LLVM 22.0.0git
LoopVectorize.cpp
Go to the documentation of this file.
1//===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops
10// and generates target-independent LLVM-IR.
11// The vectorizer uses the TargetTransformInfo analysis to estimate the costs
12// of instructions in order to estimate the profitability of vectorization.
13//
14// The loop vectorizer combines consecutive loop iterations into a single
15// 'wide' iteration. After this transformation the index is incremented
16// by the SIMD vector width, and not by one.
17//
18// This pass has three parts:
19// 1. The main loop pass that drives the different parts.
20// 2. LoopVectorizationLegality - A unit that checks for the legality
21// of the vectorization.
22// 3. InnerLoopVectorizer - A unit that performs the actual
23// widening of instructions.
24// 4. LoopVectorizationCostModel - A unit that checks for the profitability
25// of vectorization. It decides on the optimal vector width, which
26// can be one, if vectorization is not profitable.
27//
28// There is a development effort going on to migrate loop vectorizer to the
29// VPlan infrastructure and to introduce outer loop vectorization support (see
30// docs/VectorizationPlan.rst and
31// http://lists.llvm.org/pipermail/llvm-dev/2017-December/119523.html). For this
32// purpose, we temporarily introduced the VPlan-native vectorization path: an
33// alternative vectorization path that is natively implemented on top of the
34// VPlan infrastructure. See EnableVPlanNativePath for enabling.
35//
36//===----------------------------------------------------------------------===//
37//
38// The reduction-variable vectorization is based on the paper:
39// D. Nuzman and R. Henderson. Multi-platform Auto-vectorization.
40//
41// Variable uniformity checks are inspired by:
42// Karrenberg, R. and Hack, S. Whole Function Vectorization.
43//
44// The interleaved access vectorization is based on the paper:
45// Dorit Nuzman, Ira Rosen and Ayal Zaks. Auto-Vectorization of Interleaved
46// Data for SIMD
47//
48// Other ideas/concepts are from:
49// A. Zaks and D. Nuzman. Autovectorization in GCC-two years later.
50//
51// S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua. An Evaluation of
52// Vectorizing Compilers.
53//
54//===----------------------------------------------------------------------===//
55
58#include "VPRecipeBuilder.h"
59#include "VPlan.h"
60#include "VPlanAnalysis.h"
61#include "VPlanCFG.h"
62#include "VPlanHelpers.h"
63#include "VPlanPatternMatch.h"
64#include "VPlanTransforms.h"
65#include "VPlanUtils.h"
66#include "VPlanVerifier.h"
67#include "llvm/ADT/APInt.h"
68#include "llvm/ADT/ArrayRef.h"
69#include "llvm/ADT/DenseMap.h"
71#include "llvm/ADT/Hashing.h"
72#include "llvm/ADT/MapVector.h"
73#include "llvm/ADT/STLExtras.h"
76#include "llvm/ADT/Statistic.h"
77#include "llvm/ADT/StringRef.h"
78#include "llvm/ADT/Twine.h"
79#include "llvm/ADT/TypeSwitch.h"
84#include "llvm/Analysis/CFG.h"
101#include "llvm/IR/Attributes.h"
102#include "llvm/IR/BasicBlock.h"
103#include "llvm/IR/CFG.h"
104#include "llvm/IR/Constant.h"
105#include "llvm/IR/Constants.h"
106#include "llvm/IR/DataLayout.h"
107#include "llvm/IR/DebugInfo.h"
108#include "llvm/IR/DebugLoc.h"
109#include "llvm/IR/DerivedTypes.h"
111#include "llvm/IR/Dominators.h"
112#include "llvm/IR/Function.h"
113#include "llvm/IR/IRBuilder.h"
114#include "llvm/IR/InstrTypes.h"
115#include "llvm/IR/Instruction.h"
116#include "llvm/IR/Instructions.h"
118#include "llvm/IR/Intrinsics.h"
119#include "llvm/IR/MDBuilder.h"
120#include "llvm/IR/Metadata.h"
121#include "llvm/IR/Module.h"
122#include "llvm/IR/Operator.h"
123#include "llvm/IR/PatternMatch.h"
125#include "llvm/IR/Type.h"
126#include "llvm/IR/Use.h"
127#include "llvm/IR/User.h"
128#include "llvm/IR/Value.h"
129#include "llvm/IR/Verifier.h"
130#include "llvm/Support/Casting.h"
132#include "llvm/Support/Debug.h"
147#include <algorithm>
148#include <cassert>
149#include <cstdint>
150#include <functional>
151#include <iterator>
152#include <limits>
153#include <memory>
154#include <string>
155#include <tuple>
156#include <utility>
157
158using namespace llvm;
159using namespace SCEVPatternMatch;
160
161#define LV_NAME "loop-vectorize"
162#define DEBUG_TYPE LV_NAME
163
164#ifndef NDEBUG
165const char VerboseDebug[] = DEBUG_TYPE "-verbose";
166#endif
167
168STATISTIC(LoopsVectorized, "Number of loops vectorized");
169STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization");
170STATISTIC(LoopsEpilogueVectorized, "Number of epilogues vectorized");
171STATISTIC(LoopsEarlyExitVectorized, "Number of early exit loops vectorized");
172
174 "enable-epilogue-vectorization", cl::init(true), cl::Hidden,
175 cl::desc("Enable vectorization of epilogue loops."));
176
178 "epilogue-vectorization-force-VF", cl::init(1), cl::Hidden,
179 cl::desc("When epilogue vectorization is enabled, and a value greater than "
180 "1 is specified, forces the given VF for all applicable epilogue "
181 "loops."));
182
184 "epilogue-vectorization-minimum-VF", cl::Hidden,
185 cl::desc("Only loops with vectorization factor equal to or larger than "
186 "the specified value are considered for epilogue vectorization."));
187
188/// Loops with a known constant trip count below this number are vectorized only
189/// if no scalar iteration overheads are incurred.
191 "vectorizer-min-trip-count", cl::init(16), cl::Hidden,
192 cl::desc("Loops with a constant trip count that is smaller than this "
193 "value are vectorized only if no scalar iteration overheads "
194 "are incurred."));
195
197 "vectorize-memory-check-threshold", cl::init(128), cl::Hidden,
198 cl::desc("The maximum allowed number of runtime memory checks"));
199
200// Option prefer-predicate-over-epilogue indicates that an epilogue is undesired,
201// that predication is preferred, and this lists all options. I.e., the
202// vectorizer will try to fold the tail-loop (epilogue) into the vector body
203// and predicate the instructions accordingly. If tail-folding fails, there are
204// different fallback strategies depending on these values:
211} // namespace PreferPredicateTy
212
214 "prefer-predicate-over-epilogue",
217 cl::desc("Tail-folding and predication preferences over creating a scalar "
218 "epilogue loop."),
220 "scalar-epilogue",
221 "Don't tail-predicate loops, create scalar epilogue"),
223 "predicate-else-scalar-epilogue",
224 "prefer tail-folding, create scalar epilogue if tail "
225 "folding fails."),
227 "predicate-dont-vectorize",
228 "prefers tail-folding, don't attempt vectorization if "
229 "tail-folding fails.")));
230
232 "force-tail-folding-style", cl::desc("Force the tail folding style"),
235 clEnumValN(TailFoldingStyle::None, "none", "Disable tail folding"),
238 "Create lane mask for data only, using active.lane.mask intrinsic"),
240 "data-without-lane-mask",
241 "Create lane mask with compare/stepvector"),
243 "Create lane mask using active.lane.mask intrinsic, and use "
244 "it for both data and control flow"),
246 "data-and-control-without-rt-check",
247 "Similar to data-and-control, but remove the runtime check"),
249 "Use predicated EVL instructions for tail folding. If EVL "
250 "is unsupported, fallback to data-without-lane-mask.")));
251
253 "enable-wide-lane-mask", cl::init(false), cl::Hidden,
254 cl::desc("Enable use of wide lane masks when used for control flow in "
255 "tail-folded loops"));
256
258 "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden,
259 cl::desc("Maximize bandwidth when selecting vectorization factor which "
260 "will be determined by the smallest type in loop."));
261
263 "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden,
264 cl::desc("Enable vectorization on interleaved memory accesses in a loop"));
265
266/// An interleave-group may need masking if it resides in a block that needs
267/// predication, or in order to mask away gaps.
269 "enable-masked-interleaved-mem-accesses", cl::init(false), cl::Hidden,
270 cl::desc("Enable vectorization on masked interleaved memory accesses in a loop"));
271
273 "force-target-num-scalar-regs", cl::init(0), cl::Hidden,
274 cl::desc("A flag that overrides the target's number of scalar registers."));
275
277 "force-target-num-vector-regs", cl::init(0), cl::Hidden,
278 cl::desc("A flag that overrides the target's number of vector registers."));
279
281 "force-target-max-scalar-interleave", cl::init(0), cl::Hidden,
282 cl::desc("A flag that overrides the target's max interleave factor for "
283 "scalar loops."));
284
286 "force-target-max-vector-interleave", cl::init(0), cl::Hidden,
287 cl::desc("A flag that overrides the target's max interleave factor for "
288 "vectorized loops."));
289
291 "force-target-instruction-cost", cl::init(0), cl::Hidden,
292 cl::desc("A flag that overrides the target's expected cost for "
293 "an instruction to a single constant value. Mostly "
294 "useful for getting consistent testing."));
295
297 "force-target-supports-scalable-vectors", cl::init(false), cl::Hidden,
298 cl::desc(
299 "Pretend that scalable vectors are supported, even if the target does "
300 "not support them. This flag should only be used for testing."));
301
303 "small-loop-cost", cl::init(20), cl::Hidden,
304 cl::desc(
305 "The cost of a loop that is considered 'small' by the interleaver."));
306
308 "loop-vectorize-with-block-frequency", cl::init(true), cl::Hidden,
309 cl::desc("Enable the use of the block frequency analysis to access PGO "
310 "heuristics minimizing code growth in cold regions and being more "
311 "aggressive in hot regions."));
312
313// Runtime interleave loops for load/store throughput.
315 "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden,
316 cl::desc(
317 "Enable runtime interleaving until load/store ports are saturated"));
318
319/// The number of stores in a loop that are allowed to need predication.
321 "vectorize-num-stores-pred", cl::init(1), cl::Hidden,
322 cl::desc("Max number of stores to be predicated behind an if."));
323
325 "enable-ind-var-reg-heur", cl::init(true), cl::Hidden,
326 cl::desc("Count the induction variable only once when interleaving"));
327
329 "enable-cond-stores-vec", cl::init(true), cl::Hidden,
330 cl::desc("Enable if predication of stores during vectorization."));
331
333 "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden,
334 cl::desc("The maximum interleave count to use when interleaving a scalar "
335 "reduction in a nested loop."));
336
337static cl::opt<bool>
338 PreferInLoopReductions("prefer-inloop-reductions", cl::init(false),
340 cl::desc("Prefer in-loop vector reductions, "
341 "overriding the targets preference."));
342
344 "force-ordered-reductions", cl::init(false), cl::Hidden,
345 cl::desc("Enable the vectorisation of loops with in-order (strict) "
346 "FP reductions"));
347
349 "prefer-predicated-reduction-select", cl::init(false), cl::Hidden,
350 cl::desc(
351 "Prefer predicating a reduction operation over an after loop select."));
352
354 "enable-vplan-native-path", cl::Hidden,
355 cl::desc("Enable VPlan-native vectorization path with "
356 "support for outer loop vectorization."));
357
359 llvm::VerifyEachVPlan("vplan-verify-each",
360#ifdef EXPENSIVE_CHECKS
361 cl::init(true),
362#else
363 cl::init(false),
364#endif
366 cl::desc("Verfiy VPlans after VPlan transforms."));
367
368// This flag enables the stress testing of the VPlan H-CFG construction in the
369// VPlan-native vectorization path. It must be used in conjuction with
370// -enable-vplan-native-path. -vplan-verify-hcfg can also be used to enable the
371// verification of the H-CFGs built.
373 "vplan-build-stress-test", cl::init(false), cl::Hidden,
374 cl::desc(
375 "Build VPlan for every supported loop nest in the function and bail "
376 "out right after the build (stress test the VPlan H-CFG construction "
377 "in the VPlan-native vectorization path)."));
378
380 "interleave-loops", cl::init(true), cl::Hidden,
381 cl::desc("Enable loop interleaving in Loop vectorization passes"));
383 "vectorize-loops", cl::init(true), cl::Hidden,
384 cl::desc("Run the Loop vectorization passes"));
385
387 "force-widen-divrem-via-safe-divisor", cl::Hidden,
388 cl::desc(
389 "Override cost based safe divisor widening for div/rem instructions"));
390
392 "vectorizer-maximize-bandwidth-for-vector-calls", cl::init(true),
394 cl::desc("Try wider VFs if they enable the use of vector variants"));
395
397 "enable-early-exit-vectorization", cl::init(true), cl::Hidden,
398 cl::desc(
399 "Enable vectorization of early exit loops with uncountable exits."));
400
402 "vectorizer-consider-reg-pressure", cl::init(false), cl::Hidden,
403 cl::desc("Discard VFs if their register pressure is too high."));
404
405// Likelyhood of bypassing the vectorized loop because there are zero trips left
406// after prolog. See `emitIterationCountCheck`.
407static constexpr uint32_t MinItersBypassWeights[] = {1, 127};
408
409/// A helper function that returns true if the given type is irregular. The
410/// type is irregular if its allocated size doesn't equal the store size of an
411/// element of the corresponding vector type.
412static bool hasIrregularType(Type *Ty, const DataLayout &DL) {
413 // Determine if an array of N elements of type Ty is "bitcast compatible"
414 // with a <N x Ty> vector.
415 // This is only true if there is no padding between the array elements.
416 return DL.getTypeAllocSizeInBits(Ty) != DL.getTypeSizeInBits(Ty);
417}
418
419/// A version of ScalarEvolution::getSmallConstantTripCount that returns an
420/// ElementCount to include loops whose trip count is a function of vscale.
422 const Loop *L) {
423 if (unsigned ExpectedTC = SE->getSmallConstantTripCount(L))
424 return ElementCount::getFixed(ExpectedTC);
425
426 const SCEV *BTC = SE->getBackedgeTakenCount(L);
428 return ElementCount::getFixed(0);
429
430 const SCEV *ExitCount = SE->getTripCountFromExitCount(BTC, BTC->getType(), L);
431 if (isa<SCEVVScale>(ExitCount))
433
434 const APInt *Scale;
435 if (match(ExitCount, m_scev_Mul(m_scev_APInt(Scale), m_SCEVVScale())))
436 if (cast<SCEVMulExpr>(ExitCount)->hasNoUnsignedWrap())
437 if (Scale->getActiveBits() <= 32)
439
440 return ElementCount::getFixed(0);
441}
442
443/// Returns "best known" trip count, which is either a valid positive trip count
444/// or std::nullopt when an estimate cannot be made (including when the trip
445/// count would overflow), for the specified loop \p L as defined by the
446/// following procedure:
447/// 1) Returns exact trip count if it is known.
448/// 2) Returns expected trip count according to profile data if any.
449/// 3) Returns upper bound estimate if known, and if \p CanUseConstantMax.
450/// 4) Returns std::nullopt if all of the above failed.
451static std::optional<ElementCount>
453 bool CanUseConstantMax = true) {
454 // Check if exact trip count is known.
455 if (auto ExpectedTC = getSmallConstantTripCount(PSE.getSE(), L))
456 return ExpectedTC;
457
458 // Check if there is an expected trip count available from profile data.
460 if (auto EstimatedTC = getLoopEstimatedTripCount(L))
461 return ElementCount::getFixed(*EstimatedTC);
462
463 if (!CanUseConstantMax)
464 return std::nullopt;
465
466 // Check if upper bound estimate is known.
467 if (unsigned ExpectedTC = PSE.getSmallConstantMaxTripCount())
468 return ElementCount::getFixed(ExpectedTC);
469
470 return std::nullopt;
471}
472
473namespace {
474// Forward declare GeneratedRTChecks.
475class GeneratedRTChecks;
476
477using SCEV2ValueTy = DenseMap<const SCEV *, Value *>;
478} // namespace
479
480namespace llvm {
481
483
484/// InnerLoopVectorizer vectorizes loops which contain only one basic
485/// block to a specified vectorization factor (VF).
486/// This class performs the widening of scalars into vectors, or multiple
487/// scalars. This class also implements the following features:
488/// * It inserts an epilogue loop for handling loops that don't have iteration
489/// counts that are known to be a multiple of the vectorization factor.
490/// * It handles the code generation for reduction variables.
491/// * Scalarization (implementation using scalars) of un-vectorizable
492/// instructions.
493/// InnerLoopVectorizer does not perform any vectorization-legality
494/// checks, and relies on the caller to check for the different legality
495/// aspects. The InnerLoopVectorizer relies on the
496/// LoopVectorizationLegality class to provide information about the induction
497/// and reduction variables that were found to a given vectorization factor.
499public:
503 ElementCount VecWidth, unsigned UnrollFactor,
505 GeneratedRTChecks &RTChecks, VPlan &Plan)
506 : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TTI(TTI), AC(AC),
507 VF(VecWidth), UF(UnrollFactor), Builder(PSE.getSE()->getContext()),
510 Plan.getVectorLoopRegion()->getSinglePredecessor())) {}
511
512 virtual ~InnerLoopVectorizer() = default;
513
514 /// Creates a basic block for the scalar preheader. Both
515 /// EpilogueVectorizerMainLoop and EpilogueVectorizerEpilogueLoop overwrite
516 /// the method to create additional blocks and checks needed for epilogue
517 /// vectorization.
519
520 /// Fix the vectorized code, taking care of header phi's, and more.
522
523 /// Fix the non-induction PHIs in \p Plan.
525
526 /// Returns the original loop trip count.
527 Value *getTripCount() const { return TripCount; }
528
529 /// Used to set the trip count after ILV's construction and after the
530 /// preheader block has been executed. Note that this always holds the trip
531 /// count of the original loop for both main loop and epilogue vectorization.
532 void setTripCount(Value *TC) { TripCount = TC; }
533
534protected:
536
537 /// Create and return a new IR basic block for the scalar preheader whose name
538 /// is prefixed with \p Prefix.
540
541 /// Allow subclasses to override and print debug traces before/after vplan
542 /// execution, when trace information is requested.
543 virtual void printDebugTracesAtStart() {}
544 virtual void printDebugTracesAtEnd() {}
545
546 /// The original loop.
548
549 /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies
550 /// dynamic knowledge to simplify SCEV expressions and converts them to a
551 /// more usable form.
553
554 /// Loop Info.
556
557 /// Dominator Tree.
559
560 /// Target Transform Info.
562
563 /// Assumption Cache.
565
566 /// The vectorization SIMD factor to use. Each vector will have this many
567 /// vector elements.
569
570 /// The vectorization unroll factor to use. Each scalar is vectorized to this
571 /// many different vector instructions.
572 unsigned UF;
573
574 /// The builder that we use
576
577 // --- Vectorization state ---
578
579 /// Trip count of the original loop.
580 Value *TripCount = nullptr;
581
582 /// The profitablity analysis.
584
585 /// Structure to hold information about generated runtime checks, responsible
586 /// for cleaning the checks, if vectorization turns out unprofitable.
587 GeneratedRTChecks &RTChecks;
588
590
591 /// The vector preheader block of \p Plan, used as target for check blocks
592 /// introduced during skeleton creation.
594};
595
596/// Encapsulate information regarding vectorization of a loop and its epilogue.
597/// This information is meant to be updated and used across two stages of
598/// epilogue vectorization.
601 unsigned MainLoopUF = 0;
603 unsigned EpilogueUF = 0;
606 Value *TripCount = nullptr;
609
611 ElementCount EVF, unsigned EUF,
613 : MainLoopVF(MVF), MainLoopUF(MUF), EpilogueVF(EVF), EpilogueUF(EUF),
615 assert(EUF == 1 &&
616 "A high UF for the epilogue loop is likely not beneficial.");
617 }
618};
619
620/// An extension of the inner loop vectorizer that creates a skeleton for a
621/// vectorized loop that has its epilogue (residual) also vectorized.
622/// The idea is to run the vplan on a given loop twice, firstly to setup the
623/// skeleton and vectorize the main loop, and secondly to complete the skeleton
624/// from the first step and vectorize the epilogue. This is achieved by
625/// deriving two concrete strategy classes from this base class and invoking
626/// them in succession from the loop vectorizer planner.
628public:
638
639 /// Holds and updates state information required to vectorize the main loop
640 /// and its epilogue in two separate passes. This setup helps us avoid
641 /// regenerating and recomputing runtime safety checks. It also helps us to
642 /// shorten the iteration-count-check path length for the cases where the
643 /// iteration count of the loop is so small that the main vector loop is
644 /// completely skipped.
646
647protected:
649};
650
651/// A specialized derived class of inner loop vectorizer that performs
652/// vectorization of *main* loops in the process of vectorizing loops and their
653/// epilogues.
655public:
666 /// Implements the interface for creating a vectorized skeleton using the
667 /// *main loop* strategy (i.e., the first pass of VPlan execution).
669
670protected:
671 /// Introduces a new VPIRBasicBlock for \p CheckIRBB to Plan between the
672 /// vector preheader and its predecessor, also connecting the new block to the
673 /// scalar preheader.
674 void introduceCheckBlockInVPlan(BasicBlock *CheckIRBB);
675
676 // Create a check to see if the main vector loop should be executed
678 unsigned UF) const;
679
680 /// Emits an iteration count bypass check once for the main loop (when \p
681 /// ForEpilogue is false) and once for the epilogue loop (when \p
682 /// ForEpilogue is true).
684 bool ForEpilogue);
685 void printDebugTracesAtStart() override;
686 void printDebugTracesAtEnd() override;
687};
688
689// A specialized derived class of inner loop vectorizer that performs
690// vectorization of *epilogue* loops in the process of vectorizing loops and
691// their epilogues.
693public:
700 GeneratedRTChecks &Checks, VPlan &Plan)
702 Checks, Plan, EPI.EpilogueVF,
703 EPI.EpilogueVF, EPI.EpilogueUF) {}
704 /// Implements the interface for creating a vectorized skeleton using the
705 /// *epilogue loop* strategy (i.e., the second pass of VPlan execution).
707
708protected:
709 void printDebugTracesAtStart() override;
710 void printDebugTracesAtEnd() override;
711};
712} // end namespace llvm
713
714/// Look for a meaningful debug location on the instruction or its operands.
716 if (!I)
717 return DebugLoc::getUnknown();
718
720 if (I->getDebugLoc() != Empty)
721 return I->getDebugLoc();
722
723 for (Use &Op : I->operands()) {
724 if (Instruction *OpInst = dyn_cast<Instruction>(Op))
725 if (OpInst->getDebugLoc() != Empty)
726 return OpInst->getDebugLoc();
727 }
728
729 return I->getDebugLoc();
730}
731
732/// Write a \p DebugMsg about vectorization to the debug output stream. If \p I
733/// is passed, the message relates to that particular instruction.
734#ifndef NDEBUG
735static void debugVectorizationMessage(const StringRef Prefix,
736 const StringRef DebugMsg,
737 Instruction *I) {
738 dbgs() << "LV: " << Prefix << DebugMsg;
739 if (I != nullptr)
740 dbgs() << " " << *I;
741 else
742 dbgs() << '.';
743 dbgs() << '\n';
744}
745#endif
746
747/// Create an analysis remark that explains why vectorization failed
748///
749/// \p PassName is the name of the pass (e.g. can be AlwaysPrint). \p
750/// RemarkName is the identifier for the remark. If \p I is passed it is an
751/// instruction that prevents vectorization. Otherwise \p TheLoop is used for
752/// the location of the remark. If \p DL is passed, use it as debug location for
753/// the remark. \return the remark object that can be streamed to.
754static OptimizationRemarkAnalysis
755createLVAnalysis(const char *PassName, StringRef RemarkName, Loop *TheLoop,
756 Instruction *I, DebugLoc DL = {}) {
757 BasicBlock *CodeRegion = I ? I->getParent() : TheLoop->getHeader();
758 // If debug location is attached to the instruction, use it. Otherwise if DL
759 // was not provided, use the loop's.
760 if (I && I->getDebugLoc())
761 DL = I->getDebugLoc();
762 else if (!DL)
763 DL = TheLoop->getStartLoc();
764
765 return OptimizationRemarkAnalysis(PassName, RemarkName, DL, CodeRegion);
766}
767
768namespace llvm {
769
770/// Return a value for Step multiplied by VF.
772 int64_t Step) {
773 assert(Ty->isIntegerTy() && "Expected an integer step");
774 ElementCount VFxStep = VF.multiplyCoefficientBy(Step);
775 assert(isPowerOf2_64(VF.getKnownMinValue()) && "must pass power-of-2 VF");
776 if (VF.isScalable() && isPowerOf2_64(Step)) {
777 return B.CreateShl(
778 B.CreateVScale(Ty),
779 ConstantInt::get(Ty, Log2_64(VFxStep.getKnownMinValue())), "", true);
780 }
781 return B.CreateElementCount(Ty, VFxStep);
782}
783
784/// Return the runtime value for VF.
786 return B.CreateElementCount(Ty, VF);
787}
788
790 const StringRef OREMsg, const StringRef ORETag,
791 OptimizationRemarkEmitter *ORE, Loop *TheLoop,
792 Instruction *I) {
793 LLVM_DEBUG(debugVectorizationMessage("Not vectorizing: ", DebugMsg, I));
794 LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE);
795 ORE->emit(
796 createLVAnalysis(Hints.vectorizeAnalysisPassName(), ORETag, TheLoop, I)
797 << "loop not vectorized: " << OREMsg);
798}
799
800/// Reports an informative message: print \p Msg for debugging purposes as well
801/// as an optimization remark. Uses either \p I as location of the remark, or
802/// otherwise \p TheLoop. If \p DL is passed, use it as debug location for the
803/// remark. If \p DL is passed, use it as debug location for the remark.
804static void reportVectorizationInfo(const StringRef Msg, const StringRef ORETag,
806 Loop *TheLoop, Instruction *I = nullptr,
807 DebugLoc DL = {}) {
809 LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE);
810 ORE->emit(createLVAnalysis(Hints.vectorizeAnalysisPassName(), ORETag, TheLoop,
811 I, DL)
812 << Msg);
813}
814
815/// Report successful vectorization of the loop. In case an outer loop is
816/// vectorized, prepend "outer" to the vectorization remark.
818 VectorizationFactor VF, unsigned IC) {
820 "Vectorizing: ", TheLoop->isInnermost() ? "innermost loop" : "outer loop",
821 nullptr));
822 StringRef LoopType = TheLoop->isInnermost() ? "" : "outer ";
823 ORE->emit([&]() {
824 return OptimizationRemark(LV_NAME, "Vectorized", TheLoop->getStartLoc(),
825 TheLoop->getHeader())
826 << "vectorized " << LoopType << "loop (vectorization width: "
827 << ore::NV("VectorizationFactor", VF.Width)
828 << ", interleaved count: " << ore::NV("InterleaveCount", IC) << ")";
829 });
830}
831
832} // end namespace llvm
833
834namespace llvm {
835
836// Loop vectorization cost-model hints how the scalar epilogue loop should be
837// lowered.
839
840 // The default: allowing scalar epilogues.
842
843 // Vectorization with OptForSize: don't allow epilogues.
845
846 // A special case of vectorisation with OptForSize: loops with a very small
847 // trip count are considered for vectorization under OptForSize, thereby
848 // making sure the cost of their loop body is dominant, free of runtime
849 // guards and scalar iteration overheads.
851
852 // Loop hint predicate indicating an epilogue is undesired.
854
855 // Directive indicating we must either tail fold or not vectorize
857};
858
859/// LoopVectorizationCostModel - estimates the expected speedups due to
860/// vectorization.
861/// In many cases vectorization is not profitable. This can happen because of
862/// a number of reasons. In this class we mainly attempt to predict the
863/// expected speedup/slowdowns due to the supported instruction set. We use the
864/// TargetTransformInfo to query the different backends for the cost of
865/// different operations.
868
869public:
879 : ScalarEpilogueStatus(SEL), TheLoop(L), PSE(PSE), LI(LI), Legal(Legal),
880 TTI(TTI), TLI(TLI), DB(DB), AC(AC), ORE(ORE), TheFunction(F),
882 if (TTI.supportsScalableVectors() || ForceTargetSupportsScalableVectors)
883 initializeVScaleForTuning();
885 }
886
887 /// \return An upper bound for the vectorization factors (both fixed and
888 /// scalable). If the factors are 0, vectorization and interleaving should be
889 /// avoided up front.
890 FixedScalableVFPair computeMaxVF(ElementCount UserVF, unsigned UserIC);
891
892 /// \return True if runtime checks are required for vectorization, and false
893 /// otherwise.
894 bool runtimeChecksRequired();
895
896 /// Setup cost-based decisions for user vectorization factor.
897 /// \return true if the UserVF is a feasible VF to be chosen.
900 return expectedCost(UserVF).isValid();
901 }
902
903 /// \return True if maximizing vector bandwidth is enabled by the target or
904 /// user options, for the given register kind.
905 bool useMaxBandwidth(TargetTransformInfo::RegisterKind RegKind);
906
907 /// \return True if register pressure should be considered for the given VF.
908 bool shouldConsiderRegPressureForVF(ElementCount VF);
909
910 /// \return The size (in bits) of the smallest and widest types in the code
911 /// that needs to be vectorized. We ignore values that remain scalar such as
912 /// 64 bit loop indices.
913 std::pair<unsigned, unsigned> getSmallestAndWidestTypes();
914
915 /// Memory access instruction may be vectorized in more than one way.
916 /// Form of instruction after vectorization depends on cost.
917 /// This function takes cost-based decisions for Load/Store instructions
918 /// and collects them in a map. This decisions map is used for building
919 /// the lists of loop-uniform and loop-scalar instructions.
920 /// The calculated cost is saved with widening decision in order to
921 /// avoid redundant calculations.
922 void setCostBasedWideningDecision(ElementCount VF);
923
924 /// A call may be vectorized in different ways depending on whether we have
925 /// vectorized variants available and whether the target supports masking.
926 /// This function analyzes all calls in the function at the supplied VF,
927 /// makes a decision based on the costs of available options, and stores that
928 /// decision in a map for use in planning and plan execution.
929 void setVectorizedCallDecision(ElementCount VF);
930
931 /// Collect values we want to ignore in the cost model.
932 void collectValuesToIgnore();
933
934 /// Collect all element types in the loop for which widening is needed.
935 void collectElementTypesForWidening();
936
937 /// Split reductions into those that happen in the loop, and those that happen
938 /// outside. In loop reductions are collected into InLoopReductions.
939 void collectInLoopReductions();
940
941 /// Returns true if we should use strict in-order reductions for the given
942 /// RdxDesc. This is true if the -enable-strict-reductions flag is passed,
943 /// the IsOrdered flag of RdxDesc is set and we do not allow reordering
944 /// of FP operations.
945 bool useOrderedReductions(const RecurrenceDescriptor &RdxDesc) const {
946 return !Hints->allowReordering() && RdxDesc.isOrdered();
947 }
948
949 /// \returns The smallest bitwidth each instruction can be represented with.
950 /// The vector equivalents of these instructions should be truncated to this
951 /// type.
953 return MinBWs;
954 }
955
956 /// \returns True if it is more profitable to scalarize instruction \p I for
957 /// vectorization factor \p VF.
959 assert(VF.isVector() &&
960 "Profitable to scalarize relevant only for VF > 1.");
961 assert(
962 TheLoop->isInnermost() &&
963 "cost-model should not be used for outer loops (in VPlan-native path)");
964
965 auto Scalars = InstsToScalarize.find(VF);
966 assert(Scalars != InstsToScalarize.end() &&
967 "VF not yet analyzed for scalarization profitability");
968 return Scalars->second.contains(I);
969 }
970
971 /// Returns true if \p I is known to be uniform after vectorization.
973 assert(
974 TheLoop->isInnermost() &&
975 "cost-model should not be used for outer loops (in VPlan-native path)");
976 // Pseudo probe needs to be duplicated for each unrolled iteration and
977 // vector lane so that profiled loop trip count can be accurately
978 // accumulated instead of being under counted.
980 return false;
981
982 if (VF.isScalar())
983 return true;
984
985 auto UniformsPerVF = Uniforms.find(VF);
986 assert(UniformsPerVF != Uniforms.end() &&
987 "VF not yet analyzed for uniformity");
988 return UniformsPerVF->second.count(I);
989 }
990
991 /// Returns true if \p I is known to be scalar after vectorization.
993 assert(
994 TheLoop->isInnermost() &&
995 "cost-model should not be used for outer loops (in VPlan-native path)");
996 if (VF.isScalar())
997 return true;
998
999 auto ScalarsPerVF = Scalars.find(VF);
1000 assert(ScalarsPerVF != Scalars.end() &&
1001 "Scalar values are not calculated for VF");
1002 return ScalarsPerVF->second.count(I);
1003 }
1004
1005 /// \returns True if instruction \p I can be truncated to a smaller bitwidth
1006 /// for vectorization factor \p VF.
1008 // Truncs must truncate at most to their destination type.
1009 if (isa_and_nonnull<TruncInst>(I) && MinBWs.contains(I) &&
1010 I->getType()->getScalarSizeInBits() < MinBWs.lookup(I))
1011 return false;
1012 return VF.isVector() && MinBWs.contains(I) &&
1013 !isProfitableToScalarize(I, VF) &&
1015 }
1016
1017 /// Decision that was taken during cost calculation for memory instruction.
1020 CM_Widen, // For consecutive accesses with stride +1.
1021 CM_Widen_Reverse, // For consecutive accesses with stride -1.
1027 };
1028
1029 /// Save vectorization decision \p W and \p Cost taken by the cost model for
1030 /// instruction \p I and vector width \p VF.
1033 assert(VF.isVector() && "Expected VF >=2");
1034 WideningDecisions[{I, VF}] = {W, Cost};
1035 }
1036
1037 /// Save vectorization decision \p W and \p Cost taken by the cost model for
1038 /// interleaving group \p Grp and vector width \p VF.
1042 assert(VF.isVector() && "Expected VF >=2");
1043 /// Broadcast this decicion to all instructions inside the group.
1044 /// When interleaving, the cost will only be assigned one instruction, the
1045 /// insert position. For other cases, add the appropriate fraction of the
1046 /// total cost to each instruction. This ensures accurate costs are used,
1047 /// even if the insert position instruction is not used.
1048 InstructionCost InsertPosCost = Cost;
1049 InstructionCost OtherMemberCost = 0;
1050 if (W != CM_Interleave)
1051 OtherMemberCost = InsertPosCost = Cost / Grp->getNumMembers();
1052 ;
1053 for (unsigned Idx = 0; Idx < Grp->getFactor(); ++Idx) {
1054 if (auto *I = Grp->getMember(Idx)) {
1055 if (Grp->getInsertPos() == I)
1056 WideningDecisions[{I, VF}] = {W, InsertPosCost};
1057 else
1058 WideningDecisions[{I, VF}] = {W, OtherMemberCost};
1059 }
1060 }
1061 }
1062
1063 /// Return the cost model decision for the given instruction \p I and vector
1064 /// width \p VF. Return CM_Unknown if this instruction did not pass
1065 /// through the cost modeling.
1067 assert(VF.isVector() && "Expected VF to be a vector VF");
1068 assert(
1069 TheLoop->isInnermost() &&
1070 "cost-model should not be used for outer loops (in VPlan-native path)");
1071
1072 std::pair<Instruction *, ElementCount> InstOnVF(I, VF);
1073 auto Itr = WideningDecisions.find(InstOnVF);
1074 if (Itr == WideningDecisions.end())
1075 return CM_Unknown;
1076 return Itr->second.first;
1077 }
1078
1079 /// Return the vectorization cost for the given instruction \p I and vector
1080 /// width \p VF.
1082 assert(VF.isVector() && "Expected VF >=2");
1083 std::pair<Instruction *, ElementCount> InstOnVF(I, VF);
1084 assert(WideningDecisions.contains(InstOnVF) &&
1085 "The cost is not calculated");
1086 return WideningDecisions[InstOnVF].second;
1087 }
1088
1096
1098 Function *Variant, Intrinsic::ID IID,
1099 std::optional<unsigned> MaskPos,
1101 assert(!VF.isScalar() && "Expected vector VF");
1102 CallWideningDecisions[{CI, VF}] = {Kind, Variant, IID, MaskPos, Cost};
1103 }
1104
1106 ElementCount VF) const {
1107 assert(!VF.isScalar() && "Expected vector VF");
1108 auto I = CallWideningDecisions.find({CI, VF});
1109 if (I == CallWideningDecisions.end())
1110 return {CM_Unknown, nullptr, Intrinsic::not_intrinsic, std::nullopt, 0};
1111 return I->second;
1112 }
1113
1114 /// Return True if instruction \p I is an optimizable truncate whose operand
1115 /// is an induction variable. Such a truncate will be removed by adding a new
1116 /// induction variable with the destination type.
1118 // If the instruction is not a truncate, return false.
1119 auto *Trunc = dyn_cast<TruncInst>(I);
1120 if (!Trunc)
1121 return false;
1122
1123 // Get the source and destination types of the truncate.
1124 Type *SrcTy = toVectorTy(Trunc->getSrcTy(), VF);
1125 Type *DestTy = toVectorTy(Trunc->getDestTy(), VF);
1126
1127 // If the truncate is free for the given types, return false. Replacing a
1128 // free truncate with an induction variable would add an induction variable
1129 // update instruction to each iteration of the loop. We exclude from this
1130 // check the primary induction variable since it will need an update
1131 // instruction regardless.
1132 Value *Op = Trunc->getOperand(0);
1133 if (Op != Legal->getPrimaryInduction() && TTI.isTruncateFree(SrcTy, DestTy))
1134 return false;
1135
1136 // If the truncated value is not an induction variable, return false.
1137 return Legal->isInductionPhi(Op);
1138 }
1139
1140 /// Collects the instructions to scalarize for each predicated instruction in
1141 /// the loop.
1142 void collectInstsToScalarize(ElementCount VF);
1143
1144 /// Collect values that will not be widened, including Uniforms, Scalars, and
1145 /// Instructions to Scalarize for the given \p VF.
1146 /// The sets depend on CM decision for Load/Store instructions
1147 /// that may be vectorized as interleave, gather-scatter or scalarized.
1148 /// Also make a decision on what to do about call instructions in the loop
1149 /// at that VF -- scalarize, call a known vector routine, or call a
1150 /// vector intrinsic.
1152 // Do the analysis once.
1153 if (VF.isScalar() || Uniforms.contains(VF))
1154 return;
1156 collectLoopUniforms(VF);
1158 collectLoopScalars(VF);
1160 }
1161
1162 /// Returns true if the target machine supports masked store operation
1163 /// for the given \p DataType and kind of access to \p Ptr.
1164 bool isLegalMaskedStore(Type *DataType, Value *Ptr, Align Alignment,
1165 unsigned AddressSpace) const {
1166 return Legal->isConsecutivePtr(DataType, Ptr) &&
1167 TTI.isLegalMaskedStore(DataType, Alignment, AddressSpace);
1168 }
1169
1170 /// Returns true if the target machine supports masked load operation
1171 /// for the given \p DataType and kind of access to \p Ptr.
1172 bool isLegalMaskedLoad(Type *DataType, Value *Ptr, Align Alignment,
1173 unsigned AddressSpace) const {
1174 return Legal->isConsecutivePtr(DataType, Ptr) &&
1175 TTI.isLegalMaskedLoad(DataType, Alignment, AddressSpace);
1176 }
1177
1178 /// Returns true if the target machine can represent \p V as a masked gather
1179 /// or scatter operation.
1181 bool LI = isa<LoadInst>(V);
1182 bool SI = isa<StoreInst>(V);
1183 if (!LI && !SI)
1184 return false;
1185 auto *Ty = getLoadStoreType(V);
1187 if (VF.isVector())
1188 Ty = VectorType::get(Ty, VF);
1189 return (LI && TTI.isLegalMaskedGather(Ty, Align)) ||
1190 (SI && TTI.isLegalMaskedScatter(Ty, Align));
1191 }
1192
1193 /// Returns true if the target machine supports all of the reduction
1194 /// variables found for the given VF.
