162#define LV_NAME "loop-vectorize"
163#define DEBUG_TYPE LV_NAME
169STATISTIC(LoopsVectorized,
"Number of loops vectorized");
170STATISTIC(LoopsAnalyzed,
"Number of loops analyzed for vectorization");
171STATISTIC(LoopsEpilogueVectorized,
"Number of epilogues vectorized");
172STATISTIC(LoopsEarlyExitVectorized,
"Number of early exit loops vectorized");
176 cl::desc(
"Enable vectorization of epilogue loops."));
180 cl::desc(
"When epilogue vectorization is enabled, and a value greater than "
181 "1 is specified, forces the given VF for all applicable epilogue "
185 "epilogue-vectorization-minimum-VF",
cl::Hidden,
186 cl::desc(
"Only loops with vectorization factor equal to or larger than "
187 "the specified value are considered for epilogue vectorization."));
193 cl::desc(
"Loops with a constant trip count that is smaller than this "
194 "value are vectorized only if no scalar iteration overheads "
199 cl::desc(
"The maximum allowed number of runtime memory checks"));
215 "prefer-predicate-over-epilogue",
218 cl::desc(
"Tail-folding and predication preferences over creating a scalar "
222 "Don't tail-predicate loops, create scalar epilogue"),
224 "predicate-else-scalar-epilogue",
225 "prefer tail-folding, create scalar epilogue if tail "
228 "predicate-dont-vectorize",
229 "prefers tail-folding, don't attempt vectorization if "
230 "tail-folding fails.")));
233 "force-tail-folding-style",
cl::desc(
"Force the tail folding style"),
239 "Create lane mask for data only, using active.lane.mask intrinsic"),
241 "data-without-lane-mask",
242 "Create lane mask with compare/stepvector"),
244 "Create lane mask using active.lane.mask intrinsic, and use "
245 "it for both data and control flow"),
247 "data-and-control-without-rt-check",
248 "Similar to data-and-control, but remove the runtime check"),
250 "Use predicated EVL instructions for tail folding. If EVL "
251 "is unsupported, fallback to data-without-lane-mask.")));
255 cl::desc(
"Enable use of wide lane masks when used for control flow in "
256 "tail-folded loops"));
260 cl::desc(
"Maximize bandwidth when selecting vectorization factor which "
261 "will be determined by the smallest type in loop."));
265 cl::desc(
"Enable vectorization on interleaved memory accesses in a loop"));
271 cl::desc(
"Enable vectorization on masked interleaved memory accesses in a loop"));
275 cl::desc(
"A flag that overrides the target's number of scalar registers."));
279 cl::desc(
"A flag that overrides the target's number of vector registers."));
283 cl::desc(
"A flag that overrides the target's max interleave factor for "
288 cl::desc(
"A flag that overrides the target's max interleave factor for "
289 "vectorized loops."));
293 cl::desc(
"A flag that overrides the target's expected cost for "
294 "an instruction to a single constant value. Mostly "
295 "useful for getting consistent testing."));
300 "Pretend that scalable vectors are supported, even if the target does "
301 "not support them. This flag should only be used for testing."));
306 "The cost of a loop that is considered 'small' by the interleaver."));
310 cl::desc(
"Enable the use of the block frequency analysis to access PGO "
311 "heuristics minimizing code growth in cold regions and being more "
312 "aggressive in hot regions."));
318 "Enable runtime interleaving until load/store ports are saturated"));
323 cl::desc(
"Max number of stores to be predicated behind an if."));
327 cl::desc(
"Count the induction variable only once when interleaving"));
331 cl::desc(
"Enable if predication of stores during vectorization."));
335 cl::desc(
"The maximum interleave count to use when interleaving a scalar "
336 "reduction in a nested loop."));
341 cl::desc(
"Prefer in-loop vector reductions, "
342 "overriding the targets preference."));
346 cl::desc(
"Enable the vectorisation of loops with in-order (strict) "
352 "Prefer predicating a reduction operation over an after loop select."));
356 cl::desc(
"Enable VPlan-native vectorization path with "
357 "support for outer loop vectorization."));
361#ifdef EXPENSIVE_CHECKS
367 cl::desc(
"Verfiy VPlans after VPlan transforms."));
369#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
372 cl::desc(
"Print after each VPlanTransforms::runPass."));
382 "Build VPlan for every supported loop nest in the function and bail "
383 "out right after the build (stress test the VPlan H-CFG construction "
384 "in the VPlan-native vectorization path)."));
388 cl::desc(
"Enable loop interleaving in Loop vectorization passes"));
391 cl::desc(
"Run the Loop vectorization passes"));
394 "force-widen-divrem-via-safe-divisor",
cl::Hidden,
396 "Override cost based safe divisor widening for div/rem instructions"));
399 "vectorizer-maximize-bandwidth-for-vector-calls",
cl::init(
true),
401 cl::desc(
"Try wider VFs if they enable the use of vector variants"));
406 "Enable vectorization of early exit loops with uncountable exits."));
410 cl::desc(
"Discard VFs if their register pressure is too high."));
423 return DL.getTypeAllocSizeInBits(Ty) !=
DL.getTypeSizeInBits(Ty);
458static std::optional<ElementCount>
460 bool CanUseConstantMax =
true) {
470 if (!CanUseConstantMax)
482class GeneratedRTChecks;
514 VF(VecWidth),
UF(UnrollFactor),
Builder(
PSE.getSE()->getContext()),
517 Plan.getVectorLoopRegion()->getSinglePredecessor())) {}
623 "A high UF for the epilogue loop is likely not beneficial.");
643 UnrollFactor, CM, Checks,
Plan),
672 EPI.MainLoopVF,
EPI.MainLoopUF) {}
710 EPI.EpilogueVF,
EPI.EpilogueUF) {}
727 if (
I->getDebugLoc() !=
Empty)
728 return I->getDebugLoc();
731 if (Instruction *OpInst = dyn_cast<Instruction>(Op))
732 if (OpInst->getDebugLoc() != Empty)
733 return OpInst->getDebugLoc();
736 return I->getDebugLoc();
745 dbgs() <<
"LV: " << Prefix << DebugMsg;
761static OptimizationRemarkAnalysis
767 if (
I &&
I->getDebugLoc())
768 DL =
I->getDebugLoc();
772 return OptimizationRemarkAnalysis(
PassName, RemarkName,
DL, CodeRegion);
780 assert(Ty->isIntegerTy() &&
"Expected an integer step");
788 return B.CreateElementCount(Ty, VFxStep);
793 return B.CreateElementCount(Ty, VF);
804 <<
"loop not vectorized: " << OREMsg);
827 "Vectorizing: ", TheLoop->
isInnermost() ?
"innermost loop" :
"outer loop",
833 <<
"vectorized " << LoopType <<
"loop (vectorization width: "
835 <<
", interleaved count: " <<
ore::NV(
"InterleaveCount", IC) <<
")";
892 initializeVScaleForTuning();
903 bool runtimeChecksRequired();
922 std::pair<unsigned, unsigned> getSmallestAndWidestTypes();
941 void collectValuesToIgnore();
944 void collectElementTypesForWidening();
948 void collectInLoopReductions();
969 "Profitable to scalarize relevant only for VF > 1.");
972 "cost-model should not be used for outer loops (in VPlan-native path)");
974 auto Scalars = InstsToScalarize.find(VF);
975 assert(Scalars != InstsToScalarize.end() &&
976 "VF not yet analyzed for scalarization profitability");
977 return Scalars->second.contains(
I);
984 "cost-model should not be used for outer loops (in VPlan-native path)");
994 auto UniformsPerVF = Uniforms.find(VF);
995 assert(UniformsPerVF != Uniforms.end() &&
996 "VF not yet analyzed for uniformity");
997 return UniformsPerVF->second.count(
I);
1004 "cost-model should not be used for outer loops (in VPlan-native path)");
1008 auto ScalarsPerVF = Scalars.find(VF);
1009 assert(ScalarsPerVF != Scalars.end() &&
1010 "Scalar values are not calculated for VF");
1011 return ScalarsPerVF->second.count(
I);
1019 I->getType()->getScalarSizeInBits() < MinBWs.lookup(
I))
1021 return VF.
isVector() && MinBWs.contains(
I) &&
1043 WideningDecisions[{
I, VF}] = {W,
Cost};
1062 for (
unsigned Idx = 0; Idx < Grp->
getFactor(); ++Idx) {
1065 WideningDecisions[{
I, VF}] = {W, InsertPosCost};
1067 WideningDecisions[{
I, VF}] = {W, OtherMemberCost};
1079 "cost-model should not be used for outer loops (in VPlan-native path)");
1081 std::pair<Instruction *, ElementCount> InstOnVF(
I, VF);
1082 auto Itr = WideningDecisions.find(InstOnVF);
1083 if (Itr == WideningDecisions.end())
1085 return Itr->second.first;
1092 std::pair<Instruction *, ElementCount> InstOnVF(
I, VF);
1093 assert(WideningDecisions.contains(InstOnVF) &&
1094 "The cost is not calculated");
1095 return WideningDecisions[InstOnVF].second;
1108 std::optional<unsigned> MaskPos,
1111 CallWideningDecisions[{CI, VF}] = {Kind, Variant, IID, MaskPos,
Cost};
1117 auto I = CallWideningDecisions.find({CI, VF});
1118 if (
I == CallWideningDecisions.end())
1141 Value *
Op = Trunc->getOperand(0);
1142 if (
Op !=
Legal->getPrimaryInduction() &&
TTI.isTruncateFree(SrcTy, DestTy))
1146 return Legal->isInductionPhi(
Op);
1162 if (VF.
isScalar() || Uniforms.contains(VF))
1165 collectLoopUniforms(VF);
1167 collectLoopScalars(VF);
1175 return Legal->isConsecutivePtr(DataType, Ptr) &&
1183 return Legal->isConsecutivePtr(DataType, Ptr) &&
1198 return (
LI &&
TTI.isLegalMaskedGather(Ty,
Align)) ||
1205 return (
all_of(
Legal->getReductionVars(), [&](
auto &Reduction) ->
bool {
1206 const RecurrenceDescriptor &RdxDesc = Reduction.second;
1207 return TTI.isLegalToVectorizeReduction(RdxDesc, VF);
1218 return ScalarCost < SafeDivisorCost;
1257 std::pair<InstructionCost, InstructionCost>
1284 LLVM_DEBUG(
dbgs() <<
"LV: Loop does not require scalar epilogue\n");
1291 LLVM_DEBUG(
dbgs() <<
"LV: Loop requires scalar epilogue: not exiting "
1292 "from latch block\n");
1297 "interleaved group requires scalar epilogue\n");
1300 LLVM_DEBUG(
dbgs() <<
"LV: Loop does not require scalar epilogue\n");
1318 if (!ChosenTailFoldingStyle)
1320 return IVUpdateMayOverflow ? ChosenTailFoldingStyle->first
1321 : ChosenTailFoldingStyle->second;
1329 assert(!ChosenTailFoldingStyle &&
"Tail folding must not be selected yet.");
1330 if (!
Legal->canFoldTailByMasking()) {
1336 ChosenTailFoldingStyle = {
1337 TTI.getPreferredTailFoldingStyle(
true),
1338 TTI.getPreferredTailFoldingStyle(
false)};
1348 bool EVLIsLegal = UserIC <= 1 && IsScalableVF &&
1362 dbgs() <<
"LV: Preference for VP intrinsics indicated. Will "
1363 "not try to generate VP Intrinsics "
1365 ?
"since interleave count specified is greater than 1.\n"
1366 :
"due to non-interleaving reasons.\n"));
1411 return InLoopReductions.contains(Phi);
1416 return InLoopReductions;
1427 TTI.preferPredicatedReductionSelect();
1442 WideningDecisions.clear();
1443 CallWideningDecisions.clear();
1461 bool isEpilogueVectorizationProfitable(
const ElementCount VF,
1462 const unsigned IC)
const;
1470 std::optional<InstructionCost> getReductionPatternCost(
Instruction *
I,
1472 Type *VectorTy)
const;
1476 bool shouldConsiderInvariant(
Value *
Op);
1482 unsigned NumPredStores = 0;
1486 std::optional<unsigned> VScaleForTuning;
1491 void initializeVScaleForTuning() {
1496 auto Max = Attr.getVScaleRangeMax();
1497 if (Max && Min == Max) {
1498 VScaleForTuning = Max;
1511 FixedScalableVFPair computeFeasibleMaxVF(
unsigned MaxTripCount,
1512 ElementCount UserVF,
unsigned UserIC,
1513 bool FoldTailByMasking);
1517 ElementCount clampVFByMaxTripCount(ElementCount VF,
unsigned MaxTripCount,
1519 bool FoldTailByMasking)
const;
1524 ElementCount getMaximizedVFForTarget(
unsigned MaxTripCount,
1525 unsigned SmallestType,
1526 unsigned WidestType,
1527 ElementCount MaxSafeVF,
unsigned UserIC,
1528 bool FoldTailByMasking);
1532 bool isScalableVectorizationAllowed();
1536 ElementCount getMaxLegalScalableVF(
unsigned MaxSafeElements);
1542 InstructionCost getMemInstScalarizationCost(Instruction *
I, ElementCount VF);
1563 ElementCount VF)
const;
1567 bool useEmulatedMaskMemRefHack(Instruction *
I, ElementCount VF);
1572 MapVector<Instruction *, uint64_t> MinBWs;
1577 using ScalarCostsTy = MapVector<Instruction *, InstructionCost>;
1581 DenseMap<ElementCount, SmallPtrSet<BasicBlock *, 4>>
1582 PredicatedBBsAfterVectorization;
1595 std::optional<std::pair<TailFoldingStyle, TailFoldingStyle>>
1596 ChosenTailFoldingStyle;
1599 std::optional<bool> IsScalableVectorizationAllowed;
1605 std::optional<unsigned> MaxSafeElements;
1611 MapVector<ElementCount, ScalarCostsTy> InstsToScalarize;
1615 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Uniforms;
1619 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Scalars;
1623 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> ForcedScalars;
1626 SmallPtrSet<PHINode *, 4> InLoopReductions;
1631 DenseMap<Instruction *, Instruction *> InLoopReductionImmediateChains;
1639 ScalarCostsTy &ScalarCosts,
1651 void collectLoopUniforms(ElementCount VF);
1660 void collectLoopScalars(ElementCount VF);
1664 using DecisionList = DenseMap<std::pair<Instruction *, ElementCount>,
1665 std::pair<InstWidening, InstructionCost>>;
1667 DecisionList WideningDecisions;
1669 using CallDecisionList =
1670 DenseMap<std::pair<CallInst *, ElementCount>, CallWideningDecision>;
1672 CallDecisionList CallWideningDecisions;
1676 bool needsExtract(
Value *V, ElementCount VF)
const {
1680 getWideningDecision(
I, VF) == CM_Scalarize ||
1691 return !Scalars.
contains(VF) || !isScalarAfterVectorization(
I, VF);
1695 SmallVector<Value *, 4> filterExtractingOperands(Instruction::op_range
Ops,
1696 ElementCount VF)
const {
1698 SmallPtrSet<const Value *, 4> UniqueOperands;
1699 SmallVector<Value *, 4> Res;
1702 !needsExtract(
Op, VF))
1788class GeneratedRTChecks {
1794 Value *SCEVCheckCond =
nullptr;
1801 Value *MemRuntimeCheckCond =
nullptr;
1810 bool CostTooHigh =
false;
1812 Loop *OuterLoop =
nullptr;
1823 : DT(DT), LI(LI),
TTI(
TTI),
1824 SCEVExp(*PSE.
getSE(),
"scev.check",
false),
1825 MemCheckExp(*PSE.
getSE(),
"scev.check",
false),
1833 void create(Loop *L,
const LoopAccessInfo &LAI,
1834 const SCEVPredicate &UnionPred, ElementCount VF,
unsigned IC,
1835 OptimizationRemarkEmitter &ORE) {
1848 return OptimizationRemarkAnalysisAliasing(
1849 DEBUG_TYPE,
"TooManyMemoryRuntimeChecks",
L->getStartLoc(),
1851 <<
"loop not vectorized: too many memory checks needed";
1866 nullptr,
"vector.scevcheck");
1873 SCEVExpanderCleaner SCEVCleaner(SCEVExp);
1874 SCEVCleaner.cleanup();
1879 if (RtPtrChecking.Need) {
1880 auto *Pred = SCEVCheckBlock ? SCEVCheckBlock : Preheader;
1881 MemCheckBlock =
SplitBlock(Pred, Pred->getTerminator(), DT, LI,
nullptr,
1884 auto DiffChecks = RtPtrChecking.getDiffChecks();
1886 Value *RuntimeVF =
nullptr;
1889 [VF, &RuntimeVF](IRBuilderBase &
B,
unsigned Bits) {
1891 RuntimeVF = getRuntimeVF(B, B.getIntNTy(Bits), VF);
1897 MemCheckBlock->
getTerminator(), L, RtPtrChecking.getChecks(),
1900 assert(MemRuntimeCheckCond &&
1901 "no RT checks generated although RtPtrChecking "
1902 "claimed checks are required");
1907 if (!MemCheckBlock && !SCEVCheckBlock)
1917 if (SCEVCheckBlock) {
1920 auto *UI =
new UnreachableInst(Preheader->
getContext(), SCEVCheckBlock);
1924 if (MemCheckBlock) {
1927 auto *UI =
new UnreachableInst(Preheader->
getContext(), MemCheckBlock);
1933 if (MemCheckBlock) {
1937 if (SCEVCheckBlock) {
1943 OuterLoop =
L->getParentLoop();
1947 if (SCEVCheckBlock || MemCheckBlock)
1959 for (Instruction &
I : *SCEVCheckBlock) {
1960 if (SCEVCheckBlock->getTerminator() == &
I)
1966 if (MemCheckBlock) {
1968 for (Instruction &
I : *MemCheckBlock) {
1969 if (MemCheckBlock->getTerminator() == &
I)
1981 ScalarEvolution *SE = MemCheckExp.
getSE();
1986 const SCEV *
Cond = SE->
getSCEV(MemRuntimeCheckCond);
1991 unsigned BestTripCount = 2;
1995 PSE, OuterLoop,
false))
1996 if (EstimatedTC->isFixed())
1997 BestTripCount = EstimatedTC->getFixedValue();
2002 NewMemCheckCost = std::max(NewMemCheckCost.
getValue(),
2003 (InstructionCost::CostType)1);
2005 if (BestTripCount > 1)
2007 <<
"We expect runtime memory checks to be hoisted "
2008 <<
"out of the outer loop. Cost reduced from "
2009 << MemCheckCost <<
" to " << NewMemCheckCost <<
'\n');
2011 MemCheckCost = NewMemCheckCost;
2015 RTCheckCost += MemCheckCost;
2018 if (SCEVCheckBlock || MemCheckBlock)
2019 LLVM_DEBUG(
dbgs() <<
"Total cost of runtime checks: " << RTCheckCost
2027 ~GeneratedRTChecks() {
2028 SCEVExpanderCleaner SCEVCleaner(SCEVExp);
2029 SCEVExpanderCleaner MemCheckCleaner(MemCheckExp);
2030 bool SCEVChecksUsed = !SCEVCheckBlock || !
pred_empty(SCEVCheckBlock);
2031 bool MemChecksUsed = !MemCheckBlock || !
pred_empty(MemCheckBlock);
2033 SCEVCleaner.markResultUsed();
2035 if (MemChecksUsed) {
2036 MemCheckCleaner.markResultUsed();
2038 auto &SE = *MemCheckExp.
getSE();
2045 I.eraseFromParent();
2048 MemCheckCleaner.cleanup();
2049 SCEVCleaner.cleanup();
2051 if (!SCEVChecksUsed)
2052 SCEVCheckBlock->eraseFromParent();
2054 MemCheckBlock->eraseFromParent();
2059 std::pair<Value *, BasicBlock *> getSCEVChecks()
const {
2060 using namespace llvm::PatternMatch;
2062 return {
nullptr,
nullptr};
2064 return {SCEVCheckCond, SCEVCheckBlock};
2069 std::pair<Value *, BasicBlock *> getMemRuntimeChecks()
const {
2070 using namespace llvm::PatternMatch;
2071 if (MemRuntimeCheckCond &&
match(MemRuntimeCheckCond,
m_ZeroInt()))
2072 return {
nullptr,
nullptr};
2073 return {MemRuntimeCheckCond, MemCheckBlock};
2077 bool hasChecks()
const {
2078 return getSCEVChecks().first || getMemRuntimeChecks().first;
2121 LLVM_DEBUG(
dbgs() <<
"LV: Loop hints prevent outer loop vectorization.\n");
2127 LLVM_DEBUG(
dbgs() <<
"LV: Not vectorizing: Interleave is not supported for "
2157 for (
Loop *InnerL : L)
2176 ?
B.CreateSExtOrTrunc(Index, StepTy)
2177 :
B.CreateCast(Instruction::SIToFP, Index, StepTy);
2178 if (CastedIndex != Index) {
2180 Index = CastedIndex;
2190 assert(
X->getType() ==
Y->getType() &&
"Types don't match!");
2195 return B.CreateAdd(
X,
Y);
2201 assert(
X->getType()->getScalarType() ==
Y->getType() &&
2202 "Types don't match!");
2210 return B.CreateMul(
X,
Y);
2213 switch (InductionKind) {
2216 "Vector indices not supported for integer inductions yet");
2218 "Index type does not match StartValue type");
2220 return B.CreateSub(StartValue, Index);
2225 return B.CreatePtrAdd(StartValue,
CreateMul(Index, Step));
2228 "Vector indices not supported for FP inductions yet");
2231 (InductionBinOp->
getOpcode() == Instruction::FAdd ||
2232 InductionBinOp->
getOpcode() == Instruction::FSub) &&
2233 "Original bin op should be defined for FP induction");
2235 Value *MulExp =
B.CreateFMul(Step, Index);
2236 return B.CreateBinOp(InductionBinOp->
getOpcode(), StartValue, MulExp,
2247 if (std::optional<unsigned> MaxVScale =
TTI.getMaxVScale())
2250 if (
F.hasFnAttribute(Attribute::VScaleRange))
2251 return F.getFnAttribute(Attribute::VScaleRange).getVScaleRangeMax();
2253 return std::nullopt;
2262 ElementCount VF, std::optional<unsigned> UF = std::nullopt) {
2264 unsigned MaxUF = UF ? *UF : Cost->TTI.getMaxInterleaveFactor(VF);
2266 IntegerType *IdxTy = Cost->Legal->getWidestInductionType();
2272 if (
unsigned TC = Cost->PSE.getSmallConstantMaxTripCount()) {
2275 std::optional<unsigned> MaxVScale =
2279 MaxVF *= *MaxVScale;
2282 return (MaxUIntTripCount - TC).ugt(MaxVF * MaxUF);
2296 return TTI.enableMaskedInterleavedAccessVectorization();
2309 PreVectorPH = CheckVPIRBB;
2319 "must have incoming values for all operands");
2320 R.addOperand(R.getOperand(NumPredecessors - 2));
2346 auto CreateStep = [&]() ->
Value * {
2353 if (!
VF.isScalable())
2355 return Builder.CreateBinaryIntrinsic(
2361 Value *Step = CreateStep();
2370 CheckMinIters =
Builder.getTrue();
2372 TripCountSCEV, SE.
getSCEV(Step))) {
2375 CheckMinIters =
Builder.CreateICmp(
P,
Count, Step,
"min.iters.check");
2377 }
else if (
VF.isScalable() && !
TTI->isVScaleKnownToBeAPowerOfTwo() &&
2385 Value *MaxUIntTripCount =
2392 return CheckMinIters;
2401 VPlan *Plan =
nullptr) {
2405 auto IP = IRVPBB->
begin();
2407 R.moveBefore(*IRVPBB, IP);
2411 R.moveBefore(*IRVPBB, IRVPBB->
end());
2420 assert(VectorPH &&
"Invalid loop structure");
2422 Cost->requiresScalarEpilogue(
VF.isVector())) &&
2423 "loops not exiting via the latch without required epilogue?");
2430 Twine(Prefix) +
"scalar.ph");
2436 const SCEV2ValueTy &ExpandedSCEVs) {
2437 const SCEV *Step =
ID.getStep();
2439 return C->getValue();
2441 return U->getValue();
2442 Value *V = ExpandedSCEVs.lookup(Step);
2443 assert(V &&
"SCEV must be expanded at this point");
2453 auto *Cmp = L->getLatchCmpInst();
2455 InstsToIgnore.
insert(Cmp);
2456 for (
const auto &KV : IL) {
2465 [&](
const User *U) { return U == IV || U == Cmp; }))
2466 InstsToIgnore.
insert(IVInst);
2478struct CSEDenseMapInfo {
2489 return DenseMapInfo<Instruction *>::getTombstoneKey();
2492 static unsigned getHashValue(
const Instruction *
I) {
2493 assert(canHandle(
I) &&
"Unknown instruction!");
2498 static bool isEqual(
const Instruction *
LHS,
const Instruction *
RHS) {
2499 if (
LHS == getEmptyKey() ||
RHS == getEmptyKey() ||
2500 LHS == getTombstoneKey() ||
RHS == getTombstoneKey())
2502 return LHS->isIdenticalTo(
RHS);
2514 if (!CSEDenseMapInfo::canHandle(&In))
2520 In.replaceAllUsesWith(V);
2521 In.eraseFromParent();
2534 std::optional<unsigned> VScale) {
2538 EstimatedVF *= *VScale;
2539 assert(EstimatedVF >= 1 &&
"Estimated VF shouldn't be less than 1");
2557 for (
auto &ArgOp : CI->
args())
2568 return ScalarCallCost;
2581 assert(
ID &&
"Expected intrinsic call!");
2585 FMF = FPMO->getFastMathFlags();
2591 std::back_inserter(ParamTys),
2592 [&](
Type *Ty) { return maybeVectorizeType(Ty, VF); });
2597 return TTI.getIntrinsicInstrCost(CostAttrs,
CostKind);
2611 BasicBlock *HeaderBB = State.CFG.VPBB2IRBB[HeaderVPBB];
2626 Builder.SetInsertPoint(NewPhi);
2628 NewPhi->
addIncoming(State.get(Inc), State.CFG.VPBB2IRBB[VPBB]);
2633void LoopVectorizationCostModel::collectLoopScalars(
ElementCount VF) {
2638 "This function should not be visited twice for the same VF");
2661 InstWidening WideningDecision = getWideningDecision(MemAccess, VF);
2662 assert(WideningDecision != CM_Unknown &&
2663 "Widening decision should be ready at this moment");
2665 if (Ptr == Store->getValueOperand())
2666 return WideningDecision == CM_Scalarize;
2668 "Ptr is neither a value or pointer operand");
2669 return WideningDecision != CM_GatherScatter;
2674 auto IsLoopVaryingGEP = [&](
Value *
V) {
2685 if (!IsLoopVaryingGEP(Ptr))
2697 if (IsScalarUse(MemAccess, Ptr) &&
2701 PossibleNonScalarPtrs.
insert(
I);
2717 for (
auto *BB : TheLoop->
blocks())
2718 for (
auto &
I : *BB) {
2720 EvaluatePtrUse(Load,
Load->getPointerOperand());
2722 EvaluatePtrUse(Store,
Store->getPointerOperand());
2723 EvaluatePtrUse(Store,
Store->getValueOperand());
2726 for (
auto *
I : ScalarPtrs)
2727 if (!PossibleNonScalarPtrs.
count(
I)) {
2735 auto ForcedScalar = ForcedScalars.
find(VF);
2736 if (ForcedScalar != ForcedScalars.
end())
2737 for (
auto *
I : ForcedScalar->second) {
2738 LLVM_DEBUG(
dbgs() <<
"LV: Found (forced) scalar instruction: " << *
I <<
"\n");
2747 while (Idx != Worklist.
size()) {
2749 if (!IsLoopVaryingGEP(Dst->getOperand(0)))
2753 auto *J = cast<Instruction>(U);
2754 return !TheLoop->contains(J) || Worklist.count(J) ||
2755 ((isa<LoadInst>(J) || isa<StoreInst>(J)) &&
2756 IsScalarUse(J, Src));
2759 LLVM_DEBUG(
dbgs() <<
"LV: Found scalar instruction: " << *Src <<
"\n");
2765 for (
const auto &Induction :
Legal->getInductionVars()) {
2766 auto *Ind = Induction.first;
2771 if (Ind ==
Legal->getPrimaryInduction() && foldTailByMasking())
2776 auto IsDirectLoadStoreFromPtrIndvar = [&](
Instruction *Indvar,
2778 return Induction.second.getKind() ==
2786 bool ScalarInd =
all_of(Ind->users(), [&](User *U) ->
bool {
2787 auto *I = cast<Instruction>(U);
2788 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) ||
2789 IsDirectLoadStoreFromPtrIndvar(Ind, I);
2798 if (IndUpdatePhi &&
Legal->isFixedOrderRecurrence(IndUpdatePhi))
2803 bool ScalarIndUpdate =
all_of(IndUpdate->users(), [&](User *U) ->
bool {
2804 auto *I = cast<Instruction>(U);
2805 return I == Ind || !TheLoop->contains(I) || Worklist.count(I) ||
2806 IsDirectLoadStoreFromPtrIndvar(IndUpdate, I);
2808 if (!ScalarIndUpdate)
2813 Worklist.
insert(IndUpdate);
2814 LLVM_DEBUG(
dbgs() <<
"LV: Found scalar instruction: " << *Ind <<
"\n");
2815 LLVM_DEBUG(
dbgs() <<
"LV: Found scalar instruction: " << *IndUpdate
2829 switch(
I->getOpcode()) {
2832 case Instruction::Call:
2836 case Instruction::Load:
2837 case Instruction::Store: {
2846 TTI.isLegalMaskedGather(VTy, Alignment))
2848 TTI.isLegalMaskedScatter(VTy, Alignment));
2850 case Instruction::UDiv:
2851 case Instruction::SDiv:
2852 case Instruction::SRem:
2853 case Instruction::URem: {
2874 if (
Legal->blockNeedsPredication(
I->getParent()))
2886 switch(
I->getOpcode()) {
2889 "instruction should have been considered by earlier checks");
2890 case Instruction::Call:
2894 "should have returned earlier for calls not needing a mask");
2896 case Instruction::Load:
2899 case Instruction::Store: {
2907 case Instruction::UDiv:
2908 case Instruction::URem:
2910 return !
