computing the scalarization overhead.
5078 InstructionCost ScalarCost =
5079 VF.getFixedValue() * getInstructionCost(I, ElementCount::getFixed(1));
5080
5081 // Compute the scalarization overhead of needed insertelement instructions
5082 // and phi nodes.
5083 if (isScalarWithPredication(I, VF) && !I->getType()->isVoidTy()) {
5084 Type *WideTy = toVectorizedTy(I->getType(), VF);
5085 for (Type *VectorTy : getContainedTypes(WideTy)) {
5086 ScalarCost += TTI.getScalarizationOverhead(
5088 /*Insert=*/true,
5089 /*Extract=*/false, CostKind);
5090 }
5091 ScalarCost +=
5092 VF.getFixedValue() * TTI.getCFInstrCost(Instruction::PHI, CostKind);
5093 }
5094
5095 // Compute the scalarization overhead of needed extractelement
5096 // instructions. For each of the instruction's operands, if the operand can
5097 // be scalarized, add it to the worklist; otherwise, account for the
5098 // overhead.
5099 for (Use &U : I->operands())
5100 if (auto *J = dyn_cast<Instruction>(U.get())) {
5101 assert(canVectorizeTy(J->getType()) &&
5102 "Instruction has non-scalar type");
5103 if (CanBeScalarized(J))
5104 Worklist.push_back(J);
5105 else if (needsExtract(J, VF)) {
5106 Type *WideTy = toVectorizedTy(J->getType(), VF);
5107 for (Type *VectorTy : getContainedTypes(WideTy)) {
5108 ScalarCost += TTI.getScalarizationOverhead(
5109 cast<VectorType>(VectorTy),
5110 APInt::getAllOnes(VF.getFixedValue()), /*Insert*/ false,
5111 /*Extract*/ true, CostKind);
5112 }
5113 }
5114 }
5115
5116 // Scale the total scalar cost by block probability.
5117 ScalarCost /= getPredBlockCostDivisor(CostKind, I->getParent());
5118
5119 // Compute the discount. A non-negative discount means the vector version
5120 // of the instruction costs more, and scalarizing would be beneficial.
5121 Discount += VectorCost - ScalarCost;
5122 ScalarCosts[I] = ScalarCost;
5123 }
5124
5125 return Discount;
5126}
5127
5130
5131 // If the vector loop gets executed exactly once with the given VF, ignore the
5132 // costs of comparison and induction instructions, as they'll get simplified
5133 // away.
5134 SmallPtrSet<Instruction *, 2> ValuesToIgnoreForVF;
5135 auto TC = getSmallConstantTripCount(PSE.getSE(), TheLoop);
5136 if (TC == VF && !foldTailByMasking())
5138 ValuesToIgnoreForVF);
5139
5140 // For each block.
5141 for (BasicBlock *BB : TheLoop->blocks()) {
5142 InstructionCost BlockCost;
5143
5144 // For each instruction in the old loop.
5145 for (Instruction &I : BB->instructionsWithoutDebug()) {
5146 // Skip ignored values.
5147 if (ValuesToIgnore.count(&I) || ValuesToIgnoreForVF.count(&I) ||
5148 (VF.isVector() && VecValuesToIgnore.count(&I)))
5149 continue;
5150
5152
5153 // Check if we should override the cost.
5154 if (C.isValid() && ForceTargetInstructionCost.getNumOccurrences() > 0) {
5155 // For interleave groups, use ForceTargetInstructionCost once for the
5156 // whole group.
5157 if (VF.isVector() && getWideningDecision(&I, VF) == CM_Interleave) {
5158 if (getInterleavedAccessGroup(&I)->getInsertPos() == &I)
5160 else
5161 C = InstructionCost(0);
5162 } else {
5164 }
5165 }
5166
5167 BlockCost += C;
5168 LLVM_DEBUG(dbgs() << "LV: Found an estimated cost of " << C << " for VF "
5169 << VF << " For instruction: " << I << '\n');
5170 }
5171
5172 // If we are vectorizing a predicated block, it will have been
5173 // if-converted. This means that the block's instructions (aside from
5174 // stores and instructions that may divide by zero) will now be
5175 // unconditionally executed. For the scalar case, we may not always execute
5176 // the predicated block, if it is an if-else block. Thus, scale the block's
5177 // cost by the probability of executing it.
5178 // getPredBlockCostDivisor will return 1 for blocks that are only predicated
5179 // by the header mask when folding the tail.
5180 if (VF.isScalar())
5181 BlockCost /= getPredBlockCostDivisor(CostKind, BB);
5182
5183 Cost += BlockCost;
5184 }
5185
5186 return Cost;
5187}
5188
5189/// Gets Address Access SCEV after verifying that the access pattern
5190/// is loop invariant except the induction variable dependence.
5191///
5192/// This SCEV can be sent to the Target in order to estimate the address
5193/// calculation cost.
5195 Value *Ptr,
5198 const Loop *TheLoop) {
5199
5200 auto *Gep = dyn_cast<GetElementPtrInst>(Ptr);
5201 if (!Gep)
5202 return nullptr;
5203
5204 // We are looking for a gep with all loop invariant indices except for one
5205 // which should be an induction variable.
5206 auto *SE = PSE.getSE();
5207 unsigned NumOperands = Gep->getNumOperands();
5208 for (unsigned Idx = 1; Idx < NumOperands; ++Idx) {
5209 Value *Opd = Gep->getOperand(Idx);
5210 if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) &&
5211 !Legal->isInductionVariable(Opd))
5212 return nullptr;
5213 }
5214
5215 // Now we know we have a GEP ptr, %inv, %ind, %inv. return the Ptr SCEV.
5216 return PSE.getSCEV(Ptr);
5217}
5218
5220LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *I,
5221 ElementCount VF) {
5222 assert(VF.isVector() &&
5223 "Scalarization cost of instruction implies vectorization.");
5224 if (VF.isScalable())
5225 return InstructionCost::getInvalid();
5226
5227 Type *ValTy = getLoadStoreType(I);
5228 auto *SE = PSE.getSE();
5229
5230 unsigned AS = getLoadStoreAddressSpace(I);
5232 Type *PtrTy = toVectorTy(Ptr->getType(), VF);
5233 // NOTE: PtrTy is a vector to signal `TTI::getAddressComputationCost`
5234 // that it is being called from this specific place.
5235
5236 // Figure out whether the access is strided and get the stride value
5237 // if it's known in compile time
5238 const SCEV *PtrSCEV = getAddressAccessSCEV(Ptr, Legal, PSE, TheLoop);
5239
5240 // Get the cost of the scalar memory instruction and address computation.
5242 PtrTy, SE, PtrSCEV, CostKind);
5243
5244 // Don't pass *I here, since it is scalar but will actually be part of a
5245 // vectorized loop where the user of it is a vectorized instruction.
5246 const Align Alignment = getLoadStoreAlignment(I);
5247 TTI::OperandValueInfo OpInfo = TTI::getOperandInfo(I->getOperand(0));
5248 Cost += VF.getFixedValue() *
5249 TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), Alignment,
5250 AS, CostKind, OpInfo);
5251
5252 // Get the overhead of the extractelement and insertelement instructions
5253 // we might create due to scalarization.
5255
5256 // If we have a predicated load/store, it will need extra i1 extracts and
5257 // conditional branches, but may not be executed for each vector lane. Scale
5258 // the cost by the probability of executing the predicated block.
5259 if (isPredicatedInst(I)) {
5260 Cost /= getPredBlockCostDivisor(CostKind, I->getParent());
5261
5262 // Add the cost of an i1 extract and a branch
5263 auto *VecI1Ty =
5264 VectorType::get(IntegerType::getInt1Ty(ValTy->getContext()), VF);
5266 VecI1Ty, APInt::getAllOnes(VF.getFixedValue()),
5267 /*Insert=*/false, /*Extract=*/true, CostKind);
5268 Cost += TTI.getCFInstrCost(Instruction::Br, CostKind);
5269
5270 if (useEmulatedMaskMemRefHack(I, VF))
5271 // Artificially setting to a high enough value to practically disable
5272 // vectorization with such operations.
5273 Cost = 3000000;
5274 }
5275
5276 return Cost;
5277}
5278
5280LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *I,
5281 ElementCount VF) {
5282 Type *ValTy = getLoadStoreType(I);
5283 auto *VectorTy = cast<VectorType>(toVectorTy(ValTy, VF));
5285 unsigned AS = getLoadStoreAddressSpace(I);
5286 int ConsecutiveStride = Legal->isConsecutivePtr(ValTy, Ptr);
5287
5288 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) &&
5289 "Stride should be 1 or -1 for consecutive memory access");
5290 const Align Alignment = getLoadStoreAlignment(I);
5292 if (Legal->isMaskRequired(I)) {
5293 unsigned IID = I->getOpcode() == Instruction::Load
5294 ? Intrinsic::masked_load
5295 : Intrinsic::masked_store;
5297 MemIntrinsicCostAttributes(IID, VectorTy, Alignment, AS), CostKind);
5298 } else {
5299 TTI::OperandValueInfo OpInfo = TTI::getOperandInfo(I->getOperand(0));
5300 Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS,
5301 CostKind, OpInfo, I);
5302 }
5303
5304 bool Reverse = ConsecutiveStride < 0;
5305 if (Reverse)
5307 VectorTy, {}, CostKind, 0);
5308 return Cost;
5309}
5310
5312LoopVectorizationCostModel::getUniformMemOpCost(Instruction *I,
5313 ElementCount VF) {
5314 assert(Legal->isUniformMemOp(*I, VF));
5315
5316 Type *ValTy = getLoadStoreType(I);
5318 auto *VectorTy = cast<VectorType>(toVectorTy(ValTy, VF));
5319 const Align Alignment = getLoadStoreAlignment(I);
5320 unsigned AS = getLoadStoreAddressSpace(I);
5321 if (isa<LoadInst>(I)) {
5322 return TTI.getAddressComputationCost(PtrTy, nullptr, nullptr, CostKind) +
5323 TTI.getMemoryOpCost(Instruction::Load, ValTy, Alignment, AS,
5324 CostKind) +
5326 VectorTy, {}, CostKind);
5327 }
5328 StoreInst *SI = cast<StoreInst>(I);
5329
5330 bool IsLoopInvariantStoreValue = Legal->isInvariant(SI->getValueOperand());
5331 // TODO: We have existing tests that request the cost of extracting element
5332 // VF.getKnownMinValue() - 1 from a scalable vector. This does not represent
5333 // the actual generated code, which involves extracting the last element of
5334 // a scalable vector where the lane to extract is unknown at compile time.
5336 TTI.getAddressComputationCost(PtrTy, nullptr, nullptr, CostKind) +
5337 TTI.getMemoryOpCost(Instruction::Store, ValTy, Alignment, AS, CostKind);
5338 if (!IsLoopInvariantStoreValue)
5339 Cost += TTI.getIndexedVectorInstrCostFromEnd(Instruction::ExtractElement,
5340 VectorTy, CostKind, 0);
5341 return Cost;
5342}
5343
5345LoopVectorizationCostModel::getGatherScatterCost(Instruction *I,
5346 ElementCount VF) {
5347 Type *ValTy = getLoadStoreType(I);
5348 auto *VectorTy = cast<VectorType>(toVectorTy(ValTy, VF));
5349 const Align Alignment = getLoadStoreAlignment(I);
5351 Type *PtrTy = Ptr->getType();
5352
5353 if (!Legal->isUniform(Ptr, VF))
5354 PtrTy = toVectorTy(PtrTy, VF);
5355
5356 unsigned IID = I->getOpcode() == Instruction::Load
5357 ? Intrinsic::masked_gather
5358 : Intrinsic::masked_scatter;
5359 return TTI.getAddressComputationCost(PtrTy, nullptr, nullptr, CostKind) +
5361 MemIntrinsicCostAttributes(IID, VectorTy, Ptr,
5362 Legal->isMaskRequired(I), Alignment, I),
5363 CostKind);
5364}
5365
5367LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *I,
5368 ElementCount VF) {
5369 const auto *Group = getInterleavedAccessGroup(I);
5370 assert(Group && "Fail to get an interleaved access group.");
5371
5372 Instruction *InsertPos = Group->getInsertPos();
5373 Type *ValTy = getLoadStoreType(InsertPos);
5374 auto *VectorTy = cast<VectorType>(toVectorTy(ValTy, VF));
5375 unsigned AS = getLoadStoreAddressSpace(InsertPos);
5376
5377 unsigned InterleaveFactor = Group->getFactor();
5378 auto *WideVecTy = VectorType::get(ValTy, VF * InterleaveFactor);
5379
5380 // Holds the indices of existing members in the interleaved group.
5381 SmallVector<unsigned, 4> Indices;
5382 for (unsigned IF = 0; IF < InterleaveFactor; IF++)
5383 if (Group->getMember(IF))
5384 Indices.push_back(IF);
5385
5386 // Calculate the cost of the whole interleaved group.
5387 bool UseMaskForGaps =
5388 (Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed()) ||
5389 (isa<StoreInst>(I) && !Group->isFull());
5391 InsertPos->getOpcode(), WideVecTy, Group->getFactor(), Indices,
5392 Group->getAlign(), AS, CostKind, Legal->isMaskRequired(I),
5393 UseMaskForGaps);
5394
5395 if (Group->isReverse()) {
5396 // TODO: Add support for reversed masked interleaved access.
5397 assert(!Legal->isMaskRequired(I) &&
5398 "Reverse masked interleaved access not supported.");
5399 Cost += Group->getNumMembers() *
5401 VectorTy, {}, CostKind, 0);
5402 }
5403 return Cost;
5404}
5405
5406std::optional<InstructionCost>
5408 ElementCount VF,
5409 Type *Ty) const {
5410 using namespace llvm::PatternMatch;
5411 // Early exit for no inloop reductions
5412 if (InLoopReductions.empty() || VF.isScalar() || !isa<VectorType>(Ty))
5413 return std::nullopt;
5414 auto *VectorTy = cast<VectorType>(Ty);
5415
5416 // We are looking for a pattern of, and finding the minimal acceptable cost:
5417 // reduce(mul(ext(A), ext(B))) or
5418 // reduce(mul(A, B)) or
5419 // reduce(ext(A)) or
5420 // reduce(A).
5421 // The basic idea is that we walk down the tree to do that, finding the root
5422 // reduction instruction in InLoopReductionImmediateChains. From there we find
5423 // the pattern of mul/ext and test the cost of the entire pattern vs the cost
5424 // of the components. If the reduction cost is lower then we return it for the
5425 // reduction instruction and 0 for the other instructions in the pattern. If
5426 // it is not we return an invalid cost specifying the orignal cost method
5427 // should be used.
5428 Instruction *RetI = I;
5429 if (match(RetI, m_ZExtOrSExt(m_Value()))) {
5430 if (!RetI->hasOneUser())
5431 return std::nullopt;
5432 RetI = RetI->user_back();
5433 }
5434
5435 if (match(RetI, m_OneUse(m_Mul(m_Value(), m_Value()))) &&
5436 RetI->user_back()->getOpcode() == Instruction::Add) {
5437 RetI = RetI->user_back();
5438 }
5439
5440 // Test if the found instruction is a reduction, and if not return an invalid
5441 // cost specifying the parent to use the original cost modelling.
5442 Instruction *LastChain = InLoopReductionImmediateChains.lookup(RetI);
5443 if (!LastChain)
5444 return std::nullopt;
5445
5446 // Find the reduction this chain is a part of and calculate the basic cost of
5447 // the reduction on its own.
5448 Instruction *ReductionPhi = LastChain;
5449 while (!isa<PHINode>(ReductionPhi))
5450 ReductionPhi = InLoopReductionImmediateChains.at(ReductionPhi);
5451
5452 const RecurrenceDescriptor &RdxDesc =
5453 Legal->getRecurrenceDescriptor(cast<PHINode>(ReductionPhi));
5454
5455 InstructionCost BaseCost;
5456 RecurKind RK = RdxDesc.getRecurrenceKind();
5459 BaseCost = TTI.getMinMaxReductionCost(MinMaxID, VectorTy,
5460 RdxDesc.getFastMathFlags(), CostKind);
5461 } else {
5462 BaseCost = TTI.getArithmeticReductionCost(
5463 RdxDesc.getOpcode(), VectorTy, RdxDesc.getFastMathFlags(), CostKind);
5464 }
5465
5466 // For a call to the llvm.fmuladd intrinsic we need to add the cost of a
5467 // normal fmul instruction to the cost of the fadd reduction.
5468 if (RK == RecurKind::FMulAdd)
5469 BaseCost +=
5470 TTI.getArithmeticInstrCost(Instruction::FMul, VectorTy, CostKind);
5471
5472 // If we're using ordered reductions then we can just return the base cost
5473 // here, since getArithmeticReductionCost calculates the full ordered
5474 // reduction cost when FP reassociation is not allowed.
5475 if (useOrderedReductions(RdxDesc))
5476 return BaseCost;
5477
5478 // Get the operand that was not the reduction chain and match it to one of the
5479 // patterns, returning the better cost if it is found.
5480 Instruction *RedOp = RetI->getOperand(1) == LastChain
5483
5484 VectorTy = VectorType::get(I->getOperand(0)->getType(), VectorTy);
5485
5486 Instruction *Op0, *Op1;
5487 if (RedOp && RdxDesc.getOpcode() == Instruction::Add &&
5488 match(RedOp,
5490 match(Op0, m_ZExtOrSExt(m_Value())) &&
5491 Op0->getOpcode() == Op1->getOpcode() &&
5492 Op0->getOperand(0)->getType() == Op1->getOperand(0)->getType() &&
5493 !TheLoop->isLoopInvariant(Op0) && !TheLoop->isLoopInvariant(Op1) &&
5494 (Op0->getOpcode() == RedOp->getOpcode() || Op0 == Op1)) {
5495
5496 // Matched reduce.add(ext(mul(ext(A), ext(B)))
5497 // Note that the extend opcodes need to all match, or if A==B they will have
5498 // been converted to zext(mul(sext(A), sext(A))) as it is known positive,
5499 // which is equally fine.
5500 bool IsUnsigned = isa<ZExtInst>(Op0);
5501 auto *ExtType = VectorType::get(Op0->getOperand(0)->getType(), VectorTy);
5502 auto *MulType = VectorType::get(Op0->getType(), VectorTy);
5503
5504 InstructionCost ExtCost =
5505 TTI.getCastInstrCost(Op0->getOpcode(), MulType, ExtType,
5507 InstructionCost MulCost =
5508 TTI.getArithmeticInstrCost(Instruction::Mul, MulType, CostKind);
5509 InstructionCost Ext2Cost =
5510 TTI.getCastInstrCost(RedOp->getOpcode(), VectorTy, MulType,
5512
5513 InstructionCost RedCost = TTI.getMulAccReductionCost(
5514 IsUnsigned, RdxDesc.getOpcode(), RdxDesc.getRecurrenceType(), ExtType,
5515 CostKind);
5516
5517 if (RedCost.isValid() &&
5518 RedCost < ExtCost * 2 + MulCost + Ext2Cost + BaseCost)
5519 return I == RetI ? RedCost : 0;
5520 } else if (RedOp && match(RedOp, m_ZExtOrSExt(m_Value())) &&
5521 !TheLoop->isLoopInvariant(RedOp)) {
5522 // Matched reduce(ext(A))
5523 bool IsUnsigned = isa<ZExtInst>(RedOp);
5524 auto *ExtType = VectorType::get(RedOp->getOperand(0)->getType(), VectorTy);
5525 InstructionCost RedCost = TTI.getExtendedReductionCost(
5526 RdxDesc.getOpcode(), IsUnsigned, RdxDesc.getRecurrenceType(), ExtType,
5527 RdxDesc.getFastMathFlags(), CostKind);
5528
5529 InstructionCost ExtCost =
5530 TTI.getCastInstrCost(RedOp->getOpcode(), VectorTy, ExtType,
5532 if (RedCost.isValid() && RedCost < BaseCost + ExtCost)
5533 return I == RetI ? RedCost : 0;
5534 } else if (RedOp && RdxDesc.getOpcode() == Instruction::Add &&
5535 match(RedOp, m_Mul(m_Instruction(Op0), m_Instruction(Op1)))) {
5536 if (match(Op0, m_ZExtOrSExt(m_Value())) &&
5537 Op0->getOpcode() == Op1->getOpcode() &&
5538 !TheLoop->isLoopInvariant(Op0) && !TheLoop->isLoopInvariant(Op1)) {
5539 bool IsUnsigned = isa<ZExtInst>(Op0);
5540 Type *Op0Ty = Op0->getOperand(0)->getType();
5541 Type *Op1Ty = Op1->getOperand(0)->getType();
5542 Type *LargestOpTy =
5543 Op0Ty->getIntegerBitWidth() < Op1Ty->getIntegerBitWidth() ? Op1Ty
5544 : Op0Ty;
5545 auto *ExtType = VectorType::get(LargestOpTy, VectorTy);
5546
5547 // Matched reduce.add(mul(ext(A), ext(B))), where the two ext may be of
5548 // different sizes. We take the largest type as the ext to reduce, and add
5549 // the remaining cost as, for example reduce(mul(ext(ext(A)), ext(B))).
5550 InstructionCost ExtCost0 = TTI.getCastInstrCost(
5551 Op0->getOpcode(), VectorTy, VectorType::get(Op0Ty, VectorTy),
5553 InstructionCost ExtCost1 = TTI.getCastInstrCost(
5554 Op1->getOpcode(), VectorTy, VectorType::get(Op1Ty, VectorTy),
5556 InstructionCost MulCost =
5557 TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind);
5558
5559 InstructionCost RedCost = TTI.getMulAccReductionCost(
5560 IsUnsigned, RdxDesc.getOpcode(), RdxDesc.getRecurrenceType(), ExtType,
5561 CostKind);
5562 InstructionCost ExtraExtCost = 0;
5563 if (Op0Ty != LargestOpTy || Op1Ty != LargestOpTy) {
5564 Instruction *ExtraExtOp = (Op0Ty != LargestOpTy) ? Op0 : Op1;
5565 ExtraExtCost = TTI.getCastInstrCost(
5566 ExtraExtOp->getOpcode(), ExtType,
5567 VectorType::get(ExtraExtOp->getOperand(0)->getType(), VectorTy),
5569 }
5570
5571 if (RedCost.isValid() &&
5572 (RedCost + ExtraExtCost) < (ExtCost0 + ExtCost1 + MulCost + BaseCost))
5573 return I == RetI ? RedCost : 0;
5574 } else if (!match(I, m_ZExtOrSExt(m_Value()))) {
5575 // Matched reduce.add(mul())
5576 InstructionCost MulCost =
5577 TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind);
5578
5579 InstructionCost RedCost = TTI.getMulAccReductionCost(
5580 true, RdxDesc.getOpcode(), RdxDesc.getRecurrenceType(), VectorTy,
5581 CostKind);
5582
5583 if (RedCost.isValid() && RedCost < MulCost + BaseCost)
5584 return I == RetI ? RedCost : 0;
5585 }
5586 }
5587
5588 return I == RetI ? std::optional<InstructionCost>(BaseCost) : std::nullopt;
5589}
5590
5592LoopVectorizationCostModel::getMemoryInstructionCost(Instruction *I,
5593 ElementCount VF) {
5594 // Calculate scalar cost only. Vectorization cost should be ready at this
5595 // moment.
5596 if (VF.isScalar()) {
5597 Type *ValTy = getLoadStoreType(I);
5599 const Align Alignment = getLoadStoreAlignment(I);
5600 unsigned AS = getLoadStoreAddressSpace(I);
5601
5602 TTI::OperandValueInfo OpInfo = TTI::getOperandInfo(I->getOperand(0));
5603 return TTI.getAddressComputationCost(PtrTy, nullptr, nullptr, CostKind) +
5604 TTI.getMemoryOpCost(I->getOpcode(), ValTy, Alignment, AS, CostKind,
5605 OpInfo, I);
5606 }
5607 return getWideningCost(I, VF);
5608}
5609
5611LoopVectorizationCostModel::getScalarizationOverhead(Instruction *I,
5612 ElementCount VF) const {
5613
5614 // There is no mechanism yet to create a scalable scalarization loop,
5615 // so this is currently Invalid.
5616 if (VF.isScalable())
5617 return InstructionCost::getInvalid();
5618
5619 if (VF.isScalar())
5620 return 0;
5621
5623 Type *RetTy = toVectorizedTy(I->getType(), VF);
5624 if (!RetTy->isVoidTy() &&
5626
5627 for (Type *VectorTy : getContainedTypes(RetTy)) {
5630 /*Insert=*/true,
5631 /*Extract=*/false, CostKind);
5632 }
5633 }
5634
5635 // Some targets keep addresses scalar.
5637 return Cost;
5638
5639 // Some targets support efficient element stores.
5641 return Cost;
5642
5643 // Collect operands to consider.
5644 CallInst *CI = dyn_cast<CallInst>(I);
5645 Instruction::op_range Ops = CI ? CI->args() : I->operands();
5646
5647 // Skip operands that do not require extraction/scalarization and do not incur
5648 // any overhead.
5650 for (auto *V : filterExtractingOperands(Ops, VF))
5651 Tys.push_back(maybeVectorizeType(V->getType(), VF));
5653}
5654
5656 if (VF.isScalar())
5657 return;
5658 NumPredStores = 0;
5659 for (BasicBlock *BB : TheLoop->blocks()) {
5660 // For each instruction in the old loop.
5661 for (Instruction &I : *BB) {
5663 if (!Ptr)
5664 continue;
5665
5666 // TODO: We should generate better code and update the cost model for
5667 // predicated uniform stores. Today they are treated as any other
5668 // predicated store (see added test cases in
5669 // invariant-store-vectorization.ll).
5671 NumPredStores++;
5672
5673 if (Legal->isUniformMemOp(I, VF)) {
5674 auto IsLegalToScalarize = [&]() {
5675 if (!VF.isScalable())
5676 // Scalarization of fixed length vectors "just works".
5677 return true;
5678
5679 // We have dedicated lowering for unpredicated uniform loads and
5680 // stores. Note that even with tail folding we know that at least
5681 // one lane is active (i.e. generalized predication is not possible
5682 // here), and the logic below depends on this fact.
5683 if (!foldTailByMasking())
5684 return true;
5685
5686 // For scalable vectors, a uniform memop load is always
5687 // uniform-by-parts and we know how to scalarize that.
5688 if (isa<LoadInst>(I))
5689 return true;
5690
5691 // A uniform store isn't neccessarily uniform-by-part
5692 // and we can't assume scalarization.
5693 auto &SI = cast<StoreInst>(I);
5694 return TheLoop->isLoopInvariant(SI.getValueOperand());
5695 };
5696
5697 const InstructionCost GatherScatterCost =
5699 getGatherScatterCost(&I, VF) : InstructionCost::getInvalid();
5700
5701 // Load: Scalar load + broadcast
5702 // Store: Scalar store + isLoopInvariantStoreValue ? 0 : extract
5703 // FIXME: This cost is a significant under-estimate for tail folded
5704 // memory ops.
5705 const InstructionCost ScalarizationCost =
5706 IsLegalToScalarize() ? getUniformMemOpCost(&I, VF)
5708
5709 // Choose better solution for the current VF, Note that Invalid
5710 // costs compare as maximumal large. If both are invalid, we get
5711 // scalable invalid which signals a failure and a vectorization abort.
5712 if (GatherScatterCost < ScalarizationCost)
5713 setWideningDecision(&I, VF, CM_GatherScatter, GatherScatterCost);
5714 else
5715 setWideningDecision(&I, VF, CM_Scalarize, ScalarizationCost);
5716 continue;
5717 }
5718
5719 // We assume that widening is the best solution when possible.
5720 if (memoryInstructionCanBeWidened(&I, VF)) {
5721 InstructionCost Cost = getConsecutiveMemOpCost(&I, VF);
5722 int ConsecutiveStride = Legal->isConsecutivePtr(
5724 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) &&
5725 "Expected consecutive stride.");
5726 InstWidening Decision =
5727 ConsecutiveStride == 1 ? CM_Widen : CM_Widen_Reverse;
5728 setWideningDecision(&I, VF, Decision, Cost);
5729 continue;
5730 }
5731
5732 // Choose between Interleaving, Gather/Scatter or Scalarization.
5734 unsigned NumAccesses = 1;
5735 if (isAccessInterleaved(&I)) {
5736 const auto *Group = getInterleavedAccessGroup(&I);
5737 assert(Group && "Fail to get an interleaved access group.");
5738
5739 // Make one decision for the whole group.
5740 if (getWideningDecision(&I, VF) != CM_Unknown)
5741 continue;
5742
5743 NumAccesses = Group->getNumMembers();
5745 InterleaveCost = getInterleaveGroupCost(&I, VF);
5746 }
5747
5748 InstructionCost GatherScatterCost =
5750 ? getGatherScatterCost(&I, VF) * NumAccesses
5752
5753 InstructionCost ScalarizationCost =
5754 getMemInstScalarizationCost(&I, VF) * NumAccesses;
5755
5756 // Choose better solution for the current VF,
5757 // write down this decision and use it during vectorization.
5759 InstWidening Decision;
5760 if (InterleaveCost <= GatherScatterCost &&
5761 InterleaveCost < ScalarizationCost) {
5762 Decision = CM_Interleave;
5763 Cost = InterleaveCost;
5764 } else if (GatherScatterCost < ScalarizationCost) {
5765 Decision = CM_GatherScatter;
5766 Cost = GatherScatterCost;
5767 } else {
5768 Decision = CM_Scalarize;
5769 Cost = ScalarizationCost;
5770 }
5771 // If the instructions belongs to an interleave group, the whole group
5772 // receives the same decision. The whole group receives the cost, but
5773 // the cost will actually be assigned to one instruction.
5774 if (const auto *Group = getInterleavedAccessGroup(&I)) {
5775 if (Decision == CM_Scalarize) {
5776 for (unsigned Idx = 0; Idx < Group->getFactor(); ++Idx) {
5777 if (auto *I = Group->getMember(Idx)) {
5778 setWideningDecision(I, VF, Decision,
5779 getMemInstScalarizationCost(I, VF));
5780 }
5781 }
5782 } else {
5783 setWideningDecision(Group, VF, Decision, Cost);
5784 }
5785 } else
5786 setWideningDecision(&I, VF, Decision, Cost);
5787 }
5788 }
5789
5790 // Make sure that any load of address and any other address computation
5791 // remains scalar unless there is gather/scatter support. This avoids
5792 // inevitable extracts into address registers, and also has the benefit of
5793 // activating LSR more, since that pass can't optimize vectorized
5794 // addresses.
5795 if (TTI.prefersVectorizedAddressing())
5796 return;
5797
5798 // Start with all scalar pointer uses.
5800 for (BasicBlock *BB : TheLoop->blocks())
5801 for (Instruction &I : *BB) {
5802 Instruction *PtrDef =
5804 if (PtrDef && TheLoop->contains(PtrDef) &&
5806 AddrDefs.insert(PtrDef);
5807 }
5808
5809 // Add all instructions used to generate the addresses.
5811 append_range(Worklist, AddrDefs);
5812 while (!Worklist.empty()) {
5813 Instruction *I = Worklist.pop_back_val();
5814 for (auto &Op : I->operands())
5815 if (auto *InstOp = dyn_cast<Instruction>(Op))
5816 if (TheLoop->contains(InstOp) && !isa<PHINode>(InstOp) &&
5817 AddrDefs.insert(InstOp).second)
5818 Worklist.push_back(InstOp);
5819 }
5820
5821 auto UpdateMemOpUserCost = [this, VF](LoadInst *LI) {
5822 // If there are direct memory op users of the newly scalarized load,
5823 // their cost may have changed because there's no scalarization
5824 // overhead for the operand. Update it.
5825 for (User *U : LI->users()) {
5827 continue;
5829 continue;
5832 getMemInstScalarizationCost(cast<Instruction>(U), VF));
5833 }
5834 };
5835 for (auto *I : AddrDefs) {
5836 if (isa<LoadInst>(I)) {
5837 // Setting the desired widening decision should ideally be handled in
5838 // by cost functions, but since this involves the task of finding out
5839 // if the loaded register is involved in an address computation, it is
5840 // instead changed here when we know this is the case.
5841 InstWidening Decision = getWideningDecision(I, VF);
5842 if (Decision == CM_Widen || Decision == CM_Widen_Reverse ||
5843 (!isPredicatedInst(I) && !Legal->isUniformMemOp(*I, VF) &&
5844 Decision == CM_Scalarize)) {
5845 // Scalarize a widened load of address or update the cost of a scalar
5846 // load of an address.
5848 I, VF, CM_Scalarize,
5849 (VF.getKnownMinValue() *
5850 getMemoryInstructionCost(I, ElementCount::getFixed(1))));
5851 UpdateMemOpUserCost(cast<LoadInst>(I));
5852 } else if (const auto *Group = getInterleavedAccessGroup(I)) {
5853 // Scalarize all members of this interleaved group when any member
5854 // is used as an address. The address-used load skips scalarization
5855 // overhead, other members include it.
5856 for (unsigned Idx = 0; Idx < Group->getFactor(); ++Idx) {
5857 if (Instruction *Member = Group->getMember(Idx)) {
5859 AddrDefs.contains(Member)
5860 ? (VF.getKnownMinValue() *
5861 getMemoryInstructionCost(Member,
5863 : getMemInstScalarizationCost(Member, VF);
5865 UpdateMemOpUserCost(cast<LoadInst>(Member));
5866 }
5867 }
5868 }
5869 } else {
5870 // Cannot scalarize fixed-order recurrence phis at the moment.
5871 if (isa<PHINode>(I) && Legal->isFixedOrderRecurrence(cast<PHINode>(I)))
5872 continue;
5873
5874 // Make sure I gets scalarized and a cost estimate without
5875 // scalarization overhead.
5876 ForcedScalars[VF].insert(I);
5877 }
5878 }
5879}
5880
5882 assert(!VF.isScalar() &&
5883 "Trying to set a vectorization decision for a scalar VF");
5884
5885 auto ForcedScalar = ForcedScalars.find(VF);
5886 for (BasicBlock *BB : TheLoop->blocks()) {
5887 // For each instruction in the old loop.
5888 for (Instruction &I : *BB) {
5890
5891 if (!CI)
5892 continue;
5893
5897 Function *ScalarFunc = CI->getCalledFunction();
5898 Type *ScalarRetTy = CI->getType();
5899 SmallVector<Type *, 4> Tys, ScalarTys;
5900 for (auto &ArgOp : CI->args())
5901 ScalarTys.push_back(ArgOp->getType());
5902
5903 // Estimate cost of scalarized vector call. The source operands are
5904 // assumed to be vectors, so we need to extract individual elements from
5905 // there, execute VF scalar calls, and then gather the result into the
5906 // vector return value.
5907 if (VF.isFixed()) {
5908 InstructionCost ScalarCallCost =
5909 TTI.getCallInstrCost(ScalarFunc, ScalarRetTy, ScalarTys, CostKind);
5910
5911 // Compute costs of unpacking argument values for the scalar calls and
5912 // packing the return values to a vector.
5913 InstructionCost ScalarizationCost = getScalarizationOverhead(CI, VF);
5914 ScalarCost = ScalarCallCost * VF.getKnownMinValue() + ScalarizationCost;
5915 } else {
5916 // There is no point attempting to calculate the scalar cost for a
5917 // scalable VF as we know it will be Invalid.
5919 "Unexpected valid cost for scalarizing scalable vectors");
5920 ScalarCost = InstructionCost::getInvalid();
5921 }
5922
5923 // Honor ForcedScalars and UniformAfterVectorization decisions.
5924 // TODO: For calls, it might still be more profitable to widen. Use
5925 // VPlan-based cost model to compare different options.
5926 if (VF.isVector() && ((ForcedScalar != ForcedScalars.end() &&
5927 ForcedScalar->second.contains(CI)) ||
5928 isUniformAfterVectorization(CI, VF))) {
5929 setCallWideningDecision(CI, VF, CM_Scalarize, nullptr,
5930 Intrinsic::not_intrinsic, std::nullopt,
5931 ScalarCost);
5932 continue;
5933 }
5934
5935 bool MaskRequired = Legal->isMaskRequired(CI);
5936 // Compute corresponding vector type for return value and arguments.
5937 Type *RetTy = toVectorizedTy(ScalarRetTy, VF);
5938 for (Type *ScalarTy : ScalarTys)
5939 Tys.push_back(toVectorizedTy(ScalarTy, VF));
5940
5941 // An in-loop reduction using an fmuladd intrinsic is a special case;
5942 // we don't want the normal cost for that intrinsic.
5944 if (auto RedCost = getReductionPatternCost(CI, VF, RetTy)) {
5947 std::nullopt, *RedCost);
5948 continue;
5949 }
5950
5951 // Find the cost of vectorizing the call, if we can find a suitable
5952 // vector variant of the function.
5953 VFInfo FuncInfo;
5954 Function *VecFunc = nullptr;
5955 // Search through any available variants for one we can use at this VF.
5956 for (VFInfo &Info : VFDatabase::getMappings(*CI)) {
5957 // Must match requested VF.
5958 if (Info.Shape.VF != VF)
5959 continue;
5960
5961 // Must take a mask argument if one is required
5962 if (MaskRequired && !Info.isMasked())
5963 continue;
5964
5965 // Check that all parameter kinds are supported
5966 bool ParamsOk = true;
5967 for (VFParameter Param : Info.Shape.Parameters) {
5968 switch (Param.ParamKind) {
5970 break;
5972 Value *ScalarParam = CI->getArgOperand(Param.ParamPos);
5973 // Make sure the scalar parameter in the loop is invariant.
5974 if (!PSE.getSE()->isLoopInvariant(PSE.getSCEV(ScalarParam),
5975 TheLoop))
5976 ParamsOk = false;
5977 break;
5978 }
5980 Value *ScalarParam = CI->getArgOperand(Param.ParamPos);
5981 // Find the stride for the scalar parameter in this loop and see if
5982 // it matches the stride for the variant.
5983 // TODO: do we need to figure out the cost of an extract to get the
5984 // first lane? Or do we hope that it will be folded away?
5985 ScalarEvolution *SE = PSE.getSE();
5986 if (!match(SE->getSCEV(ScalarParam),
5988 m_SCEV(), m_scev_SpecificSInt(Param.LinearStepOrPos),
5990 ParamsOk = false;
5991 break;
5992 }
5994 break;
5995 default:
5996 ParamsOk = false;
5997 break;
5998 }
5999 }
6000
6001 if (!ParamsOk)
6002 continue;
6003
6004 // Found a suitable candidate, stop here.
6005 VecFunc = CI->getModule()->getFunction(Info.VectorName);
6006 FuncInfo = Info;
6007 break;
6008 }
6009
6010 if (TLI && VecFunc && !CI->isNoBuiltin())
6011 VectorCost = TTI.getCallInstrCost(nullptr, RetTy, Tys, CostKind);
6012
6013 // Find the cost of an intrinsic; some targets may have instructions that
6014 // perform the operation without needing an actual call.
6016 if (IID != Intrinsic::not_intrinsic)
6018
6019 InstructionCost Cost = ScalarCost;
6020 InstWidening Decision = CM_Scalarize;
6021
6022 if (VectorCost <= Cost) {
6023 Cost = VectorCost;
6024 Decision = CM_VectorCall;
6025 }
6026
6027 if (IntrinsicCost <= Cost) {
6029 Decision = CM_IntrinsicCall;
6030 }
6031
6032 setCallWideningDecision(CI, VF, Decision, VecFunc, IID,
6034 }
6035 }
6036}
6037
6039 if (!Legal->isInvariant(Op))
6040 return false;
6041 // Consider Op invariant, if it or its operands aren't predicated
6042 // instruction in the loop. In that case, it is not trivially hoistable.
6043 auto *OpI = dyn_cast<Instruction>(Op);
6044 return !OpI || !TheLoop->contains(OpI) ||
6045 (!isPredicatedInst(OpI) &&
6046 (!isa<PHINode>(OpI) || OpI->getParent() != TheLoop->getHeader()) &&
6047 all_of(OpI->operands(),
6048 [this](Value *Op) { return shouldConsiderInvariant(Op); }));
6049}
6050
6053 ElementCount VF) {
6054 // If we know that this instruction will remain uniform, check the cost of
6055 // the scalar version.
6057 VF = ElementCount::getFixed(1);
6058
6059 if (VF.isVector() && isProfitableToScalarize(I, VF))
6060 return InstsToScalarize[VF][I];
6061
6062 // Forced scalars do not have any scalarization overhead.
6063 auto ForcedScalar = ForcedScalars.find(VF);
6064 if (VF.isVector() && ForcedScalar != ForcedScalars.end()) {
6065 auto InstSet = ForcedScalar->second;
6066 if (InstSet.count(I))
6068 VF.getKnownMinValue();
6069 }
6070
6071 Type *RetTy = I->getType();
6073 RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]);
6074 auto *SE = PSE.getSE();
6075
6076 Type *VectorTy;
6077 if (isScalarAfterVectorization(I, VF)) {
6078 [[maybe_unused]] auto HasSingleCopyAfterVectorization =
6079 [this](Instruction *I, ElementCount VF) -> bool {
6080 if (VF.isScalar())
6081 return true;
6082
6083 auto Scalarized = InstsToScalarize.find(VF);
6084 assert(Scalarized != InstsToScalarize.end() &&
6085 "VF not yet analyzed for scalarization profitability");
6086 return !Scalarized->second.count(I) &&
6087 llvm::all_of(I->users(), [&](User *U) {
6088 auto *UI = cast<Instruction>(U);
6089 return !Scalarized->second.count(UI);
6090 });
6091 };
6092
6093 // With the exception of GEPs and PHIs, after scalarization there should
6094 // only be one copy of the instruction generated in the loop. This is
6095 // because the VF is either 1, or any instructions that need scalarizing
6096 // have already been dealt with by the time we get here. As a result,
6097 // it means we don't have to multiply the instruction cost by VF.
6098 assert(I->getOpcode() == Instruction::GetElementPtr ||
6099 I->getOpcode() == Instruction::PHI ||
6100 (I->getOpcode() == Instruction::BitCast &&
6101 I->getType()->isPointerTy()) ||
6102 HasSingleCopyAfterVectorization(I, VF));
6103 VectorTy = RetTy;
6104 } else
6105 VectorTy = toVectorizedTy(RetTy, VF);
6106
6107 if (VF.isVector() && VectorTy->isVectorTy() &&
6108 !TTI.getNumberOfParts(VectorTy))
6110
6111 // TODO: We need to estimate the cost of intrinsic calls.
6112 switch (I->getOpcode()) {
6113 case Instruction::GetElementPtr:
6114 // We mark this instruction as zero-cost because the cost of GEPs in
6115 // vectorized code depends on whether the corresponding memory instruction
6116 // is scalarized or not. Therefore, we handle GEPs with the memory
6117 // instruction cost.
6118 return 0;
6119 case Instruction::Br: {
6120 // In cases of scalarized and predicated instructions, there will be VF
6121 // predicated blocks in the vectorized loop. Each branch around these
6122 // blocks requires also an extract of its vector compare i1 element.
6123 // Note that the conditional branch from the loop latch will be replaced by
6124 // a single branch controlling the loop, so there is no extra overhead from
6125 // scalarization.
6126 bool ScalarPredicatedBB = false;
6128 if (VF.isVector() && BI->isConditional() &&
6129 (PredicatedBBsAfterVectorization[VF].count(BI->getSuccessor(0)) ||
6130 PredicatedBBsAfterVectorization[VF].count(BI->getSuccessor(1))) &&
6131 BI->getParent() != TheLoop->getLoopLatch())
6132 ScalarPredicatedBB = true;
6133
6134 if (ScalarPredicatedBB) {
6135 // Not possible to scalarize scalable vector with predicated instructions.
6136 if (VF.isScalable())
6138 // Return cost for branches around scalarized and predicated blocks.