1196 return (all_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool {
1197 const RecurrenceDescriptor &RdxDesc = Reduction.second;
1198 return TTI.isLegalToVectorizeReduction(RdxDesc, VF);
1199 }));
1200 }
1201
1202 /// Given costs for both strategies, return true if the scalar predication
1203 /// lowering should be used for div/rem. This incorporates an override
1204 /// option so it is not simply a cost comparison.
1206 InstructionCost SafeDivisorCost) const {
1207 switch (ForceSafeDivisor) {
1208 case cl::BOU_UNSET:
1209 return ScalarCost < SafeDivisorCost;
1210 case cl::BOU_TRUE:
1211 return false;
1212 case cl::BOU_FALSE:
1213 return true;
1214 }
1215 llvm_unreachable("impossible case value");
1216 }
1217
1218 /// Returns true if \p I is an instruction which requires predication and
1219 /// for which our chosen predication strategy is scalarization (i.e. we
1220 /// don't have an alternate strategy such as masking available).
1221 /// \p VF is the vectorization factor that will be used to vectorize \p I.
1222 bool isScalarWithPredication(Instruction *I, ElementCount VF) const;
1223
1224 /// Returns true if \p I is an instruction that needs to be predicated
1225 /// at runtime. The result is independent of the predication mechanism.
1226 /// Superset of instructions that return true for isScalarWithPredication.
1227 bool isPredicatedInst(Instruction *I) const;
1228
1229 /// A helper function that returns how much we should divide the cost of a
1230 /// predicated block by. Typically this is the reciprocal of the block
1231 /// probability, i.e. if we return X we are assuming the predicated block will
1232 /// execute once for every X iterations of the loop header so the block should
1233 /// only contribute 1/X of its cost to the total cost calculation, but when
1234 /// optimizing for code size it will just be 1 as code size costs don't depend
1235 /// on execution probabilities.
1236 ///
1237 /// TODO: We should use actual block probability here, if available.
1238 /// Currently, we always assume predicated blocks have a 50% chance of
1239 /// executing, apart from blocks that are only predicated due to tail folding.
1240 inline unsigned
1242 BasicBlock *BB) const {
1243 // If a block wasn't originally predicated but was predicated due to
1244 // e.g. tail folding, don't divide the cost. Tail folded loops may still be
1245 // predicated in the final vector loop iteration, but for most loops that
1246 // don't have low trip counts we can expect their probability to be close to
1247 // zero.
1248 if (!Legal->blockNeedsPredication(BB))
1249 return 1;
1250 return CostKind == TTI::TCK_CodeSize ? 1 : 2;
1251 }
1252
1253 /// Return the costs for our two available strategies for lowering a
1254 /// div/rem operation which requires speculating at least one lane.
1255 /// First result is for scalarization (will be invalid for scalable
1256 /// vectors); second is for the safe-divisor strategy.
1257 std::pair<InstructionCost, InstructionCost>
1258 getDivRemSpeculationCost(Instruction *I,
1259 ElementCount VF) const;
1260
1261 /// Returns true if \p I is a memory instruction with consecutive memory
1262 /// access that can be widened.
1263 bool memoryInstructionCanBeWidened(Instruction *I, ElementCount VF);
1264
1265 /// Returns true if \p I is a memory instruction in an interleaved-group
1266 /// of memory accesses that can be vectorized with wide vector loads/stores
1267 /// and shuffles.
1268 bool interleavedAccessCanBeWidened(Instruction *I, ElementCount VF) const;
1269
1270 /// Check if \p Instr belongs to any interleaved access group.
1272 return InterleaveInfo.isInterleaved(Instr);
1273 }
1274
1275 /// Get the interleaved access group that \p Instr belongs to.
1278 return InterleaveInfo.getInterleaveGroup(Instr);
1279 }
1280
1281 /// Returns true if we're required to use a scalar epilogue for at least
1282 /// the final iteration of the original loop.
1283 bool requiresScalarEpilogue(bool IsVectorizing) const {
1284 if (!isScalarEpilogueAllowed()) {
1285 LLVM_DEBUG(dbgs() << "LV: Loop does not require scalar epilogue\n");
1286 return false;
1287 }
1288 // If we might exit from anywhere but the latch and early exit vectorization
1289 // is disabled, we must run the exiting iteration in scalar form.
1290 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch() &&
1291 !(EnableEarlyExitVectorization && Legal->hasUncountableEarlyExit())) {
1292 LLVM_DEBUG(dbgs() << "LV: Loop requires scalar epilogue: not exiting "
1293 "from latch block\n");
1294 return true;
1295 }
1296 if (IsVectorizing && InterleaveInfo.requiresScalarEpilogue()) {
1297 LLVM_DEBUG(dbgs() << "LV: Loop requires scalar epilogue: "
1298 "interleaved group requires scalar epilogue\n");
1299 return true;
1300 }
1301 LLVM_DEBUG(dbgs() << "LV: Loop does not require scalar epilogue\n");
1302 return false;
1303 }
1304
1305 /// Returns true if a scalar epilogue is not allowed due to optsize or a
1306 /// loop hint annotation.
1308 return ScalarEpilogueStatus == CM_ScalarEpilogueAllowed;
1309 }
1310
1311 /// Returns true if tail-folding is preferred over a scalar epilogue.
1313 return ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate ||
1314 ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedUsePredicate;
1315 }
1316
1317 /// Returns the TailFoldingStyle that is best for the current loop.
1318 TailFoldingStyle getTailFoldingStyle(bool IVUpdateMayOverflow = true) const {
1319 if (!ChosenTailFoldingStyle)
1321 return IVUpdateMayOverflow ? ChosenTailFoldingStyle->first
1322 : ChosenTailFoldingStyle->second;
1323 }
1324
1325 /// Selects and saves TailFoldingStyle for 2 options - if IV update may
1326 /// overflow or not.
1327 /// \param IsScalableVF true if scalable vector factors enabled.
1328 /// \param UserIC User specific interleave count.
1329 void setTailFoldingStyles(bool IsScalableVF, unsigned UserIC) {
1330 assert(!ChosenTailFoldingStyle && "Tail folding must not be selected yet.");
1331 if (!Legal->canFoldTailByMasking()) {
1332 ChosenTailFoldingStyle = {TailFoldingStyle::None, TailFoldingStyle::None};
1333 return;
1334 }
1335
1336 // Default to TTI preference, but allow command line override.
1337 ChosenTailFoldingStyle = {
1338 TTI.getPreferredTailFoldingStyle(/*IVUpdateMayOverflow=*/true),
1339 TTI.getPreferredTailFoldingStyle(/*IVUpdateMayOverflow=*/false)};
1340 if (ForceTailFoldingStyle.getNumOccurrences())
1341 ChosenTailFoldingStyle = {ForceTailFoldingStyle.getValue(),
1342 ForceTailFoldingStyle.getValue()};
1343
1344 if (ChosenTailFoldingStyle->first != TailFoldingStyle::DataWithEVL &&
1345 ChosenTailFoldingStyle->second != TailFoldingStyle::DataWithEVL)
1346 return;
1347 // Override EVL styles if needed.
1348 // FIXME: Investigate opportunity for fixed vector factor.
1349 bool EVLIsLegal = UserIC <= 1 && IsScalableVF &&
1350 TTI.hasActiveVectorLength() && !EnableVPlanNativePath;
1351 if (EVLIsLegal)
1352 return;
1353 // If for some reason EVL mode is unsupported, fallback to a scalar epilogue
1354 // if it's allowed, or DataWithoutLaneMask otherwise.
1355 if (ScalarEpilogueStatus == CM_ScalarEpilogueAllowed ||
1356 ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate)
1357 ChosenTailFoldingStyle = {TailFoldingStyle::None, TailFoldingStyle::None};
1358 else
1359 ChosenTailFoldingStyle = {TailFoldingStyle::DataWithoutLaneMask,
1361
1362 LLVM_DEBUG(
1363 dbgs() << "LV: Preference for VP intrinsics indicated. Will "
1364 "not try to generate VP Intrinsics "
1365 << (UserIC > 1
1366 ? "since interleave count specified is greater than 1.\n"
1367 : "due to non-interleaving reasons.\n"));
1368 }
1369
1370 /// Returns true if all loop blocks should be masked to fold tail loop.
1371 bool foldTailByMasking() const {
1372 // TODO: check if it is possible to check for None style independent of
1373 // IVUpdateMayOverflow flag in getTailFoldingStyle.
1375 }
1376
1377 /// Returns true if the use of wide lane masks is requested and the loop is
1378 /// using tail-folding with a lane mask for control flow.
1387
1388 /// Return maximum safe number of elements to be processed per vector
1389 /// iteration, which do not prevent store-load forwarding and are safe with
1390 /// regard to the memory dependencies. Required for EVL-based VPlans to
1391 /// correctly calculate AVL (application vector length) as min(remaining AVL,
1392 /// MaxSafeElements).
1393 /// TODO: need to consider adjusting cost model to use this value as a
1394 /// vectorization factor for EVL-based vectorization.
1395 std::optional<unsigned> getMaxSafeElements() const { return MaxSafeElements; }
1396
1397 /// Returns true if the instructions in this block requires predication
1398 /// for any reason, e.g. because tail folding now requires a predicate
1399 /// or because the block in the original loop was predicated.
1401 return foldTailByMasking() || Legal->blockNeedsPredication(BB);
1402 }
1403
1404 /// Returns true if VP intrinsics with explicit vector length support should
1405 /// be generated in the tail folded loop.
1409
1410 /// Returns true if the Phi is part of an inloop reduction.
1411 bool isInLoopReduction(PHINode *Phi) const {
1412 return InLoopReductions.contains(Phi);
1413 }
1414
1415 /// Returns true if the predicated reduction select should be used to set the
1416 /// incoming value for the reduction phi.
1418 // Force to use predicated reduction select since the EVL of the
1419 // second-to-last iteration might not be VF*UF.
1420 if (foldTailWithEVL())
1421 return true;
1423 TTI.preferPredicatedReductionSelect();
1424 }
1425
1426 /// Estimate cost of an intrinsic call instruction CI if it were vectorized
1427 /// with factor VF. Return the cost of the instruction, including
1428 /// scalarization overhead if it's needed.
1429 InstructionCost getVectorIntrinsicCost(CallInst *CI, ElementCount VF) const;
1430
1431 /// Estimate cost of a call instruction CI if it were vectorized with factor
1432 /// VF. Return the cost of the instruction, including scalarization overhead
1433 /// if it's needed.
1434 InstructionCost getVectorCallCost(CallInst *CI, ElementCount VF) const;
1435
1436 /// Invalidates decisions already taken by the cost model.
1438 WideningDecisions.clear();
1439 CallWideningDecisions.clear();
1440 Uniforms.clear();
1441 Scalars.clear();
1442 }
1443
1444 /// Returns the expected execution cost. The unit of the cost does
1445 /// not matter because we use the 'cost' units to compare different
1446 /// vector widths. The cost that is returned is *not* normalized by
1447 /// the factor width.
1448 InstructionCost expectedCost(ElementCount VF);
1449
1450 bool hasPredStores() const { return NumPredStores > 0; }
1451
1452 /// Returns true if epilogue vectorization is considered profitable, and
1453 /// false otherwise.
1454 /// \p VF is the vectorization factor chosen for the original loop.
1455 /// \p Multiplier is an aditional scaling factor applied to VF before
1456 /// comparing to EpilogueVectorizationMinVF.
1457 bool isEpilogueVectorizationProfitable(const ElementCount VF,
1458 const unsigned IC) const;
1459
1460 /// Returns the execution time cost of an instruction for a given vector
1461 /// width. Vector width of one means scalar.
1462 InstructionCost getInstructionCost(Instruction *I, ElementCount VF);
1463
1464 /// Return the cost of instructions in an inloop reduction pattern, if I is
1465 /// part of that pattern.
1466 std::optional<InstructionCost> getReductionPatternCost(Instruction *I,
1467 ElementCount VF,
1468 Type *VectorTy) const;
1469
1470 /// Returns true if \p Op should be considered invariant and if it is
1471 /// trivially hoistable.
1472 bool shouldConsiderInvariant(Value *Op);
1473
1474 /// Return the value of vscale used for tuning the cost model.
1475 std::optional<unsigned> getVScaleForTuning() const { return VScaleForTuning; }
1476
1477private:
1478 unsigned NumPredStores = 0;
1479
1480 /// Used to store the value of vscale used for tuning the cost model. It is
1481 /// initialized during object construction.
1482 std::optional<unsigned> VScaleForTuning;
1483
1484 /// Initializes the value of vscale used for tuning the cost model. If
1485 /// vscale_range.min == vscale_range.max then return vscale_range.max, else
1486 /// return the value returned by the corresponding TTI method.
1487 void initializeVScaleForTuning() {
1488 const Function *Fn = TheLoop->getHeader()->getParent();
1489 if (Fn->hasFnAttribute(Attribute::VScaleRange)) {
1490 auto Attr = Fn->getFnAttribute(Attribute::VScaleRange);
1491 auto Min = Attr.getVScaleRangeMin();
1492 auto Max = Attr.getVScaleRangeMax();
1493 if (Max && Min == Max) {
1494 VScaleForTuning = Max;
1495 return;
1496 }
1497 }
1498
1499 VScaleForTuning = TTI.getVScaleForTuning();
1500 }
1501
1502 /// \return An upper bound for the vectorization factors for both
1503 /// fixed and scalable vectorization, where the minimum-known number of
1504 /// elements is a power-of-2 larger than zero. If scalable vectorization is
1505 /// disabled or unsupported, then the scalable part will be equal to
1506 /// ElementCount::getScalable(0).
1507 FixedScalableVFPair computeFeasibleMaxVF(unsigned MaxTripCount,
1508 ElementCount UserVF,
1509 bool FoldTailByMasking);
1510
1511 /// If \p VF > MaxTripcount, clamps it to the next lower VF that is <=
1512 /// MaxTripCount.
1513 ElementCount clampVFByMaxTripCount(ElementCount VF, unsigned MaxTripCount,
1514 bool FoldTailByMasking) const;
1515
1516 /// \return the maximized element count based on the targets vector
1517 /// registers and the loop trip-count, but limited to a maximum safe VF.
1518 /// This is a helper function of computeFeasibleMaxVF.
1519 ElementCount getMaximizedVFForTarget(unsigned MaxTripCount,
1520 unsigned SmallestType,
1521 unsigned WidestType,
1522 ElementCount MaxSafeVF,
1523 bool FoldTailByMasking);
1524
1525 /// Checks if scalable vectorization is supported and enabled. Caches the
1526 /// result to avoid repeated debug dumps for repeated queries.
1527 bool isScalableVectorizationAllowed();
1528
1529 /// \return the maximum legal scalable VF, based on the safe max number
1530 /// of elements.
1531 ElementCount getMaxLegalScalableVF(unsigned MaxSafeElements);
1532
1533 /// Calculate vectorization cost of memory instruction \p I.
1534 InstructionCost getMemoryInstructionCost(Instruction *I, ElementCount VF);
1535
1536 /// The cost computation for scalarized memory instruction.
1537 InstructionCost getMemInstScalarizationCost(Instruction *I, ElementCount VF);
1538
1539 /// The cost computation for interleaving group of memory instructions.
1540 InstructionCost getInterleaveGroupCost(Instruction *I, ElementCount VF);
1541
1542 /// The cost computation for Gather/Scatter instruction.
1543 InstructionCost getGatherScatterCost(Instruction *I, ElementCount VF);
1544
1545 /// The cost computation for widening instruction \p I with consecutive
1546 /// memory access.
1547 InstructionCost getConsecutiveMemOpCost(Instruction *I, ElementCount VF);
1548
1549 /// The cost calculation for Load/Store instruction \p I with uniform pointer -
1550 /// Load: scalar load + broadcast.
1551 /// Store: scalar store + (loop invariant value stored? 0 : extract of last
1552 /// element)
1553 InstructionCost getUniformMemOpCost(Instruction *I, ElementCount VF);
1554
1555 /// Estimate the overhead of scalarizing an instruction. This is a
1556 /// convenience wrapper for the type-based getScalarizationOverhead API.
1558 ElementCount VF) const;
1559
1560 /// Returns true if an artificially high cost for emulated masked memrefs
1561 /// should be used.
1562 bool useEmulatedMaskMemRefHack(Instruction *I, ElementCount VF);
1563
1564 /// Map of scalar integer values to the smallest bitwidth they can be legally
1565 /// represented as. The vector equivalents of these values should be truncated
1566 /// to this type.
1567 MapVector<Instruction *, uint64_t> MinBWs;
1568
1569 /// A type representing the costs for instructions if they were to be
1570 /// scalarized rather than vectorized. The entries are Instruction-Cost
1571 /// pairs.
1572 using ScalarCostsTy = MapVector<Instruction *, InstructionCost>;
1573
1574 /// A set containing all BasicBlocks that are known to present after
1575 /// vectorization as a predicated block.
1576 DenseMap<ElementCount, SmallPtrSet<BasicBlock *, 4>>
1577 PredicatedBBsAfterVectorization;
1578
1579 /// Records whether it is allowed to have the original scalar loop execute at
1580 /// least once. This may be needed as a fallback loop in case runtime
1581 /// aliasing/dependence checks fail, or to handle the tail/remainder
1582 /// iterations when the trip count is unknown or doesn't divide by the VF,
1583 /// or as a peel-loop to handle gaps in interleave-groups.
1584 /// Under optsize and when the trip count is very small we don't allow any
1585 /// iterations to execute in the scalar loop.
1586 ScalarEpilogueLowering ScalarEpilogueStatus = CM_ScalarEpilogueAllowed;
1587
1588 /// Control finally chosen tail folding style. The first element is used if
1589 /// the IV update may overflow, the second element - if it does not.
1590 std::optional<std::pair<TailFoldingStyle, TailFoldingStyle>>
1591 ChosenTailFoldingStyle;
1592
1593 /// true if scalable vectorization is supported and enabled.
1594 std::optional<bool> IsScalableVectorizationAllowed;
1595
1596 /// Maximum safe number of elements to be processed per vector iteration,
1597 /// which do not prevent store-load forwarding and are safe with regard to the
1598 /// memory dependencies. Required for EVL-based veectorization, where this
1599 /// value is used as the upper bound of the safe AVL.
1600 std::optional<unsigned> MaxSafeElements;
1601
1602 /// A map holding scalar costs for different vectorization factors. The
1603 /// presence of a cost for an instruction in the mapping indicates that the
1604 /// instruction will be scalarized when vectorizing with the associated
1605 /// vectorization factor. The entries are VF-ScalarCostTy pairs.
1606 MapVector<ElementCount, ScalarCostsTy> InstsToScalarize;
1607
1608 /// Holds the instructions known to be uniform after vectorization.
1609 /// The data is collected per VF.
1610 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Uniforms;
1611
1612 /// Holds the instructions known to be scalar after vectorization.
1613 /// The data is collected per VF.
1614 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Scalars;
1615
1616 /// Holds the instructions (address computations) that are forced to be
1617 /// scalarized.
1618 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> ForcedScalars;
1619
1620 /// PHINodes of the reductions that should be expanded in-loop.
1621 SmallPtrSet<PHINode *, 4> InLoopReductions;
1622
1623 /// A Map of inloop reduction operations and their immediate chain operand.
1624 /// FIXME: This can be removed once reductions can be costed correctly in
1625 /// VPlan. This was added to allow quick lookup of the inloop operations.
1626 DenseMap<Instruction *, Instruction *> InLoopReductionImmediateChains;
1627
1628 /// Returns the expected difference in cost from scalarizing the expression
1629 /// feeding a predicated instruction \p PredInst. The instructions to
1630 /// scalarize and their scalar costs are collected in \p ScalarCosts. A
1631 /// non-negative return value implies the expression will be scalarized.
1632 /// Currently, only single-use chains are considered for scalarization.
1633 InstructionCost computePredInstDiscount(Instruction *PredInst,
1634 ScalarCostsTy &ScalarCosts,
1635 ElementCount VF);
1636
1637 /// Collect the instructions that are uniform after vectorization. An
1638 /// instruction is uniform if we represent it with a single scalar value in
1639 /// the vectorized loop corresponding to each vector iteration. Examples of
1640 /// uniform instructions include pointer operands of consecutive or
1641 /// interleaved memory accesses. Note that although uniformity implies an
1642 /// instruction will be scalar, the reverse is not true. In general, a
1643 /// scalarized instruction will be represented by VF scalar values in the
1644 /// vectorized loop, each corresponding to an iteration of the original
1645 /// scalar loop.
1646 void collectLoopUniforms(ElementCount VF);
1647
1648 /// Collect the instructions that are scalar after vectorization. An
1649 /// instruction is scalar if it is known to be uniform or will be scalarized
1650 /// during vectorization. collectLoopScalars should only add non-uniform nodes
1651 /// to the list if they are used by a load/store instruction that is marked as
1652 /// CM_Scalarize. Non-uniform scalarized instructions will be represented by
1653 /// VF values in the vectorized loop, each corresponding to an iteration of
1654 /// the original scalar loop.
1655 void collectLoopScalars(ElementCount VF);
1656
1657 /// Keeps cost model vectorization decision and cost for instructions.
1658 /// Right now it is used for memory instructions only.
1659 using DecisionList = DenseMap<std::pair<Instruction *, ElementCount>,
1660 std::pair<InstWidening, InstructionCost>>;
1661
1662 DecisionList WideningDecisions;
1663
1664 using CallDecisionList =
1665 DenseMap<std::pair<CallInst *, ElementCount>, CallWideningDecision>;
1666
1667 CallDecisionList CallWideningDecisions;
1668
1669 /// Returns true if \p V is expected to be vectorized and it needs to be
1670 /// extracted.
1671 bool needsExtract(Value *V, ElementCount VF) const {
1673 if (VF.isScalar() || !I || !TheLoop->contains(I) ||
1674 TheLoop->isLoopInvariant(I) ||
1675 getWideningDecision(I, VF) == CM_Scalarize ||
1676 (isa<CallInst>(I) &&
1677 getCallWideningDecision(cast<CallInst>(I), VF).Kind == CM_Scalarize))
1678 return false;
1679
1680 // Assume we can vectorize V (and hence we need extraction) if the
1681 // scalars are not computed yet. This can happen, because it is called
1682 // via getScalarizationOverhead from setCostBasedWideningDecision, before
1683 // the scalars are collected. That should be a safe assumption in most
1684 // cases, because we check if the operands have vectorizable types
1685 // beforehand in LoopVectorizationLegality.
1686 return !Scalars.contains(VF) || !isScalarAfterVectorization(I, VF);
1687 };
1688
1689 /// Returns a range containing only operands needing to be extracted.
1690 SmallVector<Value *, 4> filterExtractingOperands(Instruction::op_range Ops,
1691 ElementCount VF) const {
1692
1693 SmallPtrSet<const Value *, 4> UniqueOperands;
1695 for (Value *Op : Ops) {
1696 if (isa<Constant>(Op) || !UniqueOperands.insert(Op).second ||
1697 !needsExtract(Op, VF))
1698 continue;
1699 Res.push_back(Op);
1700 }
1701 return Res;
1702 }
1703
1704public:
1705 /// The loop that we evaluate.
1707
1708 /// Predicated scalar evolution analysis.
1710
1711 /// Loop Info analysis.
1713
1714 /// Vectorization legality.
1716
1717 /// Vector target information.
1719
1720 /// Target Library Info.
1722
1723 /// Demanded bits analysis.
1725
1726 /// Assumption cache.
1728
1729 /// Interface to emit optimization remarks.
1731
1733
1734 /// Loop Vectorize Hint.
1736
1737 /// The interleave access information contains groups of interleaved accesses
1738 /// with the same stride and close to each other.
1740
1741 /// Values to ignore in the cost model.
1743
1744 /// Values to ignore in the cost model when VF > 1.
1746
1747 /// All element types found in the loop.
1749
1750 /// The kind of cost that we are calculating
1752
1753 /// Whether this loop should be optimized for size based on function attribute
1754 /// or profile information.
1756
1757 /// The highest VF possible for this loop, without using MaxBandwidth.
1759};
1760} // end namespace llvm
1761
1762namespace {
1763/// Helper struct to manage generating runtime checks for vectorization.
1764///
1765/// The runtime checks are created up-front in temporary blocks to allow better
1766/// estimating the cost and un-linked from the existing IR. After deciding to
1767/// vectorize, the checks are moved back. If deciding not to vectorize, the
1768/// temporary blocks are completely removed.
1769class GeneratedRTChecks {
1770 /// Basic block which contains the generated SCEV checks, if any.
1771 BasicBlock *SCEVCheckBlock = nullptr;
1772
1773 /// The value representing the result of the generated SCEV checks. If it is
1774 /// nullptr no SCEV checks have been generated.
1775 Value *SCEVCheckCond = nullptr;
1776
1777 /// Basic block which contains the generated memory runtime checks, if any.
1778 BasicBlock *MemCheckBlock = nullptr;
1779
1780 /// The value representing the result of the generated memory runtime checks.
1781 /// If it is nullptr no memory runtime checks have been generated.
1782 Value *MemRuntimeCheckCond = nullptr;
1783
1784 DominatorTree *DT;
1785 LoopInfo *LI;
1787
1788 SCEVExpander SCEVExp;
1789 SCEVExpander MemCheckExp;
1790
1791 bool CostTooHigh = false;
1792
1793 Loop *OuterLoop = nullptr;
1794
1796
1797 /// The kind of cost that we are calculating
1799
1800public:
1801 GeneratedRTChecks(PredicatedScalarEvolution &PSE, DominatorTree *DT,
1804 : DT(DT), LI(LI), TTI(TTI),
1805 SCEVExp(*PSE.getSE(), DL, "scev.check", /*PreserveLCSSA=*/false),
1806 MemCheckExp(*PSE.getSE(), DL, "scev.check", /*PreserveLCSSA=*/false),
1807 PSE(PSE), CostKind(CostKind) {}
1808
1809 /// Generate runtime checks in SCEVCheckBlock and MemCheckBlock, so we can
1810 /// accurately estimate the cost of the runtime checks. The blocks are
1811 /// un-linked from the IR and are added back during vector code generation. If
1812 /// there is no vector code generation, the check blocks are removed
1813 /// completely.
1814 void create(Loop *L, const LoopAccessInfo &LAI,
1815 const SCEVPredicate &UnionPred, ElementCount VF, unsigned IC) {
1816
1817 // Hard cutoff to limit compile-time increase in case a very large number of
1818 // runtime checks needs to be generated.
1819 // TODO: Skip cutoff if the loop is guaranteed to execute, e.g. due to
1820 // profile info.
1821 CostTooHigh =
1823 if (CostTooHigh)
1824 return;
1825
1826 BasicBlock *LoopHeader = L->getHeader();
1827 BasicBlock *Preheader = L->getLoopPreheader();
1828
1829 // Use SplitBlock to create blocks for SCEV & memory runtime checks to
1830 // ensure the blocks are properly added to LoopInfo & DominatorTree. Those
1831 // may be used by SCEVExpander. The blocks will be un-linked from their
1832 // predecessors and removed from LI & DT at the end of the function.
1833 if (!UnionPred.isAlwaysTrue()) {
1834 SCEVCheckBlock = SplitBlock(Preheader, Preheader->getTerminator(), DT, LI,
1835 nullptr, "vector.scevcheck");
1836
1837 SCEVCheckCond = SCEVExp.expandCodeForPredicate(
1838 &UnionPred, SCEVCheckBlock->getTerminator());
1839 if (isa<Constant>(SCEVCheckCond)) {
1840 // Clean up directly after expanding the predicate to a constant, to
1841 // avoid further expansions re-using anything left over from SCEVExp.
1842 SCEVExpanderCleaner SCEVCleaner(SCEVExp);
1843 SCEVCleaner.cleanup();
1844 }
1845 }
1846
1847 const auto &RtPtrChecking = *LAI.getRuntimePointerChecking();
1848 if (RtPtrChecking.Need) {
1849 auto *Pred = SCEVCheckBlock ? SCEVCheckBlock : Preheader;
1850 MemCheckBlock = SplitBlock(Pred, Pred->getTerminator(), DT, LI, nullptr,
1851 "vector.memcheck");
1852
1853 auto DiffChecks = RtPtrChecking.getDiffChecks();
1854 if (DiffChecks) {
1855 Value *RuntimeVF = nullptr;
1856 MemRuntimeCheckCond = addDiffRuntimeChecks(
1857 MemCheckBlock->getTerminator(), *DiffChecks, MemCheckExp,
1858 [VF, &RuntimeVF](IRBuilderBase &B, unsigned Bits) {
1859 if (!RuntimeVF)
1860 RuntimeVF = getRuntimeVF(B, B.getIntNTy(Bits), VF);
1861 return RuntimeVF;
1862 },
1863 IC);
1864 } else {
1865 MemRuntimeCheckCond = addRuntimeChecks(
1866 MemCheckBlock->getTerminator(), L, RtPtrChecking.getChecks(),
1868 }
1869 assert(MemRuntimeCheckCond &&
1870 "no RT checks generated although RtPtrChecking "
1871 "claimed checks are required");
1872 }
1873
1874 SCEVExp.eraseDeadInstructions(SCEVCheckCond);
1875
1876 if (!MemCheckBlock && !SCEVCheckBlock)
1877 return;
1878
1879 // Unhook the temporary block with the checks, update various places
1880 // accordingly.
1881 if (SCEVCheckBlock)
1882 SCEVCheckBlock->replaceAllUsesWith(Preheader);
1883 if (MemCheckBlock)
1884 MemCheckBlock->replaceAllUsesWith(Preheader);
1885
1886 if (SCEVCheckBlock) {
1887 SCEVCheckBlock->getTerminator()->moveBefore(
1888 Preheader->getTerminator()->getIterator());
1889 auto *UI = new UnreachableInst(Preheader->getContext(), SCEVCheckBlock);
1890 UI->setDebugLoc(DebugLoc::getTemporary());
1891 Preheader->getTerminator()->eraseFromParent();
1892 }
1893 if (MemCheckBlock) {
1894 MemCheckBlock->getTerminator()->moveBefore(
1895 Preheader->getTerminator()->getIterator());
1896 auto *UI = new UnreachableInst(Preheader->getContext(), MemCheckBlock);
1897 UI->setDebugLoc(DebugLoc::getTemporary());
1898 Preheader->getTerminator()->eraseFromParent();
1899 }
1900
1901 DT->changeImmediateDominator(LoopHeader, Preheader);
1902 if (MemCheckBlock) {
1903 DT->eraseNode(MemCheckBlock);
1904 LI->removeBlock(MemCheckBlock);
1905 }
1906 if (SCEVCheckBlock) {
1907 DT->eraseNode(SCEVCheckBlock);
1908 LI->removeBlock(SCEVCheckBlock);
1909 }
1910
1911 // Outer loop is used as part of the later cost calculations.
1912 OuterLoop = L->getParentLoop();
1913 }
1914
1916 if (SCEVCheckBlock || MemCheckBlock)
1917 LLVM_DEBUG(dbgs() << "Calculating cost of runtime checks:\n");
1918
1919 if (CostTooHigh) {
1921 Cost.setInvalid();
1922 LLVM_DEBUG(dbgs() << " number of checks exceeded threshold\n");
1923 return Cost;
1924 }
1925
1926 InstructionCost RTCheckCost = 0;
1927 if (SCEVCheckBlock)
1928 for (Instruction &I : *SCEVCheckBlock) {
1929 if (SCEVCheckBlock->getTerminator() == &I)
1930 continue;
1932 LLVM_DEBUG(dbgs() << " " << C << " for " << I << "\n");
1933 RTCheckCost += C;
1934 }
1935 if (MemCheckBlock) {
1936 InstructionCost MemCheckCost = 0;
1937 for (Instruction &I : *MemCheckBlock) {
1938 if (MemCheckBlock->getTerminator() == &I)
1939 continue;
1941 LLVM_DEBUG(dbgs() << " " << C << " for " << I << "\n");
1942 MemCheckCost += C;
1943 }
1944
1945 // If the runtime memory checks are being created inside an outer loop
1946 // we should find out if these checks are outer loop invariant. If so,
1947 // the checks will likely be hoisted out and so the effective cost will
1948 // reduce according to the outer loop trip count.
1949 if (OuterLoop) {
1950 ScalarEvolution *SE = MemCheckExp.getSE();
1951 // TODO: If profitable, we could refine this further by analysing every
1952 // individual memory check, since there could be a mixture of loop
1953 // variant and invariant checks that mean the final condition is
1954 // variant.
1955 const SCEV *Cond = SE->getSCEV(MemRuntimeCheckCond);
1956 if (SE->isLoopInvariant(Cond, OuterLoop)) {
1957 // It seems reasonable to assume that we can reduce the effective
1958 // cost of the checks even when we know nothing about the trip
1959 // count. Assume that the outer loop executes at least twice.
1960 unsigned BestTripCount = 2;
1961
1962 // Get the best known TC estimate.
1963 if (auto EstimatedTC = getSmallBestKnownTC(
1964 PSE, OuterLoop, /* CanUseConstantMax = */ false))
1965 if (EstimatedTC->isFixed())
1966 BestTripCount = EstimatedTC->getFixedValue();
1967
1968 InstructionCost NewMemCheckCost = MemCheckCost / BestTripCount;
1969
1970 // Let's ensure the cost is always at least 1.
1971 NewMemCheckCost = std::max(NewMemCheckCost.getValue(),
1972 (InstructionCost::CostType)1);
1973
1974 if (BestTripCount > 1)
1976 << "We expect runtime memory checks to be hoisted "
1977 << "out of the outer loop. Cost reduced from "
1978 << MemCheckCost << " to " << NewMemCheckCost << '\n');
1979
1980 MemCheckCost = NewMemCheckCost;
1981 }
1982 }
1983
1984 RTCheckCost += MemCheckCost;
1985 }
1986
1987 if (SCEVCheckBlock || MemCheckBlock)
1988 LLVM_DEBUG(dbgs() << "Total cost of runtime checks: " << RTCheckCost
1989 << "\n");
1990
1991 return RTCheckCost;
1992 }
1993
1994 /// Remove the created SCEV & memory runtime check blocks & instructions, if
1995 /// unused.
1996 ~GeneratedRTChecks() {
1997 SCEVExpanderCleaner SCEVCleaner(SCEVExp);
1998 SCEVExpanderCleaner MemCheckCleaner(MemCheckExp);
1999 bool SCEVChecksUsed = !SCEVCheckBlock || !pred_empty(SCEVCheckBlock);
2000 bool MemChecksUsed = !MemCheckBlock || !pred_empty(MemCheckBlock);
2001 if (SCEVChecksUsed)
2002 SCEVCleaner.markResultUsed();
2003
2004 if (MemChecksUsed) {
2005 MemCheckCleaner.markResultUsed();
2006 } else {
2007 auto &SE = *MemCheckExp.getSE();
2008 // Memory runtime check generation creates compares that use expanded
2009 // values. Remove them before running the SCEVExpanderCleaners.
2010 for (auto &I : make_early_inc_range(reverse(*MemCheckBlock))) {
2011 if (MemCheckExp.isInsertedInstruction(&I))
2012 continue;
2013 SE.forgetValue(&I);
2014 I.eraseFromParent();
2015 }
2016 }
2017 MemCheckCleaner.cleanup();
2018 SCEVCleaner.cleanup();
2019
2020 if (!SCEVChecksUsed)
2021 SCEVCheckBlock->eraseFromParent();
2022 if (!MemChecksUsed)
2023 MemCheckBlock->eraseFromParent();
2024 }
2025
2026 /// Retrieves the SCEVCheckCond and SCEVCheckBlock that were generated as IR
2027 /// outside VPlan.
2028 std::pair<Value *, BasicBlock *> getSCEVChecks() const {
2029 using namespace llvm::PatternMatch;
2030 if (!SCEVCheckCond || match(SCEVCheckCond, m_ZeroInt()))
2031 return {nullptr, nullptr};
2032
2033 return {SCEVCheckCond, SCEVCheckBlock};
2034 }
2035
2036 /// Retrieves the MemCheckCond and MemCheckBlock that were generated as IR
2037 /// outside VPlan.
2038 std::pair<Value *, BasicBlock *> getMemRuntimeChecks() const {
2039 using namespace llvm::PatternMatch;
2040 if (MemRuntimeCheckCond && match(MemRuntimeCheckCond, m_ZeroInt()))
2041 return {nullptr, nullptr};
2042 return {MemRuntimeCheckCond, MemCheckBlock};
2043 }
2044
2045 /// Return true if any runtime checks have been added
2046 bool hasChecks() const {
2047 return getSCEVChecks().first || getMemRuntimeChecks().first;
2048 }
2049};
2050} // namespace
2051
2057
2062
2063// Return true if \p OuterLp is an outer loop annotated with hints for explicit
2064// vectorization. The loop needs to be annotated with #pragma omp simd
2065// simdlen(#) or #pragma clang vectorize(enable) vectorize_width(#). If the
2066// vector length information is not provided, vectorization is not considered
2067// explicit. Interleave hints are not allowed either. These limitations will be
2068// relaxed in the future.
2069// Please, note that we are currently forced to abuse the pragma 'clang
2070// vectorize' semantics. This pragma provides *auto-vectorization hints*
2071// (i.e., LV must check that vectorization is legal) whereas pragma 'omp simd'
2072// provides *explicit vectorization hints* (LV can bypass legal checks and
2073// assume that vectorization is legal). However, both hints are implemented
2074// using the same metadata (llvm.loop.vectorize, processed by
2075// LoopVectorizeHints). This will be fixed in the future when the native IR
2076// representation for pragma 'omp simd' is introduced.
2077static bool isExplicitVecOuterLoop(Loop *OuterLp,
2079 assert(!OuterLp->isInnermost() && "This is not an outer loop");
2080 LoopVectorizeHints Hints(OuterLp, true /*DisableInterleaving*/, *ORE);
2081
2082 // Only outer loops with an explicit vectorization hint are supported.
2083 // Unannotated outer loops are ignored.
2085 return false;
2086
2087 Function *Fn = OuterLp->getHeader()->getParent();
2088 if (!Hints.allowVectorization(Fn, OuterLp,
2089 true /*VectorizeOnlyWhenForced*/)) {
2090 LLVM_DEBUG(dbgs() << "LV: Loop hints prevent outer loop vectorization.\n");
2091 return false;
2092 }
2093
2094 if (Hints.getInterleave() > 1) {
2095 // TODO: Interleave support is future work.
2096 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Interleave is not supported for "
2097 "outer loops.\n");
2098 Hints.emitRemarkWithHints();
2099 return false;
2100 }
2101
2102 return true;
2103}
2104
2108 // Collect inner loops and outer loops without irreducible control flow. For
2109 // now, only collect outer loops that have explicit vectorization hints. If we
2110 // are stress testing the VPlan H-CFG construction, we collect the outermost
2111 // loop of every loop nest.
2112 if (L.isInnermost() || VPlanBuildStressTest ||
2114 LoopBlocksRPO RPOT(&L);
2115 RPOT.perform(LI);
2117 V.push_back(&L);
2118 // TODO: Collect inner loops inside marked outer loops in case
2119 // vectorization fails for the outer loop. Do not invoke
2120 // 'containsIrreducibleCFG' again for inner loops when the outer loop is
2121 // already known to be reducible. We can use an inherited attribute for
2122 // that.
2123 return;
2124 }
2125 }
2126 for (Loop *InnerL : L)
2127 collectSupportedLoops(*InnerL, LI, ORE, V);
2128}
2129
2130//===----------------------------------------------------------------------===//
2131// Implementation of LoopVectorizationLegality, InnerLoopVectorizer and
2132// LoopVectorizationCostModel and LoopVectorizationPlanner.
2133//===----------------------------------------------------------------------===//
2134
2135/// Compute the transformed value of Index at offset StartValue using step
2136/// StepValue.
2137/// For integer induction, returns StartValue + Index * StepValue.
2138/// For pointer induction, returns StartValue[Index * StepValue].
2139/// FIXME: The newly created binary instructions should contain nsw/nuw
2140/// flags, which can be found from the original scalar operations.