Legal->isInvariant(
I->getOperand(1));
2911 case Instruction::SDiv:
2912 case Instruction::SRem:
2925 if (!
Legal->blockNeedsPredication(BB))
2932 "Header has smaller block freq than dominated BB?");
2933 return std::round((
double)HeaderFreq /
BBFreq);
2936std::pair<InstructionCost, InstructionCost>
2939 assert(
I->getOpcode() == Instruction::UDiv ||
2940 I->getOpcode() == Instruction::SDiv ||
2941 I->getOpcode() == Instruction::SRem ||
2942 I->getOpcode() == Instruction::URem);
2951 ScalarizationCost = 0;
2957 ScalarizationCost +=
2961 ScalarizationCost +=
2963 TTI.getArithmeticInstrCost(
I->getOpcode(),
I->getType(),
CostKind);
2981 TTI.getCmpSelInstrCost(Instruction::Select, VecTy,
2986 SafeDivisorCost +=
TTI.getArithmeticInstrCost(
2988 {TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None},
2989 {TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None},
2991 return {ScalarizationCost, SafeDivisorCost};
2998 "Decision should not be set yet.");
3000 assert(Group &&
"Must have a group.");
3001 unsigned InterleaveFactor = Group->getFactor();
3005 auto &
DL =
I->getDataLayout();
3017 bool ScalarNI =
DL.isNonIntegralPointerType(ScalarTy);
3018 for (
unsigned Idx = 0; Idx < InterleaveFactor; Idx++) {
3023 bool MemberNI =
DL.isNonIntegralPointerType(MemberTy);
3025 if (MemberNI != ScalarNI)
3028 if (MemberNI && ScalarNI &&
3029 ScalarTy->getPointerAddressSpace() !=
3030 MemberTy->getPointerAddressSpace())
3039 bool PredicatedAccessRequiresMasking =
3041 Legal->isMaskRequired(
I);
3042 bool LoadAccessWithGapsRequiresEpilogMasking =
3045 bool StoreAccessWithGapsRequiresMasking =
3047 if (!PredicatedAccessRequiresMasking &&
3048 !LoadAccessWithGapsRequiresEpilogMasking &&
3049 !StoreAccessWithGapsRequiresMasking)
3056 "Masked interleave-groups for predicated accesses are not enabled.");
3058 if (Group->isReverse())
3062 bool NeedsMaskForGaps = LoadAccessWithGapsRequiresEpilogMasking ||
3063 StoreAccessWithGapsRequiresMasking;
3071 :
TTI.isLegalMaskedStore(Ty, Alignment, AS);
3083 if (!
Legal->isConsecutivePtr(ScalarTy, Ptr))
3093 auto &
DL =
I->getDataLayout();
3100void LoopVectorizationCostModel::collectLoopUniforms(
ElementCount VF) {
3107 "This function should not be visited twice for the same VF");
3111 Uniforms[VF].
clear();
3119 auto IsOutOfScope = [&](
Value *V) ->
bool {
3131 auto AddToWorklistIfAllowed = [&](
Instruction *
I) ->
void {
3132 if (IsOutOfScope(
I)) {
3137 if (isPredicatedInst(
I)) {
3139 dbgs() <<
"LV: Found not uniform due to requiring predication: " << *
I
3143 LLVM_DEBUG(
dbgs() <<
"LV: Found uniform instruction: " << *
I <<
"\n");
3153 for (BasicBlock *
E : Exiting) {
3157 if (Cmp && TheLoop->
contains(Cmp) &&
Cmp->hasOneUse())
3158 AddToWorklistIfAllowed(Cmp);
3167 if (PrevVF.isVector()) {
3168 auto Iter = Uniforms.
find(PrevVF);
3169 if (Iter != Uniforms.
end() && !Iter->second.contains(
I))
3172 if (!
Legal->isUniformMemOp(*
I, VF))
3182 auto IsUniformDecision = [&](
Instruction *
I, ElementCount VF) {
3183 InstWidening WideningDecision = getWideningDecision(
I, VF);
3184 assert(WideningDecision != CM_Unknown &&
3185 "Widening decision should be ready at this moment");
3187 if (IsUniformMemOpUse(
I))
3190 return (WideningDecision == CM_Widen ||
3191 WideningDecision == CM_Widen_Reverse ||
3192 WideningDecision == CM_Interleave);
3202 (IsUniformDecision(
I, VF) ||
Legal->isInvariant(Ptr));
3210 SetVector<Value *> HasUniformUse;
3214 for (
auto *BB : TheLoop->
blocks())
3215 for (
auto &
I : *BB) {
3217 switch (
II->getIntrinsicID()) {
3218 case Intrinsic::sideeffect:
3219 case Intrinsic::experimental_noalias_scope_decl:
3220 case Intrinsic::assume:
3221 case Intrinsic::lifetime_start:
3222 case Intrinsic::lifetime_end:
3224 AddToWorklistIfAllowed(&
I);
3232 if (IsOutOfScope(EVI->getAggregateOperand())) {
3233 AddToWorklistIfAllowed(EVI);
3239 "Expected aggregate value to be call return value");
3252 if (IsUniformMemOpUse(&
I))
3253 AddToWorklistIfAllowed(&
I);
3255 if (IsVectorizedMemAccessUse(&
I, Ptr))
3256 HasUniformUse.
insert(Ptr);
3262 for (
auto *V : HasUniformUse) {
3263 if (IsOutOfScope(V))
3266 bool UsersAreMemAccesses =
all_of(
I->users(), [&](User *U) ->
bool {
3267 auto *UI = cast<Instruction>(U);
3268 return TheLoop->contains(UI) && IsVectorizedMemAccessUse(UI, V);
3270 if (UsersAreMemAccesses)
3271 AddToWorklistIfAllowed(
I);
3278 while (Idx != Worklist.
size()) {
3281 for (
auto *OV :
I->operand_values()) {
3283 if (IsOutOfScope(OV))
3288 if (
OP &&
Legal->isFixedOrderRecurrence(
OP))
3294 auto *J = cast<Instruction>(U);
3295 return Worklist.count(J) || IsVectorizedMemAccessUse(J, OI);
3297 AddToWorklistIfAllowed(OI);
3308 for (
const auto &Induction :
Legal->getInductionVars()) {
3309 auto *Ind = Induction.first;
3314 bool UniformInd =
all_of(Ind->users(), [&](User *U) ->
bool {
3315 auto *I = cast<Instruction>(U);
3316 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) ||
3317 IsVectorizedMemAccessUse(I, Ind);
3324 bool UniformIndUpdate =
all_of(IndUpdate->users(), [&](User *U) ->
bool {
3325 auto *I = cast<Instruction>(U);
3326 return I == Ind || Worklist.count(I) ||
3327 IsVectorizedMemAccessUse(I, IndUpdate);
3329 if (!UniformIndUpdate)
3333 AddToWorklistIfAllowed(Ind);
3334 AddToWorklistIfAllowed(IndUpdate);
3343 if (
Legal->getRuntimePointerChecking()->Need) {
3345 "runtime pointer checks needed. Enable vectorization of this "
3346 "loop with '#pragma clang loop vectorize(enable)' when "
3347 "compiling with -Os/-Oz",
3348 "CantVersionLoopWithOptForSize",
ORE,
TheLoop);
3352 if (!
PSE.getPredicate().isAlwaysTrue()) {
3354 "runtime SCEV checks needed. Enable vectorization of this "
3355 "loop with '#pragma clang loop vectorize(enable)' when "
3356 "compiling with -Os/-Oz",
3357 "CantVersionLoopWithOptForSize",
ORE,
TheLoop);
3362 if (!
Legal->getLAI()->getSymbolicStrides().empty()) {
3364 "runtime stride == 1 checks needed. Enable vectorization of "
3365 "this loop without such check by compiling with -Os/-Oz",
3366 "CantVersionLoopWithOptForSize",
ORE,
TheLoop);
3373bool LoopVectorizationCostModel::isScalableVectorizationAllowed() {
3374 if (IsScalableVectorizationAllowed)
3375 return *IsScalableVectorizationAllowed;
3377 IsScalableVectorizationAllowed =
false;
3381 if (Hints->isScalableVectorizationDisabled()) {
3383 "ScalableVectorizationDisabled", ORE, TheLoop);
3387 LLVM_DEBUG(
dbgs() <<
"LV: Scalable vectorization is available\n");
3390 std::numeric_limits<ElementCount::ScalarTy>::max());
3399 if (!canVectorizeReductions(MaxScalableVF)) {
3401 "Scalable vectorization not supported for the reduction "
3402 "operations found in this loop.",
3403 "ScalableVFUnfeasible", ORE, TheLoop);
3409 if (
any_of(ElementTypesInLoop, [&](
Type *Ty) {
3414 "for all element types found in this loop.",
3415 "ScalableVFUnfeasible", ORE, TheLoop);
3421 "for safe distance analysis.",
3422 "ScalableVFUnfeasible", ORE, TheLoop);
3426 IsScalableVectorizationAllowed =
true;
3431LoopVectorizationCostModel::getMaxLegalScalableVF(
unsigned MaxSafeElements) {
3432 if (!isScalableVectorizationAllowed())
3436 std::numeric_limits<ElementCount::ScalarTy>::max());
3437 if (
Legal->isSafeForAnyVectorWidth())
3438 return MaxScalableVF;
3446 "Max legal vector width too small, scalable vectorization "
3448 "ScalableVFUnfeasible", ORE, TheLoop);
3450 return MaxScalableVF;
3453FixedScalableVFPair LoopVectorizationCostModel::computeFeasibleMaxVF(
3454 unsigned MaxTripCount, ElementCount UserVF,
unsigned UserIC,
3455 bool FoldTailByMasking) {
3457 unsigned SmallestType, WidestType;
3458 std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes();
3464 unsigned MaxSafeElementsPowerOf2 =
3466 if (!
Legal->isSafeForAnyStoreLoadForwardDistances()) {
3467 unsigned SLDist =
Legal->getMaxStoreLoadForwardSafeDistanceInBits();
3468 MaxSafeElementsPowerOf2 =
3469 std::min(MaxSafeElementsPowerOf2, SLDist / WidestType);
3472 auto MaxSafeScalableVF = getMaxLegalScalableVF(MaxSafeElementsPowerOf2);
3474 if (!
Legal->isSafeForAnyVectorWidth())
3475 this->MaxSafeElements = MaxSafeElementsPowerOf2;
3477 LLVM_DEBUG(
dbgs() <<
"LV: The max safe fixed VF is: " << MaxSafeFixedVF
3479 LLVM_DEBUG(
dbgs() <<
"LV: The max safe scalable VF is: " << MaxSafeScalableVF
3484 auto MaxSafeUserVF =
3485 UserVF.
isScalable() ? MaxSafeScalableVF : MaxSafeFixedVF;
3487 if (ElementCount::isKnownLE(UserVF, MaxSafeUserVF)) {
3490 return FixedScalableVFPair(
3496 assert(ElementCount::isKnownGT(UserVF, MaxSafeUserVF));
3502 <<
" is unsafe, clamping to max safe VF="
3503 << MaxSafeFixedVF <<
".\n");
3505 return OptimizationRemarkAnalysis(
DEBUG_TYPE,
"VectorizationFactor",
3508 <<
"User-specified vectorization factor "
3509 <<
ore::NV(
"UserVectorizationFactor", UserVF)
3510 <<
" is unsafe, clamping to maximum safe vectorization factor "
3511 <<
ore::NV(
"VectorizationFactor", MaxSafeFixedVF);
3513 return MaxSafeFixedVF;
3518 <<
" is ignored because scalable vectors are not "
3521 return OptimizationRemarkAnalysis(
DEBUG_TYPE,
"VectorizationFactor",
3524 <<
"User-specified vectorization factor "
3525 <<
ore::NV(
"UserVectorizationFactor", UserVF)
3526 <<
" is ignored because the target does not support scalable "
3527 "vectors. The compiler will pick a more suitable value.";
3531 <<
" is unsafe. Ignoring scalable UserVF.\n");
3533 return OptimizationRemarkAnalysis(
DEBUG_TYPE,
"VectorizationFactor",
3536 <<
"User-specified vectorization factor "
3537 <<
ore::NV(
"UserVectorizationFactor", UserVF)
3538 <<
" is unsafe. Ignoring the hint to let the compiler pick a "
3539 "more suitable value.";
3544 LLVM_DEBUG(
dbgs() <<
"LV: The Smallest and Widest types: " << SmallestType
3545 <<
" / " << WidestType <<
" bits.\n");
3550 getMaximizedVFForTarget(MaxTripCount, SmallestType, WidestType,
3551 MaxSafeFixedVF, UserIC, FoldTailByMasking))
3555 getMaximizedVFForTarget(MaxTripCount, SmallestType, WidestType,
3556 MaxSafeScalableVF, UserIC, FoldTailByMasking))
3557 if (MaxVF.isScalable()) {
3558 Result.ScalableVF = MaxVF;
3559 LLVM_DEBUG(
dbgs() <<
"LV: Found feasible scalable VF = " << MaxVF
3568 if (
Legal->getRuntimePointerChecking()->Need &&
TTI.hasBranchDivergence()) {
3572 "Not inserting runtime ptr check for divergent target",
3573 "runtime pointer checks needed. Not enabled for divergent target",
3574 "CantVersionLoopWithDivergentTarget",
ORE,
TheLoop);
3580 unsigned MaxTC =
PSE.getSmallConstantMaxTripCount();
3583 LLVM_DEBUG(
dbgs() <<
"LV: Found maximum trip count: " << MaxTC <<
'\n');
3586 "loop trip count is one, irrelevant for vectorization",
3597 Legal->getWidestInductionType()->getScalarSizeInBits() &&
3601 "Trip count computation wrapped",
3602 "backedge-taken count is -1, loop trip count wrapped to 0",
3607 switch (ScalarEpilogueStatus) {
3609 return computeFeasibleMaxVF(MaxTC, UserVF, UserIC,
false);
3614 dbgs() <<
"LV: vector predicate hint/switch found.\n"
3615 <<
"LV: Not allowing scalar epilogue, creating predicated "
3616 <<
"vector loop.\n");
3623 dbgs() <<
"LV: Not allowing scalar epilogue due to -Os/-Oz.\n");
3625 LLVM_DEBUG(
dbgs() <<
"LV: Not allowing scalar epilogue due to low trip "
3641 assert(WideningDecisions.empty() && Uniforms.empty() && Scalars.empty() &&
3642 "No decisions should have been taken at this point");
3649 computeFeasibleMaxVF(MaxTC, UserVF, UserIC,
true);
3653 std::optional<unsigned> MaxPowerOf2RuntimeVF =
3657 if (MaxVScale &&
TTI.isVScaleKnownToBeAPowerOfTwo()) {
3658 MaxPowerOf2RuntimeVF = std::max<unsigned>(
3659 *MaxPowerOf2RuntimeVF,
3662 MaxPowerOf2RuntimeVF = std::nullopt;
3665 auto NoScalarEpilogueNeeded = [
this, &UserIC](
unsigned MaxVF) {
3669 !
Legal->hasUncountableEarlyExit())
3671 unsigned MaxVFtimesIC = UserIC ? MaxVF * UserIC : MaxVF;
3676 const SCEV *BackedgeTakenCount =
PSE.getSymbolicMaxBackedgeTakenCount();
3678 BackedgeTakenCount ==
PSE.getBackedgeTakenCount()) &&
3679 "Invalid loop count");
3681 BackedgeTakenCount, SE->
getOne(BackedgeTakenCount->
getType()));
3688 if (MaxPowerOf2RuntimeVF > 0u) {
3690 "MaxFixedVF must be a power of 2");
3691 if (NoScalarEpilogueNeeded(*MaxPowerOf2RuntimeVF)) {
3693 LLVM_DEBUG(
dbgs() <<
"LV: No tail will remain for any chosen VF.\n");
3699 if (ExpectedTC && ExpectedTC->isFixed() &&
3700 ExpectedTC->getFixedValue() <=
3701 TTI.getMinTripCountTailFoldingThreshold()) {
3702 if (MaxPowerOf2RuntimeVF > 0u) {
3708 LLVM_DEBUG(
dbgs() <<
"LV: Picking a fixed-width so that no tail will "
3709 "remain for any chosen VF.\n");
3716 "The trip count is below the minial threshold value.",
3717 "loop trip count is too low, avoiding vectorization",
"LowTripCount",
3732 <<
"LV: tail is folded with EVL, forcing unroll factor to be 1. Will "
3733 "try to generate VP Intrinsics with scalable vector "
3738 assert(ContainsScalableVF &&
"Expected scalable vector factor.");
3748 LLVM_DEBUG(
dbgs() <<
"LV: Cannot fold tail by masking: vectorize with a "
3749 "scalar epilogue instead.\n");
3755 LLVM_DEBUG(
dbgs() <<
"LV: Can't fold tail by masking: don't vectorize\n");
3761 "unable to calculate the loop count due to complex control flow",
3767 "Cannot optimize for size and vectorize at the same time.",
3768 "cannot optimize for size and vectorize at the same time. "
3769 "Enable vectorization of this loop with '#pragma clang loop "
3770 "vectorize(enable)' when compiling with -Os/-Oz",
3782 if (
TTI.shouldConsiderVectorizationRegPressure())
3798 (
TTI.shouldMaximizeVectorBandwidth(RegKind) ||
3800 Legal->hasVectorCallVariants())));
3803ElementCount LoopVectorizationCostModel::clampVFByMaxTripCount(
3804 ElementCount VF,
unsigned MaxTripCount,
unsigned UserIC,
3805 bool FoldTailByMasking)
const {
3807 if (VF.
isScalable() && TheFunction->hasFnAttribute(Attribute::VScaleRange)) {
3808 auto Attr = TheFunction->getFnAttribute(Attribute::VScaleRange);
3809 auto Min = Attr.getVScaleRangeMin();
3816 if (MaxTripCount > 0 && requiresScalarEpilogue(
true))
3821 unsigned IC = UserIC > 0 ? UserIC : 1;
3822 unsigned EstimatedVFTimesIC = EstimatedVF * IC;
3824 if (MaxTripCount && MaxTripCount <= EstimatedVFTimesIC &&
3832 if (ClampedUpperTripCount == 0)
3833 ClampedUpperTripCount = 1;
3834 LLVM_DEBUG(
dbgs() <<
"LV: Clamping the MaxVF to maximum power of two not "
3835 "exceeding the constant trip count"
3836 << (UserIC > 0 ?
" divided by UserIC" :
"") <<
": "
3837 << ClampedUpperTripCount <<
"\n");
3839 FoldTailByMasking ? VF.
isScalable() :
false);
3844ElementCount LoopVectorizationCostModel::getMaximizedVFForTarget(
3845 unsigned MaxTripCount,
unsigned SmallestType,
unsigned WidestType,
3846 ElementCount MaxSafeVF,
unsigned UserIC,
bool FoldTailByMasking) {
3847 bool ComputeScalableMaxVF = MaxSafeVF.
isScalable();
3853 auto MinVF = [](
const ElementCount &
LHS,
const ElementCount &
RHS) {
3855 "Scalable flags must match");
3863 ComputeScalableMaxVF);
3864 MaxVectorElementCount = MinVF(MaxVectorElementCount, MaxSafeVF);
3866 << (MaxVectorElementCount * WidestType) <<
" bits.\n");
3868 if (!MaxVectorElementCount) {
3870 << (ComputeScalableMaxVF ?
"scalable" :
"fixed")
3871 <<
" vector registers.\n");
3875 ElementCount MaxVF = clampVFByMaxTripCount(
3876 MaxVectorElementCount, MaxTripCount, UserIC, FoldTailByMasking);
3879 if (MaxVF != MaxVectorElementCount)
3887 MaxPermissibleVFWithoutMaxBW.ScalableVF = MaxVF;
3889 MaxPermissibleVFWithoutMaxBW.FixedVF = MaxVF;
3891 if (useMaxBandwidth(RegKind)) {
3894 ComputeScalableMaxVF);
3895 MaxVF = MinVF(MaxVectorElementCountMaxBW, MaxSafeVF);
3897 if (ElementCount MinVF =
3899 if (ElementCount::isKnownLT(MaxVF, MinVF)) {
3901 <<
") with target's minimum: " << MinVF <<
'\n');
3907 clampVFByMaxTripCount(MaxVF, MaxTripCount, UserIC, FoldTailByMasking);
3909 if (MaxVectorElementCount != MaxVF) {
3913 invalidateCostModelingDecisions();
3921 const unsigned MaxTripCount,
3923 bool IsEpilogue)
const {
3929 unsigned EstimatedWidthB =
B.Width.getKnownMinValue();
3930 if (std::optional<unsigned> VScale = CM.getVScaleForTuning()) {
3931 if (
A.Width.isScalable())
3932 EstimatedWidthA *= *VScale;
3933 if (
B.Width.isScalable())
3934 EstimatedWidthB *= *VScale;
3941 return CostA < CostB ||
3942 (CostA == CostB && EstimatedWidthA > EstimatedWidthB);
3948 A.Width.isScalable() && !
B.Width.isScalable();
3959 return CmpFn(CostA * EstimatedWidthB, CostB * EstimatedWidthA);
3961 auto GetCostForTC = [MaxTripCount, HasTail](
unsigned VF,
3973 return VectorCost * (MaxTripCount / VF) +
3974 ScalarCost * (MaxTripCount % VF);
3975 return VectorCost *
divideCeil(MaxTripCount, VF);
3978 auto RTCostA = GetCostForTC(EstimatedWidthA, CostA,
A.ScalarCost);
3979 auto RTCostB = GetCostForTC(EstimatedWidthB, CostB,
B.ScalarCost);
3980 return CmpFn(RTCostA, RTCostB);
3986 bool IsEpilogue)
const {
3988 return LoopVectorizationPlanner::isMoreProfitable(
A,
B, MaxTripCount, HasTail,
3994 using RecipeVFPair = std::pair<VPRecipeBase *, ElementCount>;
3996 for (
const auto &Plan : VPlans) {
4005 VPCostContext CostCtx(CM.TTI, *CM.TLI, *Plan, CM, CM.CostKind, CM.PSE,
4007 precomputeCosts(*Plan, VF, CostCtx);
4010 for (
auto &R : *VPBB) {
4011 if (!R.cost(VF, CostCtx).isValid())
4017 if (InvalidCosts.
empty())
4025 for (
auto &Pair : InvalidCosts)
4030 sort(InvalidCosts, [&Numbering](RecipeVFPair &
A, RecipeVFPair &
B) {
4031 unsigned NA = Numbering[
A.first];
4032 unsigned NB = Numbering[
B.first];
4047 Subset =
Tail.take_front(1);
4057 .Case<VPWidenCallRecipe, VPWidenIntrinsicRecipe>(
4058 [](
const auto *R) {
return Instruction::Call; })
4061 [](
const auto *R) {
return R->getOpcode(); })
4063 return R->getStoredValues().empty() ? Instruction::Load
4064 : Instruction::Store;
4075 if (Subset ==
Tail ||
Tail[Subset.size()].first != R) {
4076 std::string OutString;
4078 assert(!Subset.empty() &&
"Unexpected empty range");
4079 OS <<
"Recipe with invalid costs prevented vectorization at VF=(";
4080 for (
const auto &Pair : Subset)
4081 OS << (Pair.second == Subset.front().second ?
"" :
", ") << Pair.second;
4083 if (Opcode == Instruction::Call) {
4086 Name =
Int->getIntrinsicName();
4090 WidenCall ? WidenCall->getCalledScalarFunction()
4092 ->getLiveInIRValue());
4095 OS <<
" call to " << Name;
4100 Tail =
Tail.drop_front(Subset.size());
4104 Subset =
Tail.take_front(Subset.size() + 1);
4105 }
while (!
Tail.empty());
4127 switch (R.getVPRecipeID()) {
4128 case VPRecipeBase::VPDerivedIVSC:
4129 case VPRecipeBase::VPScalarIVStepsSC:
4130 case VPRecipeBase::VPReplicateSC:
4131 case VPRecipeBase::VPInstructionSC:
4132 case VPRecipeBase::VPCanonicalIVPHISC:
4133 case VPRecipeBase::VPVectorPointerSC:
4134 case VPRecipeBase::VPVectorEndPointerSC:
4135 case VPRecipeBase::VPExpandSCEVSC:
4136 case VPRecipeBase::VPEVLBasedIVPHISC:
4137 case VPRecipeBase::VPPredInstPHISC:
4138 case VPRecipeBase::VPBranchOnMaskSC:
4140 case VPRecipeBase::VPReductionSC:
4141 case VPRecipeBase::VPActiveLaneMaskPHISC:
4142 case VPRecipeBase::VPWidenCallSC:
4143 case VPRecipeBase::VPWidenCanonicalIVSC:
4144 case VPRecipeBase::VPWidenCastSC:
4145 case VPRecipeBase::VPWidenGEPSC:
4146 case VPRecipeBase::VPWidenIntrinsicSC:
4147 case VPRecipeBase::VPWidenSC:
4148 case VPRecipeBase::VPBlendSC:
4149 case VPRecipeBase::VPFirstOrderRecurrencePHISC:
4150 case VPRecipeBase::VPHistogramSC:
4151 case VPRecipeBase::VPWidenPHISC:
4152 case VPRecipeBase::VPWidenIntOrFpInductionSC:
4153 case VPRecipeBase::VPWidenPointerInductionSC:
4154 case VPRecipeBase::VPReductionPHISC:
4155 case VPRecipeBase::VPInterleaveEVLSC:
4156 case VPRecipeBase::VPInterleaveSC:
4157 case VPRecipeBase::VPWidenLoadEVLSC:
4158 case VPRecipeBase::VPWidenLoadSC:
4159 case VPRecipeBase::VPWidenStoreEVLSC:
4160 case VPRecipeBase::VPWidenStoreSC:
4166 auto WillGenerateTargetVectors = [&
TTI, VF](
Type *VectorTy) {
4167 unsigned NumLegalParts =
TTI.getNumberOfParts(VectorTy);
4183 if (R.getNumDefinedValues() == 0 &&
4192 R.getNumDefinedValues() >= 1 ? R.getVPValue(0) : R.getOperand(1);
4194 if (!Visited.
insert({ScalarTy}).second)
4208 [](
auto *VPRB) { return VPRB->isReplicator(); });
4214 LLVM_DEBUG(
dbgs() <<
"LV: Scalar loop costs: " << ExpectedCost <<
".\n");
4215 assert(ExpectedCost.
isValid() &&
"Unexpected invalid cost for scalar loop");
4218 [](std::unique_ptr<VPlan> &
P) {
return P->hasScalarVFOnly(); }) &&
4219 "Expected Scalar VF to be a candidate");
4226 if (ForceVectorization &&
4227 (VPlans.size() > 1 || !VPlans[0]->hasScalarVFOnly())) {
4231 ChosenFactor.
Cost = InstructionCost::getMax();
4234 for (
auto &
P : VPlans) {
4236 P->vectorFactors().end());
4239 if (
any_of(VFs, [
this](ElementCount VF) {
4240 return CM.shouldConsiderRegPressureForVF(VF);
4244 for (
unsigned I = 0;
I < VFs.size();
I++) {
4245 ElementCount VF = VFs[
I];
4253 if (CM.shouldConsiderRegPressureForVF(VF) &&
4261 VPCostContext CostCtx(CM.TTI, *CM.TLI, *
P, CM, CM.CostKind, CM.PSE,
4263 VPRegionBlock *VectorRegion =
P->getVectorLoopRegion();
4264 assert(VectorRegion &&
"Expected to have a vector region!");
4267 for (VPRecipeBase &R : *VPBB) {
4271 switch (VPI->getOpcode()) {
4274 case Instruction::Select: {
4277 switch (WR->getOpcode()) {
4278 case Instruction::UDiv:
4279 case Instruction::SDiv:
4280 case Instruction::URem:
4281 case Instruction::SRem:
4287 C += VPI->cost(VF, CostCtx);
4291 unsigned Multiplier =
4293 C += VPI->cost(VF * Multiplier, CostCtx);
4297 C += VPI->cost(VF, CostCtx);
4309 <<
" costs: " << (Candidate.Cost / Width));
4312 << CM.getVScaleForTuning().value_or(1) <<
")");
4318 <<
"LV: Not considering vector loop of width " << VF
4319 <<
" because it will not generate any vector instructions.\n");
4326 <<
"LV: Not considering vector loop of width " << VF
4327 <<
" because it would cause replicated blocks to be generated,"
4328 <<
" which isn't allowed when optimizing for size.\n");
4332 if (isMoreProfitable(Candidate, ChosenFactor,
P->hasScalarTail()))
4333 ChosenFactor = Candidate;
4339 "There are conditional stores.",
4340 "store that is conditionally executed prevents vectorization",
4341 "ConditionalStore", ORE, OrigLoop);
4342 ChosenFactor = ScalarCost;
4346 !isMoreProfitable(ChosenFactor, ScalarCost,
4347 !CM.foldTailByMasking()))
dbgs()
4348 <<
"LV: Vectorization seems to be not beneficial, "
4349 <<
"but was forced by a user.\n");
4350 return ChosenFactor;
4359 auto *RedPhi = dyn_cast<VPReductionPHIRecipe>(&R);
4361 RecurrenceDescriptor::isFindLastRecurrenceKind(
4362 RedPhi->getRecurrenceKind());
4366bool LoopVectorizationPlanner::isCandidateForEpilogueVectorization(
4367 ElementCount VF)
const {
4370 if (
any_of(OrigLoop->getHeader()->phis(), [&](PHINode &Phi) {
4371 if (!Legal->isReductionVariable(&Phi))
4372 return Legal->isFixedOrderRecurrence(&Phi);
4374 Legal->getRecurrenceDescriptor(&Phi).getRecurrenceKind();
4375 return RecurrenceDescriptor::isFPMinMaxNumRecurrenceKind(Kind);
4386 for (
const auto &Entry :
Legal->getInductionVars()) {
4389 Entry.first->getIncomingValueForBlock(OrigLoop->getLoopLatch());
4390 for (User *U :
PostInc->users())
4394 for (User *U :
Entry.first->users())
4403 if (OrigLoop->getExitingBlock() != OrigLoop->getLoopLatch())
4417 if (!