6139 auto *VecI1Ty =
6141 return (
6142 TTI.getScalarizationOverhead(
6143 VecI1Ty, APInt::getAllOnes(VF.getFixedValue()),
6144 /*Insert*/ false, /*Extract*/ true, CostKind) +
6145 (TTI.getCFInstrCost(Instruction::Br, CostKind) * VF.getFixedValue()));
6146 }
6147
6148 if (I->getParent() == TheLoop->getLoopLatch() || VF.isScalar())
6149 // The back-edge branch will remain, as will all scalar branches.
6150 return TTI.getCFInstrCost(Instruction::Br, CostKind);
6151
6152 // This branch will be eliminated by if-conversion.
6153 return 0;
6154 // Note: We currently assume zero cost for an unconditional branch inside
6155 // a predicated block since it will become a fall-through, although we
6156 // may decide in the future to call TTI for all branches.
6157 }
6158 case Instruction::Switch: {
6159 if (VF.isScalar())
6160 return TTI.getCFInstrCost(Instruction::Switch, CostKind);
6161 auto *Switch = cast<SwitchInst>(I);
6162 return Switch->getNumCases() *
6163 TTI.getCmpSelInstrCost(
6164 Instruction::ICmp,
6165 toVectorTy(Switch->getCondition()->getType(), VF),
6166 toVectorTy(Type::getInt1Ty(I->getContext()), VF),
6168 }
6169 case Instruction::PHI: {
6170 auto *Phi = cast<PHINode>(I);
6171
6172 // First-order recurrences are replaced by vector shuffles inside the loop.
6173 if (VF.isVector() && Legal->isFixedOrderRecurrence(Phi)) {
6175 std::iota(Mask.begin(), Mask.end(), VF.getKnownMinValue() - 1);
6176 return TTI.getShuffleCost(TargetTransformInfo::SK_Splice,
6177 cast<VectorType>(VectorTy),
6178 cast<VectorType>(VectorTy), Mask, CostKind,
6179 VF.getKnownMinValue() - 1);
6180 }
6181
6182 // Phi nodes in non-header blocks (not inductions, reductions, etc.) are
6183 // converted into select instructions. We require N - 1 selects per phi
6184 // node, where N is the number of incoming values.
6185 if (VF.isVector() && Phi->getParent() != TheLoop->getHeader()) {
6186 Type *ResultTy = Phi->getType();
6187
6188 // All instructions in an Any-of reduction chain are narrowed to bool.
6189 // Check if that is the case for this phi node.
6190 auto *HeaderUser = cast_if_present<PHINode>(
6191 find_singleton<User>(Phi->users(), [this](User *U, bool) -> User * {
6192 auto *Phi = dyn_cast<PHINode>(U);
6193 if (Phi && Phi->getParent() == TheLoop->getHeader())
6194 return Phi;
6195 return nullptr;
6196 }));
6197 if (HeaderUser) {
6198 auto &ReductionVars = Legal->getReductionVars();
6199 auto Iter = ReductionVars.find(HeaderUser);
6200 if (Iter != ReductionVars.end() &&
6202 Iter->second.getRecurrenceKind()))
6203 ResultTy = Type::getInt1Ty(Phi->getContext());
6204 }
6205 return (Phi->getNumIncomingValues() - 1) *
6206 TTI.getCmpSelInstrCost(
6207 Instruction::Select, toVectorTy(ResultTy, VF),
6208 toVectorTy(Type::getInt1Ty(Phi->getContext()), VF),
6210 }
6211
6212 // When tail folding with EVL, if the phi is part of an out of loop
6213 // reduction then it will be transformed into a wide vp_merge.
6214 if (VF.isVector() && foldTailWithEVL() &&
6215 Legal->getReductionVars().contains(Phi) && !isInLoopReduction(Phi)) {
6217 Intrinsic::vp_merge, toVectorTy(Phi->getType(), VF),
6218 {toVectorTy(Type::getInt1Ty(Phi->getContext()), VF)});
6219 return TTI.getIntrinsicInstrCost(ICA, CostKind);
6220 }
6221
6222 return TTI.getCFInstrCost(Instruction::PHI, CostKind);
6223 }
6224 case Instruction::UDiv:
6225 case Instruction::SDiv:
6226 case Instruction::URem:
6227 case Instruction::SRem:
6228 if (VF.isVector() && isPredicatedInst(I)) {
6229 const auto [ScalarCost, SafeDivisorCost] = getDivRemSpeculationCost(I, VF);
6230 return isDivRemScalarWithPredication(ScalarCost, SafeDivisorCost) ?
6231 ScalarCost : SafeDivisorCost;
6232 }
6233 // We've proven all lanes safe to speculate, fall through.
6234 [[fallthrough]];
6235 case Instruction::Add:
6236 case Instruction::Sub: {
6237 auto Info = Legal->getHistogramInfo(I);
6238 if (Info && VF.isVector()) {
6239 const HistogramInfo *HGram = Info.value();
6240 // Assume that a non-constant update value (or a constant != 1) requires
6241 // a multiply, and add that into the cost.
6243 ConstantInt *RHS = dyn_cast<ConstantInt>(I->getOperand(1));
6244 if (!RHS || RHS->getZExtValue() != 1)
6245 MulCost =
6246 TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind);
6247
6248 // Find the cost of the histogram operation itself.
6249 Type *PtrTy = VectorType::get(HGram->Load->getPointerOperandType(), VF);
6250 Type *ScalarTy = I->getType();
6251 Type *MaskTy = VectorType::get(Type::getInt1Ty(I->getContext()), VF);
6252 IntrinsicCostAttributes ICA(Intrinsic::experimental_vector_histogram_add,
6253 Type::getVoidTy(I->getContext()),
6254 {PtrTy, ScalarTy, MaskTy});
6255
6256 // Add the costs together with the add/sub operation.
6257 return TTI.getIntrinsicInstrCost(ICA, CostKind) + MulCost +
6258 TTI.getArithmeticInstrCost(I->getOpcode(), VectorTy, CostKind);
6259 }
6260 [[fallthrough]];
6261 }
6262 case Instruction::FAdd:
6263 case Instruction::FSub:
6264 case Instruction::Mul:
6265 case Instruction::FMul:
6266 case Instruction::FDiv:
6267 case Instruction::FRem:
6268 case Instruction::Shl:
6269 case Instruction::LShr:
6270 case Instruction::AShr:
6271 case Instruction::And:
6272 case Instruction::Or:
6273 case Instruction::Xor: {
6274 // If we're speculating on the stride being 1, the multiplication may
6275 // fold away. We can generalize this for all operations using the notion
6276 // of neutral elements. (TODO)
6277 if (I->getOpcode() == Instruction::Mul &&
6278 ((TheLoop->isLoopInvariant(I->getOperand(0)) &&
6279 PSE.getSCEV(I->getOperand(0))->isOne()) ||
6280 (TheLoop->isLoopInvariant(I->getOperand(1)) &&
6281 PSE.getSCEV(I->getOperand(1))->isOne())))
6282 return 0;
6283
6284 // Detect reduction patterns
6285 if (auto RedCost = getReductionPatternCost(I, VF, VectorTy))
6286 return *RedCost;
6287
6288 // Certain instructions can be cheaper to vectorize if they have a constant
6289 // second vector operand. One example of this are shifts on x86.
6290 Value *Op2 = I->getOperand(1);
6291 if (!isa<Constant>(Op2) && TheLoop->isLoopInvariant(Op2) &&
6292 PSE.getSE()->isSCEVable(Op2->getType()) &&
6293 isa<SCEVConstant>(PSE.getSCEV(Op2))) {
6294 Op2 = cast<SCEVConstant>(PSE.getSCEV(Op2))->getValue();
6295 }
6296 auto Op2Info = TTI.getOperandInfo(Op2);
6297 if (Op2Info.Kind == TargetTransformInfo::OK_AnyValue &&
6300
6301 SmallVector<const Value *, 4> Operands(I->operand_values());
6302 return TTI.getArithmeticInstrCost(
6303 I->getOpcode(), VectorTy, CostKind,
6304 {TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None},
6305 Op2Info, Operands, I, TLI);
6306 }
6307 case Instruction::FNeg: {
6308 return TTI.getArithmeticInstrCost(
6309 I->getOpcode(), VectorTy, CostKind,
6310 {TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None},
6311 {TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None},
6312 I->getOperand(0), I);
6313 }
6314 case Instruction::Select: {
6316 const SCEV *CondSCEV = SE->getSCEV(SI->getCondition());
6317 bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop));
6318
6319 const Value *Op0, *Op1;
6320 using namespace llvm::PatternMatch;
6321 if (!ScalarCond && (match(I, m_LogicalAnd(m_Value(Op0), m_Value(Op1))) ||
6322 match(I, m_LogicalOr(m_Value(Op0), m_Value(Op1))))) {
6323 // select x, y, false --> x & y
6324 // select x, true, y --> x | y
6325 const auto [Op1VK, Op1VP] = TTI::getOperandInfo(Op0);
6326 const auto [Op2VK, Op2VP] = TTI::getOperandInfo(Op1);
6327 assert(Op0->getType()->getScalarSizeInBits() == 1 &&
6328 Op1->getType()->getScalarSizeInBits() == 1);
6329
6330 return TTI.getArithmeticInstrCost(
6331 match(I, m_LogicalOr()) ? Instruction::Or : Instruction::And,
6332 VectorTy, CostKind, {Op1VK, Op1VP}, {Op2VK, Op2VP}, {Op0, Op1}, I);
6333 }
6334
6335 Type *CondTy = SI->getCondition()->getType();
6336 if (!ScalarCond)
6337 CondTy = VectorType::get(CondTy, VF);
6338
6340 if (auto *Cmp = dyn_cast<CmpInst>(SI->getCondition()))
6341 Pred = Cmp->getPredicate();
6342 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy, Pred,
6343 CostKind, {TTI::OK_AnyValue, TTI::OP_None},
6344 {TTI::OK_AnyValue, TTI::OP_None}, I);
6345 }
6346 case Instruction::ICmp:
6347 case Instruction::FCmp: {
6348 Type *ValTy = I->getOperand(0)->getType();
6349
6351 [[maybe_unused]] Instruction *Op0AsInstruction =
6352 dyn_cast<Instruction>(I->getOperand(0));
6353 assert((!canTruncateToMinimalBitwidth(Op0AsInstruction, VF) ||
6354 MinBWs[I] == MinBWs[Op0AsInstruction]) &&
6355 "if both the operand and the compare are marked for "
6356 "truncation, they must have the same bitwidth");
6357 ValTy = IntegerType::get(ValTy->getContext(), MinBWs[I]);
6358 }
6359
6360 VectorTy = toVectorTy(ValTy, VF);
6361 return TTI.getCmpSelInstrCost(
6362 I->getOpcode(), VectorTy, CmpInst::makeCmpResultType(VectorTy),
6363 cast<CmpInst>(I)->getPredicate(), CostKind,
6364 {TTI::OK_AnyValue, TTI::OP_None}, {TTI::OK_AnyValue, TTI::OP_None}, I);
6365 }
6366 case Instruction::Store:
6367 case Instruction::Load: {
6368 ElementCount Width = VF;
6369 if (Width.isVector()) {
6370 InstWidening Decision = getWideningDecision(I, Width);
6371 assert(Decision != CM_Unknown &&
6372 "CM decision should be taken at this point");
6375 if (Decision == CM_Scalarize)
6376 Width = ElementCount::getFixed(1);
6377 }
6378 VectorTy = toVectorTy(getLoadStoreType(I), Width);
6379 return getMemoryInstructionCost(I, VF);
6380 }
6381 case Instruction::BitCast:
6382 if (I->getType()->isPointerTy())
6383 return 0;
6384 [[fallthrough]];
6385 case Instruction::ZExt:
6386 case Instruction::SExt:
6387 case Instruction::FPToUI:
6388 case Instruction::FPToSI:
6389 case Instruction::FPExt:
6390 case Instruction::PtrToInt:
6391 case Instruction::IntToPtr:
6392 case Instruction::SIToFP:
6393 case Instruction::UIToFP:
6394 case Instruction::Trunc:
6395 case Instruction::FPTrunc: {
6396 // Computes the CastContextHint from a Load/Store instruction.
6397 auto ComputeCCH = [&](Instruction *I) -> TTI::CastContextHint {
6399 "Expected a load or a store!");
6400
6401 if (VF.isScalar() || !TheLoop->contains(I))
6403
6404 switch (getWideningDecision(I, VF)) {
6416 llvm_unreachable("Instr did not go through cost modelling?");
6419 llvm_unreachable_internal("Instr has invalid widening decision");
6420 }
6421
6422 llvm_unreachable("Unhandled case!");
6423 };
6424
6425 unsigned Opcode = I->getOpcode();
6427 // For Trunc, the context is the only user, which must be a StoreInst.
6428 if (Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) {
6429 if (I->hasOneUse())
6430 if (StoreInst *Store = dyn_cast<StoreInst>(*I->user_begin()))
6431 CCH = ComputeCCH(Store);
6432 }
6433 // For Z/Sext, the context is the operand, which must be a LoadInst.
6434 else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt ||
6435 Opcode == Instruction::FPExt) {
6436 if (LoadInst *Load = dyn_cast<LoadInst>(I->getOperand(0)))
6437 CCH = ComputeCCH(Load);
6438 }
6439
6440 // We optimize the truncation of induction variables having constant
6441 // integer steps. The cost of these truncations is the same as the scalar
6442 // operation.
6443 if (isOptimizableIVTruncate(I, VF)) {
6444 auto *Trunc = cast<TruncInst>(I);
6445 return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(),
6446 Trunc->getSrcTy(), CCH, CostKind, Trunc);
6447 }
6448
6449 // Detect reduction patterns
6450 if (auto RedCost = getReductionPatternCost(I, VF, VectorTy))
6451 return *RedCost;
6452
6453 Type *SrcScalarTy = I->getOperand(0)->getType();
6454 Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0));
6455 if (canTruncateToMinimalBitwidth(Op0AsInstruction, VF))
6456 SrcScalarTy =
6457 IntegerType::get(SrcScalarTy->getContext(), MinBWs[Op0AsInstruction]);
6458 Type *SrcVecTy =
6459 VectorTy->isVectorTy() ? toVectorTy(SrcScalarTy, VF) : SrcScalarTy;
6460
6462 // If the result type is <= the source type, there will be no extend
6463 // after truncating the users to the minimal required bitwidth.
6464 if (VectorTy->getScalarSizeInBits() <= SrcVecTy->getScalarSizeInBits() &&
6465 (I->getOpcode() == Instruction::ZExt ||
6466 I->getOpcode() == Instruction::SExt))
6467 return 0;
6468 }
6469
6470 return TTI.getCastInstrCost(Opcode, VectorTy, SrcVecTy, CCH, CostKind, I);
6471 }
6472 case Instruction::Call:
6473 return getVectorCallCost(cast<CallInst>(I), VF);
6474 case Instruction::ExtractValue:
6475 return TTI.getInstructionCost(I, CostKind);
6476 case Instruction::Alloca:
6477 // We cannot easily widen alloca to a scalable alloca, as
6478 // the result would need to be a vector of pointers.
6479 if (VF.isScalable())
6481 [[fallthrough]];
6482 default:
6483 // This opcode is unknown. Assume that it is the same as 'mul'.
6484 return TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind);
6485 } // end of switch.
6486}
6487
6489 // Ignore ephemeral values.
6491
6492 SmallVector<Value *, 4> DeadInterleavePointerOps;
6494
6495 // If a scalar epilogue is required, users outside the loop won't use
6496 // live-outs from the vector loop but from the scalar epilogue. Ignore them if
6497 // that is the case.
6498 bool RequiresScalarEpilogue = requiresScalarEpilogue(true);
6499 auto IsLiveOutDead = [this, RequiresScalarEpilogue](User *U) {
6500 return RequiresScalarEpilogue &&
6501 !TheLoop->contains(cast<Instruction>(U)->getParent());
6502 };
6503
6505 DFS.perform(LI);
6506 for (BasicBlock *BB : reverse(make_range(DFS.beginRPO(), DFS.endRPO())))
6507 for (Instruction &I : reverse(*BB)) {
6508 if (VecValuesToIgnore.contains(&I) || ValuesToIgnore.contains(&I))
6509 continue;
6510
6511 // Add instructions that would be trivially dead and are only used by
6512 // values already ignored to DeadOps to seed worklist.
6514 all_of(I.users(), [this, IsLiveOutDead](User *U) {
6515 return VecValuesToIgnore.contains(U) ||
6516 ValuesToIgnore.contains(U) || IsLiveOutDead(U);
6517 }))
6518 DeadOps.push_back(&I);
6519
6520 // For interleave groups, we only create a pointer for the start of the
6521 // interleave group. Queue up addresses of group members except the insert
6522 // position for further processing.
6523 if (isAccessInterleaved(&I)) {
6524 auto *Group = getInterleavedAccessGroup(&I);
6525 if (Group->getInsertPos() == &I)
6526 continue;
6527 Value *PointerOp = getLoadStorePointerOperand(&I);
6528 DeadInterleavePointerOps.push_back(PointerOp);
6529 }
6530
6531 // Queue branches for analysis. They are dead, if their successors only
6532 // contain dead instructions.
6533 if (auto *Br = dyn_cast<BranchInst>(&I)) {
6534 if (Br->isConditional())
6535 DeadOps.push_back(&I);
6536 }
6537 }
6538
6539 // Mark ops feeding interleave group members as free, if they are only used
6540 // by other dead computations.
6541 for (unsigned I = 0; I != DeadInterleavePointerOps.size(); ++I) {
6542 auto *Op = dyn_cast<Instruction>(DeadInterleavePointerOps[I]);
6543 if (!Op || !TheLoop->contains(Op) || any_of(Op->users(), [this](User *U) {
6544 Instruction *UI = cast<Instruction>(U);
6545 return !VecValuesToIgnore.contains(U) &&
6546 (!isAccessInterleaved(UI) ||
6547 getInterleavedAccessGroup(UI)->getInsertPos() == UI);
6548 }))
6549 continue;
6550 VecValuesToIgnore.insert(Op);
6551 append_range(DeadInterleavePointerOps, Op->operands());
6552 }
6553
6554 // Mark ops that would be trivially dead and are only used by ignored
6555 // instructions as free.
6556 BasicBlock *Header = TheLoop->getHeader();
6557
6558 // Returns true if the block contains only dead instructions. Such blocks will
6559 // be removed by VPlan-to-VPlan transforms and won't be considered by the
6560 // VPlan-based cost model, so skip them in the legacy cost-model as well.
6561 auto IsEmptyBlock = [this](BasicBlock *BB) {
6562 return all_of(*BB, [this](Instruction &I) {
6563 return ValuesToIgnore.contains(&I) || VecValuesToIgnore.contains(&I) ||
6564 (isa<BranchInst>(&I) && !cast<BranchInst>(&I)->isConditional());
6565 });
6566 };
6567 for (unsigned I = 0; I != DeadOps.size(); ++I) {
6568 auto *Op = dyn_cast<Instruction>(DeadOps[I]);
6569
6570 // Check if the branch should be considered dead.
6571 if (auto *Br = dyn_cast_or_null<BranchInst>(Op)) {
6572 BasicBlock *ThenBB = Br->getSuccessor(0);
6573 BasicBlock *ElseBB = Br->getSuccessor(1);
6574 // Don't considers branches leaving the loop for simplification.
6575 if (!TheLoop->contains(ThenBB) || !TheLoop->contains(ElseBB))
6576 continue;
6577 bool ThenEmpty = IsEmptyBlock(ThenBB);
6578 bool ElseEmpty = IsEmptyBlock(ElseBB);
6579 if ((ThenEmpty && ElseEmpty) ||
6580 (ThenEmpty && ThenBB->getSingleSuccessor() == ElseBB &&
6581 ElseBB->phis().empty()) ||
6582 (ElseEmpty && ElseBB->getSingleSuccessor() == ThenBB &&
6583 ThenBB->phis().empty())) {
6584 VecValuesToIgnore.insert(Br);
6585 DeadOps.push_back(Br->getCondition());
6586 }
6587 continue;
6588 }
6589
6590 // Skip any op that shouldn't be considered dead.
6591 if (!Op || !TheLoop->contains(Op) ||
6592 (isa<PHINode>(Op) && Op->getParent() == Header) ||
6594 any_of(Op->users(), [this, IsLiveOutDead](User *U) {
6595 return !VecValuesToIgnore.contains(U) &&
6596 !ValuesToIgnore.contains(U) && !IsLiveOutDead(U);
6597 }))
6598 continue;
6599
6600 // If all of Op's users are in ValuesToIgnore, add it to ValuesToIgnore
6601 // which applies for both scalar and vector versions. Otherwise it is only
6602 // dead in vector versions, so only add it to VecValuesToIgnore.
6603 if (all_of(Op->users(),
6604 [this](User *U) { return ValuesToIgnore.contains(U); }))
6605 ValuesToIgnore.insert(Op);
6606
6607 VecValuesToIgnore.insert(Op);
6608 append_range(DeadOps, Op->operands());
6609 }
6610
6611 // Ignore type-promoting instructions we identified during reduction
6612 // detection.
6613 for (const auto &Reduction : Legal->getReductionVars()) {
6614 const RecurrenceDescriptor &RedDes = Reduction.second;
6615 const SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts();
6616 VecValuesToIgnore.insert_range(Casts);
6617 }
6618 // Ignore type-casting instructions we identified during induction
6619 // detection.
6620 for (const auto &Induction : Legal->getInductionVars()) {
6621 const InductionDescriptor &IndDes = Induction.second;
6622 VecValuesToIgnore.insert_range(IndDes.getCastInsts());
6623 }
6624}
6625
6627 // Avoid duplicating work finding in-loop reductions.
6628 if (!InLoopReductions.empty())
6629 return;
6630
6631 for (const auto &Reduction : Legal->getReductionVars()) {
6632 PHINode *Phi = Reduction.first;
6633 const RecurrenceDescriptor &RdxDesc = Reduction.second;
6634
6635 // Multi-use reductions (e.g., used in FindLastIV patterns) are handled
6636 // separately and should not be considered for in-loop reductions.
6637 if (RdxDesc.hasUsesOutsideReductionChain())
6638 continue;
6639
6640 // We don't collect reductions that are type promoted (yet).
6641 if (RdxDesc.getRecurrenceType() != Phi->getType())
6642 continue;
6643
6644 // In-loop AnyOf and FindIV reductions are not yet supported.
6645 RecurKind Kind = RdxDesc.getRecurrenceKind();
6648 continue;
6649
6650 // If the target would prefer this reduction to happen "in-loop", then we
6651 // want to record it as such.
6652 if (!PreferInLoopReductions && !useOrderedReductions(RdxDesc) &&
6653 !TTI.preferInLoopReduction(Kind, Phi->getType()))
6654 continue;
6655
6656 // Check that we can correctly put the reductions into the loop, by
6657 // finding the chain of operations that leads from the phi to the loop
6658 // exit value.
6659 SmallVector<Instruction *, 4> ReductionOperations =
6660 RdxDesc.getReductionOpChain(Phi, TheLoop);
6661 bool InLoop = !ReductionOperations.empty();
6662
6663 if (InLoop) {
6664 InLoopReductions.insert(Phi);
6665 // Add the elements to InLoopReductionImmediateChains for cost modelling.
6666 Instruction *LastChain = Phi;
6667 for (auto *I : ReductionOperations) {
6668 InLoopReductionImmediateChains[I] = LastChain;
6669 LastChain = I;
6670 }
6671 }
6672 LLVM_DEBUG(dbgs() << "LV: Using " << (InLoop ? "inloop" : "out of loop")
6673 << " reduction for phi: " << *Phi << "\n");
6674 }
6675}
6676
6677// This function will select a scalable VF if the target supports scalable
6678// vectors and a fixed one otherwise.
6679// TODO: we could return a pair of values that specify the max VF and
6680// min VF, to be used in `buildVPlans(MinVF, MaxVF)` instead of
6681// `buildVPlans(VF, VF)`. We cannot do it because VPLAN at the moment
6682// doesn't have a cost model that can choose which plan to execute if
6683// more than one is generated.
6686 unsigned WidestType;
6687 std::tie(std::ignore, WidestType) = CM.getSmallestAndWidestTypes();
6688
6690 TTI.enableScalableVectorization()
6693
6694 TypeSize RegSize = TTI.getRegisterBitWidth(RegKind);
6695 unsigned N = RegSize.getKnownMinValue() / WidestType;
6696 return ElementCount::get(N, RegSize.isScalable());
6697}
6698
6701 ElementCount VF = UserVF;
6702 // Outer loop handling: They may require CFG and instruction level
6703 // transformations before even evaluating whether vectorization is profitable.
6704 // Since we cannot modify the incoming IR, we need to build VPlan upfront in
6705 // the vectorization pipeline.
6706 if (!OrigLoop->isInnermost()) {
6707 // If the user doesn't provide a vectorization factor, determine a
6708 // reasonable one.
6709 if (UserVF.isZero()) {
6710 VF = determineVPlanVF(TTI, CM);
6711 LLVM_DEBUG(dbgs() << "LV: VPlan computed VF " << VF << ".\n");
6712
6713 // Make sure we have a VF > 1 for stress testing.
6714 if (VPlanBuildStressTest && (VF.isScalar() || VF.isZero())) {
6715 LLVM_DEBUG(dbgs() << "LV: VPlan stress testing: "
6716 << "overriding computed VF.\n");
6717 VF = ElementCount::getFixed(4);
6718 }
6719 } else if (UserVF.isScalable() && !TTI.supportsScalableVectors() &&
6721 LLVM_DEBUG(dbgs() << "LV: Not vectorizing. Scalable VF requested, but "
6722 << "not supported by the target.\n");
6724 "Scalable vectorization requested but not supported by the target",
6725 "the scalable user-specified vectorization width for outer-loop "
6726 "vectorization cannot be used because the target does not support "
6727 "scalable vectors.",
6728 "ScalableVFUnfeasible", ORE, OrigLoop);
6730 }
6731 assert(EnableVPlanNativePath && "VPlan-native path is not enabled.");
6733 "VF needs to be a power of two");
6734 LLVM_DEBUG(dbgs() << "LV: Using " << (!UserVF.isZero() ? "user " : "")
6735 << "VF " << VF << " to build VPlans.\n");
6736 buildVPlans(VF, VF);
6737
6738 if (VPlans.empty())
6740
6741 // For VPlan build stress testing, we bail out after VPlan construction.
6744
6745 return {VF, 0 /*Cost*/, 0 /* ScalarCost */};
6746 }
6747
6748 LLVM_DEBUG(
6749 dbgs() << "LV: Not vectorizing. Inner loops aren't supported in the "
6750 "VPlan-native path.\n");
6752}
6753
6754void LoopVectorizationPlanner::plan(ElementCount UserVF, unsigned UserIC) {
6755 assert(OrigLoop->isInnermost() && "Inner loop expected.");
6756 CM.collectValuesToIgnore();
6757 CM.collectElementTypesForWidening();
6758
6759 FixedScalableVFPair MaxFactors = CM.computeMaxVF(UserVF, UserIC);
6760 if (!MaxFactors) // Cases that should not to be vectorized nor interleaved.
6761 return;
6762
6763 // Invalidate interleave groups if all blocks of loop will be predicated.
6764 if (CM.blockNeedsPredicationForAnyReason(OrigLoop->getHeader()) &&
6766 LLVM_DEBUG(
6767 dbgs()
6768 << "LV: Invalidate all interleaved groups due to fold-tail by masking "
6769 "which requires masked-interleaved support.\n");
6770 if (CM.InterleaveInfo.invalidateGroups())
6771 // Invalidating interleave groups also requires invalidating all decisions
6772 // based on them, which includes widening decisions and uniform and scalar
6773 // values.
6774 CM.invalidateCostModelingDecisions();
6775 }
6776
6777 if (CM.foldTailByMasking())
6778 Legal->prepareToFoldTailByMasking();
6779
6780 ElementCount MaxUserVF =
6781 UserVF.isScalable() ? MaxFactors.ScalableVF : MaxFactors.FixedVF;
6782 if (UserVF) {
6783 if (!ElementCount::isKnownLE(UserVF, MaxUserVF)) {
6785 "UserVF ignored because it may be larger than the maximal safe VF",
6786 "InvalidUserVF", ORE, OrigLoop);
6787 } else {
6789 "VF needs to be a power of two");
6790 // Collect the instructions (and their associated costs) that will be more
6791 // profitable to scalarize.
6792 CM.collectInLoopReductions();
6793 if (CM.selectUserVectorizationFactor(UserVF)) {
6794 LLVM_DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n");
6795 buildVPlansWithVPRecipes(UserVF, UserVF);
6797 return;
6798 }
6799 reportVectorizationInfo("UserVF ignored because of invalid costs.",
6800 "InvalidCost", ORE, OrigLoop);
6801 }
6802 }
6803
6804 // Collect the Vectorization Factor Candidates.
6805 SmallVector<ElementCount> VFCandidates;
6806 for (auto VF = ElementCount::getFixed(1);
6807 ElementCount::isKnownLE(VF, MaxFactors.FixedVF); VF *= 2)
6808 VFCandidates.push_back(VF);
6809 for (auto VF = ElementCount::getScalable(1);
6810 ElementCount::isKnownLE(VF, MaxFactors.ScalableVF); VF *= 2)
6811 VFCandidates.push_back(VF);
6812
6813 CM.collectInLoopReductions();
6814 for (const auto &VF : VFCandidates) {
6815 // Collect Uniform and Scalar instructions after vectorization with VF.
6816 CM.collectNonVectorizedAndSetWideningDecisions(VF);
6817 }
6818
6819 buildVPlansWithVPRecipes(ElementCount::getFixed(1), MaxFactors.FixedVF);
6820 buildVPlansWithVPRecipes(ElementCount::getScalable(1), MaxFactors.ScalableVF);
6821
6823}
6824
6826 ElementCount VF) const {
6827 InstructionCost Cost = CM.getInstructionCost(UI, VF);
6828 if (Cost.isValid() && ForceTargetInstructionCost.getNumOccurrences())
6830 return Cost;
6831}
6832
6834 ElementCount VF) const {
6835 return CM.isUniformAfterVectorization(I, VF);
6836}
6837
6838bool VPCostContext::skipCostComputation(Instruction *UI, bool IsVector) const {
6839 return CM.ValuesToIgnore.contains(UI) ||
6840 (IsVector && CM.VecValuesToIgnore.contains(UI)) ||
6841 SkipCostComputation.contains(UI);
6842}
6843
6845 return CM.getPredBlockCostDivisor(CostKind, BB);
6846}
6847
6849LoopVectorizationPlanner::precomputeCosts(VPlan &Plan, ElementCount VF,
6850 VPCostContext &CostCtx) const {
6852 // Cost modeling for inductions is inaccurate in the legacy cost model
6853 // compared to the recipes that are generated. To match here initially during
6854 // VPlan cost model bring up directly use the induction costs from the legacy
6855 // cost model. Note that we do this as pre-processing; the VPlan may not have
6856 // any recipes associated with the original induction increment instruction
6857 // and may replace truncates with VPWidenIntOrFpInductionRecipe. We precompute
6858 // the cost of induction phis and increments (both that are represented by
6859 // recipes and those that are not), to avoid distinguishing between them here,
6860 // and skip all recipes that represent induction phis and increments (the
6861 // former case) later on, if they exist, to avoid counting them twice.
6862 // Similarly we pre-compute the cost of any optimized truncates.
6863 // TODO: Switch to more accurate costing based on VPlan.
6864 for (const auto &[IV, IndDesc] : Legal->getInductionVars()) {
6866 IV->getIncomingValueForBlock(OrigLoop->getLoopLatch()));
6867 SmallVector<Instruction *> IVInsts = {IVInc};
6868 for (unsigned I = 0; I != IVInsts.size(); I++) {
6869 for (Value *Op : IVInsts[I]->operands()) {
6870 auto *OpI = dyn_cast<Instruction>(Op);
6871 if (Op == IV || !OpI || !OrigLoop->contains(OpI) || !Op->hasOneUse())
6872 continue;
6873 IVInsts.push_back(OpI);
6874 }
6875 }
6876 IVInsts.push_back(IV);
6877 for (User *U : IV->users()) {
6878 auto *CI = cast<Instruction>(U);
6879 if (!CostCtx.CM.isOptimizableIVTruncate(CI, VF))
6880 continue;
6881 IVInsts.push_back(CI);
6882 }
6883
6884 // If the vector loop gets executed exactly once with the given VF, ignore
6885 // the costs of comparison and induction instructions, as they'll get
6886 // simplified away.
6887 // TODO: Remove this code after stepping away from the legacy cost model and
6888 // adding code to simplify VPlans before calculating their costs.
6889 auto TC = getSmallConstantTripCount(PSE.getSE(), OrigLoop);
6890 if (TC == VF && !CM.foldTailByMasking())
6891 addFullyUnrolledInstructionsToIgnore(OrigLoop, Legal->getInductionVars(),
6892 CostCtx.SkipCostComputation);
6893
6894 for (Instruction *IVInst : IVInsts) {
6895 if (CostCtx.skipCostComputation(IVInst, VF.isVector()))
6896 continue;
6897 InstructionCost InductionCost = CostCtx.getLegacyCost(IVInst, VF);
6898 LLVM_DEBUG({
6899 dbgs() << "Cost of " << InductionCost << " for VF " << VF
6900 << ": induction instruction " << *IVInst << "\n";
6901 });
6902 Cost += InductionCost;
6903 CostCtx.SkipCostComputation.insert(IVInst);
6904 }
6905 }
6906
6907 /// Compute the cost of all exiting conditions of the loop using the legacy
6908 /// cost model. This is to match the legacy behavior, which adds the cost of
6909 /// all exit conditions. Note that this over-estimates the cost, as there will
6910 /// be a single condition to control the vector loop.
6912 CM.TheLoop->getExitingBlocks(Exiting);
6913 SetVector<Instruction *> ExitInstrs;
6914 // Collect all exit conditions.
6915 for (BasicBlock *EB : Exiting) {
6916 auto *Term = dyn_cast<BranchInst>(EB->getTerminator());
6917 if (!Term || CostCtx.skipCostComputation(Term, VF.isVector()))
6918 continue;
6919 if (auto *CondI = dyn_cast<Instruction>(Term->getOperand(0))) {
6920 ExitInstrs.insert(CondI);
6921 }
6922 }
6923 // Compute the cost of all instructions only feeding the exit conditions.
6924 for (unsigned I = 0; I != ExitInstrs.size(); ++I) {
6925 Instruction *CondI = ExitInstrs[I];
6926 if (!OrigLoop->contains(CondI) ||
6927 !CostCtx.SkipCostComputation.insert(CondI).second)
6928 continue;
6929 InstructionCost CondICost = CostCtx.getLegacyCost(CondI, VF);
6930 LLVM_DEBUG({
6931 dbgs() << "Cost of " << CondICost << " for VF " << VF
6932 << ": exit condition instruction " << *CondI << "\n";
6933 });
6934 Cost += CondICost;
6935 for (Value *Op : CondI->operands()) {
6936 auto *OpI = dyn_cast<Instruction>(Op);
6937 if (!OpI || CostCtx.skipCostComputation(OpI, VF.isVector()) ||
6938 any_of(OpI->users(), [&ExitInstrs, this](User *U) {
6939 return OrigLoop->contains(cast<Instruction>(U)->getParent()) &&
6940 !ExitInstrs.contains(cast<Instruction>(U));
6941 }))
6942 continue;
6943 ExitInstrs.insert(OpI);
6944 }
6945 }
6946
6947 // Pre-compute the costs for branches except for the backedge, as the number
6948 // of replicate regions in a VPlan may not directly match the number of
6949 // branches, which would lead to different decisions.
6950 // TODO: Compute cost of branches for each replicate region in the VPlan,
6951 // which is more accurate than the legacy cost model.
6952 for (BasicBlock *BB : OrigLoop->blocks()) {
6953 if (CostCtx.skipCostComputation(BB->getTerminator(), VF.isVector()))
6954 continue;
6955 CostCtx.SkipCostComputation.insert(BB->getTerminator());
6956 if (BB == OrigLoop->getLoopLatch())
6957 continue;
6958 auto BranchCost = CostCtx.getLegacyCost(BB->getTerminator(), VF);
6959 Cost += BranchCost;
6960 }
6961
6962 // Pre-compute costs for instructions that are forced-scalar or profitable to
6963 // scalarize. Their costs will be computed separately in the legacy cost
6964 // model.
6965 for (Instruction *ForcedScalar : CM.ForcedScalars[VF]) {
6966 if (CostCtx.skipCostComputation(ForcedScalar, VF.isVector()))
6967 continue;
6968 CostCtx.SkipCostComputation.insert(ForcedScalar);
6969 InstructionCost ForcedCost = CostCtx.getLegacyCost(ForcedScalar, VF);
6970 LLVM_DEBUG({
6971 dbgs() << "Cost of " << ForcedCost << " for VF " << VF
6972 << ": forced scalar " << *ForcedScalar << "\n";
6973 });
6974 Cost += ForcedCost;
6975 }
6976 for (const auto &[Scalarized, ScalarCost] : CM.InstsToScalarize[VF]) {
6977 if (CostCtx.skipCostComputation(Scalarized, VF.isVector()))
6978 continue;
6979 CostCtx.SkipCostComputation.insert(Scalarized);
6980 LLVM_DEBUG({
6981 dbgs() << "Cost of " << ScalarCost << " for VF " << VF
6982 << ": profitable to scalarize " << *Scalarized << "\n";
6983 });
6984 Cost += ScalarCost;
6985 }
6986
6987 return Cost;
6988}
6989
6990InstructionCost LoopVectorizationPlanner::cost(VPlan &Plan,
6991 ElementCount VF) const {
6992 VPCostContext CostCtx(CM.TTI, *CM.TLI, Plan, CM, CM.CostKind, *PSE.getSE(),
6993 OrigLoop);
6994 InstructionCost Cost = precomputeCosts(Plan, VF, CostCtx);
6995
6996 // Now compute and add the VPlan-based cost.
6997 Cost += Plan.cost(VF, CostCtx);
6998#ifndef NDEBUG
6999 unsigned EstimatedWidth = estimateElementCount(VF, CM.getVScaleForTuning());
7000 LLVM_DEBUG(dbgs() << "Cost for VF " << VF << ": " << Cost
7001 << " (Estimated cost per lane: ");
7002 if (Cost.isValid()) {
7003 double CostPerLane = double(Cost.getValue()) / EstimatedWidth;
7004 LLVM_DEBUG(dbgs() << format("%.1f", CostPerLane));
7005 } else /* No point dividing an invalid cost - it will still be invalid */
7006 LLVM_DEBUG(dbgs() << "Invalid");
7007 LLVM_DEBUG(dbgs() << ")\n");
7008#endif
7009 return Cost;
7010}
7011
7012#ifndef NDEBUG
7013/// Return true if the original loop \ TheLoop contains any instructions that do
7014/// not have corresponding recipes in \p Plan and are not marked to be ignored
7015/// in \p CostCtx. This means the VPlan contains simplification that the legacy
7016/// cost-model did not account for.
7018 VPCostContext &CostCtx,
7019 Loop *TheLoop,
7020 ElementCount VF) {
7021 // First collect all instructions for the recipes in Plan.
7022 auto GetInstructionForCost = [](const VPRecipeBase *R) -> Instruction * {
7023 if (auto *S = dyn_cast<VPSingleDefRecipe>(R))
7024 return dyn_cast_or_null<Instruction>(S->getUnderlyingValue());
7025 if (auto *WidenMem = dyn_cast<VPWidenMemoryRecipe>(R))
7026 return &WidenMem->getIngredient();
7027 return nullptr;
7028 };
7029
7030 // Check if a select for a safe divisor was hoisted to the pre-header. If so,
7031 // the select doesn't need to be considered for the vector loop cost; go with
7032 // the more accurate VPlan-based cost model.
7033 for (VPRecipeBase &R : *Plan.getVectorPreheader()) {
7034 auto *VPI = dyn_cast<VPInstruction>(&R);
7035 if (!VPI || VPI->getOpcode() != Instruction::Select)
7036 continue;
7037
7038 if (auto *WR = dyn_cast_or_null<VPWidenRecipe>(VPI->getSingleUser())) {
7039 switch (WR->getOpcode()) {
7040 case Instruction::UDiv:
7041 case Instruction::SDiv:
7042 case Instruction::URem:
7043 case Instruction::SRem:
7044 return true;
7045 default:
7046 break;
7047 }
7048 }
7049 }
7050
7051 DenseSet<Instruction *> SeenInstrs;
7052 auto Iter = vp_depth_first_deep(Plan.getVectorLoopRegion()->getEntry());
7054 for (VPRecipeBase &R : *VPBB) {
7055 if (auto *IR = dyn_cast<VPInterleaveRecipe>(&R)) {
7056 auto *IG = IR->getInterleaveGroup();
7057 unsigned NumMembers = IG->getNumMembers();
7058 for (unsigned I = 0; I != NumMembers; ++I) {
7059 if (Instruction *M = IG->getMember(I))
7060 SeenInstrs.insert(M);
7061 }
7062 continue;
7063 }
7064 // Unused FOR splices are removed by VPlan transforms, so the VPlan-based
7065 // cost model won't cost it whilst the legacy will.
7066 if (auto *FOR = dyn_cast<VPFirstOrderRecurrencePHIRecipe>(&R)) {
7067 using namespace VPlanPatternMatch;
7068 if (none_of(FOR->users(),
7069 match_fn(m_VPInstruction<
7071 return true;
7072 }
7073 // The VPlan-based cost model is more accurate for partial reductions and
7074 // comparing against the legacy cost isn't desirable.
7075 if (auto *VPR = dyn_cast<VPReductionRecipe>(&R))
7076 if (VPR->isPartialReduction())
7077 return true;
7078
7079 // The VPlan-based cost model can analyze if recipes are scalar
7080 // recursively, but the legacy cost model cannot.
7081 if (auto *WidenMemR = dyn_cast<VPWidenMemoryRecipe>(&R)) {
7082 auto *AddrI = dyn_cast<Instruction>(
7083 getLoadStorePointerOperand(&WidenMemR->getIngredient()));
7084 if (AddrI && vputils::isSingleScalar(WidenMemR->getAddr()) !=
7085 CostCtx.isLegacyUniformAfterVectorization(AddrI, VF))
7086 return true;
7087 }
7088
7089 // The legacy cost model costs non-header phis with a scalar VF as a phi,
7090 // but scalar unrolled VPlans will have VPBlendRecipes which emit selects.
7091 if (isa<VPBlendRecipe>(&R) &&
7092 vputils::onlyFirstLaneUsed(R.getVPSingleValue()))
7093 return true;
7094
7095 /// If a VPlan transform folded a recipe to one producing a single-scalar,
7096 /// but the original instruction wasn't uniform-after-vectorization in the
7097 /// legacy cost model, the legacy cost overestimates the actual cost.
7098 if (auto *RepR = dyn_cast<VPReplicateRecipe>(&R)) {
7099 if (RepR->isSingleScalar() &&
7101 RepR->getUnderlyingInstr(), VF))
7102 return true;
7103 }
7104 if (Instruction *UI = GetInstructionForCost(&R)) {
7105 // If we adjusted the predicate of the recipe, the cost in the legacy
7106 // cost model may be different.
7107 using namespace VPlanPatternMatch;
7108 CmpPredicate Pred;
7109 if (match(&R, m_Cmp(Pred, m_VPValue(), m_VPValue())) &&
7110 cast<VPRecipeWithIRFlags>(R).getPredicate() !=
7111 cast<CmpInst>(UI)->getPredicate())
7112 return true;
7113 SeenInstrs.insert(UI);
7114 }
7115 }
7116 }
7117
7118 // Return true if the loop contains any instructions that are not also part of
7119 // the VPlan or are skipped for VPlan-based cost computations. This indicates
7120 // that the VPlan contains extra simplifications.