2141static Value *
2143 Value *Step,
2145 const BinaryOperator *InductionBinOp) {
2146 using namespace llvm::PatternMatch;
2147 Type *StepTy = Step->getType();
2148 Value *CastedIndex = StepTy->isIntegerTy()
2149 ? B.CreateSExtOrTrunc(Index, StepTy)
2150 : B.CreateCast(Instruction::SIToFP, Index, StepTy);
2151 if (CastedIndex != Index) {
2152 CastedIndex->setName(CastedIndex->getName() + ".cast");
2153 Index = CastedIndex;
2154 }
2155
2156 // Note: the IR at this point is broken. We cannot use SE to create any new
2157 // SCEV and then expand it, hoping that SCEV's simplification will give us
2158 // a more optimal code. Unfortunately, attempt of doing so on invalid IR may
2159 // lead to various SCEV crashes. So all we can do is to use builder and rely
2160 // on InstCombine for future simplifications. Here we handle some trivial
2161 // cases only.
2162 auto CreateAdd = [&B](Value *X, Value *Y) {
2163 assert(X->getType() == Y->getType() && "Types don't match!");
2164 if (match(X, m_ZeroInt()))
2165 return Y;
2166 if (match(Y, m_ZeroInt()))
2167 return X;
2168 return B.CreateAdd(X, Y);
2169 };
2170
2171 // We allow X to be a vector type, in which case Y will potentially be
2172 // splatted into a vector with the same element count.
2173 auto CreateMul = [&B](Value *X, Value *Y) {
2174 assert(X->getType()->getScalarType() == Y->getType() &&
2175 "Types don't match!");
2176 if (match(X, m_One()))
2177 return Y;
2178 if (match(Y, m_One()))
2179 return X;
2180 VectorType *XVTy = dyn_cast<VectorType>(X->getType());
2181 if (XVTy && !isa<VectorType>(Y->getType()))
2182 Y = B.CreateVectorSplat(XVTy->getElementCount(), Y);
2183 return B.CreateMul(X, Y);
2184 };
2185
2186 switch (InductionKind) {
2188 assert(!isa<VectorType>(Index->getType()) &&
2189 "Vector indices not supported for integer inductions yet");
2190 assert(Index->getType() == StartValue->getType() &&
2191 "Index type does not match StartValue type");
2192 if (isa<ConstantInt>(Step) && cast<ConstantInt>(Step)->isMinusOne())
2193 return B.CreateSub(StartValue, Index);
2194 auto *Offset = CreateMul(Index, Step);
2195 return CreateAdd(StartValue, Offset);
2196 }
2198 return B.CreatePtrAdd(StartValue, CreateMul(Index, Step));
2200 assert(!isa<VectorType>(Index->getType()) &&
2201 "Vector indices not supported for FP inductions yet");
2202 assert(Step->getType()->isFloatingPointTy() && "Expected FP Step value");
2203 assert(InductionBinOp &&
2204 (InductionBinOp->getOpcode() == Instruction::FAdd ||
2205 InductionBinOp->getOpcode() == Instruction::FSub) &&
2206 "Original bin op should be defined for FP induction");
2207
2208 Value *MulExp = B.CreateFMul(Step, Index);
2209 return B.CreateBinOp(InductionBinOp->getOpcode(), StartValue, MulExp,
2210 "induction");
2211 }
2213 return nullptr;
2214 }
2215 llvm_unreachable("invalid enum");
2216}
2217
2218static std::optional<unsigned> getMaxVScale(const Function &F,
2219 const TargetTransformInfo &TTI) {
2220 if (std::optional<unsigned> MaxVScale = TTI.getMaxVScale())
2221 return MaxVScale;
2222
2223 if (F.hasFnAttribute(Attribute::VScaleRange))
2224 return F.getFnAttribute(Attribute::VScaleRange).getVScaleRangeMax();
2225
2226 return std::nullopt;
2227}
2228
2229/// For the given VF and UF and maximum trip count computed for the loop, return
2230/// whether the induction variable might overflow in the vectorized loop. If not,
2231/// then we know a runtime overflow check always evaluates to false and can be
2232/// removed.
2234 const LoopVectorizationCostModel *Cost,
2235 ElementCount VF, std::optional<unsigned> UF = std::nullopt) {
2236 // Always be conservative if we don't know the exact unroll factor.
2237 unsigned MaxUF = UF ? *UF : Cost->TTI.getMaxInterleaveFactor(VF);
2238
2239 IntegerType *IdxTy = Cost->Legal->getWidestInductionType();
2240 APInt MaxUIntTripCount = IdxTy->getMask();
2241
2242 // We know the runtime overflow check is known false iff the (max) trip-count
2243 // is known and (max) trip-count + (VF * UF) does not overflow in the type of
2244 // the vector loop induction variable.
2245 if (unsigned TC = Cost->PSE.getSmallConstantMaxTripCount()) {
2246 uint64_t MaxVF = VF.getKnownMinValue();
2247 if (VF.isScalable()) {
2248 std::optional<unsigned> MaxVScale =
2249 getMaxVScale(*Cost->TheFunction, Cost->TTI);
2250 if (!MaxVScale)
2251 return false;
2252 MaxVF *= *MaxVScale;
2253 }
2254
2255 return (MaxUIntTripCount - TC).ugt(MaxVF * MaxUF);
2256 }
2257
2258 return false;
2259}
2260
2261// Return whether we allow using masked interleave-groups (for dealing with
2262// strided loads/stores that reside in predicated blocks, or for dealing
2263// with gaps).
2265 // If an override option has been passed in for interleaved accesses, use it.
2266 if (EnableMaskedInterleavedMemAccesses.getNumOccurrences() > 0)
2268
2269 return TTI.enableMaskedInterleavedAccessVectorization();
2270}
2271
2273 BasicBlock *CheckIRBB) {
2274 // Note: The block with the minimum trip-count check is already connected
2275 // during earlier VPlan construction.
2276 VPBlockBase *ScalarPH = Plan.getScalarPreheader();
2277 VPBlockBase *PreVectorPH = VectorPHVPBB->getSinglePredecessor();
2278 assert(PreVectorPH->getNumSuccessors() == 2 && "Expected 2 successors");
2279 assert(PreVectorPH->getSuccessors()[0] == ScalarPH && "Unexpected successor");
2280 VPIRBasicBlock *CheckVPIRBB = Plan.createVPIRBasicBlock(CheckIRBB);
2281 VPBlockUtils::insertOnEdge(PreVectorPH, VectorPHVPBB, CheckVPIRBB);
2282 PreVectorPH = CheckVPIRBB;
2283 VPBlockUtils::connectBlocks(PreVectorPH, ScalarPH);
2284 PreVectorPH->swapSuccessors();
2285
2286 // We just connected a new block to the scalar preheader. Update all
2287 // VPPhis by adding an incoming value for it, replicating the last value.
2288 unsigned NumPredecessors = ScalarPH->getNumPredecessors();
2289 for (VPRecipeBase &R : cast<VPBasicBlock>(ScalarPH)->phis()) {
2290 assert(isa<VPPhi>(&R) && "Phi expected to be VPPhi");
2291 assert(cast<VPPhi>(&R)->getNumIncoming() == NumPredecessors - 1 &&
2292 "must have incoming values for all operands");
2293 R.addOperand(R.getOperand(NumPredecessors - 2));
2294 }
2295}
2296
2298 BasicBlock *VectorPH, ElementCount VF, unsigned UF) const {
2299 // Generate code to check if the loop's trip count is less than VF * UF, or
2300 // equal to it in case a scalar epilogue is required; this implies that the
2301 // vector trip count is zero. This check also covers the case where adding one
2302 // to the backedge-taken count overflowed leading to an incorrect trip count
2303 // of zero. In this case we will also jump to the scalar loop.
2304 auto P = Cost->requiresScalarEpilogue(VF.isVector()) ? ICmpInst::ICMP_ULE
2306
2307 // Reuse existing vector loop preheader for TC checks.
2308 // Note that new preheader block is generated for vector loop.
2309 BasicBlock *const TCCheckBlock = VectorPH;
2311 TCCheckBlock->getContext(),
2312 InstSimplifyFolder(TCCheckBlock->getDataLayout()));
2313 Builder.SetInsertPoint(TCCheckBlock->getTerminator());
2314
2315 // If tail is to be folded, vector loop takes care of all iterations.
2317 Type *CountTy = Count->getType();
2318 Value *CheckMinIters = Builder.getFalse();
2319 auto CreateStep = [&]() -> Value * {
2320 // Create step with max(MinProTripCount, UF * VF).
2321 if (UF * VF.getKnownMinValue() >= MinProfitableTripCount.getKnownMinValue())
2322 return createStepForVF(Builder, CountTy, VF, UF);
2323
2324 Value *MinProfTC =
2325 Builder.CreateElementCount(CountTy, MinProfitableTripCount);
2326 if (!VF.isScalable())
2327 return MinProfTC;
2328 return Builder.CreateBinaryIntrinsic(
2329 Intrinsic::umax, MinProfTC, createStepForVF(Builder, CountTy, VF, UF));
2330 };
2331
2332 TailFoldingStyle Style = Cost->getTailFoldingStyle();
2333 if (Style == TailFoldingStyle::None) {
2334 Value *Step = CreateStep();
2335 ScalarEvolution &SE = *PSE.getSE();
2336 // TODO: Emit unconditional branch to vector preheader instead of
2337 // conditional branch with known condition.
2338 const SCEV *TripCountSCEV = SE.applyLoopGuards(SE.getSCEV(Count), OrigLoop);
2339 // Check if the trip count is < the step.
2340 if (SE.isKnownPredicate(P, TripCountSCEV, SE.getSCEV(Step))) {
2341 // TODO: Ensure step is at most the trip count when determining max VF and
2342 // UF, w/o tail folding.
2343 CheckMinIters = Builder.getTrue();
2345 TripCountSCEV, SE.getSCEV(Step))) {
2346 // Generate the minimum iteration check only if we cannot prove the
2347 // check is known to be true, or known to be false.
2348 CheckMinIters = Builder.CreateICmp(P, Count, Step, "min.iters.check");
2349 } // else step known to be < trip count, use CheckMinIters preset to false.
2350 } else if (VF.isScalable() && !TTI->isVScaleKnownToBeAPowerOfTwo() &&
2353 // vscale is not necessarily a power-of-2, which means we cannot guarantee
2354 // an overflow to zero when updating induction variables and so an
2355 // additional overflow check is required before entering the vector loop.
2356
2357 // Get the maximum unsigned value for the type.
2358 Value *MaxUIntTripCount =
2359 ConstantInt::get(CountTy, cast<IntegerType>(CountTy)->getMask());
2360 Value *LHS = Builder.CreateSub(MaxUIntTripCount, Count);
2361
2362 // Don't execute the vector loop if (UMax - n) < (VF * UF).
2363 CheckMinIters = Builder.CreateICmp(ICmpInst::ICMP_ULT, LHS, CreateStep());
2364 }
2365 return CheckMinIters;
2366}
2367
2368/// Replace \p VPBB with a VPIRBasicBlock wrapping \p IRBB. All recipes from \p
2369/// VPBB are moved to the end of the newly created VPIRBasicBlock. All
2370/// predecessors and successors of VPBB, if any, are rewired to the new
2371/// VPIRBasicBlock. If \p VPBB may be unreachable, \p Plan must be passed.
2373 BasicBlock *IRBB,
2374 VPlan *Plan = nullptr) {
2375 if (!Plan)
2376 Plan = VPBB->getPlan();
2377 VPIRBasicBlock *IRVPBB = Plan->createVPIRBasicBlock(IRBB);
2378 auto IP = IRVPBB->begin();
2379 for (auto &R : make_early_inc_range(VPBB->phis()))
2380 R.moveBefore(*IRVPBB, IP);
2381
2382 for (auto &R :
2384 R.moveBefore(*IRVPBB, IRVPBB->end());
2385
2386 VPBlockUtils::reassociateBlocks(VPBB, IRVPBB);
2387 // VPBB is now dead and will be cleaned up when the plan gets destroyed.
2388 return IRVPBB;
2389}
2390
2392 BasicBlock *VectorPH = OrigLoop->getLoopPreheader();
2393 assert(VectorPH && "Invalid loop structure");
2394 assert((OrigLoop->getUniqueLatchExitBlock() ||
2395 Cost->requiresScalarEpilogue(VF.isVector())) &&
2396 "loops not exiting via the latch without required epilogue?");
2397
2398 // NOTE: The Plan's scalar preheader VPBB isn't replaced with a VPIRBasicBlock
2399 // wrapping the newly created scalar preheader here at the moment, because the
2400 // Plan's scalar preheader may be unreachable at this point. Instead it is
2401 // replaced in executePlan.
2402 return SplitBlock(VectorPH, VectorPH->getTerminator(), DT, LI, nullptr,
2403 Twine(Prefix) + "scalar.ph");
2404}
2405
2406/// Return the expanded step for \p ID using \p ExpandedSCEVs to look up SCEV
2407/// expansion results.
2409 const SCEV2ValueTy &ExpandedSCEVs) {
2410 const SCEV *Step = ID.getStep();
2411 if (auto *C = dyn_cast<SCEVConstant>(Step))
2412 return C->getValue();
2413 if (auto *U = dyn_cast<SCEVUnknown>(Step))
2414 return U->getValue();
2415 Value *V = ExpandedSCEVs.lookup(Step);
2416 assert(V && "SCEV must be expanded at this point");
2417 return V;
2418}
2419
2420/// Knowing that loop \p L executes a single vector iteration, add instructions
2421/// that will get simplified and thus should not have any cost to \p
2422/// InstsToIgnore.
2425 SmallPtrSetImpl<Instruction *> &InstsToIgnore) {
2426 auto *Cmp = L->getLatchCmpInst();
2427 if (Cmp)
2428 InstsToIgnore.insert(Cmp);
2429 for (const auto &KV : IL) {
2430 // Extract the key by hand so that it can be used in the lambda below. Note
2431 // that captured structured bindings are a C++20 extension.
2432 const PHINode *IV = KV.first;
2433
2434 // Get next iteration value of the induction variable.
2435 Instruction *IVInst =
2436 cast<Instruction>(IV->getIncomingValueForBlock(L->getLoopLatch()));
2437 if (all_of(IVInst->users(),
2438 [&](const User *U) { return U == IV || U == Cmp; }))
2439 InstsToIgnore.insert(IVInst);
2440 }
2441}
2442
2444 // Create a new IR basic block for the scalar preheader.
2445 BasicBlock *ScalarPH = createScalarPreheader("");
2446 return ScalarPH->getSinglePredecessor();
2447}
2448
2449namespace {
2450
2451struct CSEDenseMapInfo {
2452 static bool canHandle(const Instruction *I) {
2455 }
2456
2457 static inline Instruction *getEmptyKey() {
2459 }
2460
2461 static inline Instruction *getTombstoneKey() {
2462 return DenseMapInfo<Instruction *>::getTombstoneKey();
2463 }
2464
2465 static unsigned getHashValue(const Instruction *I) {
2466 assert(canHandle(I) && "Unknown instruction!");
2467 return hash_combine(I->getOpcode(),
2468 hash_combine_range(I->operand_values()));
2469 }
2470
2471 static bool isEqual(const Instruction *LHS, const Instruction *RHS) {
2472 if (LHS == getEmptyKey() || RHS == getEmptyKey() ||
2473 LHS == getTombstoneKey() || RHS == getTombstoneKey())
2474 return LHS == RHS;
2475 return LHS->isIdenticalTo(RHS);
2476 }
2477};
2478
2479} // end anonymous namespace
2480
2481/// FIXME: This legacy common-subexpression-elimination routine is scheduled for
2482/// removal, in favor of the VPlan-based one.
2483static void legacyCSE(BasicBlock *BB) {
2484 // Perform simple cse.
2486 for (Instruction &In : llvm::make_early_inc_range(*BB)) {
2487 if (!CSEDenseMapInfo::canHandle(&In))
2488 continue;
2489
2490 // Check if we can replace this instruction with any of the
2491 // visited instructions.
2492 if (Instruction *V = CSEMap.lookup(&In)) {
2493 In.replaceAllUsesWith(V);
2494 In.eraseFromParent();
2495 continue;
2496 }
2497
2498 CSEMap[&In] = &In;
2499 }
2500}
2501
2502/// This function attempts to return a value that represents the ElementCount
2503/// at runtime. For fixed-width VFs we know this precisely at compile
2504/// time, but for scalable VFs we calculate it based on an estimate of the
2505/// vscale value.
2507 std::optional<unsigned> VScale) {
2508 unsigned EstimatedVF = VF.getKnownMinValue();
2509 if (VF.isScalable())
2510 if (VScale)
2511 EstimatedVF *= *VScale;
2512 assert(EstimatedVF >= 1 && "Estimated VF shouldn't be less than 1");
2513 return EstimatedVF;
2514}
2515
2518 ElementCount VF) const {
2519 // We only need to calculate a cost if the VF is scalar; for actual vectors
2520 // we should already have a pre-calculated cost at each VF.
2521 if (!VF.isScalar())
2522 return getCallWideningDecision(CI, VF).Cost;
2523
2524 Type *RetTy = CI->getType();
2526 if (auto RedCost = getReductionPatternCost(CI, VF, RetTy))
2527 return *RedCost;
2528
2530 for (auto &ArgOp : CI->args())
2531 Tys.push_back(ArgOp->getType());
2532
2533 InstructionCost ScalarCallCost =
2534 TTI.getCallInstrCost(CI->getCalledFunction(), RetTy, Tys, CostKind);
2535
2536 // If this is an intrinsic we may have a lower cost for it.
2539 return std::min(ScalarCallCost, IntrinsicCost);
2540 }
2541 return ScalarCallCost;
2542}
2543
2545 if (VF.isScalar() || !canVectorizeTy(Ty))
2546 return Ty;
2547 return toVectorizedTy(Ty, VF);
2548}
2549
2552 ElementCount VF) const {
2554 assert(ID && "Expected intrinsic call!");
2555 Type *RetTy = maybeVectorizeType(CI->getType(), VF);
2556 FastMathFlags FMF;
2557 if (auto *FPMO = dyn_cast<FPMathOperator>(CI))
2558 FMF = FPMO->getFastMathFlags();
2559
2562 SmallVector<Type *> ParamTys;
2563 std::transform(FTy->param_begin(), FTy->param_end(),
2564 std::back_inserter(ParamTys),
2565 [&](Type *Ty) { return maybeVectorizeType(Ty, VF); });
2566
2567 IntrinsicCostAttributes CostAttrs(ID, RetTy, Arguments, ParamTys, FMF,
2570 return TTI.getIntrinsicInstrCost(CostAttrs, CostKind);
2571}
2572
2574 // Fix widened non-induction PHIs by setting up the PHI operands.
2575 fixNonInductionPHIs(State);
2576
2577 // Don't apply optimizations below when no (vector) loop remains, as they all
2578 // require one at the moment.
2579 VPBasicBlock *HeaderVPBB =
2580 vputils::getFirstLoopHeader(*State.Plan, State.VPDT);
2581 if (!HeaderVPBB)
2582 return;
2583
2584 BasicBlock *HeaderBB = State.CFG.VPBB2IRBB[HeaderVPBB];
2585
2586 // Remove redundant induction instructions.
2587 legacyCSE(HeaderBB);
2588}
2589
2591 auto Iter = vp_depth_first_shallow(Plan.getEntry());
2593 for (VPRecipeBase &P : VPBB->phis()) {
2595 if (!VPPhi)
2596 continue;
2597 PHINode *NewPhi = cast<PHINode>(State.get(VPPhi));
2598 // Make sure the builder has a valid insert point.
2599 Builder.SetInsertPoint(NewPhi);
2600 for (const auto &[Inc, VPBB] : VPPhi->incoming_values_and_blocks())
2601 NewPhi->addIncoming(State.get(Inc), State.CFG.VPBB2IRBB[VPBB]);
2602 }
2603 }
2604}
2605
2606void LoopVectorizationCostModel::collectLoopScalars(ElementCount VF) {
2607 // We should not collect Scalars more than once per VF. Right now, this
2608 // function is called from collectUniformsAndScalars(), which already does
2609 // this check. Collecting Scalars for VF=1 does not make any sense.
2610 assert(VF.isVector() && !Scalars.contains(VF) &&
2611 "This function should not be visited twice for the same VF");
2612
2613 // This avoids any chances of creating a REPLICATE recipe during planning
2614 // since that would result in generation of scalarized code during execution,
2615 // which is not supported for scalable vectors.
2616 if (VF.isScalable()) {
2617 Scalars[VF].insert_range(Uniforms[VF]);
2618 return;
2619 }
2620
2622
2623 // These sets are used to seed the analysis with pointers used by memory
2624 // accesses that will remain scalar.
2626 SmallPtrSet<Instruction *, 8> PossibleNonScalarPtrs;
2627 auto *Latch = TheLoop->getLoopLatch();
2628
2629 // A helper that returns true if the use of Ptr by MemAccess will be scalar.
2630 // The pointer operands of loads and stores will be scalar as long as the
2631 // memory access is not a gather or scatter operation. The value operand of a
2632 // store will remain scalar if the store is scalarized.
2633 auto IsScalarUse = [&](Instruction *MemAccess, Value *Ptr) {
2634 InstWidening WideningDecision = getWideningDecision(MemAccess, VF);
2635 assert(WideningDecision != CM_Unknown &&
2636 "Widening decision should be ready at this moment");
2637 if (auto *Store = dyn_cast<StoreInst>(MemAccess))
2638 if (Ptr == Store->getValueOperand())
2639 return WideningDecision == CM_Scalarize;
2640 assert(Ptr == getLoadStorePointerOperand(MemAccess) &&
2641 "Ptr is neither a value or pointer operand");
2642 return WideningDecision != CM_GatherScatter;
2643 };
2644
2645 // A helper that returns true if the given value is a getelementptr
2646 // instruction contained in the loop.
2647 auto IsLoopVaryingGEP = [&](Value *V) {
2648 return isa<GetElementPtrInst>(V) && !TheLoop->isLoopInvariant(V);
2649 };
2650
2651 // A helper that evaluates a memory access's use of a pointer. If the use will
2652 // be a scalar use and the pointer is only used by memory accesses, we place
2653 // the pointer in ScalarPtrs. Otherwise, the pointer is placed in
2654 // PossibleNonScalarPtrs.
2655 auto EvaluatePtrUse = [&](Instruction *MemAccess, Value *Ptr) {
2656 // We only care about bitcast and getelementptr instructions contained in
2657 // the loop.
2658 if (!IsLoopVaryingGEP(Ptr))
2659 return;
2660
2661 // If the pointer has already been identified as scalar (e.g., if it was
2662 // also identified as uniform), there's nothing to do.
2663 auto *I = cast<Instruction>(Ptr);
2664 if (Worklist.count(I))
2665 return;
2666
2667 // If the use of the pointer will be a scalar use, and all users of the
2668 // pointer are memory accesses, place the pointer in ScalarPtrs. Otherwise,
2669 // place the pointer in PossibleNonScalarPtrs.
2670 if (IsScalarUse(MemAccess, Ptr) &&
2672 ScalarPtrs.insert(I);
2673 else
2674 PossibleNonScalarPtrs.insert(I);
2675 };
2676
2677 // We seed the scalars analysis with three classes of instructions: (1)
2678 // instructions marked uniform-after-vectorization and (2) bitcast,
2679 // getelementptr and (pointer) phi instructions used by memory accesses
2680 // requiring a scalar use.
2681 //
2682 // (1) Add to the worklist all instructions that have been identified as
2683 // uniform-after-vectorization.
2684 Worklist.insert_range(Uniforms[VF]);
2685
2686 // (2) Add to the worklist all bitcast and getelementptr instructions used by
2687 // memory accesses requiring a scalar use. The pointer operands of loads and
2688 // stores will be scalar unless the operation is a gather or scatter.
2689 // The value operand of a store will remain scalar if the store is scalarized.
2690 for (auto *BB : TheLoop->blocks())
2691 for (auto &I : *BB) {
2692 if (auto *Load = dyn_cast<LoadInst>(&I)) {
2693 EvaluatePtrUse(Load, Load->getPointerOperand());
2694 } else if (auto *Store = dyn_cast<StoreInst>(&I)) {
2695 EvaluatePtrUse(Store, Store->getPointerOperand());
2696 EvaluatePtrUse(Store, Store->getValueOperand());
2697 }
2698 }
2699 for (auto *I : ScalarPtrs)
2700 if (!PossibleNonScalarPtrs.count(I)) {
2701 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *I << "\n");
2702 Worklist.insert(I);
2703 }
2704
2705 // Insert the forced scalars.
2706 // FIXME: Currently VPWidenPHIRecipe() often creates a dead vector
2707 // induction variable when the PHI user is scalarized.
2708 auto ForcedScalar = ForcedScalars.find(VF);
2709 if (ForcedScalar != ForcedScalars.end())
2710 for (auto *I : ForcedScalar->second) {
2711 LLVM_DEBUG(dbgs() << "LV: Found (forced) scalar instruction: " << *I << "\n");
2712 Worklist.insert(I);
2713 }
2714
2715 // Expand the worklist by looking through any bitcasts and getelementptr
2716 // instructions we've already identified as scalar. This is similar to the
2717 // expansion step in collectLoopUniforms(); however, here we're only
2718 // expanding to include additional bitcasts and getelementptr instructions.
2719 unsigned Idx = 0;
2720 while (Idx != Worklist.size()) {
2721 Instruction *Dst = Worklist[Idx++];
2722 if (!IsLoopVaryingGEP(Dst->getOperand(0)))
2723 continue;
2724 auto *Src = cast<Instruction>(Dst->getOperand(0));
2725 if (llvm::all_of(Src->users(), [&](User *U) -> bool {
2726 auto *J = cast<Instruction>(U);
2727 return !TheLoop->contains(J) || Worklist.count(J) ||
2728 ((isa<LoadInst>(J) || isa<StoreInst>(J)) &&
2729 IsScalarUse(J, Src));
2730 })) {
2731 Worklist.insert(Src);
2732 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Src << "\n");
2733 }
2734 }
2735
2736 // An induction variable will remain scalar if all users of the induction
2737 // variable and induction variable update remain scalar.
2738 for (const auto &Induction : Legal->getInductionVars()) {
2739 auto *Ind = Induction.first;
2740 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
2741
2742 // If tail-folding is applied, the primary induction variable will be used
2743 // to feed a vector compare.
2744 if (Ind == Legal->getPrimaryInduction() && foldTailByMasking())
2745 continue;
2746
2747 // Returns true if \p Indvar is a pointer induction that is used directly by
2748 // load/store instruction \p I.
2749 auto IsDirectLoadStoreFromPtrIndvar = [&](Instruction *Indvar,
2750 Instruction *I) {
2751 return Induction.second.getKind() ==
2754 Indvar == getLoadStorePointerOperand(I) && IsScalarUse(I, Indvar);
2755 };
2756
2757 // Determine if all users of the induction variable are scalar after
2758 // vectorization.
2759 bool ScalarInd = all_of(Ind->users(), [&](User *U) -> bool {
2760 auto *I = cast<Instruction>(U);
2761 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) ||
2762 IsDirectLoadStoreFromPtrIndvar(Ind, I);
2763 });
2764 if (!ScalarInd)
2765 continue;
2766
2767 // If the induction variable update is a fixed-order recurrence, neither the
2768 // induction variable or its update should be marked scalar after
2769 // vectorization.
2770 auto *IndUpdatePhi = dyn_cast<PHINode>(IndUpdate);
2771 if (IndUpdatePhi && Legal->isFixedOrderRecurrence(IndUpdatePhi))
2772 continue;
2773
2774 // Determine if all users of the induction variable update instruction are
2775 // scalar after vectorization.
2776 bool ScalarIndUpdate = all_of(IndUpdate->users(), [&](User *U) -> bool {
2777 auto *I = cast<Instruction>(U);
2778 return I == Ind || !TheLoop->contains(I) || Worklist.count(I) ||
2779 IsDirectLoadStoreFromPtrIndvar(IndUpdate, I);
2780 });
2781 if (!ScalarIndUpdate)
2782 continue;
2783
2784 // The induction variable and its update instruction will remain scalar.
2785 Worklist.insert(Ind);
2786 Worklist.insert(IndUpdate);
2787 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n");
2788 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate
2789 << "\n");
2790 }
2791
2792 Scalars[VF].insert_range(Worklist);
2793}
2794
2796 Instruction *I, ElementCount VF) const {
2797 if (!isPredicatedInst(I))
2798 return false;
2799
2800 // Do we have a non-scalar lowering for this predicated
2801 // instruction? No - it is scalar with predication.
2802 switch(I->getOpcode()) {
2803 default:
2804 return true;
2805 case Instruction::Call:
2806 if (VF.isScalar())
2807 return true;
2809 case Instruction::Load:
2810 case Instruction::Store: {
2811 auto *Ptr = getLoadStorePointerOperand(I);
2812 auto *Ty = getLoadStoreType(I);
2813 unsigned AS = getLoadStoreAddressSpace(I);
2814 Type *VTy = Ty;
2815 if (VF.isVector())
2816 VTy = VectorType::get(Ty, VF);
2817 const Align Alignment = getLoadStoreAlignment(I);
2818 return isa<LoadInst>(I) ? !(isLegalMaskedLoad(Ty, Ptr, Alignment, AS) ||
2819 TTI.isLegalMaskedGather(VTy, Alignment))
2820 : !(isLegalMaskedStore(Ty, Ptr, Alignment, AS) ||
2821 TTI.isLegalMaskedScatter(VTy, Alignment));
2822 }
2823 case Instruction::UDiv:
2824 case Instruction::SDiv:
2825 case Instruction::SRem:
2826 case Instruction::URem: {
2827 // We have the option to use the safe-divisor idiom to avoid predication.
2828 // The cost based decision here will always select safe-divisor for
2829 // scalable vectors as scalarization isn't legal.
2830 const auto [ScalarCost, SafeDivisorCost] = getDivRemSpeculationCost(I, VF);
2831 return isDivRemScalarWithPredication(ScalarCost, SafeDivisorCost);
2832 }
2833 }
2834}
2835
2836// TODO: Fold into LoopVectorizationLegality::isMaskRequired.
2838 // TODO: We can use the loop-preheader as context point here and get
2839 // context sensitive reasoning for isSafeToSpeculativelyExecute.
2841 (isa<LoadInst, StoreInst, CallInst>(I) && !Legal->isMaskRequired(I)) ||
2843 return false;
2844
2845 // If the instruction was executed conditionally in the original scalar loop,
2846 // predication is needed with a mask whose lanes are all possibly inactive.
2847 if (Legal->blockNeedsPredication(I->getParent()))
2848 return true;
2849
2850 // If we're not folding the tail by masking, predication is unnecessary.
2851 if (!foldTailByMasking())
2852 return false;
2853
2854 // All that remain are instructions with side-effects originally executed in
2855 // the loop unconditionally, but now execute under a tail-fold mask (only)
2856 // having at least one active lane (the first). If the side-effects of the
2857 // instruction are invariant, executing it w/o (the tail-folding) mask is safe
2858 // - it will cause the same side-effects as when masked.
2859 switch(I->getOpcode()) {
2860 default:
2862 "instruction should have been considered by earlier checks");
2863 case Instruction::Call:
2864 // Side-effects of a Call are assumed to be non-invariant, needing a
2865 // (fold-tail) mask.
2866 assert(Legal->isMaskRequired(I) &&
2867 "should have returned earlier for calls not needing a mask");
2868 return true;
2869 case Instruction::Load:
2870 // If the address is loop invariant no predication is needed.
2871 return !Legal->isInvariant(getLoadStorePointerOperand(I));
2872 case Instruction::Store: {
2873 // For stores, we need to prove both speculation safety (which follows from
2874 // the same argument as loads), but also must prove the value being stored
2875 // is correct. The easiest form of the later is to require that all values
2876 // stored are the same.
2877 return !(Legal->isInvariant(getLoadStorePointerOperand(I)) &&
2878 TheLoop->isLoopInvariant(cast<StoreInst>(I)->getValueOperand()));
2879 }
2880 case Instruction::UDiv:
2881 case Instruction::SDiv:
2882 case Instruction::SRem:
2883 case Instruction::URem:
2884 // If the divisor is loop-invariant no predication is needed.
2885 return !Legal->isInvariant(I->getOperand(1));
2886 }
2887}
2888
2889std::pair<InstructionCost, InstructionCost>
2891 ElementCount VF) const {
2892 assert(I->getOpcode() == Instruction::UDiv ||
2893 I->getOpcode() == Instruction::SDiv ||
2894 I->getOpcode() == Instruction::SRem ||
2895 I->getOpcode() == Instruction::URem);
2897
2898 // Scalarization isn't legal for scalable vector types
2899 InstructionCost ScalarizationCost = InstructionCost::getInvalid();
2900 if (!VF.isScalable()) {
2901 // Get the scalarization cost and scale this amount by the probability of
2902 // executing the predicated block. If the instruction is not predicated,
2903 // we fall through to the next case.
2904 ScalarizationCost = 0;
2905
2906 // These instructions have a non-void type, so account for the phi nodes
2907 // that we will create. This cost is likely to be zero. The phi node
2908 // cost, if any, should be scaled by the block probability because it
2909 // models a copy at the end of each predicated block.
2910 ScalarizationCost +=
2911 VF.getFixedValue() * TTI.getCFInstrCost(Instruction::PHI, CostKind);
2912
2913 // The cost of the non-predicated instruction.
2914 ScalarizationCost +=
2915 VF.getFixedValue() *
2916 TTI.getArithmeticInstrCost(I->getOpcode(), I->getType(), CostKind);
2917
2918 // The cost of insertelement and extractelement instructions needed for
2919 // scalarization.
2920 ScalarizationCost += getScalarizationOverhead(I, VF);
2921
2922 // Scale the cost by the probability of executing the predicated blocks.
2923 // This assumes the predicated block for each vector lane is equally
2924 // likely.
2925 ScalarizationCost =
2926 ScalarizationCost / getPredBlockCostDivisor(CostKind, I->getParent());
2927 }
2928
2929 InstructionCost SafeDivisorCost = 0;
2930 auto *VecTy = toVectorTy(I->getType(), VF);
2931 // The cost of the select guard to ensure all lanes are well defined
2932 // after we speculate above any internal control flow.
2933 SafeDivisorCost +=
2934 TTI.getCmpSelInstrCost(Instruction::Select, VecTy,
2935 toVectorTy(Type::getInt1Ty(I->getContext()), VF),
2937
2938 SmallVector<const Value *, 4> Operands(I->operand_values());
2939 SafeDivisorCost += TTI.getArithmeticInstrCost(
2940 I->getOpcode(), VecTy, CostKind,
2941 {TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None},
2942 {TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None},
2943 Operands, I);
2944 return {ScalarizationCost, SafeDivisorCost};
2945}
2946
2948 Instruction *I, ElementCount VF) const {
2949 assert(isAccessInterleaved(I) && "Expecting interleaved access.");
2951 "Decision should not be set yet.");
2952 auto *Group = getInterleavedAccessGroup(I);
2953 assert(Group && "Must have a group.");
2954 unsigned InterleaveFactor = Group->getFactor();
2955
2956 // If the instruction's allocated size doesn't equal its type size, it
2957 // requires padding and will be scalarized.
2958 auto &DL = I->getDataLayout();
2959 auto *ScalarTy = getLoadStoreType(I);
2960 if (hasIrregularType(ScalarTy, DL))
2961 return false;
2962
2963 // For scalable vectors, the interleave factors must be <= 8 since we require
2964 // the (de)interleaveN intrinsics instead of shufflevectors.
2965 if (VF.isScalable() && InterleaveFactor > 8)
2966 return false;
2967
2968 // If the group involves a non-integral pointer, we may not be able to
2969 // losslessly cast all values to a common type.
2970 bool ScalarNI = DL.isNonIntegralPointerType(ScalarTy);
2971 for (unsigned Idx = 0; Idx < InterleaveFactor; Idx++) {
2972 Instruction *Member = Group->getMember(Idx);
2973 if (!Member)
2974 continue;
2975 auto *MemberTy = getLoadStoreType(Member);
2976 bool MemberNI = DL.isNonIntegralPointerType(MemberTy);
2977 // Don't coerce non-integral pointers to integers or vice versa.
2978 if (MemberNI != ScalarNI)
2979 // TODO: Consider adding special nullptr value case here
2980 return false;
2981 if (MemberNI && ScalarNI &&
2982 ScalarTy->getPointerAddressSpace() !=
2983 MemberTy->getPointerAddressSpace())
2984 return false;
2985 }
2986
2987 // Check if masking is required.
2988 // A Group may need masking for one of two reasons: it resides in a block that
2989 // needs predication, or it was decided to use masking to deal with gaps
2990 // (either a gap at the end of a load-access that may result in a speculative
2991 // load, or any gaps in a store-access).
2992 bool PredicatedAccessRequiresMasking =
2993 blockNeedsPredicationForAnyReason(I->getParent()) &&
2994 Legal->isMaskRequired(I);
2995 bool LoadAccessWithGapsRequiresEpilogMasking =
2996 isa<LoadInst>(I) && Group->requiresScalarEpilogue() &&
2998 bool StoreAccessWithGapsRequiresMasking =
2999 isa<StoreInst>(I) && !Group->isFull();
3000 if (!PredicatedAccessRequiresMasking &&
3001 !LoadAccessWithGapsRequiresEpilogMasking &&
3002 !StoreAccessWithGapsRequiresMasking)
3003 return true;
3004
3005 // If masked interleaving is required, we expect that the user/target had
3006 // enabled it, because otherwise it either wouldn't have been created or
3007 // it should have been invalidated by the CostModel.
3009 "Masked interleave-groups for predicated accesses are not enabled.");
3010
3011 if (Group->isReverse())
3012 return false;
3013
3014 // TODO: Support interleaved access that requires a gap mask for scalable VFs.
3015 bool NeedsMaskForGaps = LoadAccessWithGapsRequiresEpilogMasking ||
3016 StoreAccessWithGapsRequiresMasking;
3017 if (VF.isScalable() && NeedsMaskForGaps)
3018 return false;
3019
3020 auto *Ty = getLoadStoreType(I);
3021 const Align Alignment = getLoadStoreAlignment(I);
3022 unsigned AS = getLoadStoreAddressSpace(I);
3023 return isa<LoadInst>(I) ? TTI.isLegalMaskedLoad(Ty, Alignment, AS)
3024 : TTI.isLegalMaskedStore(Ty, Alignment, AS);
3025}
3026
3028 Instruction *I, ElementCount VF) {
3029 // Get and ensure we have a valid memory instruction.
3030 assert((isa<LoadInst, StoreInst>(I)) && "Invalid memory instruction");
3031
3032 auto *Ptr = getLoadStorePointerOperand(I);
3033 auto *ScalarTy = getLoadStoreType(I);
3034
3035 // In order to be widened, the pointer should be consecutive, first of all.
3036 if (!Legal->isConsecutivePtr(ScalarTy, Ptr))
3037 return false;
3038
3039 // If the instruction is a store located in a predicated block, it will be
3040 // scalarized.
3041 if (isScalarWithPredication(I, VF))
3042 return false;
3043
3044 // If the instruction's allocated size doesn't equal it's type size, it
3045 // requires padding and will be scalarized.
3046 auto &DL = I->getDataLayout();
3047 if (hasIrregularType(ScalarTy, DL))
3048 return false;
3049
3050 return true;
3051}
3052
3053void LoopVectorizationCostModel::collectLoopUniforms(ElementCount VF) {
3054 // We should not collect Uniforms more than once per VF. Right now,
3055 // this function is called from collectUniformsAndScalars(), which
3056 // already does this check. Collecting Uniforms for VF=1 does not make any
3057 // sense.
3058
3059 assert(VF.isVector() && !Uniforms.contains(VF) &&
3060 "This function should not be visited twice for the same VF");
3061
3062 // Visit the list of Uniforms. If we find no uniform value, we won't
3063 // analyze again. Uniforms.count(VF) will return 1.
3064 Uniforms[VF].clear();
3065
3066 // Now we know that the loop is vectorizable!
3067 // Collect instructions inside the loop that will remain uniform after
3068 // vectorization.
3069
3070 // Global values, params and instructions outside of current loop are out of
3071 // scope.
3072 auto IsOutOfScope = [&](Value *V) -> bool {
3074 return (!I || !TheLoop->contains(I));
3075 };
3076
3077 // Worklist containing uniform instructions demanding lane 0.
3078 SetVector<Instruction *> Worklist;
3079
3080 // Add uniform instructions demanding lane 0 to the worklist. Instructions
3081 // that require predication must not be considered uniform after
3082 // vectorization, because that would create an erroneous replicating region
3083 // where only a single instance out of VF should be formed.