TTI.preferEpilogueVectorization())
4422 if (
TTI.getMaxInterleaveFactor(VF) <= 1)
4427 :
TTI.getEpilogueVectorizationMinVF();
4435 LLVM_DEBUG(
dbgs() <<
"LEV: Epilogue vectorization is disabled.\n");
4439 if (!CM.isScalarEpilogueAllowed()) {
4440 LLVM_DEBUG(
dbgs() <<
"LEV: Unable to vectorize epilogue because no "
4441 "epilogue is allowed.\n");
4447 if (!isCandidateForEpilogueVectorization(MainLoopVF)) {
4448 LLVM_DEBUG(
dbgs() <<
"LEV: Unable to vectorize epilogue because the loop "
4449 "is not a supported candidate.\n");
4454 LLVM_DEBUG(
dbgs() <<
"LEV: Epilogue vectorization factor is forced.\n");
4457 return {ForcedEC, 0, 0};
4459 LLVM_DEBUG(
dbgs() <<
"LEV: Epilogue vectorization forced factor is not "
4464 if (OrigLoop->getHeader()->getParent()->hasOptSize()) {
4466 dbgs() <<
"LEV: Epilogue vectorization skipped due to opt for size.\n");
4470 if (!CM.isEpilogueVectorizationProfitable(MainLoopVF, IC)) {
4471 LLVM_DEBUG(
dbgs() <<
"LEV: Epilogue vectorization is not profitable for "
4482 Type *TCType = Legal->getWidestInductionType();
4483 const SCEV *RemainingIterations =
nullptr;
4484 unsigned MaxTripCount = 0;
4488 const SCEV *KnownMinTC;
4490 bool ScalableRemIter =
false;
4494 ScalableRemIter = ScalableTC;
4495 RemainingIterations =
4497 }
else if (ScalableTC) {
4500 SE.
getConstant(TCType, CM.getVScaleForTuning().value_or(1)));
4504 RemainingIterations =
4508 if (RemainingIterations->
isZero())
4518 << MaxTripCount <<
"\n");
4521 auto SkipVF = [&](
const SCEV *VF,
const SCEV *RemIter) ->
bool {
4524 for (
auto &NextVF : ProfitableVFs) {
4531 if ((!NextVF.Width.isScalable() && MainLoopVF.
isScalable() &&
4533 (NextVF.Width.isScalable() &&
4535 (!NextVF.Width.isScalable() && !MainLoopVF.
isScalable() &&
4544 if (!ScalableRemIter) {
4548 if (NextVF.Width.isScalable())
4555 if (Result.Width.isScalar() ||
4556 isMoreProfitable(NextVF, Result, MaxTripCount, !CM.foldTailByMasking(),
4563 << Result.Width <<
"\n");
4567std::pair<unsigned, unsigned>
4569 unsigned MinWidth = -1U;
4570 unsigned MaxWidth = 8;
4576 for (
const auto &PhiDescriptorPair :
Legal->getReductionVars()) {
4580 MinWidth = std::min(
4584 MaxWidth = std::max(MaxWidth,
4589 MinWidth = std::min<unsigned>(
4590 MinWidth,
DL.getTypeSizeInBits(
T->getScalarType()).getFixedValue());
4591 MaxWidth = std::max<unsigned>(
4592 MaxWidth,
DL.getTypeSizeInBits(
T->getScalarType()).getFixedValue());
4595 return {MinWidth, MaxWidth};
4603 for (
Instruction &
I : BB->instructionsWithoutDebug()) {
4617 if (!
Legal->isReductionVariable(PN))
4620 Legal->getRecurrenceDescriptor(PN);
4630 T = ST->getValueOperand()->getType();
4633 "Expected the load/store/recurrence type to be sized");
4661 if (!CM.isScalarEpilogueAllowed() &&
4662 !(CM.preferPredicatedLoop() && CM.useWideActiveLaneMask()))
4667 LLVM_DEBUG(
dbgs() <<
"LV: Preference for VP intrinsics indicated. "
4668 "Unroll factor forced to be 1.\n");
4673 if (!Legal->isSafeForAnyVectorWidth())
4682 const bool HasReductions =
4692 if (LoopCost == 0) {
4694 LoopCost = CM.expectedCost(VF);
4696 LoopCost = cost(Plan, VF);
4697 assert(LoopCost.
isValid() &&
"Expected to have chosen a VF with valid cost");
4708 for (
auto &Pair : R.MaxLocalUsers) {
4709 Pair.second = std::max(Pair.second, 1U);
4723 unsigned IC = UINT_MAX;
4725 for (
const auto &Pair : R.MaxLocalUsers) {
4726 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(Pair.first);
4729 << TTI.getRegisterClassName(Pair.first)
4730 <<
" register class\n");
4738 unsigned MaxLocalUsers = Pair.second;
4739 unsigned LoopInvariantRegs = 0;
4740 if (R.LoopInvariantRegs.contains(Pair.first))
4741 LoopInvariantRegs = R.LoopInvariantRegs[Pair.first];
4743 unsigned TmpIC =
llvm::bit_floor((TargetNumRegisters - LoopInvariantRegs) /
4747 TmpIC =
llvm::bit_floor((TargetNumRegisters - LoopInvariantRegs - 1) /
4748 std::max(1U, (MaxLocalUsers - 1)));
4751 IC = std::min(IC, TmpIC);
4755 unsigned MaxInterleaveCount = TTI.getMaxInterleaveFactor(VF);
4771 if (BestKnownTC && (BestKnownTC->isFixed() || VF.
isScalable())) {
4773 unsigned AvailableTC =
4779 if (CM.requiresScalarEpilogue(VF.
isVector()))
4782 unsigned InterleaveCountLB =
bit_floor(std::max(
4783 1u, std::min(AvailableTC / (EstimatedVF * 2), MaxInterleaveCount)));
4797 unsigned InterleaveCountUB =
bit_floor(std::max(
4798 1u, std::min(AvailableTC / EstimatedVF, MaxInterleaveCount)));
4799 MaxInterleaveCount = InterleaveCountLB;
4801 if (InterleaveCountUB != InterleaveCountLB) {
4802 unsigned TailTripCountUB =
4803 (AvailableTC % (EstimatedVF * InterleaveCountUB));
4804 unsigned TailTripCountLB =
4805 (AvailableTC % (EstimatedVF * InterleaveCountLB));
4808 if (TailTripCountUB == TailTripCountLB)
4809 MaxInterleaveCount = InterleaveCountUB;
4817 MaxInterleaveCount = InterleaveCountLB;
4821 assert(MaxInterleaveCount > 0 &&
4822 "Maximum interleave count must be greater than 0");
4826 if (IC > MaxInterleaveCount)
4827 IC = MaxInterleaveCount;
4830 IC = std::max(1u, IC);
4832 assert(IC > 0 &&
"Interleave count must be greater than 0.");
4836 if (VF.
isVector() && HasReductions) {
4837 LLVM_DEBUG(
dbgs() <<
"LV: Interleaving because of reductions.\n");
4845 bool ScalarInterleavingRequiresPredication =
4847 return Legal->blockNeedsPredication(BB);
4849 bool ScalarInterleavingRequiresRuntimePointerCheck =
4850 (VF.
isScalar() && Legal->getRuntimePointerChecking()->Need);
4855 <<
"LV: IC is " << IC <<
'\n'
4856 <<
"LV: VF is " << VF <<
'\n');
4857 const bool AggressivelyInterleaveReductions =
4858 TTI.enableAggressiveInterleaving(HasReductions);
4859 if (!ScalarInterleavingRequiresRuntimePointerCheck &&
4860 !ScalarInterleavingRequiresPredication && LoopCost <
SmallLoopCost) {
4869 unsigned NumStores = 0;
4870 unsigned NumLoads = 0;
4884 if (
unsigned StoreOps = InterleaveR->getNumStoreOperands())
4885 NumStores += StoreOps;
4887 NumLoads += InterleaveR->getNumDefinedValues();
4902 unsigned StoresIC = IC / (NumStores ? NumStores : 1);
4903 unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1);
4909 bool HasSelectCmpReductions =
4913 auto *RedR = dyn_cast<VPReductionPHIRecipe>(&R);
4914 return RedR && (RecurrenceDescriptor::isAnyOfRecurrenceKind(
4915 RedR->getRecurrenceKind()) ||
4916 RecurrenceDescriptor::isFindIVRecurrenceKind(
4917 RedR->getRecurrenceKind()));
4919 if (HasSelectCmpReductions) {
4920 LLVM_DEBUG(
dbgs() <<
"LV: Not interleaving select-cmp reductions.\n");
4929 if (HasReductions && OrigLoop->getLoopDepth() > 1) {
4930 bool HasOrderedReductions =
4933 auto *RedR = dyn_cast<VPReductionPHIRecipe>(&R);
4935 return RedR && RedR->isOrdered();
4937 if (HasOrderedReductions) {
4939 dbgs() <<
"LV: Not interleaving scalar ordered reductions.\n");
4944 SmallIC = std::min(SmallIC,
F);
4945 StoresIC = std::min(StoresIC,
F);
4946 LoadsIC = std::min(LoadsIC,
F);
4950 std::max(StoresIC, LoadsIC) > SmallIC) {
4952 dbgs() <<
"LV: Interleaving to saturate store or load ports.\n");
4953 return std::max(StoresIC, LoadsIC);
4958 if (VF.
isScalar() && AggressivelyInterleaveReductions) {
4962 return std::max(IC / 2, SmallIC);
4965 LLVM_DEBUG(
dbgs() <<
"LV: Interleaving to reduce branch cost.\n");
4971 if (AggressivelyInterleaveReductions) {
4980bool LoopVectorizationCostModel::useEmulatedMaskMemRefHack(
Instruction *
I,
4990 assert((isPredicatedInst(
I)) &&
4991 "Expecting a scalar emulated instruction");
5004 if (InstsToScalarize.contains(VF) ||
5005 PredicatedBBsAfterVectorization.contains(VF))
5011 ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF];
5021 ScalarCostsTy ScalarCosts;
5028 !useEmulatedMaskMemRefHack(&
I, VF) &&
5029 computePredInstDiscount(&
I, ScalarCosts, VF) >= 0) {
5030 for (
const auto &[
I, IC] : ScalarCosts)
5031 ScalarCostsVF.
insert({
I, IC});
5034 for (
const auto &[
I,
Cost] : ScalarCosts) {
5036 if (!CI || !CallWideningDecisions.contains({CI, VF}))
5039 CallWideningDecisions[{CI, VF}].Cost =
Cost;
5043 PredicatedBBsAfterVectorization[VF].insert(BB);
5045 if (Pred->getSingleSuccessor() == BB)
5046 PredicatedBBsAfterVectorization[VF].insert(Pred);
5054 assert(!isUniformAfterVectorization(PredInst, VF) &&
5055 "Instruction marked uniform-after-vectorization will be predicated");
5073 if (!
I->hasOneUse() || PredInst->
getParent() !=
I->getParent() ||
5074 isScalarAfterVectorization(
I, VF))
5079 if (isScalarWithPredication(
I, VF))
5092 for (
Use &U :
I->operands())
5094 if (isUniformAfterVectorization(J, VF))
5105 while (!Worklist.
empty()) {
5109 if (ScalarCosts.contains(
I))
5129 if (isScalarWithPredication(
I, VF) && !
I->getType()->isVoidTy()) {
5132 ScalarCost +=
TTI.getScalarizationOverhead(
5145 for (Use &U :
I->operands())
5148 "Instruction has non-scalar type");
5149 if (CanBeScalarized(J))
5151 else if (needsExtract(J, VF)) {
5163 ScalarCost /= getPredBlockCostDivisor(
CostKind,
I->getParent());
5167 Discount += VectorCost - ScalarCost;
5168 ScalarCosts[
I] = ScalarCost;
5184 ValuesToIgnoreForVF);
5191 for (
Instruction &
I : BB->instructionsWithoutDebug()) {
5214 LLVM_DEBUG(
dbgs() <<
"LV: Found an estimated cost of " <<
C <<
" for VF "
5215 << VF <<
" For instruction: " <<
I <<
'\n');
5243 const Loop *TheLoop) {
5250LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *
I,
5253 "Scalarization cost of instruction implies vectorization.");
5255 return InstructionCost::getInvalid();
5258 auto *SE = PSE.
getSE();
5289 if (isPredicatedInst(
I)) {
5294 VectorType::get(IntegerType::getInt1Ty(ValTy->
getContext()), VF);
5300 if (useEmulatedMaskMemRefHack(
I, VF))
5310LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *
I,
5316 int ConsecutiveStride =
Legal->isConsecutivePtr(ValTy, Ptr);
5318 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) &&
5319 "Stride should be 1 or -1 for consecutive memory access");
5322 if (
Legal->isMaskRequired(
I)) {
5323 unsigned IID =
I->getOpcode() == Instruction::Load
5324 ? Intrinsic::masked_load
5325 : Intrinsic::masked_store;
5327 MemIntrinsicCostAttributes(IID, VectorTy, Alignment, AS),
CostKind);
5334 bool Reverse = ConsecutiveStride < 0;
5342LoopVectorizationCostModel::getUniformMemOpCost(Instruction *
I,
5360 bool IsLoopInvariantStoreValue =
Legal->isInvariant(
SI->getValueOperand());
5368 if (!IsLoopInvariantStoreValue)
5375LoopVectorizationCostModel::getGatherScatterCost(Instruction *
I,
5383 if (!
Legal->isUniform(Ptr, VF))
5386 unsigned IID =
I->getOpcode() == Instruction::Load
5387 ? Intrinsic::masked_gather
5388 : Intrinsic::masked_scatter;
5391 MemIntrinsicCostAttributes(IID, VectorTy, Ptr,
5392 Legal->isMaskRequired(
I), Alignment,
I),
5397LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *
I,
5399 const auto *Group = getInterleavedAccessGroup(
I);
5400 assert(Group &&
"Fail to get an interleaved access group.");
5407 unsigned InterleaveFactor = Group->getFactor();
5408 auto *WideVecTy = VectorType::get(ValTy, VF * InterleaveFactor);
5411 SmallVector<unsigned, 4> Indices;
5412 for (
unsigned IF = 0; IF < InterleaveFactor; IF++)
5413 if (Group->getMember(IF))
5417 bool UseMaskForGaps =
5418 (Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed()) ||
5421 InsertPos->
getOpcode(), WideVecTy, Group->getFactor(), Indices,
5425 if (Group->isReverse()) {
5428 "Reverse masked interleaved access not supported.");
5429 Cost += Group->getNumMembers() *
5436std::optional<InstructionCost>
5443 return std::nullopt;
5461 return std::nullopt;
5472 Instruction *LastChain = InLoopReductionImmediateChains.lookup(RetI);
5474 return std::nullopt;
5480 ReductionPhi = InLoopReductionImmediateChains.at(ReductionPhi);
5489 BaseCost =
TTI.getMinMaxReductionCost(MinMaxID, VectorTy,
5492 BaseCost =
TTI.getArithmeticReductionCost(
5500 TTI.getArithmeticInstrCost(Instruction::FMul, VectorTy,
CostKind);
5517 if (RedOp && RdxDesc.
getOpcode() == Instruction::Add &&
5523 !
TheLoop->isLoopInvariant(Op0) && !
TheLoop->isLoopInvariant(Op1) &&
5535 TTI.getCastInstrCost(Op0->
getOpcode(), MulType, ExtType,
5538 TTI.getArithmeticInstrCost(Instruction::Mul, MulType,
CostKind);
5540 TTI.getCastInstrCost(RedOp->
getOpcode(), VectorTy, MulType,
5548 RedCost < ExtCost * 2 + MulCost + Ext2Cost + BaseCost)
5549 return I == RetI ? RedCost : 0;
5551 !
TheLoop->isLoopInvariant(RedOp)) {
5560 TTI.getCastInstrCost(RedOp->
getOpcode(), VectorTy, ExtType,
5562 if (RedCost.
isValid() && RedCost < BaseCost + ExtCost)
5563 return I == RetI ? RedCost : 0;
5564 }
else if (RedOp && RdxDesc.
getOpcode() == Instruction::Add &&
5568 !
TheLoop->isLoopInvariant(Op0) && !
TheLoop->isLoopInvariant(Op1)) {
5587 TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy,
CostKind);
5593 if (Op0Ty != LargestOpTy || Op1Ty != LargestOpTy) {
5594 Instruction *ExtraExtOp = (Op0Ty != LargestOpTy) ? Op0 : Op1;
5595 ExtraExtCost =
TTI.getCastInstrCost(
5602 (RedCost + ExtraExtCost) < (ExtCost0 + ExtCost1 + MulCost + BaseCost))
5603 return I == RetI ? RedCost : 0;
5607 TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy,
CostKind);
5613 if (RedCost.
isValid() && RedCost < MulCost + BaseCost)
5614 return I == RetI ? RedCost : 0;
5618 return I == RetI ? std::optional<InstructionCost>(BaseCost) : std::nullopt;
5622LoopVectorizationCostModel::getMemoryInstructionCost(
Instruction *
I,
5633 return TTI.getAddressComputationCost(PtrTy,
nullptr,
nullptr,
CostKind) +
5634 TTI.getMemoryOpCost(
I->getOpcode(), ValTy, Alignment, AS,
CostKind,
5637 return getWideningCost(
I, VF);
5641LoopVectorizationCostModel::getScalarizationOverhead(Instruction *
I,
5642 ElementCount VF)
const {
5647 return InstructionCost::getInvalid();
5681 Instruction::op_range
Ops = CI ? CI->
args() :
I->operands();
5686 for (
auto *V : filterExtractingOperands(
Ops, VF))
5713 if (
Legal->isUniformMemOp(
I, VF)) {
5714 auto IsLegalToScalarize = [&]() {
5734 return TheLoop->isLoopInvariant(
SI.getValueOperand());
5746 IsLegalToScalarize() ? getUniformMemOpCost(&
I, VF)
5752 if (GatherScatterCost < ScalarizationCost)
5762 int ConsecutiveStride =
Legal->isConsecutivePtr(
5764 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) &&
5765 "Expected consecutive stride.");
5774 unsigned NumAccesses = 1;
5777 assert(Group &&
"Fail to get an interleaved access group.");
5783 NumAccesses = Group->getNumMembers();
5785 InterleaveCost = getInterleaveGroupCost(&
I, VF);
5790 ? getGatherScatterCost(&
I, VF) * NumAccesses
5794 getMemInstScalarizationCost(&
I, VF) * NumAccesses;
5800 if (InterleaveCost <= GatherScatterCost &&
5801 InterleaveCost < ScalarizationCost) {
5803 Cost = InterleaveCost;
5804 }
else if (GatherScatterCost < ScalarizationCost) {
5806 Cost = GatherScatterCost;
5809 Cost = ScalarizationCost;
5816 for (
unsigned Idx = 0; Idx < Group->getFactor(); ++Idx) {
5817 if (
auto *
I = Group->getMember(Idx)) {
5819 getMemInstScalarizationCost(
I, VF));
5835 if (
TTI.prefersVectorizedAddressing())
5844 if (PtrDef &&
TheLoop->contains(PtrDef) &&
5852 while (!Worklist.
empty()) {
5854 for (
auto &
Op :
I->operands())
5857 AddrDefs.
insert(InstOp).second)
5861 auto UpdateMemOpUserCost = [
this, VF](
LoadInst *
LI) {
5865 for (
User *U :
LI->users()) {
5875 for (
auto *
I : AddrDefs) {
5896 for (
unsigned Idx = 0; Idx < Group->getFactor(); ++Idx) {
5897 if (
Instruction *Member = Group->getMember(Idx)) {
5901 getMemoryInstructionCost(Member,
5903 : getMemInstScalarizationCost(Member, VF);
5916 ForcedScalars[VF].insert(
I);
5923 "Trying to set a vectorization decision for a scalar VF");
5925 auto ForcedScalar = ForcedScalars.find(VF);
5940 for (
auto &ArgOp : CI->
args())
5949 TTI.getCallInstrCost(ScalarFunc, ScalarRetTy, ScalarTys,
CostKind);
5959 "Unexpected valid cost for scalarizing scalable vectors");
5966 if (VF.
isVector() && ((ForcedScalar != ForcedScalars.end() &&
5967 ForcedScalar->second.contains(CI)) ||
5975 bool MaskRequired =
Legal->isMaskRequired(CI);
5978 for (
Type *ScalarTy : ScalarTys)
5987 std::nullopt, *RedCost);
5998 if (Info.Shape.VF != VF)
6002 if (MaskRequired && !Info.isMasked())
6006 bool ParamsOk =
true;
6008 switch (Param.ParamKind) {
6014 if (!
PSE.getSE()->isLoopInvariant(
PSE.getSCEV(ScalarParam),
6051 VectorCost =
TTI.getCallInstrCost(
nullptr, RetTy, Tys,
CostKind);
6084 return !OpI || !
TheLoop->contains(OpI) ||
6088 [
this](
Value *
Op) { return shouldConsiderInvariant(Op); }));
6100 return InstsToScalarize[VF][
I];
6103 auto ForcedScalar = ForcedScalars.find(VF);
6104 if (VF.
isVector() && ForcedScalar != ForcedScalars.end()) {
6105 auto InstSet = ForcedScalar->second;
6106 if (InstSet.count(
I))
6111 Type *RetTy =
I->getType();
6114 auto *SE =
PSE.getSE();
6118 [[maybe_unused]]
auto HasSingleCopyAfterVectorization =
6123 auto Scalarized = InstsToScalarize.find(VF);
6124 assert(Scalarized != InstsToScalarize.end() &&
6125 "VF not yet analyzed for scalarization profitability");
6126 return !Scalarized->second.count(
I) &&
6128 auto *UI = cast<Instruction>(U);
6129 return !Scalarized->second.count(UI);
6138 assert(
I->getOpcode() == Instruction::GetElementPtr ||
6139 I->getOpcode() == Instruction::PHI ||
6140 (
I->getOpcode() == Instruction::BitCast &&
6141 I->getType()->isPointerTy()) ||
6142 HasSingleCopyAfterVectorization(
I, VF));
6148 !