7121 return any_of(TheLoop->blocks(), [&SeenInstrs, &CostCtx,
7122 TheLoop](BasicBlock *BB) {
7123 return any_of(*BB, [&SeenInstrs, &CostCtx, TheLoop, BB](Instruction &I) {
7124 // Skip induction phis when checking for simplifications, as they may not
7125 // be lowered directly be lowered to a corresponding PHI recipe.
7126 if (isa<PHINode>(&I) && BB == TheLoop->getHeader() &&
7127 CostCtx.CM.Legal->isInductionPhi(cast<PHINode>(&I)))
7128 return false;
7129 return !SeenInstrs.contains(&I) && !CostCtx.skipCostComputation(&I, true);
7130 });
7131 });
7132}
7133#endif
7134
7136 if (VPlans.empty())
7138 // If there is a single VPlan with a single VF, return it directly.
7139 VPlan &FirstPlan = *VPlans[0];
7140 if (VPlans.size() == 1 && size(FirstPlan.vectorFactors()) == 1)
7141 return {*FirstPlan.vectorFactors().begin(), 0, 0};
7142
7143 LLVM_DEBUG(dbgs() << "LV: Computing best VF using cost kind: "
7144 << (CM.CostKind == TTI::TCK_RecipThroughput
7145 ? "Reciprocal Throughput\n"
7146 : CM.CostKind == TTI::TCK_Latency
7147 ? "Instruction Latency\n"
7148 : CM.CostKind == TTI::TCK_CodeSize ? "Code Size\n"
7149 : CM.CostKind == TTI::TCK_SizeAndLatency
7150 ? "Code Size and Latency\n"
7151 : "Unknown\n"));
7152
7154 assert(hasPlanWithVF(ScalarVF) &&
7155 "More than a single plan/VF w/o any plan having scalar VF");
7156
7157 // TODO: Compute scalar cost using VPlan-based cost model.
7158 InstructionCost ScalarCost = CM.expectedCost(ScalarVF);
7159 LLVM_DEBUG(dbgs() << "LV: Scalar loop costs: " << ScalarCost << ".\n");
7160 VectorizationFactor ScalarFactor(ScalarVF, ScalarCost, ScalarCost);
7161 VectorizationFactor BestFactor = ScalarFactor;
7162
7163 bool ForceVectorization = Hints.getForce() == LoopVectorizeHints::FK_Enabled;
7164 if (ForceVectorization) {
7165 // Ignore scalar width, because the user explicitly wants vectorization.
7166 // Initialize cost to max so that VF = 2 is, at least, chosen during cost
7167 // evaluation.
7168 BestFactor.Cost = InstructionCost::getMax();
7169 }
7170
7171 for (auto &P : VPlans) {
7172 ArrayRef<ElementCount> VFs(P->vectorFactors().begin(),
7173 P->vectorFactors().end());
7174
7176 if (any_of(VFs, [this](ElementCount VF) {
7177 return CM.shouldConsiderRegPressureForVF(VF);
7178 }))
7179 RUs = calculateRegisterUsageForPlan(*P, VFs, TTI, CM.ValuesToIgnore);
7180
7181 for (unsigned I = 0; I < VFs.size(); I++) {
7182 ElementCount VF = VFs[I];
7183 if (VF.isScalar())
7184 continue;
7185 if (!ForceVectorization && !willGenerateVectors(*P, VF, TTI)) {
7186 LLVM_DEBUG(
7187 dbgs()
7188 << "LV: Not considering vector loop of width " << VF
7189 << " because it will not generate any vector instructions.\n");
7190 continue;
7191 }
7192 if (CM.OptForSize && !ForceVectorization && hasReplicatorRegion(*P)) {
7193 LLVM_DEBUG(
7194 dbgs()
7195 << "LV: Not considering vector loop of width " << VF
7196 << " because it would cause replicated blocks to be generated,"
7197 << " which isn't allowed when optimizing for size.\n");
7198 continue;
7199 }
7200
7201 InstructionCost Cost = cost(*P, VF);
7202 VectorizationFactor CurrentFactor(VF, Cost, ScalarCost);
7203
7204 if (CM.shouldConsiderRegPressureForVF(VF) &&
7205 RUs[I].exceedsMaxNumRegs(TTI, ForceTargetNumVectorRegs)) {
7206 LLVM_DEBUG(dbgs() << "LV(REG): Not considering vector loop of width "
7207 << VF << " because it uses too many registers\n");
7208 continue;
7209 }
7210
7211 if (isMoreProfitable(CurrentFactor, BestFactor, P->hasScalarTail()))
7212 BestFactor = CurrentFactor;
7213
7214 // If profitable add it to ProfitableVF list.
7215 if (isMoreProfitable(CurrentFactor, ScalarFactor, P->hasScalarTail()))
7216 ProfitableVFs.push_back(CurrentFactor);
7217 }
7218 }
7219
7220#ifndef NDEBUG
7221 // Select the optimal vectorization factor according to the legacy cost-model.
7222 // This is now only used to verify the decisions by the new VPlan-based
7223 // cost-model and will be retired once the VPlan-based cost-model is
7224 // stabilized.
7225 VectorizationFactor LegacyVF = selectVectorizationFactor();
7226 VPlan &BestPlan = getPlanFor(BestFactor.Width);
7227
7228 // Pre-compute the cost and use it to check if BestPlan contains any
7229 // simplifications not accounted for in the legacy cost model. If that's the
7230 // case, don't trigger the assertion, as the extra simplifications may cause a
7231 // different VF to be picked by the VPlan-based cost model.
7232 VPCostContext CostCtx(CM.TTI, *CM.TLI, BestPlan, CM, CM.CostKind,
7233 *CM.PSE.getSE(), OrigLoop);
7234 precomputeCosts(BestPlan, BestFactor.Width, CostCtx);
7235 // Verify that the VPlan-based and legacy cost models agree, except for
7236 // * VPlans with early exits,
7237 // * VPlans with additional VPlan simplifications,
7238 // * EVL-based VPlans with gather/scatters (the VPlan-based cost model uses
7239 // vp_scatter/vp_gather).
7240 // The legacy cost model doesn't properly model costs for such loops.
7241 bool UsesEVLGatherScatter =
7243 BestPlan.getVectorLoopRegion()->getEntry())),
7244 [](VPBasicBlock *VPBB) {
7245 return any_of(*VPBB, [](VPRecipeBase &R) {
7246 return isa<VPWidenLoadEVLRecipe, VPWidenStoreEVLRecipe>(&R) &&
7247 !cast<VPWidenMemoryRecipe>(&R)->isConsecutive();
7248 });
7249 });
7250 assert(
7251 (BestFactor.Width == LegacyVF.Width || BestPlan.hasEarlyExit() ||
7252 !Legal->getLAI()->getSymbolicStrides().empty() || UsesEVLGatherScatter ||
7254 getPlanFor(BestFactor.Width), CostCtx, OrigLoop, BestFactor.Width) ||
7256 getPlanFor(LegacyVF.Width), CostCtx, OrigLoop, LegacyVF.Width)) &&
7257 " VPlan cost model and legacy cost model disagreed");
7258 assert((BestFactor.Width.isScalar() || BestFactor.ScalarCost > 0) &&
7259 "when vectorizing, the scalar cost must be computed.");
7260#endif
7261
7262 LLVM_DEBUG(dbgs() << "LV: Selecting VF: " << BestFactor.Width << ".\n");
7263 return BestFactor;
7264}
7265
7267 using namespace VPlanPatternMatch;
7269 "RdxResult must be ComputeFindIVResult");
7270 VPValue *StartVPV = RdxResult->getOperand(1);
7271 match(StartVPV, m_Freeze(m_VPValue(StartVPV)));
7272 return StartVPV->getLiveInIRValue();
7273}
7274
7275// If \p EpiResumePhiR is resume VPPhi for a reduction when vectorizing the
7276// epilog loop, fix the reduction's scalar PHI node by adding the incoming value
7277// from the main vector loop.
7279 VPPhi *EpiResumePhiR, PHINode &EpiResumePhi, BasicBlock *BypassBlock) {
7280 // Get the VPInstruction computing the reduction result in the middle block.
7281 // The first operand may not be from the middle block if it is not connected
7282 // to the scalar preheader. In that case, there's nothing to fix.
7283 VPValue *Incoming = EpiResumePhiR->getOperand(0);
7286 auto *EpiRedResult = dyn_cast<VPInstruction>(Incoming);
7287 if (!EpiRedResult ||
7288 (EpiRedResult->getOpcode() != VPInstruction::ComputeAnyOfResult &&
7289 EpiRedResult->getOpcode() != VPInstruction::ComputeReductionResult &&
7290 EpiRedResult->getOpcode() != VPInstruction::ComputeFindIVResult))
7291 return;
7292
7293 auto *EpiRedHeaderPhi =
7294 cast<VPReductionPHIRecipe>(EpiRedResult->getOperand(0));
7295 RecurKind Kind = EpiRedHeaderPhi->getRecurrenceKind();
7296 Value *MainResumeValue;
7297 if (auto *VPI = dyn_cast<VPInstruction>(EpiRedHeaderPhi->getStartValue())) {
7298 assert((VPI->getOpcode() == VPInstruction::Broadcast ||
7299 VPI->getOpcode() == VPInstruction::ReductionStartVector) &&
7300 "unexpected start recipe");
7301 MainResumeValue = VPI->getOperand(0)->getUnderlyingValue();
7302 } else
7303 MainResumeValue = EpiRedHeaderPhi->getStartValue()->getUnderlyingValue();
7305 [[maybe_unused]] Value *StartV =
7306 EpiRedResult->getOperand(1)->getLiveInIRValue();
7307 auto *Cmp = cast<ICmpInst>(MainResumeValue);
7308 assert(Cmp->getPredicate() == CmpInst::ICMP_NE &&
7309 "AnyOf expected to start with ICMP_NE");
7310 assert(Cmp->getOperand(1) == StartV &&
7311 "AnyOf expected to start by comparing main resume value to original "
7312 "start value");
7313 MainResumeValue = Cmp->getOperand(0);
7315 Value *StartV = getStartValueFromReductionResult(EpiRedResult);
7316 Value *SentinelV = EpiRedResult->getOperand(2)->getLiveInIRValue();
7317 using namespace llvm::PatternMatch;
7318 Value *Cmp, *OrigResumeV, *CmpOp;
7319 [[maybe_unused]] bool IsExpectedPattern =
7320 match(MainResumeValue,
7321 m_Select(m_OneUse(m_Value(Cmp)), m_Specific(SentinelV),
7322 m_Value(OrigResumeV))) &&
7324 m_Value(CmpOp))) &&
7325 ((CmpOp == StartV && isGuaranteedNotToBeUndefOrPoison(CmpOp))));
7326 assert(IsExpectedPattern && "Unexpected reduction resume pattern");
7327 MainResumeValue = OrigResumeV;
7328 }
7329 PHINode *MainResumePhi = cast<PHINode>(MainResumeValue);
7330
7331 // When fixing reductions in the epilogue loop we should already have
7332 // created a bc.merge.rdx Phi after the main vector body. Ensure that we carry
7333 // over the incoming values correctly.
7334 EpiResumePhi.setIncomingValueForBlock(
7335 BypassBlock, MainResumePhi->getIncomingValueForBlock(BypassBlock));
7336}
7337
7339 ElementCount BestVF, unsigned BestUF, VPlan &BestVPlan,
7340 InnerLoopVectorizer &ILV, DominatorTree *DT, bool VectorizingEpilogue) {
7341 assert(BestVPlan.hasVF(BestVF) &&
7342 "Trying to execute plan with unsupported VF");
7343 assert(BestVPlan.hasUF(BestUF) &&
7344 "Trying to execute plan with unsupported UF");
7345 if (BestVPlan.hasEarlyExit())
7346 ++LoopsEarlyExitVectorized;
7347 // TODO: Move to VPlan transform stage once the transition to the VPlan-based
7348 // cost model is complete for better cost estimates.
7351 BestVPlan);
7354 bool HasBranchWeights =
7355 hasBranchWeightMD(*OrigLoop->getLoopLatch()->getTerminator());
7356 if (HasBranchWeights) {
7357 std::optional<unsigned> VScale = CM.getVScaleForTuning();
7359 BestVPlan, BestVF, VScale);
7360 }
7361
7362 // Checks are the same for all VPlans, added to BestVPlan only for
7363 // compactness.
7364 attachRuntimeChecks(BestVPlan, ILV.RTChecks, HasBranchWeights);
7365
7366 // Retrieving VectorPH now when it's easier while VPlan still has Regions.
7367 VPBasicBlock *VectorPH = cast<VPBasicBlock>(BestVPlan.getVectorPreheader());
7368
7369 VPlanTransforms::optimizeForVFAndUF(BestVPlan, BestVF, BestUF, PSE);
7372 if (BestVPlan.getEntry()->getSingleSuccessor() ==
7373 BestVPlan.getScalarPreheader()) {
7374 // TODO: The vector loop would be dead, should not even try to vectorize.
7375 ORE->emit([&]() {
7376 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationDead",
7377 OrigLoop->getStartLoc(),
7378 OrigLoop->getHeader())
7379 << "Created vector loop never executes due to insufficient trip "
7380 "count.";
7381 });
7383 }
7384
7386 BestVPlan, BestVF,
7387 TTI.getRegisterBitWidth(BestVF.isScalable()
7391
7393 // Regions are dissolved after optimizing for VF and UF, which completely
7394 // removes unneeded loop regions first.
7396 // Canonicalize EVL loops after regions are dissolved.
7400 BestVPlan, VectorPH, CM.foldTailByMasking(),
7401 CM.requiresScalarEpilogue(BestVF.isVector()));
7402 VPlanTransforms::materializeVFAndVFxUF(BestVPlan, VectorPH, BestVF);
7403 VPlanTransforms::cse(BestVPlan);
7405
7406 // 0. Generate SCEV-dependent code in the entry, including TripCount, before
7407 // making any changes to the CFG.
7408 DenseMap<const SCEV *, Value *> ExpandedSCEVs =
7409 VPlanTransforms::expandSCEVs(BestVPlan, *PSE.getSE());
7410 if (!ILV.getTripCount())
7411 ILV.setTripCount(BestVPlan.getTripCount()->getLiveInIRValue());
7412 else
7413 assert(VectorizingEpilogue && "should only re-use the existing trip "
7414 "count during epilogue vectorization");
7415
7416 // Perform the actual loop transformation.
7417 VPTransformState State(&TTI, BestVF, LI, DT, ILV.AC, ILV.Builder, &BestVPlan,
7418 OrigLoop->getParentLoop(),
7419 Legal->getWidestInductionType());
7420
7421#ifdef EXPENSIVE_CHECKS
7422 assert(DT->verify(DominatorTree::VerificationLevel::Fast));
7423#endif
7424
7425 // 1. Set up the skeleton for vectorization, including vector pre-header and
7426 // middle block. The vector loop is created during VPlan execution.
7427 State.CFG.PrevBB = ILV.createVectorizedLoopSkeleton();
7429 State.CFG.PrevBB->getSingleSuccessor(), &BestVPlan);
7431
7432 assert(verifyVPlanIsValid(BestVPlan, true /*VerifyLate*/) &&
7433 "final VPlan is invalid");
7434
7435 // After vectorization, the exit blocks of the original loop will have
7436 // additional predecessors. Invalidate SCEVs for the exit phis in case SE
7437 // looked through single-entry phis.
7438 ScalarEvolution &SE = *PSE.getSE();
7439 for (VPIRBasicBlock *Exit : BestVPlan.getExitBlocks()) {
7440 if (!Exit->hasPredecessors())
7441 continue;
7442 for (VPRecipeBase &PhiR : Exit->phis())
7444 &cast<VPIRPhi>(PhiR).getIRPhi());
7445 }
7446 // Forget the original loop and block dispositions.
7447 SE.forgetLoop(OrigLoop);
7449
7451
7452 //===------------------------------------------------===//
7453 //
7454 // Notice: any optimization or new instruction that go
7455 // into the code below should also be implemented in
7456 // the cost-model.
7457 //
7458 //===------------------------------------------------===//
7459
7460 // Retrieve loop information before executing the plan, which may remove the
7461 // original loop, if it becomes unreachable.
7462 MDNode *LID = OrigLoop->getLoopID();
7463 unsigned OrigLoopInvocationWeight = 0;
7464 std::optional<unsigned> OrigAverageTripCount =
7465 getLoopEstimatedTripCount(OrigLoop, &OrigLoopInvocationWeight);
7466
7467 BestVPlan.execute(&State);
7468
7469 // 2.6. Maintain Loop Hints
7470 // Keep all loop hints from the original loop on the vector loop (we'll
7471 // replace the vectorizer-specific hints below).
7472 VPBasicBlock *HeaderVPBB = vputils::getFirstLoopHeader(BestVPlan, State.VPDT);
7473 // Add metadata to disable runtime unrolling a scalar loop when there
7474 // are no runtime checks about strides and memory. A scalar loop that is
7475 // rarely used is not worth unrolling.
7476 bool DisableRuntimeUnroll = !ILV.RTChecks.hasChecks() && !BestVF.isScalar();
7478 HeaderVPBB ? LI->getLoopFor(State.CFG.VPBB2IRBB.lookup(HeaderVPBB))
7479 : nullptr,
7480 HeaderVPBB, BestVPlan, VectorizingEpilogue, LID, OrigAverageTripCount,
7481 OrigLoopInvocationWeight,
7482 estimateElementCount(BestVF * BestUF, CM.getVScaleForTuning()),
7483 DisableRuntimeUnroll);
7484
7485 // 3. Fix the vectorized code: take care of header phi's, live-outs,
7486 // predication, updating analyses.
7487 ILV.fixVectorizedLoop(State);
7488
7490
7491 return ExpandedSCEVs;
7492}
7493
7494//===--------------------------------------------------------------------===//
7495// EpilogueVectorizerMainLoop
7496//===--------------------------------------------------------------------===//
7497
7498/// This function is partially responsible for generating the control flow
7499/// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization.
7501 BasicBlock *ScalarPH = createScalarPreheader("");
7502 BasicBlock *VectorPH = ScalarPH->getSinglePredecessor();
7503
7504 // Generate the code to check the minimum iteration count of the vector
7505 // epilogue (see below).
7506 EPI.EpilogueIterationCountCheck =
7507 emitIterationCountCheck(VectorPH, ScalarPH, true);
7508 EPI.EpilogueIterationCountCheck->setName("iter.check");
7509
7510 VectorPH = cast<BranchInst>(EPI.EpilogueIterationCountCheck->getTerminator())
7511 ->getSuccessor(1);
7512 // Generate the iteration count check for the main loop, *after* the check
7513 // for the epilogue loop, so that the path-length is shorter for the case
7514 // that goes directly through the vector epilogue. The longer-path length for
7515 // the main loop is compensated for, by the gain from vectorizing the larger
7516 // trip count. Note: the branch will get updated later on when we vectorize
7517 // the epilogue.
7518 EPI.MainLoopIterationCountCheck =
7519 emitIterationCountCheck(VectorPH, ScalarPH, false);
7520
7521 return cast<BranchInst>(EPI.MainLoopIterationCountCheck->getTerminator())
7522 ->getSuccessor(1);
7523}
7524
7526 LLVM_DEBUG({
7527 dbgs() << "Create Skeleton for epilogue vectorized loop (first pass)\n"
7528 << "Main Loop VF:" << EPI.MainLoopVF
7529 << ", Main Loop UF:" << EPI.MainLoopUF
7530 << ", Epilogue Loop VF:" << EPI.EpilogueVF
7531 << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n";
7532 });
7533}
7534
7537 dbgs() << "intermediate fn:\n"
7538 << *OrigLoop->getHeader()->getParent() << "\n";
7539 });
7540}
7541
7543 BasicBlock *VectorPH, BasicBlock *Bypass, bool ForEpilogue) {
7544 assert(Bypass && "Expected valid bypass basic block.");
7547 Value *CheckMinIters = createIterationCountCheck(
7548 VectorPH, ForEpilogue ? EPI.EpilogueVF : EPI.MainLoopVF,
7549 ForEpilogue ? EPI.EpilogueUF : EPI.MainLoopUF);
7550
7551 BasicBlock *const TCCheckBlock = VectorPH;
7552 if (!ForEpilogue)
7553 TCCheckBlock->setName("vector.main.loop.iter.check");
7554
7555 // Create new preheader for vector loop.
7556 VectorPH = SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(),
7557 static_cast<DominatorTree *>(nullptr), LI, nullptr,
7558 "vector.ph");
7559 if (ForEpilogue) {
7560 // Save the trip count so we don't have to regenerate it in the
7561 // vec.epilog.iter.check. This is safe to do because the trip count
7562 // generated here dominates the vector epilog iter check.
7563 EPI.TripCount = Count;
7564 } else {
7566 }
7567
7568 BranchInst &BI = *BranchInst::Create(Bypass, VectorPH, CheckMinIters);
7569 if (hasBranchWeightMD(*OrigLoop->getLoopLatch()->getTerminator()))
7570 setBranchWeights(BI, MinItersBypassWeights, /*IsExpected=*/false);
7571 ReplaceInstWithInst(TCCheckBlock->getTerminator(), &BI);
7572
7573 // When vectorizing the main loop, its trip-count check is placed in a new
7574 // block, whereas the overall trip-count check is placed in the VPlan entry
7575 // block. When vectorizing the epilogue loop, its trip-count check is placed
7576 // in the VPlan entry block.
7577 if (!ForEpilogue)
7578 introduceCheckBlockInVPlan(TCCheckBlock);
7579 return TCCheckBlock;
7580}
7581
7582//===--------------------------------------------------------------------===//
7583// EpilogueVectorizerEpilogueLoop
7584//===--------------------------------------------------------------------===//
7585
7586/// This function creates a new scalar preheader, using the previous one as
7587/// entry block to the epilogue VPlan. The minimum iteration check is being
7588/// represented in VPlan.
7590 BasicBlock *NewScalarPH = createScalarPreheader("vec.epilog.");
7591 BasicBlock *OriginalScalarPH = NewScalarPH->getSinglePredecessor();
7592 OriginalScalarPH->setName("vec.epilog.iter.check");
7593 VPIRBasicBlock *NewEntry = Plan.createVPIRBasicBlock(OriginalScalarPH);
7594 VPBasicBlock *OldEntry = Plan.getEntry();
7595 for (auto &R : make_early_inc_range(*OldEntry)) {
7596 // Skip moving VPIRInstructions (including VPIRPhis), which are unmovable by
7597 // defining.
7598 if (isa<VPIRInstruction>(&R))
7599 continue;
7600 R.moveBefore(*NewEntry, NewEntry->end());
7601 }
7602
7603 VPBlockUtils::reassociateBlocks(OldEntry, NewEntry);
7604 Plan.setEntry(NewEntry);
7605 // OldEntry is now dead and will be cleaned up when the plan gets destroyed.
7606
7607 return OriginalScalarPH;
7608}
7609
7611 LLVM_DEBUG({
7612 dbgs() << "Create Skeleton for epilogue vectorized loop (second pass)\n"
7613 << "Epilogue Loop VF:" << EPI.EpilogueVF
7614 << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n";
7615 });
7616}
7617
7620 dbgs() << "final fn:\n" << *OrigLoop->getHeader()->getParent() << "\n";
7621 });
7622}
7623
7624VPWidenMemoryRecipe *VPRecipeBuilder::tryToWidenMemory(VPInstruction *VPI,
7625 VFRange &Range) {
7626 assert((VPI->getOpcode() == Instruction::Load ||
7627 VPI->getOpcode() == Instruction::Store) &&
7628 "Must be called with either a load or store");
7630
7631 auto WillWiden = [&](ElementCount VF) -> bool {
7633 CM.getWideningDecision(I, VF);
7635 "CM decision should be taken at this point.");
7637 return true;
7638 if (CM.isScalarAfterVectorization(I, VF) ||
7639 CM.isProfitableToScalarize(I, VF))
7640 return false;
7642 };
7643
7645 return nullptr;
7646
7647 VPValue *Mask = nullptr;
7648 if (Legal->isMaskRequired(I))
7649 Mask = getBlockInMask(Builder.getInsertBlock());
7650
7651 // Determine if the pointer operand of the access is either consecutive or
7652 // reverse consecutive.
7654 CM.getWideningDecision(I, Range.Start);
7656 bool Consecutive =
7658
7659 VPValue *Ptr = VPI->getOpcode() == Instruction::Load ? VPI->getOperand(0)
7660 : VPI->getOperand(1);
7661 if (Consecutive) {
7664 VPSingleDefRecipe *VectorPtr;
7665 if (Reverse) {
7666 // When folding the tail, we may compute an address that we don't in the
7667 // original scalar loop: drop the GEP no-wrap flags in this case.
7668 // Otherwise preserve existing flags without no-unsigned-wrap, as we will
7669 // emit negative indices.
7670 GEPNoWrapFlags Flags =
7671 CM.foldTailByMasking() || !GEP
7673 : GEP->getNoWrapFlags().withoutNoUnsignedWrap();
7674 VectorPtr = new VPVectorEndPointerRecipe(
7675 Ptr, &Plan.getVF(), getLoadStoreType(I),
7676 /*Stride*/ -1, Flags, VPI->getDebugLoc());
7677 } else {
7678 VectorPtr = new VPVectorPointerRecipe(Ptr, getLoadStoreType(I),
7679 GEP ? GEP->getNoWrapFlags()
7681 VPI->getDebugLoc());
7682 }
7683 Builder.insert(VectorPtr);
7684 Ptr = VectorPtr;
7685 }
7686 if (VPI->getOpcode() == Instruction::Load) {
7687 auto *Load = cast<LoadInst>(I);
7688 return new VPWidenLoadRecipe(*Load, Ptr, Mask, Consecutive, Reverse, *VPI,
7689 VPI->getDebugLoc());
7690 }
7691
7692 StoreInst *Store = cast<StoreInst>(I);
7693 return new VPWidenStoreRecipe(*Store, Ptr, VPI->getOperand(0), Mask,
7694 Consecutive, Reverse, *VPI, VPI->getDebugLoc());
7695}
7696
7698VPRecipeBuilder::tryToOptimizeInductionTruncate(VPInstruction *VPI,
7699 VFRange &Range) {
7700 auto *I = cast<TruncInst>(VPI->getUnderlyingInstr());
7701 // Optimize the special case where the source is a constant integer
7702 // induction variable. Notice that we can only optimize the 'trunc' case
7703 // because (a) FP conversions lose precision, (b) sext/zext may wrap, and
7704 // (c) other casts depend on pointer size.
7705
7706 // Determine whether \p K is a truncation based on an induction variable that
7707 // can be optimized.
7708 auto IsOptimizableIVTruncate =
7709 [&](Instruction *K) -> std::function<bool(ElementCount)> {
7710 return [=](ElementCount VF) -> bool {
7711 return CM.isOptimizableIVTruncate(K, VF);
7712 };
7713 };
7714
7716 IsOptimizableIVTruncate(I), Range))
7717 return nullptr;
7718
7720 VPI->getOperand(0)->getDefiningRecipe());
7721 PHINode *Phi = WidenIV->getPHINode();
7722 VPValue *Start = WidenIV->getStartValue();
7723 const InductionDescriptor &IndDesc = WidenIV->getInductionDescriptor();
7724
7725 // It is always safe to copy over the NoWrap and FastMath flags. In
7726 // particular, when folding tail by masking, the masked-off lanes are never
7727 // used, so it is safe.
7728 VPIRFlags Flags = vputils::getFlagsFromIndDesc(IndDesc);
7729 VPValue *Step =
7731 return new VPWidenIntOrFpInductionRecipe(
7732 Phi, Start, Step, &Plan.getVF(), IndDesc, I, Flags, VPI->getDebugLoc());
7733}
7734
7735VPSingleDefRecipe *VPRecipeBuilder::tryToWidenCall(VPInstruction *VPI,
7736 VFRange &Range) {
7737 CallInst *CI = cast<CallInst>(VPI->getUnderlyingInstr());
7739 [this, CI](ElementCount VF) {
7740 return CM.isScalarWithPredication(CI, VF);
7741 },
7742 Range);
7743
7744 if (IsPredicated)
7745 return nullptr;
7746
7748 if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end ||
7749 ID == Intrinsic::lifetime_start || ID == Intrinsic::sideeffect ||
7750 ID == Intrinsic::pseudoprobe ||
7751 ID == Intrinsic::experimental_noalias_scope_decl))
7752 return nullptr;
7753
7755 VPI->op_begin() + CI->arg_size());
7756
7757 // Is it beneficial to perform intrinsic call compared to lib call?
7758 bool ShouldUseVectorIntrinsic =
7760 [&](ElementCount VF) -> bool {
7761 return CM.getCallWideningDecision(CI, VF).Kind ==
7763 },
7764 Range);
7765 if (ShouldUseVectorIntrinsic)
7766 return new VPWidenIntrinsicRecipe(*CI, ID, Ops, CI->getType(), *VPI, *VPI,
7767 VPI->getDebugLoc());
7768
7769 Function *Variant = nullptr;
7770 std::optional<unsigned> MaskPos;
7771 // Is better to call a vectorized version of the function than to to scalarize
7772 // the call?
7773 auto ShouldUseVectorCall = LoopVectorizationPlanner::getDecisionAndClampRange(
7774 [&](ElementCount VF) -> bool {
7775 // The following case may be scalarized depending on the VF.
7776 // The flag shows whether we can use a usual Call for vectorized
7777 // version of the instruction.
7778
7779 // If we've found a variant at a previous VF, then stop looking. A
7780 // vectorized variant of a function expects input in a certain shape
7781 // -- basically the number of input registers, the number of lanes
7782 // per register, and whether there's a mask required.
7783 // We store a pointer to the variant in the VPWidenCallRecipe, so
7784 // once we have an appropriate variant it's only valid for that VF.
7785 // This will force a different vplan to be generated for each VF that
7786 // finds a valid variant.
7787 if (Variant)
7788 return false;
7789 LoopVectorizationCostModel::CallWideningDecision Decision =
7790 CM.getCallWideningDecision(CI, VF);
7792 Variant = Decision.Variant;
7793 MaskPos = Decision.MaskPos;
7794 return true;
7795 }
7796
7797 return false;
7798 },
7799 Range);
7800 if (ShouldUseVectorCall) {
7801 if (MaskPos.has_value()) {
7802 // We have 2 cases that would require a mask:
7803 // 1) The block needs to be predicated, either due to a conditional
7804 // in the scalar loop or use of an active lane mask with
7805 // tail-folding, and we use the appropriate mask for the block.
7806 // 2) No mask is required for the block, but the only available
7807 // vector variant at this VF requires a mask, so we synthesize an
7808 // all-true mask.
7809 VPValue *Mask = Legal->isMaskRequired(CI)
7810 ? getBlockInMask(Builder.getInsertBlock())
7811 : Plan.getTrue();
7812
7813 Ops.insert(Ops.begin() + *MaskPos, Mask);
7814 }
7815
7816 Ops.push_back(VPI->getOperand(VPI->getNumOperands() - 1));
7817 return new VPWidenCallRecipe(CI, Variant, Ops, *VPI, *VPI,
7818 VPI->getDebugLoc());
7819 }
7820
7821 return nullptr;
7822}
7823
7824bool VPRecipeBuilder::shouldWiden(Instruction *I, VFRange &Range) const {
7826 !isa<StoreInst>(I) && "Instruction should have been handled earlier");
7827 // Instruction should be widened, unless it is scalar after vectorization,
7828 // scalarization is profitable or it is predicated.
7829 auto WillScalarize = [this, I](ElementCount VF) -> bool {
7830 return CM.isScalarAfterVectorization(I, VF) ||
7831 CM.isProfitableToScalarize(I, VF) ||
7832 CM.isScalarWithPredication(I, VF);
7833 };
7835 Range);
7836}
7837
7838VPWidenRecipe *VPRecipeBuilder::tryToWiden(VPInstruction *VPI) {
7839 auto *I = VPI->getUnderlyingInstr();
7840 switch (VPI->getOpcode()) {
7841 default:
7842 return nullptr;
7843 case Instruction::SDiv:
7844 case Instruction::UDiv:
7845 case Instruction::SRem:
7846 case Instruction::URem: {
7847 // If not provably safe, use a select to form a safe divisor before widening the
7848 // div/rem operation itself. Otherwise fall through to general handling below.
7849 if (CM.isPredicatedInst(I)) {
7851 VPValue *Mask = getBlockInMask(Builder.getInsertBlock());
7852 VPValue *One = Plan.getConstantInt(I->getType(), 1u);
7853 auto *SafeRHS =
7854 Builder.createSelect(Mask, Ops[1], One, VPI->getDebugLoc());
7855 Ops[1] = SafeRHS;
7856 return new VPWidenRecipe(*I, Ops, *VPI, *VPI, VPI->getDebugLoc());
7857 }
7858 [[fallthrough]];
7859 }
7860 case Instruction::Add:
7861 case Instruction::And:
7862 case Instruction::AShr:
7863 case Instruction::FAdd:
7864 case Instruction::FCmp:
7865 case Instruction::FDiv:
7866 case Instruction::FMul:
7867 case Instruction::FNeg:
7868 case Instruction::FRem:
7869 case Instruction::FSub:
7870 case Instruction::ICmp:
7871 case Instruction::LShr:
7872 case Instruction::Mul:
7873 case Instruction::Or:
7874 case Instruction::Select:
7875 case Instruction::Shl:
7876 case Instruction::Sub:
7877 case Instruction::Xor:
7878 case Instruction::Freeze:
7879 return new VPWidenRecipe(*I, VPI->operands(), *VPI, *VPI,
7880 VPI->getDebugLoc());
7881 case Instruction::ExtractValue: {
7882 SmallVector<VPValue *> NewOps(VPI->operands());
7883 auto *EVI = cast<ExtractValueInst>(I);
7884 assert(EVI->getNumIndices() == 1 && "Expected one extractvalue index");
7885 unsigned Idx = EVI->getIndices()[0];
7886 NewOps.push_back(Plan.getConstantInt(32, Idx));
7887 return new VPWidenRecipe(*I, NewOps, *VPI, *VPI, VPI->getDebugLoc());
7888 }
7889 };
7890}
7891
7892VPHistogramRecipe *VPRecipeBuilder::tryToWidenHistogram(const HistogramInfo *HI,
7893 VPInstruction *VPI) {
7894 // FIXME: Support other operations.
7895 unsigned Opcode = HI->Update->getOpcode();
7896 assert((Opcode == Instruction::Add || Opcode == Instruction::Sub) &&
7897 "Histogram update operation must be an Add or Sub");
7898
7900 // Bucket address.
7901 HGramOps.push_back(VPI->getOperand(1));
7902 // Increment value.
7903 HGramOps.push_back(getVPValueOrAddLiveIn(HI->Update->getOperand(1)));
7904
7905 // In case of predicated execution (due to tail-folding, or conditional
7906 // execution, or both), pass the relevant mask.
7907 if (Legal->isMaskRequired(HI->Store))
7908 HGramOps.push_back(getBlockInMask(Builder.getInsertBlock()));
7909
7910 return new VPHistogramRecipe(Opcode, HGramOps, VPI->getDebugLoc());
7911}
7912
7914 VFRange &Range) {
7915 auto *I = VPI->getUnderlyingInstr();
7917 [&](ElementCount VF) { return CM.isUniformAfterVectorization(I, VF); },
7918 Range);
7919
7920 bool IsPredicated = CM.isPredicatedInst(I);
7921
7922 // Even if the instruction is not marked as uniform, there are certain
7923 // intrinsic calls that can be effectively treated as such, so we check for
7924 // them here. Conservatively, we only do this for scalable vectors, since
7925 // for fixed-width VFs we can always fall back on full scalarization.
7926 if (!IsUniform && Range.Start.isScalable() && isa<IntrinsicInst>(I)) {
7927 switch (cast<IntrinsicInst>(I)->getIntrinsicID()) {
7928 case Intrinsic::assume:
7929 case Intrinsic::lifetime_start:
7930 case Intrinsic::lifetime_end:
7931 // For scalable vectors if one of the operands is variant then we still
7932 // want to mark as uniform, which will generate one instruction for just
7933 // the first lane of the vector. We can't scalarize the call in the same
7934 // way as for fixed-width vectors because we don't know how many lanes
7935 // there are.
7936 //
7937 // The reasons for doing it this way for scalable vectors are:
7938 // 1. For the assume intrinsic generating the instruction for the first
7939 // lane is still be better than not generating any at all. For
7940 // example, the input may be a splat across all lanes.
7941 // 2. For the lifetime start/end intrinsics the pointer operand only
7942 // does anything useful when the input comes from a stack object,
7943 // which suggests it should always be uniform. For non-stack objects
7944 // the effect is to poison the object, which still allows us to
7945 // remove the call.
7946 IsUniform = true;
7947 break;
7948 default:
7949 break;
7950 }
7951 }
7952 VPValue *BlockInMask = nullptr;
7953 if (!IsPredicated) {
7954 // Finalize the recipe for Instr, first if it is not predicated.
7955 LLVM_DEBUG(dbgs() << "LV: Scalarizing:" << *I << "\n");
7956 } else {
7957 LLVM_DEBUG(dbgs() << "LV: Scalarizing and predicating:" << *I << "\n");
7958 // Instructions marked for predication are replicated and a mask operand is
7959 // added initially. Masked replicate recipes will later be placed under an
7960 // if-then construct to prevent side-effects. Generate recipes to compute
7961 // the block mask for this region.
7962 BlockInMask = getBlockInMask(Builder.getInsertBlock());
7963 }
7964
7965 // Note that there is some custom logic to mark some intrinsics as uniform
7966 // manually above for scalable vectors, which this assert needs to account for
7967 // as well.
7968 assert((Range.Start.isScalar() || !IsUniform || !IsPredicated ||
7969 (Range.Start.isScalable() && isa<IntrinsicInst>(I))) &&
7970 "Should not predicate a uniform recipe");
7971 auto *Recipe =
7972 new VPReplicateRecipe(I, VPI->operands(), IsUniform, BlockInMask, *VPI,
7973 *VPI, VPI->getDebugLoc());
7974 return Recipe;
7975}
7976
7977/// Find all possible partial reductions in the loop and track all of those that
7978/// are valid so recipes can be formed later.
7980 // Find all possible partial reductions, grouping chains by their PHI. This
7981 // grouping allows invalidating the whole chain, if any link is not a valid
7982 // partial reduction.
7985 ChainsByPhi;
7986 for (const auto &[Phi, RdxDesc] : Legal->getReductionVars()) {
7987 if (Instruction *RdxExitInstr = RdxDesc.getLoopExitInstr())
7988 getScaledReductions(Phi, RdxExitInstr, Range, ChainsByPhi[Phi]);
7989 }
7990
7991 // A partial reduction is invalid if any of its extends are used by
7992 // something that isn't another partial reduction. This is because the
7993 // extends are intended to be lowered along with the reduction itself.
7994
7995 // Build up a set of partial reduction ops for efficient use checking.
7996 SmallPtrSet<User *, 4> PartialReductionOps;
7997 for (const auto &[_, Chains] : ChainsByPhi)
7998 for (const auto &[PartialRdx, _] : Chains)
7999 PartialReductionOps.insert(PartialRdx.ExtendUser);
8000
8001 auto ExtendIsOnlyUsedByPartialReductions =
8002 [&PartialReductionOps](Instruction *Extend) {
8003 return all_of(Extend->users(), [&](const User *U) {
8004 return PartialReductionOps.contains(U);
8005 });
8006 };
8007
8008 // Check if each use of a chain's two extends is a partial reduction
8009 // and only add those that don't have non-partial reduction users.
8010 for (const auto &[_, Chains] : ChainsByPhi) {
8011 for (const auto &[Chain, Scale] : Chains) {
8012 if (ExtendIsOnlyUsedByPartialReductions(Chain.ExtendA) &&
8013 (!Chain.ExtendB ||
8014 ExtendIsOnlyUsedByPartialReductions(Chain.ExtendB)))
8015 ScaledReductionMap.try_emplace(Chain.Reduction, Scale);
8016 }
8017 }
8018
8019 // Check that all partial reductions in a chain are only used by other
8020 // partial reductions with the same scale factor. Otherwise we end up creating
8021 // users of scaled reductions where the types of the other operands don't
8022 // match.
8023 for (const auto &[Phi, Chains] : ChainsByPhi) {
8024 for (const auto &[Chain, Scale] : Chains) {
8025 auto AllUsersPartialRdx = [ScaleVal = Scale, RdxPhi = Phi,
8026 this](const User *U) {
8027 auto *UI = cast<Instruction>(U);
8028 if (isa<PHINode>(UI) && UI->getParent() == OrigLoop->getHeader())
8029 return UI == RdxPhi;
8030 return ScaledReductionMap.lookup_or(UI, 0) == ScaleVal ||
8031 !OrigLoop->contains(UI->getParent());
8032 };
8033
8034 // If any partial reduction entry for the phi is invalid, invalidate the
8035 // whole chain.
8036 if (!all_of(Chain.Reduction->users(), AllUsersPartialRdx)) {
8037 for (const auto &[Chain, _] : Chains)
8038 ScaledReductionMap.erase(Chain.Reduction);
8039 break;
8040 }
8041 }
8042 }
8043}
8044
8045bool VPRecipeBuilder::getScaledReductions(
8046 Instruction *PHI, Instruction *RdxExitInstr, VFRange &Range,
8047 SmallVectorImpl<std::pair<PartialReductionChain, unsigned>> &Chains) {
8048 if (!CM.TheLoop->contains(RdxExitInstr))
8049 return false;
8050
8051 auto *Update = dyn_cast<BinaryOperator>(RdxExitInstr);
8052 if (!Update)
8053 return false;
8054
8055 Value *Op = Update->getOperand(0);
8056 Value *PhiOp = Update->getOperand(1);
8057 if (Op == PHI)
8058 std::swap(Op, PhiOp);
8059
8060 using namespace llvm::PatternMatch;
8061 // If Op is an extend, then it's still a valid partial reduction if the
8062 // extended mul fulfills the other requirements.
8063 // For example, reduce.add(ext(mul(ext(A), ext(B)))) is still a valid partial
8064 // reduction since the inner extends will be widened. We already have oneUse
8065 // checks on the inner extends so widening them is safe.
8066 std::optional<TTI::PartialReductionExtendKind> OuterExtKind = std::nullopt;
8067 if (match(Op, m_ZExtOrSExt(m_Mul(m_Value(), m_Value())))) {
8068 auto *Cast = cast<CastInst>(Op);
8069 OuterExtKind = TTI::getPartialReductionExtendKind(Cast->getOpcode());
8070 Op = Cast->getOperand(0);
8071 }
8072
8073 // Try and get a scaled reduction from the first non-phi operand.
8074 // If one is found, we use the discovered reduction instruction in
8075 // place of the accumulator for costing.
8076 if (auto *OpInst = dyn_cast<Instruction>(Op)) {
8077 if (getScaledReductions(PHI, OpInst, Range, Chains)) {
8078 PHI = Chains.rbegin()->first.Reduction;
8079
8080 Op = Update->getOperand(0);
8081 PhiOp = Update->getOperand(1);
8082 if (Op == PHI)
8083 std::swap(Op, PhiOp);
8084 }
8085 }
8086 if (PhiOp != PHI)
8087 return false;
8088
8089 // If the update is a binary operator, check both of its operands to see if
8090 // they are extends. Otherwise, see if the update comes directly from an
8091 // extend.