3084 auto AddToWorklistIfAllowed = [&](Instruction *I) -> void {
3085 if (IsOutOfScope(I)) {
3086 LLVM_DEBUG(dbgs() << "LV: Found not uniform due to scope: "
3087 << *I << "\n");
3088 return;
3089 }
3090 if (isPredicatedInst(I)) {
3091 LLVM_DEBUG(
3092 dbgs() << "LV: Found not uniform due to requiring predication: " << *I
3093 << "\n");
3094 return;
3095 }
3096 LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *I << "\n");
3097 Worklist.insert(I);
3098 };
3099
3100 // Start with the conditional branches exiting the loop. If the branch
3101 // condition is an instruction contained in the loop that is only used by the
3102 // branch, it is uniform. Note conditions from uncountable early exits are not
3103 // uniform.
3105 TheLoop->getExitingBlocks(Exiting);
3106 for (BasicBlock *E : Exiting) {
3107 if (Legal->hasUncountableEarlyExit() && TheLoop->getLoopLatch() != E)
3108 continue;
3109 auto *Cmp = dyn_cast<Instruction>(E->getTerminator()->getOperand(0));
3110 if (Cmp && TheLoop->contains(Cmp) && Cmp->hasOneUse())
3111 AddToWorklistIfAllowed(Cmp);
3112 }
3113
3114 auto PrevVF = VF.divideCoefficientBy(2);
3115 // Return true if all lanes perform the same memory operation, and we can
3116 // thus choose to execute only one.
3117 auto IsUniformMemOpUse = [&](Instruction *I) {
3118 // If the value was already known to not be uniform for the previous
3119 // (smaller VF), it cannot be uniform for the larger VF.
3120 if (PrevVF.isVector()) {
3121 auto Iter = Uniforms.find(PrevVF);
3122 if (Iter != Uniforms.end() && !Iter->second.contains(I))
3123 return false;
3124 }
3125 if (!Legal->isUniformMemOp(*I, VF))
3126 return false;
3127 if (isa<LoadInst>(I))
3128 // Loading the same address always produces the same result - at least
3129 // assuming aliasing and ordering which have already been checked.
3130 return true;
3131 // Storing the same value on every iteration.
3132 return TheLoop->isLoopInvariant(cast<StoreInst>(I)->getValueOperand());
3133 };
3134
3135 auto IsUniformDecision = [&](Instruction *I, ElementCount VF) {
3136 InstWidening WideningDecision = getWideningDecision(I, VF);
3137 assert(WideningDecision != CM_Unknown &&
3138 "Widening decision should be ready at this moment");
3139
3140 if (IsUniformMemOpUse(I))
3141 return true;
3142
3143 return (WideningDecision == CM_Widen ||
3144 WideningDecision == CM_Widen_Reverse ||
3145 WideningDecision == CM_Interleave);
3146 };
3147
3148 // Returns true if Ptr is the pointer operand of a memory access instruction
3149 // I, I is known to not require scalarization, and the pointer is not also
3150 // stored.
3151 auto IsVectorizedMemAccessUse = [&](Instruction *I, Value *Ptr) -> bool {
3152 if (isa<StoreInst>(I) && I->getOperand(0) == Ptr)
3153 return false;
3154 return getLoadStorePointerOperand(I) == Ptr &&
3155 (IsUniformDecision(I, VF) || Legal->isInvariant(Ptr));
3156 };
3157
3158 // Holds a list of values which are known to have at least one uniform use.
3159 // Note that there may be other uses which aren't uniform. A "uniform use"
3160 // here is something which only demands lane 0 of the unrolled iterations;
3161 // it does not imply that all lanes produce the same value (e.g. this is not
3162 // the usual meaning of uniform)
3163 SetVector<Value *> HasUniformUse;
3164
3165 // Scan the loop for instructions which are either a) known to have only
3166 // lane 0 demanded or b) are uses which demand only lane 0 of their operand.
3167 for (auto *BB : TheLoop->blocks())
3168 for (auto &I : *BB) {
3169 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I)) {
3170 switch (II->getIntrinsicID()) {
3171 case Intrinsic::sideeffect:
3172 case Intrinsic::experimental_noalias_scope_decl:
3173 case Intrinsic::assume:
3174 case Intrinsic::lifetime_start:
3175 case Intrinsic::lifetime_end:
3176 if (TheLoop->hasLoopInvariantOperands(&I))
3177 AddToWorklistIfAllowed(&I);
3178 break;
3179 default:
3180 break;
3181 }
3182 }
3183
3184 if (auto *EVI = dyn_cast<ExtractValueInst>(&I)) {
3185 if (IsOutOfScope(EVI->getAggregateOperand())) {
3186 AddToWorklistIfAllowed(EVI);
3187 continue;
3188 }
3189 // Only ExtractValue instructions where the aggregate value comes from a
3190 // call are allowed to be non-uniform.
3191 assert(isa<CallInst>(EVI->getAggregateOperand()) &&
3192 "Expected aggregate value to be call return value");
3193 }
3194
3195 // If there's no pointer operand, there's nothing to do.
3196 auto *Ptr = getLoadStorePointerOperand(&I);
3197 if (!Ptr)
3198 continue;
3199
3200 // If the pointer can be proven to be uniform, always add it to the
3201 // worklist.
3202 if (isa<Instruction>(Ptr) && Legal->isUniform(Ptr, VF))
3203 AddToWorklistIfAllowed(cast<Instruction>(Ptr));
3204
3205 if (IsUniformMemOpUse(&I))
3206 AddToWorklistIfAllowed(&I);
3207
3208 if (IsVectorizedMemAccessUse(&I, Ptr))
3209 HasUniformUse.insert(Ptr);
3210 }
3211
3212 // Add to the worklist any operands which have *only* uniform (e.g. lane 0
3213 // demanding) users. Since loops are assumed to be in LCSSA form, this
3214 // disallows uses outside the loop as well.
3215 for (auto *V : HasUniformUse) {
3216 if (IsOutOfScope(V))
3217 continue;
3218 auto *I = cast<Instruction>(V);
3219 bool UsersAreMemAccesses = all_of(I->users(), [&](User *U) -> bool {
3220 auto *UI = cast<Instruction>(U);
3221 return TheLoop->contains(UI) && IsVectorizedMemAccessUse(UI, V);
3222 });
3223 if (UsersAreMemAccesses)
3224 AddToWorklistIfAllowed(I);
3225 }
3226
3227 // Expand Worklist in topological order: whenever a new instruction
3228 // is added , its users should be already inside Worklist. It ensures
3229 // a uniform instruction will only be used by uniform instructions.
3230 unsigned Idx = 0;
3231 while (Idx != Worklist.size()) {
3232 Instruction *I = Worklist[Idx++];
3233
3234 for (auto *OV : I->operand_values()) {
3235 // isOutOfScope operands cannot be uniform instructions.
3236 if (IsOutOfScope(OV))
3237 continue;
3238 // First order recurrence Phi's should typically be considered
3239 // non-uniform.
3240 auto *OP = dyn_cast<PHINode>(OV);
3241 if (OP && Legal->isFixedOrderRecurrence(OP))
3242 continue;
3243 // If all the users of the operand are uniform, then add the
3244 // operand into the uniform worklist.
3245 auto *OI = cast<Instruction>(OV);
3246 if (llvm::all_of(OI->users(), [&](User *U) -> bool {
3247 auto *J = cast<Instruction>(U);
3248 return Worklist.count(J) || IsVectorizedMemAccessUse(J, OI);
3249 }))
3250 AddToWorklistIfAllowed(OI);
3251 }
3252 }
3253
3254 // For an instruction to be added into Worklist above, all its users inside
3255 // the loop should also be in Worklist. However, this condition cannot be
3256 // true for phi nodes that form a cyclic dependence. We must process phi
3257 // nodes separately. An induction variable will remain uniform if all users
3258 // of the induction variable and induction variable update remain uniform.
3259 // The code below handles both pointer and non-pointer induction variables.
3260 BasicBlock *Latch = TheLoop->getLoopLatch();
3261 for (const auto &Induction : Legal->getInductionVars()) {
3262 auto *Ind = Induction.first;
3263 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
3264
3265 // Determine if all users of the induction variable are uniform after
3266 // vectorization.
3267 bool UniformInd = all_of(Ind->users(), [&](User *U) -> bool {
3268 auto *I = cast<Instruction>(U);
3269 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) ||
3270 IsVectorizedMemAccessUse(I, Ind);
3271 });
3272 if (!UniformInd)
3273 continue;
3274
3275 // Determine if all users of the induction variable update instruction are
3276 // uniform after vectorization.
3277 bool UniformIndUpdate = all_of(IndUpdate->users(), [&](User *U) -> bool {
3278 auto *I = cast<Instruction>(U);
3279 return I == Ind || Worklist.count(I) ||
3280 IsVectorizedMemAccessUse(I, IndUpdate);
3281 });
3282 if (!UniformIndUpdate)
3283 continue;
3284
3285 // The induction variable and its update instruction will remain uniform.
3286 AddToWorklistIfAllowed(Ind);
3287 AddToWorklistIfAllowed(IndUpdate);
3288 }
3289
3290 Uniforms[VF].insert_range(Worklist);
3291}
3292
3294 LLVM_DEBUG(dbgs() << "LV: Performing code size checks.\n");
3295
3296 if (Legal->getRuntimePointerChecking()->Need) {
3297 reportVectorizationFailure("Runtime ptr check is required with -Os/-Oz",
3298 "runtime pointer checks needed. Enable vectorization of this "
3299 "loop with '#pragma clang loop vectorize(enable)' when "
3300 "compiling with -Os/-Oz",
3301 "CantVersionLoopWithOptForSize", ORE, TheLoop);
3302 return true;
3303 }
3304
3305 if (!PSE.getPredicate().isAlwaysTrue()) {
3306 reportVectorizationFailure("Runtime SCEV check is required with -Os/-Oz",
3307 "runtime SCEV checks needed. Enable vectorization of this "
3308 "loop with '#pragma clang loop vectorize(enable)' when "
3309 "compiling with -Os/-Oz",
3310 "CantVersionLoopWithOptForSize", ORE, TheLoop);
3311 return true;
3312 }
3313
3314 // FIXME: Avoid specializing for stride==1 instead of bailing out.
3315 if (!Legal->getLAI()->getSymbolicStrides().empty()) {
3316 reportVectorizationFailure("Runtime stride check for small trip count",
3317 "runtime stride == 1 checks needed. Enable vectorization of "
3318 "this loop without such check by compiling with -Os/-Oz",
3319 "CantVersionLoopWithOptForSize", ORE, TheLoop);
3320 return true;
3321 }
3322
3323 return false;
3324}
3325
3326bool LoopVectorizationCostModel::isScalableVectorizationAllowed() {
3327 if (IsScalableVectorizationAllowed)
3328 return *IsScalableVectorizationAllowed;
3329
3330 IsScalableVectorizationAllowed = false;
3331 if (!TTI.supportsScalableVectors() && !ForceTargetSupportsScalableVectors)
3332 return false;
3333
3334 if (Hints->isScalableVectorizationDisabled()) {
3335 reportVectorizationInfo("Scalable vectorization is explicitly disabled",
3336 "ScalableVectorizationDisabled", ORE, TheLoop);
3337 return false;
3338 }
3339
3340 LLVM_DEBUG(dbgs() << "LV: Scalable vectorization is available\n");
3341
3342 auto MaxScalableVF = ElementCount::getScalable(
3343 std::numeric_limits<ElementCount::ScalarTy>::max());
3344
3345 // Test that the loop-vectorizer can legalize all operations for this MaxVF.
3346 // FIXME: While for scalable vectors this is currently sufficient, this should
3347 // be replaced by a more detailed mechanism that filters out specific VFs,
3348 // instead of invalidating vectorization for a whole set of VFs based on the
3349 // MaxVF.
3350
3351 // Disable scalable vectorization if the loop contains unsupported reductions.
3352 if (!canVectorizeReductions(MaxScalableVF)) {
3354 "Scalable vectorization not supported for the reduction "
3355 "operations found in this loop.",
3356 "ScalableVFUnfeasible", ORE, TheLoop);
3357 return false;
3358 }
3359
3360 // Disable scalable vectorization if the loop contains any instructions
3361 // with element types not supported for scalable vectors.
3362 if (any_of(ElementTypesInLoop, [&](Type *Ty) {
3363 return !Ty->isVoidTy() &&
3365 })) {
3366 reportVectorizationInfo("Scalable vectorization is not supported "
3367 "for all element types found in this loop.",
3368 "ScalableVFUnfeasible", ORE, TheLoop);
3369 return false;
3370 }
3371
3372 if (!Legal->isSafeForAnyVectorWidth() && !getMaxVScale(*TheFunction, TTI)) {
3373 reportVectorizationInfo("The target does not provide maximum vscale value "
3374 "for safe distance analysis.",
3375 "ScalableVFUnfeasible", ORE, TheLoop);
3376 return false;
3377 }
3378
3379 IsScalableVectorizationAllowed = true;
3380 return true;
3381}
3382
3383ElementCount
3384LoopVectorizationCostModel::getMaxLegalScalableVF(unsigned MaxSafeElements) {
3385 if (!isScalableVectorizationAllowed())
3386 return ElementCount::getScalable(0);
3387
3388 auto MaxScalableVF = ElementCount::getScalable(
3389 std::numeric_limits<ElementCount::ScalarTy>::max());
3390 if (Legal->isSafeForAnyVectorWidth())
3391 return MaxScalableVF;
3392
3393 std::optional<unsigned> MaxVScale = getMaxVScale(*TheFunction, TTI);
3394 // Limit MaxScalableVF by the maximum safe dependence distance.
3395 MaxScalableVF = ElementCount::getScalable(MaxSafeElements / *MaxVScale);
3396
3397 if (!MaxScalableVF)
3399 "Max legal vector width too small, scalable vectorization "
3400 "unfeasible.",
3401 "ScalableVFUnfeasible", ORE, TheLoop);
3402
3403 return MaxScalableVF;
3404}
3405
3406FixedScalableVFPair LoopVectorizationCostModel::computeFeasibleMaxVF(
3407 unsigned MaxTripCount, ElementCount UserVF, bool FoldTailByMasking) {
3408 MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI);
3409 unsigned SmallestType, WidestType;
3410 std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes();
3411
3412 // Get the maximum safe dependence distance in bits computed by LAA.
3413 // It is computed by MaxVF * sizeOf(type) * 8, where type is taken from
3414 // the memory accesses that is most restrictive (involved in the smallest
3415 // dependence distance).
3416 unsigned MaxSafeElementsPowerOf2 =
3417 bit_floor(Legal->getMaxSafeVectorWidthInBits() / WidestType);
3418 if (!Legal->isSafeForAnyStoreLoadForwardDistances()) {
3419 unsigned SLDist = Legal->getMaxStoreLoadForwardSafeDistanceInBits();
3420 MaxSafeElementsPowerOf2 =
3421 std::min(MaxSafeElementsPowerOf2, SLDist / WidestType);
3422 }
3423 auto MaxSafeFixedVF = ElementCount::getFixed(MaxSafeElementsPowerOf2);
3424 auto MaxSafeScalableVF = getMaxLegalScalableVF(MaxSafeElementsPowerOf2);
3425
3426 if (!Legal->isSafeForAnyVectorWidth())
3427 this->MaxSafeElements = MaxSafeElementsPowerOf2;
3428
3429 LLVM_DEBUG(dbgs() << "LV: The max safe fixed VF is: " << MaxSafeFixedVF
3430 << ".\n");
3431 LLVM_DEBUG(dbgs() << "LV: The max safe scalable VF is: " << MaxSafeScalableVF
3432 << ".\n");
3433
3434 // First analyze the UserVF, fall back if the UserVF should be ignored.
3435 if (UserVF) {
3436 auto MaxSafeUserVF =
3437 UserVF.isScalable() ? MaxSafeScalableVF : MaxSafeFixedVF;
3438
3439 if (ElementCount::isKnownLE(UserVF, MaxSafeUserVF)) {
3440 // If `VF=vscale x N` is safe, then so is `VF=N`
3441 if (UserVF.isScalable())
3442 return FixedScalableVFPair(
3443 ElementCount::getFixed(UserVF.getKnownMinValue()), UserVF);
3444
3445 return UserVF;
3446 }
3447
3448 assert(ElementCount::isKnownGT(UserVF, MaxSafeUserVF));
3449
3450 // Only clamp if the UserVF is not scalable. If the UserVF is scalable, it
3451 // is better to ignore the hint and let the compiler choose a suitable VF.
3452 if (!UserVF.isScalable()) {
3453 LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF
3454 << " is unsafe, clamping to max safe VF="
3455 << MaxSafeFixedVF << ".\n");
3456 ORE->emit([&]() {
3457 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor",
3458 TheLoop->getStartLoc(),
3459 TheLoop->getHeader())
3460 << "User-specified vectorization factor "
3461 << ore::NV("UserVectorizationFactor", UserVF)
3462 << " is unsafe, clamping to maximum safe vectorization factor "
3463 << ore::NV("VectorizationFactor", MaxSafeFixedVF);
3464 });
3465 return MaxSafeFixedVF;
3466 }
3467
3469 LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF
3470 << " is ignored because scalable vectors are not "
3471 "available.\n");
3472 ORE->emit([&]() {
3473 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor",
3474 TheLoop->getStartLoc(),
3475 TheLoop->getHeader())
3476 << "User-specified vectorization factor "
3477 << ore::NV("UserVectorizationFactor", UserVF)
3478 << " is ignored because the target does not support scalable "
3479 "vectors. The compiler will pick a more suitable value.";
3480 });
3481 } else {
3482 LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF
3483 << " is unsafe. Ignoring scalable UserVF.\n");
3484 ORE->emit([&]() {
3485 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor",
3486 TheLoop->getStartLoc(),
3487 TheLoop->getHeader())
3488 << "User-specified vectorization factor "
3489 << ore::NV("UserVectorizationFactor", UserVF)
3490 << " is unsafe. Ignoring the hint to let the compiler pick a "
3491 "more suitable value.";
3492 });
3493 }
3494 }
3495
3496 LLVM_DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType
3497 << " / " << WidestType << " bits.\n");
3498
3499 FixedScalableVFPair Result(ElementCount::getFixed(1),
3501 if (auto MaxVF =
3502 getMaximizedVFForTarget(MaxTripCount, SmallestType, WidestType,
3503 MaxSafeFixedVF, FoldTailByMasking))
3504 Result.FixedVF = MaxVF;
3505
3506 if (auto MaxVF =
3507 getMaximizedVFForTarget(MaxTripCount, SmallestType, WidestType,
3508 MaxSafeScalableVF, FoldTailByMasking))
3509 if (MaxVF.isScalable()) {
3510 Result.ScalableVF = MaxVF;
3511 LLVM_DEBUG(dbgs() << "LV: Found feasible scalable VF = " << MaxVF
3512 << "\n");
3513 }
3514
3515 return Result;
3516}
3517
3518FixedScalableVFPair
3520 if (Legal->getRuntimePointerChecking()->Need && TTI.hasBranchDivergence()) {
3521 // TODO: It may be useful to do since it's still likely to be dynamically
3522 // uniform if the target can skip.
3524 "Not inserting runtime ptr check for divergent target",
3525 "runtime pointer checks needed. Not enabled for divergent target",
3526 "CantVersionLoopWithDivergentTarget", ORE, TheLoop);
3528 }
3529
3530 ScalarEvolution *SE = PSE.getSE();
3532 unsigned MaxTC = PSE.getSmallConstantMaxTripCount();
3533 LLVM_DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n');
3534 if (TC != ElementCount::getFixed(MaxTC))
3535 LLVM_DEBUG(dbgs() << "LV: Found maximum trip count: " << MaxTC << '\n');
3536 if (TC.isScalar()) {
3537 reportVectorizationFailure("Single iteration (non) loop",
3538 "loop trip count is one, irrelevant for vectorization",
3539 "SingleIterationLoop", ORE, TheLoop);
3541 }
3542
3543 // If BTC matches the widest induction type and is -1 then the trip count
3544 // computation will wrap to 0 and the vector trip count will be 0. Do not try
3545 // to vectorize.
3546 const SCEV *BTC = SE->getBackedgeTakenCount(TheLoop);
3547 if (!isa<SCEVCouldNotCompute>(BTC) &&
3548 BTC->getType()->getScalarSizeInBits() >=
3549 Legal->getWidestInductionType()->getScalarSizeInBits() &&
3551 SE->getMinusOne(BTC->getType()))) {
3553 "Trip count computation wrapped",
3554 "backedge-taken count is -1, loop trip count wrapped to 0",
3555 "TripCountWrapped", ORE, TheLoop);
3557 }
3558
3559 switch (ScalarEpilogueStatus) {
3561 return computeFeasibleMaxVF(MaxTC, UserVF, false);
3563 [[fallthrough]];
3565 LLVM_DEBUG(
3566 dbgs() << "LV: vector predicate hint/switch found.\n"
3567 << "LV: Not allowing scalar epilogue, creating predicated "
3568 << "vector loop.\n");
3569 break;
3571 // fallthrough as a special case of OptForSize
3573 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedOptSize)
3574 LLVM_DEBUG(
3575 dbgs() << "LV: Not allowing scalar epilogue due to -Os/-Oz.\n");
3576 else
3577 LLVM_DEBUG(dbgs() << "LV: Not allowing scalar epilogue due to low trip "
3578 << "count.\n");
3579
3580 // Bail if runtime checks are required, which are not good when optimising
3581 // for size.
3584
3585 break;
3586 }
3587
3588 // Now try the tail folding
3589
3590 // Invalidate interleave groups that require an epilogue if we can't mask
3591 // the interleave-group.
3593 assert(WideningDecisions.empty() && Uniforms.empty() && Scalars.empty() &&
3594 "No decisions should have been taken at this point");
3595 // Note: There is no need to invalidate any cost modeling decisions here, as
3596 // none were taken so far.
3597 InterleaveInfo.invalidateGroupsRequiringScalarEpilogue();
3598 }
3599
3600 FixedScalableVFPair MaxFactors = computeFeasibleMaxVF(MaxTC, UserVF, true);
3601
3602 // Avoid tail folding if the trip count is known to be a multiple of any VF
3603 // we choose.
3604 std::optional<unsigned> MaxPowerOf2RuntimeVF =
3605 MaxFactors.FixedVF.getFixedValue();
3606 if (MaxFactors.ScalableVF) {
3607 std::optional<unsigned> MaxVScale = getMaxVScale(*TheFunction, TTI);
3608 if (MaxVScale && TTI.isVScaleKnownToBeAPowerOfTwo()) {
3609 MaxPowerOf2RuntimeVF = std::max<unsigned>(
3610 *MaxPowerOf2RuntimeVF,
3611 *MaxVScale * MaxFactors.ScalableVF.getKnownMinValue());
3612 } else
3613 MaxPowerOf2RuntimeVF = std::nullopt; // Stick with tail-folding for now.
3614 }
3615
3616 auto NoScalarEpilogueNeeded = [this, &UserIC](unsigned MaxVF) {
3617 // Return false if the loop is neither a single-latch-exit loop nor an
3618 // early-exit loop as tail-folding is not supported in that case.
3619 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch() &&
3620 !Legal->hasUncountableEarlyExit())
3621 return false;
3622 unsigned MaxVFtimesIC = UserIC ? MaxVF * UserIC : MaxVF;
3623 ScalarEvolution *SE = PSE.getSE();
3624 // Calling getSymbolicMaxBackedgeTakenCount enables support for loops
3625 // with uncountable exits. For countable loops, the symbolic maximum must
3626 // remain identical to the known back-edge taken count.
3627 const SCEV *BackedgeTakenCount = PSE.getSymbolicMaxBackedgeTakenCount();
3628 assert((Legal->hasUncountableEarlyExit() ||
3629 BackedgeTakenCount == PSE.getBackedgeTakenCount()) &&
3630 "Invalid loop count");
3631 const SCEV *ExitCount = SE->getAddExpr(
3632 BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType()));
3633 const SCEV *Rem = SE->getURemExpr(
3634 SE->applyLoopGuards(ExitCount, TheLoop),
3635 SE->getConstant(BackedgeTakenCount->getType(), MaxVFtimesIC));
3636 return Rem->isZero();
3637 };
3638
3639 if (MaxPowerOf2RuntimeVF > 0u) {
3640 assert((UserVF.isNonZero() || isPowerOf2_32(*MaxPowerOf2RuntimeVF)) &&
3641 "MaxFixedVF must be a power of 2");
3642 if (NoScalarEpilogueNeeded(*MaxPowerOf2RuntimeVF)) {
3643 // Accept MaxFixedVF if we do not have a tail.
3644 LLVM_DEBUG(dbgs() << "LV: No tail will remain for any chosen VF.\n");
3645 return MaxFactors;
3646 }
3647 }
3648
3649 auto ExpectedTC = getSmallBestKnownTC(PSE, TheLoop);
3650 if (ExpectedTC && ExpectedTC->isFixed() &&
3651 ExpectedTC->getFixedValue() <=
3652 TTI.getMinTripCountTailFoldingThreshold()) {
3653 if (MaxPowerOf2RuntimeVF > 0u) {
3654 // If we have a low-trip-count, and the fixed-width VF is known to divide
3655 // the trip count but the scalable factor does not, use the fixed-width
3656 // factor in preference to allow the generation of a non-predicated loop.
3657 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedLowTripLoop &&
3658 NoScalarEpilogueNeeded(MaxFactors.FixedVF.getFixedValue())) {
3659 LLVM_DEBUG(dbgs() << "LV: Picking a fixed-width so that no tail will "
3660 "remain for any chosen VF.\n");
3661 MaxFactors.ScalableVF = ElementCount::getScalable(0);
3662 return MaxFactors;
3663 }
3664 }
3665
3667 "The trip count is below the minial threshold value.",
3668 "loop trip count is too low, avoiding vectorization", "LowTripCount",
3669 ORE, TheLoop);
3671 }
3672
3673 // If we don't know the precise trip count, or if the trip count that we
3674 // found modulo the vectorization factor is not zero, try to fold the tail
3675 // by masking.
3676 // FIXME: look for a smaller MaxVF that does divide TC rather than masking.
3677 bool ContainsScalableVF = MaxFactors.ScalableVF.isNonZero();
3678 setTailFoldingStyles(ContainsScalableVF, UserIC);
3679 if (foldTailByMasking()) {
3681 LLVM_DEBUG(
3682 dbgs()
3683 << "LV: tail is folded with EVL, forcing unroll factor to be 1. Will "
3684 "try to generate VP Intrinsics with scalable vector "
3685 "factors only.\n");
3686 // Tail folded loop using VP intrinsics restricts the VF to be scalable
3687 // for now.
3688 // TODO: extend it for fixed vectors, if required.
3689 assert(ContainsScalableVF && "Expected scalable vector factor.");
3690
3691 MaxFactors.FixedVF = ElementCount::getFixed(1);
3692 }
3693 return MaxFactors;
3694 }
3695
3696 // If there was a tail-folding hint/switch, but we can't fold the tail by
3697 // masking, fallback to a vectorization with a scalar epilogue.
3698 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) {
3699 LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a "
3700 "scalar epilogue instead.\n");
3701 ScalarEpilogueStatus = CM_ScalarEpilogueAllowed;
3702 return MaxFactors;
3703 }
3704
3705 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedUsePredicate) {
3706 LLVM_DEBUG(dbgs() << "LV: Can't fold tail by masking: don't vectorize\n");
3708 }
3709
3710 if (TC.isZero()) {
3712 "unable to calculate the loop count due to complex control flow",
3713 "UnknownLoopCountComplexCFG", ORE, TheLoop);
3715 }
3716
3718 "Cannot optimize for size and vectorize at the same time.",
3719 "cannot optimize for size and vectorize at the same time. "
3720 "Enable vectorization of this loop with '#pragma clang loop "
3721 "vectorize(enable)' when compiling with -Os/-Oz",
3722 "NoTailLoopWithOptForSize", ORE, TheLoop);
3724}
3725
3727 ElementCount VF) {
3728 if (ConsiderRegPressure.getNumOccurrences())
3729 return ConsiderRegPressure;
3730
3731 // TODO: We should eventually consider register pressure for all targets. The
3732 // TTI hook is temporary whilst target-specific issues are being fixed.
3733 if (TTI.shouldConsiderVectorizationRegPressure())
3734 return true;
3735
3736 if (!useMaxBandwidth(VF.isScalable()
3739 return false;
3740 // Only calculate register pressure for VFs enabled by MaxBandwidth.
3742 VF, VF.isScalable() ? MaxPermissibleVFWithoutMaxBW.ScalableVF
3744}
3745
3748 return MaximizeBandwidth || (MaximizeBandwidth.getNumOccurrences() == 0 &&
3749 (TTI.shouldMaximizeVectorBandwidth(RegKind) ||
3751 Legal->hasVectorCallVariants())));
3752}
3753
3754ElementCount LoopVectorizationCostModel::clampVFByMaxTripCount(
3755 ElementCount VF, unsigned MaxTripCount, bool FoldTailByMasking) const {
3756 unsigned EstimatedVF = VF.getKnownMinValue();
3757 if (VF.isScalable() && TheFunction->hasFnAttribute(Attribute::VScaleRange)) {
3758 auto Attr = TheFunction->getFnAttribute(Attribute::VScaleRange);
3759 auto Min = Attr.getVScaleRangeMin();
3760 EstimatedVF *= Min;
3761 }
3762
3763 // When a scalar epilogue is required, at least one iteration of the scalar
3764 // loop has to execute. Adjust MaxTripCount accordingly to avoid picking a
3765 // max VF that results in a dead vector loop.
3766 if (MaxTripCount > 0 && requiresScalarEpilogue(true))
3767 MaxTripCount -= 1;
3768
3769 if (MaxTripCount && MaxTripCount <= EstimatedVF &&
3770 (!FoldTailByMasking || isPowerOf2_32(MaxTripCount))) {
3771 // If upper bound loop trip count (TC) is known at compile time there is no
3772 // point in choosing VF greater than TC (as done in the loop below). Select
3773 // maximum power of two which doesn't exceed TC. If VF is
3774 // scalable, we only fall back on a fixed VF when the TC is less than or
3775 // equal to the known number of lanes.
3776 auto ClampedUpperTripCount = llvm::bit_floor(MaxTripCount);
3777 LLVM_DEBUG(dbgs() << "LV: Clamping the MaxVF to maximum power of two not "
3778 "exceeding the constant trip count: "
3779 << ClampedUpperTripCount << "\n");
3780 return ElementCount::get(ClampedUpperTripCount,
3781 FoldTailByMasking ? VF.isScalable() : false);
3782 }
3783 return VF;
3784}
3785
3786ElementCount LoopVectorizationCostModel::getMaximizedVFForTarget(
3787 unsigned MaxTripCount, unsigned SmallestType, unsigned WidestType,
3788 ElementCount MaxSafeVF, bool FoldTailByMasking) {
3789 bool ComputeScalableMaxVF = MaxSafeVF.isScalable();
3790 const TypeSize WidestRegister = TTI.getRegisterBitWidth(
3791 ComputeScalableMaxVF ? TargetTransformInfo::RGK_ScalableVector
3793
3794 // Convenience function to return the minimum of two ElementCounts.
3795 auto MinVF = [](const ElementCount &LHS, const ElementCount &RHS) {
3796 assert((LHS.isScalable() == RHS.isScalable()) &&
3797 "Scalable flags must match");
3798 return ElementCount::isKnownLT(LHS, RHS) ? LHS : RHS;
3799 };
3800
3801 // Ensure MaxVF is a power of 2; the dependence distance bound may not be.
3802 // Note that both WidestRegister and WidestType may not be a powers of 2.
3803 auto MaxVectorElementCount = ElementCount::get(
3804 llvm::bit_floor(WidestRegister.getKnownMinValue() / WidestType),
3805 ComputeScalableMaxVF);
3806 MaxVectorElementCount = MinVF(MaxVectorElementCount, MaxSafeVF);
3807 LLVM_DEBUG(dbgs() << "LV: The Widest register safe to use is: "
3808 << (MaxVectorElementCount * WidestType) << " bits.\n");
3809
3810 if (!MaxVectorElementCount) {
3811 LLVM_DEBUG(dbgs() << "LV: The target has no "
3812 << (ComputeScalableMaxVF ? "scalable" : "fixed")
3813 << " vector registers.\n");
3814 return ElementCount::getFixed(1);
3815 }
3816
3817 ElementCount MaxVF = clampVFByMaxTripCount(MaxVectorElementCount,
3818 MaxTripCount, FoldTailByMasking);
3819 // If the MaxVF was already clamped, there's no point in trying to pick a
3820 // larger one.
3821 if (MaxVF != MaxVectorElementCount)
3822 return MaxVF;
3823
3825 ComputeScalableMaxVF ? TargetTransformInfo::RGK_ScalableVector
3827
3828 if (MaxVF.isScalable())
3829 MaxPermissibleVFWithoutMaxBW.ScalableVF = MaxVF;
3830 else
3831 MaxPermissibleVFWithoutMaxBW.FixedVF = MaxVF;
3832
3833 if (useMaxBandwidth(RegKind)) {
3834 auto MaxVectorElementCountMaxBW = ElementCount::get(
3835 llvm::bit_floor(WidestRegister.getKnownMinValue() / SmallestType),
3836 ComputeScalableMaxVF);
3837 MaxVF = MinVF(MaxVectorElementCountMaxBW, MaxSafeVF);
3838
3839 if (ElementCount MinVF =
3840 TTI.getMinimumVF(SmallestType, ComputeScalableMaxVF)) {
3841 if (ElementCount::isKnownLT(MaxVF, MinVF)) {
3842 LLVM_DEBUG(dbgs() << "LV: Overriding calculated MaxVF(" << MaxVF
3843 << ") with target's minimum: " << MinVF << '\n');
3844 MaxVF = MinVF;
3845 }
3846 }
3847
3848 MaxVF = clampVFByMaxTripCount(MaxVF, MaxTripCount, FoldTailByMasking);
3849
3850 if (MaxVectorElementCount != MaxVF) {
3851 // Invalidate any widening decisions we might have made, in case the loop
3852 // requires prediction (decided later), but we have already made some
3853 // load/store widening decisions.
3854 invalidateCostModelingDecisions();
3855 }
3856 }
3857 return MaxVF;
3858}
3859
3860bool LoopVectorizationPlanner::isMoreProfitable(const VectorizationFactor &A,
3861 const VectorizationFactor &B,
3862 const unsigned MaxTripCount,
3863 bool HasTail,
3864 bool IsEpilogue) const {
3865 InstructionCost CostA = A.Cost;
3866 InstructionCost CostB = B.Cost;
3867
3868 // Improve estimate for the vector width if it is scalable.
3869 unsigned EstimatedWidthA = A.Width.getKnownMinValue();
3870 unsigned EstimatedWidthB = B.Width.getKnownMinValue();
3871 if (std::optional<unsigned> VScale = CM.getVScaleForTuning()) {
3872 if (A.Width.isScalable())
3873 EstimatedWidthA *= *VScale;
3874 if (B.Width.isScalable())
3875 EstimatedWidthB *= *VScale;
3876 }
3877
3878 // When optimizing for size choose whichever is smallest, which will be the
3879 // one with the smallest cost for the whole loop. On a tie pick the larger
3880 // vector width, on the assumption that throughput will be greater.
3881 if (CM.CostKind == TTI::TCK_CodeSize)
3882 return CostA < CostB ||
3883 (CostA == CostB && EstimatedWidthA > EstimatedWidthB);
3884
3885 // Assume vscale may be larger than 1 (or the value being tuned for),
3886 // so that scalable vectorization is slightly favorable over fixed-width
3887 // vectorization.
3888 bool PreferScalable = !TTI.preferFixedOverScalableIfEqualCost(IsEpilogue) &&
3889 A.Width.isScalable() && !B.Width.isScalable();
3890
3891 auto CmpFn = [PreferScalable](const InstructionCost &LHS,
3892 const InstructionCost &RHS) {
3893 return PreferScalable ? LHS <= RHS : LHS < RHS;
3894 };
3895
3896 // To avoid the need for FP division:
3897 // (CostA / EstimatedWidthA) < (CostB / EstimatedWidthB)
3898 // <=> (CostA * EstimatedWidthB) < (CostB * EstimatedWidthA)
3899 if (!MaxTripCount)
3900 return CmpFn(CostA * EstimatedWidthB, CostB * EstimatedWidthA);
3901
3902 auto GetCostForTC = [MaxTripCount, HasTail](unsigned VF,
3903 InstructionCost VectorCost,
3904 InstructionCost ScalarCost) {
3905 // If the trip count is a known (possibly small) constant, the trip count
3906 // will be rounded up to an integer number of iterations under
3907 // FoldTailByMasking. The total cost in that case will be
3908 // VecCost*ceil(TripCount/VF). When not folding the tail, the total
3909 // cost will be VecCost*floor(TC/VF) + ScalarCost*(TC%VF). There will be
3910 // some extra overheads, but for the purpose of comparing the costs of
3911 // different VFs we can use this to compare the total loop-body cost
3912 // expected after vectorization.
3913 if (HasTail)
3914 return VectorCost * (MaxTripCount / VF) +
3915 ScalarCost * (MaxTripCount % VF);
3916 return VectorCost * divideCeil(MaxTripCount, VF);
3917 };
3918
3919 auto RTCostA = GetCostForTC(EstimatedWidthA, CostA, A.ScalarCost);
3920 auto RTCostB = GetCostForTC(EstimatedWidthB, CostB, B.ScalarCost);
3921 return CmpFn(RTCostA, RTCostB);
3922}
3923
3924bool LoopVectorizationPlanner::isMoreProfitable(const VectorizationFactor &A,
3925 const VectorizationFactor &B,
3926 bool HasTail,
3927 bool IsEpilogue) const {
3928 const unsigned MaxTripCount = PSE.getSmallConstantMaxTripCount();
3929 return LoopVectorizationPlanner::isMoreProfitable(A, B, MaxTripCount, HasTail,
3930 IsEpilogue);
3931}
3932
3935 using RecipeVFPair = std::pair<VPRecipeBase *, ElementCount>;
3936 SmallVector<RecipeVFPair> InvalidCosts;
3937 for (const auto &Plan : VPlans) {
3938 for (ElementCount VF : Plan->vectorFactors()) {
3939 // The VPlan-based cost model is designed for computing vector cost.
3940 // Querying VPlan-based cost model with a scarlar VF will cause some
3941 // errors because we expect the VF is vector for most of the widen
3942 // recipes.
3943 if (VF.isScalar())
3944 continue;
3945
3946 VPCostContext CostCtx(CM.TTI, *CM.TLI, *Plan, CM, CM.CostKind,
3947 *CM.PSE.getSE(), OrigLoop);
3948 precomputeCosts(*Plan, VF, CostCtx);
3949 auto Iter = vp_depth_first_deep(Plan->getVectorLoopRegion()->getEntry());
3951 for (auto &R : *VPBB) {
3952 if (!R.cost(VF, CostCtx).isValid())
3953 InvalidCosts.emplace_back(&R, VF);
3954 }
3955 }
3956 }
3957 }
3958 if (InvalidCosts.empty())
3959 return;
3960
3961 // Emit a report of VFs with invalid costs in the loop.
3962
3963 // Group the remarks per recipe, keeping the recipe order from InvalidCosts.
3965 unsigned I = 0;
3966 for (auto &Pair : InvalidCosts)
3967 if (Numbering.try_emplace(Pair.first, I).second)
3968 ++I;
3969
3970 // Sort the list, first on recipe(number) then on VF.