TTI.getNumberOfParts(VectorTy))
6152 switch (
I->getOpcode()) {
6153 case Instruction::GetElementPtr:
6159 case Instruction::Br: {
6166 bool ScalarPredicatedBB =
false;
6169 (PredicatedBBsAfterVectorization[VF].count(BI->
getSuccessor(0)) ||
6170 PredicatedBBsAfterVectorization[VF].count(BI->
getSuccessor(1))) &&
6172 ScalarPredicatedBB =
true;
6174 if (ScalarPredicatedBB) {
6182 TTI.getScalarizationOverhead(
6190 return TTI.getCFInstrCost(Instruction::Br,
CostKind);
6198 case Instruction::Switch: {
6200 return TTI.getCFInstrCost(Instruction::Switch,
CostKind);
6202 return Switch->getNumCases() *
6203 TTI.getCmpSelInstrCost(
6205 toVectorTy(Switch->getCondition()->getType(), VF),
6209 case Instruction::PHI: {
6226 Type *ResultTy = Phi->getType();
6232 auto *Phi = dyn_cast<PHINode>(U);
6233 if (Phi && Phi->getParent() == TheLoop->getHeader())
6238 auto &ReductionVars =
Legal->getReductionVars();
6239 auto Iter = ReductionVars.find(HeaderUser);
6240 if (Iter != ReductionVars.end() &&
6242 Iter->second.getRecurrenceKind()))
6245 return (Phi->getNumIncomingValues() - 1) *
6246 TTI.getCmpSelInstrCost(
6247 Instruction::Select,
toVectorTy(ResultTy, VF),
6257 Intrinsic::vp_merge,
toVectorTy(Phi->getType(), VF),
6258 {toVectorTy(Type::getInt1Ty(Phi->getContext()), VF)});
6262 return TTI.getCFInstrCost(Instruction::PHI,
CostKind);
6264 case Instruction::UDiv:
6265 case Instruction::SDiv:
6266 case Instruction::URem:
6267 case Instruction::SRem:
6271 ScalarCost : SafeDivisorCost;
6275 case Instruction::Add:
6276 case Instruction::Sub: {
6277 auto Info =
Legal->getHistogramInfo(
I);
6284 if (!RHS || RHS->getZExtValue() != 1)
6286 TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy,
CostKind);
6290 Type *ScalarTy =
I->getType();
6294 {PtrTy, ScalarTy, MaskTy});
6297 return TTI.getIntrinsicInstrCost(ICA,
CostKind) + MulCost +
6298 TTI.getArithmeticInstrCost(
I->getOpcode(), VectorTy,
CostKind);
6302 case Instruction::FAdd:
6303 case Instruction::FSub:
6304 case Instruction::Mul:
6305 case Instruction::FMul:
6306 case Instruction::FDiv:
6307 case Instruction::FRem:
6308 case Instruction::Shl:
6309 case Instruction::LShr:
6310 case Instruction::AShr:
6311 case Instruction::And:
6312 case Instruction::Or:
6313 case Instruction::Xor: {
6317 if (
I->getOpcode() == Instruction::Mul &&
6318 ((
TheLoop->isLoopInvariant(
I->getOperand(0)) &&
6319 PSE.getSCEV(
I->getOperand(0))->isOne()) ||
6320 (
TheLoop->isLoopInvariant(
I->getOperand(1)) &&
6321 PSE.getSCEV(
I->getOperand(1))->isOne())))
6330 Value *Op2 =
I->getOperand(1);
6336 auto Op2Info =
TTI.getOperandInfo(Op2);
6342 return TTI.getArithmeticInstrCost(
6344 {TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None},
6345 Op2Info, Operands,
I,
TLI);
6347 case Instruction::FNeg: {
6348 return TTI.getArithmeticInstrCost(
6350 {TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None},
6351 {TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None},
6352 I->getOperand(0),
I);
6354 case Instruction::Select: {
6359 const Value *Op0, *Op1;
6370 return TTI.getArithmeticInstrCost(
6372 VectorTy,
CostKind, {Op1VK, Op1VP}, {Op2VK, Op2VP}, {Op0, Op1},
I);
6375 Type *CondTy =
SI->getCondition()->getType();
6381 Pred = Cmp->getPredicate();
6382 return TTI.getCmpSelInstrCost(
I->getOpcode(), VectorTy, CondTy, Pred,
6383 CostKind, {TTI::OK_AnyValue, TTI::OP_None},
6384 {TTI::OK_AnyValue, TTI::OP_None},
I);
6386 case Instruction::ICmp:
6387 case Instruction::FCmp: {
6388 Type *ValTy =
I->getOperand(0)->getType();
6394 MinBWs[
I] == MinBWs[Op0AsInstruction]) &&
6395 "if both the operand and the compare are marked for "
6396 "truncation, they must have the same bitwidth");
6401 return TTI.getCmpSelInstrCost(
6404 {TTI::OK_AnyValue, TTI::OP_None}, {TTI::OK_AnyValue, TTI::OP_None},
I);
6406 case Instruction::Store:
6407 case Instruction::Load: {
6412 "CM decision should be taken at this point");
6419 return getMemoryInstructionCost(
I, VF);
6421 case Instruction::BitCast:
6422 if (
I->getType()->isPointerTy())
6425 case Instruction::ZExt:
6426 case Instruction::SExt:
6427 case Instruction::FPToUI:
6428 case Instruction::FPToSI:
6429 case Instruction::FPExt:
6430 case Instruction::PtrToInt:
6431 case Instruction::IntToPtr:
6432 case Instruction::SIToFP:
6433 case Instruction::UIToFP:
6434 case Instruction::Trunc:
6435 case Instruction::FPTrunc: {
6439 "Expected a load or a store!");
6465 unsigned Opcode =
I->getOpcode();
6468 if (Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) {
6471 CCH = ComputeCCH(Store);
6474 else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt ||
6475 Opcode == Instruction::FPExt) {
6477 CCH = ComputeCCH(Load);
6485 return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(),
6486 Trunc->getSrcTy(), CCH,
CostKind, Trunc);
6493 Type *SrcScalarTy =
I->getOperand(0)->getType();
6505 (
I->getOpcode() == Instruction::ZExt ||
6506 I->getOpcode() == Instruction::SExt))
6510 return TTI.getCastInstrCost(Opcode, VectorTy, SrcVecTy, CCH,
CostKind,
I);
6512 case Instruction::Call:
6514 case Instruction::ExtractValue:
6516 case Instruction::Alloca:
6521 return TTI.getArithmeticInstrCost(Instruction::Mul, RetTy,
CostKind);
6524 return TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy,
CostKind);
6539 auto IsLiveOutDead = [
this, RequiresScalarEpilogue](
User *U) {
6540 return RequiresScalarEpilogue &&
6554 all_of(
I.users(), [
this, IsLiveOutDead](
User *U) {
6555 return VecValuesToIgnore.contains(U) ||
6556 ValuesToIgnore.contains(U) || IsLiveOutDead(U);
6565 if (Group->getInsertPos() == &
I)
6568 DeadInterleavePointerOps.
push_back(PointerOp);
6574 if (Br->isConditional())
6581 for (
unsigned I = 0;
I != DeadInterleavePointerOps.
size(); ++
I) {
6584 Instruction *UI = cast<Instruction>(U);
6585 return !VecValuesToIgnore.contains(U) &&
6586 (!isAccessInterleaved(UI) ||
6587 getInterleavedAccessGroup(UI)->getInsertPos() == UI);
6607 for (
unsigned I = 0;
I != DeadOps.
size(); ++
I) {
6619 if ((ThenEmpty && ElseEmpty) ||
6621 ElseBB->
phis().empty()) ||
6623 ThenBB->
phis().empty())) {
6635 return !VecValuesToIgnore.contains(U) &&
6636 !ValuesToIgnore.contains(U) && !IsLiveOutDead(U);
6644 [
this](
User *U) { return ValuesToIgnore.contains(U); }))
6653 for (
const auto &Reduction :
Legal->getReductionVars()) {
6660 for (
const auto &Induction :
Legal->getInductionVars()) {
6668 if (!InLoopReductions.empty())
6671 for (
const auto &Reduction :
Legal->getReductionVars()) {
6672 PHINode *Phi = Reduction.first;
6694 !
TTI.preferInLoopReduction(Kind, Phi->getType()))
6702 bool InLoop = !ReductionOperations.
empty();
6705 InLoopReductions.insert(Phi);
6708 for (
auto *
I : ReductionOperations) {
6709 InLoopReductionImmediateChains[
I] = LastChain;
6713 LLVM_DEBUG(
dbgs() <<
"LV: Using " << (InLoop ?
"inloop" :
"out of loop")
6714 <<
" reduction for phi: " << *Phi <<
"\n");
6727 unsigned WidestType;
6731 TTI.enableScalableVectorization()
6736 unsigned N =
RegSize.getKnownMinValue() / WidestType;
6747 if (!OrigLoop->isInnermost()) {
6757 <<
"overriding computed VF.\n");
6760 }
else if (UserVF.
isScalable() && !TTI.supportsScalableVectors() &&
6762 LLVM_DEBUG(
dbgs() <<
"LV: Not vectorizing. Scalable VF requested, but "
6763 <<
"not supported by the target.\n");
6765 "Scalable vectorization requested but not supported by the target",
6766 "the scalable user-specified vectorization width for outer-loop "
6767 "vectorization cannot be used because the target does not support "
6768 "scalable vectors.",
6769 "ScalableVFUnfeasible", ORE, OrigLoop);
6774 "VF needs to be a power of two");
6776 <<
"VF " << VF <<
" to build VPlans.\n");
6786 return {VF, 0 , 0 };
6790 dbgs() <<
"LV: Not vectorizing. Inner loops aren't supported in the "
6791 "VPlan-native path.\n");
6796 assert(OrigLoop->isInnermost() &&
"Inner loop expected.");
6797 CM.collectValuesToIgnore();
6798 CM.collectElementTypesForWidening();
6805 if (CM.blockNeedsPredicationForAnyReason(OrigLoop->getHeader()) &&
6809 <<
"LV: Invalidate all interleaved groups due to fold-tail by masking "
6810 "which requires masked-interleaved support.\n");
6811 if (CM.InterleaveInfo.invalidateGroups())
6815 CM.invalidateCostModelingDecisions();
6818 if (CM.foldTailByMasking())
6819 Legal->prepareToFoldTailByMasking();
6826 "UserVF ignored because it may be larger than the maximal safe VF",
6827 "InvalidUserVF", ORE, OrigLoop);
6830 "VF needs to be a power of two");
6833 CM.collectInLoopReductions();
6834 if (CM.selectUserVectorizationFactor(UserVF)) {
6836 buildVPlansWithVPRecipes(UserVF, UserVF);
6841 "InvalidCost", ORE, OrigLoop);
6854 CM.collectInLoopReductions();
6855 for (
const auto &VF : VFCandidates) {
6857 CM.collectNonVectorizedAndSetWideningDecisions(VF);
6876 return CM.isUniformAfterVectorization(
I, VF);
6880 return CM.ValuesToIgnore.contains(UI) ||
6881 (IsVector &&
CM.VecValuesToIgnore.contains(UI)) ||
6886 return CM.getPredBlockCostDivisor(
CostKind, BB);
6905 for (
const auto &[
IV, IndDesc] :
Legal->getInductionVars()) {
6907 IV->getIncomingValueForBlock(OrigLoop->getLoopLatch()));
6909 for (
unsigned I = 0;
I != IVInsts.
size();
I++) {
6910 for (
Value *
Op : IVInsts[
I]->operands()) {
6912 if (
Op ==
IV || !OpI || !OrigLoop->contains(OpI) || !
Op->hasOneUse())
6918 for (User *U :
IV->users()) {
6931 if (TC == VF && !CM.foldTailByMasking())
6935 for (Instruction *IVInst : IVInsts) {
6940 dbgs() <<
"Cost of " << InductionCost <<
" for VF " << VF
6941 <<
": induction instruction " << *IVInst <<
"\n";
6943 Cost += InductionCost;
6953 CM.TheLoop->getExitingBlocks(Exiting);
6954 SetVector<Instruction *> ExitInstrs;
6956 for (BasicBlock *EB : Exiting) {
6961 ExitInstrs.
insert(CondI);
6965 for (
unsigned I = 0;
I != ExitInstrs.
size(); ++
I) {
6967 if (!OrigLoop->contains(CondI) ||
6972 dbgs() <<
"Cost of " << CondICost <<
" for VF " << VF
6973 <<
": exit condition instruction " << *CondI <<
"\n";
6979 any_of(OpI->users(), [&ExitInstrs](User *U) {
6980 return !ExitInstrs.contains(cast<Instruction>(U));
6992 for (BasicBlock *BB : OrigLoop->blocks()) {
6996 if (BB == OrigLoop->getLoopLatch())
6998 auto BranchCost = CostCtx.
getLegacyCost(BB->getTerminator(), VF);
7005 for (Instruction *ForcedScalar : CM.ForcedScalars[VF]) {
7011 dbgs() <<
"Cost of " << ForcedCost <<
" for VF " << VF
7012 <<
": forced scalar " << *ForcedScalar <<
"\n";
7016 for (
const auto &[Scalarized, ScalarCost] : CM.InstsToScalarize[VF]) {
7021 dbgs() <<
"Cost of " << ScalarCost <<
" for VF " << VF
7022 <<
": profitable to scalarize " << *Scalarized <<
"\n";
7031 ElementCount VF)
const {
7032 VPCostContext CostCtx(CM.TTI, *CM.TLI, Plan, CM, CM.CostKind, PSE, OrigLoop);
7040 <<
" (Estimated cost per lane: ");
7042 double CostPerLane = double(
Cost.
getValue()) / EstimatedWidth;
7065 return &WidenMem->getIngredient();
7074 if (!VPI || VPI->getOpcode() != Instruction::Select)
7078 switch (WR->getOpcode()) {
7079 case Instruction::UDiv:
7080 case Instruction::SDiv:
7081 case Instruction::URem:
7082 case Instruction::SRem:
7095 auto *IG =
IR->getInterleaveGroup();
7096 unsigned NumMembers = IG->getNumMembers();
7097 for (
unsigned I = 0;
I != NumMembers; ++
I) {
7115 if (VPR->isPartialReduction())
7127 if (WidenMemR->isReverse()) {
7133 if (StoreR->getStoredValue()->isDefinedOutsideLoopRegions())
7137 if (StoreR->getStoredValue()->isDefinedOutsideLoopRegions())
7152 if (RepR->isSingleScalar() &&
7154 RepR->getUnderlyingInstr(), VF))
7157 if (
Instruction *UI = GetInstructionForCost(&R)) {
7162 if (
match(&R,
m_Cmp(Pred, m_VPValue(), m_VPValue())) &&
7174 return any_of(TheLoop->
blocks(), [&SeenInstrs, &CostCtx,
7176 return any_of(*BB, [&SeenInstrs, &CostCtx, TheLoop, BB](Instruction &I) {
7179 if (isa<PHINode>(&I) && BB == TheLoop->getHeader() &&
7180 CostCtx.CM.Legal->isInductionPhi(cast<PHINode>(&I)))
7182 return !SeenInstrs.contains(&I) && !CostCtx.skipCostComputation(&I, true);
7192 VPlan &FirstPlan = *VPlans[0];
7198 ?
"Reciprocal Throughput\n"
7200 ?
"Instruction Latency\n"
7203 ?
"Code Size and Latency\n"
7208 "More than a single plan/VF w/o any plan having scalar VF");
7212 LLVM_DEBUG(
dbgs() <<
"LV: Scalar loop costs: " << ScalarCost <<
".\n");
7217 if (ForceVectorization) {
7224 for (
auto &
P : VPlans) {
7226 P->vectorFactors().end());
7230 return CM.shouldConsiderRegPressureForVF(VF);
7234 for (
unsigned I = 0;
I < VFs.
size();
I++) {
7241 <<
"LV: Not considering vector loop of width " << VF
7242 <<
" because it will not generate any vector instructions.\n");
7248 <<
"LV: Not considering vector loop of width " << VF
7249 <<
" because it would cause replicated blocks to be generated,"
7250 <<
" which isn't allowed when optimizing for size.\n");
7257 if (CM.shouldConsiderRegPressureForVF(VF) &&
7259 LLVM_DEBUG(
dbgs() <<
"LV(REG): Not considering vector loop of width "
7260 << VF <<
" because it uses too many registers\n");
7264 if (isMoreProfitable(CurrentFactor, BestFactor,
P->hasScalarTail()))
7265 BestFactor = CurrentFactor;
7268 if (isMoreProfitable(CurrentFactor, ScalarFactor,
P->hasScalarTail()))
7269 ProfitableVFs.push_back(CurrentFactor);
7285 VPCostContext CostCtx(CM.TTI, *CM.TLI, BestPlan, CM, CM.CostKind, CM.PSE,
7287 precomputeCosts(BestPlan, BestFactor.
Width, CostCtx);
7294 bool UsesEVLGatherScatter =
7298 return any_of(*VPBB, [](VPRecipeBase &R) {
7299 return isa<VPWidenLoadEVLRecipe, VPWidenStoreEVLRecipe>(&R) &&
7300 !cast<VPWidenMemoryRecipe>(&R)->isConsecutive();
7304 (BestFactor.Width == LegacyVF.Width || BestPlan.hasEarlyExit() ||
7305 !
Legal->getLAI()->getSymbolicStrides().empty() || UsesEVLGatherScatter ||
7307 getPlanFor(BestFactor.Width), CostCtx, OrigLoop, BestFactor.Width) ||
7309 getPlanFor(LegacyVF.Width), CostCtx, OrigLoop, LegacyVF.Width)) &&
7310 " VPlan cost model and legacy cost model disagreed");
7311 assert((BestFactor.Width.isScalar() || BestFactor.ScalarCost > 0) &&
7312 "when vectorizing, the scalar cost must be computed.");
7315 LLVM_DEBUG(
dbgs() <<
"LV: Selecting VF: " << BestFactor.Width <<
".\n");
7336 bool IsFindIV =
false;
7339 BackedgeVal = EpiRedResult->getOperand(EpiRedResult->getNumOperands() - 1);
7340 else if (matchFindIVResult(EpiRedResult, m_VPValue(BackedgeVal), m_VPValue()))
7347 if (!EpiRedHeaderPhi) {
7356 Value *MainResumeValue;
7360 "unexpected start recipe");
7361 MainResumeValue = VPI->getOperand(0)->getUnderlyingValue();
7363 MainResumeValue = EpiRedHeaderPhi->getStartValue()->getUnderlyingValue();
7365 [[maybe_unused]]
Value *StartV =
7366 EpiRedResult->getOperand(0)->getLiveInIRValue();
7369 "AnyOf expected to start with ICMP_NE");
7370 assert(Cmp->getOperand(1) == StartV &&
7371 "AnyOf expected to start by comparing main resume value to original "
7373 MainResumeValue = Cmp->getOperand(0);
7374 }
else if (IsFindIV) {
7390 "Trying to execute plan with unsupported VF");
7392 "Trying to execute plan with unsupported UF");
7394 ++LoopsEarlyExitVectorized;
7401 bool HasBranchWeights =
7403 if (HasBranchWeights) {
7404 std::optional<unsigned> VScale = CM.getVScaleForTuning();
7406 BestVPlan, BestVF, VScale);
7411 attachRuntimeChecks(BestVPlan, ILV.
RTChecks, HasBranchWeights);
7424 OrigLoop->getStartLoc(),
7425 OrigLoop->getHeader())
7426 <<
"Created vector loop never executes due to insufficient trip "
7450 BestVPlan, VectorPH, CM.foldTailByMasking(),
7451 CM.requiresScalarEpilogue(BestVF.
isVector()));
7463 assert(VectorizingEpilogue &&
"should only re-use the existing trip "
7464 "count during epilogue vectorization");
7469 OrigLoop->getParentLoop(),
7470 Legal->getWidestInductionType());
7472#ifdef EXPENSIVE_CHECKS
7473 assert(DT->verify(DominatorTree::VerificationLevel::Fast));
7484 "final VPlan is invalid");
7491 if (!Exit->hasPredecessors())
7513 MDNode *LID = OrigLoop->getLoopID();
7514 unsigned OrigLoopInvocationWeight = 0;
7515 std::optional<unsigned> OrigAverageTripCount =
7527 bool DisableRuntimeUnroll = !ILV.
RTChecks.hasChecks() && !BestVF.
isScalar();
7529 HeaderVPBB ? LI->getLoopFor(State.CFG.VPBB2IRBB.lookup(HeaderVPBB))
7531 HeaderVPBB, BestVPlan, VectorizingEpilogue, LID, OrigAverageTripCount,
7532 OrigLoopInvocationWeight,
7534 DisableRuntimeUnroll);
7542 return ExpandedSCEVs;
7557 EPI.EpilogueIterationCountCheck =
7559 EPI.EpilogueIterationCountCheck->setName(
"iter.check");
7569 EPI.MainLoopIterationCountCheck =
7578 dbgs() <<
"Create Skeleton for epilogue vectorized loop (first pass)\n"
7579 <<
"Main Loop VF:" <<
EPI.MainLoopVF
7580 <<
", Main Loop UF:" <<
EPI.MainLoopUF
7581 <<
", Epilogue Loop VF:" <<
EPI.EpilogueVF
7582 <<
", Epilogue Loop UF:" <<
EPI.EpilogueUF <<
"\n";
7588 dbgs() <<
"intermediate fn:\n"
7589 << *
OrigLoop->getHeader()->getParent() <<
"\n";
7595 assert(Bypass &&
"Expected valid bypass basic block.");
7599 VectorPH, ForEpilogue ?
EPI.EpilogueVF :
EPI.MainLoopVF,
7600 ForEpilogue ?
EPI.EpilogueUF :
EPI.MainLoopUF);
7604 TCCheckBlock->
setName(
"vector.main.loop.iter.check");
7630 return TCCheckBlock;
7643 OriginalScalarPH->
setName(
"vec.epilog.iter.check");
7651 R.moveBefore(*NewEntry, NewEntry->
end());
7655 Plan.setEntry(NewEntry);
7658 return OriginalScalarPH;
7663 dbgs() <<
"Create Skeleton for epilogue vectorized loop (second pass)\n"
7664 <<
"Epilogue Loop VF:" <<
EPI.EpilogueVF
7665 <<
", Epilogue Loop UF:" <<
EPI.EpilogueUF <<
"\n";
7671 dbgs() <<
"final fn:\n" << *
OrigLoop->getHeader()->getParent() <<
"\n";
7678 VPI->
getOpcode() == Instruction::Store) &&
7679 "Must be called with either a load or store");
7686 "CM decision should be taken at this point.");
7699 if (
Legal->isMaskRequired(
I))
7724 :
GEP->getNoWrapFlags().withoutNoUnsignedWrap();
7730 GEP ?
GEP->getNoWrapFlags()
7734 Builder.insert(VectorPtr);
7738 if (VPI->
getOpcode() == Instruction::Load) {
7740 auto *LoadR =
new VPWidenLoadRecipe(*Load, Ptr, Mask, Consecutive,
Reverse,
7741 *VPI,
Load->getDebugLoc());
7743 Builder.insert(LoadR);
7745 LoadR->getDebugLoc());
7754 Store->getDebugLoc());
7755 return new VPWidenStoreRecipe(*Store, Ptr, StoredVal, Mask, Consecutive,
7760VPRecipeBuilder::tryToOptimizeInductionTruncate(
VPInstruction *VPI,
7770 auto IsOptimizableIVTruncate =
7771 [&](
Instruction *
K) -> std::function<
bool(ElementCount)> {
7772 return [=](ElementCount VF) ->
bool {
7773 return CM.isOptimizableIVTruncate(K, VF);
7778 IsOptimizableIVTruncate(
I),
Range))
7785 const InductionDescriptor &IndDesc =
WidenIV->getInductionDescriptor();
7793 return new VPWidenIntOrFpInductionRecipe(
7794 Phi, Start, Step, &Plan.getVF(), IndDesc,
I, Flags, VPI->
getDebugLoc());
7801 [
this, CI](ElementCount VF) {
7802 return CM.isScalarWithPredication(CI, VF);
7810 if (
ID && (
ID == Intrinsic::assume ||
ID == Intrinsic::lifetime_end ||
7811 ID == Intrinsic::lifetime_start ||
ID == Intrinsic::sideeffect ||
7812 ID == Intrinsic::pseudoprobe ||
7813 ID == Intrinsic::experimental_noalias_scope_decl))
7820 bool ShouldUseVectorIntrinsic =
7822 [&](ElementCount VF) ->
bool {
7823 return CM.getCallWideningDecision(CI, VF).Kind ==
7827 if (ShouldUseVectorIntrinsic)
7828 return new VPWidenIntrinsicRecipe(*CI,
ID,
Ops, CI->
getType(), *VPI, *VPI,
7832 std::optional<unsigned> MaskPos;
7836 [&](ElementCount VF) ->
bool {
7851 LoopVectorizationCostModel::CallWideningDecision Decision =
7852 CM.getCallWideningDecision(CI, VF);
7862 if (ShouldUseVectorCall) {
7863 if (MaskPos.has_value()) {
7871 VPValue *
Mask = Legal->isMaskRequired(CI)
7875 Ops.insert(
Ops.begin() + *MaskPos, Mask);
7879 return new VPWidenCallRecipe(CI, Variant,
Ops, *VPI, *VPI,
7888 !
isa<StoreInst>(
I) &&
"Instruction should have been handled earlier");
7891 auto WillScalarize = [
this,
I](ElementCount VF) ->
bool {
7892 return CM.isScalarAfterVectorization(
I, VF) ||
7893 CM.isProfitableToScalarize(
I, VF) ||
7894 CM.isScalarWithPredication(
I, VF);
7905 case Instruction::SDiv:
7906 case Instruction::UDiv:
7907 case Instruction::SRem:
7908 case Instruction::URem: {
7911 if (CM.isPredicatedInst(
I)) {
7914 VPValue *One = Plan.getConstantInt(
I->getType(), 1u);
7922 case Instruction::Add:
7923 case Instruction::And:
7924 case Instruction::AShr:
7925 case Instruction::FAdd:
7926 case Instruction::FCmp:
7927 case Instruction::FDiv:
7928 case Instruction::FMul:
7929 case Instruction::FNeg:
7930 case Instruction::FRem:
7931 case Instruction::FSub:
7932 case Instruction::ICmp:
7933 case Instruction::LShr:
7934 case Instruction::Mul:
7935 case Instruction::Or:
7936 case Instruction::Select:
7937 case Instruction::Shl:
7938 case Instruction::Sub:
7939 case Instruction::Xor:
7940 case Instruction::Freeze:
7941 return new VPWidenRecipe(*
I, VPI->
operands(), *VPI, *VPI,
7943 case Instruction::ExtractValue: {
7946 assert(EVI->getNumIndices() == 1 &&
"Expected one extractvalue index");
7947 unsigned Idx = EVI->getIndices()[0];
7948 NewOps.push_back(Plan.getConstantInt(32, Idx));
7949 return new VPWidenRecipe(*
I, NewOps, *VPI, *VPI, VPI->
getDebugLoc());
7957 unsigned Opcode =
HI->Update->getOpcode();
7958 assert((Opcode == Instruction::Add || Opcode == Instruction::Sub) &&
7959 "Histogram update operation must be an Add or Sub");
7969 if (Legal->isMaskRequired(
HI->Store))
7972 return new VPHistogramRecipe(Opcode, HGramOps, VPI->
getDebugLoc());
7979 [&](
ElementCount VF) {
return CM.isUniformAfterVectorization(
I, VF); },
7982 bool IsPredicated = CM.isPredicatedInst(
I);
7990 case Intrinsic::assume:
7991 case Intrinsic::lifetime_start:
7992 case Intrinsic::lifetime_end:
8014 VPValue *BlockInMask =
nullptr;
8015 if (!IsPredicated) {
8019 LLVM_DEBUG(
dbgs() <<
"LV: Scalarizing and predicating:" << *
I <<
"\n");
8030 assert((
Range.Start.isScalar() || !IsUniform || !IsPredicated ||
8032 "Should not predicate a uniform recipe");
8042 assert(!R->isPhi() &&
"phis must be handled earlier");
8048 if (VPI->
getOpcode() == Instruction::Trunc &&
8049 (Recipe = tryToOptimizeInductionTruncate(VPI,
Range)))
8057 if (VPI->
getOpcode() == Instruction::Call)
8058 return tryToWidenCall(VPI,
Range);
8061 if (VPI->
getOpcode() == Instruction::Store)
8063 return tryToWidenHistogram(*HistInfo, VPI);
8065 if (VPI->
getOpcode() == Instruction::Load ||
8067 return tryToWidenMemory(VPI,
Range);
8069 if (!shouldWiden(Instr,
Range))
8072 if (VPI->
getOpcode() == Instruction::GetElementPtr)
8080 CastR->getResultType(), CI, *VPI, *VPI,
8084 return tryToWiden(VPI);
8087void LoopVectorizationPlanner::buildVPlansWithVPRecipes(
ElementCount MinVF,
8096 OrigLoop, LI, DT, PSE.
getSE());
8101 LVer.prepareNoAliasMetadata();
8107 OrigLoop, *LI,
Legal->getWidestInductionType(),
8112 *VPlan0, PSE, *OrigLoop,
Legal->getInductionVars(),
8113 Legal->getReductionVars(),
Legal->getFixedOrderRecurrences(),
8116 auto MaxVFTimes2 = MaxVF * 2;
8118 VFRange SubRange = {VF, MaxVFTimes2};
8119 if (
auto Plan = tryToBuildVPlanWithVPRecipes(
8120 std::unique_ptr<VPlan>(VPlan0->duplicate()), SubRange, &LVer)) {
8125 CM.getMinimalBitwidths());
8128 if (CM.foldTailWithEVL()) {
8130 CM.getMaxSafeElements());
8134 VPlans.push_back(std::move(Plan));
8140VPlanPtr LoopVectorizationPlanner::tryToBuildVPlanWithVPRecipes(
8143 using namespace llvm::VPlanPatternMatch;
8144 SmallPtrSet<const InterleaveGroup<Instruction> *, 1> InterleaveGroups;
8151 bool RequiresScalarEpilogueCheck =
8153 [
this](ElementCount VF) {
8154 return !CM.requiresScalarEpilogue(VF.
isVector());
8159 CM.foldTailByMasking());
8167 bool IVUpdateMayOverflow =
false;
8168 for (ElementCount VF :
Range)
8176 VPRegionBlock *LoopRegion = Plan->getVectorLoopRegion();
8182 m_VPInstruction<Instruction::Add>(
8184 "Did not find the canonical IV increment");
8197 for (InterleaveGroup<Instruction> *IG : IAI.getInterleaveGroups()) {
8198 auto ApplyIG = [IG,
this](ElementCount VF) ->
bool {
8200 CM.getWideningDecision(IG->getInsertPos(), VF) ==
8205 "Unsupported interleave factor for scalable vectors");
8210 InterleaveGroups.
insert(IG);
8217 *Plan, CM.foldTailByMasking());
8223 VPRecipeBuilder RecipeBuilder(*Plan, TLI, Legal, CM, Builder, BlockMaskCache);
8228 ReversePostOrderTraversal<VPBlockShallowTraversalWrapper<VPBlockBase *>> RPOT(
8231 auto *MiddleVPBB = Plan->getMiddleBlock();
8235 DenseMap<VPValue *, VPValue *> Old2New;
8238 DenseSet<BasicBlock *> BlocksNeedingPredication;
8239 for (BasicBlock *BB : OrigLoop->blocks())
8240 if (CM.blockNeedsPredicationForAnyReason(BB))
8241 BlocksNeedingPredication.
insert(BB);
8244 *Plan, BlockMaskCache, BlocksNeedingPredication,
Range.Start);
8250 make_range(VPBB->getFirstNonPhi(), VPBB->end()))) {
8262 Builder.setInsertPoint(VPI);
8269 Legal->isInvariantAddressOfReduction(
SI->getPointerOperand())) {
8271 if (Legal->isInvariantStoreOfReduction(SI)) {
8272 auto *Recipe =
new VPReplicateRecipe(
8273 SI,
R.operands(),
true ,
nullptr , *VPI,
8275 Recipe->insertBefore(*MiddleVPBB, MBIP);
8277 R.eraseFromParent();
8281 VPRecipeBase *Recipe =
8282 RecipeBuilder.tryToCreateWidenNonPhiRecipe(VPI,
Range);
8287 RecipeBuilder.setRecipe(Instr, Recipe);
8293 Builder.insert(Recipe);
8300 "Unexpected multidef recipe");
8301 R.eraseFromParent();
8310 RecipeBuilder.updateBlockMaskCache(Old2New);
8311 for (VPValue *Old : Old2New.