8092 Instruction *Exts[2] = {nullptr};
8093 BinaryOperator *ExtendUser = dyn_cast<BinaryOperator>(Op);
8094 std::optional<unsigned> BinOpc;
8095 Type *ExtOpTypes[2] = {nullptr};
8097
8098 auto CollectExtInfo = [this, OuterExtKind, &Exts, &ExtOpTypes,
8099 &ExtKinds](SmallVectorImpl<Value *> &Ops) -> bool {
8100 for (const auto &[I, OpI] : enumerate(Ops)) {
8101 const APInt *C;
8102 if (I > 0 && match(OpI, m_APInt(C)) &&
8103 canConstantBeExtended(C, ExtOpTypes[0], ExtKinds[0])) {
8104 ExtOpTypes[I] = ExtOpTypes[0];
8105 ExtKinds[I] = ExtKinds[0];
8106 continue;
8107 }
8108 Value *ExtOp;
8109 if (!match(OpI, m_ZExtOrSExt(m_Value(ExtOp))))
8110 return false;
8111 Exts[I] = cast<Instruction>(OpI);
8112
8113 // TODO: We should be able to support live-ins.
8114 if (!CM.TheLoop->contains(Exts[I]))
8115 return false;
8116
8117 ExtOpTypes[I] = ExtOp->getType();
8118 ExtKinds[I] = TTI::getPartialReductionExtendKind(Exts[I]);
8119 // The outer extend kind must be the same as the inner extends, so that
8120 // they can be folded together.
8121 if (OuterExtKind.has_value() && OuterExtKind.value() != ExtKinds[I])
8122 return false;
8123 }
8124 return true;
8125 };
8126
8127 if (ExtendUser) {
8128 if (!ExtendUser->hasOneUse())
8129 return false;
8130
8131 // Use the side-effect of match to replace BinOp only if the pattern is
8132 // matched, we don't care at this point whether it actually matched.
8133 match(ExtendUser, m_Neg(m_BinOp(ExtendUser)));
8134
8135 SmallVector<Value *> Ops(ExtendUser->operands());
8136 if (!CollectExtInfo(Ops))
8137 return false;
8138
8139 BinOpc = std::make_optional(ExtendUser->getOpcode());
8140 } else if (match(Update, m_Add(m_Value(), m_Value()))) {
8141 // We already know the operands for Update are Op and PhiOp.
8143 if (!CollectExtInfo(Ops))
8144 return false;
8145
8146 ExtendUser = Update;
8147 BinOpc = std::nullopt;
8148 } else
8149 return false;
8150
8151 PartialReductionChain Chain(RdxExitInstr, Exts[0], Exts[1], ExtendUser);
8152
8153 TypeSize PHISize = PHI->getType()->getPrimitiveSizeInBits();
8154 TypeSize ASize = ExtOpTypes[0]->getPrimitiveSizeInBits();
8155 if (!PHISize.hasKnownScalarFactor(ASize))
8156 return false;
8157 unsigned TargetScaleFactor = PHISize.getKnownScalarFactor(ASize);
8158
8160 [&](ElementCount VF) {
8161 InstructionCost Cost = TTI->getPartialReductionCost(
8162 Update->getOpcode(), ExtOpTypes[0], ExtOpTypes[1],
8163 PHI->getType(), VF, ExtKinds[0], ExtKinds[1], BinOpc,
8164 CM.CostKind);
8165 return Cost.isValid();
8166 },
8167 Range)) {
8168 Chains.emplace_back(Chain, TargetScaleFactor);
8169 return true;
8170 }
8171
8172 return false;
8173}
8174
8177 VFRange &Range) {
8178 assert(!R->isPhi() && "phis must be handled earlier");
8179 // First, check for specific widening recipes that deal with optimizing
8180 // truncates, calls and memory operations.
8181
8182 VPRecipeBase *Recipe;
8183 auto *VPI = cast<VPInstruction>(R);
8184 if (VPI->getOpcode() == Instruction::Trunc &&
8185 (Recipe = tryToOptimizeInductionTruncate(VPI, Range)))
8186 return Recipe;
8187
8188 // All widen recipes below deal only with VF > 1.
8190 [&](ElementCount VF) { return VF.isScalar(); }, Range))
8191 return nullptr;
8192
8193 if (VPI->getOpcode() == Instruction::Call)
8194 return tryToWidenCall(VPI, Range);
8195
8196 Instruction *Instr = R->getUnderlyingInstr();
8197 if (VPI->getOpcode() == Instruction::Store)
8198 if (auto HistInfo = Legal->getHistogramInfo(cast<StoreInst>(Instr)))
8199 return tryToWidenHistogram(*HistInfo, VPI);
8200
8201 if (VPI->getOpcode() == Instruction::Load ||
8202 VPI->getOpcode() == Instruction::Store)
8203 return tryToWidenMemory(VPI, Range);
8204
8205 if (std::optional<unsigned> ScaleFactor = getScalingForReduction(Instr))
8206 return tryToCreatePartialReduction(VPI, ScaleFactor.value());
8207
8208 if (!shouldWiden(Instr, Range))
8209 return nullptr;
8210
8211 if (VPI->getOpcode() == Instruction::GetElementPtr)
8212 return new VPWidenGEPRecipe(cast<GetElementPtrInst>(Instr), R->operands(),
8213 *VPI, VPI->getDebugLoc());
8214
8215 if (VPI->getOpcode() == Instruction::Select)
8216 return new VPWidenSelectRecipe(cast<SelectInst>(Instr), R->operands(), *VPI,
8217 *VPI, VPI->getDebugLoc());
8218
8219 if (Instruction::isCast(VPI->getOpcode())) {
8220 auto *CI = cast<CastInst>(Instr);
8221 auto *CastR = cast<VPInstructionWithType>(VPI);
8222 return new VPWidenCastRecipe(CI->getOpcode(), VPI->getOperand(0),
8223 CastR->getResultType(), CI, *VPI, *VPI,
8224 VPI->getDebugLoc());
8225 }
8226
8227 return tryToWiden(VPI);
8228}
8229
8232 unsigned ScaleFactor) {
8233 assert(Reduction->getNumOperands() == 2 &&
8234 "Unexpected number of operands for partial reduction");
8235
8236 VPValue *BinOp = Reduction->getOperand(0);
8237 VPValue *Accumulator = Reduction->getOperand(1);
8238 VPRecipeBase *BinOpRecipe = BinOp->getDefiningRecipe();
8239 if (isa<VPReductionPHIRecipe>(BinOpRecipe) ||
8240 (isa<VPReductionRecipe>(BinOpRecipe) &&
8241 cast<VPReductionRecipe>(BinOpRecipe)->isPartialReduction()))
8242 std::swap(BinOp, Accumulator);
8243
8244 if (auto *RedPhiR = dyn_cast<VPReductionPHIRecipe>(Accumulator))
8245 RedPhiR->setVFScaleFactor(ScaleFactor);
8246
8247 assert(ScaleFactor ==
8248 vputils::getVFScaleFactor(Accumulator->getDefiningRecipe()) &&
8249 "all accumulators in chain must have same scale factor");
8250
8251 auto *ReductionI = Reduction->getUnderlyingInstr();
8252 if (Reduction->getOpcode() == Instruction::Sub) {
8254 Ops.push_back(Plan.getConstantInt(ReductionI->getType(), 0));
8255 Ops.push_back(BinOp);
8256 BinOp = new VPWidenRecipe(*ReductionI, Ops, VPIRFlags(*ReductionI),
8257 VPIRMetadata(), ReductionI->getDebugLoc());
8258 Builder.insert(BinOp->getDefiningRecipe());
8259 }
8260
8261 VPValue *Cond = nullptr;
8262 if (CM.blockNeedsPredicationForAnyReason(ReductionI->getParent()))
8263 Cond = getBlockInMask(Builder.getInsertBlock());
8264
8265 return new VPReductionRecipe(
8266 RecurKind::Add, FastMathFlags(), ReductionI, Accumulator, BinOp, Cond,
8267 RdxUnordered{/*VFScaleFactor=*/ScaleFactor}, ReductionI->getDebugLoc());
8268}
8269
8270void LoopVectorizationPlanner::buildVPlansWithVPRecipes(ElementCount MinVF,
8271 ElementCount MaxVF) {
8272 if (ElementCount::isKnownGT(MinVF, MaxVF))
8273 return;
8274
8275 assert(OrigLoop->isInnermost() && "Inner loop expected.");
8276
8277 const LoopAccessInfo *LAI = Legal->getLAI();
8279 OrigLoop, LI, DT, PSE.getSE());
8280 if (!LAI->getRuntimePointerChecking()->getChecks().empty() &&
8282 // Only use noalias metadata when using memory checks guaranteeing no
8283 // overlap across all iterations.
8284 LVer.prepareNoAliasMetadata();
8285 }
8286
8287 // Create initial base VPlan0, to serve as common starting point for all
8288 // candidates built later for specific VF ranges.
8289 auto VPlan0 = VPlanTransforms::buildVPlan0(
8290 OrigLoop, *LI, Legal->getWidestInductionType(),
8291 getDebugLocFromInstOrOperands(Legal->getPrimaryInduction()), PSE, &LVer);
8292
8293 // Create recipes for header phis.
8295 *VPlan0, *PSE.getSE(), *OrigLoop, Legal->getInductionVars(),
8296 Legal->getReductionVars(), Legal->getFixedOrderRecurrences(),
8297 CM.getInLoopReductions(), Hints.allowReordering());
8298
8299 auto MaxVFTimes2 = MaxVF * 2;
8300 for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFTimes2);) {
8301 VFRange SubRange = {VF, MaxVFTimes2};
8302 if (auto Plan = tryToBuildVPlanWithVPRecipes(
8303 std::unique_ptr<VPlan>(VPlan0->duplicate()), SubRange, &LVer)) {
8304 // Now optimize the initial VPlan.
8305 VPlanTransforms::hoistPredicatedLoads(*Plan, *PSE.getSE(), OrigLoop);
8306 VPlanTransforms::sinkPredicatedStores(*Plan, *PSE.getSE(), OrigLoop);
8308 *Plan, CM.getMinimalBitwidths());
8310 // TODO: try to put it close to addActiveLaneMask().
8311 if (CM.foldTailWithEVL())
8313 *Plan, CM.getMaxSafeElements());
8314 assert(verifyVPlanIsValid(*Plan) && "VPlan is invalid");
8315 VPlans.push_back(std::move(Plan));
8316 }
8317 VF = SubRange.End;
8318 }
8319}
8320
8321VPlanPtr LoopVectorizationPlanner::tryToBuildVPlanWithVPRecipes(
8322 VPlanPtr Plan, VFRange &Range, LoopVersioning *LVer) {
8323
8324 using namespace llvm::VPlanPatternMatch;
8325 SmallPtrSet<const InterleaveGroup<Instruction> *, 1> InterleaveGroups;
8326
8327 // ---------------------------------------------------------------------------
8328 // Build initial VPlan: Scan the body of the loop in a topological order to
8329 // visit each basic block after having visited its predecessor basic blocks.
8330 // ---------------------------------------------------------------------------
8331
8332 bool RequiresScalarEpilogueCheck =
8334 [this](ElementCount VF) {
8335 return !CM.requiresScalarEpilogue(VF.isVector());
8336 },
8337 Range);
8338 VPlanTransforms::handleEarlyExits(*Plan, Legal->hasUncountableEarlyExit());
8339 VPlanTransforms::addMiddleCheck(*Plan, RequiresScalarEpilogueCheck,
8340 CM.foldTailByMasking());
8341
8343
8344 // Don't use getDecisionAndClampRange here, because we don't know the UF
8345 // so this function is better to be conservative, rather than to split
8346 // it up into different VPlans.
8347 // TODO: Consider using getDecisionAndClampRange here to split up VPlans.
8348 bool IVUpdateMayOverflow = false;
8349 for (ElementCount VF : Range)
8350 IVUpdateMayOverflow |= !isIndvarOverflowCheckKnownFalse(&CM, VF);
8351
8352 TailFoldingStyle Style = CM.getTailFoldingStyle(IVUpdateMayOverflow);
8353 // Use NUW for the induction increment if we proved that it won't overflow in
8354 // the vector loop or when not folding the tail. In the later case, we know
8355 // that the canonical induction increment will not overflow as the vector trip
8356 // count is >= increment and a multiple of the increment.
8357 VPRegionBlock *LoopRegion = Plan->getVectorLoopRegion();
8358 bool HasNUW = !IVUpdateMayOverflow || Style == TailFoldingStyle::None;
8359 if (!HasNUW) {
8360 auto *IVInc =
8361 LoopRegion->getExitingBasicBlock()->getTerminator()->getOperand(0);
8362 assert(match(IVInc,
8363 m_VPInstruction<Instruction::Add>(
8364 m_Specific(LoopRegion->getCanonicalIV()), m_VPValue())) &&
8365 "Did not find the canonical IV increment");
8366 cast<VPRecipeWithIRFlags>(IVInc)->dropPoisonGeneratingFlags();
8367 }
8368
8369 // ---------------------------------------------------------------------------
8370 // Pre-construction: record ingredients whose recipes we'll need to further
8371 // process after constructing the initial VPlan.
8372 // ---------------------------------------------------------------------------
8373
8374 // For each interleave group which is relevant for this (possibly trimmed)
8375 // Range, add it to the set of groups to be later applied to the VPlan and add
8376 // placeholders for its members' Recipes which we'll be replacing with a
8377 // single VPInterleaveRecipe.
8378 for (InterleaveGroup<Instruction> *IG : IAI.getInterleaveGroups()) {
8379 auto ApplyIG = [IG, this](ElementCount VF) -> bool {
8380 bool Result = (VF.isVector() && // Query is illegal for VF == 1
8381 CM.getWideningDecision(IG->getInsertPos(), VF) ==
8383 // For scalable vectors, the interleave factors must be <= 8 since we
8384 // require the (de)interleaveN intrinsics instead of shufflevectors.
8385 assert((!Result || !VF.isScalable() || IG->getFactor() <= 8) &&
8386 "Unsupported interleave factor for scalable vectors");
8387 return Result;
8388 };
8389 if (!getDecisionAndClampRange(ApplyIG, Range))
8390 continue;
8391 InterleaveGroups.insert(IG);
8392 }
8393
8394 // ---------------------------------------------------------------------------
8395 // Predicate and linearize the top-level loop region.
8396 // ---------------------------------------------------------------------------
8397 auto BlockMaskCache = VPlanTransforms::introduceMasksAndLinearize(
8398 *Plan, CM.foldTailByMasking());
8399
8400 // ---------------------------------------------------------------------------
8401 // Construct wide recipes and apply predication for original scalar
8402 // VPInstructions in the loop.
8403 // ---------------------------------------------------------------------------
8404 VPRecipeBuilder RecipeBuilder(*Plan, OrigLoop, TLI, &TTI, Legal, CM, Builder,
8405 BlockMaskCache);
8406 // TODO: Handle partial reductions with EVL tail folding.
8407 if (!CM.foldTailWithEVL())
8408 RecipeBuilder.collectScaledReductions(Range);
8409
8410 // Scan the body of the loop in a topological order to visit each basic block
8411 // after having visited its predecessor basic blocks.
8412 VPBasicBlock *HeaderVPBB = LoopRegion->getEntryBasicBlock();
8413 ReversePostOrderTraversal<VPBlockShallowTraversalWrapper<VPBlockBase *>> RPOT(
8414 HeaderVPBB);
8415
8416 auto *MiddleVPBB = Plan->getMiddleBlock();
8417 VPBasicBlock::iterator MBIP = MiddleVPBB->getFirstNonPhi();
8418 // Mapping from VPValues in the initial plan to their widened VPValues. Needed
8419 // temporarily to update created block masks.
8420 DenseMap<VPValue *, VPValue *> Old2New;
8421
8422 for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(RPOT)) {
8423 // Convert input VPInstructions to widened recipes.
8424 for (VPRecipeBase &R : make_early_inc_range(*VPBB)) {
8425 auto *VPI = dyn_cast<VPInstruction>(&R);
8426 // Skip recipes that do not need transforming, including
8427 // non-VPInstructions (such as ...) and VPInstructions without underlying
8428 // values. The latter are added above for masking.
8429 if (!VPI || !VPI->getUnderlyingValue())
8430 continue;
8431
8432 // TODO: Gradually replace uses of underlying instruction by analyses on
8433 // VPlan. Migrate code relying on the underlying instruction from VPlan0
8434 // to construct recipes below to not use the underlying instruction.
8436 Builder.setInsertPoint(VPI);
8437
8438 // The stores with invariant address inside the loop will be deleted, and
8439 // in the exit block, a uniform store recipe will be created for the final
8440 // invariant store of the reduction.
8441 StoreInst *SI;
8442 if ((SI = dyn_cast<StoreInst>(Instr)) &&
8443 Legal->isInvariantAddressOfReduction(SI->getPointerOperand())) {
8444 // Only create recipe for the final invariant store of the reduction.
8445 if (Legal->isInvariantStoreOfReduction(SI)) {
8446 auto *Recipe = new VPReplicateRecipe(
8447 SI, R.operands(), true /* IsUniform */, nullptr /*Mask*/, *VPI,
8448 *VPI, VPI->getDebugLoc());
8449 Recipe->insertBefore(*MiddleVPBB, MBIP);
8450 }
8451 R.eraseFromParent();
8452 continue;
8453 }
8454
8455 VPRecipeBase *Recipe =
8456 RecipeBuilder.tryToCreateWidenNonPhiRecipe(VPI, Range);
8457 if (!Recipe)
8458 Recipe =
8459 RecipeBuilder.handleReplication(cast<VPInstruction>(VPI), Range);
8460
8461 RecipeBuilder.setRecipe(Instr, Recipe);
8462 if (isa<VPWidenIntOrFpInductionRecipe>(Recipe) && isa<TruncInst>(Instr)) {
8463 // Optimized a truncate to VPWidenIntOrFpInductionRecipe. It needs to be
8464 // moved to the phi section in the header.
8465 Recipe->insertBefore(*HeaderVPBB, HeaderVPBB->getFirstNonPhi());
8466 } else {
8467 Builder.insert(Recipe);
8468 }
8469 if (Recipe->getNumDefinedValues() == 1) {
8470 VPI->replaceAllUsesWith(Recipe->getVPSingleValue());
8471 Old2New[VPI] = Recipe->getVPSingleValue();
8472 } else {
8473 assert(Recipe->getNumDefinedValues() == 0 &&
8474 "Unexpected multidef recipe");
8475 R.eraseFromParent();
8476 }
8477 }
8478 }
8479
8480 // replaceAllUsesWith above may invalidate the block masks. Update them here.
8481 // TODO: Include the masks as operands in the predicated VPlan directly
8482 // to remove the need to keep a map of masks beyond the predication
8483 // transform.
8484 RecipeBuilder.updateBlockMaskCache(Old2New);
8485 for (VPValue *Old : Old2New.keys())
8486 Old->getDefiningRecipe()->eraseFromParent();
8487
8488 assert(isa<VPRegionBlock>(LoopRegion) &&
8489 !LoopRegion->getEntryBasicBlock()->empty() &&
8490 "entry block must be set to a VPRegionBlock having a non-empty entry "
8491 "VPBasicBlock");
8492
8493 // TODO: We can't call runPass on these transforms yet, due to verifier
8494 // failures.
8496 DenseMap<VPValue *, VPValue *> IVEndValues;
8497 VPlanTransforms::updateScalarResumePhis(*Plan, IVEndValues);
8498
8499 // ---------------------------------------------------------------------------
8500 // Transform initial VPlan: Apply previously taken decisions, in order, to
8501 // bring the VPlan to its final state.
8502 // ---------------------------------------------------------------------------
8503
8504 // Adjust the recipes for any inloop reductions.
8505 adjustRecipesForReductions(Plan, RecipeBuilder, Range.Start);
8506
8507 // Apply mandatory transformation to handle reductions with multiple in-loop
8508 // uses if possible, bail out otherwise.
8510 *Plan))
8511 return nullptr;
8512 // Apply mandatory transformation to handle FP maxnum/minnum reduction with
8513 // NaNs if possible, bail out otherwise.
8515 *Plan))
8516 return nullptr;
8517
8518 // Transform recipes to abstract recipes if it is legal and beneficial and
8519 // clamp the range for better cost estimation.
8520 // TODO: Enable following transform when the EVL-version of extended-reduction
8521 // and mulacc-reduction are implemented.
8522 if (!CM.foldTailWithEVL()) {
8523 VPCostContext CostCtx(CM.TTI, *CM.TLI, *Plan, CM, CM.CostKind,
8524 *CM.PSE.getSE(), OrigLoop);
8526 CostCtx, Range);
8527 }
8528
8529 for (ElementCount VF : Range)
8530 Plan->addVF(VF);
8531 Plan->setName("Initial VPlan");
8532
8533 // Interleave memory: for each Interleave Group we marked earlier as relevant
8534 // for this VPlan, replace the Recipes widening its memory instructions with a
8535 // single VPInterleaveRecipe at its insertion point.
8537 InterleaveGroups, RecipeBuilder,
8538 CM.isScalarEpilogueAllowed());
8539
8540 // Replace VPValues for known constant strides.
8542 Legal->getLAI()->getSymbolicStrides());
8543
8544 auto BlockNeedsPredication = [this](BasicBlock *BB) {
8545 return Legal->blockNeedsPredication(BB);
8546 };
8548 BlockNeedsPredication);
8549
8550 // Sink users of fixed-order recurrence past the recipe defining the previous
8551 // value and introduce FirstOrderRecurrenceSplice VPInstructions.
8553 *Plan, Builder))
8554 return nullptr;
8555
8556 if (useActiveLaneMask(Style)) {
8557 // TODO: Move checks to VPlanTransforms::addActiveLaneMask once
8558 // TailFoldingStyle is visible there.
8559 bool ForControlFlow = useActiveLaneMaskForControlFlow(Style);
8560 bool WithoutRuntimeCheck =
8562 VPlanTransforms::addActiveLaneMask(*Plan, ForControlFlow,
8563 WithoutRuntimeCheck);
8564 }
8565 VPlanTransforms::optimizeInductionExitUsers(*Plan, IVEndValues, *PSE.getSE());
8566
8567 assert(verifyVPlanIsValid(*Plan) && "VPlan is invalid");
8568 return Plan;
8569}
8570
8571VPlanPtr LoopVectorizationPlanner::tryToBuildVPlan(VFRange &Range) {
8572 // Outer loop handling: They may require CFG and instruction level
8573 // transformations before even evaluating whether vectorization is profitable.
8574 // Since we cannot modify the incoming IR, we need to build VPlan upfront in
8575 // the vectorization pipeline.
8576 assert(!OrigLoop->isInnermost());
8577 assert(EnableVPlanNativePath && "VPlan-native path is not enabled.");
8578
8579 auto Plan = VPlanTransforms::buildVPlan0(
8580 OrigLoop, *LI, Legal->getWidestInductionType(),
8581 getDebugLocFromInstOrOperands(Legal->getPrimaryInduction()), PSE);
8583 /*HasUncountableExit*/ false);
8584 VPlanTransforms::addMiddleCheck(*Plan, /*RequiresScalarEpilogue*/ true,
8585 /*TailFolded*/ false);
8586
8588
8589 for (ElementCount VF : Range)
8590 Plan->addVF(VF);
8591
8593 *Plan,
8594 [this](PHINode *P) {
8595 return Legal->getIntOrFpInductionDescriptor(P);
8596 },
8597 *TLI))
8598 return nullptr;
8599
8600 // TODO: IVEndValues are not used yet in the native path, to optimize exit
8601 // values.
8602 // TODO: We can't call runPass on the transform yet, due to verifier
8603 // failures.
8604 DenseMap<VPValue *, VPValue *> IVEndValues;
8605 VPlanTransforms::updateScalarResumePhis(*Plan, IVEndValues);
8606
8607 assert(verifyVPlanIsValid(*Plan) && "VPlan is invalid");
8608 return Plan;
8609}
8610
8611// Adjust the recipes for reductions. For in-loop reductions the chain of
8612// instructions leading from the loop exit instr to the phi need to be converted
8613// to reductions, with one operand being vector and the other being the scalar
8614// reduction chain. For other reductions, a select is introduced between the phi
8615// and users outside the vector region when folding the tail.
8616//
8617// A ComputeReductionResult recipe is added to the middle block, also for
8618// in-loop reductions which compute their result in-loop, because generating
8619// the subsequent bc.merge.rdx phi is driven by ComputeReductionResult recipes.
8620//
8621// Adjust AnyOf reductions; replace the reduction phi for the selected value
8622// with a boolean reduction phi node to check if the condition is true in any
8623// iteration. The final value is selected by the final ComputeReductionResult.
8624void LoopVectorizationPlanner::adjustRecipesForReductions(
8625 VPlanPtr &Plan, VPRecipeBuilder &RecipeBuilder, ElementCount MinVF) {
8626 using namespace VPlanPatternMatch;
8627 VPTypeAnalysis TypeInfo(*Plan);
8628 VPRegionBlock *VectorLoopRegion = Plan->getVectorLoopRegion();
8629 VPBasicBlock *Header = VectorLoopRegion->getEntryBasicBlock();
8630 VPBasicBlock *MiddleVPBB = Plan->getMiddleBlock();
8632
8633 for (VPRecipeBase &R : Header->phis()) {
8634 auto *PhiR = dyn_cast<VPReductionPHIRecipe>(&R);
8635 if (!PhiR || !PhiR->isInLoop() || (MinVF.isScalar() && !PhiR->isOrdered()))
8636 continue;
8637
8638 RecurKind Kind = PhiR->getRecurrenceKind();
8639 assert(
8642 "AnyOf and FindIV reductions are not allowed for in-loop reductions");
8643
8644 bool IsFPRecurrence =
8646 FastMathFlags FMFs =
8647 IsFPRecurrence ? FastMathFlags::getFast() : FastMathFlags();
8648
8649 // Collect the chain of "link" recipes for the reduction starting at PhiR.
8650 SetVector<VPSingleDefRecipe *> Worklist;
8651 Worklist.insert(PhiR);
8652 for (unsigned I = 0; I != Worklist.size(); ++I) {
8653 VPSingleDefRecipe *Cur = Worklist[I];
8654 for (VPUser *U : Cur->users()) {
8655 auto *UserRecipe = cast<VPSingleDefRecipe>(U);
8656 if (!UserRecipe->getParent()->getEnclosingLoopRegion()) {
8657 assert((UserRecipe->getParent() == MiddleVPBB ||
8658 UserRecipe->getParent() == Plan->getScalarPreheader()) &&
8659 "U must be either in the loop region, the middle block or the "
8660 "scalar preheader.");
8661 continue;
8662 }
8663 Worklist.insert(UserRecipe);
8664 }
8665 }
8666
8667 // Visit operation "Links" along the reduction chain top-down starting from
8668 // the phi until LoopExitValue. We keep track of the previous item
8669 // (PreviousLink) to tell which of the two operands of a Link will remain
8670 // scalar and which will be reduced. For minmax by select(cmp), Link will be
8671 // the select instructions. Blend recipes of in-loop reduction phi's will
8672 // get folded to their non-phi operand, as the reduction recipe handles the
8673 // condition directly.
8674 VPSingleDefRecipe *PreviousLink = PhiR; // Aka Worklist[0].
8675 for (VPSingleDefRecipe *CurrentLink : drop_begin(Worklist)) {
8676 if (auto *Blend = dyn_cast<VPBlendRecipe>(CurrentLink)) {
8677 assert(Blend->getNumIncomingValues() == 2 &&
8678 "Blend must have 2 incoming values");
8679 if (Blend->getIncomingValue(0) == PhiR) {
8680 Blend->replaceAllUsesWith(Blend->getIncomingValue(1));
8681 } else {
8682 assert(Blend->getIncomingValue(1) == PhiR &&
8683 "PhiR must be an operand of the blend");
8684 Blend->replaceAllUsesWith(Blend->getIncomingValue(0));
8685 }
8686 continue;
8687 }
8688
8689 if (IsFPRecurrence) {
8690 FastMathFlags CurFMF =
8691 cast<VPRecipeWithIRFlags>(CurrentLink)->getFastMathFlags();
8692 if (match(CurrentLink, m_Select(m_VPValue(), m_VPValue(), m_VPValue())))
8693 CurFMF |= cast<VPRecipeWithIRFlags>(CurrentLink->getOperand(0))
8694 ->getFastMathFlags();
8695 FMFs &= CurFMF;
8696 }
8697
8698 Instruction *CurrentLinkI = CurrentLink->getUnderlyingInstr();
8699
8700 // Index of the first operand which holds a non-mask vector operand.
8701 unsigned IndexOfFirstOperand;
8702 // Recognize a call to the llvm.fmuladd intrinsic.
8703 bool IsFMulAdd = (Kind == RecurKind::FMulAdd);
8704 VPValue *VecOp;
8705 VPBasicBlock *LinkVPBB = CurrentLink->getParent();
8706 if (IsFMulAdd) {
8707 assert(
8709 "Expected instruction to be a call to the llvm.fmuladd intrinsic");
8710 assert(((MinVF.isScalar() && isa<VPReplicateRecipe>(CurrentLink)) ||
8711 isa<VPWidenIntrinsicRecipe>(CurrentLink)) &&
8712 CurrentLink->getOperand(2) == PreviousLink &&
8713 "expected a call where the previous link is the added operand");
8714
8715 // If the instruction is a call to the llvm.fmuladd intrinsic then we
8716 // need to create an fmul recipe (multiplying the first two operands of
8717 // the fmuladd together) to use as the vector operand for the fadd
8718 // reduction.
8719 VPInstruction *FMulRecipe = new VPInstruction(
8720 Instruction::FMul,
8721 {CurrentLink->getOperand(0), CurrentLink->getOperand(1)},
8722 CurrentLinkI->getFastMathFlags());
8723 LinkVPBB->insert(FMulRecipe, CurrentLink->getIterator());
8724 VecOp = FMulRecipe;
8725 } else if (PhiR->isInLoop() && Kind == RecurKind::AddChainWithSubs &&
8726 match(CurrentLink, m_Sub(m_VPValue(), m_VPValue()))) {
8727 Type *PhiTy = TypeInfo.inferScalarType(PhiR);
8728 auto *Zero = Plan->getConstantInt(PhiTy, 0);
8729 auto *Sub = new VPInstruction(Instruction::Sub,
8730 {Zero, CurrentLink->getOperand(1)}, {},
8731 {}, CurrentLinkI->getDebugLoc());
8732 Sub->setUnderlyingValue(CurrentLinkI);
8733 LinkVPBB->insert(Sub, CurrentLink->getIterator());
8734 VecOp = Sub;
8735 } else {
8737 if (match(CurrentLink, m_Cmp(m_VPValue(), m_VPValue())))
8738 continue;
8739 assert(isa<VPWidenSelectRecipe>(CurrentLink) &&
8740 "must be a select recipe");
8741 IndexOfFirstOperand = 1;
8742 } else {
8743 assert((MinVF.isScalar() || isa<VPWidenRecipe>(CurrentLink)) &&
8744 "Expected to replace a VPWidenSC");
8745 IndexOfFirstOperand = 0;
8746 }
8747 // Note that for non-commutable operands (cmp-selects), the semantics of
8748 // the cmp-select are captured in the recurrence kind.
8749 unsigned VecOpId =
8750 CurrentLink->getOperand(IndexOfFirstOperand) == PreviousLink
8751 ? IndexOfFirstOperand + 1
8752 : IndexOfFirstOperand;
8753 VecOp = CurrentLink->getOperand(VecOpId);
8754 assert(VecOp != PreviousLink &&
8755 CurrentLink->getOperand(CurrentLink->getNumOperands() - 1 -
8756 (VecOpId - IndexOfFirstOperand)) ==
8757 PreviousLink &&
8758 "PreviousLink must be the operand other than VecOp");
8759 }
8760
8761 VPValue *CondOp = nullptr;
8762 if (CM.blockNeedsPredicationForAnyReason(CurrentLinkI->getParent()))
8763 CondOp = RecipeBuilder.getBlockInMask(CurrentLink->getParent());
8764
8765 ReductionStyle Style = getReductionStyle(true, PhiR->isOrdered(), 1);
8766 auto *RedRecipe =
8767 new VPReductionRecipe(Kind, FMFs, CurrentLinkI, PreviousLink, VecOp,
8768 CondOp, Style, CurrentLinkI->getDebugLoc());
8769 // Append the recipe to the end of the VPBasicBlock because we need to
8770 // ensure that it comes after all of it's inputs, including CondOp.
8771 // Delete CurrentLink as it will be invalid if its operand is replaced
8772 // with a reduction defined at the bottom of the block in the next link.
8773 if (LinkVPBB->getNumSuccessors() == 0)
8774 RedRecipe->insertBefore(&*std::prev(std::prev(LinkVPBB->end())));
8775 else
8776 LinkVPBB->appendRecipe(RedRecipe);
8777
8778 CurrentLink->replaceAllUsesWith(RedRecipe);
8779 ToDelete.push_back(CurrentLink);
8780 PreviousLink = RedRecipe;
8781 }
8782 }
8783 VPBasicBlock *LatchVPBB = VectorLoopRegion->getExitingBasicBlock();
8784 Builder.setInsertPoint(&*std::prev(std::prev(LatchVPBB->end())));
8785 VPBasicBlock::iterator IP = MiddleVPBB->getFirstNonPhi();
8786 for (VPRecipeBase &R :
8787 Plan->getVectorLoopRegion()->getEntryBasicBlock()->phis()) {
8788 VPReductionPHIRecipe *PhiR = dyn_cast<VPReductionPHIRecipe>(&R);
8789 if (!PhiR)
8790 continue;
8791
8792 const RecurrenceDescriptor &RdxDesc = Legal->getRecurrenceDescriptor(
8794 Type *PhiTy = TypeInfo.inferScalarType(PhiR);
8795 // If tail is folded by masking, introduce selects between the phi
8796 // and the users outside the vector region of each reduction, at the
8797 // beginning of the dedicated latch block.
8798 auto *OrigExitingVPV = PhiR->getBackedgeValue();
8799 auto *NewExitingVPV = PhiR->getBackedgeValue();
8800 // Don't output selects for partial reductions because they have an output
8801 // with fewer lanes than the VF. So the operands of the select would have
8802 // different numbers of lanes. Partial reductions mask the input instead.
8803 auto *RR = dyn_cast<VPReductionRecipe>(OrigExitingVPV->getDefiningRecipe());
8804 if (!PhiR->isInLoop() && CM.foldTailByMasking() &&
8805 (!RR || !RR->isPartialReduction())) {
8806 VPValue *Cond = RecipeBuilder.getBlockInMask(PhiR->getParent());
8807 std::optional<FastMathFlags> FMFs =
8808 PhiTy->isFloatingPointTy()
8809 ? std::make_optional(RdxDesc.getFastMathFlags())
8810 : std::nullopt;
8811 NewExitingVPV =
8812 Builder.createSelect(Cond, OrigExitingVPV, PhiR, {}, "", FMFs);
8813 OrigExitingVPV->replaceUsesWithIf(NewExitingVPV, [](VPUser &U, unsigned) {
8814 return isa<VPInstruction>(&U) &&
8815 (cast<VPInstruction>(&U)->getOpcode() ==
8817 cast<VPInstruction>(&U)->getOpcode() ==
8819 cast<VPInstruction>(&U)->getOpcode() ==
8821 });
8822 if (CM.usePredicatedReductionSelect())
8823 PhiR->setOperand(1, NewExitingVPV);
8824 }
8825
8826 // We want code in the middle block to appear to execute on the location of
8827 // the scalar loop's latch terminator because: (a) it is all compiler
8828 // generated, (b) these instructions are always executed after evaluating
8829 // the latch conditional branch, and (c) other passes may add new
8830 // predecessors which terminate on this line. This is the easiest way to
8831 // ensure we don't accidentally cause an extra step back into the loop while
8832 // debugging.
8833 DebugLoc ExitDL = OrigLoop->getLoopLatch()->getTerminator()->getDebugLoc();
8834
8835 // TODO: At the moment ComputeReductionResult also drives creation of the
8836 // bc.merge.rdx phi nodes, hence it needs to be created unconditionally here
8837 // even for in-loop reductions, until the reduction resume value handling is
8838 // also modeled in VPlan.
8839 VPInstruction *FinalReductionResult;
8840 VPBuilder::InsertPointGuard Guard(Builder);
8841 Builder.setInsertPoint(MiddleVPBB, IP);
8842 RecurKind RecurrenceKind = PhiR->getRecurrenceKind();
8844 VPValue *Start = PhiR->getStartValue();
8845 VPValue *Sentinel = Plan->getOrAddLiveIn(RdxDesc.getSentinelValue());
8846 FinalReductionResult =
8847 Builder.createNaryOp(VPInstruction::ComputeFindIVResult,
8848 {PhiR, Start, Sentinel, NewExitingVPV}, ExitDL);
8849 } else if (RecurrenceDescriptor::isAnyOfRecurrenceKind(RecurrenceKind)) {
8850 VPValue *Start = PhiR->getStartValue();
8851 FinalReductionResult =
8852 Builder.createNaryOp(VPInstruction::ComputeAnyOfResult,
8853 {PhiR, Start, NewExitingVPV}, ExitDL);
8854 } else {
8855 VPIRFlags Flags =
8857 ? VPIRFlags(RdxDesc.getFastMathFlags())
8858 : VPIRFlags();
8859 FinalReductionResult =
8860 Builder.createNaryOp(VPInstruction::ComputeReductionResult,
8861 {PhiR, NewExitingVPV}, Flags, ExitDL);
8862 }
8863 // If the vector reduction can be performed in a smaller type, we truncate
8864 // then extend the loop exit value to enable InstCombine to evaluate the
8865 // entire expression in the smaller type.
8866 if (MinVF.isVector() && PhiTy != RdxDesc.getRecurrenceType() &&
8868 assert(!PhiR->isInLoop() && "Unexpected truncated inloop reduction!");
8870 "Unexpected truncated min-max recurrence!");
8871 Type *RdxTy = RdxDesc.getRecurrenceType();
8872 VPWidenCastRecipe *Trunc;
8873 Instruction::CastOps ExtendOpc =
8874 RdxDesc.isSigned() ? Instruction::SExt : Instruction::ZExt;
8875 VPWidenCastRecipe *Extnd;
8876 {
8877 VPBuilder::InsertPointGuard Guard(Builder);
8878 Builder.setInsertPoint(
8879 NewExitingVPV->getDefiningRecipe()->getParent(),
8880 std::next(NewExitingVPV->getDefiningRecipe()->getIterator()));
8881 Trunc =
8882 Builder.createWidenCast(Instruction::Trunc, NewExitingVPV, RdxTy);
8883 Extnd = Builder.createWidenCast(ExtendOpc, Trunc, PhiTy);
8884 }
8885 if (PhiR->getOperand(1) == NewExitingVPV)
8886 PhiR->setOperand(1, Extnd->getVPSingleValue());
8887
8888 // Update ComputeReductionResult with the truncated exiting value and
8889 // extend its result.
8890 FinalReductionResult->setOperand(1, Trunc);
8891 FinalReductionResult =
8892 Builder.createScalarCast(ExtendOpc, FinalReductionResult, PhiTy, {});
8893 }
8894
8895 // Update all users outside the vector region. Also replace redundant
8896 // extracts.
8897 for (auto *U : to_vector(OrigExitingVPV->users())) {
8898 auto *Parent = cast<VPRecipeBase>(U)->getParent();
8899 if (FinalReductionResult == U || Parent->getParent())
8900 continue;
8901 U->replaceUsesOfWith(OrigExitingVPV, FinalReductionResult);
8902
8903 // Look through ExtractLastPart.
8905 U = cast<VPInstruction>(U)->getSingleUser();
8906
8909 cast<VPInstruction>(U)->replaceAllUsesWith(FinalReductionResult);
8910 }
8911
8912 // Adjust AnyOf reductions; replace the reduction phi for the selected value
8913 // with a boolean reduction phi node to check if the condition is true in
8914 // any iteration. The final value is selected by the final
8915 // ComputeReductionResult.
8916 if (RecurrenceDescriptor::isAnyOfRecurrenceKind(RecurrenceKind)) {
8917 auto *Select = cast<VPRecipeBase>(*find_if(PhiR->users(), [](VPUser *U) {
8918 return isa<VPWidenSelectRecipe>(U) ||
8919 (isa<VPReplicateRecipe>(U) &&
8920 cast<VPReplicateRecipe>(U)->getUnderlyingInstr()->getOpcode() ==
8921 Instruction::Select);
8922 }));
8923 VPValue *Cmp = Select->getOperand(0);
8924 // If the compare is checking the reduction PHI node, adjust it to check
8925 // the start value.
8926 if (VPRecipeBase *CmpR = Cmp->getDefiningRecipe())
8927 CmpR->replaceUsesOfWith(PhiR, PhiR->getStartValue());
8928 Builder.setInsertPoint(Select);
8929
8930 // If the true value of the select is the reduction phi, the new value is
8931 // selected if the negated condition is true in any iteration.
8932 if (Select->getOperand(1) == PhiR)
8933 Cmp = Builder.createNot(Cmp);
8934 VPValue *Or = Builder.createOr(PhiR, Cmp);
8935 Select->getVPSingleValue()->replaceAllUsesWith(Or);
8936 // Delete Select now that it has invalid types.
8937 ToDelete.push_back(Select);
8938
8939 // Convert the reduction phi to operate on bools.
8940 PhiR->setOperand(0, Plan->getFalse());
8941 continue;
8942 }
8943
8945 RdxDesc.getRecurrenceKind())) {
8946 // Adjust the start value for FindFirstIV/FindLastIV recurrences to use
8947 // the sentinel value after generating the ResumePhi recipe, which uses
8948 // the original start value.
8949 PhiR->setOperand(0, Plan->getOrAddLiveIn(RdxDesc.getSentinelValue()));
8950 }
8951 RecurKind RK = RdxDesc.getRecurrenceKind();
8955 VPBuilder PHBuilder(Plan->getVectorPreheader());
8956 VPValue *Iden = Plan->getOrAddLiveIn(
8957 getRecurrenceIdentity(RK, PhiTy, RdxDesc.getFastMathFlags()));
8958 // If the PHI is used by a partial reduction, set the scale factor.
8959 unsigned ScaleFactor =
8960 RecipeBuilder.getScalingForReduction(RdxDesc.getLoopExitInstr())
8961 .value_or(1);
8962 auto *ScaleFactorVPV = Plan->getConstantInt(32, ScaleFactor);
8963 VPValue *StartV = PHBuilder.createNaryOp(
8965 {PhiR->getStartValue(), Iden, ScaleFactorVPV},
8966 PhiTy->isFloatingPointTy() ? RdxDesc.getFastMathFlags()
8967 : FastMathFlags());
8968 PhiR->setOperand(0, StartV);
8969 }
8970 }
8971 for (VPRecipeBase *R : ToDelete)
8972 R->eraseFromParent();
8973
8975}
8976
8977void LoopVectorizationPlanner::attachRuntimeChecks(
8978 VPlan &Plan, GeneratedRTChecks &RTChecks, bool HasBranchWeights) const {
8979 const auto &[SCEVCheckCond, SCEVCheckBlock] = RTChecks.getSCEVChecks();
8980 if (SCEVCheckBlock && SCEVCheckBlock->hasNPredecessors(0)) {
8981 assert((!CM.OptForSize ||
8982 CM.Hints->getForce() == LoopVectorizeHints::FK_Enabled) &&
8983 "Cannot SCEV check stride or overflow when optimizing for size");
8984 VPlanTransforms::attachCheckBlock(Plan, SCEVCheckCond, SCEVCheckBlock,
8985 HasBranchWeights);
8986 }
8987 const auto &[MemCheckCond, MemCheckBlock] = RTChecks.getMemRuntimeChecks();
8988 if (MemCheckBlock && MemCheckBlock->hasNPredecessors(0)) {
8989 // VPlan-native path does not do any analysis for runtime checks
8990 // currently.