3971 sort(InvalidCosts, [&Numbering](RecipeVFPair &A, RecipeVFPair &B) {
3972 unsigned NA = Numbering[A.first];
3973 unsigned NB = Numbering[B.first];
3974 if (NA != NB)
3975 return NA < NB;
3976 return ElementCount::isKnownLT(A.second, B.second);
3977 });
3978
3979 // For a list of ordered recipe-VF pairs:
3980 // [(load, VF1), (load, VF2), (store, VF1)]
3981 // group the recipes together to emit separate remarks for:
3982 // load (VF1, VF2)
3983 // store (VF1)
3984 auto Tail = ArrayRef<RecipeVFPair>(InvalidCosts);
3985 auto Subset = ArrayRef<RecipeVFPair>();
3986 do {
3987 if (Subset.empty())
3988 Subset = Tail.take_front(1);
3989
3990 VPRecipeBase *R = Subset.front().first;
3991
3992 unsigned Opcode =
3995 [](const auto *R) { return Instruction::PHI; })
3996 .Case<VPWidenSelectRecipe>(
3997 [](const auto *R) { return Instruction::Select; })
3998 .Case<VPWidenStoreRecipe>(
3999 [](const auto *R) { return Instruction::Store; })
4000 .Case<VPWidenLoadRecipe>(
4001 [](const auto *R) { return Instruction::Load; })
4002 .Case<VPWidenCallRecipe, VPWidenIntrinsicRecipe>(
4003 [](const auto *R) { return Instruction::Call; })
4006 [](const auto *R) { return R->getOpcode(); })
4007 .Case<VPInterleaveRecipe>([](const VPInterleaveRecipe *R) {
4008 return R->getStoredValues().empty() ? Instruction::Load
4009 : Instruction::Store;
4010 })
4011 .Case<VPReductionRecipe>([](const auto *R) {
4012 return RecurrenceDescriptor::getOpcode(R->getRecurrenceKind());
4013 });
4014
4015 // If the next recipe is different, or if there are no other pairs,
4016 // emit a remark for the collated subset. e.g.
4017 // [(load, VF1), (load, VF2))]
4018 // to emit:
4019 // remark: invalid costs for 'load' at VF=(VF1, VF2)
4020 if (Subset == Tail || Tail[Subset.size()].first != R) {
4021 std::string OutString;
4022 raw_string_ostream OS(OutString);
4023 assert(!Subset.empty() && "Unexpected empty range");
4024 OS << "Recipe with invalid costs prevented vectorization at VF=(";
4025 for (const auto &Pair : Subset)
4026 OS << (Pair.second == Subset.front().second ? "" : ", ") << Pair.second;
4027 OS << "):";
4028 if (Opcode == Instruction::Call) {
4029 StringRef Name = "";
4030 if (auto *Int = dyn_cast<VPWidenIntrinsicRecipe>(R)) {
4031 Name = Int->getIntrinsicName();
4032 } else {
4033 auto *WidenCall = dyn_cast<VPWidenCallRecipe>(R);
4034 Function *CalledFn =
4035 WidenCall ? WidenCall->getCalledScalarFunction()
4036 : cast<Function>(R->getOperand(R->getNumOperands() - 1)
4037 ->getLiveInIRValue());
4038 Name = CalledFn->getName();
4039 }
4040 OS << " call to " << Name;
4041 } else
4042 OS << " " << Instruction::getOpcodeName(Opcode);
4043 reportVectorizationInfo(OutString, "InvalidCost", ORE, OrigLoop, nullptr,
4044 R->getDebugLoc());
4045 Tail = Tail.drop_front(Subset.size());
4046 Subset = {};
4047 } else
4048 // Grow the subset by one element
4049 Subset = Tail.take_front(Subset.size() + 1);
4050 } while (!Tail.empty());
4051}
4052
4053/// Check if any recipe of \p Plan will generate a vector value, which will be
4054/// assigned a vector register.
4056 const TargetTransformInfo &TTI) {
4057 assert(VF.isVector() && "Checking a scalar VF?");
4058 VPTypeAnalysis TypeInfo(Plan);
4059 DenseSet<VPRecipeBase *> EphemeralRecipes;
4060 collectEphemeralRecipesForVPlan(Plan, EphemeralRecipes);
4061 // Set of already visited types.
4062 DenseSet<Type *> Visited;
4065 for (VPRecipeBase &R : *VPBB) {
4066 if (EphemeralRecipes.contains(&R))
4067 continue;
4068 // Continue early if the recipe is considered to not produce a vector
4069 // result. Note that this includes VPInstruction where some opcodes may
4070 // produce a vector, to preserve existing behavior as VPInstructions model
4071 // aspects not directly mapped to existing IR instructions.
4072 switch (R.getVPDefID()) {
4073 case VPDef::VPDerivedIVSC:
4074 case VPDef::VPScalarIVStepsSC:
4075 case VPDef::VPReplicateSC:
4076 case VPDef::VPInstructionSC:
4077 case VPDef::VPCanonicalIVPHISC:
4078 case VPDef::VPVectorPointerSC:
4079 case VPDef::VPVectorEndPointerSC:
4080 case VPDef::VPExpandSCEVSC:
4081 case VPDef::VPEVLBasedIVPHISC:
4082 case VPDef::VPPredInstPHISC:
4083 case VPDef::VPBranchOnMaskSC:
4084 continue;
4085 case VPDef::VPReductionSC:
4086 case VPDef::VPActiveLaneMaskPHISC:
4087 case VPDef::VPWidenCallSC:
4088 case VPDef::VPWidenCanonicalIVSC:
4089 case VPDef::VPWidenCastSC:
4090 case VPDef::VPWidenGEPSC:
4091 case VPDef::VPWidenIntrinsicSC:
4092 case VPDef::VPWidenSC:
4093 case VPDef::VPWidenSelectSC:
4094 case VPDef::VPBlendSC:
4095 case VPDef::VPFirstOrderRecurrencePHISC:
4096 case VPDef::VPHistogramSC:
4097 case VPDef::VPWidenPHISC:
4098 case VPDef::VPWidenIntOrFpInductionSC:
4099 case VPDef::VPWidenPointerInductionSC:
4100 case VPDef::VPReductionPHISC:
4101 case VPDef::VPInterleaveEVLSC:
4102 case VPDef::VPInterleaveSC:
4103 case VPDef::VPWidenLoadEVLSC:
4104 case VPDef::VPWidenLoadSC:
4105 case VPDef::VPWidenStoreEVLSC:
4106 case VPDef::VPWidenStoreSC:
4107 break;
4108 default:
4109 llvm_unreachable("unhandled recipe");
4110 }
4111
4112 auto WillGenerateTargetVectors = [&TTI, VF](Type *VectorTy) {
4113 unsigned NumLegalParts = TTI.getNumberOfParts(VectorTy);
4114 if (!NumLegalParts)
4115 return false;
4116 if (VF.isScalable()) {
4117 // <vscale x 1 x iN> is assumed to be profitable over iN because
4118 // scalable registers are a distinct register class from scalar
4119 // ones. If we ever find a target which wants to lower scalable
4120 // vectors back to scalars, we'll need to update this code to
4121 // explicitly ask TTI about the register class uses for each part.
4122 return NumLegalParts <= VF.getKnownMinValue();
4123 }
4124 // Two or more elements that share a register - are vectorized.
4125 return NumLegalParts < VF.getFixedValue();
4126 };
4127
4128 // If no def nor is a store, e.g., branches, continue - no value to check.
4129 if (R.getNumDefinedValues() == 0 &&
4131 continue;
4132 // For multi-def recipes, currently only interleaved loads, suffice to
4133 // check first def only.
4134 // For stores check their stored value; for interleaved stores suffice
4135 // the check first stored value only. In all cases this is the second
4136 // operand.
4137 VPValue *ToCheck =
4138 R.getNumDefinedValues() >= 1 ? R.getVPValue(0) : R.getOperand(1);
4139 Type *ScalarTy = TypeInfo.inferScalarType(ToCheck);
4140 if (!Visited.insert({ScalarTy}).second)
4141 continue;
4142 Type *WideTy = toVectorizedTy(ScalarTy, VF);
4143 if (any_of(getContainedTypes(WideTy), WillGenerateTargetVectors))
4144 return true;
4145 }
4146 }
4147
4148 return false;
4149}
4150
4151static bool hasReplicatorRegion(VPlan &Plan) {
4153 Plan.getVectorLoopRegion()->getEntry())),
4154 [](auto *VPRB) { return VPRB->isReplicator(); });
4155}
4156
4157#ifndef NDEBUG
4158VectorizationFactor LoopVectorizationPlanner::selectVectorizationFactor() {
4159 InstructionCost ExpectedCost = CM.expectedCost(ElementCount::getFixed(1));
4160 LLVM_DEBUG(dbgs() << "LV: Scalar loop costs: " << ExpectedCost << ".\n");
4161 assert(ExpectedCost.isValid() && "Unexpected invalid cost for scalar loop");
4162 assert(
4163 any_of(VPlans,
4164 [](std::unique_ptr<VPlan> &P) { return P->hasScalarVFOnly(); }) &&
4165 "Expected Scalar VF to be a candidate");
4166
4167 const VectorizationFactor ScalarCost(ElementCount::getFixed(1), ExpectedCost,
4168 ExpectedCost);
4169 VectorizationFactor ChosenFactor = ScalarCost;
4170
4171 bool ForceVectorization = Hints.getForce() == LoopVectorizeHints::FK_Enabled;
4172 if (ForceVectorization &&
4173 (VPlans.size() > 1 || !VPlans[0]->hasScalarVFOnly())) {
4174 // Ignore scalar width, because the user explicitly wants vectorization.
4175 // Initialize cost to max so that VF = 2 is, at least, chosen during cost
4176 // evaluation.
4177 ChosenFactor.Cost = InstructionCost::getMax();
4178 }
4179
4180 for (auto &P : VPlans) {
4181 ArrayRef<ElementCount> VFs(P->vectorFactors().begin(),
4182 P->vectorFactors().end());
4183
4185 if (any_of(VFs, [this](ElementCount VF) {
4186 return CM.shouldConsiderRegPressureForVF(VF);
4187 }))
4188 RUs = calculateRegisterUsageForPlan(*P, VFs, TTI, CM.ValuesToIgnore);
4189
4190 for (unsigned I = 0; I < VFs.size(); I++) {
4191 ElementCount VF = VFs[I];
4192 // The cost for scalar VF=1 is already calculated, so ignore it.
4193 if (VF.isScalar())
4194 continue;
4195
4196 /// If the register pressure needs to be considered for VF,
4197 /// don't consider the VF as valid if it exceeds the number
4198 /// of registers for the target.
4199 if (CM.shouldConsiderRegPressureForVF(VF) &&
4200 RUs[I].exceedsMaxNumRegs(TTI, ForceTargetNumVectorRegs))
4201 continue;
4202
4203 InstructionCost C = CM.expectedCost(VF);
4204
4205 // Add on other costs that are modelled in VPlan, but not in the legacy
4206 // cost model.
4207 VPCostContext CostCtx(CM.TTI, *CM.TLI, *P, CM, CM.CostKind,
4208 *CM.PSE.getSE(), OrigLoop);
4209 VPRegionBlock *VectorRegion = P->getVectorLoopRegion();
4210 assert(VectorRegion && "Expected to have a vector region!");
4211 for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(
4212 vp_depth_first_shallow(VectorRegion->getEntry()))) {
4213 for (VPRecipeBase &R : *VPBB) {
4214 auto *VPI = dyn_cast<VPInstruction>(&R);
4215 if (!VPI)
4216 continue;
4217 switch (VPI->getOpcode()) {
4218 // Selects are only modelled in the legacy cost model for safe
4219 // divisors.
4220 case Instruction::Select: {
4221 if (auto *WR =
4222 dyn_cast_or_null<VPWidenRecipe>(VPI->getSingleUser())) {
4223 switch (WR->getOpcode()) {
4224 case Instruction::UDiv:
4225 case Instruction::SDiv:
4226 case Instruction::URem:
4227 case Instruction::SRem:
4228 continue;
4229 default:
4230 break;
4231 }
4232 }
4233 C += VPI->cost(VF, CostCtx);
4234 break;
4235 }
4237 unsigned Multiplier =
4238 cast<ConstantInt>(VPI->getOperand(2)->getLiveInIRValue())
4239 ->getZExtValue();
4240 C += VPI->cost(VF * Multiplier, CostCtx);
4241 break;
4242 }
4244 C += VPI->cost(VF, CostCtx);
4245 break;
4246 default:
4247 break;
4248 }
4249 }
4250 }
4251
4252 VectorizationFactor Candidate(VF, C, ScalarCost.ScalarCost);
4253 unsigned Width =
4254 estimateElementCount(Candidate.Width, CM.getVScaleForTuning());
4255 LLVM_DEBUG(dbgs() << "LV: Vector loop of width " << VF
4256 << " costs: " << (Candidate.Cost / Width));
4257 if (VF.isScalable())
4258 LLVM_DEBUG(dbgs() << " (assuming a minimum vscale of "
4259 << CM.getVScaleForTuning().value_or(1) << ")");
4260 LLVM_DEBUG(dbgs() << ".\n");
4261
4262 if (!ForceVectorization && !willGenerateVectors(*P, VF, TTI)) {
4263 LLVM_DEBUG(
4264 dbgs()
4265 << "LV: Not considering vector loop of width " << VF
4266 << " because it will not generate any vector instructions.\n");
4267 continue;
4268 }
4269
4270 if (CM.OptForSize && !ForceVectorization && hasReplicatorRegion(*P)) {
4271 LLVM_DEBUG(
4272 dbgs()
4273 << "LV: Not considering vector loop of width " << VF
4274 << " because it would cause replicated blocks to be generated,"
4275 << " which isn't allowed when optimizing for size.\n");
4276 continue;
4277 }
4278
4279 if (isMoreProfitable(Candidate, ChosenFactor, P->hasScalarTail()))
4280 ChosenFactor = Candidate;
4281 }
4282 }
4283
4284 if (!EnableCondStoresVectorization && CM.hasPredStores()) {
4286 "There are conditional stores.",
4287 "store that is conditionally executed prevents vectorization",
4288 "ConditionalStore", ORE, OrigLoop);
4289 ChosenFactor = ScalarCost;
4290 }
4291
4292 LLVM_DEBUG(if (ForceVectorization && !ChosenFactor.Width.isScalar() &&
4293 !isMoreProfitable(ChosenFactor, ScalarCost,
4294 !CM.foldTailByMasking())) dbgs()
4295 << "LV: Vectorization seems to be not beneficial, "
4296 << "but was forced by a user.\n");
4297 return ChosenFactor;
4298}
4299#endif
4300
4301bool LoopVectorizationPlanner::isCandidateForEpilogueVectorization(
4302 ElementCount VF) const {
4303 // Cross iteration phis such as fixed-order recurrences and FMaxNum/FMinNum
4304 // reductions need special handling and are currently unsupported.
4305 if (any_of(OrigLoop->getHeader()->phis(), [&](PHINode &Phi) {
4306 if (!Legal->isReductionVariable(&Phi))
4307 return Legal->isFixedOrderRecurrence(&Phi);
4308 return RecurrenceDescriptor::isFPMinMaxNumRecurrenceKind(
4309 Legal->getRecurrenceDescriptor(&Phi).getRecurrenceKind());
4310 }))
4311 return false;
4312
4313 // Phis with uses outside of the loop require special handling and are
4314 // currently unsupported.
4315 for (const auto &Entry : Legal->getInductionVars()) {
4316 // Look for uses of the value of the induction at the last iteration.
4317 Value *PostInc =
4318 Entry.first->getIncomingValueForBlock(OrigLoop->getLoopLatch());
4319 for (User *U : PostInc->users())
4320 if (!OrigLoop->contains(cast<Instruction>(U)))
4321 return false;
4322 // Look for uses of penultimate value of the induction.
4323 for (User *U : Entry.first->users())
4324 if (!OrigLoop->contains(cast<Instruction>(U)))
4325 return false;
4326 }
4327
4328 // Epilogue vectorization code has not been auditted to ensure it handles
4329 // non-latch exits properly. It may be fine, but it needs auditted and
4330 // tested.
4331 // TODO: Add support for loops with an early exit.
4332 if (OrigLoop->getExitingBlock() != OrigLoop->getLoopLatch())
4333 return false;
4334
4335 return true;
4336}
4337
4339 const ElementCount VF, const unsigned IC) const {
4340 // FIXME: We need a much better cost-model to take different parameters such
4341 // as register pressure, code size increase and cost of extra branches into
4342 // account. For now we apply a very crude heuristic and only consider loops
4343 // with vectorization factors larger than a certain value.
4344
4345 // Allow the target to opt out entirely.
4346 if (!TTI.preferEpilogueVectorization())
4347 return false;
4348
4349 // We also consider epilogue vectorization unprofitable for targets that don't
4350 // consider interleaving beneficial (eg. MVE).
4351 if (TTI.getMaxInterleaveFactor(VF) <= 1)
4352 return false;
4353
4354 unsigned MinVFThreshold = EpilogueVectorizationMinVF.getNumOccurrences() > 0
4356 : TTI.getEpilogueVectorizationMinVF();
4357 return estimateElementCount(VF * IC, VScaleForTuning) >= MinVFThreshold;
4358}
4359
4361 const ElementCount MainLoopVF, unsigned IC) {
4364 LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization is disabled.\n");
4365 return Result;
4366 }
4367
4368 if (!CM.isScalarEpilogueAllowed()) {
4369 LLVM_DEBUG(dbgs() << "LEV: Unable to vectorize epilogue because no "
4370 "epilogue is allowed.\n");
4371 return Result;
4372 }
4373
4374 // Not really a cost consideration, but check for unsupported cases here to
4375 // simplify the logic.
4376 if (!isCandidateForEpilogueVectorization(MainLoopVF)) {
4377 LLVM_DEBUG(dbgs() << "LEV: Unable to vectorize epilogue because the loop "
4378 "is not a supported candidate.\n");
4379 return Result;
4380 }
4381
4383 LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization factor is forced.\n");
4385 if (hasPlanWithVF(ForcedEC))
4386 return {ForcedEC, 0, 0};
4387
4388 LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization forced factor is not "
4389 "viable.\n");
4390 return Result;
4391 }
4392
4393 if (OrigLoop->getHeader()->getParent()->hasOptSize()) {
4394 LLVM_DEBUG(
4395 dbgs() << "LEV: Epilogue vectorization skipped due to opt for size.\n");
4396 return Result;
4397 }
4398
4399 if (!CM.isEpilogueVectorizationProfitable(MainLoopVF, IC)) {
4400 LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization is not profitable for "
4401 "this loop\n");
4402 return Result;
4403 }
4404
4405 // If MainLoopVF = vscale x 2, and vscale is expected to be 4, then we know
4406 // the main loop handles 8 lanes per iteration. We could still benefit from
4407 // vectorizing the epilogue loop with VF=4.
4408 ElementCount EstimatedRuntimeVF = ElementCount::getFixed(
4409 estimateElementCount(MainLoopVF, CM.getVScaleForTuning()));
4410
4411 ScalarEvolution &SE = *PSE.getSE();
4412 Type *TCType = Legal->getWidestInductionType();
4413 const SCEV *RemainingIterations = nullptr;
4414 unsigned MaxTripCount = 0;
4415 const SCEV *TC =
4416 vputils::getSCEVExprForVPValue(getPlanFor(MainLoopVF).getTripCount(), SE);
4417 assert(!isa<SCEVCouldNotCompute>(TC) && "Trip count SCEV must be computable");
4418 const SCEV *KnownMinTC;
4419 bool ScalableTC = match(TC, m_scev_c_Mul(m_SCEV(KnownMinTC), m_SCEVVScale()));
4420 bool ScalableRemIter = false;
4421 // Use versions of TC and VF in which both are either scalable or fixed.
4422 if (ScalableTC == MainLoopVF.isScalable()) {
4423 ScalableRemIter = ScalableTC;
4424 RemainingIterations =
4425 SE.getURemExpr(TC, SE.getElementCount(TCType, MainLoopVF * IC));
4426 } else if (ScalableTC) {
4427 const SCEV *EstimatedTC = SE.getMulExpr(
4428 KnownMinTC,
4429 SE.getConstant(TCType, CM.getVScaleForTuning().value_or(1)));
4430 RemainingIterations = SE.getURemExpr(
4431 EstimatedTC, SE.getElementCount(TCType, MainLoopVF * IC));
4432 } else
4433 RemainingIterations =
4434 SE.getURemExpr(TC, SE.getElementCount(TCType, EstimatedRuntimeVF * IC));
4435
4436 // No iterations left to process in the epilogue.
4437 if (RemainingIterations->isZero())
4438 return Result;
4439
4440 if (MainLoopVF.isFixed()) {
4441 MaxTripCount = MainLoopVF.getFixedValue() * IC - 1;
4442 if (SE.isKnownPredicate(CmpInst::ICMP_ULT, RemainingIterations,
4443 SE.getConstant(TCType, MaxTripCount))) {
4444 MaxTripCount = SE.getUnsignedRangeMax(RemainingIterations).getZExtValue();
4445 }
4446 LLVM_DEBUG(dbgs() << "LEV: Maximum Trip Count for Epilogue: "
4447 << MaxTripCount << "\n");
4448 }
4449
4450 auto SkipVF = [&](const SCEV *VF, const SCEV *RemIter) -> bool {
4451 return SE.isKnownPredicate(CmpInst::ICMP_UGT, VF, RemIter);
4452 };
4453 for (auto &NextVF : ProfitableVFs) {
4454 // Skip candidate VFs without a corresponding VPlan.
4455 if (!hasPlanWithVF(NextVF.Width))
4456 continue;
4457
4458 // Skip candidate VFs with widths >= the (estimated) runtime VF (scalable
4459 // vectors) or > the VF of the main loop (fixed vectors).
4460 if ((!NextVF.Width.isScalable() && MainLoopVF.isScalable() &&
4461 ElementCount::isKnownGE(NextVF.Width, EstimatedRuntimeVF)) ||
4462 (NextVF.Width.isScalable() &&
4463 ElementCount::isKnownGE(NextVF.Width, MainLoopVF)) ||
4464 (!NextVF.Width.isScalable() && !MainLoopVF.isScalable() &&
4465 ElementCount::isKnownGT(NextVF.Width, MainLoopVF)))
4466 continue;
4467
4468 // If NextVF is greater than the number of remaining iterations, the
4469 // epilogue loop would be dead. Skip such factors.
4470 // TODO: We should also consider comparing against a scalable
4471 // RemainingIterations when SCEV be able to evaluate non-canonical
4472 // vscale-based expressions.
4473 if (!ScalableRemIter) {
4474 // Handle the case where NextVF and RemainingIterations are in different
4475 // numerical spaces.
4476 ElementCount EC = NextVF.Width;
4477 if (NextVF.Width.isScalable())
4479 estimateElementCount(NextVF.Width, CM.getVScaleForTuning()));
4480 if (SkipVF(SE.getElementCount(TCType, EC), RemainingIterations))
4481 continue;
4482 }
4483
4484 if (Result.Width.isScalar() ||
4485 isMoreProfitable(NextVF, Result, MaxTripCount, !CM.foldTailByMasking(),
4486 /*IsEpilogue*/ true))
4487 Result = NextVF;
4488 }
4489
4490 if (Result != VectorizationFactor::Disabled())
4491 LLVM_DEBUG(dbgs() << "LEV: Vectorizing epilogue loop with VF = "
4492 << Result.Width << "\n");
4493 return Result;
4494}
4495
4496std::pair<unsigned, unsigned>
4498 unsigned MinWidth = -1U;
4499 unsigned MaxWidth = 8;
4500 const DataLayout &DL = TheFunction->getDataLayout();
4501 // For in-loop reductions, no element types are added to ElementTypesInLoop
4502 // if there are no loads/stores in the loop. In this case, check through the
4503 // reduction variables to determine the maximum width.
4504 if (ElementTypesInLoop.empty() && !Legal->getReductionVars().empty()) {
4505 for (const auto &PhiDescriptorPair : Legal->getReductionVars()) {
4506 const RecurrenceDescriptor &RdxDesc = PhiDescriptorPair.second;
4507 // When finding the min width used by the recurrence we need to account
4508 // for casts on the input operands of the recurrence.
4509 MinWidth = std::min(
4510 MinWidth,
4511 std::min(RdxDesc.getMinWidthCastToRecurrenceTypeInBits(),
4513 MaxWidth = std::max(MaxWidth,
4515 }
4516 } else {
4517 for (Type *T : ElementTypesInLoop) {
4518 MinWidth = std::min<unsigned>(
4519 MinWidth, DL.getTypeSizeInBits(T->getScalarType()).getFixedValue());
4520 MaxWidth = std::max<unsigned>(
4521 MaxWidth, DL.getTypeSizeInBits(T->getScalarType()).getFixedValue());
4522 }
4523 }
4524 return {MinWidth, MaxWidth};
4525}
4526
4528 ElementTypesInLoop.clear();
4529 // For each block.
4530 for (BasicBlock *BB : TheLoop->blocks()) {
4531 // For each instruction in the loop.
4532 for (Instruction &I : BB->instructionsWithoutDebug()) {
4533 Type *T = I.getType();
4534
4535 // Skip ignored values.
4536 if (ValuesToIgnore.count(&I))
4537 continue;
4538
4539 // Only examine Loads, Stores and PHINodes.
4540 if (!isa<LoadInst>(I) && !isa<StoreInst>(I) && !isa<PHINode>(I))
4541 continue;
4542
4543 // Examine PHI nodes that are reduction variables. Update the type to
4544 // account for the recurrence type.
4545 if (auto *PN = dyn_cast<PHINode>(&I)) {
4546 if (!Legal->isReductionVariable(PN))
4547 continue;
4548 const RecurrenceDescriptor &RdxDesc =
4549 Legal->getRecurrenceDescriptor(PN);
4551 TTI.preferInLoopReduction(RdxDesc.getRecurrenceKind(),
4552 RdxDesc.getRecurrenceType()))
4553 continue;
4554 T = RdxDesc.getRecurrenceType();
4555 }
4556
4557 // Examine the stored values.
4558 if (auto *ST = dyn_cast<StoreInst>(&I))
4559 T = ST->getValueOperand()->getType();
4560
4561 assert(T->isSized() &&
4562 "Expected the load/store/recurrence type to be sized");
4563
4564 ElementTypesInLoop.insert(T);
4565 }
4566 }
4567}
4568
4569unsigned
4571 InstructionCost LoopCost) {
4572 // -- The interleave heuristics --
4573 // We interleave the loop in order to expose ILP and reduce the loop overhead.
4574 // There are many micro-architectural considerations that we can't predict
4575 // at this level. For example, frontend pressure (on decode or fetch) due to
4576 // code size, or the number and capabilities of the execution ports.
4577 //
4578 // We use the following heuristics to select the interleave count:
4579 // 1. If the code has reductions, then we interleave to break the cross
4580 // iteration dependency.
4581 // 2. If the loop is really small, then we interleave to reduce the loop
4582 // overhead.
4583 // 3. We don't interleave if we think that we will spill registers to memory
4584 // due to the increased register pressure.
4585
4586 // Only interleave tail-folded loops if wide lane masks are requested, as the
4587 // overhead of multiple instructions to calculate the predicate is likely
4588 // not beneficial. If a scalar epilogue is not allowed for any other reason,
4589 // do not interleave.
4590 if (!CM.isScalarEpilogueAllowed() &&
4591 !(CM.preferPredicatedLoop() && CM.useWideActiveLaneMask()))
4592 return 1;
4593
4596 LLVM_DEBUG(dbgs() << "LV: Preference for VP intrinsics indicated. "
4597 "Unroll factor forced to be 1.\n");
4598 return 1;
4599 }
4600
4601 // We used the distance for the interleave count.
4602 if (!Legal->isSafeForAnyVectorWidth())
4603 return 1;
4604
4605 // We don't attempt to perform interleaving for loops with uncountable early
4606 // exits because the VPInstruction::AnyOf code cannot currently handle
4607 // multiple parts.
4608 if (Plan.hasEarlyExit())
4609 return 1;
4610
4611 const bool HasReductions =
4614
4615 // If we did not calculate the cost for VF (because the user selected the VF)
4616 // then we calculate the cost of VF here.
4617 if (LoopCost == 0) {
4618 if (VF.isScalar())
4619 LoopCost = CM.expectedCost(VF);
4620 else
4621 LoopCost = cost(Plan, VF);
4622 assert(LoopCost.isValid() && "Expected to have chosen a VF with valid cost");
4623
4624 // Loop body is free and there is no need for interleaving.
4625 if (LoopCost == 0)
4626 return 1;
4627 }
4628
4629 VPRegisterUsage R =
4630 calculateRegisterUsageForPlan(Plan, {VF}, TTI, CM.ValuesToIgnore)[0];
4631 // We divide by these constants so assume that we have at least one
4632 // instruction that uses at least one register.
4633 for (auto &Pair : R.MaxLocalUsers) {
4634 Pair.second = std::max(Pair.second, 1U);
4635 }
4636
4637 // We calculate the interleave count using the following formula.
4638 // Subtract the number of loop invariants from the number of available
4639 // registers. These registers are used by all of the interleaved instances.
4640 // Next, divide the remaining registers by the number of registers that is
4641 // required by the loop, in order to estimate how many parallel instances
4642 // fit without causing spills. All of this is rounded down if necessary to be
4643 // a power of two. We want power of two interleave count to simplify any
4644 // addressing operations or alignment considerations.
4645 // We also want power of two interleave counts to ensure that the induction
4646 // variable of the vector loop wraps to zero, when tail is folded by masking;
4647 // this currently happens when OptForSize, in which case IC is set to 1 above.
4648 unsigned IC = UINT_MAX;
4649
4650 for (const auto &Pair : R.MaxLocalUsers) {
4651 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(Pair.first);
4652 LLVM_DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters
4653 << " registers of "
4654 << TTI.getRegisterClassName(Pair.first)
4655 << " register class\n");
4656 if (VF.isScalar()) {
4657 if (ForceTargetNumScalarRegs.getNumOccurrences() > 0)
4658 TargetNumRegisters = ForceTargetNumScalarRegs;
4659 } else {
4660 if (ForceTargetNumVectorRegs.getNumOccurrences() > 0)
4661 TargetNumRegisters = ForceTargetNumVectorRegs;
4662 }
4663 unsigned MaxLocalUsers = Pair.second;
4664 unsigned LoopInvariantRegs = 0;
4665 if (R.LoopInvariantRegs.contains(Pair.first))
4666 LoopInvariantRegs = R.LoopInvariantRegs[Pair.first];
4667
4668 unsigned TmpIC = llvm::bit_floor((TargetNumRegisters - LoopInvariantRegs) /
4669 MaxLocalUsers);
4670 // Don't count the induction variable as interleaved.
4672 TmpIC = llvm::bit_floor((TargetNumRegisters - LoopInvariantRegs - 1) /
4673 std::max(1U, (MaxLocalUsers - 1)));
4674 }
4675
4676 IC = std::min(IC, TmpIC);
4677 }
4678
4679 // Clamp the interleave ranges to reasonable counts.
4680 unsigned MaxInterleaveCount = TTI.getMaxInterleaveFactor(VF);
4681
4682 // Check if the user has overridden the max.
4683 if (VF.isScalar()) {
4684 if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0)
4685 MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor;
4686 } else {
4687 if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0)
4688 MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor;
4689 }
4690
4691 // Try to get the exact trip count, or an estimate based on profiling data or
4692 // ConstantMax from PSE, failing that.
4693 auto BestKnownTC = getSmallBestKnownTC(PSE, OrigLoop);
4694
4695 // For fixed length VFs treat a scalable trip count as unknown.
4696 if (BestKnownTC && (BestKnownTC->isFixed() || VF.isScalable())) {
4697 // Re-evaluate trip counts and VFs to be in the same numerical space.
4698 unsigned AvailableTC =
4699 estimateElementCount(*BestKnownTC, CM.getVScaleForTuning());
4700 unsigned EstimatedVF = estimateElementCount(VF, CM.getVScaleForTuning());
4701
4702 // At least one iteration must be scalar when this constraint holds. So the
4703 // maximum available iterations for interleaving is one less.
4704 if (CM.requiresScalarEpilogue(VF.isVector()))
4705 --AvailableTC;
4706
4707 unsigned InterleaveCountLB = bit_floor(std::max(
4708 1u, std::min(AvailableTC / (EstimatedVF * 2), MaxInterleaveCount)));
4709
4710 if (getSmallConstantTripCount(PSE.getSE(), OrigLoop).isNonZero()) {
4711 // If the best known trip count is exact, we select between two
4712 // prospective ICs, where
4713 //
4714 // 1) the aggressive IC is capped by the trip count divided by VF
4715 // 2) the conservative IC is capped by the trip count divided by (VF * 2)
4716 //
4717 // The final IC is selected in a way that the epilogue loop trip count is
4718 // minimized while maximizing the IC itself, so that we either run the
4719 // vector loop at least once if it generates a small epilogue loop, or
4720 // else we run the vector loop at least twice.
4721
4722 unsigned InterleaveCountUB = bit_floor(std::max(
4723 1u, std::min(AvailableTC / EstimatedVF, MaxInterleaveCount)));
4724 MaxInterleaveCount = InterleaveCountLB;
4725
4726 if (InterleaveCountUB != InterleaveCountLB) {
4727 unsigned TailTripCountUB =
4728 (AvailableTC % (EstimatedVF * InterleaveCountUB));
4729 unsigned TailTripCountLB =
4730 (AvailableTC % (EstimatedVF * InterleaveCountLB));
4731 // If both produce same scalar tail, maximize the IC to do the same work
4732 // in fewer vector loop iterations
4733 if (TailTripCountUB == TailTripCountLB)
4734 MaxInterleaveCount = InterleaveCountUB;
4735 }
4736 } else {
4737 // If trip count is an estimated compile time constant, limit the
4738 // IC to be capped by the trip count divided by VF * 2, such that the
4739 // vector loop runs at least twice to make interleaving seem profitable
4740 // when there is an epilogue loop present. Since exact Trip count is not
4741 // known we choose to be conservative in our IC estimate.
4742 MaxInterleaveCount = InterleaveCountLB;
4743 }
4744 }
4745
4746 assert(MaxInterleaveCount > 0 &&
4747 "Maximum interleave count must be greater than 0");
4748
4749 // Clamp the calculated IC to be between the 1 and the max interleave count
4750 // that the target and trip count allows.
4751 if (IC > MaxInterleaveCount)
4752 IC = MaxInterleaveCount;
4753 else
4754 // Make sure IC is greater than 0.
4755 IC = std::max(1u, IC);
4756
4757 assert(IC > 0 && "Interleave count must be greater than 0.");
4758
4759 // Interleave if we vectorized this loop and there is a reduction that could
4760 // benefit from interleaving.
4761 if (VF.isVector() && HasReductions) {
4762 LLVM_DEBUG(dbgs() << "LV: Interleaving because of reductions.\n");
4763 return IC;
4764 }
4765
4766 // For any scalar loop that either requires runtime checks or predication we
4767 // are better off leaving this to the unroller. Note that if we've already
4768 // vectorized the loop we will have done the runtime check and so interleaving
4769 // won't require further checks.
4770 bool ScalarInterleavingRequiresPredication =
4771 (VF.isScalar() && any_of(OrigLoop->blocks(), [this](BasicBlock *BB) {
4772 return Legal->blockNeedsPredication(BB);
4773 }));
4774 bool ScalarInterleavingRequiresRuntimePointerCheck =
4775 (VF.isScalar() && Legal->getRuntimePointerChecking()->Need);
4776
4777 // We want to interleave small loops in order to reduce the loop overhead and
4778 // potentially expose ILP opportunities.
4779 LLVM_DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n'
4780 << "LV: IC is " << IC << '\n'
4781 << "LV: VF is " << VF << '\n');
4782 const bool AggressivelyInterleaveReductions =
4783 TTI.enableAggressiveInterleaving(HasReductions);
4784 if (!ScalarInterleavingRequiresRuntimePointerCheck &&
4785 !ScalarInterleavingRequiresPredication && LoopCost < SmallLoopCost) {
4786 // We assume that the cost overhead is 1 and we use the cost model
4787 // to estimate the cost of the loop and interleave until the cost of the
4788 // loop overhead is about 5% of the cost of the loop.
4789 unsigned SmallIC = std::min(IC, (unsigned)llvm::bit_floor<uint64_t>(
4790 SmallLoopCost / LoopCost.getValue()));
4791
4792 // Interleave until store/load ports (estimated by max interleave count) are
4793 // saturated.
4794 unsigned NumStores = 0;
4795 unsigned NumLoads = 0;
4798 for (VPRecipeBase &R : *VPBB) {
4800 NumLoads++;
4801 continue;
4802 }
4804 NumStores++;
4805 continue;
4806 }
4807
4808 if (auto *InterleaveR = dyn_cast<VPInterleaveRecipe>(&R)) {
4809 if (unsigned StoreOps = InterleaveR->getNumStoreOperands())
4810 NumStores += StoreOps;
4811 else
4812 NumLoads += InterleaveR->getNumDefinedValues();
4813 continue;
4814 }
4815 if (auto *RepR = dyn_cast<VPReplicateRecipe>(&R)) {
4816 NumLoads += isa<LoadInst>(RepR->getUnderlyingInstr());
4817 NumStores += isa<StoreInst>(RepR->getUnderlyingInstr());
4818 continue;
4819 }
4820 if (isa<VPHistogramRecipe>(&R)) {
4821 NumLoads++;
4822 NumStores++;
4823 continue;
4824 }
4825 }
4826 }
4827 unsigned StoresIC = IC / (NumStores ? NumStores : 1);
4828 unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1);
4829
4830 // There is little point in interleaving for reductions containing selects
4831 // and compares when VF=1 since it may just create more overhead than it's
4832 // worth for loops with small trip counts. This is because we still have to
4833 // do the final reduction after the loop.
4834 bool HasSelectCmpReductions =
4835 HasReductions &&
4837 [](VPRecipeBase &R) {
4838 auto *RedR = dyn_cast<VPReductionPHIRecipe>(&R);
4839 return RedR && (RecurrenceDescriptor::isAnyOfRecurrenceKind(
4840 RedR->getRecurrenceKind()) ||
4841 RecurrenceDescriptor::isFindIVRecurrenceKind(
4842 RedR->getRecurrenceKind()));
4843 });
4844 if (HasSelectCmpReductions) {
4845 LLVM_DEBUG(dbgs() << "LV: Not interleaving select-cmp reductions.\n");
4846 return 1;
4847 }
4848
4849 // If we have a scalar reduction (vector reductions are already dealt with
4850 // by this point), we can increase the critical path length if the loop
4851 // we're interleaving is inside another loop. For tree-wise reductions
4852 // set the limit to 2, and for ordered reductions it's best to disable
4853 // interleaving entirely.
4854 if (HasReductions && OrigLoop->getLoopDepth() > 1) {
4855 bool HasOrderedReductions =
4857 [](VPRecipeBase &R) {
4858 auto *RedR = dyn_cast<VPReductionPHIRecipe>(&R);
4859
4860 return RedR && RedR->isOrdered();
4861 });
4862 if (HasOrderedReductions) {
4863 LLVM_DEBUG(
4864 dbgs() << "LV: Not interleaving scalar ordered reductions.\n");
4865 return 1;
4866 }
4867
4868 unsigned F = MaxNestedScalarReductionIC;
4869 SmallIC = std::min(SmallIC, F);
4870 StoresIC = std::min(StoresIC, F);
4871 LoadsIC = std::min(LoadsIC, F);
4872 }
4873
4875 std::max(StoresIC, LoadsIC) > SmallIC) {
4876 LLVM_DEBUG(
4877 dbgs() << "LV: Interleaving to saturate store or load ports.\n");
4878 return std::max(StoresIC, LoadsIC);
4879 }
4880
4881 // If there are scalar reductions and TTI has enabled aggressive
4882 // interleaving for reductions, we will interleave to expose ILP.
4883 if (VF.isScalar() && AggressivelyInterleaveReductions) {
4884 LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n");
4885 // Interleave no less than SmallIC but not as aggressive as the normal IC
4886 // to satisfy the rare situation when resources are too limited.
4887 return std::max(IC / 2, SmallIC);
4888 }
4889
4890 LLVM_DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n");
4891 return SmallIC;
4892 }
4893
4894 // Interleave if this is a large loop (small loops are already dealt with by
4895 // this point) that could benefit from interleaving.
4896 if (AggressivelyInterleaveReductions) {
4897 LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n");
4898 return IC;
4899 }
4900
4901 LLVM_DEBUG(dbgs() << "LV: Not Interleaving.\n");
4902 return 1;
4903}
4904
4905bool LoopVectorizationCostModel::useEmulatedMaskMemRefHack(Instruction *I,
4906 ElementCount VF) {
4907 // TODO: Cost model for emulated masked load/store is completely
4908 // broken. This hack guides the cost model to use an artificially
4909 // high enough value to practically disable vectorization with such
4910 // operations, except where previously deployed legality hack allowed
4911 // using very low cost values. This is to avoid regressions coming simply
4912 // from moving "masked load/store" check from legality to cost model.
4913 // Masked Load/Gather emulation was previously never allowed.
4914 // Limited number of Masked Store/Scatter emulation was allowed.