keys())
8312 Old->getDefiningRecipe()->eraseFromParent();
8316 "entry block must be set to a VPRegionBlock having a non-empty entry "
8322 DenseMap<VPValue *, VPValue *> IVEndValues;
8330 addReductionResultComputation(Plan, RecipeBuilder,
Range.Start);
8350 if (!CM.foldTailWithEVL()) {
8351 VPCostContext CostCtx(CM.TTI, *CM.TLI, *Plan, CM, CM.CostKind, CM.PSE,
8359 for (ElementCount VF :
Range)
8361 Plan->setName(
"Initial VPlan");
8367 InterleaveGroups, RecipeBuilder, CM.isScalarEpilogueAllowed());
8371 Legal->getLAI()->getSymbolicStrides());
8373 auto BlockNeedsPredication = [
this](
BasicBlock *BB) {
8374 return Legal->blockNeedsPredication(BB);
8377 BlockNeedsPredication);
8389 bool WithoutRuntimeCheck =
8392 WithoutRuntimeCheck);
8405 assert(!OrigLoop->isInnermost());
8409 OrigLoop, *LI, Legal->getWidestInductionType(),
8413 *Plan, PSE, *OrigLoop, Legal->getInductionVars(),
8414 MapVector<PHINode *, RecurrenceDescriptor>(),
8415 SmallPtrSet<const PHINode *, 1>(), SmallPtrSet<PHINode *, 1>(),
8424 for (ElementCount VF :
Range)
8434 DenseMap<VPValue *, VPValue *> IVEndValues;
8441void LoopVectorizationPlanner::addReductionResultComputation(
8443 using namespace VPlanPatternMatch;
8444 VPTypeAnalysis TypeInfo(*Plan);
8445 VPRegionBlock *VectorLoopRegion = Plan->getVectorLoopRegion();
8446 VPBasicBlock *MiddleVPBB = Plan->getMiddleBlock();
8449 Builder.setInsertPoint(&*std::prev(std::prev(LatchVPBB->
end())));
8451 for (VPRecipeBase &R :
8452 Plan->getVectorLoopRegion()->getEntryBasicBlock()->phis()) {
8457 const RecurrenceDescriptor &RdxDesc = Legal->getRecurrenceDescriptor(
8459 Type *PhiTy = TypeInfo.inferScalarType(PhiR);
8469 if (!PhiR->
isInLoop() && CM.foldTailByMasking() &&
8470 (!RR || !RR->isPartialReduction())) {
8472 std::optional<FastMathFlags> FMFs =
8477 Builder.createSelect(
Cond, OrigExitingVPV, PhiR, {},
"", FMFs);
8478 OrigExitingVPV->replaceUsesWithIf(NewExitingVPV, [](VPUser &U,
unsigned) {
8479 using namespace VPlanPatternMatch;
8482 m_VPInstruction<VPInstruction::ComputeAnyOfResult>(),
8483 m_VPInstruction<VPInstruction::ComputeReductionResult>()));
8485 if (CM.usePredicatedReductionSelect())
8496 DebugLoc ExitDL = OrigLoop->getLoopLatch()->getTerminator()->getDebugLoc();
8502 VPInstruction *FinalReductionResult;
8503 VPBuilder::InsertPointGuard Guard(Builder);
8504 Builder.setInsertPoint(MiddleVPBB, IP);
8508 VPRecipeBase *AnyOfSelect =
nullptr;
8511 return match(U, m_Select(m_VPValue(), m_VPValue(), m_VPValue()));
8524 VPIRFlags
Flags(MinMaxKind,
false,
false,
8528 {NewExitingVPV},
Flags, ExitDL);
8532 Builder.createSelect(Cmp, ReducedIV, Start, ExitDL));
8533 }
else if (AnyOfSelect) {
8536 VPValue *NewVal = AnyOfSelect->
getOperand(1) == PhiR
8539 FinalReductionResult =
8541 {
Start, NewVal, NewExitingVPV}, ExitDL);
8543 FastMathFlags FMFs =
8549 FinalReductionResult =
8551 {NewExitingVPV},
Flags, ExitDL);
8558 assert(!PhiR->
isInLoop() &&
"Unexpected truncated inloop reduction!");
8560 "Unexpected truncated min-max recurrence!");
8562 VPWidenCastRecipe *Trunc;
8564 RdxDesc.
isSigned() ? Instruction::SExt : Instruction::ZExt;
8565 VPWidenCastRecipe *Extnd;
8567 VPBuilder::InsertPointGuard Guard(Builder);
8568 Builder.setInsertPoint(
8569 NewExitingVPV->getDefiningRecipe()->getParent(),
8570 std::next(NewExitingVPV->getDefiningRecipe()->getIterator()));
8572 Builder.createWidenCast(Instruction::Trunc, NewExitingVPV, RdxTy);
8573 Extnd = Builder.createWidenCast(ExtendOpc, Trunc, PhiTy);
8581 FinalReductionResult =
8582 Builder.createScalarCast(ExtendOpc, FinalReductionResult, PhiTy, {});
8587 for (
auto *U :
to_vector(OrigExitingVPV->users())) {
8589 if (FinalReductionResult == U || Parent->getParent())
8594 m_VPInstruction<VPInstruction::ComputeReductionResult>(),
8595 m_VPInstruction<Instruction::ICmp>())))
8597 U->replaceUsesOfWith(OrigExitingVPV, FinalReductionResult);
8616 if (VPRecipeBase *CmpR =
Cmp->getDefiningRecipe())
8618 Builder.setInsertPoint(AnyOfSelect);
8623 Cmp = Builder.createNot(Cmp);
8624 VPValue *
Or = Builder.createOr(PhiR, Cmp);
8646 VPBuilder PHBuilder(Plan->getVectorPreheader());
8647 VPValue *Iden = Plan->getOrAddLiveIn(
8649 auto *ScaleFactorVPV = Plan->getConstantInt(32, 1);
8650 VPValue *StartV = PHBuilder.createNaryOp(
8658 for (VPRecipeBase *R : ToDelete)
8659 R->eraseFromParent();
8664void LoopVectorizationPlanner::attachRuntimeChecks(
8665 VPlan &Plan, GeneratedRTChecks &RTChecks,
bool HasBranchWeights)
const {
8666 const auto &[SCEVCheckCond, SCEVCheckBlock] = RTChecks.getSCEVChecks();
8667 if (SCEVCheckBlock && SCEVCheckBlock->hasNPredecessors(0)) {
8668 assert((!CM.OptForSize ||
8670 "Cannot SCEV check stride or overflow when optimizing for size");
8674 const auto &[MemCheckCond, MemCheckBlock] = RTChecks.getMemRuntimeChecks();
8675 if (MemCheckBlock && MemCheckBlock->hasNPredecessors(0)) {
8679 "Runtime checks are not supported for outer loops yet");
8681 if (CM.OptForSize) {
8684 "Cannot emit memory checks when optimizing for size, unless forced "
8687 return OptimizationRemarkAnalysis(
DEBUG_TYPE,
"VectorizationCodeSize",
8688 OrigLoop->getStartLoc(),
8689 OrigLoop->getHeader())
8690 <<
"Code-size may be reduced by not forcing "
8691 "vectorization, or by source-code modifications "
8692 "eliminating the need for runtime checks "
8693 "(e.g., adding 'restrict').";
8707 bool IsIndvarOverflowCheckNeededForVF =
8708 VF.
isScalable() && !TTI.isVScaleKnownToBeAPowerOfTwo() &&
8710 CM.getTailFoldingStyle() !=
8717 Plan, VF, UF, MinProfitableTripCount,
8718 CM.requiresScalarEpilogue(VF.
isVector()), CM.foldTailByMasking(),
8719 IsIndvarOverflowCheckNeededForVF, OrigLoop, BranchWeigths,
8720 OrigLoop->getLoopPredecessor()->getTerminator()->getDebugLoc(), PSE);
8733 if (
F->hasOptSize() ||
8759 if (
TTI->preferPredicateOverEpilogue(&TFI))
8778 LLVM_DEBUG(
dbgs() <<
"LV: cannot compute the outer-loop trip count\n");
8782 Function *
F = L->getHeader()->getParent();
8788 LoopVectorizationCostModel CM(
SEL, L, PSE, LI, LVL, *
TTI, TLI, DB, AC, ORE,
8789 GetBFI,
F, &Hints, IAI, OptForSize);
8793 LoopVectorizationPlanner LVP(L, LI, DT, TLI, *
TTI, LVL, CM, IAI, PSE, Hints,
8813 GeneratedRTChecks Checks(PSE, DT, LI,
TTI, CM.
CostKind);
8817 << L->getHeader()->getParent()->getName() <<
"\"\n");
8839 if (S->getValueOperand()->getType()->isFloatTy())
8849 while (!Worklist.
empty()) {
8851 if (!L->contains(
I))
8853 if (!Visited.
insert(
I).second)
8863 I->getDebugLoc(), L->getHeader())
8864 <<
"floating point conversion changes vector width. "
8865 <<
"Mixed floating point precision requires an up/down "
8866 <<
"cast that will negatively impact performance.";
8869 for (
Use &
Op :
I->operands())
8885 for (
auto *PredVPBB : ExitVPBB->getPredecessors()) {
8891 << PredVPBB->getName() <<
":\n");
8892 Cost += PredVPBB->cost(VF, CostCtx);
8912 std::optional<unsigned> VScale) {
8924 <<
"LV: Interleaving only is not profitable due to runtime checks\n");
8991 uint64_t MinTC = std::max(MinTC1, MinTC2);
8993 MinTC =
alignTo(MinTC, IntVF);
8997 dbgs() <<
"LV: Minimum required TC for runtime checks to be profitable:"
9004 LLVM_DEBUG(
dbgs() <<
"LV: Vectorization is not beneficial: expected "
9005 "trip count < minimum profitable VF ("
9016 : InterleaveOnlyWhenForced(Opts.InterleaveOnlyWhenForced ||
9018 VectorizeOnlyWhenForced(Opts.VectorizeOnlyWhenForced ||
9039 if (EpiWidenedPhis.
contains(&VPIRInst->getIRPhi()))
9058 auto AddFreezeForFindLastIVReductions = [](
VPlan &Plan,
9059 bool UpdateResumePhis) {
9071 Builder.createNaryOp(Instruction::Freeze, {OrigStart}, {},
"fr");
9073 if (UpdateResumePhis)
9079 AddFreezeForFindLastIVReductions(MainPlan,
true);
9080 AddFreezeForFindLastIVReductions(EpiPlan,
false);
9087 auto ResumePhiIter =
9089 return match(&R, m_VPInstruction<Instruction::PHI>(m_Specific(VectorTC),
9092 VPPhi *ResumePhi =
nullptr;
9093 if (ResumePhiIter == MainScalarPH->
phis().
end()) {
9098 {},
"vec.epilog.resume.val");
9101 if (MainScalarPH->
begin() == MainScalarPH->
end())
9103 else if (&*MainScalarPH->
begin() != ResumePhi)
9118 VPlan &Plan,
Loop *L,
const SCEV2ValueTy &ExpandedSCEVs,
9123 Header->
setName(
"vec.epilog.vector.body");
9134 PHINode *EPResumeVal = &*L->getLoopPreheader()->phis().begin();
9139 "Must only have a single non-zero incoming value");
9150 [](
Value *Inc) { return match(Inc, m_SpecificInt(0)); }) &&
9151 "all incoming values must be 0");
9157 return isa<VPScalarIVStepsRecipe>(U) ||
9158 isa<VPDerivedIVRecipe>(U) ||
9159 cast<VPRecipeBase>(U)->isScalarCast() ||
9160 cast<VPInstruction>(U)->getOpcode() ==
9163 "the canonical IV should only be used by its increment or "
9164 "ScalarIVSteps when resetting the start value");
9165 VPBuilder Builder(Header, Header->getFirstNonPhi());
9167 IV->replaceAllUsesWith(
Add);
9168 Add->setOperand(0,
IV);
9176 Value *ResumeV =
nullptr;
9190 assert(RdxResult &&
"expected to find reduction result");
9193 ->getIncomingValueForBlock(L->getLoopPreheader());
9198 VPValue *SentinelVPV =
nullptr;
9199 bool IsFindIV =
any_of(RdxResult->users(), [&](
VPUser *U) {
9200 return match(U, VPlanPatternMatch::m_SpecificICmp(
9201 ICmpInst::ICMP_NE, m_Specific(RdxResult),
9202 m_VPValue(SentinelVPV)));
9212 ResumeV = Builder.CreateICmpNE(ResumeV, StartV);
9215 }
else if (IsFindIV) {
9216 assert(SentinelVPV &&
"expected to find icmp using RdxResult");
9222 ToFrozen[FreezeI->getOperand(0)] = FrozenStartV;
9228 Value *Cmp = Builder.CreateICmpEQ(ResumeV, FrozenStartV);
9240 "unexpected start value");
9253 assert(ResumeV &&
"Must have a resume value");
9267 if (VPI && VPI->
getOpcode() == Instruction::Freeze) {
9284 ExpandR->eraseFromParent();
9288 unsigned MainLoopStep =
9290 unsigned EpilogueLoopStep =
9295 EPI.
EpilogueUF, MainLoopStep, EpilogueLoopStep, SE);
9306 const SCEV2ValueTy &ExpandedSCEVs,
Value *MainVectorTripCount,
9311 Value *EndValueFromAdditionalBypass = MainVectorTripCount;
9312 if (OrigPhi != OldInduction) {
9313 auto *BinOp =
II.getInductionBinOp();
9319 EndValueFromAdditionalBypass =
9321 II.getStartValue(), Step,
II.getKind(), BinOp);
9322 EndValueFromAdditionalBypass->
setName(
"ind.end");
9324 return EndValueFromAdditionalBypass;
9330 const SCEV2ValueTy &ExpandedSCEVs,
9331 Value *MainVectorTripCount) {
9336 if (Phi.getBasicBlockIndex(Pred) != -1)
9338 Phi.addIncoming(Phi.getIncomingValueForBlock(BypassBlock), Pred);
9342 if (ScalarPH->hasPredecessors()) {
9345 for (
const auto &[R, IRPhi] :
9346 zip(ScalarPH->phis(), ScalarPH->getIRBasicBlock()->phis())) {
9355 auto *Inc =
cast<PHINode>(IVPhi->getIncomingValueForBlock(PH));
9357 IVPhi,
II, BypassBuilder, ExpandedSCEVs, MainVectorTripCount,
9360 Inc->setIncomingValueForBlock(BypassBlock, V);
9383 "expected this to be saved from the previous pass.");
9386 VecEpilogueIterationCountCheck, VecEpiloguePreHeader);
9389 VecEpilogueIterationCountCheck},
9391 VecEpiloguePreHeader}});
9396 VecEpilogueIterationCountCheck, ScalarPH);
9399 VecEpilogueIterationCountCheck},
9403 BasicBlock *SCEVCheckBlock = Checks.getSCEVChecks().second;
9404 BasicBlock *MemCheckBlock = Checks.getMemRuntimeChecks().second;
9405 if (SCEVCheckBlock) {
9407 VecEpilogueIterationCountCheck, ScalarPH);
9409 VecEpilogueIterationCountCheck},
9412 if (MemCheckBlock) {
9414 VecEpilogueIterationCountCheck, ScalarPH);
9427 for (
PHINode *Phi : PhisInBlock) {
9429 Phi->replaceIncomingBlockWith(
9431 VecEpilogueIterationCountCheck);
9438 return EPI.EpilogueIterationCountCheck == IncB;
9443 Phi->removeIncomingValue(SCEVCheckBlock);
9445 Phi->removeIncomingValue(MemCheckBlock);
9449 for (
auto *
I : InstsToMove)
9461 "VPlan-native path is not enabled. Only process inner loops.");
9464 << L->getHeader()->getParent()->getName() <<
"' from "
9465 << L->getLocStr() <<
"\n");
9470 dbgs() <<
"LV: Loop hints:"
9481 Function *
F = L->getHeader()->getParent();
9501 L->getHeader(),
PSI,
9508 &Requirements, &Hints,
DB,
AC,
9511 LLVM_DEBUG(
dbgs() <<
"LV: Not vectorizing: Cannot prove legality.\n");
9519 "early exit is not enabled",
9520 "UncountableEarlyExitLoopsDisabled",
ORE, L);
9524 L->getExitingBlocks(ExitingBlocks);
9528 "uncountable early exits is not yet supported",
9529 "MultipleUncountableEarlyExits",
ORE, L);
9536 "faulting load is not supported",
9537 "PotentiallyFaultingLoadsNotSupported",
ORE, L);
9546 if (!L->isInnermost())
9551 assert(L->isInnermost() &&
"Inner loop expected.");
9554 bool UseInterleaved =
TTI->enableInterleavedAccessVectorization();
9568 [LoopLatch](
BasicBlock *BB) { return BB != LoopLatch; })) {
9570 "requiring a scalar epilogue is unsupported",
9571 "UncountableEarlyExitUnsupported",
ORE, L);
9584 if (ExpectedTC && ExpectedTC->isFixed() &&
9586 LLVM_DEBUG(
dbgs() <<
"LV: Found a loop with a very small trip count. "
9587 <<
"This loop is worth vectorizing only if no scalar "
9588 <<
"iteration overheads are incurred.");
9590 LLVM_DEBUG(
dbgs() <<
" But vectorizing was explicitly forced.\n");
9606 if (
F->hasFnAttribute(Attribute::NoImplicitFloat)) {
9608 "Can't vectorize when the NoImplicitFloat attribute is used",
9609 "loop not vectorized due to NoImplicitFloat attribute",
9610 "NoImplicitFloat",
ORE, L);
9620 TTI->isFPVectorizationPotentiallyUnsafe()) {
9622 "Potentially unsafe FP op prevents vectorization",
9623 "loop not vectorized due to unsafe FP support.",
9624 "UnsafeFP",
ORE, L);
9629 bool AllowOrderedReductions;
9634 AllowOrderedReductions =
TTI->enableOrderedReductions();
9639 ExactFPMathInst->getDebugLoc(),
9640 ExactFPMathInst->getParent())
9641 <<
"loop not vectorized: cannot prove it is safe to reorder "
9642 "floating-point operations";
9644 LLVM_DEBUG(
dbgs() <<
"LV: loop not vectorized: cannot prove it is safe to "
9645 "reorder floating-point operations\n");
9651 LoopVectorizationCostModel CM(
SEL, L, PSE,
LI, &LVL, *
TTI,
TLI,
DB,
AC,
ORE,
9652 GetBFI,
F, &Hints, IAI, OptForSize);
9654 LoopVectorizationPlanner LVP(L,
LI,
DT,
TLI, *
TTI, &LVL, CM, IAI, PSE, Hints,
9664 LVP.
plan(UserVF, UserIC);
9676 unsigned SelectedIC = std::max(IC, UserIC);
9686 if (Checks.getSCEVChecks().first &&
9687 match(Checks.getSCEVChecks().first,
m_One()))
9689 if (Checks.getMemRuntimeChecks().first &&
9690 match(Checks.getMemRuntimeChecks().first,
m_One()))
9695 bool ForceVectorization =
9699 if (!ForceVectorization &&
9705 DEBUG_TYPE,
"CantReorderMemOps", L->getStartLoc(),
9707 <<
"loop not vectorized: cannot prove it is safe to reorder "
9708 "memory operations";
9717 std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg;
9718 bool VectorizeLoop =
true, InterleaveLoop =
true;
9720 LLVM_DEBUG(
dbgs() <<
"LV: Vectorization is possible but not beneficial.\n");
9722 "VectorizationNotBeneficial",
9723 "the cost-model indicates that vectorization is not beneficial"};
9724 VectorizeLoop =
false;
9729 "UserIC should only be ignored due to unsafe dependencies");
9730 LLVM_DEBUG(
dbgs() <<
"LV: Ignoring user-specified interleave count.\n");
9731 IntDiagMsg = {
"InterleavingUnsafe",
9732 "Ignoring user-specified interleave count due to possibly "
9733 "unsafe dependencies in the loop."};
9734 InterleaveLoop =
false;
9738 LLVM_DEBUG(
dbgs() <<
"LV: Ignoring UserIC, because vectorization and "
9739 "interleaving should be avoided up front\n");
9740 IntDiagMsg = {
"InterleavingAvoided",
9741 "Ignoring UserIC, because interleaving was avoided up front"};
9742 InterleaveLoop =
false;
9743 }
else if (IC == 1 && UserIC <= 1) {
9747 "InterleavingNotBeneficial",
9748 "the cost-model indicates that interleaving is not beneficial"};
9749 InterleaveLoop =
false;
9751 IntDiagMsg.first =
"InterleavingNotBeneficialAndDisabled";
9752 IntDiagMsg.second +=
9753 " and is explicitly disabled or interleave count is set to 1";
9755 }
else if (IC > 1 && UserIC == 1) {
9757 LLVM_DEBUG(
dbgs() <<
"LV: Interleaving is beneficial but is explicitly "
9759 IntDiagMsg = {
"InterleavingBeneficialButDisabled",
9760 "the cost-model indicates that interleaving is beneficial "
9761 "but is explicitly disabled or interleave count is set to 1"};
9762 InterleaveLoop =
false;
9768 if (!VectorizeLoop && InterleaveLoop && LVL.
hasHistograms()) {
9769 LLVM_DEBUG(
dbgs() <<
"LV: Not interleaving without vectorization due "
9770 <<
"to histogram operations.\n");
9772 "HistogramPreventsScalarInterleaving",
9773 "Unable to interleave without vectorization due to constraints on "
9774 "the order of histogram operations"};
9775 InterleaveLoop =
false;
9779 IC = UserIC > 0 ? UserIC : IC;
9783 LLVM_DEBUG(
dbgs() <<
"LV: Not interleaving due to FindLast reduction.\n");
9784 IntDiagMsg = {
"FindLastPreventsScalarInterleaving",
9785 "Unable to interleave due to FindLast reduction."};
9786 InterleaveLoop =
false;
9792 if (!VectorizeLoop && !InterleaveLoop) {
9796 L->getStartLoc(), L->getHeader())
9797 << VecDiagMsg.second;
9801 L->getStartLoc(), L->getHeader())
9802 << IntDiagMsg.second;
9807 if (!VectorizeLoop && InterleaveLoop) {
9811 L->getStartLoc(), L->getHeader())
9812 << VecDiagMsg.second;
9814 }
else if (VectorizeLoop && !InterleaveLoop) {
9816 <<
") in " << L->getLocStr() <<
'\n');
9819 L->getStartLoc(), L->getHeader())
9820 << IntDiagMsg.second;
9822 }
else if (VectorizeLoop && InterleaveLoop) {
9824 <<
") in " << L->getLocStr() <<
'\n');
9830 using namespace ore;
9835 <<
"interleaved loop (interleaved count: "
9836 << NV(
"InterleaveCount", IC) <<
")";
9853 std::unique_ptr<VPlan> BestMainPlan(BestPlan.
duplicate());
9865 Checks, *BestMainPlan);
9867 *BestMainPlan, MainILV,
DT,
false);
9873 Checks, BestEpiPlan);
9875 BestEpiPlan, L, ExpandedSCEVs, EPI, CM, *PSE.
getSE());
9879 Checks, InstsToMove);
9880 ++LoopsEpilogueVectorized;
9882 InnerLoopVectorizer LB(L, PSE,
LI,
DT,
TTI,
AC, VF.
Width, IC, &CM, Checks,
9887 BestPlan, VF.
Width, IC, PSE);
9895 assert(
DT->verify(DominatorTree::VerificationLevel::Fast) &&
9896 "DT not preserved correctly");
9911 if (!
TTI->getNumberOfRegisters(
TTI->getRegisterClassForType(
true)) &&
9915 bool Changed =
false, CFGChanged =
false;
9922 for (
const auto &L : *
LI)
9934 LoopsAnalyzed += Worklist.
size();
9937 while (!Worklist.
empty()) {
9983 if (!Result.MadeAnyChange)
9997 if (Result.MadeCFGChange) {
10013 OS, MapClassName2PassName);
10016 OS << (InterleaveOnlyWhenForced ?
"" :
"no-") <<
"interleave-forced-only;";
10017 OS << (VectorizeOnlyWhenForced ?
"" :
"no-") <<
"vectorize-forced-only;";
for(const MachineOperand &MO :llvm::drop_begin(OldMI.operands(), Desc.getNumOperands()))
static unsigned getIntrinsicID(const SDNode *N)
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
AMDGPU Lower Kernel Arguments
This file implements a class to represent arbitrary precision integral constant values and operations...
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
static bool isEqual(const Function &Caller, const Function &Callee)
This file contains the simple types necessary to represent the attributes associated with functions a...
static const Function * getParent(const Value *V)
This is the interface for LLVM's primary stateless and local alias analysis.
static bool IsEmptyBlock(MachineBasicBlock *MBB)
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
#define clEnumValN(ENUMVAL, FLAGNAME, DESC)
This file contains the declarations for the subclasses of Constant, which represent the different fla...
static cl::opt< OutputCostKind > CostKind("cost-kind", cl::desc("Target cost kind"), cl::init(OutputCostKind::RecipThroughput), cl::values(clEnumValN(OutputCostKind::RecipThroughput, "throughput", "Reciprocal throughput"), clEnumValN(OutputCostKind::Latency, "latency", "Instruction latency"), clEnumValN(OutputCostKind::CodeSize, "code-size", "Code size"), clEnumValN(OutputCostKind::SizeAndLatency, "size-latency", "Code size and latency"), clEnumValN(OutputCostKind::All, "all", "Print all cost kinds")))
static cl::opt< IntrinsicCostStrategy > IntrinsicCost("intrinsic-cost-strategy", cl::desc("Costing strategy for intrinsic instructions"), cl::init(IntrinsicCostStrategy::InstructionCost), cl::values(clEnumValN(IntrinsicCostStrategy::InstructionCost, "instruction-cost", "Use TargetTransformInfo::getInstructionCost"), clEnumValN(IntrinsicCostStrategy::IntrinsicCost, "intrinsic-cost", "Use TargetTransformInfo::getIntrinsicInstrCost"), clEnumValN(IntrinsicCostStrategy::TypeBasedIntrinsicCost, "type-based-intrinsic-cost", "Calculate the intrinsic cost based only on argument types")))
static InstructionCost getCost(Instruction &Inst, TTI::TargetCostKind CostKind, TargetTransformInfo &TTI, TargetLibraryInfo &TLI)
This file defines DenseMapInfo traits for DenseMap.
This file defines the DenseMap class.
This is the interface for a simple mod/ref and alias analysis over globals.
This file provides various utilities for inspecting and working with the control flow graph in LLVM I...
Module.h This file contains the declarations for the Module class.
This defines the Use class.
static bool hasNoUnsignedWrap(BinaryOperator &I)
This file defines an InstructionCost class that is used when calculating the cost of an instruction,...
static Constant * getTrue(Type *Ty)
For a boolean type or a vector of boolean type, return true or a vector with every element true.
static std::pair< Value *, APInt > getMask(Value *WideMask, unsigned Factor, ElementCount LeafValueEC)
const AbstractManglingParser< Derived, Alloc >::OperatorInfo AbstractManglingParser< Derived, Alloc >::Ops[]
Legalize the Machine IR a function s Machine IR
static cl::opt< unsigned, true > VectorizationFactor("force-vector-width", cl::Hidden, cl::desc("Sets the SIMD width. Zero is autoselect."), cl::location(VectorizerParams::VectorizationFactor))
This header provides classes for managing per-loop analyses.
static cl::opt< bool > WidenIV("loop-flatten-widen-iv", cl::Hidden, cl::init(true), cl::desc("Widen the loop induction variables, if possible, so " "overflow checks won't reject flattening"))
static const char * VerboseDebug
This file defines the LoopVectorizationLegality class.
This file provides a LoopVectorizationPlanner class.
static void collectSupportedLoops(Loop &L, LoopInfo *LI, OptimizationRemarkEmitter *ORE, SmallVectorImpl< Loop * > &V)
static cl::opt< unsigned > EpilogueVectorizationMinVF("epilogue-vectorization-minimum-VF", cl::Hidden, cl::desc("Only loops with vectorization factor equal to or larger than " "the specified value are considered for epilogue vectorization."))
static cl::opt< unsigned > EpilogueVectorizationForceVF("epilogue-vectorization-force-VF", cl::init(1), cl::Hidden, cl::desc("When epilogue vectorization is enabled, and a value greater than " "1 is specified, forces the given VF for all applicable epilogue " "loops."))
static Type * maybeVectorizeType(Type *Ty, ElementCount VF)
static ElementCount determineVPlanVF(const TargetTransformInfo &TTI, LoopVectorizationCostModel &CM)
static ElementCount getSmallConstantTripCount(ScalarEvolution *SE, const Loop *L)
A version of ScalarEvolution::getSmallConstantTripCount that returns an ElementCount to include loops...
static cl::opt< unsigned > VectorizeMemoryCheckThreshold("vectorize-memory-check-threshold", cl::init(128), cl::Hidden, cl::desc("The maximum allowed number of runtime memory checks"))
static void preparePlanForMainVectorLoop(VPlan &MainPlan, VPlan &EpiPlan)
Prepare MainPlan for vectorizing the main vector loop during epilogue vectorization.
static cl::opt< unsigned > TinyTripCountVectorThreshold("vectorizer-min-trip-count", cl::init(16), cl::Hidden, cl::desc("Loops with a constant trip count that is smaller than this " "value are vectorized only if no scalar iteration overheads " "are incurred."))