8991 assert((!EnableVPlanNativePath || OrigLoop->isInnermost()) &&
8992 "Runtime checks are not supported for outer loops yet");
8993
8994 if (CM.OptForSize) {
8995 assert(
8996 CM.Hints->getForce() == LoopVectorizeHints::FK_Enabled &&
8997 "Cannot emit memory checks when optimizing for size, unless forced "
8998 "to vectorize.");
8999 ORE->emit([&]() {
9000 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationCodeSize",
9001 OrigLoop->getStartLoc(),
9002 OrigLoop->getHeader())
9003 << "Code-size may be reduced by not forcing "
9004 "vectorization, or by source-code modifications "
9005 "eliminating the need for runtime checks "
9006 "(e.g., adding 'restrict').";
9007 });
9008 }
9009 VPlanTransforms::attachCheckBlock(Plan, MemCheckCond, MemCheckBlock,
9010 HasBranchWeights);
9011 }
9012}
9013
9015 VPlan &Plan, ElementCount VF, unsigned UF,
9016 ElementCount MinProfitableTripCount) const {
9017 // vscale is not necessarily a power-of-2, which means we cannot guarantee
9018 // an overflow to zero when updating induction variables and so an
9019 // additional overflow check is required before entering the vector loop.
9020 bool IsIndvarOverflowCheckNeededForVF =
9021 VF.isScalable() && !TTI.isVScaleKnownToBeAPowerOfTwo() &&
9022 !isIndvarOverflowCheckKnownFalse(&CM, VF, UF) &&
9023 CM.getTailFoldingStyle() !=
9025 const uint32_t *BranchWeigths =
9026 hasBranchWeightMD(*OrigLoop->getLoopLatch()->getTerminator())
9028 : nullptr;
9030 Plan, VF, UF, MinProfitableTripCount,
9031 CM.requiresScalarEpilogue(VF.isVector()), CM.foldTailByMasking(),
9032 IsIndvarOverflowCheckNeededForVF, OrigLoop, BranchWeigths,
9033 OrigLoop->getLoopPredecessor()->getTerminator()->getDebugLoc(),
9034 *PSE.getSE());
9035}
9036
9038 assert(!State.Lane && "VPDerivedIVRecipe being replicated.");
9039
9040 // Fast-math-flags propagate from the original induction instruction.
9041 IRBuilder<>::FastMathFlagGuard FMFG(State.Builder);
9042 if (FPBinOp)
9043 State.Builder.setFastMathFlags(FPBinOp->getFastMathFlags());
9044
9045 Value *Step = State.get(getStepValue(), VPLane(0));
9046 Value *Index = State.get(getOperand(1), VPLane(0));
9047 Value *DerivedIV = emitTransformedIndex(
9048 State.Builder, Index, getStartValue()->getLiveInIRValue(), Step, Kind,
9050 DerivedIV->setName(Name);
9051 State.set(this, DerivedIV, VPLane(0));
9052}
9053
9054// Determine how to lower the scalar epilogue, which depends on 1) optimising
9055// for minimum code-size, 2) predicate compiler options, 3) loop hints forcing
9056// predication, and 4) a TTI hook that analyses whether the loop is suitable
9057// for predication.
9059 Function *F, Loop *L, LoopVectorizeHints &Hints, bool OptForSize,
9062 // 1) OptSize takes precedence over all other options, i.e. if this is set,
9063 // don't look at hints or options, and don't request a scalar epilogue.
9064 if (F->hasOptSize() ||
9065 (OptForSize && Hints.getForce() != LoopVectorizeHints::FK_Enabled))
9067
9068 // 2) If set, obey the directives
9069 if (PreferPredicateOverEpilogue.getNumOccurrences()) {
9077 };
9078 }
9079
9080 // 3) If set, obey the hints
9081 switch (Hints.getPredicate()) {
9086 };
9087
9088 // 4) if the TTI hook indicates this is profitable, request predication.
9089 TailFoldingInfo TFI(TLI, &LVL, IAI);
9090 if (TTI->preferPredicateOverEpilogue(&TFI))
9092
9094}
9095
9096// Process the loop in the VPlan-native vectorization path. This path builds
9097// VPlan upfront in the vectorization pipeline, which allows to apply
9098// VPlan-to-VPlan transformations from the very beginning without modifying the
9099// input LLVM IR.
9105 std::function<BlockFrequencyInfo &()> GetBFI, bool OptForSize,
9106 LoopVectorizeHints &Hints, LoopVectorizationRequirements &Requirements) {
9107
9109 LLVM_DEBUG(dbgs() << "LV: cannot compute the outer-loop trip count\n");
9110 return false;
9111 }
9112 assert(EnableVPlanNativePath && "VPlan-native path is disabled.");
9113 Function *F = L->getHeader()->getParent();
9114 InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL->getLAI());
9115
9117 getScalarEpilogueLowering(F, L, Hints, OptForSize, TTI, TLI, *LVL, &IAI);
9118
9119 LoopVectorizationCostModel CM(SEL, L, PSE, LI, LVL, *TTI, TLI, DB, AC, ORE,
9120 GetBFI, F, &Hints, IAI, OptForSize);
9121 // Use the planner for outer loop vectorization.
9122 // TODO: CM is not used at this point inside the planner. Turn CM into an
9123 // optional argument if we don't need it in the future.
9124 LoopVectorizationPlanner LVP(L, LI, DT, TLI, *TTI, LVL, CM, IAI, PSE, Hints,
9125 ORE);
9126
9127 // Get user vectorization factor.
9128 ElementCount UserVF = Hints.getWidth();
9129
9131
9132 // Plan how to best vectorize, return the best VF and its cost.
9133 const VectorizationFactor VF = LVP.planInVPlanNativePath(UserVF);
9134
9135 // If we are stress testing VPlan builds, do not attempt to generate vector
9136 // code. Masked vector code generation support will follow soon.
9137 // Also, do not attempt to vectorize if no vector code will be produced.
9139 return false;
9140
9141 VPlan &BestPlan = LVP.getPlanFor(VF.Width);
9142
9143 {
9144 GeneratedRTChecks Checks(PSE, DT, LI, TTI, CM.CostKind);
9145 InnerLoopVectorizer LB(L, PSE, LI, DT, TTI, AC, VF.Width, /*UF=*/1, &CM,
9146 Checks, BestPlan);
9147 LLVM_DEBUG(dbgs() << "Vectorizing outer loop in \""
9148 << L->getHeader()->getParent()->getName() << "\"\n");
9149 LVP.addMinimumIterationCheck(BestPlan, VF.Width, /*UF=*/1,
9151
9152 LVP.executePlan(VF.Width, /*UF=*/1, BestPlan, LB, DT, false);
9153 }
9154
9155 reportVectorization(ORE, L, VF, 1);
9156
9157 assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()));
9158 return true;
9159}
9160
9161// Emit a remark if there are stores to floats that required a floating point
9162// extension. If the vectorized loop was generated with floating point there
9163// will be a performance penalty from the conversion overhead and the change in
9164// the vector width.
9167 for (BasicBlock *BB : L->getBlocks()) {
9168 for (Instruction &Inst : *BB) {
9169 if (auto *S = dyn_cast<StoreInst>(&Inst)) {
9170 if (S->getValueOperand()->getType()->isFloatTy())
9171 Worklist.push_back(S);
9172 }
9173 }
9174 }
9175
9176 // Traverse the floating point stores upwards searching, for floating point
9177 // conversions.
9180 while (!Worklist.empty()) {
9181 auto *I = Worklist.pop_back_val();
9182 if (!L->contains(I))
9183 continue;
9184 if (!Visited.insert(I).second)
9185 continue;
9186
9187 // Emit a remark if the floating point store required a floating
9188 // point conversion.
9189 // TODO: More work could be done to identify the root cause such as a
9190 // constant or a function return type and point the user to it.
9191 if (isa<FPExtInst>(I) && EmittedRemark.insert(I).second)
9192 ORE->emit([&]() {
9193 return OptimizationRemarkAnalysis(LV_NAME, "VectorMixedPrecision",
9194 I->getDebugLoc(), L->getHeader())
9195 << "floating point conversion changes vector width. "
9196 << "Mixed floating point precision requires an up/down "
9197 << "cast that will negatively impact performance.";
9198 });
9199
9200 for (Use &Op : I->operands())
9201 if (auto *OpI = dyn_cast<Instruction>(Op))
9202 Worklist.push_back(OpI);
9203 }
9204}
9205
9206/// For loops with uncountable early exits, find the cost of doing work when
9207/// exiting the loop early, such as calculating the final exit values of
9208/// variables used outside the loop.
9209/// TODO: This is currently overly pessimistic because the loop may not take
9210/// the early exit, but better to keep this conservative for now. In future,
9211/// it might be possible to relax this by using branch probabilities.
9213 VPlan &Plan, ElementCount VF) {
9214 InstructionCost Cost = 0;
9215 for (auto *ExitVPBB : Plan.getExitBlocks()) {
9216 for (auto *PredVPBB : ExitVPBB->getPredecessors()) {
9217 // If the predecessor is not the middle.block, then it must be the
9218 // vector.early.exit block, which may contain work to calculate the exit
9219 // values of variables used outside the loop.
9220 if (PredVPBB != Plan.getMiddleBlock()) {
9221 LLVM_DEBUG(dbgs() << "Calculating cost of work in exit block "
9222 << PredVPBB->getName() << ":\n");
9223 Cost += PredVPBB->cost(VF, CostCtx);
9224 }
9225 }
9226 }
9227 return Cost;
9228}
9229
9230/// This function determines whether or not it's still profitable to vectorize
9231/// the loop given the extra work we have to do outside of the loop:
9232/// 1. Perform the runtime checks before entering the loop to ensure it's safe
9233/// to vectorize.
9234/// 2. In the case of loops with uncountable early exits, we may have to do
9235/// extra work when exiting the loop early, such as calculating the final
9236/// exit values of variables used outside the loop.
9237/// 3. The middle block.
9238static bool isOutsideLoopWorkProfitable(GeneratedRTChecks &Checks,
9239 VectorizationFactor &VF, Loop *L,
9241 VPCostContext &CostCtx, VPlan &Plan,
9243 std::optional<unsigned> VScale) {
9244 InstructionCost TotalCost = Checks.getCost();
9245 if (!TotalCost.isValid())
9246 return false;
9247
9248 // Add on the cost of any work required in the vector early exit block, if
9249 // one exists.
9250 TotalCost += calculateEarlyExitCost(CostCtx, Plan, VF.Width);
9251
9252 TotalCost += Plan.getMiddleBlock()->cost(VF.Width, CostCtx);
9253
9254 // When interleaving only scalar and vector cost will be equal, which in turn
9255 // would lead to a divide by 0. Fall back to hard threshold.
9256 if (VF.Width.isScalar()) {
9257 // TODO: Should we rename VectorizeMemoryCheckThreshold?
9258 if (TotalCost > VectorizeMemoryCheckThreshold) {
9259 LLVM_DEBUG(
9260 dbgs()
9261 << "LV: Interleaving only is not profitable due to runtime checks\n");
9262 return false;
9263 }
9264 return true;
9265 }
9266
9267 // The scalar cost should only be 0 when vectorizing with a user specified
9268 // VF/IC. In those cases, runtime checks should always be generated.
9269 uint64_t ScalarC = VF.ScalarCost.getValue();
9270 if (ScalarC == 0)
9271 return true;
9272
9273 // First, compute the minimum iteration count required so that the vector
9274 // loop outperforms the scalar loop.
9275 // The total cost of the scalar loop is
9276 // ScalarC * TC
9277 // where
9278 // * TC is the actual trip count of the loop.
9279 // * ScalarC is the cost of a single scalar iteration.
9280 //
9281 // The total cost of the vector loop is
9282 // RtC + VecC * (TC / VF) + EpiC
9283 // where
9284 // * RtC is the sum of the costs cost of
9285 // - the generated runtime checks
9286 // - performing any additional work in the vector.early.exit block for
9287 // loops with uncountable early exits.
9288 // - the middle block, if ExpectedTC <= VF.Width.
9289 // * VecC is the cost of a single vector iteration.
9290 // * TC is the actual trip count of the loop
9291 // * VF is the vectorization factor
9292 // * EpiCost is the cost of the generated epilogue, including the cost
9293 // of the remaining scalar operations.
9294 //
9295 // Vectorization is profitable once the total vector cost is less than the
9296 // total scalar cost:
9297 // RtC + VecC * (TC / VF) + EpiC < ScalarC * TC
9298 //
9299 // Now we can compute the minimum required trip count TC as
9300 // VF * (RtC + EpiC) / (ScalarC * VF - VecC) < TC
9301 //
9302 // For now we assume the epilogue cost EpiC = 0 for simplicity. Note that
9303 // the computations are performed on doubles, not integers and the result
9304 // is rounded up, hence we get an upper estimate of the TC.
9305 unsigned IntVF = estimateElementCount(VF.Width, VScale);
9306 uint64_t RtC = TotalCost.getValue();
9307 uint64_t Div = ScalarC * IntVF - VF.Cost.getValue();
9308 uint64_t MinTC1 = Div == 0 ? 0 : divideCeil(RtC * IntVF, Div);
9309
9310 // Second, compute a minimum iteration count so that the cost of the
9311 // runtime checks is only a fraction of the total scalar loop cost. This
9312 // adds a loop-dependent bound on the overhead incurred if the runtime
9313 // checks fail. In case the runtime checks fail, the cost is RtC + ScalarC
9314 // * TC. To bound the runtime check to be a fraction 1/X of the scalar
9315 // cost, compute
9316 // RtC < ScalarC * TC * (1 / X) ==> RtC * X / ScalarC < TC
9317 uint64_t MinTC2 = divideCeil(RtC * 10, ScalarC);
9318
9319 // Now pick the larger minimum. If it is not a multiple of VF and a scalar
9320 // epilogue is allowed, choose the next closest multiple of VF. This should
9321 // partly compensate for ignoring the epilogue cost.
9322 uint64_t MinTC = std::max(MinTC1, MinTC2);
9323 if (SEL == CM_ScalarEpilogueAllowed)
9324 MinTC = alignTo(MinTC, IntVF);
9326
9327 LLVM_DEBUG(
9328 dbgs() << "LV: Minimum required TC for runtime checks to be profitable:"
9329 << VF.MinProfitableTripCount << "\n");
9330
9331 // Skip vectorization if the expected trip count is less than the minimum
9332 // required trip count.
9333 if (auto ExpectedTC = getSmallBestKnownTC(PSE, L)) {
9334 if (ElementCount::isKnownLT(*ExpectedTC, VF.MinProfitableTripCount)) {
9335 LLVM_DEBUG(dbgs() << "LV: Vectorization is not beneficial: expected "
9336 "trip count < minimum profitable VF ("
9337 << *ExpectedTC << " < " << VF.MinProfitableTripCount
9338 << ")\n");
9339
9340 return false;
9341 }
9342 }
9343 return true;
9344}
9345
9347 : InterleaveOnlyWhenForced(Opts.InterleaveOnlyWhenForced ||
9349 VectorizeOnlyWhenForced(Opts.VectorizeOnlyWhenForced ||
9351
9352/// Prepare \p MainPlan for vectorizing the main vector loop during epilogue
9353/// vectorization. Remove ResumePhis from \p MainPlan for inductions that
9354/// don't have a corresponding wide induction in \p EpiPlan.
9355static void preparePlanForMainVectorLoop(VPlan &MainPlan, VPlan &EpiPlan) {
9356 // Collect PHI nodes of widened phis in the VPlan for the epilogue. Those
9357 // will need their resume-values computed in the main vector loop. Others
9358 // can be removed from the main VPlan.
9359 SmallPtrSet<PHINode *, 2> EpiWidenedPhis;
9360 for (VPRecipeBase &R :
9363 continue;
9364 EpiWidenedPhis.insert(
9365 cast<PHINode>(R.getVPSingleValue()->getUnderlyingValue()));
9366 }
9367 for (VPRecipeBase &R :
9368 make_early_inc_range(MainPlan.getScalarHeader()->phis())) {
9369 auto *VPIRInst = cast<VPIRPhi>(&R);
9370 if (EpiWidenedPhis.contains(&VPIRInst->getIRPhi()))
9371 continue;
9372 // There is no corresponding wide induction in the epilogue plan that would
9373 // need a resume value. Remove the VPIRInst wrapping the scalar header phi
9374 // together with the corresponding ResumePhi. The resume values for the
9375 // scalar loop will be created during execution of EpiPlan.
9376 VPRecipeBase *ResumePhi = VPIRInst->getOperand(0)->getDefiningRecipe();
9377 VPIRInst->eraseFromParent();
9378 ResumePhi->eraseFromParent();
9379 }
9381
9382 using namespace VPlanPatternMatch;
9383 // When vectorizing the epilogue, FindFirstIV & FindLastIV reductions can
9384 // introduce multiple uses of undef/poison. If the reduction start value may
9385 // be undef or poison it needs to be frozen and the frozen start has to be
9386 // used when computing the reduction result. We also need to use the frozen
9387 // value in the resume phi generated by the main vector loop, as this is also
9388 // used to compute the reduction result after the epilogue vector loop.
9389 auto AddFreezeForFindLastIVReductions = [](VPlan &Plan,
9390 bool UpdateResumePhis) {
9391 VPBuilder Builder(Plan.getEntry());
9392 for (VPRecipeBase &R : *Plan.getMiddleBlock()) {
9393 auto *VPI = dyn_cast<VPInstruction>(&R);
9394 if (!VPI || VPI->getOpcode() != VPInstruction::ComputeFindIVResult)
9395 continue;
9396 VPValue *OrigStart = VPI->getOperand(1);
9398 continue;
9399 VPInstruction *Freeze =
9400 Builder.createNaryOp(Instruction::Freeze, {OrigStart}, {}, "fr");
9401 VPI->setOperand(1, Freeze);
9402 if (UpdateResumePhis)
9403 OrigStart->replaceUsesWithIf(Freeze, [Freeze](VPUser &U, unsigned) {
9404 return Freeze != &U && isa<VPPhi>(&U);
9405 });
9406 }
9407 };
9408 AddFreezeForFindLastIVReductions(MainPlan, true);
9409 AddFreezeForFindLastIVReductions(EpiPlan, false);
9410
9411 VPBasicBlock *MainScalarPH = MainPlan.getScalarPreheader();
9412 VPValue *VectorTC = &MainPlan.getVectorTripCount();
9413 // If there is a suitable resume value for the canonical induction in the
9414 // scalar (which will become vector) epilogue loop, use it and move it to the
9415 // beginning of the scalar preheader. Otherwise create it below.
9416 auto ResumePhiIter =
9417 find_if(MainScalarPH->phis(), [VectorTC](VPRecipeBase &R) {
9418 return match(&R, m_VPInstruction<Instruction::PHI>(m_Specific(VectorTC),
9419 m_ZeroInt()));
9420 });
9421 VPPhi *ResumePhi = nullptr;
9422 if (ResumePhiIter == MainScalarPH->phis().end()) {
9423 VPBuilder ScalarPHBuilder(MainScalarPH, MainScalarPH->begin());
9424 ResumePhi = ScalarPHBuilder.createScalarPhi(
9425 {VectorTC,
9427 {}, "vec.epilog.resume.val");
9428 } else {
9429 ResumePhi = cast<VPPhi>(&*ResumePhiIter);
9430 if (MainScalarPH->begin() == MainScalarPH->end())
9431 ResumePhi->moveBefore(*MainScalarPH, MainScalarPH->end());
9432 else if (&*MainScalarPH->begin() != ResumePhi)
9433 ResumePhi->moveBefore(*MainScalarPH, MainScalarPH->begin());
9434 }
9435 // Add a user to to make sure the resume phi won't get removed.
9436 VPBuilder(MainScalarPH)
9438}
9439
9440/// Prepare \p Plan for vectorizing the epilogue loop. That is, re-use expanded
9441/// SCEVs from \p ExpandedSCEVs and set resume values for header recipes. Some
9442/// reductions require creating new instructions to compute the resume values.
9443/// They are collected in a vector and returned. They must be moved to the
9444/// preheader of the vector epilogue loop, after created by the execution of \p
9445/// Plan.
9447 VPlan &Plan, Loop *L, const SCEV2ValueTy &ExpandedSCEVs,
9449 ScalarEvolution &SE) {
9450 VPRegionBlock *VectorLoop = Plan.getVectorLoopRegion();
9451 VPBasicBlock *Header = VectorLoop->getEntryBasicBlock();
9452 Header->setName("vec.epilog.vector.body");
9453
9454 VPCanonicalIVPHIRecipe *IV = VectorLoop->getCanonicalIV();
9455 // When vectorizing the epilogue loop, the canonical induction needs to be
9456 // adjusted by the value after the main vector loop. Find the resume value
9457 // created during execution of the main VPlan. It must be the first phi in the
9458 // loop preheader. Use the value to increment the canonical IV, and update all
9459 // users in the loop region to use the adjusted value.
9460 // FIXME: Improve modeling for canonical IV start values in the epilogue
9461 // loop.
9462 using namespace llvm::PatternMatch;
9463 PHINode *EPResumeVal = &*L->getLoopPreheader()->phis().begin();
9464 for (Value *Inc : EPResumeVal->incoming_values()) {
9465 if (match(Inc, m_SpecificInt(0)))
9466 continue;
9467 assert(!EPI.VectorTripCount &&
9468 "Must only have a single non-zero incoming value");
9469 EPI.VectorTripCount = Inc;
9470 }
9471 // If we didn't find a non-zero vector trip count, all incoming values
9472 // must be zero, which also means the vector trip count is zero. Pick the
9473 // first zero as vector trip count.
9474 // TODO: We should not choose VF * UF so the main vector loop is known to
9475 // be dead.
9476 if (!EPI.VectorTripCount) {
9477 assert(EPResumeVal->getNumIncomingValues() > 0 &&
9478 all_of(EPResumeVal->incoming_values(),
9479 [](Value *Inc) { return match(Inc, m_SpecificInt(0)); }) &&
9480 "all incoming values must be 0");
9481 EPI.VectorTripCount = EPResumeVal->getOperand(0);
9482 }
9483 VPValue *VPV = Plan.getOrAddLiveIn(EPResumeVal);
9484 assert(all_of(IV->users(),
9485 [](const VPUser *U) {
9486 return isa<VPScalarIVStepsRecipe>(U) ||
9487 isa<VPDerivedIVRecipe>(U) ||
9488 cast<VPRecipeBase>(U)->isScalarCast() ||
9489 cast<VPInstruction>(U)->getOpcode() ==
9490 Instruction::Add;
9491 }) &&
9492 "the canonical IV should only be used by its increment or "
9493 "ScalarIVSteps when resetting the start value");
9494 VPBuilder Builder(Header, Header->getFirstNonPhi());
9495 VPInstruction *Add = Builder.createNaryOp(Instruction::Add, {IV, VPV});
9496 IV->replaceAllUsesWith(Add);
9497 Add->setOperand(0, IV);
9498
9500 SmallVector<Instruction *> InstsToMove;
9501 // Ensure that the start values for all header phi recipes are updated before
9502 // vectorizing the epilogue loop. Skip the canonical IV, which has been
9503 // handled above.
9504 for (VPRecipeBase &R : drop_begin(Header->phis())) {
9505 Value *ResumeV = nullptr;
9506 // TODO: Move setting of resume values to prepareToExecute.
9507 if (auto *ReductionPhi = dyn_cast<VPReductionPHIRecipe>(&R)) {
9508 auto *RdxResult =
9509 cast<VPInstruction>(*find_if(ReductionPhi->users(), [](VPUser *U) {
9510 auto *VPI = dyn_cast<VPInstruction>(U);
9511 return VPI &&
9512 (VPI->getOpcode() == VPInstruction::ComputeAnyOfResult ||
9513 VPI->getOpcode() == VPInstruction::ComputeReductionResult ||
9514 VPI->getOpcode() == VPInstruction::ComputeFindIVResult);
9515 }));
9516 ResumeV = cast<PHINode>(ReductionPhi->getUnderlyingInstr())
9517 ->getIncomingValueForBlock(L->getLoopPreheader());
9518 RecurKind RK = ReductionPhi->getRecurrenceKind();
9520 Value *StartV = RdxResult->getOperand(1)->getLiveInIRValue();
9521 // VPReductionPHIRecipes for AnyOf reductions expect a boolean as
9522 // start value; compare the final value from the main vector loop
9523 // to the start value.
9524 BasicBlock *PBB = cast<Instruction>(ResumeV)->getParent();
9525 IRBuilder<> Builder(PBB, PBB->getFirstNonPHIIt());
9526 ResumeV = Builder.CreateICmpNE(ResumeV, StartV);
9527 if (auto *I = dyn_cast<Instruction>(ResumeV))
9528 InstsToMove.push_back(I);
9530 Value *StartV = getStartValueFromReductionResult(RdxResult);
9531 ToFrozen[StartV] = cast<PHINode>(ResumeV)->getIncomingValueForBlock(
9533
9534 // VPReductionPHIRecipe for FindFirstIV/FindLastIV reductions requires
9535 // an adjustment to the resume value. The resume value is adjusted to
9536 // the sentinel value when the final value from the main vector loop
9537 // equals the start value. This ensures correctness when the start value
9538 // might not be less than the minimum value of a monotonically
9539 // increasing induction variable.
9540 BasicBlock *ResumeBB = cast<Instruction>(ResumeV)->getParent();
9541 IRBuilder<> Builder(ResumeBB, ResumeBB->getFirstNonPHIIt());
9542 Value *Cmp = Builder.CreateICmpEQ(ResumeV, ToFrozen[StartV]);
9543 if (auto *I = dyn_cast<Instruction>(Cmp))
9544 InstsToMove.push_back(I);
9545 Value *Sentinel = RdxResult->getOperand(2)->getLiveInIRValue();
9546 ResumeV = Builder.CreateSelect(Cmp, Sentinel, ResumeV);
9547 if (auto *I = dyn_cast<Instruction>(ResumeV))
9548 InstsToMove.push_back(I);
9549 } else {
9550 VPValue *StartVal = Plan.getOrAddLiveIn(ResumeV);
9551 auto *PhiR = dyn_cast<VPReductionPHIRecipe>(&R);
9552 if (auto *VPI = dyn_cast<VPInstruction>(PhiR->getStartValue())) {
9554 "unexpected start value");
9555 VPI->setOperand(0, StartVal);
9556 continue;
9557 }
9558 }
9559 } else {
9560 // Retrieve the induction resume values for wide inductions from
9561 // their original phi nodes in the scalar loop.
9562 PHINode *IndPhi = cast<VPWidenInductionRecipe>(&R)->getPHINode();
9563 // Hook up to the PHINode generated by a ResumePhi recipe of main
9564 // loop VPlan, which feeds the scalar loop.
9565 ResumeV = IndPhi->getIncomingValueForBlock(L->getLoopPreheader());
9566 }
9567 assert(ResumeV && "Must have a resume value");
9568 VPValue *StartVal = Plan.getOrAddLiveIn(ResumeV);
9569 cast<VPHeaderPHIRecipe>(&R)->setStartValue(StartVal);
9570 }
9571
9572 // For some VPValues in the epilogue plan we must re-use the generated IR
9573 // values from the main plan. Replace them with live-in VPValues.
9574 // TODO: This is a workaround needed for epilogue vectorization and it
9575 // should be removed once induction resume value creation is done
9576 // directly in VPlan.
9577 for (auto &R : make_early_inc_range(*Plan.getEntry())) {
9578 // Re-use frozen values from the main plan for Freeze VPInstructions in the
9579 // epilogue plan. This ensures all users use the same frozen value.
9580 auto *VPI = dyn_cast<VPInstruction>(&R);
9581 if (VPI && VPI->getOpcode() == Instruction::Freeze) {
9583 ToFrozen.lookup(VPI->getOperand(0)->getLiveInIRValue())));
9584 continue;
9585 }
9586
9587 // Re-use the trip count and steps expanded for the main loop, as
9588 // skeleton creation needs it as a value that dominates both the scalar
9589 // and vector epilogue loops
9590 auto *ExpandR = dyn_cast<VPExpandSCEVRecipe>(&R);
9591 if (!ExpandR)
9592 continue;
9593 VPValue *ExpandedVal =
9594 Plan.getOrAddLiveIn(ExpandedSCEVs.lookup(ExpandR->getSCEV()));
9595 ExpandR->replaceAllUsesWith(ExpandedVal);
9596 if (Plan.getTripCount() == ExpandR)
9597 Plan.resetTripCount(ExpandedVal);
9598 ExpandR->eraseFromParent();
9599 }
9600
9601 auto VScale = CM.getVScaleForTuning();
9602 unsigned MainLoopStep =
9603 estimateElementCount(EPI.MainLoopVF * EPI.MainLoopUF, VScale);
9604 unsigned EpilogueLoopStep =
9605 estimateElementCount(EPI.EpilogueVF * EPI.EpilogueUF, VScale);
9607 Plan, EPI.TripCount, EPI.VectorTripCount,
9609 EPI.EpilogueUF, MainLoopStep, EpilogueLoopStep, SE);
9610
9611 return InstsToMove;
9612}
9613
9614// Generate bypass values from the additional bypass block. Note that when the
9615// vectorized epilogue is skipped due to iteration count check, then the
9616// resume value for the induction variable comes from the trip count of the
9617// main vector loop, passed as the second argument.
9619 PHINode *OrigPhi, const InductionDescriptor &II, IRBuilder<> &BypassBuilder,
9620 const SCEV2ValueTy &ExpandedSCEVs, Value *MainVectorTripCount,
9621 Instruction *OldInduction) {
9622 Value *Step = getExpandedStep(II, ExpandedSCEVs);
9623 // For the primary induction the additional bypass end value is known.
9624 // Otherwise it is computed.
9625 Value *EndValueFromAdditionalBypass = MainVectorTripCount;
9626 if (OrigPhi != OldInduction) {
9627 auto *BinOp = II.getInductionBinOp();
9628 // Fast-math-flags propagate from the original induction instruction.
9630 BypassBuilder.setFastMathFlags(BinOp->getFastMathFlags());
9631
9632 // Compute the end value for the additional bypass.
9633 EndValueFromAdditionalBypass =
9634 emitTransformedIndex(BypassBuilder, MainVectorTripCount,
9635 II.getStartValue(), Step, II.getKind(), BinOp);
9636 EndValueFromAdditionalBypass->setName("ind.end");
9637 }
9638 return EndValueFromAdditionalBypass;
9639}
9640
9642 VPlan &BestEpiPlan,
9644 const SCEV2ValueTy &ExpandedSCEVs,
9645 Value *MainVectorTripCount) {
9646 // Fix reduction resume values from the additional bypass block.
9647 BasicBlock *PH = L->getLoopPreheader();
9648 for (auto *Pred : predecessors(PH)) {
9649 for (PHINode &Phi : PH->phis()) {
9650 if (Phi.getBasicBlockIndex(Pred) != -1)
9651 continue;
9652 Phi.addIncoming(Phi.getIncomingValueForBlock(BypassBlock), Pred);
9653 }
9654 }
9655 auto *ScalarPH = cast<VPIRBasicBlock>(BestEpiPlan.getScalarPreheader());
9656 if (ScalarPH->hasPredecessors()) {
9657 // If ScalarPH has predecessors, we may need to update its reduction
9658 // resume values.
9659 for (const auto &[R, IRPhi] :
9660 zip(ScalarPH->phis(), ScalarPH->getIRBasicBlock()->phis())) {
9662 BypassBlock);
9663 }
9664 }
9665
9666 // Fix induction resume values from the additional bypass block.
9667 IRBuilder<> BypassBuilder(BypassBlock, BypassBlock->getFirstInsertionPt());
9668 for (const auto &[IVPhi, II] : LVL.getInductionVars()) {
9669 auto *Inc = cast<PHINode>(IVPhi->getIncomingValueForBlock(PH));
9671 IVPhi, II, BypassBuilder, ExpandedSCEVs, MainVectorTripCount,
9672 LVL.getPrimaryInduction());
9673 // TODO: Directly add as extra operand to the VPResumePHI recipe.
9674 Inc->setIncomingValueForBlock(BypassBlock, V);
9675 }
9676}
9677
9678/// Connect the epilogue vector loop generated for \p EpiPlan to the main vector
9679// loop, after both plans have executed, updating branches from the iteration
9680// and runtime checks of the main loop, as well as updating various phis. \p
9681// InstsToMove contains instructions that need to be moved to the preheader of
9682// the epilogue vector loop.
9684 VPlan &EpiPlan, Loop *L, EpilogueLoopVectorizationInfo &EPI,
9686 DenseMap<const SCEV *, Value *> &ExpandedSCEVs, GeneratedRTChecks &Checks,
9687 ArrayRef<Instruction *> InstsToMove) {
9688 BasicBlock *VecEpilogueIterationCountCheck =
9689 cast<VPIRBasicBlock>(EpiPlan.getEntry())->getIRBasicBlock();
9690
9691 BasicBlock *VecEpiloguePreHeader =
9692 cast<BranchInst>(VecEpilogueIterationCountCheck->getTerminator())
9693 ->getSuccessor(1);
9694 // Adjust the control flow taking the state info from the main loop
9695 // vectorization into account.
9697 "expected this to be saved from the previous pass.");
9698 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager);
9700 VecEpilogueIterationCountCheck, VecEpiloguePreHeader);
9701
9703 VecEpilogueIterationCountCheck},
9705 VecEpiloguePreHeader}});
9706
9707 BasicBlock *ScalarPH =
9708 cast<VPIRBasicBlock>(EpiPlan.getScalarPreheader())->getIRBasicBlock();
9710 VecEpilogueIterationCountCheck, ScalarPH);
9711 DTU.applyUpdates(
9713 VecEpilogueIterationCountCheck},
9715
9716 // Adjust the terminators of runtime check blocks and phis using them.
9717 BasicBlock *SCEVCheckBlock = Checks.getSCEVChecks().second;
9718 BasicBlock *MemCheckBlock = Checks.getMemRuntimeChecks().second;
9719 if (SCEVCheckBlock) {
9720 SCEVCheckBlock->getTerminator()->replaceUsesOfWith(
9721 VecEpilogueIterationCountCheck, ScalarPH);
9722 DTU.applyUpdates({{DominatorTree::Delete, SCEVCheckBlock,
9723 VecEpilogueIterationCountCheck},
9724 {DominatorTree::Insert, SCEVCheckBlock, ScalarPH}});
9725 }
9726 if (MemCheckBlock) {
9727 MemCheckBlock->getTerminator()->replaceUsesOfWith(
9728 VecEpilogueIterationCountCheck, ScalarPH);
9729 DTU.applyUpdates(
9730 {{DominatorTree::Delete, MemCheckBlock, VecEpilogueIterationCountCheck},
9731 {DominatorTree::Insert, MemCheckBlock, ScalarPH}});
9732 }
9733
9734 // The vec.epilog.iter.check block may contain Phi nodes from inductions
9735 // or reductions which merge control-flow from the latch block and the
9736 // middle block. Update the incoming values here and move the Phi into the
9737 // preheader.
9738 SmallVector<PHINode *, 4> PhisInBlock(
9739 llvm::make_pointer_range(VecEpilogueIterationCountCheck->phis()));
9740
9741 for (PHINode *Phi : PhisInBlock) {
9742 Phi->moveBefore(VecEpiloguePreHeader->getFirstNonPHIIt());
9743 Phi->replaceIncomingBlockWith(
9744 VecEpilogueIterationCountCheck->getSinglePredecessor(),
9745 VecEpilogueIterationCountCheck);
9746
9747 // If the phi doesn't have an incoming value from the
9748 // EpilogueIterationCountCheck, we are done. Otherwise remove the
9749 // incoming value and also those from other check blocks. This is needed
9750 // for reduction phis only.
9751 if (none_of(Phi->blocks(), [&](BasicBlock *IncB) {
9752 return EPI.EpilogueIterationCountCheck == IncB;
9753 }))
9754 continue;
9755 Phi->removeIncomingValue(EPI.EpilogueIterationCountCheck);
9756 if (SCEVCheckBlock)
9757 Phi->removeIncomingValue(SCEVCheckBlock);
9758 if (MemCheckBlock)
9759 Phi->removeIncomingValue(MemCheckBlock);
9760 }
9761
9762 auto IP = VecEpiloguePreHeader->getFirstNonPHIIt();
9763 for (auto *I : InstsToMove)
9764 I->moveBefore(IP);
9765
9766 // VecEpilogueIterationCountCheck conditionally skips over the epilogue loop
9767 // after executing the main loop. We need to update the resume values of
9768 // inductions and reductions during epilogue vectorization.
9769 fixScalarResumeValuesFromBypass(VecEpilogueIterationCountCheck, L, EpiPlan,
9770 LVL, ExpandedSCEVs, EPI.VectorTripCount);
9771}
9772
9774 assert((EnableVPlanNativePath || L->isInnermost()) &&
9775 "VPlan-native path is not enabled. Only process inner loops.");
9776
9777 LLVM_DEBUG(dbgs() << "\nLV: Checking a loop in '"
9778 << L->getHeader()->getParent()->getName() << "' from "
9779 << L->getLocStr() << "\n");
9780
9781 LoopVectorizeHints Hints(L, InterleaveOnlyWhenForced, *ORE, TTI);
9782
9783 LLVM_DEBUG(
9784 dbgs() << "LV: Loop hints:"
9785 << " force="
9787 ? "disabled"
9789 ? "enabled"
9790 : "?"))
9791 << " width=" << Hints.getWidth()
9792 << " interleave=" << Hints.getInterleave() << "\n");
9793
9794 // Function containing loop
9795 Function *F = L->getHeader()->getParent();
9796
9797 // Looking at the diagnostic output is the only way to determine if a loop
9798 // was vectorized (other than looking at the IR or machine code), so it
9799 // is important to generate an optimization remark for each loop. Most of
9800 // these messages are generated as OptimizationRemarkAnalysis. Remarks
9801 // generated as OptimizationRemark and OptimizationRemarkMissed are
9802 // less verbose reporting vectorized loops and unvectorized loops that may
9803 // benefit from vectorization, respectively.
9804
9805 if (!Hints.allowVectorization(F, L, VectorizeOnlyWhenForced)) {
9806 LLVM_DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n");
9807 return false;
9808 }
9809
9810 PredicatedScalarEvolution PSE(*SE, *L);
9811
9812 // Query this against the original loop and save it here because the profile
9813 // of the original loop header may change as the transformation happens.
9814 bool OptForSize = llvm::shouldOptimizeForSize(
9815 L->getHeader(), PSI,
9816 PSI && PSI->hasProfileSummary() ? &GetBFI() : nullptr,
9818
9819 // Check if it is legal to vectorize the loop.
9820 LoopVectorizationRequirements Requirements;
9821 LoopVectorizationLegality LVL(L, PSE, DT, TTI, TLI, F, *LAIs, LI, ORE,
9822 &Requirements, &Hints, DB, AC,
9823 /*AllowRuntimeSCEVChecks=*/!OptForSize, AA);
9825 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n");
9826 Hints.emitRemarkWithHints();
9827 return false;
9828 }
9829
9831 reportVectorizationFailure("Auto-vectorization of loops with uncountable "
9832 "early exit is not enabled",
9833 "UncountableEarlyExitLoopsDisabled", ORE, L);
9834 return false;
9835 }
9836
9837 if (!LVL.getPotentiallyFaultingLoads().empty()) {
9838 reportVectorizationFailure("Auto-vectorization of loops with potentially "
9839 "faulting load is not supported",
9840 "PotentiallyFaultingLoadsNotSupported", ORE, L);
9841 return false;
9842 }
9843
9844 // Entrance to the VPlan-native vectorization path. Outer loops are processed
9845 // here. They may require CFG and instruction level transformations before
9846 // even evaluating whether vectorization is profitable. Since we cannot modify
9847 // the incoming IR, we need to build VPlan upfront in the vectorization
9848 // pipeline.
9849 if (!L->isInnermost())
9850 return processLoopInVPlanNativePath(L, PSE, LI, DT, &LVL, TTI, TLI, DB, AC,
9851 ORE, GetBFI, OptForSize, Hints,
9852 Requirements);
9853
9854 assert(L->isInnermost() && "Inner loop expected.");
9855
9856 InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL.getLAI());
9857 bool UseInterleaved = TTI->enableInterleavedAccessVectorization();
9858
9859 // If an override option has been passed in for interleaved accesses, use it.
9860 if (EnableInterleavedMemAccesses.getNumOccurrences() > 0)
9861 UseInterleaved = EnableInterleavedMemAccesses;
9862
9863 // Analyze interleaved memory accesses.
9864 if (UseInterleaved)
9866
9867 if (LVL.hasUncountableEarlyExit()) {
9868 BasicBlock *LoopLatch = L->getLoopLatch();
9869 if (IAI.requiresScalarEpilogue() ||
9871 [LoopLatch](BasicBlock *BB) { return BB != LoopLatch; })) {
9872 reportVectorizationFailure("Auto-vectorization of early exit loops "
9873 "requiring a scalar epilogue is unsupported",
9874 "UncountableEarlyExitUnsupported", ORE, L);
9875 return false;
9876 }
9877 }
9878
9879 // Check the function attributes and profiles to find out if this function
9880 // should be optimized for size.
9882 getScalarEpilogueLowering(F, L, Hints, OptForSize, TTI, TLI, LVL, &IAI);
9883
9884 // Check the loop for a trip count threshold: vectorize loops with a tiny trip
9885 // count by optimizing for size, to minimize overheads.
9886 auto ExpectedTC = getSmallBestKnownTC(PSE, L);
9887 if (ExpectedTC && ExpectedTC->isFixed() &&
9888 ExpectedTC->getFixedValue() < TinyTripCountVectorThreshold) {
9889 LLVM_DEBUG(dbgs() << "LV: Found a loop with a very small trip count. "
9890 << "This loop is worth vectorizing only if no scalar "
9891 << "iteration overheads are incurred.");
9893 LLVM_DEBUG(dbgs() << " But vectorizing was explicitly forced.\n");
9894 else {
9895 LLVM_DEBUG(dbgs() << "\n");
9896 // Predicate tail-folded loops are efficient even when the loop
9897 // iteration count is low. However, setting the epilogue policy to
9898 // `CM_ScalarEpilogueNotAllowedLowTripLoop` prevents vectorizing loops
9899 // with runtime checks. It's more effective to let
9900 // `isOutsideLoopWorkProfitable` determine if vectorization is
9901 // beneficial for the loop.
9904 }
9905 }
9906
9907 // Check the function attributes to see if implicit floats or vectors are
9908 // allowed.
9909 if (F->hasFnAttribute(Attribute::NoImplicitFloat)) {
9911 "Can't vectorize when the NoImplicitFloat attribute is used",
9912 "loop not vectorized due to NoImplicitFloat attribute",
9913 "NoImplicitFloat", ORE, L);
9914 Hints.emitRemarkWithHints();
9915 return false;
9916 }
9917
9918 // Check if the target supports potentially unsafe FP vectorization.
9919 // FIXME: Add a check for the type of safety issue (denormal, signaling)
9920 // for the target we're vectorizing for, to make sure none of the
9921 // additional fp-math flags can help.
9922 if (Hints.isPotentiallyUnsafe() &&
9923 TTI->isFPVectorizationPotentiallyUnsafe()) {
9925 "Potentially unsafe FP op prevents vectorization",
9926 "loop not vectorized due to unsafe FP support.",
9927 "UnsafeFP", ORE, L);
9928 Hints.emitRemarkWithHints();
9929 return false;
9930 }
9931
9932 bool AllowOrderedReductions;
9933 // If the flag is set, use that instead and override the TTI behaviour.
9934 if (ForceOrderedReductions.getNumOccurrences() > 0)
9935 AllowOrderedReductions = ForceOrderedReductions;
9936 else
9937 AllowOrderedReductions = TTI->enableOrderedReductions();
9938 if (!LVL.canVectorizeFPMath(AllowOrderedReductions)) {
9939 ORE->emit([&]() {
9940 auto *ExactFPMathInst = Requirements.getExactFPInst();
9941 return OptimizationRemarkAnalysisFPCommute(DEBUG_TYPE, "CantReorderFPOps",
9942 ExactFPMathInst->getDebugLoc(),
9943 ExactFPMathInst->getParent())
9944 << "loop not vectorized: cannot prove it is safe to reorder "
9945 "floating-point operations";
9946 });
9947 LLVM_DEBUG(dbgs() << "LV: loop not vectorized: cannot prove it is safe to "
9948 "reorder floating-point operations\n");
9949 Hints.emitRemarkWithHints();
9950 return false;
9951 }
9952
9953 // Use the cost model.