4915 assert((isPredicatedInst(I)) &&
4916 "Expecting a scalar emulated instruction");
4917 return isa<LoadInst>(I) ||
4918 (isa<StoreInst>(I) &&
4919 NumPredStores > NumberOfStoresToPredicate);
4920}
4921
4923 assert(VF.isVector() && "Expected VF >= 2");
4924
4925 // If we've already collected the instructions to scalarize or the predicated
4926 // BBs after vectorization, there's nothing to do. Collection may already have
4927 // occurred if we have a user-selected VF and are now computing the expected
4928 // cost for interleaving.
4929 if (InstsToScalarize.contains(VF) ||
4930 PredicatedBBsAfterVectorization.contains(VF))
4931 return;
4932
4933 // Initialize a mapping for VF in InstsToScalalarize. If we find that it's
4934 // not profitable to scalarize any instructions, the presence of VF in the
4935 // map will indicate that we've analyzed it already.
4936 ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF];
4937
4938 // Find all the instructions that are scalar with predication in the loop and
4939 // determine if it would be better to not if-convert the blocks they are in.
4940 // If so, we also record the instructions to scalarize.
4941 for (BasicBlock *BB : TheLoop->blocks()) {
4943 continue;
4944 for (Instruction &I : *BB)
4945 if (isScalarWithPredication(&I, VF)) {
4946 ScalarCostsTy ScalarCosts;
4947 // Do not apply discount logic for:
4948 // 1. Scalars after vectorization, as there will only be a single copy
4949 // of the instruction.
4950 // 2. Scalable VF, as that would lead to invalid scalarization costs.
4951 // 3. Emulated masked memrefs, if a hacked cost is needed.
4952 if (!isScalarAfterVectorization(&I, VF) && !VF.isScalable() &&
4953 !useEmulatedMaskMemRefHack(&I, VF) &&
4954 computePredInstDiscount(&I, ScalarCosts, VF) >= 0) {
4955 for (const auto &[I, IC] : ScalarCosts)
4956 ScalarCostsVF.insert({I, IC});
4957 // Check if we decided to scalarize a call. If so, update the widening
4958 // decision of the call to CM_Scalarize with the computed scalar cost.
4959 for (const auto &[I, Cost] : ScalarCosts) {
4960 auto *CI = dyn_cast<CallInst>(I);
4961 if (!CI || !CallWideningDecisions.contains({CI, VF}))
4962 continue;
4963 CallWideningDecisions[{CI, VF}].Kind = CM_Scalarize;
4964 CallWideningDecisions[{CI, VF}].Cost = Cost;
4965 }
4966 }
4967 // Remember that BB will remain after vectorization.
4968 PredicatedBBsAfterVectorization[VF].insert(BB);
4969 for (auto *Pred : predecessors(BB)) {
4970 if (Pred->getSingleSuccessor() == BB)
4971 PredicatedBBsAfterVectorization[VF].insert(Pred);
4972 }
4973 }
4974 }
4975}
4976
4977InstructionCost LoopVectorizationCostModel::computePredInstDiscount(
4978 Instruction *PredInst, ScalarCostsTy &ScalarCosts, ElementCount VF) {
4979 assert(!isUniformAfterVectorization(PredInst, VF) &&
4980 "Instruction marked uniform-after-vectorization will be predicated");
4981
4982 // Initialize the discount to zero, meaning that the scalar version and the
4983 // vector version cost the same.
4984 InstructionCost Discount = 0;
4985
4986 // Holds instructions to analyze. The instructions we visit are mapped in
4987 // ScalarCosts. Those instructions are the ones that would be scalarized if
4988 // we find that the scalar version costs less.
4990
4991 // Returns true if the given instruction can be scalarized.
4992 auto CanBeScalarized = [&](Instruction *I) -> bool {
4993 // We only attempt to scalarize instructions forming a single-use chain
4994 // from the original predicated block that would otherwise be vectorized.
4995 // Although not strictly necessary, we give up on instructions we know will
4996 // already be scalar to avoid traversing chains that are unlikely to be
4997 // beneficial.
4998 if (!I->hasOneUse() || PredInst->getParent() != I->getParent() ||
4999 isScalarAfterVectorization(I, VF))
5000 return false;
5001
5002 // If the instruction is scalar with predication, it will be analyzed
5003 // separately. We ignore it within the context of PredInst.
5004 if (isScalarWithPredication(I, VF))
5005 return false;
5006
5007 // If any of the instruction's operands are uniform after vectorization,
5008 // the instruction cannot be scalarized. This prevents, for example, a
5009 // masked load from being scalarized.
5010 //
5011 // We assume we will only emit a value for lane zero of an instruction
5012 // marked uniform after vectorization, rather than VF identical values.
5013 // Thus, if we scalarize an instruction that uses a uniform, we would
5014 // create uses of values corresponding to the lanes we aren't emitting code
5015 // for. This behavior can be changed by allowing getScalarValue to clone
5016 // the lane zero values for uniforms rather than asserting.
5017 for (Use &U : I->operands())
5018 if (auto *J = dyn_cast<Instruction>(U.get()))
5019 if (isUniformAfterVectorization(J, VF))
5020 return false;
5021
5022 // Otherwise, we can scalarize the instruction.
5023 return true;
5024 };
5025
5026 // Compute the expected cost discount from scalarizing the entire expression
5027 // feeding the predicated instruction. We currently only consider expressions
5028 // that are single-use instruction chains.
5029 Worklist.push_back(PredInst);
5030 while (!Worklist.empty()) {
5031 Instruction *I = Worklist.pop_back_val();
5032
5033 // If we've already analyzed the instruction, there's nothing to do.
5034 if (ScalarCosts.contains(I))
5035 continue;
5036
5037 // Cannot scalarize fixed-order recurrence phis at the moment.
5038 if (isa<PHINode>(I) && Legal->isFixedOrderRecurrence(cast<PHINode>(I)))
5039 continue;
5040
5041 // Compute the cost of the vector instruction. Note that this cost already
5042 // includes the scalarization overhead of the predicated instruction.
5043 InstructionCost VectorCost = getInstructionCost(I, VF);
5044
5045 // Compute the cost of the scalarized instruction. This cost is the cost of
5046 // the instruction as if it wasn't if-converted and instead remained in the
5047 // predicated block. We will scale this cost by block probability after
5048 // computing the scalarization overhead.
5049 InstructionCost ScalarCost =
5050 VF.getFixedValue() * getInstructionCost(I, ElementCount::getFixed(1));
5051
5052 // Compute the scalarization overhead of needed insertelement instructions
5053 // and phi nodes.
5054 if (isScalarWithPredication(I, VF) && !I->getType()->isVoidTy()) {
5055 Type *WideTy = toVectorizedTy(I->getType(), VF);
5056 for (Type *VectorTy : getContainedTypes(WideTy)) {
5057 ScalarCost += TTI.getScalarizationOverhead(
5059 /*Insert=*/true,
5060 /*Extract=*/false, CostKind);
5061 }
5062 ScalarCost +=
5063 VF.getFixedValue() * TTI.getCFInstrCost(Instruction::PHI, CostKind);
5064 }
5065
5066 // Compute the scalarization overhead of needed extractelement
5067 // instructions. For each of the instruction's operands, if the operand can
5068 // be scalarized, add it to the worklist; otherwise, account for the
5069 // overhead.
5070 for (Use &U : I->operands())
5071 if (auto *J = dyn_cast<Instruction>(U.get())) {
5072 assert(canVectorizeTy(J->getType()) &&
5073 "Instruction has non-scalar type");
5074 if (CanBeScalarized(J))
5075 Worklist.push_back(J);
5076 else if (needsExtract(J, VF)) {
5077 Type *WideTy = toVectorizedTy(J->getType(), VF);
5078 for (Type *VectorTy : getContainedTypes(WideTy)) {
5079 ScalarCost += TTI.getScalarizationOverhead(
5080 cast<VectorType>(VectorTy),
5081 APInt::getAllOnes(VF.getFixedValue()), /*Insert*/ false,
5082 /*Extract*/ true, CostKind);
5083 }
5084 }
5085 }
5086
5087 // Scale the total scalar cost by block probability.
5088 ScalarCost /= getPredBlockCostDivisor(CostKind, I->getParent());
5089
5090 // Compute the discount. A non-negative discount means the vector version
5091 // of the instruction costs more, and scalarizing would be beneficial.
5092 Discount += VectorCost - ScalarCost;
5093 ScalarCosts[I] = ScalarCost;
5094 }
5095
5096 return Discount;
5097}
5098
5101
5102 // If the vector loop gets executed exactly once with the given VF, ignore the
5103 // costs of comparison and induction instructions, as they'll get simplified
5104 // away.
5105 SmallPtrSet<Instruction *, 2> ValuesToIgnoreForVF;
5106 auto TC = getSmallConstantTripCount(PSE.getSE(), TheLoop);
5107 if (TC == VF && !foldTailByMasking())
5109 ValuesToIgnoreForVF);
5110
5111 // For each block.
5112 for (BasicBlock *BB : TheLoop->blocks()) {
5113 InstructionCost BlockCost;
5114
5115 // For each instruction in the old loop.
5116 for (Instruction &I : BB->instructionsWithoutDebug()) {
5117 // Skip ignored values.
5118 if (ValuesToIgnore.count(&I) || ValuesToIgnoreForVF.count(&I) ||
5119 (VF.isVector() && VecValuesToIgnore.count(&I)))
5120 continue;
5121
5123
5124 // Check if we should override the cost.
5125 if (C.isValid() && ForceTargetInstructionCost.getNumOccurrences() > 0)
5127
5128 BlockCost += C;
5129 LLVM_DEBUG(dbgs() << "LV: Found an estimated cost of " << C << " for VF "
5130 << VF << " For instruction: " << I << '\n');
5131 }
5132
5133 // If we are vectorizing a predicated block, it will have been
5134 // if-converted. This means that the block's instructions (aside from
5135 // stores and instructions that may divide by zero) will now be
5136 // unconditionally executed. For the scalar case, we may not always execute
5137 // the predicated block, if it is an if-else block. Thus, scale the block's
5138 // cost by the probability of executing it.
5139 // getPredBlockCostDivisor will return 1 for blocks that are only predicated
5140 // by the header mask when folding the tail.
5141 if (VF.isScalar())
5142 BlockCost /= getPredBlockCostDivisor(CostKind, BB);
5143
5144 Cost += BlockCost;
5145 }
5146
5147 return Cost;
5148}
5149
5150/// Gets Address Access SCEV after verifying that the access pattern
5151/// is loop invariant except the induction variable dependence.
5152///
5153/// This SCEV can be sent to the Target in order to estimate the address
5154/// calculation cost.
5156 Value *Ptr,
5159 const Loop *TheLoop) {
5160
5161 auto *Gep = dyn_cast<GetElementPtrInst>(Ptr);
5162 if (!Gep)
5163 return nullptr;
5164
5165 // We are looking for a gep with all loop invariant indices except for one
5166 // which should be an induction variable.
5167 auto *SE = PSE.getSE();
5168 unsigned NumOperands = Gep->getNumOperands();
5169 for (unsigned Idx = 1; Idx < NumOperands; ++Idx) {
5170 Value *Opd = Gep->getOperand(Idx);
5171 if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) &&
5172 !Legal->isInductionVariable(Opd))
5173 return nullptr;
5174 }
5175
5176 // Now we know we have a GEP ptr, %inv, %ind, %inv. return the Ptr SCEV.
5177 return PSE.getSCEV(Ptr);
5178}
5179
5181LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *I,
5182 ElementCount VF) {
5183 assert(VF.isVector() &&
5184 "Scalarization cost of instruction implies vectorization.");
5185 if (VF.isScalable())
5186 return InstructionCost::getInvalid();
5187
5188 Type *ValTy = getLoadStoreType(I);
5189 auto *SE = PSE.getSE();
5190
5191 unsigned AS = getLoadStoreAddressSpace(I);
5193 Type *PtrTy = toVectorTy(Ptr->getType(), VF);
5194 // NOTE: PtrTy is a vector to signal `TTI::getAddressComputationCost`
5195 // that it is being called from this specific place.
5196
5197 // Figure out whether the access is strided and get the stride value
5198 // if it's known in compile time
5199 const SCEV *PtrSCEV = getAddressAccessSCEV(Ptr, Legal, PSE, TheLoop);
5200
5201 // Get the cost of the scalar memory instruction and address computation.
5203 PtrTy, SE, PtrSCEV, CostKind);
5204
5205 // Don't pass *I here, since it is scalar but will actually be part of a
5206 // vectorized loop where the user of it is a vectorized instruction.
5207 const Align Alignment = getLoadStoreAlignment(I);
5208 TTI::OperandValueInfo OpInfo = TTI::getOperandInfo(I->getOperand(0));
5209 Cost += VF.getFixedValue() *
5210 TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), Alignment,
5211 AS, CostKind, OpInfo);
5212
5213 // Get the overhead of the extractelement and insertelement instructions
5214 // we might create due to scalarization.
5216
5217 // If we have a predicated load/store, it will need extra i1 extracts and
5218 // conditional branches, but may not be executed for each vector lane. Scale
5219 // the cost by the probability of executing the predicated block.
5220 if (isPredicatedInst(I)) {
5221 Cost /= getPredBlockCostDivisor(CostKind, I->getParent());
5222
5223 // Add the cost of an i1 extract and a branch
5224 auto *VecI1Ty =
5225 VectorType::get(IntegerType::getInt1Ty(ValTy->getContext()), VF);
5227 VecI1Ty, APInt::getAllOnes(VF.getFixedValue()),
5228 /*Insert=*/false, /*Extract=*/true, CostKind);
5229 Cost += TTI.getCFInstrCost(Instruction::Br, CostKind);
5230
5231 if (useEmulatedMaskMemRefHack(I, VF))
5232 // Artificially setting to a high enough value to practically disable
5233 // vectorization with such operations.
5234 Cost = 3000000;
5235 }
5236
5237 return Cost;
5238}
5239
5241LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *I,
5242 ElementCount VF) {
5243 Type *ValTy = getLoadStoreType(I);
5244 auto *VectorTy = cast<VectorType>(toVectorTy(ValTy, VF));
5246 unsigned AS = getLoadStoreAddressSpace(I);
5247 int ConsecutiveStride = Legal->isConsecutivePtr(ValTy, Ptr);
5248
5249 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) &&
5250 "Stride should be 1 or -1 for consecutive memory access");
5251 const Align Alignment = getLoadStoreAlignment(I);
5253 if (Legal->isMaskRequired(I)) {
5254 unsigned IID = I->getOpcode() == Instruction::Load
5255 ? Intrinsic::masked_load
5256 : Intrinsic::masked_store;
5257 Cost += TTI.getMaskedMemoryOpCost({IID, VectorTy, Alignment, AS}, CostKind);
5258 } else {
5259 TTI::OperandValueInfo OpInfo = TTI::getOperandInfo(I->getOperand(0));
5260 Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS,
5261 CostKind, OpInfo, I);
5262 }
5263
5264 bool Reverse = ConsecutiveStride < 0;
5265 if (Reverse)
5267 VectorTy, {}, CostKind, 0);
5268 return Cost;
5269}
5270
5272LoopVectorizationCostModel::getUniformMemOpCost(Instruction *I,
5273 ElementCount VF) {
5274 assert(Legal->isUniformMemOp(*I, VF));
5275
5276 Type *ValTy = getLoadStoreType(I);
5278 auto *VectorTy = cast<VectorType>(toVectorTy(ValTy, VF));
5279 const Align Alignment = getLoadStoreAlignment(I);
5280 unsigned AS = getLoadStoreAddressSpace(I);
5281 if (isa<LoadInst>(I)) {
5282 return TTI.getAddressComputationCost(PtrTy, nullptr, nullptr, CostKind) +
5283 TTI.getMemoryOpCost(Instruction::Load, ValTy, Alignment, AS,
5284 CostKind) +
5286 VectorTy, {}, CostKind);
5287 }
5288 StoreInst *SI = cast<StoreInst>(I);
5289
5290 bool IsLoopInvariantStoreValue = Legal->isInvariant(SI->getValueOperand());
5291 // TODO: We have existing tests that request the cost of extracting element
5292 // VF.getKnownMinValue() - 1 from a scalable vector. This does not represent
5293 // the actual generated code, which involves extracting the last element of
5294 // a scalable vector where the lane to extract is unknown at compile time.
5296 TTI.getAddressComputationCost(PtrTy, nullptr, nullptr, CostKind) +
5297 TTI.getMemoryOpCost(Instruction::Store, ValTy, Alignment, AS, CostKind);
5298 if (!IsLoopInvariantStoreValue)
5299 Cost += TTI.getIndexedVectorInstrCostFromEnd(Instruction::ExtractElement,
5300 VectorTy, CostKind, 0);
5301 return Cost;
5302}
5303
5305LoopVectorizationCostModel::getGatherScatterCost(Instruction *I,
5306 ElementCount VF) {
5307 Type *ValTy = getLoadStoreType(I);
5308 auto *VectorTy = cast<VectorType>(toVectorTy(ValTy, VF));
5309 const Align Alignment = getLoadStoreAlignment(I);
5311 Type *PtrTy = Ptr->getType();
5312
5313 if (!Legal->isUniform(Ptr, VF))
5314 PtrTy = toVectorTy(PtrTy, VF);
5315
5316 return TTI.getAddressComputationCost(PtrTy, nullptr, nullptr, CostKind) +
5317 TTI.getGatherScatterOpCost(I->getOpcode(), VectorTy, Ptr,
5318 Legal->isMaskRequired(I), Alignment,
5319 CostKind, I);
5320}
5321
5323LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *I,
5324 ElementCount VF) {
5325 const auto *Group = getInterleavedAccessGroup(I);
5326 assert(Group && "Fail to get an interleaved access group.");
5327
5328 Instruction *InsertPos = Group->getInsertPos();
5329 Type *ValTy = getLoadStoreType(InsertPos);
5330 auto *VectorTy = cast<VectorType>(toVectorTy(ValTy, VF));
5331 unsigned AS = getLoadStoreAddressSpace(InsertPos);
5332
5333 unsigned InterleaveFactor = Group->getFactor();
5334 auto *WideVecTy = VectorType::get(ValTy, VF * InterleaveFactor);
5335
5336 // Holds the indices of existing members in the interleaved group.
5337 SmallVector<unsigned, 4> Indices;
5338 for (unsigned IF = 0; IF < InterleaveFactor; IF++)
5339 if (Group->getMember(IF))
5340 Indices.push_back(IF);
5341
5342 // Calculate the cost of the whole interleaved group.
5343 bool UseMaskForGaps =
5344 (Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed()) ||
5345 (isa<StoreInst>(I) && !Group->isFull());
5347 InsertPos->getOpcode(), WideVecTy, Group->getFactor(), Indices,
5348 Group->getAlign(), AS, CostKind, Legal->isMaskRequired(I),
5349 UseMaskForGaps);
5350
5351 if (Group->isReverse()) {
5352 // TODO: Add support for reversed masked interleaved access.
5353 assert(!Legal->isMaskRequired(I) &&
5354 "Reverse masked interleaved access not supported.");
5355 Cost += Group->getNumMembers() *
5357 VectorTy, {}, CostKind, 0);
5358 }
5359 return Cost;
5360}
5361
5362std::optional<InstructionCost>
5364 ElementCount VF,
5365 Type *Ty) const {
5366 using namespace llvm::PatternMatch;
5367 // Early exit for no inloop reductions
5368 if (InLoopReductions.empty() || VF.isScalar() || !isa<VectorType>(Ty))
5369 return std::nullopt;
5370 auto *VectorTy = cast<VectorType>(Ty);
5371
5372 // We are looking for a pattern of, and finding the minimal acceptable cost:
5373 // reduce(mul(ext(A), ext(B))) or
5374 // reduce(mul(A, B)) or
5375 // reduce(ext(A)) or
5376 // reduce(A).
5377 // The basic idea is that we walk down the tree to do that, finding the root
5378 // reduction instruction in InLoopReductionImmediateChains. From there we find
5379 // the pattern of mul/ext and test the cost of the entire pattern vs the cost
5380 // of the components. If the reduction cost is lower then we return it for the
5381 // reduction instruction and 0 for the other instructions in the pattern. If
5382 // it is not we return an invalid cost specifying the orignal cost method
5383 // should be used.
5384 Instruction *RetI = I;
5385 if (match(RetI, m_ZExtOrSExt(m_Value()))) {
5386 if (!RetI->hasOneUser())
5387 return std::nullopt;
5388 RetI = RetI->user_back();
5389 }
5390
5391 if (match(RetI, m_OneUse(m_Mul(m_Value(), m_Value()))) &&
5392 RetI->user_back()->getOpcode() == Instruction::Add) {
5393 RetI = RetI->user_back();
5394 }
5395
5396 // Test if the found instruction is a reduction, and if not return an invalid
5397 // cost specifying the parent to use the original cost modelling.
5398 Instruction *LastChain = InLoopReductionImmediateChains.lookup(RetI);
5399 if (!LastChain)
5400 return std::nullopt;
5401
5402 // Find the reduction this chain is a part of and calculate the basic cost of
5403 // the reduction on its own.
5404 Instruction *ReductionPhi = LastChain;
5405 while (!isa<PHINode>(ReductionPhi))
5406 ReductionPhi = InLoopReductionImmediateChains.at(ReductionPhi);
5407
5408 const RecurrenceDescriptor &RdxDesc =
5409 Legal->getRecurrenceDescriptor(cast<PHINode>(ReductionPhi));
5410
5411 InstructionCost BaseCost;
5412 RecurKind RK = RdxDesc.getRecurrenceKind();
5415 BaseCost = TTI.getMinMaxReductionCost(MinMaxID, VectorTy,
5416 RdxDesc.getFastMathFlags(), CostKind);
5417 } else {
5418 BaseCost = TTI.getArithmeticReductionCost(
5419 RdxDesc.getOpcode(), VectorTy, RdxDesc.getFastMathFlags(), CostKind);
5420 }
5421
5422 // For a call to the llvm.fmuladd intrinsic we need to add the cost of a
5423 // normal fmul instruction to the cost of the fadd reduction.
5424 if (RK == RecurKind::FMulAdd)
5425 BaseCost +=
5426 TTI.getArithmeticInstrCost(Instruction::FMul, VectorTy, CostKind);
5427
5428 // If we're using ordered reductions then we can just return the base cost
5429 // here, since getArithmeticReductionCost calculates the full ordered
5430 // reduction cost when FP reassociation is not allowed.
5431 if (useOrderedReductions(RdxDesc))
5432 return BaseCost;
5433
5434 // Get the operand that was not the reduction chain and match it to one of the
5435 // patterns, returning the better cost if it is found.
5436 Instruction *RedOp = RetI->getOperand(1) == LastChain
5439
5440 VectorTy = VectorType::get(I->getOperand(0)->getType(), VectorTy);
5441
5442 Instruction *Op0, *Op1;
5443 if (RedOp && RdxDesc.getOpcode() == Instruction::Add &&
5444 match(RedOp,
5446 match(Op0, m_ZExtOrSExt(m_Value())) &&
5447 Op0->getOpcode() == Op1->getOpcode() &&
5448 Op0->getOperand(0)->getType() == Op1->getOperand(0)->getType() &&
5449 !TheLoop->isLoopInvariant(Op0) && !TheLoop->isLoopInvariant(Op1) &&
5450 (Op0->getOpcode() == RedOp->getOpcode() || Op0 == Op1)) {
5451
5452 // Matched reduce.add(ext(mul(ext(A), ext(B)))
5453 // Note that the extend opcodes need to all match, or if A==B they will have
5454 // been converted to zext(mul(sext(A), sext(A))) as it is known positive,
5455 // which is equally fine.
5456 bool IsUnsigned = isa<ZExtInst>(Op0);
5457 auto *ExtType = VectorType::get(Op0->getOperand(0)->getType(), VectorTy);
5458 auto *MulType = VectorType::get(Op0->getType(), VectorTy);
5459
5460 InstructionCost ExtCost =
5461 TTI.getCastInstrCost(Op0->getOpcode(), MulType, ExtType,
5463 InstructionCost MulCost =
5464 TTI.getArithmeticInstrCost(Instruction::Mul, MulType, CostKind);
5465 InstructionCost Ext2Cost =
5466 TTI.getCastInstrCost(RedOp->getOpcode(), VectorTy, MulType,
5468
5469 InstructionCost RedCost = TTI.getMulAccReductionCost(
5470 IsUnsigned, RdxDesc.getOpcode(), RdxDesc.getRecurrenceType(), ExtType,
5471 CostKind);
5472
5473 if (RedCost.isValid() &&
5474 RedCost < ExtCost * 2 + MulCost + Ext2Cost + BaseCost)
5475 return I == RetI ? RedCost : 0;
5476 } else if (RedOp && match(RedOp, m_ZExtOrSExt(m_Value())) &&
5477 !TheLoop->isLoopInvariant(RedOp)) {
5478 // Matched reduce(ext(A))
5479 bool IsUnsigned = isa<ZExtInst>(RedOp);
5480 auto *ExtType = VectorType::get(RedOp->getOperand(0)->getType(), VectorTy);
5481 InstructionCost RedCost = TTI.getExtendedReductionCost(
5482 RdxDesc.getOpcode(), IsUnsigned, RdxDesc.getRecurrenceType(), ExtType,
5483 RdxDesc.getFastMathFlags(), CostKind);
5484
5485 InstructionCost ExtCost =
5486 TTI.getCastInstrCost(RedOp->getOpcode(), VectorTy, ExtType,
5488 if (RedCost.isValid() && RedCost < BaseCost + ExtCost)
5489 return I == RetI ? RedCost : 0;
5490 } else if (RedOp && RdxDesc.getOpcode() == Instruction::Add &&
5491 match(RedOp, m_Mul(m_Instruction(Op0), m_Instruction(Op1)))) {
5492 if (match(Op0, m_ZExtOrSExt(m_Value())) &&
5493 Op0->getOpcode() == Op1->getOpcode() &&
5494 !TheLoop->isLoopInvariant(Op0) && !TheLoop->isLoopInvariant(Op1)) {
5495 bool IsUnsigned = isa<ZExtInst>(Op0);
5496 Type *Op0Ty = Op0->getOperand(0)->getType();
5497 Type *Op1Ty = Op1->getOperand(0)->getType();
5498 Type *LargestOpTy =
5499 Op0Ty->getIntegerBitWidth() < Op1Ty->getIntegerBitWidth() ? Op1Ty
5500 : Op0Ty;
5501 auto *ExtType = VectorType::get(LargestOpTy, VectorTy);
5502
5503 // Matched reduce.add(mul(ext(A), ext(B))), where the two ext may be of
5504 // different sizes. We take the largest type as the ext to reduce, and add
5505 // the remaining cost as, for example reduce(mul(ext(ext(A)), ext(B))).
5506 InstructionCost ExtCost0 = TTI.getCastInstrCost(
5507 Op0->getOpcode(), VectorTy, VectorType::get(Op0Ty, VectorTy),
5509 InstructionCost ExtCost1 = TTI.getCastInstrCost(
5510 Op1->getOpcode(), VectorTy, VectorType::get(Op1Ty, VectorTy),
5512 InstructionCost MulCost =
5513 TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind);
5514
5515 InstructionCost RedCost = TTI.getMulAccReductionCost(
5516 IsUnsigned, RdxDesc.getOpcode(), RdxDesc.getRecurrenceType(), ExtType,
5517 CostKind);
5518 InstructionCost ExtraExtCost = 0;
5519 if (Op0Ty != LargestOpTy || Op1Ty != LargestOpTy) {
5520 Instruction *ExtraExtOp = (Op0Ty != LargestOpTy) ? Op0 : Op1;
5521 ExtraExtCost = TTI.getCastInstrCost(
5522 ExtraExtOp->getOpcode(), ExtType,
5523 VectorType::get(ExtraExtOp->getOperand(0)->getType(), VectorTy),
5525 }
5526
5527 if (RedCost.isValid() &&
5528 (RedCost + ExtraExtCost) < (ExtCost0 + ExtCost1 + MulCost + BaseCost))
5529 return I == RetI ? RedCost : 0;
5530 } else if (!match(I, m_ZExtOrSExt(m_Value()))) {
5531 // Matched reduce.add(mul())
5532 InstructionCost MulCost =
5533 TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind);
5534
5535 InstructionCost RedCost = TTI.getMulAccReductionCost(
5536 true, RdxDesc.getOpcode(), RdxDesc.getRecurrenceType(), VectorTy,
5537 CostKind);
5538
5539 if (RedCost.isValid() && RedCost < MulCost + BaseCost)
5540 return I == RetI ? RedCost : 0;
5541 }
5542 }
5543
5544 return I == RetI ? std::optional<InstructionCost>(BaseCost) : std::nullopt;
5545}
5546
5548LoopVectorizationCostModel::getMemoryInstructionCost(Instruction *I,
5549 ElementCount VF) {
5550 // Calculate scalar cost only. Vectorization cost should be ready at this
5551 // moment.
5552 if (VF.isScalar()) {
5553 Type *ValTy = getLoadStoreType(I);
5555 const Align Alignment = getLoadStoreAlignment(I);
5556 unsigned AS = getLoadStoreAddressSpace(I);
5557
5558 TTI::OperandValueInfo OpInfo = TTI::getOperandInfo(I->getOperand(0));
5559 return TTI.getAddressComputationCost(PtrTy, nullptr, nullptr, CostKind) +
5560 TTI.getMemoryOpCost(I->getOpcode(), ValTy, Alignment, AS, CostKind,
5561 OpInfo, I);
5562 }
5563 return getWideningCost(I, VF);
5564}
5565
5567LoopVectorizationCostModel::getScalarizationOverhead(Instruction *I,
5568 ElementCount VF) const {
5569
5570 // There is no mechanism yet to create a scalable scalarization loop,
5571 // so this is currently Invalid.
5572 if (VF.isScalable())
5573 return InstructionCost::getInvalid();
5574
5575 if (VF.isScalar())
5576 return 0;
5577
5579 Type *RetTy = toVectorizedTy(I->getType(), VF);
5580 if (!RetTy->isVoidTy() &&
5582
5583 for (Type *VectorTy : getContainedTypes(RetTy)) {
5586 /*Insert=*/true,
5587 /*Extract=*/false, CostKind);
5588 }
5589 }
5590
5591 // Some targets keep addresses scalar.
5593 return Cost;
5594
5595 // Some targets support efficient element stores.
5597 return Cost;
5598
5599 // Collect operands to consider.
5600 CallInst *CI = dyn_cast<CallInst>(I);
5601 Instruction::op_range Ops = CI ? CI->args() : I->operands();
5602
5603 // Skip operands that do not require extraction/scalarization and do not incur
5604 // any overhead.
5606 for (auto *V : filterExtractingOperands(Ops, VF))
5607 Tys.push_back(maybeVectorizeType(V->getType(), VF));
5609}
5610
5612 if (VF.isScalar())
5613 return;
5614 NumPredStores = 0;
5615 for (BasicBlock *BB : TheLoop->blocks()) {
5616 // For each instruction in the old loop.
5617 for (Instruction &I : *BB) {
5619 if (!Ptr)
5620 continue;
5621
5622 // TODO: We should generate better code and update the cost model for
5623 // predicated uniform stores. Today they are treated as any other
5624 // predicated store (see added test cases in
5625 // invariant-store-vectorization.ll).
5627 NumPredStores++;
5628
5629 if (Legal->isUniformMemOp(I, VF)) {
5630 auto IsLegalToScalarize = [&]() {
5631 if (!VF.isScalable())
5632 // Scalarization of fixed length vectors "just works".
5633 return true;
5634
5635 // We have dedicated lowering for unpredicated uniform loads and
5636 // stores. Note that even with tail folding we know that at least
5637 // one lane is active (i.e. generalized predication is not possible
5638 // here), and the logic below depends on this fact.
5639 if (!foldTailByMasking())
5640 return true;
5641
5642 // For scalable vectors, a uniform memop load is always
5643 // uniform-by-parts and we know how to scalarize that.
5644 if (isa<LoadInst>(I))
5645 return true;
5646
5647 // A uniform store isn't neccessarily uniform-by-part
5648 // and we can't assume scalarization.
5649 auto &SI = cast<StoreInst>(I);
5650 return TheLoop->isLoopInvariant(SI.getValueOperand());
5651 };
5652
5653 const InstructionCost GatherScatterCost =
5655 getGatherScatterCost(&I, VF) : InstructionCost::getInvalid();
5656
5657 // Load: Scalar load + broadcast
5658 // Store: Scalar store + isLoopInvariantStoreValue ? 0 : extract
5659 // FIXME: This cost is a significant under-estimate for tail folded
5660 // memory ops.
5661 const InstructionCost ScalarizationCost =
5662 IsLegalToScalarize() ? getUniformMemOpCost(&I, VF)
5664
5665 // Choose better solution for the current VF, Note that Invalid
5666 // costs compare as maximumal large. If both are invalid, we get
5667 // scalable invalid which signals a failure and a vectorization abort.
5668 if (GatherScatterCost < ScalarizationCost)
5669 setWideningDecision(&I, VF, CM_GatherScatter, GatherScatterCost);
5670 else
5671 setWideningDecision(&I, VF, CM_Scalarize, ScalarizationCost);
5672 continue;
5673 }
5674
5675 // We assume that widening is the best solution when possible.
5676 if (memoryInstructionCanBeWidened(&I, VF)) {
5677 InstructionCost Cost = getConsecutiveMemOpCost(&I, VF);
5678 int ConsecutiveStride = Legal->isConsecutivePtr(
5680 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) &&
5681 "Expected consecutive stride.");
5682 InstWidening Decision =
5683 ConsecutiveStride == 1 ? CM_Widen : CM_Widen_Reverse;
5684 setWideningDecision(&I, VF, Decision, Cost);
5685 continue;
5686 }
5687
5688 // Choose between Interleaving, Gather/Scatter or Scalarization.
5690 unsigned NumAccesses = 1;
5691 if (isAccessInterleaved(&I)) {
5692 const auto *Group = getInterleavedAccessGroup(&I);
5693 assert(Group && "Fail to get an interleaved access group.");
5694
5695 // Make one decision for the whole group.
5696 if (getWideningDecision(&I, VF) != CM_Unknown)
5697 continue;
5698
5699 NumAccesses = Group->getNumMembers();
5701 InterleaveCost = getInterleaveGroupCost(&I, VF);
5702 }
5703
5704 InstructionCost GatherScatterCost =
5706 ? getGatherScatterCost(&I, VF) * NumAccesses
5708
5709 InstructionCost ScalarizationCost =
5710 getMemInstScalarizationCost(&I, VF) * NumAccesses;
5711
5712 // Choose better solution for the current VF,
5713 // write down this decision and use it during vectorization.
5715 InstWidening Decision;
5716 if (InterleaveCost <= GatherScatterCost &&
5717 InterleaveCost < ScalarizationCost) {
5718 Decision = CM_Interleave;
5719 Cost = InterleaveCost;
5720 } else if (GatherScatterCost < ScalarizationCost) {
5721 Decision = CM_GatherScatter;
5722 Cost = GatherScatterCost;
5723 } else {
5724 Decision = CM_Scalarize;
5725 Cost = ScalarizationCost;
5726 }
5727 // If the instructions belongs to an interleave group, the whole group
5728 // receives the same decision. The whole group receives the cost, but
5729 // the cost will actually be assigned to one instruction.
5730 if (const auto *Group = getInterleavedAccessGroup(&I)) {
5731 if (Decision == CM_Scalarize) {
5732 for (unsigned Idx = 0; Idx < Group->getFactor(); ++Idx) {
5733 if (auto *I = Group->getMember(Idx)) {
5734 setWideningDecision(I, VF, Decision,
5735 getMemInstScalarizationCost(I, VF));
5736 }
5737 }
5738 } else {
5739 setWideningDecision(Group, VF, Decision, Cost);
5740 }
5741 } else
5742 setWideningDecision(&I, VF, Decision, Cost);
5743 }
5744 }
5745
5746 // Make sure that any load of address and any other address computation
5747 // remains scalar unless there is gather/scatter support. This avoids
5748 // inevitable extracts into address registers, and also has the benefit of
5749 // activating LSR more, since that pass can't optimize vectorized
5750 // addresses.
5751 if (TTI.prefersVectorizedAddressing())
5752 return;
5753
5754 // Start with all scalar pointer uses.
5756 for (BasicBlock *BB : TheLoop->blocks())
5757 for (Instruction &I : *BB) {
5758 Instruction *PtrDef =
5760 if (PtrDef && TheLoop->contains(PtrDef) &&
5762 AddrDefs.insert(PtrDef);
5763 }
5764
5765 // Add all instructions used to generate the addresses.
5767 append_range(Worklist, AddrDefs);
5768 while (!Worklist.empty()) {
5769 Instruction *I = Worklist.pop_back_val();
5770 for (auto &Op : I->operands())
5771 if (auto *InstOp = dyn_cast<Instruction>(Op))
5772 if (TheLoop->contains(InstOp) && !isa<PHINode>(InstOp) &&
5773 AddrDefs.insert(InstOp).second)
5774 Worklist.push_back(InstOp);
5775 }
5776
5777 auto UpdateMemOpUserCost = [this, VF](LoadInst *LI) {
5778 // If there are direct memory op users of the newly scalarized load,
5779 // their cost may have changed because there's no scalarization
5780 // overhead for the operand. Update it.
5781 for (User *U : LI->users()) {
5783 continue;
5785 continue;
5788 getMemInstScalarizationCost(cast<Instruction>(U), VF));
5789 }
5790 };
5791 for (auto *I : AddrDefs) {
5792 if (isa<LoadInst>(I)) {
5793 // Setting the desired widening decision should ideally be handled in
5794 // by cost functions, but since this involves the task of finding out
5795 // if the loaded register is involved in an address computation, it is
5796 // instead changed here when we know this is the case.
5797 InstWidening Decision = getWideningDecision(I, VF);
5798 if (Decision == CM_Widen || Decision == CM_Widen_Reverse ||
5799 (!isPredicatedInst(I) && !Legal->isUniformMemOp(*I, VF) &&
5800 Decision == CM_Scalarize)) {
5801 // Scalarize a widened load of address or update the cost of a scalar
5802 // load of an address.
5804 I, VF, CM_Scalarize,
5805 (VF.getKnownMinValue() *
5806 getMemoryInstructionCost(I, ElementCount::getFixed(1))));
5807 UpdateMemOpUserCost(cast<LoadInst>(I));
5808 } else if (const auto *Group = getInterleavedAccessGroup(I)) {
5809 // Scalarize all members of this interleaved group when any member
5810 // is used as an address. The address-used load skips scalarization
5811 // overhead, other members include it.
5812 for (unsigned Idx = 0; Idx < Group->getFactor(); ++Idx) {
5813 if (Instruction *Member = Group->getMember(Idx)) {
5815 AddrDefs.contains(Member)
5816 ? (VF.getKnownMinValue() *
5817 getMemoryInstructionCost(Member,
5819 : getMemInstScalarizationCost(Member, VF);
5821 UpdateMemOpUserCost(cast<LoadInst>(Member));
5822 }
5823 }
5824 }
5825 } else {
5826 // Cannot scalarize fixed-order recurrence phis at the moment.
5827 if (isa<PHINode>(I) && Legal->isFixedOrderRecurrence(cast<PHINode>(I)))
5828 continue;
5829
5830 // Make sure I gets scalarized and a cost estimate without
5831 // scalarization overhead.
5832 ForcedScalars[VF].insert(I);
5833 }
5834 }
5835}
5836
5838 assert(!VF.isScalar() &&
5839 "Trying to set a vectorization decision for a scalar VF");
5840
5841 auto ForcedScalar = ForcedScalars.find(VF);
5842 for (BasicBlock *BB : TheLoop->blocks()) {
5843 // For each instruction in the old loop.
5844 for (Instruction &I : *BB) {
5846
5847 if (!CI)
5848 continue;
5849
5853 Function *ScalarFunc = CI->getCalledFunction();
5854 Type *ScalarRetTy = CI->getType();
5855 SmallVector<Type *, 4> Tys, ScalarTys;
5856 for (auto &ArgOp : CI->args())
5857 ScalarTys.push_back(ArgOp->getType());
5858
5859 // Estimate cost of scalarized vector call. The source operands are
5860 // assumed to be vectors, so we need to extract individual elements from
5861 // there, execute VF scalar calls, and then gather the result into the
5862 // vector return value.