Loops with a known constant trip count below this number are vectorized only if no scalar iteration o...
static void debugVectorizationMessage(const StringRef Prefix, const StringRef DebugMsg, Instruction *I)
Write a DebugMsg about vectorization to the debug output stream.
static cl::opt< bool > EnableCondStoresVectorization("enable-cond-stores-vec", cl::init(true), cl::Hidden, cl::desc("Enable if predication of stores during vectorization."))
static void legacyCSE(BasicBlock *BB)
FIXME: This legacy common-subexpression-elimination routine is scheduled for removal,...
static VPIRBasicBlock * replaceVPBBWithIRVPBB(VPBasicBlock *VPBB, BasicBlock *IRBB, VPlan *Plan=nullptr)
Replace VPBB with a VPIRBasicBlock wrapping IRBB.
static DebugLoc getDebugLocFromInstOrOperands(Instruction *I)
Look for a meaningful debug location on the instruction or its operands.
static Value * createInductionAdditionalBypassValues(PHINode *OrigPhi, const InductionDescriptor &II, IRBuilder<> &BypassBuilder, const SCEV2ValueTy &ExpandedSCEVs, Value *MainVectorTripCount, Instruction *OldInduction)
static void fixReductionScalarResumeWhenVectorizingEpilog(VPPhi *EpiResumePhiR, PHINode &EpiResumePhi, BasicBlock *BypassBlock)
static cl::opt< bool > ForceTargetSupportsScalableVectors("force-target-supports-scalable-vectors", cl::init(false), cl::Hidden, cl::desc("Pretend that scalable vectors are supported, even if the target does " "not support them. This flag should only be used for testing."))
static bool useActiveLaneMaskForControlFlow(TailFoldingStyle Style)
static cl::opt< bool > EnableEarlyExitVectorization("enable-early-exit-vectorization", cl::init(true), cl::Hidden, cl::desc("Enable vectorization of early exit loops with uncountable exits."))
static bool processLoopInVPlanNativePath(Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, LoopVectorizationLegality *LVL, TargetTransformInfo *TTI, TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC, OptimizationRemarkEmitter *ORE, std::function< BlockFrequencyInfo &()> GetBFI, bool OptForSize, LoopVectorizeHints &Hints, LoopVectorizationRequirements &Requirements)
static cl::opt< bool > ConsiderRegPressure("vectorizer-consider-reg-pressure", cl::init(false), cl::Hidden, cl::desc("Discard VFs if their register pressure is too high."))
static unsigned estimateElementCount(ElementCount VF, std::optional< unsigned > VScale)
This function attempts to return a value that represents the ElementCount at runtime.
static constexpr uint32_t MinItersBypassWeights[]
static cl::opt< unsigned > ForceTargetNumScalarRegs("force-target-num-scalar-regs", cl::init(0), cl::Hidden, cl::desc("A flag that overrides the target's number of scalar registers."))
static cl::opt< bool > UseWiderVFIfCallVariantsPresent("vectorizer-maximize-bandwidth-for-vector-calls", cl::init(true), cl::Hidden, cl::desc("Try wider VFs if they enable the use of vector variants"))
static std::optional< unsigned > getMaxVScale(const Function &F, const TargetTransformInfo &TTI)
static cl::opt< unsigned > SmallLoopCost("small-loop-cost", cl::init(20), cl::Hidden, cl::desc("The cost of a loop that is considered 'small' by the interleaver."))
static void connectEpilogueVectorLoop(VPlan &EpiPlan, Loop *L, EpilogueLoopVectorizationInfo &EPI, DominatorTree *DT, LoopVectorizationLegality &LVL, DenseMap< const SCEV *, Value * > &ExpandedSCEVs, GeneratedRTChecks &Checks, ArrayRef< Instruction * > InstsToMove)
Connect the epilogue vector loop generated for EpiPlan to the main vector.
static bool planContainsAdditionalSimplifications(VPlan &Plan, VPCostContext &CostCtx, Loop *TheLoop, ElementCount VF)
Return true if the original loop \ TheLoop contains any instructions that do not have corresponding r...
static cl::opt< unsigned > ForceTargetNumVectorRegs("force-target-num-vector-regs", cl::init(0), cl::Hidden, cl::desc("A flag that overrides the target's number of vector registers."))
static bool isExplicitVecOuterLoop(Loop *OuterLp, OptimizationRemarkEmitter *ORE)
static cl::opt< bool > EnableIndVarRegisterHeur("enable-ind-var-reg-heur", cl::init(true), cl::Hidden, cl::desc("Count the induction variable only once when interleaving"))
static cl::opt< TailFoldingStyle > ForceTailFoldingStyle("force-tail-folding-style", cl::desc("Force the tail folding style"), cl::init(TailFoldingStyle::None), cl::values(clEnumValN(TailFoldingStyle::None, "none", "Disable tail folding"), clEnumValN(TailFoldingStyle::Data, "data", "Create lane mask for data only, using active.lane.mask intrinsic"), clEnumValN(TailFoldingStyle::DataWithoutLaneMask, "data-without-lane-mask", "Create lane mask with compare/stepvector"), clEnumValN(TailFoldingStyle::DataAndControlFlow, "data-and-control", "Create lane mask using active.lane.mask intrinsic, and use " "it for both data and control flow"), clEnumValN(TailFoldingStyle::DataAndControlFlowWithoutRuntimeCheck, "data-and-control-without-rt-check", "Similar to data-and-control, but remove the runtime check"), clEnumValN(TailFoldingStyle::DataWithEVL, "data-with-evl", "Use predicated EVL instructions for tail folding. If EVL " "is unsupported, fallback to data-without-lane-mask.")))
static ScalarEpilogueLowering getScalarEpilogueLowering(Function *F, Loop *L, LoopVectorizeHints &Hints, bool OptForSize, TargetTransformInfo *TTI, TargetLibraryInfo *TLI, LoopVectorizationLegality &LVL, InterleavedAccessInfo *IAI)
static cl::opt< bool > EnableEpilogueVectorization("enable-epilogue-vectorization", cl::init(true), cl::Hidden, cl::desc("Enable vectorization of epilogue loops."))
static cl::opt< bool > PreferPredicatedReductionSelect("prefer-predicated-reduction-select", cl::init(false), cl::Hidden, cl::desc("Prefer predicating a reduction operation over an after loop select."))
static cl::opt< bool > PreferInLoopReductions("prefer-inloop-reductions", cl::init(false), cl::Hidden, cl::desc("Prefer in-loop vector reductions, " "overriding the targets preference."))
static SmallVector< Instruction * > preparePlanForEpilogueVectorLoop(VPlan &Plan, Loop *L, const SCEV2ValueTy &ExpandedSCEVs, EpilogueLoopVectorizationInfo &EPI, LoopVectorizationCostModel &CM, ScalarEvolution &SE)
Prepare Plan for vectorizing the epilogue loop.
static const SCEV * getAddressAccessSCEV(Value *Ptr, PredicatedScalarEvolution &PSE, const Loop *TheLoop)
Gets the address access SCEV for Ptr, if it should be used for cost modeling according to isAddressSC...
static cl::opt< bool > EnableLoadStoreRuntimeInterleave("enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden, cl::desc("Enable runtime interleaving until load/store ports are saturated"))
static cl::opt< bool > VPlanBuildStressTest("vplan-build-stress-test", cl::init(false), cl::Hidden, cl::desc("Build VPlan for every supported loop nest in the function and bail " "out right after the build (stress test the VPlan H-CFG construction " "in the VPlan-native vectorization path)."))
static bool hasIrregularType(Type *Ty, const DataLayout &DL)
A helper function that returns true if the given type is irregular.
static cl::opt< bool > LoopVectorizeWithBlockFrequency("loop-vectorize-with-block-frequency", cl::init(true), cl::Hidden, cl::desc("Enable the use of the block frequency analysis to access PGO " "heuristics minimizing code growth in cold regions and being more " "aggressive in hot regions."))
static std::optional< ElementCount > getSmallBestKnownTC(PredicatedScalarEvolution &PSE, Loop *L, bool CanUseConstantMax=true)
Returns "best known" trip count, which is either a valid positive trip count or std::nullopt when an ...
static Value * getExpandedStep(const InductionDescriptor &ID, const SCEV2ValueTy &ExpandedSCEVs)
Return the expanded step for ID using ExpandedSCEVs to look up SCEV expansion results.
static bool useActiveLaneMask(TailFoldingStyle Style)
static bool hasReplicatorRegion(VPlan &Plan)
static bool isIndvarOverflowCheckKnownFalse(const LoopVectorizationCostModel *Cost, ElementCount VF, std::optional< unsigned > UF=std::nullopt)
For the given VF and UF and maximum trip count computed for the loop, return whether the induction va...
static void addFullyUnrolledInstructionsToIgnore(Loop *L, const LoopVectorizationLegality::InductionList &IL, SmallPtrSetImpl< Instruction * > &InstsToIgnore)
Knowing that loop L executes a single vector iteration, add instructions that will get simplified and...
static cl::opt< PreferPredicateTy::Option > PreferPredicateOverEpilogue("prefer-predicate-over-epilogue", cl::init(PreferPredicateTy::ScalarEpilogue), cl::Hidden, cl::desc("Tail-folding and predication preferences over creating a scalar " "epilogue loop."), cl::values(clEnumValN(PreferPredicateTy::ScalarEpilogue, "scalar-epilogue", "Don't tail-predicate loops, create scalar epilogue"), clEnumValN(PreferPredicateTy::PredicateElseScalarEpilogue, "predicate-else-scalar-epilogue", "prefer tail-folding, create scalar epilogue if tail " "folding fails."), clEnumValN(PreferPredicateTy::PredicateOrDontVectorize, "predicate-dont-vectorize", "prefers tail-folding, don't attempt vectorization if " "tail-folding fails.")))
static bool hasFindLastReductionPhi(VPlan &Plan)
Returns true if the VPlan contains a VPReductionPHIRecipe with FindLast recurrence kind.
static cl::opt< bool > EnableInterleavedMemAccesses("enable-interleaved-mem-accesses", cl::init(false), cl::Hidden, cl::desc("Enable vectorization on interleaved memory accesses in a loop"))
static cl::opt< bool > EnableMaskedInterleavedMemAccesses("enable-masked-interleaved-mem-accesses", cl::init(false), cl::Hidden, cl::desc("Enable vectorization on masked interleaved memory accesses in a loop"))
An interleave-group may need masking if it resides in a block that needs predication,...
static cl::opt< bool > ForceOrderedReductions("force-ordered-reductions", cl::init(false), cl::Hidden, cl::desc("Enable the vectorisation of loops with in-order (strict) " "FP reductions"))
static cl::opt< cl::boolOrDefault > ForceSafeDivisor("force-widen-divrem-via-safe-divisor", cl::Hidden, cl::desc("Override cost based safe divisor widening for div/rem instructions"))
static InstructionCost calculateEarlyExitCost(VPCostContext &CostCtx, VPlan &Plan, ElementCount VF)
For loops with uncountable early exits, find the cost of doing work when exiting the loop early,...
static cl::opt< unsigned > ForceTargetMaxVectorInterleaveFactor("force-target-max-vector-interleave", cl::init(0), cl::Hidden, cl::desc("A flag that overrides the target's max interleave factor for " "vectorized loops."))
static bool useMaskedInterleavedAccesses(const TargetTransformInfo &TTI)
static cl::opt< unsigned > NumberOfStoresToPredicate("vectorize-num-stores-pred", cl::init(1), cl::Hidden, cl::desc("Max number of stores to be predicated behind an if."))
The number of stores in a loop that are allowed to need predication.
static cl::opt< unsigned > MaxNestedScalarReductionIC("max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden, cl::desc("The maximum interleave count to use when interleaving a scalar " "reduction in a nested loop."))
static cl::opt< unsigned > ForceTargetMaxScalarInterleaveFactor("force-target-max-scalar-interleave", cl::init(0), cl::Hidden, cl::desc("A flag that overrides the target's max interleave factor for " "scalar loops."))
static void checkMixedPrecision(Loop *L, OptimizationRemarkEmitter *ORE)
static bool willGenerateVectors(VPlan &Plan, ElementCount VF, const TargetTransformInfo &TTI)
Check if any recipe of Plan will generate a vector value, which will be assigned a vector register.
static bool isOutsideLoopWorkProfitable(GeneratedRTChecks &Checks, VectorizationFactor &VF, Loop *L, PredicatedScalarEvolution &PSE, VPCostContext &CostCtx, VPlan &Plan, ScalarEpilogueLowering SEL, std::optional< unsigned > VScale)
This function determines whether or not it's still profitable to vectorize the loop given the extra w...
static void fixScalarResumeValuesFromBypass(BasicBlock *BypassBlock, Loop *L, VPlan &BestEpiPlan, LoopVectorizationLegality &LVL, const SCEV2ValueTy &ExpandedSCEVs, Value *MainVectorTripCount)
static cl::opt< bool > MaximizeBandwidth("vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden, cl::desc("Maximize bandwidth when selecting vectorization factor which " "will be determined by the smallest type in loop."))
static OptimizationRemarkAnalysis createLVAnalysis(const char *PassName, StringRef RemarkName, Loop *TheLoop, Instruction *I, DebugLoc DL={})
Create an analysis remark that explains why vectorization failed.
This file implements a map that provides insertion order iteration.
ConstantRange Range(APInt(BitWidth, Low), APInt(BitWidth, High))
uint64_t IntrinsicInst * II
This file contains the declarations for profiling metadata utility functions.
const SmallVectorImpl< MachineOperand > & Cond
static BinaryOperator * CreateMul(Value *S1, Value *S2, const Twine &Name, BasicBlock::iterator InsertBefore, Value *FlagsOp)
static BinaryOperator * CreateAdd(Value *S1, Value *S2, const Twine &Name, BasicBlock::iterator InsertBefore, Value *FlagsOp)
static bool isValid(const char C)
Returns true if C is a valid mangled character: <0-9a-zA-Z_>.
static InstructionCost getScalarizationOverhead(const TargetTransformInfo &TTI, Type *ScalarTy, VectorType *Ty, const APInt &DemandedElts, bool Insert, bool Extract, TTI::TargetCostKind CostKind, bool ForPoisonSrc=true, ArrayRef< Value * > VL={})
This is similar to TargetTransformInfo::getScalarizationOverhead, but if ScalarTy is a FixedVectorTyp...
This file defines the SmallPtrSet class.
This file defines the SmallVector class.
This file defines the 'Statistic' class, which is designed to be an easy way to expose various metric...
#define STATISTIC(VARNAME, DESC)
#define DEBUG_WITH_TYPE(TYPE,...)
DEBUG_WITH_TYPE macro - This macro should be used by passes to emit debug information.
static TableGen::Emitter::Opt Y("gen-skeleton-entry", EmitSkeleton, "Generate example skeleton entry")
static TableGen::Emitter::OptClass< SkeletonEmitter > X("gen-skeleton-class", "Generate example skeleton class")
LocallyHashedType DenseMapInfo< LocallyHashedType >::Empty
This file implements the TypeSwitch template, which mimics a switch() statement whose cases are type ...
This file contains the declarations of different VPlan-related auxiliary helpers.
This file declares the class VPlanVerifier, which contains utility functions to check the consistency...
This file contains the declarations of the Vectorization Plan base classes:
static const char PassName[]
static const uint32_t IV[8]
A manager for alias analyses.
Class for arbitrary precision integers.
static APInt getAllOnes(unsigned numBits)
Return an APInt of a specified width with all bits set.
uint64_t getZExtValue() const
Get zero extended value.
unsigned getActiveBits() const
Compute the number of active bits in the value.
PassT::Result & getResult(IRUnitT &IR, ExtraArgTs... ExtraArgs)
Get the result of an analysis pass for a given IR unit.
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
size_t size() const
size - Get the array size.
A function analysis which provides an AssumptionCache.
A cache of @llvm.assume calls within a function.
LLVM_ABI unsigned getVScaleRangeMin() const
Returns the minimum value for the vscale_range attribute.
LLVM Basic Block Representation.
iterator_range< const_phi_iterator > phis() const
Returns a range that iterates over the phis in the basic block.
LLVM_ABI const_iterator getFirstInsertionPt() const
Returns an iterator to the first instruction in this block that is suitable for inserting a non-PHI i...
const Function * getParent() const
Return the enclosing method, or null if none.
LLVM_ABI InstListType::const_iterator getFirstNonPHIIt() const
Returns an iterator to the first instruction in this block that is not a PHINode instruction.
LLVM_ABI const BasicBlock * getSinglePredecessor() const
Return the predecessor of this block if it has a single predecessor block.
LLVM_ABI const BasicBlock * getSingleSuccessor() const
Return the successor of this block if it has a single successor.
LLVM_ABI const DataLayout & getDataLayout() const
Get the data layout of the module this basic block belongs to.
LLVM_ABI LLVMContext & getContext() const
Get the context in which this basic block lives.
const Instruction * getTerminator() const LLVM_READONLY
Returns the terminator instruction if the block is well formed or null if the block is not well forme...
BinaryOps getOpcode() const
Analysis pass which computes BlockFrequencyInfo.
BlockFrequencyInfo pass uses BlockFrequencyInfoImpl implementation to estimate IR basic block frequen...
Conditional or Unconditional Branch instruction.
bool isConditional() const
static BranchInst * Create(BasicBlock *IfTrue, InsertPosition InsertBefore=nullptr)
BasicBlock * getSuccessor(unsigned i) const
Represents analyses that only rely on functions' control flow.
bool isNoBuiltin() const
Return true if the call should not be treated as a call to a builtin.
Function * getCalledFunction() const
Returns the function called, or null if this is an indirect function invocation or the function signa...
Value * getArgOperand(unsigned i) const
iterator_range< User::op_iterator > args()
Iteration adapter for range-for loops.
unsigned arg_size() const
This class represents a function call, abstracting a target machine's calling convention.
static Type * makeCmpResultType(Type *opnd_type)
Create a result type for fcmp/icmp.
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
@ ICMP_UGT
unsigned greater than
@ ICMP_ULT
unsigned less than
@ ICMP_ULE
unsigned less or equal
Predicate getInversePredicate() const
For example, EQ -> NE, UGT -> ULE, SLT -> SGE, OEQ -> UNE, UGT -> OLE, OLT -> UGE,...
An abstraction over a floating-point predicate, and a pack of an integer predicate with samesign info...
This is the shared class of boolean and integer constants.
static LLVM_ABI ConstantInt * getTrue(LLVMContext &Context)
A parsed version of the target data layout string in and methods for querying it.
static DebugLoc getTemporary()
static DebugLoc getUnknown()
An analysis that produces DemandedBits for a function.
ValueT lookup(const_arg_type_t< KeyT > Val) const
lookup - Return the entry for the specified key, or a default constructed value if no such entry exis...
iterator find(const_arg_type_t< KeyT > Val)
std::pair< iterator, bool > try_emplace(KeyT &&Key, Ts &&...Args)
bool contains(const_arg_type_t< KeyT > Val) const
Return true if the specified key is in the map, false otherwise.
void insert_range(Range &&R)
Inserts range of 'std::pair<KeyT, ValueT>' values into the map.
Implements a dense probed hash-table based set.
Analysis pass which computes a DominatorTree.
void changeImmediateDominator(DomTreeNodeBase< NodeT > *N, DomTreeNodeBase< NodeT > *NewIDom)
changeImmediateDominator - This method is used to update the dominator tree information when a node's...
static constexpr UpdateKind Delete
static constexpr UpdateKind Insert
void eraseNode(NodeT *BB)
eraseNode - Removes a node from the dominator tree.
Concrete subclass of DominatorTreeBase that is used to compute a normal dominator tree.
constexpr bool isVector() const
One or more elements.
static constexpr ElementCount getScalable(ScalarTy MinVal)
static constexpr ElementCount getFixed(ScalarTy MinVal)
static constexpr ElementCount get(ScalarTy MinVal, bool Scalable)
constexpr bool isScalar() const
Exactly one element.
void printDebugTracesAtEnd() override
EpilogueVectorizerEpilogueLoop(Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, const TargetTransformInfo *TTI, AssumptionCache *AC, EpilogueLoopVectorizationInfo &EPI, LoopVectorizationCostModel *CM, GeneratedRTChecks &Checks, VPlan &Plan)
BasicBlock * createVectorizedLoopSkeleton() final
Implements the interface for creating a vectorized skeleton using the epilogue loop strategy (i....
void printDebugTracesAtStart() override
Allow subclasses to override and print debug traces before/after vplan execution, when trace informat...
A specialized derived class of inner loop vectorizer that performs vectorization of main loops in the...
void introduceCheckBlockInVPlan(BasicBlock *CheckIRBB)
Introduces a new VPIRBasicBlock for CheckIRBB to Plan between the vector preheader and its predecesso...
BasicBlock * emitIterationCountCheck(BasicBlock *VectorPH, BasicBlock *Bypass, bool ForEpilogue)
Emits an iteration count bypass check once for the main loop (when ForEpilogue is false) and once for...
void printDebugTracesAtEnd() override
Value * createIterationCountCheck(BasicBlock *VectorPH, ElementCount VF, unsigned UF) const
void printDebugTracesAtStart() override
Allow subclasses to override and print debug traces before/after vplan execution, when trace informat...
EpilogueVectorizerMainLoop(Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, const TargetTransformInfo *TTI, AssumptionCache *AC, EpilogueLoopVectorizationInfo &EPI, LoopVectorizationCostModel *CM, GeneratedRTChecks &Check, VPlan &Plan)
BasicBlock * createVectorizedLoopSkeleton() final
Implements the interface for creating a vectorized skeleton using the main loop strategy (i....
Convenience struct for specifying and reasoning about fast-math flags.
Class to represent function types.
param_iterator param_begin() const
param_iterator param_end() const
FunctionType * getFunctionType() const
Returns the FunctionType for me.
Attribute getFnAttribute(Attribute::AttrKind Kind) const
Return the attribute for the given attribute kind.
bool hasFnAttribute(Attribute::AttrKind Kind) const
Return true if the function has the attribute.
Represents flags for the getelementptr instruction/expression.
static GEPNoWrapFlags none()
void applyUpdates(ArrayRef< UpdateT > Updates)
Submit updates to all available trees.
Common base class shared among various IRBuilders.
void setFastMathFlags(FastMathFlags NewFMF)
Set the fast-math flags to be used with generated fp-math operators.
This provides a uniform API for creating instructions and inserting them into a basic block: either a...
A struct for saving information about induction variables.
const SCEV * getStep() const
ArrayRef< Instruction * > getCastInsts() const
Returns an ArrayRef to the type cast instructions in the induction update chain, that are redundant w...
InductionKind
This enum represents the kinds of inductions that we support.
@ IK_NoInduction
Not an induction variable.
@ IK_FpInduction
Floating point induction variable.
@ IK_PtrInduction
Pointer induction var. Step = C.
@ IK_IntInduction
Integer induction variable. Step = C.
ElementCount MinProfitableTripCount
InnerLoopAndEpilogueVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, const TargetTransformInfo *TTI, AssumptionCache *AC, EpilogueLoopVectorizationInfo &EPI, LoopVectorizationCostModel *CM, GeneratedRTChecks &Checks, VPlan &Plan, ElementCount VecWidth, ElementCount MinProfitableTripCount, unsigned UnrollFactor)
EpilogueLoopVectorizationInfo & EPI
Holds and updates state information required to vectorize the main loop and its epilogue in two separ...
InnerLoopVectorizer vectorizes loops which contain only one basic block to a specified vectorization ...
virtual void printDebugTracesAtStart()
Allow subclasses to override and print debug traces before/after vplan execution, when trace informat...
Value * TripCount
Trip count of the original loop.
const TargetTransformInfo * TTI
Target Transform Info.
LoopVectorizationCostModel * Cost
The profitablity analysis.
Value * getTripCount() const
Returns the original loop trip count.
friend class LoopVectorizationPlanner
InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, const TargetTransformInfo *TTI, AssumptionCache *AC, ElementCount VecWidth, unsigned UnrollFactor, LoopVectorizationCostModel *CM, GeneratedRTChecks &RTChecks, VPlan &Plan)
PredicatedScalarEvolution & PSE
A wrapper around ScalarEvolution used to add runtime SCEV checks.
DominatorTree * DT
Dominator Tree.
void setTripCount(Value *TC)
Used to set the trip count after ILV's construction and after the preheader block has been executed.
void fixVectorizedLoop(VPTransformState &State)
Fix the vectorized code, taking care of header phi's, and more.
virtual BasicBlock * createVectorizedLoopSkeleton()
Creates a basic block for the scalar preheader.
virtual void printDebugTracesAtEnd()
AssumptionCache * AC
Assumption Cache.
IRBuilder Builder
The builder that we use.
void fixNonInductionPHIs(VPTransformState &State)
Fix the non-induction PHIs in Plan.
VPBasicBlock * VectorPHVPBB
The vector preheader block of Plan, used as target for check blocks introduced during skeleton creati...
unsigned UF
The vectorization unroll factor to use.
GeneratedRTChecks & RTChecks
Structure to hold information about generated runtime checks, responsible for cleaning the checks,...
virtual ~InnerLoopVectorizer()=default
ElementCount VF
The vectorization SIMD factor to use.
Loop * OrigLoop
The original loop.
BasicBlock * createScalarPreheader(StringRef Prefix)
Create and return a new IR basic block for the scalar preheader whose name is prefixed with Prefix.
InstSimplifyFolder - Use InstructionSimplify to fold operations to existing values.
static InstructionCost getInvalid(CostType Val=0)
static InstructionCost getMax()
CostType getValue() const
This function is intended to be used as sparingly as possible, since the class provides the full rang...
LLVM_ABI const Module * getModule() const
Return the module owning the function this instruction belongs to or nullptr it the function does not...
LLVM_ABI void moveBefore(InstListType::iterator InsertPos)
Unlink this instruction from its current basic block and insert it into the basic block that MovePos ...
LLVM_ABI InstListType::iterator eraseFromParent()
This method unlinks 'this' from the containing basic block and deletes it.
Instruction * user_back()
Specialize the methods defined in Value, as we know that an instruction can only be used by other ins...
const char * getOpcodeName() const
unsigned getOpcode() const
Returns a member of one of the enums like Instruction::Add.
Class to represent integer types.
static LLVM_ABI IntegerType * get(LLVMContext &C, unsigned NumBits)
This static method is the primary way of constructing an IntegerType.
LLVM_ABI APInt getMask() const
For example, this is 0xFF for an 8 bit integer, 0xFFFF for i16, etc.
The group of interleaved loads/stores sharing the same stride and close to each other.
uint32_t getFactor() const
InstTy * getMember(uint32_t Index) const
Get the member with the given index Index.
InstTy * getInsertPos() const
uint32_t getNumMembers() const
Drive the analysis of interleaved memory accesses in the loop.
bool requiresScalarEpilogue() const
Returns true if an interleaved group that may access memory out-of-bounds requires a scalar epilogue ...
LLVM_ABI void analyzeInterleaving(bool EnableMaskedInterleavedGroup)
Analyze the interleaved accesses and collect them in interleave groups.
An instruction for reading from memory.
Type * getPointerOperandType() const
This analysis provides dependence information for the memory accesses of a loop.
Drive the analysis of memory accesses in the loop.
const RuntimePointerChecking * getRuntimePointerChecking() const
unsigned getNumRuntimePointerChecks() const
Number of memchecks required to prove independence of otherwise may-alias pointers.
Analysis pass that exposes the LoopInfo for a function.
bool contains(const LoopT *L) const
Return true if the specified loop is contained within in this loop.
BlockT * getLoopLatch() const
If there is a single latch block for this loop, return it.
bool isInnermost() const
Return true if the loop does not contain any (natural) loops.
void getExitingBlocks(SmallVectorImpl< BlockT * > &ExitingBlocks) const
Return all blocks inside the loop that have successors outside of the loop.
BlockT * getHeader() const
iterator_range< block_iterator > blocks() const
ArrayRef< BlockT * > getBlocks() const
Get a list of the basic blocks which make up this loop.
Store the result of a depth first search within basic blocks contained by a single loop.
RPOIterator beginRPO() const
Reverse iterate over the cached postorder blocks.
void perform(const LoopInfo *LI)
Traverse the loop blocks and store the DFS result.
RPOIterator endRPO() const
Wrapper class to LoopBlocksDFS that provides a standard begin()/end() interface for the DFS reverse p...
void perform(const LoopInfo *LI)
Traverse the loop blocks and store the DFS result.
void removeBlock(BlockT *BB)
This method completely removes BB from all data structures, including all of the Loop objects it is n...