9954 LoopVectorizationCostModel CM(SEL, L, PSE, LI, &LVL, *TTI, TLI, DB, AC, ORE,
9955 GetBFI, F, &Hints, IAI, OptForSize);
9956 // Use the planner for vectorization.
9957 LoopVectorizationPlanner LVP(L, LI, DT, TLI, *TTI, &LVL, CM, IAI, PSE, Hints,
9958 ORE);
9959
9960 // Get user vectorization factor and interleave count.
9961 ElementCount UserVF = Hints.getWidth();
9962 unsigned UserIC = Hints.getInterleave();
9963 if (UserIC > 1 && !LVL.isSafeForAnyVectorWidth())
9964 UserIC = 1;
9965
9966 // Plan how to best vectorize.
9967 LVP.plan(UserVF, UserIC);
9969 unsigned IC = 1;
9970
9971 if (ORE->allowExtraAnalysis(LV_NAME))
9973
9974 GeneratedRTChecks Checks(PSE, DT, LI, TTI, CM.CostKind);
9975 if (LVP.hasPlanWithVF(VF.Width)) {
9976 // Select the interleave count.
9977 IC = LVP.selectInterleaveCount(LVP.getPlanFor(VF.Width), VF.Width, VF.Cost);
9978
9979 unsigned SelectedIC = std::max(IC, UserIC);
9980 // Optimistically generate runtime checks if they are needed. Drop them if
9981 // they turn out to not be profitable.
9982 if (VF.Width.isVector() || SelectedIC > 1) {
9983 Checks.create(L, *LVL.getLAI(), PSE.getPredicate(), VF.Width, SelectedIC);
9984
9985 // Bail out early if either the SCEV or memory runtime checks are known to
9986 // fail. In that case, the vector loop would never execute.
9987 using namespace llvm::PatternMatch;
9988 if (Checks.getSCEVChecks().first &&
9989 match(Checks.getSCEVChecks().first, m_One()))
9990 return false;
9991 if (Checks.getMemRuntimeChecks().first &&
9992 match(Checks.getMemRuntimeChecks().first, m_One()))
9993 return false;
9994 }
9995
9996 // Check if it is profitable to vectorize with runtime checks.
9997 bool ForceVectorization =
9999 VPCostContext CostCtx(CM.TTI, *CM.TLI, LVP.getPlanFor(VF.Width), CM,
10000 CM.CostKind, *CM.PSE.getSE(), L);
10001 if (!ForceVectorization &&
10002 !isOutsideLoopWorkProfitable(Checks, VF, L, PSE, CostCtx,
10003 LVP.getPlanFor(VF.Width), SEL,
10004 CM.getVScaleForTuning())) {
10005 ORE->emit([&]() {
10007 DEBUG_TYPE, "CantReorderMemOps", L->getStartLoc(),
10008 L->getHeader())
10009 << "loop not vectorized: cannot prove it is safe to reorder "
10010 "memory operations";
10011 });
10012 LLVM_DEBUG(dbgs() << "LV: Too many memory checks needed.\n");
10013 Hints.emitRemarkWithHints();
10014 return false;
10015 }
10016 }
10017
10018 // Identify the diagnostic messages that should be produced.
10019 std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg;
10020 bool VectorizeLoop = true, InterleaveLoop = true;
10021 if (VF.Width.isScalar()) {
10022 LLVM_DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n");
10023 VecDiagMsg = {
10024 "VectorizationNotBeneficial",
10025 "the cost-model indicates that vectorization is not beneficial"};
10026 VectorizeLoop = false;
10027 }
10028
10029 if (UserIC == 1 && Hints.getInterleave() > 1) {
10031 "UserIC should only be ignored due to unsafe dependencies");
10032 LLVM_DEBUG(dbgs() << "LV: Ignoring user-specified interleave count.\n");
10033 IntDiagMsg = {"InterleavingUnsafe",
10034 "Ignoring user-specified interleave count due to possibly "
10035 "unsafe dependencies in the loop."};
10036 InterleaveLoop = false;
10037 } else if (!LVP.hasPlanWithVF(VF.Width) && UserIC > 1) {
10038 // Tell the user interleaving was avoided up-front, despite being explicitly
10039 // requested.
10040 LLVM_DEBUG(dbgs() << "LV: Ignoring UserIC, because vectorization and "
10041 "interleaving should be avoided up front\n");
10042 IntDiagMsg = {"InterleavingAvoided",
10043 "Ignoring UserIC, because interleaving was avoided up front"};
10044 InterleaveLoop = false;
10045 } else if (IC == 1 && UserIC <= 1) {
10046 // Tell the user interleaving is not beneficial.
10047 LLVM_DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n");
10048 IntDiagMsg = {
10049 "InterleavingNotBeneficial",
10050 "the cost-model indicates that interleaving is not beneficial"};
10051 InterleaveLoop = false;
10052 if (UserIC == 1) {
10053 IntDiagMsg.first = "InterleavingNotBeneficialAndDisabled";
10054 IntDiagMsg.second +=
10055 " and is explicitly disabled or interleave count is set to 1";
10056 }
10057 } else if (IC > 1 && UserIC == 1) {
10058 // Tell the user interleaving is beneficial, but it explicitly disabled.
10059 LLVM_DEBUG(dbgs() << "LV: Interleaving is beneficial but is explicitly "
10060 "disabled.\n");
10061 IntDiagMsg = {"InterleavingBeneficialButDisabled",
10062 "the cost-model indicates that interleaving is beneficial "
10063 "but is explicitly disabled or interleave count is set to 1"};
10064 InterleaveLoop = false;
10065 }
10066
10067 // If there is a histogram in the loop, do not just interleave without
10068 // vectorizing. The order of operations will be incorrect without the
10069 // histogram intrinsics, which are only used for recipes with VF > 1.
10070 if (!VectorizeLoop && InterleaveLoop && LVL.hasHistograms()) {
10071 LLVM_DEBUG(dbgs() << "LV: Not interleaving without vectorization due "
10072 << "to histogram operations.\n");
10073 IntDiagMsg = {
10074 "HistogramPreventsScalarInterleaving",
10075 "Unable to interleave without vectorization due to constraints on "
10076 "the order of histogram operations"};
10077 InterleaveLoop = false;
10078 }
10079
10080 // Override IC if user provided an interleave count.
10081 IC = UserIC > 0 ? UserIC : IC;
10082
10083 // Emit diagnostic messages, if any.
10084 const char *VAPassName = Hints.vectorizeAnalysisPassName();
10085 if (!VectorizeLoop && !InterleaveLoop) {
10086 // Do not vectorize or interleaving the loop.
10087 ORE->emit([&]() {
10088 return OptimizationRemarkMissed(VAPassName, VecDiagMsg.first,
10089 L->getStartLoc(), L->getHeader())
10090 << VecDiagMsg.second;
10091 });
10092 ORE->emit([&]() {
10093 return OptimizationRemarkMissed(LV_NAME, IntDiagMsg.first,
10094 L->getStartLoc(), L->getHeader())
10095 << IntDiagMsg.second;
10096 });
10097 return false;
10098 }
10099
10100 if (!VectorizeLoop && InterleaveLoop) {
10101 LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n');
10102 ORE->emit([&]() {
10103 return OptimizationRemarkAnalysis(VAPassName, VecDiagMsg.first,
10104 L->getStartLoc(), L->getHeader())
10105 << VecDiagMsg.second;
10106 });
10107 } else if (VectorizeLoop && !InterleaveLoop) {
10108 LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width
10109 << ") in " << L->getLocStr() << '\n');
10110 ORE->emit([&]() {
10111 return OptimizationRemarkAnalysis(LV_NAME, IntDiagMsg.first,
10112 L->getStartLoc(), L->getHeader())
10113 << IntDiagMsg.second;
10114 });
10115 } else if (VectorizeLoop && InterleaveLoop) {
10116 LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width
10117 << ") in " << L->getLocStr() << '\n');
10118 LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n');
10119 }
10120
10121 // Report the vectorization decision.
10122 if (VF.Width.isScalar()) {
10123 using namespace ore;
10124 assert(IC > 1);
10125 ORE->emit([&]() {
10126 return OptimizationRemark(LV_NAME, "Interleaved", L->getStartLoc(),
10127 L->getHeader())
10128 << "interleaved loop (interleaved count: "
10129 << NV("InterleaveCount", IC) << ")";
10130 });
10131 } else {
10132 // Report the vectorization decision.
10133 reportVectorization(ORE, L, VF, IC);
10134 }
10135 if (ORE->allowExtraAnalysis(LV_NAME))
10137
10138 // If we decided that it is *legal* to interleave or vectorize the loop, then
10139 // do it.
10140
10141 VPlan &BestPlan = LVP.getPlanFor(VF.Width);
10142 // Consider vectorizing the epilogue too if it's profitable.
10143 VectorizationFactor EpilogueVF =
10145 if (EpilogueVF.Width.isVector()) {
10146 std::unique_ptr<VPlan> BestMainPlan(BestPlan.duplicate());
10147
10148 // The first pass vectorizes the main loop and creates a scalar epilogue
10149 // to be vectorized by executing the plan (potentially with a different
10150 // factor) again shortly afterwards.
10151 VPlan &BestEpiPlan = LVP.getPlanFor(EpilogueVF.Width);
10152 BestEpiPlan.getMiddleBlock()->setName("vec.epilog.middle.block");
10153 BestEpiPlan.getVectorPreheader()->setName("vec.epilog.ph");
10154 preparePlanForMainVectorLoop(*BestMainPlan, BestEpiPlan);
10155 EpilogueLoopVectorizationInfo EPI(VF.Width, IC, EpilogueVF.Width, 1,
10156 BestEpiPlan);
10157 EpilogueVectorizerMainLoop MainILV(L, PSE, LI, DT, TTI, AC, EPI, &CM,
10158 Checks, *BestMainPlan);
10159 auto ExpandedSCEVs = LVP.executePlan(EPI.MainLoopVF, EPI.MainLoopUF,
10160 *BestMainPlan, MainILV, DT, false);
10161 ++LoopsVectorized;
10162
10163 // Second pass vectorizes the epilogue and adjusts the control flow
10164 // edges from the first pass.
10165 EpilogueVectorizerEpilogueLoop EpilogILV(L, PSE, LI, DT, TTI, AC, EPI, &CM,
10166 Checks, BestEpiPlan);
10168 BestEpiPlan, L, ExpandedSCEVs, EPI, CM, *PSE.getSE());
10169 LVP.executePlan(EPI.EpilogueVF, EPI.EpilogueUF, BestEpiPlan, EpilogILV, DT,
10170 true);
10171 connectEpilogueVectorLoop(BestEpiPlan, L, EPI, DT, LVL, ExpandedSCEVs,
10172 Checks, InstsToMove);
10173 ++LoopsEpilogueVectorized;
10174 } else {
10175 InnerLoopVectorizer LB(L, PSE, LI, DT, TTI, AC, VF.Width, IC, &CM, Checks,
10176 BestPlan);
10177 // TODO: Move to general VPlan pipeline once epilogue loops are also
10178 // supported.
10181 IC, PSE);
10182 LVP.addMinimumIterationCheck(BestPlan, VF.Width, IC,
10184
10185 LVP.executePlan(VF.Width, IC, BestPlan, LB, DT, false);
10186 ++LoopsVectorized;
10187 }
10188
10189 assert(DT->verify(DominatorTree::VerificationLevel::Fast) &&
10190 "DT not preserved correctly");
10191 assert(!verifyFunction(*F, &dbgs()));
10192
10193 return true;
10194}
10195
10197
10198 // Don't attempt if
10199 // 1. the target claims to have no vector registers, and
10200 // 2. interleaving won't help ILP.
10201 //
10202 // The second condition is necessary because, even if the target has no
10203 // vector registers, loop vectorization may still enable scalar
10204 // interleaving.
10205 if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true)) &&
10206 TTI->getMaxInterleaveFactor(ElementCount::getFixed(1)) < 2)
10207 return LoopVectorizeResult(false, false);
10208
10209 bool Changed = false, CFGChanged = false;
10210
10211 // The vectorizer requires loops to be in simplified form.
10212 // Since simplification may add new inner loops, it has to run before the
10213 // legality and profitability checks. This means running the loop vectorizer
10214 // will simplify all loops, regardless of whether anything end up being
10215 // vectorized.
10216 for (const auto &L : *LI)
10217 Changed |= CFGChanged |=
10218 simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */);
10219
10220 // Build up a worklist of inner-loops to vectorize. This is necessary as
10221 // the act of vectorizing or partially unrolling a loop creates new loops
10222 // and can invalidate iterators across the loops.
10223 SmallVector<Loop *, 8> Worklist;
10224
10225 for (Loop *L : *LI)
10226 collectSupportedLoops(*L, LI, ORE, Worklist);
10227
10228 LoopsAnalyzed += Worklist.size();
10229
10230 // Now walk the identified inner loops.
10231 while (!Worklist.empty()) {
10232 Loop *L = Worklist.pop_back_val();
10233
10234 // For the inner loops we actually process, form LCSSA to simplify the
10235 // transform.
10236 Changed |= formLCSSARecursively(*L, *DT, LI, SE);
10237
10238 Changed |= CFGChanged |= processLoop(L);
10239
10240 if (Changed) {
10241 LAIs->clear();
10242
10243#ifndef NDEBUG
10244 if (VerifySCEV)
10245 SE->verify();
10246#endif
10247 }
10248 }
10249
10250 // Process each loop nest in the function.
10251 return LoopVectorizeResult(Changed, CFGChanged);
10252}
10253
10256 LI = &AM.getResult<LoopAnalysis>(F);
10257 // There are no loops in the function. Return before computing other
10258 // expensive analyses.
10259 if (LI->empty())
10260 return PreservedAnalyses::all();
10269 AA = &AM.getResult<AAManager>(F);
10270
10271 auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F);
10272 PSI = MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent());
10273 GetBFI = [&AM, &F]() -> BlockFrequencyInfo & {
10275 };
10276 LoopVectorizeResult Result = runImpl(F);
10277 if (!Result.MadeAnyChange)
10278 return PreservedAnalyses::all();
10280
10281 if (isAssignmentTrackingEnabled(*F.getParent())) {
10282 for (auto &BB : F)
10284 }
10285
10286 PA.preserve<LoopAnalysis>();
10290
10291 if (Result.MadeCFGChange) {
10292 // Making CFG changes likely means a loop got vectorized. Indicate that
10293 // extra simplification passes should be run.
10294 // TODO: MadeCFGChanges is not a prefect proxy. Extra passes should only
10295 // be run if runtime checks have been added.
10298 } else {
10300 }
10301 return PA;
10302}
10303
10305 raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) {
10306 static_cast<PassInfoMixin<LoopVectorizePass> *>(this)->printPipeline(
10307 OS, MapClassName2PassName);
10308
10309 OS << '<';
10310 OS << (InterleaveOnlyWhenForced ? "" : "no-") << "interleave-forced-only;";
10311 OS << (VectorizeOnlyWhenForced ? "" : "no-") << "vectorize-forced-only;";
10312 OS << '>';
10313}
for(const MachineOperand &MO :llvm::drop_begin(OldMI.operands(), Desc.getNumOperands()))
static unsigned getIntrinsicID(const SDNode *N)
unsigned RegSize
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
aarch64 promote const
AMDGPU Lower Kernel Arguments
AMDGPU Register Bank Select
Rewrite undef for PHI
This file implements a class to represent arbitrary precision integral constant values and operations...
@ PostInc
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
static bool isEqual(const Function &Caller, const Function &Callee)
This file contains the simple types necessary to represent the attributes associated with functions a...
static const Function * getParent(const Value *V)
This is the interface for LLVM's primary stateless and local alias analysis.
static bool IsEmptyBlock(MachineBasicBlock *MBB)
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
#define clEnumValN(ENUMVAL, FLAGNAME, DESC)
This file contains the declarations for the subclasses of Constant, which represent the different fla...
static cl::opt< OutputCostKind > CostKind("cost-kind", cl::desc("Target cost kind"), cl::init(OutputCostKind::RecipThroughput), cl::values(clEnumValN(OutputCostKind::RecipThroughput, "throughput", "Reciprocal throughput"), clEnumValN(OutputCostKind::Latency, "latency", "Instruction latency"), clEnumValN(OutputCostKind::CodeSize, "code-size", "Code size"), clEnumValN(OutputCostKind::SizeAndLatency, "size-latency", "Code size and latency"), clEnumValN(OutputCostKind::All, "all", "Print all cost kinds")))
static cl::opt< IntrinsicCostStrategy > IntrinsicCost("intrinsic-cost-strategy", cl::desc("Costing strategy for intrinsic instructions"), cl::init(IntrinsicCostStrategy::InstructionCost), cl::values(clEnumValN(IntrinsicCostStrategy::InstructionCost, "instruction-cost", "Use TargetTransformInfo::getInstructionCost"), clEnumValN(IntrinsicCostStrategy::IntrinsicCost, "intrinsic-cost", "Use TargetTransformInfo::getIntrinsicInstrCost"), clEnumValN(IntrinsicCostStrategy::TypeBasedIntrinsicCost, "type-based-intrinsic-cost", "Calculate the intrinsic cost based only on argument types")))
static InstructionCost getCost(Instruction &Inst, TTI::TargetCostKind CostKind, TargetTransformInfo &TTI, TargetLibraryInfo &TLI)
Definition CostModel.cpp:74
This file defines DenseMapInfo traits for DenseMap.
This file defines the DenseMap class.
#define DEBUG_TYPE
This is the interface for a simple mod/ref and alias analysis over globals.
Hexagon Common GEP
#define _
This file provides various utilities for inspecting and working with the control flow graph in LLVM I...
Module.h This file contains the declarations for the Module class.
This defines the Use class.
static bool hasNoUnsignedWrap(BinaryOperator &I)
This file defines an InstructionCost class that is used when calculating the cost of an instruction,...
static Constant * getTrue(Type *Ty)
For a boolean type or a vector of boolean type, return true or a vector with every element true.
static std::pair< Value *, APInt > getMask(Value *WideMask, unsigned Factor, ElementCount LeafValueEC)
const AbstractManglingParser< Derived, Alloc >::OperatorInfo AbstractManglingParser< Derived, Alloc >::Ops[]
Legalize the Machine IR a function s Machine IR
Definition Legalizer.cpp:80
static cl::opt< unsigned, true > VectorizationFactor("force-vector-width", cl::Hidden, cl::desc("Sets the SIMD width. Zero is autoselect."), cl::location(VectorizerParams::VectorizationFactor))
This header provides classes for managing per-loop analyses.
static cl::opt< bool > WidenIV("loop-flatten-widen-iv", cl::Hidden, cl::init(true), cl::desc("Widen the loop induction variables, if possible, so " "overflow checks won't reject flattening"))
static const char * VerboseDebug
#define LV_NAME
This file defines the LoopVectorizationLegality class.
This file provides a LoopVectorizationPlanner class.
static void collectSupportedLoops(Loop &L, LoopInfo *LI, OptimizationRemarkEmitter *ORE, SmallVectorImpl< Loop * > &V)
static cl::opt< unsigned > EpilogueVectorizationMinVF("epilogue-vectorization-minimum-VF", cl::Hidden, cl::desc("Only loops with vectorization factor equal to or larger than " "the specified value are considered for epilogue vectorization."))
static cl::opt< unsigned > EpilogueVectorizationForceVF("epilogue-vectorization-force-VF", cl::init(1), cl::Hidden, cl::desc("When epilogue vectorization is enabled, and a value greater than " "1 is specified, forces the given VF for all applicable epilogue " "loops."))
static Type * maybeVectorizeType(Type *Ty, ElementCount VF)
static ElementCount determineVPlanVF(const TargetTransformInfo &TTI, LoopVectorizationCostModel &CM)
static ElementCount getSmallConstantTripCount(ScalarEvolution *SE, const Loop *L)
A version of ScalarEvolution::getSmallConstantTripCount that returns an ElementCount to include loops...
static cl::opt< unsigned > VectorizeMemoryCheckThreshold("vectorize-memory-check-threshold", cl::init(128), cl::Hidden, cl::desc("The maximum allowed number of runtime memory checks"))
static void preparePlanForMainVectorLoop(VPlan &MainPlan, VPlan &EpiPlan)
Prepare MainPlan for vectorizing the main vector loop during epilogue vectorization.
static cl::opt< unsigned > TinyTripCountVectorThreshold("vectorizer-min-trip-count", cl::init(16), cl::Hidden, cl::desc("Loops with a constant trip count that is smaller than this " "value are vectorized only if no scalar iteration overheads " "are incurred."))
Loops with a known constant trip count below this number are vectorized only if no scalar iteration o...
static void debugVectorizationMessage(const StringRef Prefix, const StringRef DebugMsg, Instruction *I)
Write a DebugMsg about vectorization to the debug output stream.
static cl::opt< bool > EnableCondStoresVectorization("enable-cond-stores-vec", cl::init(true), cl::Hidden, cl::desc("Enable if predication of stores during vectorization."))
static void legacyCSE(BasicBlock *BB)
FIXME: This legacy common-subexpression-elimination routine is scheduled for removal,...
static VPIRBasicBlock * replaceVPBBWithIRVPBB(VPBasicBlock *VPBB, BasicBlock *IRBB, VPlan *Plan=nullptr)
Replace VPBB with a VPIRBasicBlock wrapping IRBB.
static Value * emitTransformedIndex(IRBuilderBase &B, Value *Index, Value *StartValue, Value *Step, InductionDescriptor::InductionKind InductionKind, const BinaryOperator *InductionBinOp)
Compute the transformed value of Index at offset StartValue using step StepValue.
static DebugLoc getDebugLocFromInstOrOperands(Instruction *I)
Look for a meaningful debug location on the instruction or its operands.
static Value * createInductionAdditionalBypassValues(PHINode *OrigPhi, const InductionDescriptor &II, IRBuilder<> &BypassBuilder, const SCEV2ValueTy &ExpandedSCEVs, Value *MainVectorTripCount, Instruction *OldInduction)
static void fixReductionScalarResumeWhenVectorizingEpilog(VPPhi *EpiResumePhiR, PHINode &EpiResumePhi, BasicBlock *BypassBlock)
static Value * getStartValueFromReductionResult(VPInstruction *RdxResult)
static cl::opt< bool > ForceTargetSupportsScalableVectors("force-target-supports-scalable-vectors", cl::init(false), cl::Hidden, cl::desc("Pretend that scalable vectors are supported, even if the target does " "not support them. This flag should only be used for testing."))
static bool useActiveLaneMaskForControlFlow(TailFoldingStyle Style)
static cl::opt< bool > EnableEarlyExitVectorization("enable-early-exit-vectorization", cl::init(true), cl::Hidden, cl::desc("Enable vectorization of early exit loops with uncountable exits."))
static bool processLoopInVPlanNativePath(Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, LoopVectorizationLegality *LVL, TargetTransformInfo *TTI, TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC, OptimizationRemarkEmitter *ORE, std::function< BlockFrequencyInfo &()> GetBFI, bool OptForSize, LoopVectorizeHints &Hints, LoopVectorizationRequirements &Requirements)
static cl::opt< bool > ConsiderRegPressure("vectorizer-consider-reg-pressure", cl::init(false), cl::Hidden, cl::desc("Discard VFs if their register pressure is too high."))
static unsigned estimateElementCount(ElementCount VF, std::optional< unsigned > VScale)
This function attempts to return a value that represents the ElementCount at runtime.
static constexpr uint32_t MinItersBypassWeights[]
static cl::opt< unsigned > ForceTargetNumScalarRegs("force-target-num-scalar-regs", cl::init(0), cl::Hidden, cl::desc("A flag that overrides the target's number of scalar registers."))
static cl::opt< bool > UseWiderVFIfCallVariantsPresent("vectorizer-maximize-bandwidth-for-vector-calls", cl::init(true), cl::Hidden, cl::desc("Try wider VFs if they enable the use of vector variants"))
static std::optional< unsigned > getMaxVScale(const Function &F, const TargetTransformInfo &TTI)
static cl::opt< unsigned > SmallLoopCost("small-loop-cost", cl::init(20), cl::Hidden, cl::desc("The cost of a loop that is considered 'small' by the interleaver."))
static void connectEpilogueVectorLoop(VPlan &EpiPlan, Loop *L, EpilogueLoopVectorizationInfo &EPI, DominatorTree *DT, LoopVectorizationLegality &LVL, DenseMap< const SCEV *, Value * > &ExpandedSCEVs, GeneratedRTChecks &Checks, ArrayRef< Instruction * > InstsToMove)
Connect the epilogue vector loop generated for EpiPlan to the main vector.
static bool planContainsAdditionalSimplifications(VPlan &Plan, VPCostContext &CostCtx, Loop *TheLoop, ElementCount VF)
Return true if the original loop \ TheLoop contains any instructions that do not have corresponding r...
static cl::opt< unsigned > ForceTargetNumVectorRegs("force-target-num-vector-regs", cl::init(0), cl::Hidden, cl::desc("A flag that overrides the target's number of vector registers."))
static bool isExplicitVecOuterLoop(Loop *OuterLp, OptimizationRemarkEmitter *ORE)
static cl::opt< bool > EnableIndVarRegisterHeur("enable-ind-var-reg-heur", cl::init(true), cl::Hidden, cl::desc("Count the induction variable only once when interleaving"))
static cl::opt< TailFoldingStyle > ForceTailFoldingStyle("force-tail-folding-style", cl::desc("Force the tail folding style"), cl::init(TailFoldingStyle::None), cl::values(clEnumValN(TailFoldingStyle::None, "none", "Disable tail folding"), clEnumValN(TailFoldingStyle::Data, "data", "Create lane mask for data only, using active.lane.mask intrinsic"), clEnumValN(TailFoldingStyle::DataWithoutLaneMask, "data-without-lane-mask", "Create lane mask with compare/stepvector"), clEnumValN(TailFoldingStyle::DataAndControlFlow, "data-and-control", "Create lane mask using active.lane.mask intrinsic, and use " "it for both data and control flow"), clEnumValN(TailFoldingStyle::DataAndControlFlowWithoutRuntimeCheck, "data-and-control-without-rt-check", "Similar to data-and-control, but remove the runtime check"), clEnumValN(TailFoldingStyle::DataWithEVL, "data-with-evl", "Use predicated EVL instructions for tail folding. If EVL " "is unsupported, fallback to data-without-lane-mask.")))
static ScalarEpilogueLowering getScalarEpilogueLowering(Function *F, Loop *L, LoopVectorizeHints &Hints, bool OptForSize, TargetTransformInfo *TTI, TargetLibraryInfo *TLI, LoopVectorizationLegality &LVL, InterleavedAccessInfo *IAI)
static cl::opt< bool > EnableEpilogueVectorization("enable-epilogue-vectorization", cl::init(true), cl::Hidden, cl::desc("Enable vectorization of epilogue loops."))
static cl::opt< bool > PreferPredicatedReductionSelect("prefer-predicated-reduction-select", cl::init(false), cl::Hidden, cl::desc("Prefer predicating a reduction operation over an after loop select."))
static cl::opt< bool > PreferInLoopReductions("prefer-inloop-reductions", cl::init(false), cl::Hidden, cl::desc("Prefer in-loop vector reductions, " "overriding the targets preference."))
static SmallVector< Instruction * > preparePlanForEpilogueVectorLoop(VPlan &Plan, Loop *L, const SCEV2ValueTy &ExpandedSCEVs, EpilogueLoopVectorizationInfo &EPI, LoopVectorizationCostModel &CM, ScalarEvolution &SE)
Prepare Plan for vectorizing the epilogue loop.
static cl::opt< bool > EnableLoadStoreRuntimeInterleave("enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden, cl::desc("Enable runtime interleaving until load/store ports are saturated"))
static cl::opt< bool > VPlanBuildStressTest("vplan-build-stress-test", cl::init(false), cl::Hidden, cl::desc("Build VPlan for every supported loop nest in the function and bail " "out right after the build (stress test the VPlan H-CFG construction " "in the VPlan-native vectorization path)."))
static bool hasIrregularType(Type *Ty, const DataLayout &DL)
A helper function that returns true if the given type is irregular.
static cl::opt< bool > LoopVectorizeWithBlockFrequency("loop-vectorize-with-block-frequency", cl::init(true), cl::Hidden, cl::desc("Enable the use of the block frequency analysis to access PGO " "heuristics minimizing code growth in cold regions and being more " "aggressive in hot regions."))
static std::optional< ElementCount > getSmallBestKnownTC(PredicatedScalarEvolution &PSE, Loop *L, bool CanUseConstantMax=true)
Returns "best known" trip count, which is either a valid positive trip count or std::nullopt when an ...
static Value * getExpandedStep(const InductionDescriptor &ID, const SCEV2ValueTy &ExpandedSCEVs)
Return the expanded step for ID using ExpandedSCEVs to look up SCEV expansion results.
static bool useActiveLaneMask(TailFoldingStyle Style)
static bool hasReplicatorRegion(VPlan &Plan)
static bool isIndvarOverflowCheckKnownFalse(const LoopVectorizationCostModel *Cost, ElementCount VF, std::optional< unsigned > UF=std::nullopt)
For the given VF and UF and maximum trip count computed for the loop, return whether the induction va...
static void addFullyUnrolledInstructionsToIgnore(Loop *L, const LoopVectorizationLegality::InductionList &IL, SmallPtrSetImpl< Instruction * > &InstsToIgnore)
Knowing that loop L executes a single vector iteration, add instructions that will get simplified and...
static cl::opt< PreferPredicateTy::Option > PreferPredicateOverEpilogue("prefer-predicate-over-epilogue", cl::init(PreferPredicateTy::ScalarEpilogue), cl::Hidden, cl::desc("Tail-folding and predication preferences over creating a scalar " "epilogue loop."), cl::values(clEnumValN(PreferPredicateTy::ScalarEpilogue, "scalar-epilogue", "Don't tail-predicate loops, create scalar epilogue"), clEnumValN(PreferPredicateTy::PredicateElseScalarEpilogue, "predicate-else-scalar-epilogue", "prefer tail-folding, create scalar epilogue if tail " "folding fails."), clEnumValN(PreferPredicateTy::PredicateOrDontVectorize, "predicate-dont-vectorize", "prefers tail-folding, don't attempt vectorization if " "tail-folding fails.")))
static cl::opt< bool > EnableInterleavedMemAccesses("enable-interleaved-mem-accesses", cl::init(false), cl::Hidden, cl::desc("Enable vectorization on interleaved memory accesses in a loop"))
static cl::opt< bool > EnableMaskedInterleavedMemAccesses("enable-masked-interleaved-mem-accesses", cl::init(false), cl::Hidden, cl::desc("Enable vectorization on masked interleaved memory accesses in a loop"))
An interleave-group may need masking if it resides in a block that needs predication,...
static cl::opt< bool > ForceOrderedReductions("force-ordered-reductions", cl::init(false), cl::Hidden, cl::desc("Enable the vectorisation of loops with in-order (strict) " "FP reductions"))
static const SCEV * getAddressAccessSCEV(Value *Ptr, LoopVectorizationLegality *Legal, PredicatedScalarEvolution &PSE, const Loop *TheLoop)
Gets Address Access SCEV after verifying that the access pattern is loop invariant except the inducti...
static cl::opt< cl::boolOrDefault > ForceSafeDivisor("force-widen-divrem-via-safe-divisor", cl::Hidden, cl::desc("Override cost based safe divisor widening for div/rem instructions"))
static InstructionCost calculateEarlyExitCost(VPCostContext &CostCtx, VPlan &Plan, ElementCount VF)
For loops with uncountable early exits, find the cost of doing work when exiting the loop early,...
static cl::opt< unsigned > ForceTargetMaxVectorInterleaveFactor("force-target-max-vector-interleave", cl::init(0), cl::Hidden, cl::desc("A flag that overrides the target's max interleave factor for " "vectorized loops."))
static bool useMaskedInterleavedAccesses(const TargetTransformInfo &TTI)
static cl::opt< unsigned > NumberOfStoresToPredicate("vectorize-num-stores-pred", cl::init(1), cl::Hidden, cl::desc("Max number of stores to be predicated behind an if."))
The number of stores in a loop that are allowed to need predication.
static cl::opt< unsigned > MaxNestedScalarReductionIC("max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden, cl::desc("The maximum interleave count to use when interleaving a scalar " "reduction in a nested loop."))
static cl::opt< unsigned > ForceTargetMaxScalarInterleaveFactor("force-target-max-scalar-interleave", cl::init(0), cl::Hidden, cl::desc("A flag that overrides the target's max interleave factor for " "scalar loops."))
static void checkMixedPrecision(Loop *L, OptimizationRemarkEmitter *ORE)
static bool willGenerateVectors(VPlan &Plan, ElementCount VF, const TargetTransformInfo &TTI)
Check if any recipe of Plan will generate a vector value, which will be assigned a vector register.
static bool isOutsideLoopWorkProfitable(GeneratedRTChecks &Checks, VectorizationFactor &VF, Loop *L, PredicatedScalarEvolution &PSE, VPCostContext &CostCtx, VPlan &Plan, ScalarEpilogueLowering SEL, std::optional< unsigned > VScale)
This function determines whether or not it's still profitable to vectorize the loop given the extra w...
static void fixScalarResumeValuesFromBypass(BasicBlock *BypassBlock, Loop *L, VPlan &BestEpiPlan, LoopVectorizationLegality &LVL, const SCEV2ValueTy &ExpandedSCEVs, Value *MainVectorTripCount)
static cl::opt< bool > MaximizeBandwidth("vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden, cl::desc("Maximize bandwidth when selecting vectorization factor which " "will be determined by the smallest type in loop."))
static OptimizationRemarkAnalysis createLVAnalysis(const char *PassName, StringRef RemarkName, Loop *TheLoop, Instruction *I, DebugLoc DL={})
Create an analysis remark that explains why vectorization failed.
#define F(x, y, z)
Definition MD5.cpp:54
#define I(x, y, z)
Definition MD5.cpp:57
This file implements a map that provides insertion order iteration.
This file contains the declarations for metadata subclasses.
#define T
ConstantRange Range(APInt(BitWidth, Low), APInt(BitWidth, High))
uint64_t IntrinsicInst * II
#define P(N)
This file contains the declarations for profiling metadata utility functions.
const SmallVectorImpl< MachineOperand > & Cond
static BinaryOperator * CreateMul(Value *S1, Value *S2, const Twine &Name, BasicBlock::iterator InsertBefore, Value *FlagsOp)
static BinaryOperator * CreateAdd(Value *S1, Value *S2, const Twine &Name, BasicBlock::iterator InsertBefore, Value *FlagsOp)
static bool isValid(const char C)
Returns true if C is a valid mangled character: <0-9a-zA-Z_>.
static InstructionCost getScalarizationOverhead(const TargetTransformInfo &TTI, Type *ScalarTy, VectorType *Ty, const APInt &DemandedElts, bool Insert, bool Extract, TTI::TargetCostKind CostKind, bool ForPoisonSrc=true, ArrayRef< Value * > VL={})
This is similar to TargetTransformInfo::getScalarizationOverhead, but if ScalarTy is a FixedVectorTyp...
This file contains some templates that are useful if you are working with the STL at all.
#define OP(OPC)
Definition Instruction.h:46
This file defines the SmallPtrSet class.
This file defines the SmallVector class.
This file defines the 'Statistic' class, which is designed to be an easy way to expose various metric...
#define STATISTIC(VARNAME, DESC)
Definition Statistic.h:171
#define LLVM_DEBUG(...)
Definition Debug.h:114
#define DEBUG_WITH_TYPE(TYPE,...)
DEBUG_WITH_TYPE macro - This macro should be used by passes to emit debug information.
Definition Debug.h:72
static TableGen::Emitter::Opt Y("gen-skeleton-entry", EmitSkeleton, "Generate example skeleton entry")
static TableGen::Emitter::OptClass< SkeletonEmitter > X("gen-skeleton-class", "Generate example skeleton class")
This pass exposes codegen information to IR-level passes.
LocallyHashedType DenseMapInfo< LocallyHashedType >::Empty
This file implements the TypeSwitch template, which mimics a switch() statement whose cases are type ...
This file contains the declarations of different VPlan-related auxiliary helpers.
This file provides utility VPlan to VPlan transformations.
This file declares the class VPlanVerifier, which contains utility functions to check the consistency...
This file contains the declarations of the Vectorization Plan base classes:
static const char PassName[]
Value * RHS
Value * LHS
static const uint32_t IV[8]
Definition blake3_impl.h:83
A manager for alias analyses.
Class for arbitrary precision integers.
Definition APInt.h:78
static APInt getAllOnes(unsigned numBits)
Return an APInt of a specified width with all bits set.
Definition APInt.h:235
uint64_t getZExtValue() const
Get zero extended value.
Definition APInt.h:1541
unsigned getActiveBits() const
Compute the number of active bits in the value.
Definition APInt.h:1513
PassT::Result & getResult(IRUnitT &IR, ExtraArgTs... ExtraArgs)
Get the result of an analysis pass for a given IR unit.
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Definition ArrayRef.h:40
size_t size() const
size - Get the array size.
Definition ArrayRef.h:142
A function analysis which provides an AssumptionCache.
A cache of @llvm.assume calls within a function.
LLVM_ABI unsigned getVScaleRangeMin() const
Returns the minimum value for the vscale_range attribute.
LLVM Basic Block Representation.
Definition BasicBlock.h:62
iterator_range< const_phi_iterator > phis() const
Returns a range that iterates over the phis in the basic block.
Definition BasicBlock.h:528
LLVM_ABI const_iterator getFirstInsertionPt() const
Returns an iterator to the first instruction in this block that is suitable for inserting a non-PHI i...
const Function * getParent() const
Return the enclosing method, or null if none.
Definition BasicBlock.h:213
LLVM_ABI InstListType::const_iterator getFirstNonPHIIt() const
Returns an iterator to the first instruction in this block that is not a PHINode instruction.
LLVM_ABI const BasicBlock * getSinglePredecessor() const
Return the predecessor of this block if it has a single predecessor block.
LLVM_ABI const BasicBlock * getSingleSuccessor() const
Return the successor of this block if it has a single successor.
LLVM_ABI const DataLayout & getDataLayout() const
Get the data layout of the module this basic block belongs to.
LLVM_ABI LLVMContext & getContext() const
Get the context in which this basic block lives.
const Instruction * getTerminator() const LLVM_READONLY
Returns the terminator instruction if the block is well formed or null if the block is not well forme...
Definition BasicBlock.h:233
BinaryOps getOpcode() const
Definition InstrTypes.h:374
Analysis pass which computes BlockFrequencyInfo.
BlockFrequencyInfo pass uses BlockFrequencyInfoImpl implementation to estimate IR basic block frequen...
Conditional or Unconditional Branch instruction.
bool isConditional() const
static BranchInst * Create(BasicBlock *IfTrue, InsertPosition InsertBefore=nullptr)
BasicBlock * getSuccessor(unsigned i) const
Represents analyses that only rely on functions' control flow.
Definition Analysis.h:73
bool isNoBuiltin() const
Return true if the call should not be treated as a call to a builtin.
Function * getCalledFunction() const
Returns the function called, or null if this is an indirect function invocation or the function signa...
Value * getArgOperand(unsigned i) const
iterator_range< User::op_iterator > args()
Iteration adapter for range-for loops.
unsigned arg_size() const
This class represents a function call, abstracting a target machine's calling convention.
static Type * makeCmpResultType(Type *opnd_type)
Create a result type for fcmp/icmp.
Definition InstrTypes.h:982
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
Definition InstrTypes.h:676
@ ICMP_UGT
unsigned greater than
Definition InstrTypes.h:699
@ ICMP_ULT
unsigned less than
Definition InstrTypes.h:701
@ ICMP_NE
not equal
Definition InstrTypes.h:698
@ ICMP_ULE
unsigned less or equal
Definition InstrTypes.h:702
Predicate getInversePredicate() const
For example, EQ -> NE, UGT -> ULE, SLT -> SGE, OEQ -> UNE, UGT -> OLE, OLT -> UGE,...
Definition InstrTypes.h:789
An abstraction over a floating-point predicate, and a pack of an integer predicate with samesign info...
This is the shared class of boolean and integer constants.
Definition Constants.h:87
A parsed version of the target data layout string in and methods for querying it.
Definition DataLayout.h:64
A debug info location.
Definition DebugLoc.h:123
static DebugLoc getTemporary()
Definition DebugLoc.h:160
static DebugLoc getUnknown()
Definition DebugLoc.h:161
An analysis that produces DemandedBits for a function.
ValueT lookup(const_arg_type_t< KeyT > Val) const
lookup - Return the entry for the specified key, or a default constructed value if no such entry exis...
Definition DenseMap.h:205
iterator find(const_arg_type_t< KeyT > Val)
Definition DenseMap.h:178
std::pair< iterator, bool > try_emplace(KeyT &&Key, Ts &&...Args)
Definition DenseMap.h:256
iterator end()
Definition DenseMap.h:81
bool contains(const_arg_type_t< KeyT > Val) const
Return true if the specified key is in the map, false otherwise.
Definition DenseMap.h:169
void insert_range(Range &&R)
Inserts range of 'std::pair<KeyT, ValueT>' values into the map.
Definition DenseMap.h:294
Implements a dense probed hash-table based set.
Definition DenseSet.h:279
Analysis pass which computes a DominatorTree.
Definition Dominators.h:283
void changeImmediateDominator(DomTreeNodeBase< NodeT > *N, DomTreeNodeBase< NodeT > *NewIDom)
changeImmediateDominator - This method is used to update the dominator tree information when a node's...
void eraseNode(NodeT *BB)
eraseNode - Removes a node from the dominator tree.
Concrete subclass of DominatorTreeBase that is used to compute a normal dominator tree.
Definition Dominators.h:164
constexpr bool isVector() const
One or more elements.
Definition TypeSize.h:324
static constexpr ElementCount getScalable(ScalarTy MinVal)
Definition TypeSize.h:312
static constexpr ElementCount getFixed(ScalarTy MinVal)
Definition TypeSize.h:309
static constexpr ElementCount get(ScalarTy MinVal, bool Scalable)
Definition TypeSize.h:315
constexpr bool isScalar() const
Exactly one element.
Definition TypeSize.h:320
EpilogueVectorizerEpilogueLoop(Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, const TargetTransformInfo *TTI, AssumptionCache *AC, EpilogueLoopVectorizationInfo &EPI, LoopVectorizationCostModel *CM, GeneratedRTChecks &Checks, VPlan &Plan)
BasicBlock * createVectorizedLoopSkeleton() final
Implements the interface for creating a vectorized skeleton using the epilogue loop strategy (i....
void printDebugTracesAtStart() override
Allow subclasses to override and print debug traces before/after vplan execution, when trace informat...
A specialized derived class of inner loop vectorizer that performs vectorization of main loops in the...
void introduceCheckBlockInVPlan(BasicBlock *CheckIRBB)
Introduces a new VPIRBasicBlock for CheckIRBB to Plan between the vector preheader and its predecesso...
BasicBlock * emitIterationCountCheck(BasicBlock *VectorPH, BasicBlock *Bypass, bool ForEpilogue)
Emits an iteration count bypass check once for the main loop (when ForEpilogue is false) and once for...
Value * createIterationCountCheck(BasicBlock *VectorPH, ElementCount VF, unsigned UF) const
void printDebugTracesAtStart() override
Allow subclasses to override and print debug traces before/after vplan execution, when trace informat...