5863 if (VF.isFixed()) {
5864 InstructionCost ScalarCallCost =
5865 TTI.getCallInstrCost(ScalarFunc, ScalarRetTy, ScalarTys, CostKind);
5866
5867 // Compute costs of unpacking argument values for the scalar calls and
5868 // packing the return values to a vector.
5869 InstructionCost ScalarizationCost = getScalarizationOverhead(CI, VF);
5870 ScalarCost = ScalarCallCost * VF.getKnownMinValue() + ScalarizationCost;
5871 } else {
5872 // There is no point attempting to calculate the scalar cost for a
5873 // scalable VF as we know it will be Invalid.
5875 "Unexpected valid cost for scalarizing scalable vectors");
5876 ScalarCost = InstructionCost::getInvalid();
5877 }
5878
5879 // Honor ForcedScalars and UniformAfterVectorization decisions.
5880 // TODO: For calls, it might still be more profitable to widen. Use
5881 // VPlan-based cost model to compare different options.
5882 if (VF.isVector() && ((ForcedScalar != ForcedScalars.end() &&
5883 ForcedScalar->second.contains(CI)) ||
5884 isUniformAfterVectorization(CI, VF))) {
5885 setCallWideningDecision(CI, VF, CM_Scalarize, nullptr,
5886 Intrinsic::not_intrinsic, std::nullopt,
5887 ScalarCost);
5888 continue;
5889 }
5890
5891 bool MaskRequired = Legal->isMaskRequired(CI);
5892 // Compute corresponding vector type for return value and arguments.
5893 Type *RetTy = toVectorizedTy(ScalarRetTy, VF);
5894 for (Type *ScalarTy : ScalarTys)
5895 Tys.push_back(toVectorizedTy(ScalarTy, VF));
5896
5897 // An in-loop reduction using an fmuladd intrinsic is a special case;
5898 // we don't want the normal cost for that intrinsic.
5900 if (auto RedCost = getReductionPatternCost(CI, VF, RetTy)) {
5903 std::nullopt, *RedCost);
5904 continue;
5905 }
5906
5907 // Find the cost of vectorizing the call, if we can find a suitable
5908 // vector variant of the function.
5909 VFInfo FuncInfo;
5910 Function *VecFunc = nullptr;
5911 // Search through any available variants for one we can use at this VF.
5912 for (VFInfo &Info : VFDatabase::getMappings(*CI)) {
5913 // Must match requested VF.
5914 if (Info.Shape.VF != VF)
5915 continue;
5916
5917 // Must take a mask argument if one is required
5918 if (MaskRequired && !Info.isMasked())
5919 continue;
5920
5921 // Check that all parameter kinds are supported
5922 bool ParamsOk = true;
5923 for (VFParameter Param : Info.Shape.Parameters) {
5924 switch (Param.ParamKind) {
5926 break;
5928 Value *ScalarParam = CI->getArgOperand(Param.ParamPos);
5929 // Make sure the scalar parameter in the loop is invariant.
5930 if (!PSE.getSE()->isLoopInvariant(PSE.getSCEV(ScalarParam),
5931 TheLoop))
5932 ParamsOk = false;
5933 break;
5934 }
5936 Value *ScalarParam = CI->getArgOperand(Param.ParamPos);
5937 // Find the stride for the scalar parameter in this loop and see if
5938 // it matches the stride for the variant.
5939 // TODO: do we need to figure out the cost of an extract to get the
5940 // first lane? Or do we hope that it will be folded away?
5941 ScalarEvolution *SE = PSE.getSE();
5942 if (!match(SE->getSCEV(ScalarParam),
5944 m_SCEV(), m_scev_SpecificSInt(Param.LinearStepOrPos),
5946 ParamsOk = false;
5947 break;
5948 }
5950 break;
5951 default:
5952 ParamsOk = false;
5953 break;
5954 }
5955 }
5956
5957 if (!ParamsOk)
5958 continue;
5959
5960 // Found a suitable candidate, stop here.
5961 VecFunc = CI->getModule()->getFunction(Info.VectorName);
5962 FuncInfo = Info;
5963 break;
5964 }
5965
5966 if (TLI && VecFunc && !CI->isNoBuiltin())
5967 VectorCost = TTI.getCallInstrCost(nullptr, RetTy, Tys, CostKind);
5968
5969 // Find the cost of an intrinsic; some targets may have instructions that
5970 // perform the operation without needing an actual call.
5972 if (IID != Intrinsic::not_intrinsic)
5974
5975 InstructionCost Cost = ScalarCost;
5976 InstWidening Decision = CM_Scalarize;
5977
5978 if (VectorCost <= Cost) {
5979 Cost = VectorCost;
5980 Decision = CM_VectorCall;
5981 }
5982
5983 if (IntrinsicCost <= Cost) {
5985 Decision = CM_IntrinsicCall;
5986 }
5987
5988 setCallWideningDecision(CI, VF, Decision, VecFunc, IID,
5990 }
5991 }
5992}
5993
5995 if (!Legal->isInvariant(Op))
5996 return false;
5997 // Consider Op invariant, if it or its operands aren't predicated
5998 // instruction in the loop. In that case, it is not trivially hoistable.
5999 auto *OpI = dyn_cast<Instruction>(Op);
6000 return !OpI || !TheLoop->contains(OpI) ||
6001 (!isPredicatedInst(OpI) &&
6002 (!isa<PHINode>(OpI) || OpI->getParent() != TheLoop->getHeader()) &&
6003 all_of(OpI->operands(),
6004 [this](Value *Op) { return shouldConsiderInvariant(Op); }));
6005}
6006
6009 ElementCount VF) {
6010 // If we know that this instruction will remain uniform, check the cost of
6011 // the scalar version.
6013 VF = ElementCount::getFixed(1);
6014
6015 if (VF.isVector() && isProfitableToScalarize(I, VF))
6016 return InstsToScalarize[VF][I];
6017
6018 // Forced scalars do not have any scalarization overhead.
6019 auto ForcedScalar = ForcedScalars.find(VF);
6020 if (VF.isVector() && ForcedScalar != ForcedScalars.end()) {
6021 auto InstSet = ForcedScalar->second;
6022 if (InstSet.count(I))
6024 VF.getKnownMinValue();
6025 }
6026
6027 Type *RetTy = I->getType();
6029 RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]);
6030 auto *SE = PSE.getSE();
6031
6032 Type *VectorTy;
6033 if (isScalarAfterVectorization(I, VF)) {
6034 [[maybe_unused]] auto HasSingleCopyAfterVectorization =
6035 [this](Instruction *I, ElementCount VF) -> bool {
6036 if (VF.isScalar())
6037 return true;
6038
6039 auto Scalarized = InstsToScalarize.find(VF);
6040 assert(Scalarized != InstsToScalarize.end() &&
6041 "VF not yet analyzed for scalarization profitability");
6042 return !Scalarized->second.count(I) &&
6043 llvm::all_of(I->users(), [&](User *U) {
6044 auto *UI = cast<Instruction>(U);
6045 return !Scalarized->second.count(UI);
6046 });
6047 };
6048
6049 // With the exception of GEPs and PHIs, after scalarization there should
6050 // only be one copy of the instruction generated in the loop. This is
6051 // because the VF is either 1, or any instructions that need scalarizing
6052 // have already been dealt with by the time we get here. As a result,
6053 // it means we don't have to multiply the instruction cost by VF.
6054 assert(I->getOpcode() == Instruction::GetElementPtr ||
6055 I->getOpcode() == Instruction::PHI ||
6056 (I->getOpcode() == Instruction::BitCast &&
6057 I->getType()->isPointerTy()) ||
6058 HasSingleCopyAfterVectorization(I, VF));
6059 VectorTy = RetTy;
6060 } else
6061 VectorTy = toVectorizedTy(RetTy, VF);
6062
6063 if (VF.isVector() && VectorTy->isVectorTy() &&
6064 !TTI.getNumberOfParts(VectorTy))
6066
6067 // TODO: We need to estimate the cost of intrinsic calls.
6068 switch (I->getOpcode()) {
6069 case Instruction::GetElementPtr:
6070 // We mark this instruction as zero-cost because the cost of GEPs in
6071 // vectorized code depends on whether the corresponding memory instruction
6072 // is scalarized or not. Therefore, we handle GEPs with the memory
6073 // instruction cost.
6074 return 0;
6075 case Instruction::Br: {
6076 // In cases of scalarized and predicated instructions, there will be VF
6077 // predicated blocks in the vectorized loop. Each branch around these
6078 // blocks requires also an extract of its vector compare i1 element.
6079 // Note that the conditional branch from the loop latch will be replaced by
6080 // a single branch controlling the loop, so there is no extra overhead from
6081 // scalarization.
6082 bool ScalarPredicatedBB = false;
6084 if (VF.isVector() && BI->isConditional() &&
6085 (PredicatedBBsAfterVectorization[VF].count(BI->getSuccessor(0)) ||
6086 PredicatedBBsAfterVectorization[VF].count(BI->getSuccessor(1))) &&
6087 BI->getParent() != TheLoop->getLoopLatch())
6088 ScalarPredicatedBB = true;
6089
6090 if (ScalarPredicatedBB) {
6091 // Not possible to scalarize scalable vector with predicated instructions.
6092 if (VF.isScalable())
6094 // Return cost for branches around scalarized and predicated blocks.
6095 auto *VecI1Ty =
6097 return (
6098 TTI.getScalarizationOverhead(
6099 VecI1Ty, APInt::getAllOnes(VF.getFixedValue()),
6100 /*Insert*/ false, /*Extract*/ true, CostKind) +
6101 (TTI.getCFInstrCost(Instruction::Br, CostKind) * VF.getFixedValue()));
6102 }
6103
6104 if (I->getParent() == TheLoop->getLoopLatch() || VF.isScalar())
6105 // The back-edge branch will remain, as will all scalar branches.
6106 return TTI.getCFInstrCost(Instruction::Br, CostKind);
6107
6108 // This branch will be eliminated by if-conversion.
6109 return 0;
6110 // Note: We currently assume zero cost for an unconditional branch inside
6111 // a predicated block since it will become a fall-through, although we
6112 // may decide in the future to call TTI for all branches.
6113 }
6114 case Instruction::Switch: {
6115 if (VF.isScalar())
6116 return TTI.getCFInstrCost(Instruction::Switch, CostKind);
6117 auto *Switch = cast<SwitchInst>(I);
6118 return Switch->getNumCases() *
6119 TTI.getCmpSelInstrCost(
6120 Instruction::ICmp,
6121 toVectorTy(Switch->getCondition()->getType(), VF),
6122 toVectorTy(Type::getInt1Ty(I->getContext()), VF),
6124 }
6125 case Instruction::PHI: {
6126 auto *Phi = cast<PHINode>(I);
6127
6128 // First-order recurrences are replaced by vector shuffles inside the loop.
6129 if (VF.isVector() && Legal->isFixedOrderRecurrence(Phi)) {
6131 std::iota(Mask.begin(), Mask.end(), VF.getKnownMinValue() - 1);
6132 return TTI.getShuffleCost(TargetTransformInfo::SK_Splice,
6133 cast<VectorType>(VectorTy),
6134 cast<VectorType>(VectorTy), Mask, CostKind,
6135 VF.getKnownMinValue() - 1);
6136 }
6137
6138 // Phi nodes in non-header blocks (not inductions, reductions, etc.) are
6139 // converted into select instructions. We require N - 1 selects per phi
6140 // node, where N is the number of incoming values.
6141 if (VF.isVector() && Phi->getParent() != TheLoop->getHeader()) {
6142 Type *ResultTy = Phi->getType();
6143
6144 // All instructions in an Any-of reduction chain are narrowed to bool.
6145 // Check if that is the case for this phi node.
6146 auto *HeaderUser = cast_if_present<PHINode>(
6147 find_singleton<User>(Phi->users(), [this](User *U, bool) -> User * {
6148 auto *Phi = dyn_cast<PHINode>(U);
6149 if (Phi && Phi->getParent() == TheLoop->getHeader())
6150 return Phi;
6151 return nullptr;
6152 }));
6153 if (HeaderUser) {
6154 auto &ReductionVars = Legal->getReductionVars();
6155 auto Iter = ReductionVars.find(HeaderUser);
6156 if (Iter != ReductionVars.end() &&
6158 Iter->second.getRecurrenceKind()))
6159 ResultTy = Type::getInt1Ty(Phi->getContext());
6160 }
6161 return (Phi->getNumIncomingValues() - 1) *
6162 TTI.getCmpSelInstrCost(
6163 Instruction::Select, toVectorTy(ResultTy, VF),
6164 toVectorTy(Type::getInt1Ty(Phi->getContext()), VF),
6166 }
6167
6168 // When tail folding with EVL, if the phi is part of an out of loop
6169 // reduction then it will be transformed into a wide vp_merge.
6170 if (VF.isVector() && foldTailWithEVL() &&
6171 Legal->getReductionVars().contains(Phi) && !isInLoopReduction(Phi)) {
6173 Intrinsic::vp_merge, toVectorTy(Phi->getType(), VF),
6174 {toVectorTy(Type::getInt1Ty(Phi->getContext()), VF)});
6175 return TTI.getIntrinsicInstrCost(ICA, CostKind);
6176 }
6177
6178 return TTI.getCFInstrCost(Instruction::PHI, CostKind);
6179 }
6180 case Instruction::UDiv:
6181 case Instruction::SDiv:
6182 case Instruction::URem:
6183 case Instruction::SRem:
6184 if (VF.isVector() && isPredicatedInst(I)) {
6185 const auto [ScalarCost, SafeDivisorCost] = getDivRemSpeculationCost(I, VF);
6186 return isDivRemScalarWithPredication(ScalarCost, SafeDivisorCost) ?
6187 ScalarCost : SafeDivisorCost;
6188 }
6189 // We've proven all lanes safe to speculate, fall through.
6190 [[fallthrough]];
6191 case Instruction::Add:
6192 case Instruction::Sub: {
6193 auto Info = Legal->getHistogramInfo(I);
6194 if (Info && VF.isVector()) {
6195 const HistogramInfo *HGram = Info.value();
6196 // Assume that a non-constant update value (or a constant != 1) requires
6197 // a multiply, and add that into the cost.
6199 ConstantInt *RHS = dyn_cast<ConstantInt>(I->getOperand(1));
6200 if (!RHS || RHS->getZExtValue() != 1)
6201 MulCost =
6202 TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind);
6203
6204 // Find the cost of the histogram operation itself.
6205 Type *PtrTy = VectorType::get(HGram->Load->getPointerOperandType(), VF);
6206 Type *ScalarTy = I->getType();
6207 Type *MaskTy = VectorType::get(Type::getInt1Ty(I->getContext()), VF);
6208 IntrinsicCostAttributes ICA(Intrinsic::experimental_vector_histogram_add,
6209 Type::getVoidTy(I->getContext()),
6210 {PtrTy, ScalarTy, MaskTy});
6211
6212 // Add the costs together with the add/sub operation.
6213 return TTI.getIntrinsicInstrCost(ICA, CostKind) + MulCost +
6214 TTI.getArithmeticInstrCost(I->getOpcode(), VectorTy, CostKind);
6215 }
6216 [[fallthrough]];
6217 }
6218 case Instruction::FAdd:
6219 case Instruction::FSub:
6220 case Instruction::Mul:
6221 case Instruction::FMul:
6222 case Instruction::FDiv:
6223 case Instruction::FRem:
6224 case Instruction::Shl:
6225 case Instruction::LShr:
6226 case Instruction::AShr:
6227 case Instruction::And:
6228 case Instruction::Or:
6229 case Instruction::Xor: {
6230 // If we're speculating on the stride being 1, the multiplication may
6231 // fold away. We can generalize this for all operations using the notion
6232 // of neutral elements. (TODO)
6233 if (I->getOpcode() == Instruction::Mul &&
6234 ((TheLoop->isLoopInvariant(I->getOperand(0)) &&
6235 PSE.getSCEV(I->getOperand(0))->isOne()) ||
6236 (TheLoop->isLoopInvariant(I->getOperand(1)) &&
6237 PSE.getSCEV(I->getOperand(1))->isOne())))
6238 return 0;
6239
6240 // Detect reduction patterns
6241 if (auto RedCost = getReductionPatternCost(I, VF, VectorTy))
6242 return *RedCost;
6243
6244 // Certain instructions can be cheaper to vectorize if they have a constant
6245 // second vector operand. One example of this are shifts on x86.
6246 Value *Op2 = I->getOperand(1);
6247 if (!isa<Constant>(Op2) && TheLoop->isLoopInvariant(Op2) &&
6248 PSE.getSE()->isSCEVable(Op2->getType()) &&
6249 isa<SCEVConstant>(PSE.getSCEV(Op2))) {
6250 Op2 = cast<SCEVConstant>(PSE.getSCEV(Op2))->getValue();
6251 }
6252 auto Op2Info = TTI.getOperandInfo(Op2);
6253 if (Op2Info.Kind == TargetTransformInfo::OK_AnyValue &&
6256
6257 SmallVector<const Value *, 4> Operands(I->operand_values());
6258 return TTI.getArithmeticInstrCost(
6259 I->getOpcode(), VectorTy, CostKind,
6260 {TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None},
6261 Op2Info, Operands, I, TLI);
6262 }
6263 case Instruction::FNeg: {
6264 return TTI.getArithmeticInstrCost(
6265 I->getOpcode(), VectorTy, CostKind,
6266 {TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None},
6267 {TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None},
6268 I->getOperand(0), I);
6269 }
6270 case Instruction::Select: {
6272 const SCEV *CondSCEV = SE->getSCEV(SI->getCondition());
6273 bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop));
6274
6275 const Value *Op0, *Op1;
6276 using namespace llvm::PatternMatch;
6277 if (!ScalarCond && (match(I, m_LogicalAnd(m_Value(Op0), m_Value(Op1))) ||
6278 match(I, m_LogicalOr(m_Value(Op0), m_Value(Op1))))) {
6279 // select x, y, false --> x & y
6280 // select x, true, y --> x | y
6281 const auto [Op1VK, Op1VP] = TTI::getOperandInfo(Op0);
6282 const auto [Op2VK, Op2VP] = TTI::getOperandInfo(Op1);
6283 assert(Op0->getType()->getScalarSizeInBits() == 1 &&
6284 Op1->getType()->getScalarSizeInBits() == 1);
6285
6286 return TTI.getArithmeticInstrCost(
6287 match(I, m_LogicalOr()) ? Instruction::Or : Instruction::And,
6288 VectorTy, CostKind, {Op1VK, Op1VP}, {Op2VK, Op2VP}, {Op0, Op1}, I);
6289 }
6290
6291 Type *CondTy = SI->getCondition()->getType();
6292 if (!ScalarCond)
6293 CondTy = VectorType::get(CondTy, VF);
6294
6296 if (auto *Cmp = dyn_cast<CmpInst>(SI->getCondition()))
6297 Pred = Cmp->getPredicate();
6298 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy, Pred,
6299 CostKind, {TTI::OK_AnyValue, TTI::OP_None},
6300 {TTI::OK_AnyValue, TTI::OP_None}, I);
6301 }
6302 case Instruction::ICmp:
6303 case Instruction::FCmp: {
6304 Type *ValTy = I->getOperand(0)->getType();
6305
6307 [[maybe_unused]] Instruction *Op0AsInstruction =
6308 dyn_cast<Instruction>(I->getOperand(0));
6309 assert((!canTruncateToMinimalBitwidth(Op0AsInstruction, VF) ||
6310 MinBWs[I] == MinBWs[Op0AsInstruction]) &&
6311 "if both the operand and the compare are marked for "
6312 "truncation, they must have the same bitwidth");
6313 ValTy = IntegerType::get(ValTy->getContext(), MinBWs[I]);
6314 }
6315
6316 VectorTy = toVectorTy(ValTy, VF);
6317 return TTI.getCmpSelInstrCost(
6318 I->getOpcode(), VectorTy, CmpInst::makeCmpResultType(VectorTy),
6319 cast<CmpInst>(I)->getPredicate(), CostKind,
6320 {TTI::OK_AnyValue, TTI::OP_None}, {TTI::OK_AnyValue, TTI::OP_None}, I);
6321 }
6322 case Instruction::Store:
6323 case Instruction::Load: {
6324 ElementCount Width = VF;
6325 if (Width.isVector()) {
6326 InstWidening Decision = getWideningDecision(I, Width);
6327 assert(Decision != CM_Unknown &&
6328 "CM decision should be taken at this point");
6331 if (Decision == CM_Scalarize)
6332 Width = ElementCount::getFixed(1);
6333 }
6334 VectorTy = toVectorTy(getLoadStoreType(I), Width);
6335 return getMemoryInstructionCost(I, VF);
6336 }
6337 case Instruction::BitCast:
6338 if (I->getType()->isPointerTy())
6339 return 0;
6340 [[fallthrough]];
6341 case Instruction::ZExt:
6342 case Instruction::SExt:
6343 case Instruction::FPToUI:
6344 case Instruction::FPToSI:
6345 case Instruction::FPExt:
6346 case Instruction::PtrToInt:
6347 case Instruction::IntToPtr:
6348 case Instruction::SIToFP:
6349 case Instruction::UIToFP:
6350 case Instruction::Trunc:
6351 case Instruction::FPTrunc: {
6352 // Computes the CastContextHint from a Load/Store instruction.
6353 auto ComputeCCH = [&](Instruction *I) -> TTI::CastContextHint {
6355 "Expected a load or a store!");
6356
6357 if (VF.isScalar() || !TheLoop->contains(I))
6359
6360 switch (getWideningDecision(I, VF)) {
6372 llvm_unreachable("Instr did not go through cost modelling?");
6375 llvm_unreachable_internal("Instr has invalid widening decision");
6376 }
6377
6378 llvm_unreachable("Unhandled case!");
6379 };
6380
6381 unsigned Opcode = I->getOpcode();
6383 // For Trunc, the context is the only user, which must be a StoreInst.
6384 if (Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) {
6385 if (I->hasOneUse())
6386 if (StoreInst *Store = dyn_cast<StoreInst>(*I->user_begin()))
6387 CCH = ComputeCCH(Store);
6388 }
6389 // For Z/Sext, the context is the operand, which must be a LoadInst.
6390 else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt ||
6391 Opcode == Instruction::FPExt) {
6392 if (LoadInst *Load = dyn_cast<LoadInst>(I->getOperand(0)))
6393 CCH = ComputeCCH(Load);
6394 }
6395
6396 // We optimize the truncation of induction variables having constant
6397 // integer steps. The cost of these truncations is the same as the scalar
6398 // operation.
6399 if (isOptimizableIVTruncate(I, VF)) {
6400 auto *Trunc = cast<TruncInst>(I);
6401 return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(),
6402 Trunc->getSrcTy(), CCH, CostKind, Trunc);
6403 }
6404
6405 // Detect reduction patterns
6406 if (auto RedCost = getReductionPatternCost(I, VF, VectorTy))
6407 return *RedCost;
6408
6409 Type *SrcScalarTy = I->getOperand(0)->getType();
6410 Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0));
6411 if (canTruncateToMinimalBitwidth(Op0AsInstruction, VF))
6412 SrcScalarTy =
6413 IntegerType::get(SrcScalarTy->getContext(), MinBWs[Op0AsInstruction]);
6414 Type *SrcVecTy =
6415 VectorTy->isVectorTy() ? toVectorTy(SrcScalarTy, VF) : SrcScalarTy;
6416
6418 // If the result type is <= the source type, there will be no extend
6419 // after truncating the users to the minimal required bitwidth.
6420 if (VectorTy->getScalarSizeInBits() <= SrcVecTy->getScalarSizeInBits() &&
6421 (I->getOpcode() == Instruction::ZExt ||
6422 I->getOpcode() == Instruction::SExt))
6423 return 0;
6424 }
6425
6426 return TTI.getCastInstrCost(Opcode, VectorTy, SrcVecTy, CCH, CostKind, I);
6427 }
6428 case Instruction::Call:
6429 return getVectorCallCost(cast<CallInst>(I), VF);
6430 case Instruction::ExtractValue:
6431 return TTI.getInstructionCost(I, CostKind);
6432 case Instruction::Alloca:
6433 // We cannot easily widen alloca to a scalable alloca, as
6434 // the result would need to be a vector of pointers.
6435 if (VF.isScalable())
6437 [[fallthrough]];
6438 default:
6439 // This opcode is unknown. Assume that it is the same as 'mul'.
6440 return TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind);
6441 } // end of switch.
6442}
6443
6445 // Ignore ephemeral values.
6447
6448 SmallVector<Value *, 4> DeadInterleavePointerOps;
6450
6451 // If a scalar epilogue is required, users outside the loop won't use
6452 // live-outs from the vector loop but from the scalar epilogue. Ignore them if
6453 // that is the case.
6454 bool RequiresScalarEpilogue = requiresScalarEpilogue(true);
6455 auto IsLiveOutDead = [this, RequiresScalarEpilogue](User *U) {
6456 return RequiresScalarEpilogue &&
6457 !TheLoop->contains(cast<Instruction>(U)->getParent());
6458 };
6459
6461 DFS.perform(LI);
6462 for (BasicBlock *BB : reverse(make_range(DFS.beginRPO(), DFS.endRPO())))
6463 for (Instruction &I : reverse(*BB)) {
6464 if (VecValuesToIgnore.contains(&I) || ValuesToIgnore.contains(&I))
6465 continue;
6466
6467 // Add instructions that would be trivially dead and are only used by
6468 // values already ignored to DeadOps to seed worklist.
6470 all_of(I.users(), [this, IsLiveOutDead](User *U) {
6471 return VecValuesToIgnore.contains(U) ||
6472 ValuesToIgnore.contains(U) || IsLiveOutDead(U);
6473 }))
6474 DeadOps.push_back(&I);
6475
6476 // For interleave groups, we only create a pointer for the start of the
6477 // interleave group. Queue up addresses of group members except the insert
6478 // position for further processing.
6479 if (isAccessInterleaved(&I)) {
6480 auto *Group = getInterleavedAccessGroup(&I);
6481 if (Group->getInsertPos() == &I)
6482 continue;
6483 Value *PointerOp = getLoadStorePointerOperand(&I);
6484 DeadInterleavePointerOps.push_back(PointerOp);
6485 }
6486
6487 // Queue branches for analysis. They are dead, if their successors only
6488 // contain dead instructions.
6489 if (auto *Br = dyn_cast<BranchInst>(&I)) {
6490 if (Br->isConditional())
6491 DeadOps.push_back(&I);
6492 }
6493 }
6494
6495 // Mark ops feeding interleave group members as free, if they are only used
6496 // by other dead computations.
6497 for (unsigned I = 0; I != DeadInterleavePointerOps.size(); ++I) {
6498 auto *Op = dyn_cast<Instruction>(DeadInterleavePointerOps[I]);
6499 if (!Op || !TheLoop->contains(Op) || any_of(Op->users(), [this](User *U) {
6500 Instruction *UI = cast<Instruction>(U);
6501 return !VecValuesToIgnore.contains(U) &&
6502 (!isAccessInterleaved(UI) ||
6503 getInterleavedAccessGroup(UI)->getInsertPos() == UI);
6504 }))
6505 continue;
6506 VecValuesToIgnore.insert(Op);
6507 append_range(DeadInterleavePointerOps, Op->operands());
6508 }
6509
6510 // Mark ops that would be trivially dead and are only used by ignored
6511 // instructions as free.
6512 BasicBlock *Header = TheLoop->getHeader();
6513
6514 // Returns true if the block contains only dead instructions. Such blocks will
6515 // be removed by VPlan-to-VPlan transforms and won't be considered by the
6516 // VPlan-based cost model, so skip them in the legacy cost-model as well.
6517 auto IsEmptyBlock = [this](BasicBlock *BB) {
6518 return all_of(*BB, [this](Instruction &I) {
6519 return ValuesToIgnore.contains(&I) || VecValuesToIgnore.contains(&I) ||
6520 (isa<BranchInst>(&I) && !cast<BranchInst>(&I)->isConditional());
6521 });
6522 };
6523 for (unsigned I = 0; I != DeadOps.size(); ++I) {
6524 auto *Op = dyn_cast<Instruction>(DeadOps[I]);
6525
6526 // Check if the branch should be considered dead.
6527 if (auto *Br = dyn_cast_or_null<BranchInst>(Op)) {
6528 BasicBlock *ThenBB = Br->getSuccessor(0);
6529 BasicBlock *ElseBB = Br->getSuccessor(1);
6530 // Don't considers branches leaving the loop for simplification.
6531 if (!TheLoop->contains(ThenBB) || !TheLoop->contains(ElseBB))
6532 continue;
6533 bool ThenEmpty = IsEmptyBlock(ThenBB);
6534 bool ElseEmpty = IsEmptyBlock(ElseBB);
6535 if ((ThenEmpty && ElseEmpty) ||
6536 (ThenEmpty && ThenBB->getSingleSuccessor() == ElseBB &&
6537 ElseBB->phis().empty()) ||
6538 (ElseEmpty && ElseBB->getSingleSuccessor() == ThenBB &&
6539 ThenBB->phis().empty())) {
6540 VecValuesToIgnore.insert(Br);
6541 DeadOps.push_back(Br->getCondition());
6542 }
6543 continue;
6544 }
6545
6546 // Skip any op that shouldn't be considered dead.
6547 if (!Op || !TheLoop->contains(Op) ||
6548 (isa<PHINode>(Op) && Op->getParent() == Header) ||
6550 any_of(Op->users(), [this, IsLiveOutDead](User *U) {
6551 return !VecValuesToIgnore.contains(U) &&
6552 !ValuesToIgnore.contains(U) && !IsLiveOutDead(U);
6553 }))
6554 continue;
6555
6556 // If all of Op's users are in ValuesToIgnore, add it to ValuesToIgnore
6557 // which applies for both scalar and vector versions. Otherwise it is only
6558 // dead in vector versions, so only add it to VecValuesToIgnore.
6559 if (all_of(Op->users(),
6560 [this](User *U) { return ValuesToIgnore.contains(U); }))
6561 ValuesToIgnore.insert(Op);
6562
6563 VecValuesToIgnore.insert(Op);
6564 append_range(DeadOps, Op->operands());
6565 }
6566
6567 // Ignore type-promoting instructions we identified during reduction
6568 // detection.
6569 for (const auto &Reduction : Legal->getReductionVars()) {
6570 const RecurrenceDescriptor &RedDes = Reduction.second;
6571 const SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts();
6572 VecValuesToIgnore.insert_range(Casts);
6573 }
6574 // Ignore type-casting instructions we identified during induction
6575 // detection.
6576 for (const auto &Induction : Legal->getInductionVars()) {
6577 const InductionDescriptor &IndDes = Induction.second;
6578 const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts();
6579 VecValuesToIgnore.insert_range(Casts);
6580 }
6581}
6582
6584 // Avoid duplicating work finding in-loop reductions.
6585 if (!InLoopReductions.empty())
6586 return;
6587
6588 for (const auto &Reduction : Legal->getReductionVars()) {
6589 PHINode *Phi = Reduction.first;
6590 const RecurrenceDescriptor &RdxDesc = Reduction.second;
6591
6592 // We don't collect reductions that are type promoted (yet).
6593 if (RdxDesc.getRecurrenceType() != Phi->getType())
6594 continue;
6595
6596 // In-loop AnyOf and FindIV reductions are not yet supported.
6597 RecurKind Kind = RdxDesc.getRecurrenceKind();
6600 continue;
6601
6602 // If the target would prefer this reduction to happen "in-loop", then we
6603 // want to record it as such.
6604 if (!PreferInLoopReductions && !useOrderedReductions(RdxDesc) &&
6605 !TTI.preferInLoopReduction(Kind, Phi->getType()))
6606 continue;
6607
6608 // Check that we can correctly put the reductions into the loop, by
6609 // finding the chain of operations that leads from the phi to the loop
6610 // exit value.
6611 SmallVector<Instruction *, 4> ReductionOperations =
6612 RdxDesc.getReductionOpChain(Phi, TheLoop);
6613 bool InLoop = !ReductionOperations.empty();
6614
6615 if (InLoop) {
6616 InLoopReductions.insert(Phi);
6617 // Add the elements to InLoopReductionImmediateChains for cost modelling.
6618 Instruction *LastChain = Phi;
6619 for (auto *I : ReductionOperations) {
6620 InLoopReductionImmediateChains[I] = LastChain;
6621 LastChain = I;
6622 }
6623 }
6624 LLVM_DEBUG(dbgs() << "LV: Using " << (InLoop ? "inloop" : "out of loop")
6625 << " reduction for phi: " << *Phi << "\n");
6626 }
6627}
6628
6629// This function will select a scalable VF if the target supports scalable
6630// vectors and a fixed one otherwise.
6631// TODO: we could return a pair of values that specify the max VF and
6632// min VF, to be used in `buildVPlans(MinVF, MaxVF)` instead of
6633// `buildVPlans(VF, VF)`. We cannot do it because VPLAN at the moment
6634// doesn't have a cost model that can choose which plan to execute if
6635// more than one is generated.
6638 unsigned WidestType;
6639 std::tie(std::ignore, WidestType) = CM.getSmallestAndWidestTypes();
6640
6642 TTI.enableScalableVectorization()
6645
6646 TypeSize RegSize = TTI.getRegisterBitWidth(RegKind);
6647 unsigned N = RegSize.getKnownMinValue() / WidestType;
6648 return ElementCount::get(N, RegSize.isScalable());
6649}
6650
6653 ElementCount VF = UserVF;
6654 // Outer loop handling: They may require CFG and instruction level
6655 // transformations before even evaluating whether vectorization is profitable.
6656 // Since we cannot modify the incoming IR, we need to build VPlan upfront in
6657 // the vectorization pipeline.
6658 if (!OrigLoop->isInnermost()) {
6659 // If the user doesn't provide a vectorization factor, determine a
6660 // reasonable one.
6661 if (UserVF.isZero()) {
6662 VF = determineVPlanVF(TTI, CM);
6663 LLVM_DEBUG(dbgs() << "LV: VPlan computed VF " << VF << ".\n");
6664
6665 // Make sure we have a VF > 1 for stress testing.
6666 if (VPlanBuildStressTest && (VF.isScalar() || VF.isZero())) {
6667 LLVM_DEBUG(dbgs() << "LV: VPlan stress testing: "
6668 << "overriding computed VF.\n");
6669 VF = ElementCount::getFixed(4);
6670 }
6671 } else if (UserVF.isScalable() && !TTI.supportsScalableVectors() &&
6673 LLVM_DEBUG(dbgs() << "LV: Not vectorizing. Scalable VF requested, but "
6674 << "not supported by the target.\n");
6676 "Scalable vectorization requested but not supported by the target",
6677 "the scalable user-specified vectorization width for outer-loop "
6678 "vectorization cannot be used because the target does not support "
6679 "scalable vectors.",
6680 "ScalableVFUnfeasible", ORE, OrigLoop);
6682 }
6683 assert(EnableVPlanNativePath && "VPlan-native path is not enabled.");
6685 "VF needs to be a power of two");
6686 LLVM_DEBUG(dbgs() << "LV: Using " << (!UserVF.isZero() ? "user " : "")
6687 << "VF " << VF << " to build VPlans.\n");
6688 buildVPlans(VF, VF);
6689
6690 if (VPlans.empty())
6692
6693 // For VPlan build stress testing, we bail out after VPlan construction.
6696
6697 return {VF, 0 /*Cost*/, 0 /* ScalarCost */};
6698 }
6699
6700 LLVM_DEBUG(
6701 dbgs() << "LV: Not vectorizing. Inner loops aren't supported in the "
6702 "VPlan-native path.\n");
6704}
6705
6706void LoopVectorizationPlanner::plan(ElementCount UserVF, unsigned UserIC) {
6707 assert(OrigLoop->isInnermost() && "Inner loop expected.");
6708 CM.collectValuesToIgnore();
6709 CM.collectElementTypesForWidening();
6710
6711 FixedScalableVFPair MaxFactors = CM.computeMaxVF(UserVF, UserIC);
6712 if (!MaxFactors) // Cases that should not to be vectorized nor interleaved.
6713 return;
6714
6715 // Invalidate interleave groups if all blocks of loop will be predicated.
6716 if (CM.blockNeedsPredicationForAnyReason(OrigLoop->getHeader()) &&
6718 LLVM_DEBUG(
6719 dbgs()
6720 << "LV: Invalidate all interleaved groups due to fold-tail by masking "
6721 "which requires masked-interleaved support.\n");
6722 if (CM.InterleaveInfo.invalidateGroups())
6723 // Invalidating interleave groups also requires invalidating all decisions
6724 // based on them, which includes widening decisions and uniform and scalar
6725 // values.
6726 CM.invalidateCostModelingDecisions();
6727 }
6728
6729 if (CM.foldTailByMasking())
6730 Legal->prepareToFoldTailByMasking();
6731
6732 ElementCount MaxUserVF =
6733 UserVF.isScalable() ? MaxFactors.ScalableVF : MaxFactors.FixedVF;
6734 if (UserVF) {
6735 if (!ElementCount::isKnownLE(UserVF, MaxUserVF)) {
6737 "UserVF ignored because it may be larger than the maximal safe VF",
6738 "InvalidUserVF", ORE, OrigLoop);
6739 } else {
6741 "VF needs to be a power of two");
6742 // Collect the instructions (and their associated costs) that will be more
6743 // profitable to scalarize.
6744 CM.collectInLoopReductions();
6745 if (CM.selectUserVectorizationFactor(UserVF)) {
6746 LLVM_DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n");
6747 buildVPlansWithVPRecipes(UserVF, UserVF);
6749 return;
6750 }
6751 reportVectorizationInfo("UserVF ignored because of invalid costs.",
6752 "InvalidCost", ORE, OrigLoop);
6753 }
6754 }
6755
6756 // Collect the Vectorization Factor Candidates.
6757 SmallVector<ElementCount> VFCandidates;
6758 for (auto VF = ElementCount::getFixed(1);
6759 ElementCount::isKnownLE(VF, MaxFactors.FixedVF); VF *= 2)
6760 VFCandidates.push_back(VF);
6761 for (auto VF = ElementCount::getScalable(1);
6762 ElementCount::isKnownLE(VF, MaxFactors.ScalableVF); VF *= 2)
6763 VFCandidates.push_back(VF);
6764
6765 CM.collectInLoopReductions();
6766 for (const auto &VF : VFCandidates) {
6767 // Collect Uniform and Scalar instructions after vectorization with VF.
6768 CM.collectNonVectorizedAndSetWideningDecisions(VF);
6769 }
6770
6771 buildVPlansWithVPRecipes(ElementCount::getFixed(1), MaxFactors.FixedVF);
6772 buildVPlansWithVPRecipes(ElementCount::getScalable(1), MaxFactors.ScalableVF);
6773
6775}
6776
6778 ElementCount VF) const {
6779 InstructionCost Cost = CM.getInstructionCost(UI, VF);
6780 if (Cost.isValid() && ForceTargetInstructionCost.getNumOccurrences())
6782 return Cost;
6783}
6784
6786 ElementCount VF) const {
6787 return CM.isUniformAfterVectorization(I, VF);
6788}
6789
6790bool VPCostContext::skipCostComputation(Instruction *UI, bool IsVector) const {
6791 return CM.ValuesToIgnore.contains(UI) ||
6792 (IsVector && CM.VecValuesToIgnore.contains(UI)) ||
6793 SkipCostComputation.contains(UI);
6794}
6795
6797 return CM.getPredBlockCostDivisor(CostKind, BB);
6798}
6799
6801LoopVectorizationPlanner::precomputeCosts(VPlan &Plan, ElementCount VF,
6802 VPCostContext &CostCtx) const {
6804 // Cost modeling for inductions is inaccurate in the legacy cost model
6805 // compared to the recipes that are generated. To match here initially during
6806 // VPlan cost model bring up directly use the induction costs from the legacy
6807 // cost model. Note that we do this as pre-processing; the VPlan may not have
6808 // any recipes associated with the original induction increment instruction
6809 // and may replace truncates with VPWidenIntOrFpInductionRecipe. We precompute
6810 // the cost of induction phis and increments (both that are represented by
6811 // recipes and those that are not), to avoid distinguishing between them here,
6812 // and skip all recipes that represent induction phis and increments (the
6813 // former case) later on, if they exist, to avoid counting them twice.
6814 // Similarly we pre-compute the cost of any optimized truncates.
6815 // TODO: Switch to more accurate costing based on VPlan.