LoopVectorizationCostModel - estimates the expected speedups due to vectorization.
SmallPtrSet< Type *, 16 > ElementTypesInLoop
All element types found in the loop.
bool isLegalMaskedLoad(Type *DataType, Value *Ptr, Align Alignment, unsigned AddressSpace) const
Returns true if the target machine supports masked load operation for the given DataType and kind of ...
void collectElementTypesForWidening()
Collect all element types in the loop for which widening is needed.
bool canVectorizeReductions(ElementCount VF) const
Returns true if the target machine supports all of the reduction variables found for the given VF.
bool isLegalMaskedStore(Type *DataType, Value *Ptr, Align Alignment, unsigned AddressSpace) const
Returns true if the target machine supports masked store operation for the given DataType and kind of...
bool isEpilogueVectorizationProfitable(const ElementCount VF, const unsigned IC) const
Returns true if epilogue vectorization is considered profitable, and false otherwise.
bool useWideActiveLaneMask() const
Returns true if the use of wide lane masks is requested and the loop is using tail-folding with a lan...
bool isPredicatedInst(Instruction *I) const
Returns true if I is an instruction that needs to be predicated at runtime.
bool hasPredStores() const
void collectValuesToIgnore()
Collect values we want to ignore in the cost model.
BlockFrequencyInfo * BFI
The BlockFrequencyInfo returned from GetBFI.
void collectInLoopReductions()
Split reductions into those that happen in the loop, and those that happen outside.
BlockFrequencyInfo & getBFI()
Returns the BlockFrequencyInfo for the function if cached, otherwise fetches it via GetBFI.
std::pair< unsigned, unsigned > getSmallestAndWidestTypes()
bool isUniformAfterVectorization(Instruction *I, ElementCount VF) const
Returns true if I is known to be uniform after vectorization.
void collectNonVectorizedAndSetWideningDecisions(ElementCount VF)
Collect values that will not be widened, including Uniforms, Scalars, and Instructions to Scalarize f...
PredicatedScalarEvolution & PSE
Predicated scalar evolution analysis.
const LoopVectorizeHints * Hints
Loop Vectorize Hint.
std::optional< unsigned > getMaxSafeElements() const
Return maximum safe number of elements to be processed per vector iteration, which do not prevent sto...
const TargetTransformInfo & TTI
Vector target information.
friend class LoopVectorizationPlanner
const Function * TheFunction
LoopVectorizationLegality * Legal
Vectorization legality.
uint64_t getPredBlockCostDivisor(TargetTransformInfo::TargetCostKind CostKind, const BasicBlock *BB)
A helper function that returns how much we should divide the cost of a predicated block by.
std::optional< InstructionCost > getReductionPatternCost(Instruction *I, ElementCount VF, Type *VectorTy) const
Return the cost of instructions in an inloop reduction pattern, if I is part of that pattern.
InstructionCost getInstructionCost(Instruction *I, ElementCount VF)
Returns the execution time cost of an instruction for a given vector width.
DemandedBits * DB
Demanded bits analysis.
bool interleavedAccessCanBeWidened(Instruction *I, ElementCount VF) const
Returns true if I is a memory instruction in an interleaved-group of memory accesses that can be vect...
const TargetLibraryInfo * TLI
Target Library Info.
bool memoryInstructionCanBeWidened(Instruction *I, ElementCount VF)
Returns true if I is a memory instruction with consecutive memory access that can be widened.
const InterleaveGroup< Instruction > * getInterleavedAccessGroup(Instruction *Instr) const
Get the interleaved access group that Instr belongs to.
InstructionCost getVectorIntrinsicCost(CallInst *CI, ElementCount VF) const
Estimate cost of an intrinsic call instruction CI if it were vectorized with factor VF.
bool OptForSize
Whether this loop should be optimized for size based on function attribute or profile information.
bool useMaxBandwidth(TargetTransformInfo::RegisterKind RegKind)
bool isScalarAfterVectorization(Instruction *I, ElementCount VF) const
Returns true if I is known to be scalar after vectorization.
bool isOptimizableIVTruncate(Instruction *I, ElementCount VF)
Return True if instruction I is an optimizable truncate whose operand is an induction variable.
FixedScalableVFPair computeMaxVF(ElementCount UserVF, unsigned UserIC)
bool shouldConsiderRegPressureForVF(ElementCount VF)
Loop * TheLoop
The loop that we evaluate.
TTI::TargetCostKind CostKind
The kind of cost that we are calculating.
TailFoldingStyle getTailFoldingStyle(bool IVUpdateMayOverflow=true) const
Returns the TailFoldingStyle that is best for the current loop.
InterleavedAccessInfo & InterleaveInfo
The interleave access information contains groups of interleaved accesses with the same stride and cl...
SmallPtrSet< const Value *, 16 > ValuesToIgnore
Values to ignore in the cost model.
void setVectorizedCallDecision(ElementCount VF)
A call may be vectorized in different ways depending on whether we have vectorized variants available...
void invalidateCostModelingDecisions()
Invalidates decisions already taken by the cost model.
bool isAccessInterleaved(Instruction *Instr) const
Check if Instr belongs to any interleaved access group.
bool selectUserVectorizationFactor(ElementCount UserVF)
Setup cost-based decisions for user vectorization factor.
std::optional< unsigned > getVScaleForTuning() const
Return the value of vscale used for tuning the cost model.
OptimizationRemarkEmitter * ORE
Interface to emit optimization remarks.
bool preferPredicatedLoop() const
Returns true if tail-folding is preferred over a scalar epilogue.
LoopInfo * LI
Loop Info analysis.
bool requiresScalarEpilogue(bool IsVectorizing) const
Returns true if we're required to use a scalar epilogue for at least the final iteration of the origi...
SmallPtrSet< const Value *, 16 > VecValuesToIgnore
Values to ignore in the cost model when VF > 1.
bool isInLoopReduction(PHINode *Phi) const
Returns true if the Phi is part of an inloop reduction.
bool isProfitableToScalarize(Instruction *I, ElementCount VF) const
void setWideningDecision(const InterleaveGroup< Instruction > *Grp, ElementCount VF, InstWidening W, InstructionCost Cost)
Save vectorization decision W and Cost taken by the cost model for interleaving group Grp and vector ...
const MapVector< Instruction *, uint64_t > & getMinimalBitwidths() const
CallWideningDecision getCallWideningDecision(CallInst *CI, ElementCount VF) const
bool isLegalGatherOrScatter(Value *V, ElementCount VF)
Returns true if the target machine can represent V as a masked gather or scatter operation.
bool canTruncateToMinimalBitwidth(Instruction *I, ElementCount VF) const
bool runtimeChecksRequired()
bool shouldConsiderInvariant(Value *Op)
Returns true if Op should be considered invariant and if it is trivially hoistable.
bool foldTailByMasking() const
Returns true if all loop blocks should be masked to fold tail loop.
bool foldTailWithEVL() const
Returns true if VP intrinsics with explicit vector length support should be generated in the tail fol...
bool usePredicatedReductionSelect() const
Returns true if the predicated reduction select should be used to set the incoming value for the redu...
bool blockNeedsPredicationForAnyReason(BasicBlock *BB) const
Returns true if the instructions in this block requires predication for any reason,...
void setCallWideningDecision(CallInst *CI, ElementCount VF, InstWidening Kind, Function *Variant, Intrinsic::ID IID, std::optional< unsigned > MaskPos, InstructionCost Cost)
void setTailFoldingStyles(bool IsScalableVF, unsigned UserIC)
Selects and saves TailFoldingStyle for 2 options - if IV update may overflow or not.
AssumptionCache * AC
Assumption cache.
void setWideningDecision(Instruction *I, ElementCount VF, InstWidening W, InstructionCost Cost)
Save vectorization decision W and Cost taken by the cost model for instruction I and vector width VF.
InstWidening
Decision that was taken during cost calculation for memory instruction.
std::pair< InstructionCost, InstructionCost > getDivRemSpeculationCost(Instruction *I, ElementCount VF)
Return the costs for our two available strategies for lowering a div/rem operation which requires spe...
InstructionCost getVectorCallCost(CallInst *CI, ElementCount VF) const
Estimate cost of a call instruction CI if it were vectorized with factor VF.
bool isScalarWithPredication(Instruction *I, ElementCount VF)
Returns true if I is an instruction which requires predication and for which our chosen predication s...
bool useOrderedReductions(const RecurrenceDescriptor &RdxDesc) const
Returns true if we should use strict in-order reductions for the given RdxDesc.
bool isDivRemScalarWithPredication(InstructionCost ScalarCost, InstructionCost SafeDivisorCost) const
Given costs for both strategies, return true if the scalar predication lowering should be used for di...
std::function< BlockFrequencyInfo &()> GetBFI
A function to lazily fetch BlockFrequencyInfo.
LoopVectorizationCostModel(ScalarEpilogueLowering SEL, Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, LoopVectorizationLegality *Legal, const TargetTransformInfo &TTI, const TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC, OptimizationRemarkEmitter *ORE, std::function< BlockFrequencyInfo &()> GetBFI, const Function *F, const LoopVectorizeHints *Hints, InterleavedAccessInfo &IAI, bool OptForSize)
InstructionCost expectedCost(ElementCount VF)
Returns the expected execution cost.
void setCostBasedWideningDecision(ElementCount VF)
Memory access instruction may be vectorized in more than one way.
InstWidening getWideningDecision(Instruction *I, ElementCount VF) const
Return the cost model decision for the given instruction I and vector width VF.
FixedScalableVFPair MaxPermissibleVFWithoutMaxBW
The highest VF possible for this loop, without using MaxBandwidth.
const SmallPtrSetImpl< PHINode * > & getInLoopReductions() const
Returns the set of in-loop reduction PHIs.
bool isScalarEpilogueAllowed() const
Returns true if a scalar epilogue is not allowed due to optsize or a loop hint annotation.
InstructionCost getWideningCost(Instruction *I, ElementCount VF)
Return the vectorization cost for the given instruction I and vector width VF.
void collectInstsToScalarize(ElementCount VF)
Collects the instructions to scalarize for each predicated instruction in the loop.
LoopVectorizationLegality checks if it is legal to vectorize a loop, and to what vectorization factor...
MapVector< PHINode *, InductionDescriptor > InductionList
InductionList saves induction variables and maps them to the induction descriptor.
const SmallPtrSetImpl< const Instruction * > & getPotentiallyFaultingLoads() const
Returns potentially faulting loads.
bool canVectorize(bool UseVPlanNativePath)
Returns true if it is legal to vectorize this loop.
bool canVectorizeFPMath(bool EnableStrictReductions)
Returns true if it is legal to vectorize the FP math operations in this loop.
PHINode * getPrimaryInduction()
Returns the primary induction variable.
const SmallVector< BasicBlock *, 4 > & getCountableExitingBlocks() const
Returns all exiting blocks with a countable exit, i.e.
const InductionList & getInductionVars() const
Returns the induction variables found in the loop.
bool isSafeForAnyVectorWidth() const
bool hasUncountableEarlyExit() const
Returns true if the loop has uncountable early exits, i.e.
bool hasHistograms() const
Returns a list of all known histogram operations in the loop.
const LoopAccessInfo * getLAI() const
Planner drives the vectorization process after having passed Legality checks.
VectorizationFactor selectEpilogueVectorizationFactor(const ElementCount MainLoopVF, unsigned IC)
VPlan & getPlanFor(ElementCount VF) const
Return the VPlan for VF.
VectorizationFactor planInVPlanNativePath(ElementCount UserVF)
Use the VPlan-native path to plan how to best vectorize, return the best VF and its cost.
void updateLoopMetadataAndProfileInfo(Loop *VectorLoop, VPBasicBlock *HeaderVPBB, const VPlan &Plan, bool VectorizingEpilogue, MDNode *OrigLoopID, std::optional< unsigned > OrigAverageTripCount, unsigned OrigLoopInvocationWeight, unsigned EstimatedVFxUF, bool DisableRuntimeUnroll)
Update loop metadata and profile info for both the scalar remainder loop and VectorLoop,...
void buildVPlans(ElementCount MinVF, ElementCount MaxVF)
Build VPlans for power-of-2 VF's between MinVF and MaxVF inclusive, according to the information gath...
VectorizationFactor computeBestVF()
Compute and return the most profitable vectorization factor.
DenseMap< const SCEV *, Value * > executePlan(ElementCount VF, unsigned UF, VPlan &BestPlan, InnerLoopVectorizer &LB, DominatorTree *DT, bool VectorizingEpilogue)
Generate the IR code for the vectorized loop captured in VPlan BestPlan according to the best selecte...
unsigned selectInterleaveCount(VPlan &Plan, ElementCount VF, InstructionCost LoopCost)
void emitInvalidCostRemarks(OptimizationRemarkEmitter *ORE)
Emit remarks for recipes with invalid costs in the available VPlans.
static bool getDecisionAndClampRange(const std::function< bool(ElementCount)> &Predicate, VFRange &Range)
Test a Predicate on a Range of VF's.
void printPlans(raw_ostream &O)
void plan(ElementCount UserVF, unsigned UserIC)
Build VPlans for the specified UserVF and UserIC if they are non-zero or all applicable candidate VFs...
void addMinimumIterationCheck(VPlan &Plan, ElementCount VF, unsigned UF, ElementCount MinProfitableTripCount) const
Create a check to Plan to see if the vector loop should be executed based on its trip count.
bool hasPlanWithVF(ElementCount VF) const
Look through the existing plans and return true if we have one with vectorization factor VF.
This holds vectorization requirements that must be verified late in the process.
Instruction * getExactFPInst()
Utility class for getting and setting loop vectorizer hints in the form of loop metadata.
enum ForceKind getForce() const
bool allowVectorization(Function *F, Loop *L, bool VectorizeOnlyWhenForced) const
bool allowReordering() const
When enabling loop hints are provided we allow the vectorizer to change the order of operations that ...
void emitRemarkWithHints() const
Dumps all the hint information.
bool isPotentiallyUnsafe() const
ElementCount getWidth() const
@ FK_Enabled
Forcing enabled.
@ FK_Undefined
Not selected.
@ FK_Disabled
Forcing disabled.
unsigned getPredicate() const
const char * vectorizeAnalysisPassName() const
If hints are provided that force vectorization, use the AlwaysPrint pass name to force the frontend t...
unsigned getInterleave() const
This class emits a version of the loop where run-time checks ensure that may-alias pointers can't ove...
Represents a single loop in the control flow graph.
bool hasLoopInvariantOperands(const Instruction *I) const
Return true if all the operands of the specified instruction are loop invariant.
DebugLoc getStartLoc() const
Return the debug location of the start of this loop.
bool isLoopInvariant(const Value *V) const
Return true if the specified value is loop invariant.
This class implements a map that also provides access to all stored values in a deterministic order.
std::pair< iterator, bool > insert(const std::pair< KeyT, ValueT > &KV)
Function * getFunction(StringRef Name) const
Look up the specified function in the module symbol table.
void addIncoming(Value *V, BasicBlock *BB)
Add an incoming value to the end of the PHI list.
op_range incoming_values()
void setIncomingValueForBlock(const BasicBlock *BB, Value *V)
Set every incoming value(s) for block BB to V.
Value * getIncomingValueForBlock(const BasicBlock *BB) const
unsigned getNumIncomingValues() const
Return the number of incoming edges.
An interface layer with SCEV used to manage how we see SCEV expressions for values in the context of ...
ScalarEvolution * getSE() const
Returns the ScalarEvolution analysis used.
LLVM_ABI const SCEVPredicate & getPredicate() const
LLVM_ABI unsigned getSmallConstantMaxTripCount()
Returns the upper bound of the loop trip count as a normal unsigned value, or 0 if the trip count is ...
LLVM_ABI const SCEV * getBackedgeTakenCount()
Get the (predicated) backedge count for the analyzed loop.
LLVM_ABI const SCEV * getSCEV(Value *V)
Returns the SCEV expression of V, in the context of the current SCEV predicate.
A set of analyses that are preserved following a run of a transformation pass.
static PreservedAnalyses all()
Construct a special preserved set that preserves all passes.
PreservedAnalyses & preserveSet()
Mark an analysis set as preserved.
PreservedAnalyses & preserve()
Mark an analysis as preserved.
An analysis pass based on the new PM to deliver ProfileSummaryInfo.
The RecurrenceDescriptor is used to identify recurrences variables in a loop.
static bool isFMulAddIntrinsic(Instruction *I)
Returns true if the instruction is a call to the llvm.fmuladd intrinsic.
FastMathFlags getFastMathFlags() const
static bool isSignedRecurrenceKind(RecurKind Kind)
Returns true if recurrece kind is a signed redux kind.
static LLVM_ABI unsigned getOpcode(RecurKind Kind)
Returns the opcode corresponding to the RecurrenceKind.
unsigned getOpcode() const
Type * getRecurrenceType() const
Returns the type of the recurrence.
bool hasUsesOutsideReductionChain() const
Returns true if the reduction PHI has any uses outside the reduction chain.
const SmallPtrSet< Instruction *, 8 > & getCastInsts() const
Returns a reference to the instructions used for type-promoting the recurrence.
static bool isFindLastRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is of the form select(cmp(),x,y) where one of (x,...
unsigned getMinWidthCastToRecurrenceTypeInBits() const
Returns the minimum width used by the recurrence in bits.
LLVM_ABI SmallVector< Instruction *, 4 > getReductionOpChain(PHINode *Phi, Loop *L) const
Attempts to find a chain of operations from Phi to LoopExitInst that can be treated as a set of reduc...
static bool isAnyOfRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is of the form select(cmp(),x,y) where one of (x,...
static bool isFindLastIVRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is of the form select(cmp(),x,y) where one of (x,...
bool isSigned() const
Returns true if all source operands of the recurrence are SExtInsts.
RecurKind getRecurrenceKind() const
bool isOrdered() const
Expose an ordered FP reduction to the instance users.
static LLVM_ABI bool isFloatingPointRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is a floating point kind.
static bool isFindIVRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is of the form select(cmp(),x,y) where one of (x,...
Value * getSentinelValue() const
Returns the sentinel value for FindFirstIV & FindLastIV recurrences to replace the start value.
static bool isMinMaxRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is any min/max kind.
std::optional< ArrayRef< PointerDiffInfo > > getDiffChecks() const
const SmallVectorImpl< RuntimePointerCheck > & getChecks() const
Returns the checks that generateChecks created.
This class uses information about analyze scalars to rewrite expressions in canonical form.
ScalarEvolution * getSE()
bool isInsertedInstruction(Instruction *I) const
Return true if the specified instruction was inserted by the code rewriter.
LLVM_ABI Value * expandCodeForPredicate(const SCEVPredicate *Pred, Instruction *Loc)
Generates a code sequence that evaluates this predicate.
void eraseDeadInstructions(Value *Root)
Remove inserted instructions that are dead, e.g.
virtual bool isAlwaysTrue() const =0
Returns true if the predicate is always true.
This class represents an analyzed expression in the program.
LLVM_ABI bool isZero() const
Return true if the expression is a constant zero.
LLVM_ABI Type * getType() const
Return the LLVM type of this SCEV expression.
Analysis pass that exposes the ScalarEvolution for a function.
The main scalar evolution driver.
LLVM_ABI const SCEV * getURemExpr(const SCEV *LHS, const SCEV *RHS)
Represents an unsigned remainder expression based on unsigned division.
LLVM_ABI const SCEV * getBackedgeTakenCount(const Loop *L, ExitCountKind Kind=Exact)
If the specified loop has a predictable backedge-taken count, return it, otherwise return a SCEVCould...
LLVM_ABI const SCEV * getConstant(ConstantInt *V)
LLVM_ABI const SCEV * getSCEV(Value *V)
Return a SCEV expression for the full generality of the specified expression.
LLVM_ABI const SCEV * getTripCountFromExitCount(const SCEV *ExitCount)
A version of getTripCountFromExitCount below which always picks an evaluation type which can not resu...
const SCEV * getOne(Type *Ty)
Return a SCEV for the constant 1 of a specific type.
LLVM_ABI void forgetLoop(const Loop *L)
This method should be called by the client when it has changed a loop in a way that may effect Scalar...
LLVM_ABI bool isLoopInvariant(const SCEV *S, const Loop *L)
Return true if the value of the given SCEV is unchanging in the specified loop.
LLVM_ABI const SCEV * getElementCount(Type *Ty, ElementCount EC, SCEV::NoWrapFlags Flags=SCEV::FlagAnyWrap)
LLVM_ABI void forgetValue(Value *V)
This method should be called by the client when it has changed a value in a way that may effect its v...
LLVM_ABI void forgetBlockAndLoopDispositions(Value *V=nullptr)
Called when the client has changed the disposition of values in a loop or block.
const SCEV * getMinusOne(Type *Ty)
Return a SCEV for the constant -1 of a specific type.
LLVM_ABI void forgetLcssaPhiWithNewPredecessor(Loop *L, PHINode *V)
Forget LCSSA phi node V of loop L to which a new predecessor was added, such that it may no longer be...
LLVM_ABI unsigned getSmallConstantTripCount(const Loop *L)
Returns the exact trip count of the loop if we can compute it, and the result is a small constant.
APInt getUnsignedRangeMax(const SCEV *S)
Determine the max of the unsigned range for a particular SCEV.
LLVM_ABI const SCEV * applyLoopGuards(const SCEV *Expr, const Loop *L)
Try to apply information from loop guards for L to Expr.
LLVM_ABI const SCEV * getMulExpr(SmallVectorImpl< const SCEV * > &Ops, SCEV::NoWrapFlags Flags=SCEV::FlagAnyWrap, unsigned Depth=0)
Get a canonical multiply expression, or something simpler if possible.
LLVM_ABI const SCEV * getAddExpr(SmallVectorImpl< const SCEV * > &Ops, SCEV::NoWrapFlags Flags=SCEV::FlagAnyWrap, unsigned Depth=0)
Get a canonical add expression, or something simpler if possible.
LLVM_ABI bool isKnownPredicate(CmpPredicate Pred, const SCEV *LHS, const SCEV *RHS)
Test if the given expression is known to satisfy the condition described by Pred, LHS,...
This class represents the LLVM 'select' instruction.
A vector that has set insertion semantics.
size_type size() const
Determine the number of elements in the SetVector.
void insert_range(Range &&R)
size_type count(const_arg_type key) const
Count the number of elements of a given key in the SetVector.
bool insert(const value_type &X)
Insert a new element into the SetVector.
A templated base class for SmallPtrSet which provides the typesafe interface that is common across al...
size_type count(ConstPtrType Ptr) const
count - Return 1 if the specified pointer is in the set, 0 otherwise.
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
bool contains(ConstPtrType Ptr) const
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
A SetVector that performs no allocations if smaller than a certain size.
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
reference emplace_back(ArgTypes &&... Args)
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
An instruction for storing to memory.
StringRef - Represent a constant reference to a string, i.e.
Analysis pass providing the TargetTransformInfo.
Analysis pass providing the TargetLibraryInfo.
Provides information about what library functions are available for the current target.
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
This class implements a switch-like dispatch statement for a value of 'T' using dyn_cast functionalit...
TypeSwitch< T, ResultT > & Case(CallableT &&caseFn)
Add a case on the given type.
The instances of the Type class are immutable: once they are created, they are never changed.
LLVM_ABI unsigned getIntegerBitWidth() const
bool isVectorTy() const
True if this is an instance of VectorType.
static LLVM_ABI Type * getVoidTy(LLVMContext &C)
Type * getScalarType() const
If this is a vector type, return the element type, otherwise return 'this'.
LLVMContext & getContext() const
Return the LLVMContext in which this type was uniqued.
LLVM_ABI unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type.
static LLVM_ABI IntegerType * getInt1Ty(LLVMContext &C)
bool isFloatingPointTy() const
Return true if this is one of the floating-point types.
bool isIntegerTy() const
True if this is an instance of IntegerType.
bool isVoidTy() const
Return true if this is 'void'.
A Use represents the edge between a Value definition and its users.
LLVM_ABI bool replaceUsesOfWith(Value *From, Value *To)
Replace uses of one Value with another.
Value * getOperand(unsigned i) const
static SmallVector< VFInfo, 8 > getMappings(const CallInst &CI)
Retrieve all the VFInfo instances associated to the CallInst CI.
VPBasicBlock serves as the leaf of the Hierarchical Control-Flow Graph.
RecipeListTy::iterator iterator
Instruction iterators...
iterator begin()
Recipe iterator methods.
iterator_range< iterator > phis()
Returns an iterator range over the PHI-like recipes in the block.
InstructionCost cost(ElementCount VF, VPCostContext &Ctx) override
Return the cost of this VPBasicBlock.
iterator getFirstNonPhi()
Return the position of the first non-phi node recipe in the block.
VPRecipeBase * getTerminator()
If the block has multiple successors, return the branch recipe terminating the block.
VPBlockBase is the building block of the Hierarchical Control-Flow Graph.
const VPBasicBlock * getExitingBasicBlock() const
void setName(const Twine &newName)
size_t getNumSuccessors() const
void swapSuccessors()
Swap successors of the block. The block must have exactly 2 successors.
size_t getNumPredecessors() const
const VPBasicBlock * getEntryBasicBlock() const
VPBlockBase * getSingleSuccessor() const
const VPBlocksTy & getSuccessors() const
static auto blocksOnly(const T &Range)
Return an iterator range over Range which only includes BlockTy blocks.
static void insertOnEdge(VPBlockBase *From, VPBlockBase *To, VPBlockBase *BlockPtr)
Inserts BlockPtr on the edge between From and To.
static void connectBlocks(VPBlockBase *From, VPBlockBase *To, unsigned PredIdx=-1u, unsigned SuccIdx=-1u)
Connect VPBlockBases From and To bi-directionally.
static void reassociateBlocks(VPBlockBase *Old, VPBlockBase *New)
Reassociate all the blocks connected to Old so that they now point to New.
VPlan-based builder utility analogous to IRBuilder.
VPPhi * createScalarPhi(ArrayRef< VPValue * > IncomingValues, DebugLoc DL, const Twine &Name="")
VPInstruction * createNaryOp(unsigned Opcode, ArrayRef< VPValue * > Operands, Instruction *Inst=nullptr, const VPIRFlags &Flags={}, const VPIRMetadata &MD={}, DebugLoc DL=DebugLoc::getUnknown(), const Twine &Name="")
Create an N-ary operation with Opcode, Operands and set Inst as its underlying Instruction.
Canonical scalar induction phi of the vector loop.
VPIRValue * getStartValue() const
Returns the start value of the canonical induction.
unsigned getNumDefinedValues() const
Returns the number of values defined by the VPDef.
VPValue * getVPSingleValue()
Returns the only VPValue defined by the VPDef.
A recipe representing a sequence of load -> update -> store as part of a histogram operation.
A special type of VPBasicBlock that wraps an existing IR basic block.
This is a concrete Recipe that models a single VPlan-level instruction.
@ ComputeAnyOfResult
Compute the final result of a AnyOf reduction with select(cmp(),x,y), where one of (x,...
@ ResumeForEpilogue
Explicit user for the resume phi of the canonical induction in the main VPlan, used by the epilogue v...
@ FirstOrderRecurrenceSplice
@ ReductionStartVector
Start vector for reductions with 3 operands: the original start value, the identity value for the red...
unsigned getOpcode() const
VPInterleaveRecipe is a recipe for transforming an interleave group of load or stores into one wide l...
detail::zippy< llvm::detail::zip_first, VPUser::const_operand_range, const_incoming_blocks_range > incoming_values_and_blocks() const
Returns an iterator range over pairs of incoming values and corresponding incoming blocks.
VPRecipeBase is a base class modeling a sequence of one or more output IR instructions.
VPBasicBlock * getParent()
DebugLoc getDebugLoc() const
Returns the debug location of the recipe.
void moveBefore(VPBasicBlock &BB, iplist< VPRecipeBase >::iterator I)
Unlink this recipe and insert into BB before I.
void insertBefore(VPRecipeBase *InsertPos)
Insert an unlinked recipe into a basic block immediately before the specified recipe.
iplist< VPRecipeBase >::iterator eraseFromParent()
This method unlinks 'this' from the containing basic block and deletes it.
Helper class to create VPRecipies from IR instructions.
VPValue * getBlockInMask(VPBasicBlock *VPBB) const
Returns the entry mask for block VPBB or null if the mask is all-true.
VPRecipeBase * tryToCreateWidenNonPhiRecipe(VPSingleDefRecipe *R, VFRange &Range)
Create and return a widened recipe for a non-phi recipe R if one can be created within the given VF R...
VPValue * getVPValueOrAddLiveIn(Value *V)
VPReplicateRecipe * handleReplication(VPInstruction *VPI, VFRange &Range)
Build a VPReplicationRecipe for VPI.
bool isOrdered() const
Returns true, if the phi is part of an ordered reduction.
bool isInLoop() const
Returns true if the phi is part of an in-loop reduction.