EpilogueVectorizerMainLoop(Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, const TargetTransformInfo *TTI, AssumptionCache *AC, EpilogueLoopVectorizationInfo &EPI, LoopVectorizationCostModel *CM, GeneratedRTChecks &Check, VPlan &Plan)
BasicBlock * createVectorizedLoopSkeleton() final
Implements the interface for creating a vectorized skeleton using the main loop strategy (i....
Convenience struct for specifying and reasoning about fast-math flags.
Definition FMF.h:22
static FastMathFlags getFast()
Definition FMF.h:50
Class to represent function types.
param_iterator param_begin() const
param_iterator param_end() const
FunctionType * getFunctionType() const
Returns the FunctionType for me.
Definition Function.h:209
Attribute getFnAttribute(Attribute::AttrKind Kind) const
Return the attribute for the given attribute kind.
Definition Function.cpp:765
bool hasFnAttribute(Attribute::AttrKind Kind) const
Return true if the function has the attribute.
Definition Function.cpp:730
Represents flags for the getelementptr instruction/expression.
static GEPNoWrapFlags none()
void applyUpdates(ArrayRef< UpdateT > Updates)
Submit updates to all available trees.
Common base class shared among various IRBuilders.
Definition IRBuilder.h:114
void setFastMathFlags(FastMathFlags NewFMF)
Set the fast-math flags to be used with generated fp-math operators.
Definition IRBuilder.h:345
This provides a uniform API for creating instructions and inserting them into a basic block: either a...
Definition IRBuilder.h:2788
A struct for saving information about induction variables.
const SCEV * getStep() const
ArrayRef< Instruction * > getCastInsts() const
Returns an ArrayRef to the type cast instructions in the induction update chain, that are redundant w...
InductionKind
This enum represents the kinds of inductions that we support.
@ IK_NoInduction
Not an induction variable.
@ IK_FpInduction
Floating point induction variable.
@ IK_PtrInduction
Pointer induction var. Step = C.
@ IK_IntInduction
Integer induction variable. Step = C.
InnerLoopAndEpilogueVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, const TargetTransformInfo *TTI, AssumptionCache *AC, EpilogueLoopVectorizationInfo &EPI, LoopVectorizationCostModel *CM, GeneratedRTChecks &Checks, VPlan &Plan, ElementCount VecWidth, ElementCount MinProfitableTripCount, unsigned UnrollFactor)
EpilogueLoopVectorizationInfo & EPI
Holds and updates state information required to vectorize the main loop and its epilogue in two separ...
InnerLoopVectorizer vectorizes loops which contain only one basic block to a specified vectorization ...
virtual void printDebugTracesAtStart()
Allow subclasses to override and print debug traces before/after vplan execution, when trace informat...
Value * TripCount
Trip count of the original loop.
const TargetTransformInfo * TTI
Target Transform Info.
LoopVectorizationCostModel * Cost
The profitablity analysis.
Value * getTripCount() const
Returns the original loop trip count.
friend class LoopVectorizationPlanner
InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, const TargetTransformInfo *TTI, AssumptionCache *AC, ElementCount VecWidth, unsigned UnrollFactor, LoopVectorizationCostModel *CM, GeneratedRTChecks &RTChecks, VPlan &Plan)
PredicatedScalarEvolution & PSE
A wrapper around ScalarEvolution used to add runtime SCEV checks.
LoopInfo * LI
Loop Info.
DominatorTree * DT
Dominator Tree.
void setTripCount(Value *TC)
Used to set the trip count after ILV's construction and after the preheader block has been executed.
void fixVectorizedLoop(VPTransformState &State)
Fix the vectorized code, taking care of header phi's, and more.
virtual BasicBlock * createVectorizedLoopSkeleton()
Creates a basic block for the scalar preheader.
virtual void printDebugTracesAtEnd()
AssumptionCache * AC
Assumption Cache.
IRBuilder Builder
The builder that we use.
void fixNonInductionPHIs(VPTransformState &State)
Fix the non-induction PHIs in Plan.
VPBasicBlock * VectorPHVPBB
The vector preheader block of Plan, used as target for check blocks introduced during skeleton creati...
unsigned UF
The vectorization unroll factor to use.
GeneratedRTChecks & RTChecks
Structure to hold information about generated runtime checks, responsible for cleaning the checks,...
virtual ~InnerLoopVectorizer()=default
ElementCount VF
The vectorization SIMD factor to use.
Loop * OrigLoop
The original loop.
BasicBlock * createScalarPreheader(StringRef Prefix)
Create and return a new IR basic block for the scalar preheader whose name is prefixed with Prefix.
InstSimplifyFolder - Use InstructionSimplify to fold operations to existing values.
static InstructionCost getInvalid(CostType Val=0)
static InstructionCost getMax()
CostType getValue() const
This function is intended to be used as sparingly as possible, since the class provides the full rang...
bool isCast() const
const DebugLoc & getDebugLoc() const
Return the debug location for this node as a DebugLoc.
LLVM_ABI const Module * getModule() const
Return the module owning the function this instruction belongs to or nullptr it the function does not...
LLVM_ABI void moveBefore(InstListType::iterator InsertPos)
Unlink this instruction from its current basic block and insert it into the basic block that MovePos ...
LLVM_ABI InstListType::iterator eraseFromParent()
This method unlinks 'this' from the containing basic block and deletes it.
Instruction * user_back()
Specialize the methods defined in Value, as we know that an instruction can only be used by other ins...
LLVM_ABI FastMathFlags getFastMathFlags() const LLVM_READONLY
Convenience function for getting all the fast-math flags, which must be an operator which supports th...
const char * getOpcodeName() const
unsigned getOpcode() const
Returns a member of one of the enums like Instruction::Add.
Class to represent integer types.
static LLVM_ABI IntegerType * get(LLVMContext &C, unsigned NumBits)
This static method is the primary way of constructing an IntegerType.
Definition Type.cpp:318
LLVM_ABI APInt getMask() const
For example, this is 0xFF for an 8 bit integer, 0xFFFF for i16, etc.
Definition Type.cpp:342
The group of interleaved loads/stores sharing the same stride and close to each other.
uint32_t getFactor() const
InstTy * getMember(uint32_t Index) const
Get the member with the given index Index.
InstTy * getInsertPos() const
uint32_t getNumMembers() const
Drive the analysis of interleaved memory accesses in the loop.
bool requiresScalarEpilogue() const
Returns true if an interleaved group that may access memory out-of-bounds requires a scalar epilogue ...
LLVM_ABI void analyzeInterleaving(bool EnableMaskedInterleavedGroup)
Analyze the interleaved accesses and collect them in interleave groups.
An instruction for reading from memory.
Type * getPointerOperandType() const
This analysis provides dependence information for the memory accesses of a loop.
Drive the analysis of memory accesses in the loop.
const RuntimePointerChecking * getRuntimePointerChecking() const
unsigned getNumRuntimePointerChecks() const
Number of memchecks required to prove independence of otherwise may-alias pointers.
Analysis pass that exposes the LoopInfo for a function.
Definition LoopInfo.h:569
bool contains(const LoopT *L) const
Return true if the specified loop is contained within in this loop.
BlockT * getLoopLatch() const
If there is a single latch block for this loop, return it.
bool isInnermost() const
Return true if the loop does not contain any (natural) loops.
void getExitingBlocks(SmallVectorImpl< BlockT * > &ExitingBlocks) const
Return all blocks inside the loop that have successors outside of the loop.
BlockT * getHeader() const
iterator_range< block_iterator > blocks() const
ArrayRef< BlockT * > getBlocks() const
Get a list of the basic blocks which make up this loop.
Store the result of a depth first search within basic blocks contained by a single loop.
RPOIterator beginRPO() const
Reverse iterate over the cached postorder blocks.
void perform(const LoopInfo *LI)
Traverse the loop blocks and store the DFS result.
RPOIterator endRPO() const
Wrapper class to LoopBlocksDFS that provides a standard begin()/end() interface for the DFS reverse p...
void perform(const LoopInfo *LI)
Traverse the loop blocks and store the DFS result.
void removeBlock(BlockT *BB)
This method completely removes BB from all data structures, including all of the Loop objects it is n...
LoopVectorizationCostModel - estimates the expected speedups due to vectorization.
SmallPtrSet< Type *, 16 > ElementTypesInLoop
All element types found in the loop.
bool isLegalMaskedLoad(Type *DataType, Value *Ptr, Align Alignment, unsigned AddressSpace) const
Returns true if the target machine supports masked load operation for the given DataType and kind of ...
void collectElementTypesForWidening()
Collect all element types in the loop for which widening is needed.
bool canVectorizeReductions(ElementCount VF) const
Returns true if the target machine supports all of the reduction variables found for the given VF.
bool isLegalMaskedStore(Type *DataType, Value *Ptr, Align Alignment, unsigned AddressSpace) const
Returns true if the target machine supports masked store operation for the given DataType and kind of...
bool isEpilogueVectorizationProfitable(const ElementCount VF, const unsigned IC) const
Returns true if epilogue vectorization is considered profitable, and false otherwise.
bool useWideActiveLaneMask() const
Returns true if the use of wide lane masks is requested and the loop is using tail-folding with a lan...
bool isPredicatedInst(Instruction *I) const
Returns true if I is an instruction that needs to be predicated at runtime.
void collectValuesToIgnore()
Collect values we want to ignore in the cost model.
BlockFrequencyInfo * BFI
The BlockFrequencyInfo returned from GetBFI.
void collectInLoopReductions()
Split reductions into those that happen in the loop, and those that happen outside.
BlockFrequencyInfo & getBFI()
Returns the BlockFrequencyInfo for the function if cached, otherwise fetches it via GetBFI.
std::pair< unsigned, unsigned > getSmallestAndWidestTypes()
bool isUniformAfterVectorization(Instruction *I, ElementCount VF) const
Returns true if I is known to be uniform after vectorization.
void collectNonVectorizedAndSetWideningDecisions(ElementCount VF)
Collect values that will not be widened, including Uniforms, Scalars, and Instructions to Scalarize f...
PredicatedScalarEvolution & PSE
Predicated scalar evolution analysis.
const LoopVectorizeHints * Hints
Loop Vectorize Hint.
std::optional< unsigned > getMaxSafeElements() const
Return maximum safe number of elements to be processed per vector iteration, which do not prevent sto...
const TargetTransformInfo & TTI
Vector target information.
LoopVectorizationLegality * Legal
Vectorization legality.
uint64_t getPredBlockCostDivisor(TargetTransformInfo::TargetCostKind CostKind, const BasicBlock *BB)
A helper function that returns how much we should divide the cost of a predicated block by.
std::optional< InstructionCost > getReductionPatternCost(Instruction *I, ElementCount VF, Type *VectorTy) const
Return the cost of instructions in an inloop reduction pattern, if I is part of that pattern.
InstructionCost getInstructionCost(Instruction *I, ElementCount VF)
Returns the execution time cost of an instruction for a given vector width.
DemandedBits * DB
Demanded bits analysis.
bool interleavedAccessCanBeWidened(Instruction *I, ElementCount VF) const
Returns true if I is a memory instruction in an interleaved-group of memory accesses that can be vect...
const TargetLibraryInfo * TLI
Target Library Info.
bool memoryInstructionCanBeWidened(Instruction *I, ElementCount VF)
Returns true if I is a memory instruction with consecutive memory access that can be widened.
const InterleaveGroup< Instruction > * getInterleavedAccessGroup(Instruction *Instr) const
Get the interleaved access group that Instr belongs to.
InstructionCost getVectorIntrinsicCost(CallInst *CI, ElementCount VF) const
Estimate cost of an intrinsic call instruction CI if it were vectorized with factor VF.
bool OptForSize
Whether this loop should be optimized for size based on function attribute or profile information.
bool useMaxBandwidth(TargetTransformInfo::RegisterKind RegKind)
bool isScalarAfterVectorization(Instruction *I, ElementCount VF) const
Returns true if I is known to be scalar after vectorization.
bool isOptimizableIVTruncate(Instruction *I, ElementCount VF)
Return True if instruction I is an optimizable truncate whose operand is an induction variable.
FixedScalableVFPair computeMaxVF(ElementCount UserVF, unsigned UserIC)
bool shouldConsiderRegPressureForVF(ElementCount VF)
Loop * TheLoop
The loop that we evaluate.
TTI::TargetCostKind CostKind
The kind of cost that we are calculating.
TailFoldingStyle getTailFoldingStyle(bool IVUpdateMayOverflow=true) const
Returns the TailFoldingStyle that is best for the current loop.
InterleavedAccessInfo & InterleaveInfo
The interleave access information contains groups of interleaved accesses with the same stride and cl...
SmallPtrSet< const Value *, 16 > ValuesToIgnore
Values to ignore in the cost model.
void setVectorizedCallDecision(ElementCount VF)
A call may be vectorized in different ways depending on whether we have vectorized variants available...
void invalidateCostModelingDecisions()
Invalidates decisions already taken by the cost model.
bool isAccessInterleaved(Instruction *Instr) const
Check if Instr belongs to any interleaved access group.
bool selectUserVectorizationFactor(ElementCount UserVF)
Setup cost-based decisions for user vectorization factor.
std::optional< unsigned > getVScaleForTuning() const
Return the value of vscale used for tuning the cost model.
OptimizationRemarkEmitter * ORE
Interface to emit optimization remarks.
bool preferPredicatedLoop() const
Returns true if tail-folding is preferred over a scalar epilogue.
LoopInfo * LI
Loop Info analysis.
bool requiresScalarEpilogue(bool IsVectorizing) const
Returns true if we're required to use a scalar epilogue for at least the final iteration of the origi...
SmallPtrSet< const Value *, 16 > VecValuesToIgnore
Values to ignore in the cost model when VF > 1.
bool isInLoopReduction(PHINode *Phi) const
Returns true if the Phi is part of an inloop reduction.
bool isProfitableToScalarize(Instruction *I, ElementCount VF) const
void setWideningDecision(const InterleaveGroup< Instruction > *Grp, ElementCount VF, InstWidening W, InstructionCost Cost)
Save vectorization decision W and Cost taken by the cost model for interleaving group Grp and vector ...
const MapVector< Instruction *, uint64_t > & getMinimalBitwidths() const
CallWideningDecision getCallWideningDecision(CallInst *CI, ElementCount VF) const
bool isLegalGatherOrScatter(Value *V, ElementCount VF)
Returns true if the target machine can represent V as a masked gather or scatter operation.
bool canTruncateToMinimalBitwidth(Instruction *I, ElementCount VF) const
bool shouldConsiderInvariant(Value *Op)
Returns true if Op should be considered invariant and if it is trivially hoistable.
bool foldTailByMasking() const
Returns true if all loop blocks should be masked to fold tail loop.
bool foldTailWithEVL() const
Returns true if VP intrinsics with explicit vector length support should be generated in the tail fol...
bool usePredicatedReductionSelect() const
Returns true if the predicated reduction select should be used to set the incoming value for the redu...
bool blockNeedsPredicationForAnyReason(BasicBlock *BB) const
Returns true if the instructions in this block requires predication for any reason,...
void setCallWideningDecision(CallInst *CI, ElementCount VF, InstWidening Kind, Function *Variant, Intrinsic::ID IID, std::optional< unsigned > MaskPos, InstructionCost Cost)
void setTailFoldingStyles(bool IsScalableVF, unsigned UserIC)
Selects and saves TailFoldingStyle for 2 options - if IV update may overflow or not.
AssumptionCache * AC
Assumption cache.
void setWideningDecision(Instruction *I, ElementCount VF, InstWidening W, InstructionCost Cost)
Save vectorization decision W and Cost taken by the cost model for instruction I and vector width VF.
InstWidening
Decision that was taken during cost calculation for memory instruction.
std::pair< InstructionCost, InstructionCost > getDivRemSpeculationCost(Instruction *I, ElementCount VF)
Return the costs for our two available strategies for lowering a div/rem operation which requires spe...
InstructionCost getVectorCallCost(CallInst *CI, ElementCount VF) const
Estimate cost of a call instruction CI if it were vectorized with factor VF.
bool isScalarWithPredication(Instruction *I, ElementCount VF)
Returns true if I is an instruction which requires predication and for which our chosen predication s...
bool useOrderedReductions(const RecurrenceDescriptor &RdxDesc) const
Returns true if we should use strict in-order reductions for the given RdxDesc.
bool isDivRemScalarWithPredication(InstructionCost ScalarCost, InstructionCost SafeDivisorCost) const
Given costs for both strategies, return true if the scalar predication lowering should be used for di...
std::function< BlockFrequencyInfo &()> GetBFI
A function to lazily fetch BlockFrequencyInfo.
LoopVectorizationCostModel(ScalarEpilogueLowering SEL, Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, LoopVectorizationLegality *Legal, const TargetTransformInfo &TTI, const TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC, OptimizationRemarkEmitter *ORE, std::function< BlockFrequencyInfo &()> GetBFI, const Function *F, const LoopVectorizeHints *Hints, InterleavedAccessInfo &IAI, bool OptForSize)
InstructionCost expectedCost(ElementCount VF)
Returns the expected execution cost.
void setCostBasedWideningDecision(ElementCount VF)
Memory access instruction may be vectorized in more than one way.
InstWidening getWideningDecision(Instruction *I, ElementCount VF) const
Return the cost model decision for the given instruction I and vector width VF.
FixedScalableVFPair MaxPermissibleVFWithoutMaxBW
The highest VF possible for this loop, without using MaxBandwidth.
const SmallPtrSetImpl< PHINode * > & getInLoopReductions() const
Returns the set of in-loop reduction PHIs.
bool isScalarEpilogueAllowed() const
Returns true if a scalar epilogue is not allowed due to optsize or a loop hint annotation.
InstructionCost getWideningCost(Instruction *I, ElementCount VF)
Return the vectorization cost for the given instruction I and vector width VF.
void collectInstsToScalarize(ElementCount VF)
Collects the instructions to scalarize for each predicated instruction in the loop.
LoopVectorizationLegality checks if it is legal to vectorize a loop, and to what vectorization factor...
MapVector< PHINode *, InductionDescriptor > InductionList
InductionList saves induction variables and maps them to the induction descriptor.
const SmallPtrSetImpl< const Instruction * > & getPotentiallyFaultingLoads() const
Returns potentially faulting loads.
bool canVectorize(bool UseVPlanNativePath)
Returns true if it is legal to vectorize this loop.
bool canVectorizeFPMath(bool EnableStrictReductions)
Returns true if it is legal to vectorize the FP math operations in this loop.
PHINode * getPrimaryInduction()
Returns the primary induction variable.
const SmallVector< BasicBlock *, 4 > & getCountableExitingBlocks() const
Returns all exiting blocks with a countable exit, i.e.
const InductionList & getInductionVars() const
Returns the induction variables found in the loop.
bool hasUncountableEarlyExit() const
Returns true if the loop has exactly one uncountable early exit, i.e.
bool hasHistograms() const
Returns a list of all known histogram operations in the loop.
const LoopAccessInfo * getLAI() const
Planner drives the vectorization process after having passed Legality checks.
VectorizationFactor selectEpilogueVectorizationFactor(const ElementCount MaxVF, unsigned IC)
VPlan & getPlanFor(ElementCount VF) const
Return the VPlan for VF.
Definition VPlan.cpp:1576
VectorizationFactor planInVPlanNativePath(ElementCount UserVF)
Use the VPlan-native path to plan how to best vectorize, return the best VF and its cost.
void updateLoopMetadataAndProfileInfo(Loop *VectorLoop, VPBasicBlock *HeaderVPBB, const VPlan &Plan, bool VectorizingEpilogue, MDNode *OrigLoopID, std::optional< unsigned > OrigAverageTripCount, unsigned OrigLoopInvocationWeight, unsigned EstimatedVFxUF, bool DisableRuntimeUnroll)
Update loop metadata and profile info for both the scalar remainder loop and VectorLoop,...
Definition VPlan.cpp:1627
void buildVPlans(ElementCount MinVF, ElementCount MaxVF)
Build VPlans for power-of-2 VF's between MinVF and MaxVF inclusive, according to the information gath...
Definition VPlan.cpp:1560
VectorizationFactor computeBestVF()
Compute and return the most profitable vectorization factor.
DenseMap< const SCEV *, Value * > executePlan(ElementCount VF, unsigned UF, VPlan &BestPlan, InnerLoopVectorizer &LB, DominatorTree *DT, bool VectorizingEpilogue)
Generate the IR code for the vectorized loop captured in VPlan BestPlan according to the best selecte...
unsigned selectInterleaveCount(VPlan &Plan, ElementCount VF, InstructionCost LoopCost)
void emitInvalidCostRemarks(OptimizationRemarkEmitter *ORE)
Emit remarks for recipes with invalid costs in the available VPlans.
static bool getDecisionAndClampRange(const std::function< bool(ElementCount)> &Predicate, VFRange &Range)
Test a Predicate on a Range of VF's.
Definition VPlan.cpp:1541
void printPlans(raw_ostream &O)
Definition VPlan.cpp:1705
void plan(ElementCount UserVF, unsigned UserIC)
Build VPlans for the specified UserVF and UserIC if they are non-zero or all applicable candidate VFs...
void addMinimumIterationCheck(VPlan &Plan, ElementCount VF, unsigned UF, ElementCount MinProfitableTripCount) const
Create a check to Plan to see if the vector loop should be executed based on its trip count.
bool hasPlanWithVF(ElementCount VF) const
Look through the existing plans and return true if we have one with vectorization factor VF.
This holds vectorization requirements that must be verified late in the process.
Utility class for getting and setting loop vectorizer hints in the form of loop metadata.
bool allowVectorization(Function *F, Loop *L, bool VectorizeOnlyWhenForced) const
bool allowReordering() const
When enabling loop hints are provided we allow the vectorizer to change the order of operations that ...
void emitRemarkWithHints() const
Dumps all the hint information.
const char * vectorizeAnalysisPassName() const
If hints are provided that force vectorization, use the AlwaysPrint pass name to force the frontend t...
This class emits a version of the loop where run-time checks ensure that may-alias pointers can't ove...
Represents a single loop in the control flow graph.
Definition LoopInfo.h:40
bool hasLoopInvariantOperands(const Instruction *I) const
Return true if all the operands of the specified instruction are loop invariant.
Definition LoopInfo.cpp:67
DebugLoc getStartLoc() const
Return the debug location of the start of this loop.
Definition LoopInfo.cpp:632
bool isLoopInvariant(const Value *V) const
Return true if the specified value is loop invariant.
Definition LoopInfo.cpp:61
Metadata node.
Definition Metadata.h:1078
This class implements a map that also provides access to all stored values in a deterministic order.
Definition MapVector.h:36
std::pair< iterator, bool > insert(const std::pair< KeyT, ValueT > &KV)
Definition MapVector.h:124
Function * getFunction(StringRef Name) const
Look up the specified function in the module symbol table.
Definition Module.cpp:230
Diagnostic information for optimization analysis remarks related to pointer aliasing.
Diagnostic information for optimization analysis remarks related to floating-point non-commutativity.
Diagnostic information for optimization analysis remarks.
The optimization diagnostic interface.
LLVM_ABI void emit(DiagnosticInfoOptimizationBase &OptDiag)
Output the remark via the diagnostic handler and to the optimization record file.
Diagnostic information for missed-optimization remarks.
Diagnostic information for applied optimization remarks.
void addIncoming(Value *V, BasicBlock *BB)
Add an incoming value to the end of the PHI list.
op_range incoming_values()
void setIncomingValueForBlock(const BasicBlock *BB, Value *V)
Set every incoming value(s) for block BB to V.
Value * getIncomingValueForBlock(const BasicBlock *BB) const
unsigned getNumIncomingValues() const
Return the number of incoming edges.
An interface layer with SCEV used to manage how we see SCEV expressions for values in the context of ...
ScalarEvolution * getSE() const
Returns the ScalarEvolution analysis used.
LLVM_ABI const SCEVPredicate & getPredicate() const
LLVM_ABI unsigned getSmallConstantMaxTripCount()
Returns the upper bound of the loop trip count as a normal unsigned value, or 0 if the trip count is ...
LLVM_ABI const SCEV * getBackedgeTakenCount()
Get the (predicated) backedge count for the analyzed loop.
LLVM_ABI const SCEV * getSCEV(Value *V)
Returns the SCEV expression of V, in the context of the current SCEV predicate.
A set of analyses that are preserved following a run of a transformation pass.
Definition Analysis.h:112
static PreservedAnalyses all()
Construct a special preserved set that preserves all passes.
Definition Analysis.h:118
PreservedAnalyses & preserveSet()
Mark an analysis set as preserved.
Definition Analysis.h:151
PreservedAnalyses & preserve()
Mark an analysis as preserved.
Definition Analysis.h:132
An analysis pass based on the new PM to deliver ProfileSummaryInfo.
The RecurrenceDescriptor is used to identify recurrences variables in a loop.
static bool isFMulAddIntrinsic(Instruction *I)
Returns true if the instruction is a call to the llvm.fmuladd intrinsic.
FastMathFlags getFastMathFlags() const
Instruction * getLoopExitInstr() const
static LLVM_ABI unsigned getOpcode(RecurKind Kind)
Returns the opcode corresponding to the RecurrenceKind.
Type * getRecurrenceType() const
Returns the type of the recurrence.
bool hasUsesOutsideReductionChain() const
Returns true if the reduction PHI has any uses outside the reduction chain.
const SmallPtrSet< Instruction *, 8 > & getCastInsts() const
Returns a reference to the instructions used for type-promoting the recurrence.
unsigned getMinWidthCastToRecurrenceTypeInBits() const
Returns the minimum width used by the recurrence in bits.
LLVM_ABI SmallVector< Instruction *, 4 > getReductionOpChain(PHINode *Phi, Loop *L) const
Attempts to find a chain of operations from Phi to LoopExitInst that can be treated as a set of reduc...
static bool isAnyOfRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is of the form select(cmp(),x,y) where one of (x,...
bool isSigned() const
Returns true if all source operands of the recurrence are SExtInsts.
RecurKind getRecurrenceKind() const
bool isOrdered() const
Expose an ordered FP reduction to the instance users.
static LLVM_ABI bool isFloatingPointRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is a floating point kind.
static bool isFindIVRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is of the form select(cmp(),x,y) where one of (x,...
Value * getSentinelValue() const
Returns the sentinel value for FindFirstIV & FindLastIV recurrences to replace the start value.
static bool isMinMaxRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is any min/max kind.
std::optional< ArrayRef< PointerDiffInfo > > getDiffChecks() const
const SmallVectorImpl< RuntimePointerCheck > & getChecks() const
Returns the checks that generateChecks created.
This class uses information about analyze scalars to rewrite expressions in canonical form.
ScalarEvolution * getSE()
bool isInsertedInstruction(Instruction *I) const
Return true if the specified instruction was inserted by the code rewriter.
LLVM_ABI Value * expandCodeForPredicate(const SCEVPredicate *Pred, Instruction *Loc)
Generates a code sequence that evaluates this predicate.
void eraseDeadInstructions(Value *Root)
Remove inserted instructions that are dead, e.g.
virtual bool isAlwaysTrue() const =0
Returns true if the predicate is always true.
This class represents an analyzed expression in the program.
LLVM_ABI bool isZero() const
Return true if the expression is a constant zero.
LLVM_ABI Type * getType() const
Return the LLVM type of this SCEV expression.
Analysis pass that exposes the ScalarEvolution for a function.
The main scalar evolution driver.
LLVM_ABI const SCEV * getURemExpr(const SCEV *LHS, const SCEV *RHS)
Represents an unsigned remainder expression based on unsigned division.
LLVM_ABI const SCEV * getBackedgeTakenCount(const Loop *L, ExitCountKind Kind=Exact)
If the specified loop has a predictable backedge-taken count, return it, otherwise return a SCEVCould...
LLVM_ABI const SCEV * getConstant(ConstantInt *V)
LLVM_ABI const SCEV * getSCEV(Value *V)
Return a SCEV expression for the full generality of the specified expression.
LLVM_ABI const SCEV * getTripCountFromExitCount(const SCEV *ExitCount)
A version of getTripCountFromExitCount below which always picks an evaluation type which can not resu...
const SCEV * getOne(Type *Ty)
Return a SCEV for the constant 1 of a specific type.
LLVM_ABI void forgetLoop(const Loop *L)
This method should be called by the client when it has changed a loop in a way that may effect Scalar...
LLVM_ABI bool isLoopInvariant(const SCEV *S, const Loop *L)
Return true if the value of the given SCEV is unchanging in the specified loop.
LLVM_ABI const SCEV * getElementCount(Type *Ty, ElementCount EC, SCEV::NoWrapFlags Flags=SCEV::FlagAnyWrap)
LLVM_ABI void forgetValue(Value *V)
This method should be called by the client when it has changed a value in a way that may effect its v...
LLVM_ABI void forgetBlockAndLoopDispositions(Value *V=nullptr)
Called when the client has changed the disposition of values in a loop or block.
const SCEV * getMinusOne(Type *Ty)
Return a SCEV for the constant -1 of a specific type.
LLVM_ABI void forgetLcssaPhiWithNewPredecessor(Loop *L, PHINode *V)
Forget LCSSA phi node V of loop L to which a new predecessor was added, such that it may no longer be...
LLVM_ABI unsigned getSmallConstantTripCount(const Loop *L)
Returns the exact trip count of the loop if we can compute it, and the result is a small constant.
APInt getUnsignedRangeMax(const SCEV *S)
Determine the max of the unsigned range for a particular SCEV.
LLVM_ABI const SCEV * applyLoopGuards(const SCEV *Expr, const Loop *L)
Try to apply information from loop guards for L to Expr.
LLVM_ABI const SCEV * getMulExpr(SmallVectorImpl< const SCEV * > &Ops, SCEV::NoWrapFlags Flags=SCEV::FlagAnyWrap, unsigned Depth=0)
Get a canonical multiply expression, or something simpler if possible.
LLVM_ABI const SCEV * getAddExpr(SmallVectorImpl< const SCEV * > &Ops, SCEV::NoWrapFlags Flags=SCEV::FlagAnyWrap, unsigned Depth=0)
Get a canonical add expression, or something simpler if possible.
LLVM_ABI bool isKnownPredicate(CmpPredicate Pred, const SCEV *LHS, const SCEV *RHS)
Test if the given expression is known to satisfy the condition described by Pred, LHS,...
This class represents the LLVM 'select' instruction.
A vector that has set insertion semantics.
Definition SetVector.h:57
size_type size() const
Determine the number of elements in the SetVector.
Definition SetVector.h:103
void insert_range(Range &&R)
Definition SetVector.h:176
size_type count(const_arg_type key) const
Count the number of elements of a given key in the SetVector.
Definition SetVector.h:262
bool insert(const value_type &X)
Insert a new element into the SetVector.
Definition SetVector.h:151
A templated base class for SmallPtrSet which provides the typesafe interface that is common across al...
size_type count(ConstPtrType Ptr) const
count - Return 1 if the specified pointer is in the set, 0 otherwise.
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
bool contains(ConstPtrType Ptr) const
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
A SetVector that performs no allocations if smaller than a certain size.
Definition SetVector.h:339
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
reference emplace_back(ArgTypes &&... Args)
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
An instruction for storing to memory.
StringRef - Represent a constant reference to a string, i.e.
Definition StringRef.h:55
Analysis pass providing the TargetTransformInfo.
Analysis pass providing the TargetLibraryInfo.
Provides information about what library functions are available for the current target.
This pass provides access to the codegen interfaces that are needed for IR-level transformations.
LLVM_ABI std::optional< unsigned > getVScaleForTuning() const
LLVM_ABI InstructionCost getScalarizationOverhead(VectorType *Ty, const APInt &DemandedElts, bool Insert, bool Extract, TTI::TargetCostKind CostKind, bool ForPoisonSrc=true, ArrayRef< Value * > VL={}) const
Estimate the overhead of scalarizing an instruction.
LLVM_ABI bool supportsEfficientVectorElementLoadStore() const
If target has efficient vector element load/store instructions, it can return true here so that inser...
LLVM_ABI bool prefersVectorizedAddressing() const
Return true if target doesn't mind addresses in vectors.
LLVM_ABI TypeSize getRegisterBitWidth(RegisterKind K) const
LLVM_ABI bool preferFixedOverScalableIfEqualCost(bool IsEpilogue) const
LLVM_ABI InstructionCost getMemoryOpCost(unsigned Opcode, Type *Src, Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind=TTI::TCK_RecipThroughput, OperandValueInfo OpdInfo={OK_AnyValue, OP_None}, const Instruction *I=nullptr) const
LLVM_ABI InstructionCost getInterleavedMemoryOpCost(unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef< unsigned > Indices, Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind=TTI::TCK_RecipThroughput, bool UseMaskForCond=false, bool UseMaskForGaps=false) const
LLVM_ABI InstructionCost getShuffleCost(ShuffleKind Kind, VectorType *DstTy, VectorType *SrcTy, ArrayRef< int > Mask={}, TTI::TargetCostKind CostKind=TTI::TCK_RecipThroughput, int Index=0, VectorType *SubTp=nullptr, ArrayRef< const Value * > Args={}, const Instruction *CxtI=nullptr) const
static LLVM_ABI PartialReductionExtendKind getPartialReductionExtendKind(Instruction *I)
Get the kind of extension that an instruction represents.
static LLVM_ABI OperandValueInfo getOperandInfo(const Value *V)
Collect properties of V used in cost analysis, e.g. OP_PowerOf2.
LLVM_ABI bool isElementTypeLegalForScalableVector(Type *Ty) const
LLVM_ABI ElementCount getMinimumVF(unsigned ElemWidth, bool IsScalable) const
TargetCostKind
The kind of cost model.
@ TCK_RecipThroughput
Reciprocal throughput.
@ TCK_CodeSize
Instruction code size.
@ TCK_SizeAndLatency
The weighted sum of size and latency.
@ TCK_Latency
The latency of instruction.
LLVM_ABI InstructionCost getMemIntrinsicInstrCost(const MemIntrinsicCostAttributes &MICA, TTI::TargetCostKind CostKind) const
LLVM_ABI InstructionCost getAddressComputationCost(Type *PtrTy, ScalarEvolution *SE, const SCEV *Ptr, TTI::TargetCostKind CostKind) const
LLVM_ABI bool supportsScalableVectors() const
@ TCC_Free
Expected to fold away in lowering.
LLVM_ABI InstructionCost getInstructionCost(const User *U, ArrayRef< const Value * > Operands, TargetCostKind CostKind) const
Estimate the cost of a given IR user when lowered.
LLVM_ABI InstructionCost getIndexedVectorInstrCostFromEnd(unsigned Opcode, Type *Val, TTI::TargetCostKind CostKind, unsigned Index) const
LLVM_ABI InstructionCost getOperandsScalarizationOverhead(ArrayRef< Type * > Tys, TTI::TargetCostKind CostKind) const
Estimate the overhead of scalarizing operands with the given types.
@ SK_Splice
Concatenates elements from the first input vector with elements of the second input vector.
@ SK_Broadcast
Broadcast element 0 to all other elements.
@ SK_Reverse
Reverse the order of the vector.
LLVM_ABI InstructionCost getCFInstrCost(unsigned Opcode, TTI::TargetCostKind CostKind=TTI::TCK_SizeAndLatency, const Instruction *I=nullptr) const
CastContextHint
Represents a hint about the context in which a cast is used.
@ Reversed
The cast is used with a reversed load/store.
@ Masked
The cast is used with a masked load/store.
@ None
The cast is not used with a load/store of any kind.
@ Normal
The cast is used with a normal load/store.
@ Interleave
The cast is used with an interleaved load/store.
@ GatherScatter
The cast is used with a gather/scatter.
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
Definition Twine.h:82
This class implements a switch-like dispatch statement for a value of 'T' using dyn_cast functionalit...
Definition TypeSwitch.h:88
TypeSwitch< T, ResultT > & Case(CallableT &&caseFn)
Add a case on the given type.
Definition TypeSwitch.h:97
The instances of the Type class are immutable: once they are created, they are never changed.
Definition Type.h:45
LLVM_ABI unsigned getIntegerBitWidth() const
bool isVectorTy() const
True if this is an instance of VectorType.
Definition Type.h:273
static LLVM_ABI Type * getVoidTy(LLVMContext &C)
Definition Type.cpp:280
Type * getScalarType() const
If this is a vector type, return the element type, otherwise return 'this'.
Definition Type.h:352
LLVM_ABI TypeSize getPrimitiveSizeInBits() const LLVM_READONLY
Return the basic size of this type if it is a primitive type.
Definition Type.cpp:197
LLVMContext & getContext() const
Return the LLVMContext in which this type was uniqued.
Definition Type.h:128
LLVM_ABI unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type.
Definition Type.cpp:230
static LLVM_ABI IntegerType * getInt1Ty(LLVMContext &C)
Definition Type.cpp:293
bool isFloatingPointTy() const
Return true if this is one of the floating-point types.
Definition Type.h:184
bool isIntegerTy() const
True if this is an instance of IntegerType.
Definition Type.h:240
bool isVoidTy() const
Return true if this is 'void'.
Definition Type.h:139
A Use represents the edge between a Value definition and its users.
Definition Use.h:35
op_range operands()
Definition User.h:292
LLVM_ABI bool replaceUsesOfWith(Value *From, Value *To)
Replace uses of one Value with another.
Definition User.cpp:24
Value * getOperand(unsigned i) const
Definition User.h:232
static SmallVector< VFInfo, 8 > getMappings(const CallInst &CI)
Retrieve all the VFInfo instances associated to the CallInst CI.
Definition VectorUtils.h:74
VPBasicBlock serves as the leaf of the Hierarchical Control-Flow Graph.
Definition VPlan.h:3978
void appendRecipe(VPRecipeBase *Recipe)
Augment the existing recipes of a VPBasicBlock with an additional Recipe as the last recipe.
Definition VPlan.h:4053
RecipeListTy::iterator iterator
Instruction iterators...
Definition VPlan.h:4005
iterator end()
Definition VPlan.h:4015
iterator begin()
Recipe iterator methods.
Definition VPlan.h:4013
iterator_range< iterator > phis()
Returns an iterator range over the PHI-like recipes in the block.
Definition VPlan.h:4066
InstructionCost cost(ElementCount VF, VPCostContext &Ctx) override
Return the cost of this VPBasicBlock.
Definition VPlan.cpp:763
iterator getFirstNonPhi()
Return the position of the first non-phi node recipe in the block.
Definition VPlan.cpp:216
VPRecipeBase * getTerminator()
If the block has multiple successors, return the branch recipe terminating the block.
Definition VPlan.cpp:623
void insert(VPRecipeBase *Recipe, iterator InsertPt)
Definition VPlan.h:4044
bool empty() const
Definition VPlan.h:4024
VPBlockBase is the building block of the Hierarchical Control-Flow Graph.
Definition VPlan.h:81
const VPBasicBlock * getExitingBasicBlock() const
Definition VPlan.cpp:186
void setName(const Twine &newName)
Definition VPlan.h:166
size_t getNumSuccessors() const
Definition VPlan.h:219
void swapSuccessors()
Swap successors of the block. The block must have exactly 2 successors.
Definition VPlan.h:322
size_t getNumPredecessors() const
Definition VPlan.h:220
VPlan * getPlan()
Definition VPlan.cpp:161
const VPBasicBlock * getEntryBasicBlock() const
Definition VPlan.cpp:166
VPBlockBase * getSingleSuccessor() const
Definition VPlan.h:209
const VPBlocksTy & getSuccessors() const
Definition VPlan.h:198
static auto blocksOnly(const T &Range)
Return an iterator range over Range which only includes BlockTy blocks.
Definition VPlanUtils.h:211
static void insertOnEdge(VPBlockBase *From, VPBlockBase *To, VPBlockBase *BlockPtr)
Inserts BlockPtr on the edge between From and To.
Definition VPlanUtils.h:232
static void connectBlocks(VPBlockBase *From, VPBlockBase *To, unsigned PredIdx=-1u, unsigned SuccIdx=-1u)
Connect VPBlockBases From and To bi-directionally.
Definition VPlanUtils.h:170
static void reassociateBlocks(VPBlockBase *Old, VPBlockBase *New)
Reassociate all the blocks connected to Old so that they now point to New.
Definition VPlanUtils.h:197
VPlan-based builder utility analogous to IRBuilder.
VPPhi * createScalarPhi(ArrayRef< VPValue * > IncomingValues, DebugLoc DL, const Twine &Name="")
VPInstruction * createNaryOp(unsigned Opcode, ArrayRef< VPValue * > Operands, Instruction *Inst=nullptr, const VPIRFlags &Flags={}, const VPIRMetadata &MD={}, DebugLoc DL=DebugLoc::getUnknown(), const Twine &Name="")
Create an N-ary operation with Opcode, Operands and set Inst as its underlying Instruction.
Canonical scalar induction phi of the vector loop.
Definition VPlan.h:3561
unsigned getNumDefinedValues() const
Returns the number of values defined by the VPDef.
Definition VPlanValue.h:426
VPValue * getVPSingleValue()
Returns the only VPValue defined by the VPDef.
Definition VPlanValue.h:399
void execute(VPTransformState &State) override
Generate the transformed value of the induction at offset StartValue (1.
VPValue * getStepValue() const
Definition VPlan.h:3778
VPValue * getStartValue() const
Definition VPlan.h:3777
A pure virtual base class for all recipes modeling header phis, including phis for first order recurr...
Definition VPlan.h:2052
virtual VPValue * getBackedgeValue()
Returns the incoming value from the loop backedge.
Definition VPlan.h:2095
VPValue * getStartValue()
Returns the start value of the phi, if one is set.
Definition VPlan.h:2084
A recipe representing a sequence of load -> update -> store as part of a histogram operation.
Definition VPlan.h:1757
A special type of VPBasicBlock that wraps an existing IR basic block.
Definition VPlan.h:4131
Class to record and manage LLVM IR flags.
Definition VPlan.h:609
Helper to manage IR metadata for recipes.
Definition VPlan.h:982
This is a concrete Recipe that models a single VPlan-level instruction.
Definition VPlan.h:1036
@ ComputeAnyOfResult
Compute the final result of a AnyOf reduction with select(cmp(),x,y), where one of (x,...
Definition VPlan.h:1074
@ ResumeForEpilogue
Explicit user for the resume phi of the canonical induction in the main VPlan, used by the epilogue v...
Definition VPlan.h:1130
@ ReductionStartVector
Start vector for reductions with 3 operands: the original start value, the identity value for the red...
Definition VPlan.h:1121
unsigned getOpcode() const
Definition VPlan.h:1182
VPInterleaveRecipe is a recipe for transforming an interleave group of load or stores into one wide l...
Definition VPlan.h:2700
In what follows, the term "input IR" refers to code that is fed into the vectorizer whereas the term ...
detail::zippy< llvm::detail::zip_first, VPUser::const_operand_range, const_incoming_blocks_range > incoming_values_and_blocks() const
Returns an iterator range over pairs of incoming values and corresponding incoming blocks.
Definition VPlan.h:1362
VPRecipeBase is a base class modeling a sequence of one or more output IR instructions.
Definition VPlan.h:387
VPBasicBlock * getParent()
Definition VPlan.h:408
DebugLoc getDebugLoc() const
Returns the debug location of the recipe.
Definition VPlan.h:479
void moveBefore(VPBasicBlock &BB, iplist< VPRecipeBase >::iterator I)
Unlink this recipe and insert into BB before I.
void insertBefore(VPRecipeBase *InsertPos)
Insert an unlinked recipe into a basic block immediately before the specified recipe.
iplist< VPRecipeBase >::iterator eraseFromParent()
This method unlinks 'this' from the containing basic block and deletes it.
Helper class to create VPRecipies from IR instructions.
VPValue * getBlockInMask(VPBasicBlock *VPBB) const
Returns the entry mask for block VPBB or null if the mask is all-true.
VPRecipeBase * tryToCreateWidenNonPhiRecipe(VPSingleDefRecipe *R, VFRange &Range)
Create and return a widened recipe for a non-phi recipe R if one can be created within the given VF R...