RecurKind getRecurrenceKind() const
Returns the recurrence kind of the reduction.
A recipe to represent inloop, ordered or partial reduction operations.
VPRegionBlock represents a collection of VPBasicBlocks and VPRegionBlocks which form a Single-Entry-S...
const VPBlockBase * getEntry() const
VPCanonicalIVPHIRecipe * getCanonicalIV()
Returns the canonical induction recipe of the region.
VPReplicateRecipe replicates a given instruction producing multiple scalar copies of the original sca...
VPSingleDef is a base class for recipes for modeling a sequence of one or more output IR that define ...
Instruction * getUnderlyingInstr()
Returns the underlying instruction.
An analysis for type-inference for VPValues.
Type * inferScalarType(const VPValue *V)
Infer the type of V. Returns the scalar type of V.
This class augments VPValue with operands which provide the inverse def-use edges from VPValue's user...
void setOperand(unsigned I, VPValue *New)
unsigned getNumOperands() const
operand_iterator op_begin()
VPValue * getOperand(unsigned N) const
This is the base class of the VPlan Def/Use graph, used for modeling the data flow into,...
Value * getLiveInIRValue() const
Return the underlying IR value for a VPIRValue.
VPRecipeBase * getDefiningRecipe()
Returns the recipe defining this VPValue or nullptr if it is not defined by a recipe,...
Value * getUnderlyingValue() const
Return the underlying Value attached to this VPValue.
void replaceAllUsesWith(VPValue *New)
void replaceUsesWithIf(VPValue *New, llvm::function_ref< bool(VPUser &U, unsigned Idx)> ShouldReplace)
Go through the uses list for this VPValue and make each use point to New if the callback ShouldReplac...
A recipe to compute a pointer to the last element of each part of a widened memory access for widened...
VPWidenCastRecipe is a recipe to create vector cast instructions.
A recipe for handling GEP instructions.
A recipe for handling phi nodes of integer and floating-point inductions, producing their vector valu...
A recipe for widened phis.
VPWidenRecipe is a recipe for producing a widened instruction using the opcode and operands of the re...
VPlan models a candidate for vectorization, encoding various decisions take to produce efficient outp...
bool hasVF(ElementCount VF) const
VPBasicBlock * getEntry()
VPValue & getVF()
Returns the VF of the vector loop region.
VPValue * getTripCount() const
The trip count of the original loop.
iterator_range< SmallSetVector< ElementCount, 2 >::iterator > vectorFactors() const
Returns an iterator range over all VFs of the plan.
bool hasUF(unsigned UF) const
ArrayRef< VPIRBasicBlock * > getExitBlocks() const
Return an ArrayRef containing VPIRBasicBlocks wrapping the exit blocks of the original scalar loop.
VPSymbolicValue & getVectorTripCount()
The vector trip count.
VPIRValue * getOrAddLiveIn(Value *V)
Gets the live-in VPIRValue for V or adds a new live-in (if none exists yet) for V.
LLVM_ABI_FOR_TEST VPRegionBlock * getVectorLoopRegion()
Returns the VPRegionBlock of the vector loop.
bool hasEarlyExit() const
Returns true if the VPlan is based on a loop with an early exit.
InstructionCost cost(ElementCount VF, VPCostContext &Ctx)
Return the cost of this plan.
void resetTripCount(VPValue *NewTripCount)
Resets the trip count for the VPlan.
VPBasicBlock * getMiddleBlock()
Returns the 'middle' block of the plan, that is the block that selects whether to execute the scalar ...
VPBasicBlock * getScalarPreheader() const
Return the VPBasicBlock for the preheader of the scalar loop.
void execute(VPTransformState *State)
Generate the IR code for this VPlan.
VPIRBasicBlock * getScalarHeader() const
Return the VPIRBasicBlock wrapping the header of the scalar loop.
VPBasicBlock * getVectorPreheader()
Returns the preheader of the vector loop region, if one exists, or null otherwise.
LLVM_ABI_FOR_TEST VPlan * duplicate()
Clone the current VPlan, update all VPValues of the new VPlan and cloned recipes to refer to the clon...
LLVM Value Representation.
Type * getType() const
All values are typed, get the type of this value.
LLVM_ABI bool hasOneUser() const
Return true if there is exactly one user of this value.
LLVM_ABI void setName(const Twine &Name)
Change the name of the value.
LLVM_ABI void replaceAllUsesWith(Value *V)
Change all uses of this to point to a new Value.
iterator_range< user_iterator > users()
LLVM_ABI const Value * stripPointerCasts() const
Strip off pointer casts, all-zero GEPs and address space casts.
LLVM_ABI StringRef getName() const
Return a constant reference to the value's name.
Base class of all SIMD vector types.
ElementCount getElementCount() const
Return an ElementCount instance to represent the (possibly scalable) number of elements in the vector...
static LLVM_ABI VectorType * get(Type *ElementType, ElementCount EC)
This static method is the primary way to construct an VectorType.
std::pair< iterator, bool > insert(const ValueT &V)
bool contains(const_arg_type_t< ValueT > V) const
Check if the set contains the given element.
constexpr ScalarTy getFixedValue() const
static constexpr bool isKnownLE(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
constexpr bool isNonZero() const
static constexpr bool isKnownLT(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
constexpr bool isScalable() const
Returns whether the quantity is scaled by a runtime quantity (vscale).
constexpr LeafTy multiplyCoefficientBy(ScalarTy RHS) const
constexpr bool isFixed() const
Returns true if the quantity is not scaled by vscale.
constexpr ScalarTy getKnownMinValue() const
Returns the minimum value this quantity can represent.
constexpr bool isZero() const
static constexpr bool isKnownGT(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
constexpr LeafTy divideCoefficientBy(ScalarTy RHS) const
We do not provide the '/' operator here because division for polynomial types does not work in the sa...
static constexpr bool isKnownGE(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
An efficient, type-erasing, non-owning reference to a callable.
const ParentTy * getParent() const
self_iterator getIterator()
This class implements an extremely fast bulk output stream that can only output to a stream.
A raw_ostream that writes to an std::string.
This provides a very simple, boring adaptor for a begin and end iterator into a range type.
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
@ PredicateElseScalarEpilogue
@ PredicateOrDontVectorize
constexpr char Align[]
Key for Kernel::Arg::Metadata::mAlign.
constexpr std::underlying_type_t< E > Mask()
Get a bitmask with 1s in all places up to the high-order bit of E's largest value.
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
@ Tail
Attemps to make calls as fast as possible while guaranteeing that tail call optimization can always b...
@ C
The default llvm calling convention, compatible with C.
@ BasicBlock
Various leaf nodes.
std::variant< std::monostate, Loc::Single, Loc::Multi, Loc::MMI, Loc::EntryValue > Variant
Alias for the std::variant specialization base class of DbgVariable.
SpecificConstantMatch m_ZeroInt()
Convenience matchers for specific integer values.
OneUse_match< SubPat > m_OneUse(const SubPat &SP)
specific_intval< false > m_SpecificInt(const APInt &V)
Match a specific integer value or vector with all elements equal to the value.
bool match(Val *V, const Pattern &P)
bind_ty< Instruction > m_Instruction(Instruction *&I)
Match an instruction, capturing it if we match.
specificval_ty m_Specific(const Value *V)
Match if we have a specific specified value.
auto match_fn(const Pattern &P)
A match functor that can be used as a UnaryPredicate in functional algorithms like all_of.
cst_pred_ty< is_one > m_One()
Match an integer 1 or a vector with all elements equal to 1.
BinaryOp_match< LHS, RHS, Instruction::Mul > m_Mul(const LHS &L, const RHS &R)
auto m_LogicalOr()
Matches L || R where L and R are arbitrary values.
class_match< CmpInst > m_Cmp()
Matches any compare instruction and ignore it.
class_match< Value > m_Value()
Match an arbitrary value and ignore it.
match_combine_or< CastInst_match< OpTy, ZExtInst >, CastInst_match< OpTy, SExtInst > > m_ZExtOrSExt(const OpTy &Op)
auto m_LogicalAnd()
Matches L && R where L and R are arbitrary values.
match_combine_or< LTy, RTy > m_CombineOr(const LTy &L, const RTy &R)
Combine two pattern matchers matching L || R.
class_match< const SCEVVScale > m_SCEVVScale()
bind_cst_ty m_scev_APInt(const APInt *&C)
Match an SCEV constant and bind it to an APInt.
specificloop_ty m_SpecificLoop(const Loop *L)
cst_pred_ty< is_specific_signed_cst > m_scev_SpecificSInt(int64_t V)
Match an SCEV constant with a plain signed integer (sign-extended value will be matched)
SCEVAffineAddRec_match< Op0_t, Op1_t, class_match< const Loop > > m_scev_AffineAddRec(const Op0_t &Op0, const Op1_t &Op1)
bind_ty< const SCEVMulExpr > m_scev_Mul(const SCEVMulExpr *&V)
bool match(const SCEV *S, const Pattern &P)
SCEVBinaryExpr_match< SCEVMulExpr, Op0_t, Op1_t, SCEV::FlagAnyWrap, true > m_scev_c_Mul(const Op0_t &Op0, const Op1_t &Op1)
class_match< const SCEV > m_SCEV()
AllRecipe_match< Instruction::Select, Op0_t, Op1_t, Op2_t > m_Select(const Op0_t &Op0, const Op1_t &Op1, const Op2_t &Op2)
bool matchFindIVResult(VPInstruction *VPI, Op0_t ReducedIV, Op1_t Start)
Match FindIV result pattern: select(icmp ne ComputeReductionResult(ReducedIV), Sentinel),...
match_combine_or< AllRecipe_match< Instruction::ZExt, Op0_t >, AllRecipe_match< Instruction::SExt, Op0_t > > m_ZExtOrSExt(const Op0_t &Op0)
VPInstruction_match< VPInstruction::ExtractLastLane, Op0_t > m_ExtractLastLane(const Op0_t &Op0)
VPInstruction_match< VPInstruction::ExtractLastPart, Op0_t > m_ExtractLastPart(const Op0_t &Op0)
class_match< VPValue > m_VPValue()
Match an arbitrary VPValue and ignore it.
VPInstruction_match< VPInstruction::ExtractLane, Op0_t, Op1_t > m_ExtractLane(const Op0_t &Op0, const Op1_t &Op1)
ValuesClass values(OptsTy... Options)
Helper to build a ValuesClass by forwarding a variable number of arguments as an initializer list to ...
initializer< Ty > init(const Ty &Val)
Add a small namespace to avoid name clashes with the classes used in the streaming interface.
DiagnosticInfoOptimizationBase::Argument NV
NodeAddr< InstrNode * > Instr
NodeAddr< PhiNode * > Phi
friend class Instruction
Iterator for Instructions in a `BasicBlock.
bool isSingleScalar(const VPValue *VPV)
Returns true if VPV is a single scalar, either because it produces the same value for all lanes or on...
VPValue * getOrCreateVPValueForSCEVExpr(VPlan &Plan, const SCEV *Expr)
Get or create a VPValue that corresponds to the expansion of Expr.
VPBasicBlock * getFirstLoopHeader(VPlan &Plan, VPDominatorTree &VPDT)
Returns the header block of the first, top-level loop, or null if none exist.
bool isAddressSCEVForCost(const SCEV *Addr, ScalarEvolution &SE, const Loop *L)
Returns true if Addr is an address SCEV that can be passed to TTI::getAddressComputationCost,...
bool onlyFirstLaneUsed(const VPValue *Def)
Returns true if only the first lane of Def is used.
VPIRFlags getFlagsFromIndDesc(const InductionDescriptor &ID)
Extracts and returns NoWrap and FastMath flags from the induction binop in ID.
VPRecipeBase * findRecipe(VPValue *Start, PredT Pred)
Search Start's users for a recipe satisfying Pred, looking through recipes with definitions.
const SCEV * getSCEVExprForVPValue(const VPValue *V, PredicatedScalarEvolution &PSE, const Loop *L=nullptr)
Return the SCEV expression for V.
This is an optimization pass for GlobalISel generic memory operations.
LLVM_ABI bool simplifyLoop(Loop *L, DominatorTree *DT, LoopInfo *LI, ScalarEvolution *SE, AssumptionCache *AC, MemorySSAUpdater *MSSAU, bool PreserveLCSSA)
Simplify each loop in a loop nest recursively.
LLVM_ABI void ReplaceInstWithInst(BasicBlock *BB, BasicBlock::iterator &BI, Instruction *I)
Replace the instruction specified by BI with the instruction specified by I.
auto drop_begin(T &&RangeOrContainer, size_t N=1)
Return a range covering RangeOrContainer with the first N elements excluded.
detail::zippy< detail::zip_shortest, T, U, Args... > zip(T &&t, U &&u, Args &&...args)
zip iterator for two or more iteratable types.
FunctionAddr VTableAddr Value
LLVM_ABI Value * addRuntimeChecks(Instruction *Loc, Loop *TheLoop, const SmallVectorImpl< RuntimePointerCheck > &PointerChecks, SCEVExpander &Expander, bool HoistRuntimeChecks=false)
Add code that checks at runtime if the accessed arrays in PointerChecks overlap.
auto cast_if_present(const Y &Val)
cast_if_present<X> - Functionally identical to cast, except that a null value is accepted.
LLVM_ABI bool RemoveRedundantDbgInstrs(BasicBlock *BB)
Try to remove redundant dbg.value instructions from given basic block.
LLVM_ABI_FOR_TEST cl::opt< bool > VerifyEachVPlan
LLVM_ABI std::optional< unsigned > getLoopEstimatedTripCount(Loop *L, unsigned *EstimatedLoopInvocationWeight=nullptr)
Return either:
static void reportVectorization(OptimizationRemarkEmitter *ORE, Loop *TheLoop, VectorizationFactor VF, unsigned IC)
Report successful vectorization of the loop.
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
unsigned getLoadStoreAddressSpace(const Value *I)
A helper function that returns the address space of the pointer operand of load or store instruction.
LLVM_ABI Intrinsic::ID getMinMaxReductionIntrinsicOp(Intrinsic::ID RdxID)
Returns the min/max intrinsic used when expanding a min/max reduction.
auto size(R &&Range, std::enable_if_t< std::is_base_of< std::random_access_iterator_tag, typename std::iterator_traits< decltype(Range.begin())>::iterator_category >::value, void > *=nullptr)
Get the size of a range.
LLVM_ABI_FOR_TEST bool verifyVPlanIsValid(const VPlan &Plan, bool VerifyLate=false)
Verify invariants for general VPlans.
LLVM_ABI Intrinsic::ID getVectorIntrinsicIDForCall(const CallInst *CI, const TargetLibraryInfo *TLI)
Returns intrinsic ID for call.
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
LLVM_ABI bool verifyFunction(const Function &F, raw_ostream *OS=nullptr)
Check a function for errors, useful for use when debugging a pass.
const Value * getLoadStorePointerOperand(const Value *V)
A helper function that returns the pointer operand of a load or store instruction.
OuterAnalysisManagerProxy< ModuleAnalysisManager, Function > ModuleAnalysisManagerFunctionProxy
Provide the ModuleAnalysisManager to Function proxy.
Value * getRuntimeVF(IRBuilderBase &B, Type *Ty, ElementCount VF)
Return the runtime value for VF.
LLVM_ABI bool formLCSSARecursively(Loop &L, const DominatorTree &DT, const LoopInfo *LI, ScalarEvolution *SE)
Put a loop nest into LCSSA form.
iterator_range< T > make_range(T x, T y)
Convenience function for iterating over sub-ranges.
void append_range(Container &C, Range &&R)
Wrapper function to append range R to container C.
LLVM_ABI bool shouldOptimizeForSize(const MachineFunction *MF, ProfileSummaryInfo *PSI, const MachineBlockFrequencyInfo *BFI, PGSOQueryType QueryType=PGSOQueryType::Other)
Returns true if machine function MF is suggested to be size-optimized based on the profile.
iterator_range< early_inc_iterator_impl< detail::IterOfRange< RangeT > > > make_early_inc_range(RangeT &&Range)
Make a range that does early increment to allow mutation of the underlying range without disrupting i...
constexpr bool isPowerOf2_64(uint64_t Value)
Return true if the argument is a power of two > 0 (64 bit edition.)
Align getLoadStoreAlignment(const Value *I)
A helper function that returns the alignment of load or store instruction.
iterator_range< df_iterator< VPBlockShallowTraversalWrapper< VPBlockBase * > > > vp_depth_first_shallow(VPBlockBase *G)
Returns an iterator range to traverse the graph starting at G in depth-first order.
LLVM_ABI bool isSafeToSpeculativelyExecute(const Instruction *I, const Instruction *CtxI=nullptr, AssumptionCache *AC=nullptr, const DominatorTree *DT=nullptr, const TargetLibraryInfo *TLI=nullptr, bool UseVariableInfo=true, bool IgnoreUBImplyingAttrs=true)
Return true if the instruction does not have any effects besides calculating the result and does not ...
bool isa_and_nonnull(const Y &Val)
iterator_range< df_iterator< VPBlockDeepTraversalWrapper< VPBlockBase * > > > vp_depth_first_deep(VPBlockBase *G)
Returns an iterator range to traverse the graph starting at G in depth-first order while traversing t...
SmallVector< VPRegisterUsage, 8 > calculateRegisterUsageForPlan(VPlan &Plan, ArrayRef< ElementCount > VFs, const TargetTransformInfo &TTI, const SmallPtrSetImpl< const Value * > &ValuesToIgnore)
Estimate the register usage for Plan and vectorization factors in VFs by calculating the highest numb...
unsigned Log2_64(uint64_t Value)
Return the floor log base 2 of the specified value, -1 if the value is zero.
LLVM_ABI void setBranchWeights(Instruction &I, ArrayRef< uint32_t > Weights, bool IsExpected, bool ElideAllZero=false)
Create a new branch_weights metadata node and add or overwrite a prof metadata reference to instructi...
auto dyn_cast_or_null(const Y &Val)
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
void collectEphemeralRecipesForVPlan(VPlan &Plan, DenseSet< VPRecipeBase * > &EphRecipes)
auto reverse(ContainerTy &&C)
bool containsIrreducibleCFG(RPOTraversalT &RPOTraversal, const LoopInfoT &LI)
Return true if the control flow in RPOTraversal is irreducible.
constexpr bool isPowerOf2_32(uint32_t Value)
Return true if the argument is a power of two > 0.
void sort(IteratorTy Start, IteratorTy End)
LLVM_ABI_FOR_TEST cl::opt< bool > EnableWideActiveLaneMask
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
bool none_of(R &&Range, UnaryPredicate P)
Provide wrappers to std::none_of which take ranges instead of having to pass begin/end explicitly.
LLVM_ABI cl::opt< bool > EnableLoopVectorization
LLVM_ABI bool wouldInstructionBeTriviallyDead(const Instruction *I, const TargetLibraryInfo *TLI=nullptr)
Return true if the result produced by the instruction would have no side effects if it was not used.
FunctionAddr VTableAddr Count
SmallVector< ValueTypeFromRangeType< R >, Size > to_vector(R &&Range)
Given a range of type R, iterate the entire range and return a SmallVector with elements of the vecto...
Type * toVectorizedTy(Type *Ty, ElementCount EC)
A helper for converting to vectorized types.
LLVM_ABI void llvm_unreachable_internal(const char *msg=nullptr, const char *file=nullptr, unsigned line=0)
This function calls abort(), and prints the optional message to stderr.
T * find_singleton(R &&Range, Predicate P, bool AllowRepeats=false)
Return the single value in Range that satisfies P(<member of Range> *, AllowRepeats)->T * returning n...
class LLVM_GSL_OWNER SmallVector
Forward declaration of SmallVector so that calculateSmallVectorDefaultInlinedElements can reference s...
cl::opt< unsigned > ForceTargetInstructionCost
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
format_object< Ts... > format(const char *Fmt, const Ts &... Vals)
These are helper functions used to produce formatted output.
constexpr T divideCeil(U Numerator, V Denominator)
Returns the integer ceil(Numerator / Denominator).
bool canVectorizeTy(Type *Ty)
Returns true if Ty is a valid vector element type, void, or an unpacked literal struct where all elem...
static void reportVectorizationInfo(const StringRef Msg, const StringRef ORETag, OptimizationRemarkEmitter *ORE, Loop *TheLoop, Instruction *I=nullptr, DebugLoc DL={})
Reports an informative message: print Msg for debugging purposes as well as an optimization remark.
LLVM_ABI bool isAssignmentTrackingEnabled(const Module &M)
Return true if assignment tracking is enabled for module M.
RecurKind
These are the kinds of recurrences that we support.
@ UMin
Unsigned integer min implemented in terms of select(cmp()).
@ Or
Bitwise or logical OR of integers.
@ FMulAdd
Sum of float products with llvm.fmuladd(a * b + sum).
@ SMax
Signed integer max implemented in terms of select(cmp()).
@ SMin
Signed integer min implemented in terms of select(cmp()).
@ UMax
Unsigned integer max implemented in terms of select(cmp()).
LLVM_ABI Value * getRecurrenceIdentity(RecurKind K, Type *Tp, FastMathFlags FMF)
Given information about an recurrence kind, return the identity for the @llvm.vector....
uint64_t alignTo(uint64_t Size, Align A)
Returns a multiple of A needed to store Size bytes.
LLVM_ABI void reportVectorizationFailure(const StringRef DebugMsg, const StringRef OREMsg, const StringRef ORETag, OptimizationRemarkEmitter *ORE, Loop *TheLoop, Instruction *I=nullptr)
Reports a vectorization failure: print DebugMsg for debugging purposes along with the corresponding o...
DWARFExpression::Operation Op
@ CM_ScalarEpilogueNotAllowedLowTripLoop
@ CM_ScalarEpilogueNotNeededUsePredicate
@ CM_ScalarEpilogueNotAllowedOptSize
@ CM_ScalarEpilogueAllowed
@ CM_ScalarEpilogueNotAllowedUsePredicate
LLVM_ABI bool isGuaranteedNotToBeUndefOrPoison(const Value *V, AssumptionCache *AC=nullptr, const Instruction *CtxI=nullptr, const DominatorTree *DT=nullptr, unsigned Depth=0)
Return true if this function can prove that V does not have undef bits and is never poison.
ArrayRef(const T &OneElt) -> ArrayRef< T >
Value * createStepForVF(IRBuilderBase &B, Type *Ty, ElementCount VF, int64_t Step)
Return a value for Step multiplied by VF.
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
LLVM_ABI BasicBlock * SplitBlock(BasicBlock *Old, BasicBlock::iterator SplitPt, DominatorTree *DT, LoopInfo *LI=nullptr, MemorySSAUpdater *MSSAU=nullptr, const Twine &BBName="", bool Before=false)
Split the specified block at the specified instruction.
auto find_if(R &&Range, UnaryPredicate P)
Provide wrappers to std::find_if which take ranges instead of having to pass begin/end explicitly.
Value * emitTransformedIndex(IRBuilderBase &B, Value *Index, Value *StartValue, Value *Step, InductionDescriptor::InductionKind InductionKind, const BinaryOperator *InductionBinOp)
Compute the transformed value of Index at offset StartValue using step StepValue.
auto predecessors(const MachineBasicBlock *BB)
iterator_range< pointer_iterator< WrappedIteratorT > > make_pointer_range(RangeT &&Range)
cl::opt< bool > EnableVPlanNativePath
Type * getLoadStoreType(const Value *I)
A helper function that returns the type of a load or store instruction.
ArrayRef< Type * > getContainedTypes(Type *const &Ty)
Returns the types contained in Ty.
LLVM_ABI Value * addDiffRuntimeChecks(Instruction *Loc, ArrayRef< PointerDiffInfo > Checks, SCEVExpander &Expander, function_ref< Value *(IRBuilderBase &, unsigned)> GetVF, unsigned IC)
bool pred_empty(const BasicBlock *BB)
@ DataAndControlFlowWithoutRuntimeCheck
Use predicate to control both data and control flow, but modify the trip count so that a runtime over...
@ None
Don't use tail folding.
@ DataWithEVL
Use predicated EVL instructions for tail-folding.
@ DataAndControlFlow
Use predicate to control both data and control flow.
@ DataWithoutLaneMask
Same as Data, but avoids using the get.active.lane.mask intrinsic to calculate the mask and instead i...
@ Data
Use predicate only to mask operations on data in the loop.
AnalysisManager< Function > FunctionAnalysisManager
Convenience typedef for the Function analysis manager.
LLVM_ABI bool hasBranchWeightMD(const Instruction &I)
Checks if an instructions has Branch Weight Metadata.
hash_code hash_combine(const Ts &...args)
Combine values into a single hash_code.
T bit_floor(T Value)
Returns the largest integral power of two no greater than Value if Value is nonzero.
Type * toVectorTy(Type *Scalar, ElementCount EC)
A helper function for converting Scalar types to vector types.
LLVM_ABI_FOR_TEST cl::opt< bool > PrintAfterEachVPlanPass
std::unique_ptr< VPlan > VPlanPtr
constexpr detail::IsaCheckPredicate< Types... > IsaPred
Function object wrapper for the llvm::isa type check.
LLVM_ABI MapVector< Instruction *, uint64_t > computeMinimumValueSizes(ArrayRef< BasicBlock * > Blocks, DemandedBits &DB, const TargetTransformInfo *TTI=nullptr)
Compute a map of integer instructions to their minimum legal type size.
hash_code hash_combine_range(InputIteratorT first, InputIteratorT last)
Compute a hash_code for a sequence of values.
LLVM_ABI cl::opt< bool > EnableLoopInterleaving
This struct is a compact representation of a valid (non-zero power of two) alignment.
A special type used by analysis passes to provide an address that identifies that particular analysis...
static LLVM_ABI void collectEphemeralValues(const Loop *L, AssumptionCache *AC, SmallPtrSetImpl< const Value * > &EphValues)
Collect a loop's ephemeral values (those used only by an assume or similar intrinsics in the loop).
An information struct used to provide DenseMap with the various necessary components for a given valu...
Encapsulate information regarding vectorization of a loop and its epilogue.
EpilogueLoopVectorizationInfo(ElementCount MVF, unsigned MUF, ElementCount EVF, unsigned EUF, VPlan &EpiloguePlan)
BasicBlock * MainLoopIterationCountCheck
BasicBlock * EpilogueIterationCountCheck
A class that represents two vectorization factors (initialized with 0 by default).
static FixedScalableVFPair getNone()
This holds details about a histogram operation – a load -> update -> store sequence where each lane i...
Incoming for lane maks phi as machine instruction, incoming register Reg and incoming block Block are...
std::optional< unsigned > MaskPos
LLVM_ABI LoopVectorizeResult runImpl(Function &F)
LLVM_ABI bool processLoop(Loop *L)
LoopAccessInfoManager * LAIs
LLVM_ABI void printPipeline(raw_ostream &OS, function_ref< StringRef(StringRef)> MapClassName2PassName)
LLVM_ABI LoopVectorizePass(LoopVectorizeOptions Opts={})
LLVM_ABI PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM)
OptimizationRemarkEmitter * ORE
std::function< BlockFrequencyInfo &()> GetBFI
TargetTransformInfo * TTI
Storage for information about made changes.
A CRTP mix-in to automatically provide informational APIs needed for passes.
Holds the VFShape for a specific scalar to vector function mapping.
std::optional< unsigned > getParamIndexForOptionalMask() const
Instruction Set Architecture.
Encapsulates information needed to describe a parameter.
A range of powers-of-2 vectorization factors with fixed start and adjustable end.
Struct to hold various analysis needed for cost computations.
unsigned getPredBlockCostDivisor(BasicBlock *BB) const
LoopVectorizationCostModel & CM
bool isLegacyUniformAfterVectorization(Instruction *I, ElementCount VF) const
Return true if I is considered uniform-after-vectorization in the legacy cost model for VF.
bool skipCostComputation(Instruction *UI, bool IsVector) const
Return true if the cost for UI shouldn't be computed, e.g.
InstructionCost getLegacyCost(Instruction *UI, ElementCount VF) const
Return the cost for UI with VF using the legacy cost model as fallback until computing the cost of al...
TargetTransformInfo::TargetCostKind CostKind
SmallPtrSet< Instruction *, 8 > SkipCostComputation
A struct that represents some properties of the register usage of a loop.
A recipe for widening load operations, using the address to load from and an optional mask.
A recipe for widening store operations, using the stored value, the address to store to and an option...
TODO: The following VectorizationFactor was pulled out of LoopVectorizationCostModel class.
InstructionCost Cost
Cost of the loop with that width.
ElementCount MinProfitableTripCount
The minimum trip count required to make vectorization profitable, e.g.
ElementCount Width
Vector width with best cost.
InstructionCost ScalarCost
Cost of the scalar loop.
static VectorizationFactor Disabled()
Width 1 means no vectorization, cost 0 means uncomputed cost.
static LLVM_ABI bool HoistRuntimeChecks