VPValue * getVPValueOrAddLiveIn(Value *V)
VPRecipeBase * tryToCreatePartialReduction(VPInstruction *Reduction, unsigned ScaleFactor)
Create and return a partial reduction recipe for a reduction instruction along with binary operation ...
std::optional< unsigned > getScalingForReduction(const Instruction *ExitInst)
void collectScaledReductions(VFRange &Range)
Find all possible partial reductions in the loop and track all of those that are valid so recipes can...
VPReplicateRecipe * handleReplication(VPInstruction *VPI, VFRange &Range)
Build a VPReplicationRecipe for VPI.
bool isInLoop() const
Returns true if the phi is part of an in-loop reduction.
Definition VPlan.h:2496
RecurKind getRecurrenceKind() const
Returns the recurrence kind of the reduction.
Definition VPlan.h:2490
A recipe to represent inloop, ordered or partial reduction operations.
Definition VPlan.h:2793
VPRegionBlock represents a collection of VPBasicBlocks and VPRegionBlocks which form a Single-Entry-S...
Definition VPlan.h:4166
const VPBlockBase * getEntry() const
Definition VPlan.h:4202
VPCanonicalIVPHIRecipe * getCanonicalIV()
Returns the canonical induction recipe of the region.
Definition VPlan.h:4264
VPReplicateRecipe replicates a given instruction producing multiple scalar copies of the original sca...
Definition VPlan.h:2949
VPSingleDef is a base class for recipes for modeling a sequence of one or more output IR that define ...
Definition VPlan.h:531
Instruction * getUnderlyingInstr()
Returns the underlying instruction.
Definition VPlan.h:595
An analysis for type-inference for VPValues.
Type * inferScalarType(const VPValue *V)
Infer the type of V. Returns the scalar type of V.
This class augments VPValue with operands which provide the inverse def-use edges from VPValue's user...
Definition VPlanValue.h:202
operand_range operands()
Definition VPlanValue.h:270
void setOperand(unsigned I, VPValue *New)
Definition VPlanValue.h:246
unsigned getNumOperands() const
Definition VPlanValue.h:240
operand_iterator op_begin()
Definition VPlanValue.h:266
VPValue * getOperand(unsigned N) const
Definition VPlanValue.h:241
This is the base class of the VPlan Def/Use graph, used for modeling the data flow into,...
Definition VPlanValue.h:46
VPRecipeBase * getDefiningRecipe()
Returns the recipe defining this VPValue or nullptr if it is not defined by a recipe,...
Definition VPlan.cpp:131
Value * getLiveInIRValue() const
Returns the underlying IR value, if this VPValue is defined outside the scope of VPlan.
Definition VPlanValue.h:181
Value * getUnderlyingValue() const
Return the underlying Value attached to this VPValue.
Definition VPlanValue.h:83
void replaceAllUsesWith(VPValue *New)
Definition VPlan.cpp:1377
void replaceUsesWithIf(VPValue *New, llvm::function_ref< bool(VPUser &U, unsigned Idx)> ShouldReplace)
Go through the uses list for this VPValue and make each use point to New if the callback ShouldReplac...
Definition VPlan.cpp:1381
user_range users()
Definition VPlanValue.h:132
A recipe to compute a pointer to the last element of each part of a widened memory access for widened...
Definition VPlan.h:1911
VPWidenCastRecipe is a recipe to create vector cast instructions.
Definition VPlan.h:1552
A recipe for handling GEP instructions.
Definition VPlan.h:1848
A recipe for handling phi nodes of integer and floating-point inductions, producing their vector valu...
Definition VPlan.h:2195
A common base class for widening memory operations.
Definition VPlan.h:3260
A recipe for widened phis.
Definition VPlan.h:2329
VPWidenRecipe is a recipe for producing a widened instruction using the opcode and operands of the re...
Definition VPlan.h:1512
VPlan models a candidate for vectorization, encoding various decisions take to produce efficient outp...
Definition VPlan.h:4296
bool hasVF(ElementCount VF) const
Definition VPlan.h:4497
VPBasicBlock * getEntry()
Definition VPlan.h:4385
VPValue & getVectorTripCount()
The vector trip count.
Definition VPlan.h:4476
VPValue & getVF()
Returns the VF of the vector loop region.
Definition VPlan.h:4479
VPValue * getTripCount() const
The trip count of the original loop.
Definition VPlan.h:4447
iterator_range< SmallSetVector< ElementCount, 2 >::iterator > vectorFactors() const
Returns an iterator range over all VFs of the plan.
Definition VPlan.h:4504
bool hasUF(unsigned UF) const
Definition VPlan.h:4515
ArrayRef< VPIRBasicBlock * > getExitBlocks() const
Return an ArrayRef containing VPIRBasicBlocks wrapping the exit blocks of the original scalar loop.
Definition VPlan.h:4437
LLVM_ABI_FOR_TEST VPRegionBlock * getVectorLoopRegion()
Returns the VPRegionBlock of the vector loop.
Definition VPlan.cpp:1011
bool hasEarlyExit() const
Returns true if the VPlan is based on a loop with an early exit.
Definition VPlan.h:4645
InstructionCost cost(ElementCount VF, VPCostContext &Ctx)
Return the cost of this plan.
Definition VPlan.cpp:993
void resetTripCount(VPValue *NewTripCount)
Resets the trip count for the VPlan.
Definition VPlan.h:4461
VPBasicBlock * getMiddleBlock()
Returns the 'middle' block of the plan, that is the block that selects whether to execute the scalar ...
Definition VPlan.h:4410
VPValue * getOrAddLiveIn(Value *V)
Gets the live-in VPValue for V or adds a new live-in (if none exists yet) for V.
Definition VPlan.h:4539
VPBasicBlock * getScalarPreheader() const
Return the VPBasicBlock for the preheader of the scalar loop.
Definition VPlan.h:4428
void execute(VPTransformState *State)
Generate the IR code for this VPlan.
Definition VPlan.cpp:905
VPIRBasicBlock * getScalarHeader() const
Return the VPIRBasicBlock wrapping the header of the scalar loop.
Definition VPlan.h:4433
VPBasicBlock * getVectorPreheader()
Returns the preheader of the vector loop region, if one exists, or null otherwise.
Definition VPlan.h:4390
LLVM_ABI_FOR_TEST VPlan * duplicate()
Clone the current VPlan, update all VPValues of the new VPlan and cloned recipes to refer to the clon...
Definition VPlan.cpp:1153
LLVM Value Representation.
Definition Value.h:75
Type * getType() const
All values are typed, get the type of this value.
Definition Value.h:256
LLVM_ABI bool hasOneUser() const
Return true if there is exactly one user of this value.
Definition Value.cpp:166
LLVM_ABI void setName(const Twine &Name)
Change the name of the value.
Definition Value.cpp:390
bool hasOneUse() const
Return true if there is exactly one use of this value.
Definition Value.h:439
LLVM_ABI void replaceAllUsesWith(Value *V)
Change all uses of this to point to a new Value.
Definition Value.cpp:546
iterator_range< user_iterator > users()
Definition Value.h:426
LLVM_ABI const Value * stripPointerCasts() const
Strip off pointer casts, all-zero GEPs and address space casts.
Definition Value.cpp:701
LLVM_ABI StringRef getName() const
Return a constant reference to the value's name.
Definition Value.cpp:322
static LLVM_ABI VectorType * get(Type *ElementType, ElementCount EC)
This static method is the primary way to construct an VectorType.
std::pair< iterator, bool > insert(const ValueT &V)
Definition DenseSet.h:202
bool contains(const_arg_type_t< ValueT > V) const
Check if the set contains the given element.
Definition DenseSet.h:175
constexpr bool hasKnownScalarFactor(const FixedOrScalableQuantity &RHS) const
Returns true if there exists a value X where RHS.multiplyCoefficientBy(X) will result in a value whos...
Definition TypeSize.h:269
constexpr ScalarTy getFixedValue() const
Definition TypeSize.h:200
static constexpr bool isKnownLE(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
Definition TypeSize.h:230
constexpr bool isNonZero() const
Definition TypeSize.h:155
constexpr ScalarTy getKnownScalarFactor(const FixedOrScalableQuantity &RHS) const
Returns a value X where RHS.multiplyCoefficientBy(X) will result in a value whose quantity matches ou...
Definition TypeSize.h:277
static constexpr bool isKnownLT(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
Definition TypeSize.h:216
constexpr bool isScalable() const
Returns whether the quantity is scaled by a runtime quantity (vscale).
Definition TypeSize.h:168
constexpr LeafTy multiplyCoefficientBy(ScalarTy RHS) const
Definition TypeSize.h:256
constexpr bool isFixed() const
Returns true if the quantity is not scaled by vscale.
Definition TypeSize.h:171
constexpr ScalarTy getKnownMinValue() const
Returns the minimum value this quantity can represent.
Definition TypeSize.h:165
constexpr bool isZero() const
Definition TypeSize.h:153
static constexpr bool isKnownGT(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
Definition TypeSize.h:223
constexpr LeafTy divideCoefficientBy(ScalarTy RHS) const
We do not provide the '/' operator here because division for polynomial types does not work in the sa...
Definition TypeSize.h:252
static constexpr bool isKnownGE(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
Definition TypeSize.h:237
An efficient, type-erasing, non-owning reference to a callable.
const ParentTy * getParent() const
Definition ilist_node.h:34
self_iterator getIterator()
Definition ilist_node.h:123
IteratorT end() const
This class implements an extremely fast bulk output stream that can only output to a stream.
Definition raw_ostream.h:53
A raw_ostream that writes to an std::string.
Changed
This provides a very simple, boring adaptor for a begin and end iterator into a range type.
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
constexpr char Align[]
Key for Kernel::Arg::Metadata::mAlign.
constexpr std::underlying_type_t< E > Mask()
Get a bitmask with 1s in all places up to the high-order bit of E's largest value.
@ Entry
Definition COFF.h:862
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
Definition CallingConv.h:24
@ Tail
Attemps to make calls as fast as possible while guaranteeing that tail call optimization can always b...
Definition CallingConv.h:76
@ C
The default llvm calling convention, compatible with C.
Definition CallingConv.h:34
@ BasicBlock
Various leaf nodes.
Definition ISDOpcodes.h:81
std::variant< std::monostate, Loc::Single, Loc::Multi, Loc::MMI, Loc::EntryValue > Variant
Alias for the std::variant specialization base class of DbgVariable.
Definition DwarfDebug.h:189
SpecificConstantMatch m_ZeroInt()
Convenience matchers for specific integer values.
BinaryOp_match< SpecificConstantMatch, SrcTy, TargetOpcode::G_SUB > m_Neg(const SrcTy &&Src)
Matches a register negated by a G_SUB.
OneUse_match< SubPat > m_OneUse(const SubPat &SP)
BinaryOp_match< LHS, RHS, Instruction::Add > m_Add(const LHS &L, const RHS &R)
class_match< BinaryOperator > m_BinOp()
Match an arbitrary binary operation and ignore it.
OneOps_match< OpTy, Instruction::Freeze > m_Freeze(const OpTy &Op)
Matches FreezeInst.
ap_match< APInt > m_APInt(const APInt *&Res)
Match a ConstantInt or splatted ConstantVector, binding the specified pointer to the contained APInt.
specific_intval< false > m_SpecificInt(const APInt &V)
Match a specific integer value or vector with all elements equal to the value.
bool match(Val *V, const Pattern &P)
bind_ty< Instruction > m_Instruction(Instruction *&I)
Match an instruction, capturing it if we match.
specificval_ty m_Specific(const Value *V)
Match if we have a specific specified value.
cst_pred_ty< is_one > m_One()
Match an integer 1 or a vector with all elements equal to 1.
ThreeOps_match< Cond, LHS, RHS, Instruction::Select > m_Select(const Cond &C, const LHS &L, const RHS &R)
Matches SelectInst.
BinaryOp_match< LHS, RHS, Instruction::Mul > m_Mul(const LHS &L, const RHS &R)
auto m_LogicalOr()
Matches L || R where L and R are arbitrary values.
SpecificCmpClass_match< LHS, RHS, ICmpInst > m_SpecificICmp(CmpPredicate MatchPred, const LHS &L, const RHS &R)
class_match< CmpInst > m_Cmp()
Matches any compare instruction and ignore it.
class_match< Value > m_Value()
Match an arbitrary value and ignore it.
match_combine_or< CastInst_match< OpTy, ZExtInst >, CastInst_match< OpTy, SExtInst > > m_ZExtOrSExt(const OpTy &Op)
auto m_LogicalAnd()
Matches L && R where L and R are arbitrary values.
MatchFunctor< Val, Pattern > match_fn(const Pattern &P)
A match functor that can be used as a UnaryPredicate in functional algorithms like all_of.
BinaryOp_match< LHS, RHS, Instruction::Sub > m_Sub(const LHS &L, const RHS &R)
match_combine_or< LTy, RTy > m_CombineOr(const LTy &L, const RTy &R)
Combine two pattern matchers matching L || R.
class_match< const SCEVVScale > m_SCEVVScale()
bind_cst_ty m_scev_APInt(const APInt *&C)
Match an SCEV constant and bind it to an APInt.
specificloop_ty m_SpecificLoop(const Loop *L)
cst_pred_ty< is_specific_signed_cst > m_scev_SpecificSInt(int64_t V)
Match an SCEV constant with a plain signed integer (sign-extended value will be matched)
SCEVAffineAddRec_match< Op0_t, Op1_t, class_match< const Loop > > m_scev_AffineAddRec(const Op0_t &Op0, const Op1_t &Op1)
bind_ty< const SCEVMulExpr > m_scev_Mul(const SCEVMulExpr *&V)
bool match(const SCEV *S, const Pattern &P)
SCEVBinaryExpr_match< SCEVMulExpr, Op0_t, Op1_t, SCEV::FlagAnyWrap, true > m_scev_c_Mul(const Op0_t &Op0, const Op1_t &Op1)
class_match< const SCEV > m_SCEV()
match_combine_or< AllRecipe_match< Instruction::ZExt, Op0_t >, AllRecipe_match< Instruction::SExt, Op0_t > > m_ZExtOrSExt(const Op0_t &Op0)
VPInstruction_match< VPInstruction::ExtractLastLane, Op0_t > m_ExtractLastLane(const Op0_t &Op0)
VPInstruction_match< VPInstruction::ExtractLastPart, Op0_t > m_ExtractLastPart(const Op0_t &Op0)
class_match< VPValue > m_VPValue()
Match an arbitrary VPValue and ignore it.
VPInstruction_match< VPInstruction::ExtractLane, Op0_t, Op1_t > m_ExtractLane(const Op0_t &Op0, const Op1_t &Op1)
ValuesClass values(OptsTy... Options)
Helper to build a ValuesClass by forwarding a variable number of arguments as an initializer list to ...
initializer< Ty > init(const Ty &Val)
Add a small namespace to avoid name clashes with the classes used in the streaming interface.
DiagnosticInfoOptimizationBase::Argument NV
NodeAddr< InstrNode * > Instr
Definition RDFGraph.h:389
NodeAddr< PhiNode * > Phi
Definition RDFGraph.h:390
friend class Instruction
Iterator for Instructions in a `BasicBlock.
Definition BasicBlock.h:73
bool isSingleScalar(const VPValue *VPV)
Returns true if VPV is a single scalar, either because it produces the same value for all lanes or on...
VPValue * getOrCreateVPValueForSCEVExpr(VPlan &Plan, const SCEV *Expr)
Get or create a VPValue that corresponds to the expansion of Expr.
VPBasicBlock * getFirstLoopHeader(VPlan &Plan, VPDominatorTree &VPDT)
Returns the header block of the first, top-level loop, or null if none exist.
bool onlyFirstLaneUsed(const VPValue *Def)
Returns true if only the first lane of Def is used.
VPIRFlags getFlagsFromIndDesc(const InductionDescriptor &ID)
Extracts and returns NoWrap and FastMath flags from the induction binop in ID.
Definition VPlanUtils.h:85
unsigned getVFScaleFactor(VPRecipeBase *R)
Get the VF scaling factor applied to the recipe's output, if the recipe has one.
const SCEV * getSCEVExprForVPValue(const VPValue *V, ScalarEvolution &SE, const Loop *L=nullptr)
Return the SCEV expression for V.
This is an optimization pass for GlobalISel generic memory operations.
LLVM_ABI bool simplifyLoop(Loop *L, DominatorTree *DT, LoopInfo *LI, ScalarEvolution *SE, AssumptionCache *AC, MemorySSAUpdater *MSSAU, bool PreserveLCSSA)
Simplify each loop in a loop nest recursively.
LLVM_ABI void ReplaceInstWithInst(BasicBlock *BB, BasicBlock::iterator &BI, Instruction *I)
Replace the instruction specified by BI with the instruction specified by I.
auto drop_begin(T &&RangeOrContainer, size_t N=1)
Return a range covering RangeOrContainer with the first N elements excluded.
Definition STLExtras.h:316
@ Offset
Definition DWP.cpp:532
detail::zippy< detail::zip_shortest, T, U, Args... > zip(T &&t, U &&u, Args &&...args)
zip iterator for two or more iteratable types.
Definition STLExtras.h:829
FunctionAddr VTableAddr Value
Definition InstrProf.h:137
LLVM_ABI Value * addRuntimeChecks(Instruction *Loc, Loop *TheLoop, const SmallVectorImpl< RuntimePointerCheck > &PointerChecks, SCEVExpander &Expander, bool HoistRuntimeChecks=false)
Add code that checks at runtime if the accessed arrays in PointerChecks overlap.
auto cast_if_present(const Y &Val)
cast_if_present<X> - Functionally identical to cast, except that a null value is accepted.
Definition Casting.h:683
LLVM_ABI bool RemoveRedundantDbgInstrs(BasicBlock *BB)
Try to remove redundant dbg.value instructions from given basic block.
LLVM_ABI_FOR_TEST cl::opt< bool > VerifyEachVPlan
LLVM_ABI std::optional< unsigned > getLoopEstimatedTripCount(Loop *L, unsigned *EstimatedLoopInvocationWeight=nullptr)
Return either:
static void reportVectorization(OptimizationRemarkEmitter *ORE, Loop *TheLoop, VectorizationFactor VF, unsigned IC)
Report successful vectorization of the loop.
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1737
unsigned getLoadStoreAddressSpace(const Value *I)
A helper function that returns the address space of the pointer operand of load or store instruction.
LLVM_ABI Intrinsic::ID getMinMaxReductionIntrinsicOp(Intrinsic::ID RdxID)
Returns the min/max intrinsic used when expanding a min/max reduction.
auto size(R &&Range, std::enable_if_t< std::is_base_of< std::random_access_iterator_tag, typename std::iterator_traits< decltype(Range.begin())>::iterator_category >::value, void > *=nullptr)
Get the size of a range.
Definition STLExtras.h:1667
LLVM_ABI_FOR_TEST bool verifyVPlanIsValid(const VPlan &Plan, bool VerifyLate=false)
Verify invariants for general VPlans.
LLVM_ABI Intrinsic::ID getVectorIntrinsicIDForCall(const CallInst *CI, const TargetLibraryInfo *TLI)
Returns intrinsic ID for call.
InstructionCost Cost
ReductionStyle getReductionStyle(bool InLoop, bool Ordered, unsigned ScaleFactor)
Definition VPlan.h:2419
auto enumerate(FirstRange &&First, RestRanges &&...Rest)
Given two or more input ranges, returns a new range whose values are tuples (A, B,...
Definition STLExtras.h:2494
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:643
LLVM_ABI bool verifyFunction(const Function &F, raw_ostream *OS=nullptr)
Check a function for errors, useful for use when debugging a pass.
const Value * getLoadStorePointerOperand(const Value *V)
A helper function that returns the pointer operand of a load or store instruction.
OuterAnalysisManagerProxy< ModuleAnalysisManager, Function > ModuleAnalysisManagerFunctionProxy
Provide the ModuleAnalysisManager to Function proxy.
Value * getRuntimeVF(IRBuilderBase &B, Type *Ty, ElementCount VF)
Return the runtime value for VF.
LLVM_ABI bool formLCSSARecursively(Loop &L, const DominatorTree &DT, const LoopInfo *LI, ScalarEvolution *SE)
Put a loop nest into LCSSA form.
Definition LCSSA.cpp:449
iterator_range< T > make_range(T x, T y)
Convenience function for iterating over sub-ranges.
void append_range(Container &C, Range &&R)
Wrapper function to append range R to container C.
Definition STLExtras.h:2148
LLVM_ABI bool shouldOptimizeForSize(const MachineFunction *MF, ProfileSummaryInfo *PSI, const MachineBlockFrequencyInfo *BFI, PGSOQueryType QueryType=PGSOQueryType::Other)
Returns true if machine function MF is suggested to be size-optimized based on the profile.
iterator_range< early_inc_iterator_impl< detail::IterOfRange< RangeT > > > make_early_inc_range(RangeT &&Range)
Make a range that does early increment to allow mutation of the underlying range without disrupting i...
Definition STLExtras.h:632
constexpr bool isPowerOf2_64(uint64_t Value)
Return true if the argument is a power of two > 0 (64 bit edition.)
Definition MathExtras.h:284
Align getLoadStoreAlignment(const Value *I)
A helper function that returns the alignment of load or store instruction.
iterator_range< df_iterator< VPBlockShallowTraversalWrapper< VPBlockBase * > > > vp_depth_first_shallow(VPBlockBase *G)
Returns an iterator range to traverse the graph starting at G in depth-first order.
Definition VPlanCFG.h:216
LLVM_ABI bool VerifySCEV
LLVM_ABI bool isSafeToSpeculativelyExecute(const Instruction *I, const Instruction *CtxI=nullptr, AssumptionCache *AC=nullptr, const DominatorTree *DT=nullptr, const TargetLibraryInfo *TLI=nullptr, bool UseVariableInfo=true, bool IgnoreUBImplyingAttrs=true)
Return true if the instruction does not have any effects besides calculating the result and does not ...
bool isa_and_nonnull(const Y &Val)
Definition Casting.h:676
iterator_range< df_iterator< VPBlockDeepTraversalWrapper< VPBlockBase * > > > vp_depth_first_deep(VPBlockBase *G)
Returns an iterator range to traverse the graph starting at G in depth-first order while traversing t...
Definition VPlanCFG.h:243
SmallVector< VPRegisterUsage, 8 > calculateRegisterUsageForPlan(VPlan &Plan, ArrayRef< ElementCount > VFs, const TargetTransformInfo &TTI, const SmallPtrSetImpl< const Value * > &ValuesToIgnore)
Estimate the register usage for Plan and vectorization factors in VFs by calculating the highest numb...
unsigned Log2_64(uint64_t Value)
Return the floor log base 2 of the specified value, -1 if the value is zero.
Definition MathExtras.h:337
LLVM_ABI void setBranchWeights(Instruction &I, ArrayRef< uint32_t > Weights, bool IsExpected, bool ElideAllZero=false)
Create a new branch_weights metadata node and add or overwrite a prof metadata reference to instructi...
auto dyn_cast_or_null(const Y &Val)
Definition Casting.h:753
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1744
void collectEphemeralRecipesForVPlan(VPlan &Plan, DenseSet< VPRecipeBase * > &EphRecipes)
auto reverse(ContainerTy &&C)
Definition STLExtras.h:406
bool containsIrreducibleCFG(RPOTraversalT &RPOTraversal, const LoopInfoT &LI)
Return true if the control flow in RPOTraversal is irreducible.
Definition CFG.h:149
constexpr bool isPowerOf2_32(uint32_t Value)
Return true if the argument is a power of two > 0.
Definition MathExtras.h:279
void sort(IteratorTy Start, IteratorTy End)
Definition STLExtras.h:1634
LLVM_ABI_FOR_TEST cl::opt< bool > EnableWideActiveLaneMask
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition Debug.cpp:207
bool none_of(R &&Range, UnaryPredicate P)
Provide wrappers to std::none_of which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1751
LLVM_ABI cl::opt< bool > EnableLoopVectorization
LLVM_ABI bool wouldInstructionBeTriviallyDead(const Instruction *I, const TargetLibraryInfo *TLI=nullptr)
Return true if the result produced by the instruction would have no side effects if it was not used.
Definition Local.cpp:421
FunctionAddr VTableAddr Count
Definition InstrProf.h:139
SmallVector< ValueTypeFromRangeType< R >, Size > to_vector(R &&Range)
Given a range of type R, iterate the entire range and return a SmallVector with elements of the vecto...
Type * toVectorizedTy(Type *Ty, ElementCount EC)
A helper for converting to vectorized types.
LLVM_ABI void llvm_unreachable_internal(const char *msg=nullptr, const char *file=nullptr, unsigned line=0)
This function calls abort(), and prints the optional message to stderr.
bool canConstantBeExtended(const APInt *C, Type *NarrowType, TTI::PartialReductionExtendKind ExtKind)
Check if a constant CI can be safely treated as having been extended from a narrower type with the gi...
Definition VPlan.cpp:1718
T * find_singleton(R &&Range, Predicate P, bool AllowRepeats=false)
Return the single value in Range that satisfies P(<member of Range> *, AllowRepeats)->T * returning n...
Definition STLExtras.h:1799
class LLVM_GSL_OWNER SmallVector
Forward declaration of SmallVector so that calculateSmallVectorDefaultInlinedElements can reference s...
cl::opt< unsigned > ForceTargetInstructionCost
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
Definition Casting.h:547
format_object< Ts... > format(const char *Fmt, const Ts &... Vals)
These are helper functions used to produce formatted output.
Definition Format.h:129
constexpr T divideCeil(U Numerator, V Denominator)
Returns the integer ceil(Numerator / Denominator).
Definition MathExtras.h:394
bool canVectorizeTy(Type *Ty)
Returns true if Ty is a valid vector element type, void, or an unpacked literal struct where all elem...
TargetTransformInfo TTI
static void reportVectorizationInfo(const StringRef Msg, const StringRef ORETag, OptimizationRemarkEmitter *ORE, Loop *TheLoop, Instruction *I=nullptr, DebugLoc DL={})
Reports an informative message: print Msg for debugging purposes as well as an optimization remark.
LLVM_ABI bool isAssignmentTrackingEnabled(const Module &M)
Return true if assignment tracking is enabled for module M.
RecurKind
These are the kinds of recurrences that we support.
@ Or
Bitwise or logical OR of integers.
@ FMulAdd
Sum of float products with llvm.fmuladd(a * b + sum).
@ Sub
Subtraction of integers.
@ Add
Sum of integers.
@ AddChainWithSubs
A chain of adds and subs.
LLVM_ABI Value * getRecurrenceIdentity(RecurKind K, Type *Tp, FastMathFlags FMF)
Given information about an recurrence kind, return the identity for the @llvm.vector....
uint64_t alignTo(uint64_t Size, Align A)
Returns a multiple of A needed to store Size bytes.
Definition Alignment.h:144
LLVM_ABI void reportVectorizationFailure(const StringRef DebugMsg, const StringRef OREMsg, const StringRef ORETag, OptimizationRemarkEmitter *ORE, Loop *TheLoop, Instruction *I=nullptr)
Reports a vectorization failure: print DebugMsg for debugging purposes along with the corresponding o...
DWARFExpression::Operation Op
ScalarEpilogueLowering
@ CM_ScalarEpilogueNotAllowedLowTripLoop
@ CM_ScalarEpilogueNotNeededUsePredicate
@ CM_ScalarEpilogueNotAllowedOptSize
@ CM_ScalarEpilogueAllowed
@ CM_ScalarEpilogueNotAllowedUsePredicate
LLVM_ABI bool isGuaranteedNotToBeUndefOrPoison(const Value *V, AssumptionCache *AC=nullptr, const Instruction *CtxI=nullptr, const DominatorTree *DT=nullptr, unsigned Depth=0)
Return true if this function can prove that V does not have undef bits and is never poison.
ArrayRef(const T &OneElt) -> ArrayRef< T >
Value * createStepForVF(IRBuilderBase &B, Type *Ty, ElementCount VF, int64_t Step)
Return a value for Step multiplied by VF.
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:559
LLVM_ABI BasicBlock * SplitBlock(BasicBlock *Old, BasicBlock::iterator SplitPt, DominatorTree *DT, LoopInfo *LI=nullptr, MemorySSAUpdater *MSSAU=nullptr, const Twine &BBName="", bool Before=false)
Split the specified block at the specified instruction.
auto find_if(R &&Range, UnaryPredicate P)
Provide wrappers to std::find_if which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1770
auto predecessors(const MachineBasicBlock *BB)
iterator_range< pointer_iterator< WrappedIteratorT > > make_pointer_range(RangeT &&Range)
Definition iterator.h:363
cl::opt< bool > EnableVPlanNativePath
Type * getLoadStoreType(const Value *I)
A helper function that returns the type of a load or store instruction.
ArrayRef< Type * > getContainedTypes(Type *const &Ty)
Returns the types contained in Ty.
LLVM_ABI Value * addDiffRuntimeChecks(Instruction *Loc, ArrayRef< PointerDiffInfo > Checks, SCEVExpander &Expander, function_ref< Value *(IRBuilderBase &, unsigned)> GetVF, unsigned IC)
std::variant< RdxOrdered, RdxInLoop, RdxUnordered > ReductionStyle
Definition VPlan.h:2417
bool pred_empty(const BasicBlock *BB)
Definition CFG.h:119
@ DataAndControlFlowWithoutRuntimeCheck
Use predicate to control both data and control flow, but modify the trip count so that a runtime over...
@ None
Don't use tail folding.
@ DataWithEVL
Use predicated EVL instructions for tail-folding.
@ DataAndControlFlow
Use predicate to control both data and control flow.
@ DataWithoutLaneMask
Same as Data, but avoids using the get.active.lane.mask intrinsic to calculate the mask and instead i...
@ Data
Use predicate only to mask operations on data in the loop.
AnalysisManager< Function > FunctionAnalysisManager
Convenience typedef for the Function analysis manager.
LLVM_ABI bool hasBranchWeightMD(const Instruction &I)
Checks if an instructions has Branch Weight Metadata.
hash_code hash_combine(const Ts &...args)
Combine values into a single hash_code.
Definition Hashing.h:592
T bit_floor(T Value)
Returns the largest integral power of two no greater than Value if Value is nonzero.
Definition bit.h:330
Type * toVectorTy(Type *Scalar, ElementCount EC)
A helper function for converting Scalar types to vector types.
std::unique_ptr< VPlan > VPlanPtr
Definition VPlan.h:77
constexpr detail::IsaCheckPredicate< Types... > IsaPred
Function object wrapper for the llvm::isa type check.
Definition Casting.h:866
LLVM_ABI MapVector< Instruction *, uint64_t > computeMinimumValueSizes(ArrayRef< BasicBlock * > Blocks, DemandedBits &DB, const TargetTransformInfo *TTI=nullptr)
Compute a map of integer instructions to their minimum legal type size.
hash_code hash_combine_range(InputIteratorT first, InputIteratorT last)
Compute a hash_code for a sequence of values.
Definition Hashing.h:466
LLVM_ABI cl::opt< bool > EnableLoopInterleaving
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
Definition BitVector.h:872
#define N
This struct is a compact representation of a valid (non-zero power of two) alignment.
Definition Alignment.h:39
A special type used by analysis passes to provide an address that identifies that particular analysis...
Definition Analysis.h:29
static LLVM_ABI void collectEphemeralValues(const Loop *L, AssumptionCache *AC, SmallPtrSetImpl< const Value * > &EphValues)
Collect a loop's ephemeral values (those used only by an assume or similar intrinsics in the loop).
An information struct used to provide DenseMap with the various necessary components for a given valu...
Encapsulate information regarding vectorization of a loop and its epilogue.
EpilogueLoopVectorizationInfo(ElementCount MVF, unsigned MUF, ElementCount EVF, unsigned EUF, VPlan &EpiloguePlan)
A class that represents two vectorization factors (initialized with 0 by default).
static FixedScalableVFPair getNone()
This holds details about a histogram operation – a load -> update -> store sequence where each lane i...
Incoming for lane maks phi as machine instruction, incoming register Reg and incoming block Block are...
TargetLibraryInfo * TLI
LLVM_ABI LoopVectorizeResult runImpl(Function &F)
LLVM_ABI bool processLoop(Loop *L)
ProfileSummaryInfo * PSI
LoopAccessInfoManager * LAIs
LLVM_ABI void printPipeline(raw_ostream &OS, function_ref< StringRef(StringRef)> MapClassName2PassName)
LLVM_ABI LoopVectorizePass(LoopVectorizeOptions Opts={})
ScalarEvolution * SE
AssumptionCache * AC
LLVM_ABI PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM)
OptimizationRemarkEmitter * ORE
std::function< BlockFrequencyInfo &()> GetBFI
TargetTransformInfo * TTI
Storage for information about made changes.
A CRTP mix-in to automatically provide informational APIs needed for passes.
Definition PassManager.h:69
This reduction is unordered with the partial result scaled down by some factor.
Definition VPlan.h:2414
A marker analysis to determine if extra passes should be run after loop vectorization.
static LLVM_ABI AnalysisKey Key
Holds the VFShape for a specific scalar to vector function mapping.
std::optional< unsigned > getParamIndexForOptionalMask() const
Instruction Set Architecture.
Encapsulates information needed to describe a parameter.
A range of powers-of-2 vectorization factors with fixed start and adjustable end.
ElementCount End
Struct to hold various analysis needed for cost computations.
unsigned getPredBlockCostDivisor(BasicBlock *BB) const
LoopVectorizationCostModel & CM
bool isLegacyUniformAfterVectorization(Instruction *I, ElementCount VF) const
Return true if I is considered uniform-after-vectorization in the legacy cost model for VF.
bool skipCostComputation(Instruction *UI, bool IsVector) const
Return true if the cost for UI shouldn't be computed, e.g.
InstructionCost getLegacyCost(Instruction *UI, ElementCount VF) const
Return the cost for UI with VF using the legacy cost model as fallback until computing the cost of al...
TargetTransformInfo::TargetCostKind CostKind
SmallPtrSet< Instruction *, 8 > SkipCostComputation
A struct that represents some properties of the register usage of a loop.
VPTransformState holds information passed down when "executing" a VPlan, needed for generating the ou...
A recipe for widening select instructions.
Definition VPlan.h:1801
static void createHeaderPhiRecipes(VPlan &Plan, ScalarEvolution &SE, Loop &OrigLoop, const MapVector< PHINode *, InductionDescriptor > &Inductions, const MapVector< PHINode *, RecurrenceDescriptor > &Reductions, const SmallPtrSetImpl< const PHINode * > &FixedOrderRecurrences, const SmallPtrSetImpl< PHINode * > &InLoopReductions, bool AllowReordering)
Replace VPPhi recipes in Plan's header with corresponding VPHeaderPHIRecipe subclasses for inductions...
static void hoistPredicatedLoads(VPlan &Plan, ScalarEvolution &SE, const Loop *L)
Hoist predicated loads from the same address to the loop entry block, if they are guaranteed to execu...
static void sinkPredicatedStores(VPlan &Plan, ScalarEvolution &SE, const Loop *L)
Sink predicated stores to the same address with complementary predicates (P and NOT P) to an uncondit...
static void materializeBroadcasts(VPlan &Plan)
Add explicit broadcasts for live-ins and VPValues defined in Plan's entry block if they are used as v...
static void materializePacksAndUnpacks(VPlan &Plan)
Add explicit Build[Struct]Vector recipes to Pack multiple scalar values into vectors and Unpack recip...
static bool handleMultiUseReductions(VPlan &Plan)
Try to legalize reductions with multiple in-loop uses.
static LLVM_ABI_FOR_TEST std::unique_ptr< VPlan > buildVPlan0(Loop *TheLoop, LoopInfo &LI, Type *InductionTy, DebugLoc IVDL, PredicatedScalarEvolution &PSE, LoopVersioning *LVer=nullptr)
Create a base VPlan0, serving as the common starting point for all later candidates.
static void materializeBackedgeTakenCount(VPlan &Plan, VPBasicBlock *VectorPH)
Materialize the backedge-taken count to be computed explicitly using VPInstructions.
static void optimizeInductionExitUsers(VPlan &Plan, DenseMap< VPValue *, VPValue * > &EndValues, ScalarEvolution &SE)
If there's a single exit block, optimize its phi recipes that use exiting IV values by feeding them p...
static LLVM_ABI_FOR_TEST void handleEarlyExits(VPlan &Plan, bool HasUncountableExit)
Update Plan to account for all early exits.
static void canonicalizeEVLLoops(VPlan &Plan)
Transform EVL loops to use variable-length stepping after region dissolution.
static void dropPoisonGeneratingRecipes(VPlan &Plan, const std::function< bool(BasicBlock *)> &BlockNeedsPredication)
Drop poison flags from recipes that may generate a poison value that is used after vectorization,...
static void createInterleaveGroups(VPlan &Plan, const SmallPtrSetImpl< const InterleaveGroup< Instruction > * > &InterleaveGroups, VPRecipeBuilder &RecipeBuilder, const bool &ScalarEpilogueAllowed)
static bool runPass(bool(*Transform)(VPlan &, ArgsTy...), VPlan &Plan, typename std::remove_reference< ArgsTy >::type &...Args)
Helper to run a VPlan transform Transform on VPlan, forwarding extra arguments to the transform.
static void addBranchWeightToMiddleTerminator(VPlan &Plan, ElementCount VF, std::optional< unsigned > VScaleForTuning)
Add branch weight metadata, if the Plan's middle block is terminated by a BranchOnCond recipe.
static void narrowInterleaveGroups(VPlan &Plan, ElementCount VF, TypeSize VectorRegWidth)
Try to convert a plan with interleave groups with VF elements to a plan with the interleave groups re...
static void unrollByUF(VPlan &Plan, unsigned UF)
Explicitly unroll Plan by UF.
static DenseMap< const SCEV *, Value * > expandSCEVs(VPlan &Plan, ScalarEvolution &SE)
Expand VPExpandSCEVRecipes in Plan's entry block.
static void convertToConcreteRecipes(VPlan &Plan)
Lower abstract recipes to concrete ones, that can be codegen'd.
static void addMinimumIterationCheck(VPlan &Plan, ElementCount VF, unsigned UF, ElementCount MinProfitableTripCount, bool RequiresScalarEpilogue, bool TailFolded, bool CheckNeededWithTailFolding, Loop *OrigLoop, const uint32_t *MinItersBypassWeights, DebugLoc DL, ScalarEvolution &SE)
static void convertToAbstractRecipes(VPlan &Plan, VPCostContext &Ctx, VFRange &Range)
This function converts initial recipes to the abstract recipes and clamps Range based on cost model f...
static void materializeConstantVectorTripCount(VPlan &Plan, ElementCount BestVF, unsigned BestUF, PredicatedScalarEvolution &PSE)
static LLVM_ABI_FOR_TEST bool tryToConvertVPInstructionsToVPRecipes(VPlan &Plan, function_ref< const InductionDescriptor *(PHINode *)> GetIntOrFpInductionDescriptor, const TargetLibraryInfo &TLI)
Replaces the VPInstructions in Plan with corresponding widen recipes.
static void addExitUsersForFirstOrderRecurrences(VPlan &Plan, VFRange &Range)
Handle users in the exit block for first order reductions in the original exit block.
static DenseMap< VPBasicBlock *, VPValue * > introduceMasksAndLinearize(VPlan &Plan, bool FoldTail)
Predicate and linearize the control-flow in the only loop region of Plan.
static void addExplicitVectorLength(VPlan &Plan, const std::optional< unsigned > &MaxEVLSafeElements)
Add a VPEVLBasedIVPHIRecipe and related recipes to Plan and replaces all uses except the canonical IV...
static void replaceSymbolicStrides(VPlan &Plan, PredicatedScalarEvolution &PSE, const DenseMap< Value *, const SCEV * > &StridesMap)
Replace symbolic strides from StridesMap in Plan with constants when possible.
static bool handleMaxMinNumReductions(VPlan &Plan)
Check if Plan contains any FMaxNum or FMinNum reductions.
static void removeBranchOnConst(VPlan &Plan)
Remove BranchOnCond recipes with true or false conditions together with removing dead edges to their ...
static LLVM_ABI_FOR_TEST void createLoopRegions(VPlan &Plan)
Replace loops in Plan's flat CFG with VPRegionBlocks, turning Plan's flat CFG into a hierarchical CFG...
static void removeDeadRecipes(VPlan &Plan)
Remove dead recipes from Plan.
static void attachCheckBlock(VPlan &Plan, Value *Cond, BasicBlock *CheckBlock, bool AddBranchWeights)
Wrap runtime check block CheckBlock in a VPIRBB and Cond in a VPValue and connect the block to Plan,...
static void materializeVectorTripCount(VPlan &Plan, VPBasicBlock *VectorPHVPBB, bool TailByMasking, bool RequiresScalarEpilogue)
Materialize vector trip count computations to a set of VPInstructions.
static void simplifyRecipes(VPlan &Plan)
Perform instcombine-like simplifications on recipes in Plan.
static void replicateByVF(VPlan &Plan, ElementCount VF)
Replace each replicating VPReplicateRecipe and VPInstruction outside of any replicate region in Plan ...
static void clearReductionWrapFlags(VPlan &Plan)
Clear NSW/NUW flags from reduction instructions if necessary.
static void cse(VPlan &Plan)
Perform common-subexpression-elimination on Plan.
static void addActiveLaneMask(VPlan &Plan, bool UseActiveLaneMaskForControlFlow, bool DataAndControlFlowWithoutRuntimeCheck)
Replace (ICMP_ULE, wide canonical IV, backedge-taken-count) checks with an (active-lane-mask recipe,...
static LLVM_ABI_FOR_TEST void optimize(VPlan &Plan)
Apply VPlan-to-VPlan optimizations to Plan, including induction recipe optimizations,...
static void dissolveLoopRegions(VPlan &Plan)
Replace loop regions with explicit CFG.
static void truncateToMinimalBitwidths(VPlan &Plan, const MapVector< Instruction *, uint64_t > &MinBWs)
Insert truncates and extends for any truncated recipe.
static bool adjustFixedOrderRecurrences(VPlan &Plan, VPBuilder &Builder)
Try to have all users of fixed-order recurrences appear after the recipe defining their previous valu...
static void optimizeForVFAndUF(VPlan &Plan, ElementCount BestVF, unsigned BestUF, PredicatedScalarEvolution &PSE)
Optimize Plan based on BestVF and BestUF.
static void materializeVFAndVFxUF(VPlan &Plan, VPBasicBlock *VectorPH, ElementCount VF)
Materialize VF and VFxUF to be computed explicitly using VPInstructions.
static void addMinimumVectorEpilogueIterationCheck(VPlan &Plan, Value *TripCount, Value *VectorTripCount, bool RequiresScalarEpilogue, ElementCount EpilogueVF, unsigned EpilogueUF, unsigned MainLoopStep, unsigned EpilogueLoopStep, ScalarEvolution &SE)
Add a check to Plan to see if the epilogue vector loop should be executed.
static void updateScalarResumePhis(VPlan &Plan, DenseMap< VPValue *, VPValue * > &IVEndValues)
Update the resume phis in the scalar preheader after creating wide recipes for first-order recurrence...
static LLVM_ABI_FOR_TEST void addMiddleCheck(VPlan &Plan, bool RequiresScalarEpilogueCheck, bool TailFolded)
If a check is needed to guard executing the scalar epilogue loop, it will be added to the middle bloc...
TODO: The following VectorizationFactor was pulled out of LoopVectorizationCostModel class.
InstructionCost Cost
Cost of the loop with that width.
ElementCount MinProfitableTripCount
The minimum trip count required to make vectorization profitable, e.g.
ElementCount Width
Vector width with best cost.
InstructionCost ScalarCost
Cost of the scalar loop.
static VectorizationFactor Disabled()
Width 1 means no vectorization, cost 0 means uncomputed cost.
static LLVM_ABI bool HoistRuntimeChecks