6816 for (const auto &[IV, IndDesc] : Legal->getInductionVars()) {
6818 IV->getIncomingValueForBlock(OrigLoop->getLoopLatch()));
6819 SmallVector<Instruction *> IVInsts = {IVInc};
6820 for (unsigned I = 0; I != IVInsts.size(); I++) {
6821 for (Value *Op : IVInsts[I]->operands()) {
6822 auto *OpI = dyn_cast<Instruction>(Op);
6823 if (Op == IV || !OpI || !OrigLoop->contains(OpI) || !Op->hasOneUse())
6824 continue;
6825 IVInsts.push_back(OpI);
6826 }
6827 }
6828 IVInsts.push_back(IV);
6829 for (User *U : IV->users()) {
6830 auto *CI = cast<Instruction>(U);
6831 if (!CostCtx.CM.isOptimizableIVTruncate(CI, VF))
6832 continue;
6833 IVInsts.push_back(CI);
6834 }
6835
6836 // If the vector loop gets executed exactly once with the given VF, ignore
6837 // the costs of comparison and induction instructions, as they'll get
6838 // simplified away.
6839 // TODO: Remove this code after stepping away from the legacy cost model and
6840 // adding code to simplify VPlans before calculating their costs.
6841 auto TC = getSmallConstantTripCount(PSE.getSE(), OrigLoop);
6842 if (TC == VF && !CM.foldTailByMasking())
6843 addFullyUnrolledInstructionsToIgnore(OrigLoop, Legal->getInductionVars(),
6844 CostCtx.SkipCostComputation);
6845
6846 for (Instruction *IVInst : IVInsts) {
6847 if (CostCtx.skipCostComputation(IVInst, VF.isVector()))
6848 continue;
6849 InstructionCost InductionCost = CostCtx.getLegacyCost(IVInst, VF);
6850 LLVM_DEBUG({
6851 dbgs() << "Cost of " << InductionCost << " for VF " << VF
6852 << ": induction instruction " << *IVInst << "\n";
6853 });
6854 Cost += InductionCost;
6855 CostCtx.SkipCostComputation.insert(IVInst);
6856 }
6857 }
6858
6859 /// Compute the cost of all exiting conditions of the loop using the legacy
6860 /// cost model. This is to match the legacy behavior, which adds the cost of
6861 /// all exit conditions. Note that this over-estimates the cost, as there will
6862 /// be a single condition to control the vector loop.
6864 CM.TheLoop->getExitingBlocks(Exiting);
6865 SetVector<Instruction *> ExitInstrs;
6866 // Collect all exit conditions.
6867 for (BasicBlock *EB : Exiting) {
6868 auto *Term = dyn_cast<BranchInst>(EB->getTerminator());
6869 if (!Term || CostCtx.skipCostComputation(Term, VF.isVector()))
6870 continue;
6871 if (auto *CondI = dyn_cast<Instruction>(Term->getOperand(0))) {
6872 ExitInstrs.insert(CondI);
6873 }
6874 }
6875 // Compute the cost of all instructions only feeding the exit conditions.
6876 for (unsigned I = 0; I != ExitInstrs.size(); ++I) {
6877 Instruction *CondI = ExitInstrs[I];
6878 if (!OrigLoop->contains(CondI) ||
6879 !CostCtx.SkipCostComputation.insert(CondI).second)
6880 continue;
6881 InstructionCost CondICost = CostCtx.getLegacyCost(CondI, VF);
6882 LLVM_DEBUG({
6883 dbgs() << "Cost of " << CondICost << " for VF " << VF
6884 << ": exit condition instruction " << *CondI << "\n";
6885 });
6886 Cost += CondICost;
6887 for (Value *Op : CondI->operands()) {
6888 auto *OpI = dyn_cast<Instruction>(Op);
6889 if (!OpI || CostCtx.skipCostComputation(OpI, VF.isVector()) ||
6890 any_of(OpI->users(), [&ExitInstrs, this](User *U) {
6891 return OrigLoop->contains(cast<Instruction>(U)->getParent()) &&
6892 !ExitInstrs.contains(cast<Instruction>(U));
6893 }))
6894 continue;
6895 ExitInstrs.insert(OpI);
6896 }
6897 }
6898
6899 // Pre-compute the costs for branches except for the backedge, as the number
6900 // of replicate regions in a VPlan may not directly match the number of
6901 // branches, which would lead to different decisions.
6902 // TODO: Compute cost of branches for each replicate region in the VPlan,
6903 // which is more accurate than the legacy cost model.
6904 for (BasicBlock *BB : OrigLoop->blocks()) {
6905 if (CostCtx.skipCostComputation(BB->getTerminator(), VF.isVector()))
6906 continue;
6907 CostCtx.SkipCostComputation.insert(BB->getTerminator());
6908 if (BB == OrigLoop->getLoopLatch())
6909 continue;
6910 auto BranchCost = CostCtx.getLegacyCost(BB->getTerminator(), VF);
6911 Cost += BranchCost;
6912 }
6913
6914 // Pre-compute costs for instructions that are forced-scalar or profitable to
6915 // scalarize. Their costs will be computed separately in the legacy cost
6916 // model.
6917 for (Instruction *ForcedScalar : CM.ForcedScalars[VF]) {
6918 if (CostCtx.skipCostComputation(ForcedScalar, VF.isVector()))
6919 continue;
6920 CostCtx.SkipCostComputation.insert(ForcedScalar);
6921 InstructionCost ForcedCost = CostCtx.getLegacyCost(ForcedScalar, VF);
6922 LLVM_DEBUG({
6923 dbgs() << "Cost of " << ForcedCost << " for VF " << VF
6924 << ": forced scalar " << *ForcedScalar << "\n";
6925 });
6926 Cost += ForcedCost;
6927 }
6928 for (const auto &[Scalarized, ScalarCost] : CM.InstsToScalarize[VF]) {
6929 if (CostCtx.skipCostComputation(Scalarized, VF.isVector()))
6930 continue;
6931 CostCtx.SkipCostComputation.insert(Scalarized);
6932 LLVM_DEBUG({
6933 dbgs() << "Cost of " << ScalarCost << " for VF " << VF
6934 << ": profitable to scalarize " << *Scalarized << "\n";
6935 });
6936 Cost += ScalarCost;
6937 }
6938
6939 return Cost;
6940}
6941
6942InstructionCost LoopVectorizationPlanner::cost(VPlan &Plan,
6943 ElementCount VF) const {
6944 VPCostContext CostCtx(CM.TTI, *CM.TLI, Plan, CM, CM.CostKind, *PSE.getSE(),
6945 OrigLoop);
6946 InstructionCost Cost = precomputeCosts(Plan, VF, CostCtx);
6947
6948 // Now compute and add the VPlan-based cost.
6949 Cost += Plan.cost(VF, CostCtx);
6950#ifndef NDEBUG
6951 unsigned EstimatedWidth = estimateElementCount(VF, CM.getVScaleForTuning());
6952 LLVM_DEBUG(dbgs() << "Cost for VF " << VF << ": " << Cost
6953 << " (Estimated cost per lane: ");
6954 if (Cost.isValid()) {
6955 double CostPerLane = double(Cost.getValue()) / EstimatedWidth;
6956 LLVM_DEBUG(dbgs() << format("%.1f", CostPerLane));
6957 } else /* No point dividing an invalid cost - it will still be invalid */
6958 LLVM_DEBUG(dbgs() << "Invalid");
6959 LLVM_DEBUG(dbgs() << ")\n");
6960#endif
6961 return Cost;
6962}
6963
6964#ifndef NDEBUG
6965/// Return true if the original loop \ TheLoop contains any instructions that do
6966/// not have corresponding recipes in \p Plan and are not marked to be ignored
6967/// in \p CostCtx. This means the VPlan contains simplification that the legacy
6968/// cost-model did not account for.
6970 VPCostContext &CostCtx,
6971 Loop *TheLoop,
6972 ElementCount VF) {
6973 // First collect all instructions for the recipes in Plan.
6974 auto GetInstructionForCost = [](const VPRecipeBase *R) -> Instruction * {
6975 if (auto *S = dyn_cast<VPSingleDefRecipe>(R))
6976 return dyn_cast_or_null<Instruction>(S->getUnderlyingValue());
6977 if (auto *WidenMem = dyn_cast<VPWidenMemoryRecipe>(R))
6978 return &WidenMem->getIngredient();
6979 return nullptr;
6980 };
6981
6982 // Check if a select for a safe divisor was hoisted to the pre-header. If so,
6983 // the select doesn't need to be considered for the vector loop cost; go with
6984 // the more accurate VPlan-based cost model.
6985 for (VPRecipeBase &R : *Plan.getVectorPreheader()) {
6986 auto *VPI = dyn_cast<VPInstruction>(&R);
6987 if (!VPI || VPI->getOpcode() != Instruction::Select)
6988 continue;
6989
6990 if (auto *WR = dyn_cast_or_null<VPWidenRecipe>(VPI->getSingleUser())) {
6991 switch (WR->getOpcode()) {
6992 case Instruction::UDiv:
6993 case Instruction::SDiv:
6994 case Instruction::URem:
6995 case Instruction::SRem:
6996 return true;
6997 default:
6998 break;
6999 }
7000 }
7001 }
7002
7003 DenseSet<Instruction *> SeenInstrs;
7004 auto Iter = vp_depth_first_deep(Plan.getVectorLoopRegion()->getEntry());
7006 for (VPRecipeBase &R : *VPBB) {
7007 if (auto *IR = dyn_cast<VPInterleaveRecipe>(&R)) {
7008 auto *IG = IR->getInterleaveGroup();
7009 unsigned NumMembers = IG->getNumMembers();
7010 for (unsigned I = 0; I != NumMembers; ++I) {
7011 if (Instruction *M = IG->getMember(I))
7012 SeenInstrs.insert(M);
7013 }
7014 continue;
7015 }
7016 // Unused FOR splices are removed by VPlan transforms, so the VPlan-based
7017 // cost model won't cost it whilst the legacy will.
7018 if (auto *FOR = dyn_cast<VPFirstOrderRecurrencePHIRecipe>(&R)) {
7019 using namespace VPlanPatternMatch;
7020 if (none_of(FOR->users(),
7021 match_fn(m_VPInstruction<
7023 return true;
7024 }
7025 // The VPlan-based cost model is more accurate for partial reduction and
7026 // comparing against the legacy cost isn't desirable.
7028 return true;
7029
7030 // The VPlan-based cost model can analyze if recipes are scalar
7031 // recursively, but the legacy cost model cannot.
7032 if (auto *WidenMemR = dyn_cast<VPWidenMemoryRecipe>(&R)) {
7033 auto *AddrI = dyn_cast<Instruction>(
7034 getLoadStorePointerOperand(&WidenMemR->getIngredient()));
7035 if (AddrI && vputils::isSingleScalar(WidenMemR->getAddr()) !=
7036 CostCtx.isLegacyUniformAfterVectorization(AddrI, VF))
7037 return true;
7038 }
7039
7040 /// If a VPlan transform folded a recipe to one producing a single-scalar,
7041 /// but the original instruction wasn't uniform-after-vectorization in the
7042 /// legacy cost model, the legacy cost overestimates the actual cost.
7043 if (auto *RepR = dyn_cast<VPReplicateRecipe>(&R)) {
7044 if (RepR->isSingleScalar() &&
7046 RepR->getUnderlyingInstr(), VF))
7047 return true;
7048 }
7049 if (Instruction *UI = GetInstructionForCost(&R)) {
7050 // If we adjusted the predicate of the recipe, the cost in the legacy
7051 // cost model may be different.
7052 using namespace VPlanPatternMatch;
7053 CmpPredicate Pred;
7054 if (match(&R, m_Cmp(Pred, m_VPValue(), m_VPValue())) &&
7055 cast<VPRecipeWithIRFlags>(R).getPredicate() !=
7056 cast<CmpInst>(UI)->getPredicate())
7057 return true;
7058 SeenInstrs.insert(UI);
7059 }
7060 }
7061 }
7062
7063 // Return true if the loop contains any instructions that are not also part of
7064 // the VPlan or are skipped for VPlan-based cost computations. This indicates
7065 // that the VPlan contains extra simplifications.
7066 return any_of(TheLoop->blocks(), [&SeenInstrs, &CostCtx,
7067 TheLoop](BasicBlock *BB) {
7068 return any_of(*BB, [&SeenInstrs, &CostCtx, TheLoop, BB](Instruction &I) {
7069 // Skip induction phis when checking for simplifications, as they may not
7070 // be lowered directly be lowered to a corresponding PHI recipe.
7071 if (isa<PHINode>(&I) && BB == TheLoop->getHeader() &&
7072 CostCtx.CM.Legal->isInductionPhi(cast<PHINode>(&I)))
7073 return false;
7074 return !SeenInstrs.contains(&I) && !CostCtx.skipCostComputation(&I, true);
7075 });
7076 });
7077}
7078#endif
7079
7081 if (VPlans.empty())
7083 // If there is a single VPlan with a single VF, return it directly.
7084 VPlan &FirstPlan = *VPlans[0];
7085 if (VPlans.size() == 1 && size(FirstPlan.vectorFactors()) == 1)
7086 return {*FirstPlan.vectorFactors().begin(), 0, 0};
7087
7088 LLVM_DEBUG(dbgs() << "LV: Computing best VF using cost kind: "
7089 << (CM.CostKind == TTI::TCK_RecipThroughput
7090 ? "Reciprocal Throughput\n"
7091 : CM.CostKind == TTI::TCK_Latency
7092 ? "Instruction Latency\n"
7093 : CM.CostKind == TTI::TCK_CodeSize ? "Code Size\n"
7094 : CM.CostKind == TTI::TCK_SizeAndLatency
7095 ? "Code Size and Latency\n"
7096 : "Unknown\n"));
7097
7099 assert(hasPlanWithVF(ScalarVF) &&
7100 "More than a single plan/VF w/o any plan having scalar VF");
7101
7102 // TODO: Compute scalar cost using VPlan-based cost model.
7103 InstructionCost ScalarCost = CM.expectedCost(ScalarVF);
7104 LLVM_DEBUG(dbgs() << "LV: Scalar loop costs: " << ScalarCost << ".\n");
7105 VectorizationFactor ScalarFactor(ScalarVF, ScalarCost, ScalarCost);
7106 VectorizationFactor BestFactor = ScalarFactor;
7107
7108 bool ForceVectorization = Hints.getForce() == LoopVectorizeHints::FK_Enabled;
7109 if (ForceVectorization) {
7110 // Ignore scalar width, because the user explicitly wants vectorization.
7111 // Initialize cost to max so that VF = 2 is, at least, chosen during cost
7112 // evaluation.
7113 BestFactor.Cost = InstructionCost::getMax();
7114 }
7115
7116 for (auto &P : VPlans) {
7117 ArrayRef<ElementCount> VFs(P->vectorFactors().begin(),
7118 P->vectorFactors().end());
7119
7121 if (any_of(VFs, [this](ElementCount VF) {
7122 return CM.shouldConsiderRegPressureForVF(VF);
7123 }))
7124 RUs = calculateRegisterUsageForPlan(*P, VFs, TTI, CM.ValuesToIgnore);
7125
7126 for (unsigned I = 0; I < VFs.size(); I++) {
7127 ElementCount VF = VFs[I];
7128 if (VF.isScalar())
7129 continue;
7130 if (!ForceVectorization && !willGenerateVectors(*P, VF, TTI)) {
7131 LLVM_DEBUG(
7132 dbgs()
7133 << "LV: Not considering vector loop of width " << VF
7134 << " because it will not generate any vector instructions.\n");
7135 continue;
7136 }
7137 if (CM.OptForSize && !ForceVectorization && hasReplicatorRegion(*P)) {
7138 LLVM_DEBUG(
7139 dbgs()
7140 << "LV: Not considering vector loop of width " << VF
7141 << " because it would cause replicated blocks to be generated,"
7142 << " which isn't allowed when optimizing for size.\n");
7143 continue;
7144 }
7145
7146 InstructionCost Cost = cost(*P, VF);
7147 VectorizationFactor CurrentFactor(VF, Cost, ScalarCost);
7148
7149 if (CM.shouldConsiderRegPressureForVF(VF) &&
7150 RUs[I].exceedsMaxNumRegs(TTI, ForceTargetNumVectorRegs)) {
7151 LLVM_DEBUG(dbgs() << "LV(REG): Not considering vector loop of width "
7152 << VF << " because it uses too many registers\n");
7153 continue;
7154 }
7155
7156 if (isMoreProfitable(CurrentFactor, BestFactor, P->hasScalarTail()))
7157 BestFactor = CurrentFactor;
7158
7159 // If profitable add it to ProfitableVF list.
7160 if (isMoreProfitable(CurrentFactor, ScalarFactor, P->hasScalarTail()))
7161 ProfitableVFs.push_back(CurrentFactor);
7162 }
7163 }
7164
7165#ifndef NDEBUG
7166 // Select the optimal vectorization factor according to the legacy cost-model.
7167 // This is now only used to verify the decisions by the new VPlan-based
7168 // cost-model and will be retired once the VPlan-based cost-model is
7169 // stabilized.
7170 VectorizationFactor LegacyVF = selectVectorizationFactor();
7171 VPlan &BestPlan = getPlanFor(BestFactor.Width);
7172
7173 // Pre-compute the cost and use it to check if BestPlan contains any
7174 // simplifications not accounted for in the legacy cost model. If that's the
7175 // case, don't trigger the assertion, as the extra simplifications may cause a
7176 // different VF to be picked by the VPlan-based cost model.
7177 VPCostContext CostCtx(CM.TTI, *CM.TLI, BestPlan, CM, CM.CostKind,
7178 *CM.PSE.getSE(), OrigLoop);
7179 precomputeCosts(BestPlan, BestFactor.Width, CostCtx);
7180 // Verify that the VPlan-based and legacy cost models agree, except for VPlans
7181 // with early exits and plans with additional VPlan simplifications. The
7182 // legacy cost model doesn't properly model costs for such loops.
7183 assert((BestFactor.Width == LegacyVF.Width || BestPlan.hasEarlyExit() ||
7184 !Legal->getLAI()->getSymbolicStrides().empty() ||
7186 CostCtx, OrigLoop,
7187 BestFactor.Width) ||
7189 getPlanFor(LegacyVF.Width), CostCtx, OrigLoop, LegacyVF.Width)) &&
7190 " VPlan cost model and legacy cost model disagreed");
7191 assert((BestFactor.Width.isScalar() || BestFactor.ScalarCost > 0) &&
7192 "when vectorizing, the scalar cost must be computed.");
7193#endif
7194
7195 LLVM_DEBUG(dbgs() << "LV: Selecting VF: " << BestFactor.Width << ".\n");
7196 return BestFactor;
7197}
7198
7200 using namespace VPlanPatternMatch;
7202 "RdxResult must be ComputeFindIVResult");
7203 VPValue *StartVPV = RdxResult->getOperand(1);
7204 match(StartVPV, m_Freeze(m_VPValue(StartVPV)));
7205 return StartVPV->getLiveInIRValue();
7206}
7207
7208// If \p EpiResumePhiR is resume VPPhi for a reduction when vectorizing the
7209// epilog loop, fix the reduction's scalar PHI node by adding the incoming value
7210// from the main vector loop.
7212 VPPhi *EpiResumePhiR, PHINode &EpiResumePhi, BasicBlock *BypassBlock) {
7213 // Get the VPInstruction computing the reduction result in the middle block.
7214 // The first operand may not be from the middle block if it is not connected
7215 // to the scalar preheader. In that case, there's nothing to fix.
7216 VPValue *Incoming = EpiResumePhiR->getOperand(0);
7219 auto *EpiRedResult = dyn_cast<VPInstruction>(Incoming);
7220 if (!EpiRedResult ||
7221 (EpiRedResult->getOpcode() != VPInstruction::ComputeAnyOfResult &&
7222 EpiRedResult->getOpcode() != VPInstruction::ComputeReductionResult &&
7223 EpiRedResult->getOpcode() != VPInstruction::ComputeFindIVResult))
7224 return;
7225
7226 auto *EpiRedHeaderPhi =
7227 cast<VPReductionPHIRecipe>(EpiRedResult->getOperand(0));
7228 RecurKind Kind = EpiRedHeaderPhi->getRecurrenceKind();
7229 Value *MainResumeValue;
7230 if (auto *VPI = dyn_cast<VPInstruction>(EpiRedHeaderPhi->getStartValue())) {
7231 assert((VPI->getOpcode() == VPInstruction::Broadcast ||
7232 VPI->getOpcode() == VPInstruction::ReductionStartVector) &&
7233 "unexpected start recipe");
7234 MainResumeValue = VPI->getOperand(0)->getUnderlyingValue();
7235 } else
7236 MainResumeValue = EpiRedHeaderPhi->getStartValue()->getUnderlyingValue();
7238 [[maybe_unused]] Value *StartV =
7239 EpiRedResult->getOperand(1)->getLiveInIRValue();
7240 auto *Cmp = cast<ICmpInst>(MainResumeValue);
7241 assert(Cmp->getPredicate() == CmpInst::ICMP_NE &&
7242 "AnyOf expected to start with ICMP_NE");
7243 assert(Cmp->getOperand(1) == StartV &&
7244 "AnyOf expected to start by comparing main resume value to original "
7245 "start value");
7246 MainResumeValue = Cmp->getOperand(0);
7248 Value *StartV = getStartValueFromReductionResult(EpiRedResult);
7249 Value *SentinelV = EpiRedResult->getOperand(2)->getLiveInIRValue();
7250 using namespace llvm::PatternMatch;
7251 Value *Cmp, *OrigResumeV, *CmpOp;
7252 [[maybe_unused]] bool IsExpectedPattern =
7253 match(MainResumeValue,
7254 m_Select(m_OneUse(m_Value(Cmp)), m_Specific(SentinelV),
7255 m_Value(OrigResumeV))) &&
7257 m_Value(CmpOp))) &&
7258 ((CmpOp == StartV && isGuaranteedNotToBeUndefOrPoison(CmpOp))));
7259 assert(IsExpectedPattern && "Unexpected reduction resume pattern");
7260 MainResumeValue = OrigResumeV;
7261 }
7262 PHINode *MainResumePhi = cast<PHINode>(MainResumeValue);
7263
7264 // When fixing reductions in the epilogue loop we should already have
7265 // created a bc.merge.rdx Phi after the main vector body. Ensure that we carry
7266 // over the incoming values correctly.
7267 EpiResumePhi.setIncomingValueForBlock(
7268 BypassBlock, MainResumePhi->getIncomingValueForBlock(BypassBlock));
7269}
7270
7272 ElementCount BestVF, unsigned BestUF, VPlan &BestVPlan,
7273 InnerLoopVectorizer &ILV, DominatorTree *DT, bool VectorizingEpilogue) {
7274 assert(BestVPlan.hasVF(BestVF) &&
7275 "Trying to execute plan with unsupported VF");
7276 assert(BestVPlan.hasUF(BestUF) &&
7277 "Trying to execute plan with unsupported UF");
7278 if (BestVPlan.hasEarlyExit())
7279 ++LoopsEarlyExitVectorized;
7280 // TODO: Move to VPlan transform stage once the transition to the VPlan-based
7281 // cost model is complete for better cost estimates.
7284 BestVPlan);
7287 bool HasBranchWeights =
7288 hasBranchWeightMD(*OrigLoop->getLoopLatch()->getTerminator());
7289 if (HasBranchWeights) {
7290 std::optional<unsigned> VScale = CM.getVScaleForTuning();
7292 BestVPlan, BestVF, VScale);
7293 }
7294
7295 // Checks are the same for all VPlans, added to BestVPlan only for
7296 // compactness.
7297 attachRuntimeChecks(BestVPlan, ILV.RTChecks, HasBranchWeights);
7298
7299 // Retrieving VectorPH now when it's easier while VPlan still has Regions.
7300 VPBasicBlock *VectorPH = cast<VPBasicBlock>(BestVPlan.getVectorPreheader());
7301
7302 VPlanTransforms::optimizeForVFAndUF(BestVPlan, BestVF, BestUF, PSE);
7305 if (BestVPlan.getEntry()->getSingleSuccessor() ==
7306 BestVPlan.getScalarPreheader()) {
7307 // TODO: The vector loop would be dead, should not even try to vectorize.
7308 ORE->emit([&]() {
7309 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationDead",
7310 OrigLoop->getStartLoc(),
7311 OrigLoop->getHeader())
7312 << "Created vector loop never executes due to insufficient trip "
7313 "count.";
7314 });
7316 }
7317
7319 BestVPlan, BestVF,
7320 TTI.getRegisterBitWidth(BestVF.isScalable()
7324
7326 // Regions are dissolved after optimizing for VF and UF, which completely
7327 // removes unneeded loop regions first.
7329 // Canonicalize EVL loops after regions are dissolved.
7333 BestVPlan, VectorPH, CM.foldTailByMasking(),
7334 CM.requiresScalarEpilogue(BestVF.isVector()));
7335 VPlanTransforms::materializeVFAndVFxUF(BestVPlan, VectorPH, BestVF);
7336 VPlanTransforms::cse(BestVPlan);
7338
7339 // 0. Generate SCEV-dependent code in the entry, including TripCount, before
7340 // making any changes to the CFG.
7341 DenseMap<const SCEV *, Value *> ExpandedSCEVs =
7342 VPlanTransforms::expandSCEVs(BestVPlan, *PSE.getSE());
7343 if (!ILV.getTripCount())
7344 ILV.setTripCount(BestVPlan.getTripCount()->getLiveInIRValue());
7345 else
7346 assert(VectorizingEpilogue && "should only re-use the existing trip "
7347 "count during epilogue vectorization");
7348
7349 // Perform the actual loop transformation.
7350 VPTransformState State(&TTI, BestVF, LI, DT, ILV.AC, ILV.Builder, &BestVPlan,
7351 OrigLoop->getParentLoop(),
7352 Legal->getWidestInductionType());
7353
7354#ifdef EXPENSIVE_CHECKS
7355 assert(DT->verify(DominatorTree::VerificationLevel::Fast));
7356#endif
7357
7358 // 1. Set up the skeleton for vectorization, including vector pre-header and
7359 // middle block. The vector loop is created during VPlan execution.
7360 State.CFG.PrevBB = ILV.createVectorizedLoopSkeleton();
7362 State.CFG.PrevBB->getSingleSuccessor(), &BestVPlan);
7364
7365 assert(verifyVPlanIsValid(BestVPlan, true /*VerifyLate*/) &&
7366 "final VPlan is invalid");
7367
7368 // After vectorization, the exit blocks of the original loop will have
7369 // additional predecessors. Invalidate SCEVs for the exit phis in case SE
7370 // looked through single-entry phis.
7371 ScalarEvolution &SE = *PSE.getSE();
7372 for (VPIRBasicBlock *Exit : BestVPlan.getExitBlocks()) {
7373 if (!Exit->hasPredecessors())
7374 continue;
7375 for (VPRecipeBase &PhiR : Exit->phis())
7377 &cast<VPIRPhi>(PhiR).getIRPhi());
7378 }
7379 // Forget the original loop and block dispositions.
7380 SE.forgetLoop(OrigLoop);
7382
7384
7385 //===------------------------------------------------===//
7386 //
7387 // Notice: any optimization or new instruction that go
7388 // into the code below should also be implemented in
7389 // the cost-model.
7390 //
7391 //===------------------------------------------------===//
7392
7393 // Retrieve loop information before executing the plan, which may remove the
7394 // original loop, if it becomes unreachable.
7395 MDNode *LID = OrigLoop->getLoopID();
7396 unsigned OrigLoopInvocationWeight = 0;
7397 std::optional<unsigned> OrigAverageTripCount =
7398 getLoopEstimatedTripCount(OrigLoop, &OrigLoopInvocationWeight);
7399
7400 BestVPlan.execute(&State);
7401
7402 // 2.6. Maintain Loop Hints
7403 // Keep all loop hints from the original loop on the vector loop (we'll
7404 // replace the vectorizer-specific hints below).
7405 VPBasicBlock *HeaderVPBB = vputils::getFirstLoopHeader(BestVPlan, State.VPDT);
7406 // Add metadata to disable runtime unrolling a scalar loop when there
7407 // are no runtime checks about strides and memory. A scalar loop that is
7408 // rarely used is not worth unrolling.
7409 bool DisableRuntimeUnroll = !ILV.RTChecks.hasChecks() && !BestVF.isScalar();
7411 HeaderVPBB ? LI->getLoopFor(State.CFG.VPBB2IRBB.lookup(HeaderVPBB))
7412 : nullptr,
7413 HeaderVPBB, BestVPlan, VectorizingEpilogue, LID, OrigAverageTripCount,
7414 OrigLoopInvocationWeight,
7415 estimateElementCount(BestVF * BestUF, CM.getVScaleForTuning()),
7416 DisableRuntimeUnroll);
7417
7418 // 3. Fix the vectorized code: take care of header phi's, live-outs,
7419 // predication, updating analyses.
7420 ILV.fixVectorizedLoop(State);
7421
7423
7424 return ExpandedSCEVs;
7425}
7426
7427//===--------------------------------------------------------------------===//
7428// EpilogueVectorizerMainLoop
7429//===--------------------------------------------------------------------===//
7430
7431/// This function is partially responsible for generating the control flow
7432/// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization.
7434 BasicBlock *ScalarPH = createScalarPreheader("");
7435 BasicBlock *VectorPH = ScalarPH->getSinglePredecessor();
7436
7437 // Generate the code to check the minimum iteration count of the vector
7438 // epilogue (see below).
7439 EPI.EpilogueIterationCountCheck =
7440 emitIterationCountCheck(VectorPH, ScalarPH, true);
7441 EPI.EpilogueIterationCountCheck->setName("iter.check");
7442
7443 VectorPH = cast<BranchInst>(EPI.EpilogueIterationCountCheck->getTerminator())
7444 ->getSuccessor(1);
7445 // Generate the iteration count check for the main loop, *after* the check
7446 // for the epilogue loop, so that the path-length is shorter for the case
7447 // that goes directly through the vector epilogue. The longer-path length for
7448 // the main loop is compensated for, by the gain from vectorizing the larger
7449 // trip count. Note: the branch will get updated later on when we vectorize
7450 // the epilogue.
7451 EPI.MainLoopIterationCountCheck =
7452 emitIterationCountCheck(VectorPH, ScalarPH, false);
7453
7454 return cast<BranchInst>(EPI.MainLoopIterationCountCheck->getTerminator())
7455 ->getSuccessor(1);
7456}
7457
7459 LLVM_DEBUG({
7460 dbgs() << "Create Skeleton for epilogue vectorized loop (first pass)\n"
7461 << "Main Loop VF:" << EPI.MainLoopVF
7462 << ", Main Loop UF:" << EPI.MainLoopUF
7463 << ", Epilogue Loop VF:" << EPI.EpilogueVF
7464 << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n";
7465 });
7466}
7467
7470 dbgs() << "intermediate fn:\n"
7471 << *OrigLoop->getHeader()->getParent() << "\n";
7472 });
7473}
7474
7476 BasicBlock *VectorPH, BasicBlock *Bypass, bool ForEpilogue) {
7477 assert(Bypass && "Expected valid bypass basic block.");
7480 Value *CheckMinIters = createIterationCountCheck(
7481 VectorPH, ForEpilogue ? EPI.EpilogueVF : EPI.MainLoopVF,
7482 ForEpilogue ? EPI.EpilogueUF : EPI.MainLoopUF);
7483
7484 BasicBlock *const TCCheckBlock = VectorPH;
7485 if (!ForEpilogue)
7486 TCCheckBlock->setName("vector.main.loop.iter.check");
7487
7488 // Create new preheader for vector loop.
7489 VectorPH = SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(),
7490 static_cast<DominatorTree *>(nullptr), LI, nullptr,
7491 "vector.ph");
7492 if (ForEpilogue) {
7493 // Save the trip count so we don't have to regenerate it in the
7494 // vec.epilog.iter.check. This is safe to do because the trip count
7495 // generated here dominates the vector epilog iter check.
7496 EPI.TripCount = Count;
7497 } else {
7499 }
7500
7501 BranchInst &BI = *BranchInst::Create(Bypass, VectorPH, CheckMinIters);
7502 if (hasBranchWeightMD(*OrigLoop->getLoopLatch()->getTerminator()))
7503 setBranchWeights(BI, MinItersBypassWeights, /*IsExpected=*/false);
7504 ReplaceInstWithInst(TCCheckBlock->getTerminator(), &BI);
7505
7506 // When vectorizing the main loop, its trip-count check is placed in a new
7507 // block, whereas the overall trip-count check is placed in the VPlan entry
7508 // block. When vectorizing the epilogue loop, its trip-count check is placed
7509 // in the VPlan entry block.
7510 if (!ForEpilogue)
7511 introduceCheckBlockInVPlan(TCCheckBlock);
7512 return TCCheckBlock;
7513}
7514
7515//===--------------------------------------------------------------------===//
7516// EpilogueVectorizerEpilogueLoop
7517//===--------------------------------------------------------------------===//
7518
7519/// This function creates a new scalar preheader, using the previous one as
7520/// entry block to the epilogue VPlan. The minimum iteration check is being
7521/// represented in VPlan.
7523 BasicBlock *NewScalarPH = createScalarPreheader("vec.epilog.");
7524 BasicBlock *OriginalScalarPH = NewScalarPH->getSinglePredecessor();
7525 OriginalScalarPH->setName("vec.epilog.iter.check");
7526 VPIRBasicBlock *NewEntry = Plan.createVPIRBasicBlock(OriginalScalarPH);
7527 VPBasicBlock *OldEntry = Plan.getEntry();
7528 for (auto &R : make_early_inc_range(*OldEntry)) {
7529 // Skip moving VPIRInstructions (including VPIRPhis), which are unmovable by
7530 // defining.
7531 if (isa<VPIRInstruction>(&R))
7532 continue;
7533 R.moveBefore(*NewEntry, NewEntry->end());
7534 }
7535
7536 VPBlockUtils::reassociateBlocks(OldEntry, NewEntry);
7537 Plan.setEntry(NewEntry);
7538 // OldEntry is now dead and will be cleaned up when the plan gets destroyed.
7539
7540 return OriginalScalarPH;
7541}
7542
7544 LLVM_DEBUG({
7545 dbgs() << "Create Skeleton for epilogue vectorized loop (second pass)\n"
7546 << "Epilogue Loop VF:" << EPI.EpilogueVF
7547 << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n";
7548 });
7549}
7550
7553 dbgs() << "final fn:\n" << *OrigLoop->getHeader()->getParent() << "\n";
7554 });
7555}
7556
7557VPWidenMemoryRecipe *VPRecipeBuilder::tryToWidenMemory(VPInstruction *VPI,
7558 VFRange &Range) {
7559 assert((VPI->getOpcode() == Instruction::Load ||
7560 VPI->getOpcode() == Instruction::Store) &&
7561 "Must be called with either a load or store");
7563
7564 auto WillWiden = [&](ElementCount VF) -> bool {
7566 CM.getWideningDecision(I, VF);
7568 "CM decision should be taken at this point.");
7570 return true;
7571 if (CM.isScalarAfterVectorization(I, VF) ||
7572 CM.isProfitableToScalarize(I, VF))
7573 return false;
7575 };
7576
7578 return nullptr;
7579
7580 VPValue *Mask = nullptr;
7581 if (Legal->isMaskRequired(I))
7582 Mask = getBlockInMask(Builder.getInsertBlock());
7583
7584 // Determine if the pointer operand of the access is either consecutive or
7585 // reverse consecutive.
7587 CM.getWideningDecision(I, Range.Start);
7589 bool Consecutive =
7591
7592 VPValue *Ptr = VPI->getOpcode() == Instruction::Load ? VPI->getOperand(0)
7593 : VPI->getOperand(1);
7594 if (Consecutive) {
7597 VPSingleDefRecipe *VectorPtr;
7598 if (Reverse) {
7599 // When folding the tail, we may compute an address that we don't in the
7600 // original scalar loop: drop the GEP no-wrap flags in this case.
7601 // Otherwise preserve existing flags without no-unsigned-wrap, as we will
7602 // emit negative indices.
7603 GEPNoWrapFlags Flags =
7604 CM.foldTailByMasking() || !GEP
7606 : GEP->getNoWrapFlags().withoutNoUnsignedWrap();
7607 VectorPtr = new VPVectorEndPointerRecipe(
7608 Ptr, &Plan.getVF(), getLoadStoreType(I),
7609 /*Stride*/ -1, Flags, VPI->getDebugLoc());
7610 } else {
7611 VectorPtr = new VPVectorPointerRecipe(Ptr, getLoadStoreType(I),
7612 GEP ? GEP->getNoWrapFlags()
7614 VPI->getDebugLoc());
7615 }
7616 Builder.insert(VectorPtr);
7617 Ptr = VectorPtr;
7618 }
7619 if (VPI->getOpcode() == Instruction::Load) {
7620 auto *Load = cast<LoadInst>(I);
7621 return new VPWidenLoadRecipe(*Load, Ptr, Mask, Consecutive, Reverse, *VPI,
7622 VPI->getDebugLoc());
7623 }
7624
7625 StoreInst *Store = cast<StoreInst>(I);
7626 return new VPWidenStoreRecipe(*Store, Ptr, VPI->getOperand(0), Mask,
7627 Consecutive, Reverse, *VPI, VPI->getDebugLoc());
7628}
7629
7630/// Creates a VPWidenIntOrFpInductionRecipe for \p PhiR. If needed, it will
7631/// also insert a recipe to expand the step for the induction recipe.
7632static VPWidenIntOrFpInductionRecipe *
7634 const InductionDescriptor &IndDesc, VPlan &Plan,
7635 ScalarEvolution &SE, Loop &OrigLoop) {
7636 assert(SE.isLoopInvariant(IndDesc.getStep(), &OrigLoop) &&
7637 "step must be loop invariant");
7638
7639 VPValue *Start = PhiR->getOperand(0);
7640 assert(Plan.getLiveIn(IndDesc.getStartValue()) == Start &&
7641 "Start VPValue must match IndDesc's start value");
7642
7643 // It is always safe to copy over the NoWrap and FastMath flags. In
7644 // particular, when folding tail by masking, the masked-off lanes are never
7645 // used, so it is safe.
7646 VPIRFlags Flags = vputils::getFlagsFromIndDesc(IndDesc);
7647 VPValue *Step =
7649
7650 // Update wide induction increments to use the same step as the corresponding
7651 // wide induction. This enables detecting induction increments directly in
7652 // VPlan and removes redundant splats.
7653 using namespace llvm::VPlanPatternMatch;
7654 if (match(PhiR->getOperand(1), m_Add(m_Specific(PhiR), m_VPValue())))
7655 PhiR->getOperand(1)->getDefiningRecipe()->setOperand(1, Step);
7656
7658 return new VPWidenIntOrFpInductionRecipe(Phi, Start, Step, &Plan.getVF(),
7659 IndDesc, Flags, PhiR->getDebugLoc());
7660}
7661
7662VPHeaderPHIRecipe *
7663VPRecipeBuilder::tryToOptimizeInductionPHI(VPInstruction *VPI) {
7664 auto *Phi = cast<PHINode>(VPI->getUnderlyingInstr());
7665
7666 // Check if this is an integer or fp induction. If so, build the recipe that
7667 // produces its scalar and vector values.
7668 if (auto *II = Legal->getIntOrFpInductionDescriptor(Phi))
7669 return createWidenInductionRecipes(VPI, *II, Plan, *PSE.getSE(), *OrigLoop);
7670
7671 // Check if this is pointer induction. If so, build the recipe for it.
7672 if (auto *II = Legal->getPointerInductionDescriptor(Phi)) {
7673 VPValue *Step = vputils::getOrCreateVPValueForSCEVExpr(Plan, II->getStep());
7674 return new VPWidenPointerInductionRecipe(Phi, VPI->getOperand(0), Step,
7675 &Plan.getVFxUF(), *II,
7676 VPI->getDebugLoc());
7677 }
7678 return nullptr;
7679}
7680
7681VPWidenIntOrFpInductionRecipe *
7682VPRecipeBuilder::tryToOptimizeInductionTruncate(VPInstruction *VPI,
7683 VFRange &Range) {
7684 auto *I = cast<TruncInst>(VPI->getUnderlyingInstr());
7685 // Optimize the special case where the source is a constant integer
7686 // induction variable. Notice that we can only optimize the 'trunc' case
7687 // because (a) FP conversions lose precision, (b) sext/zext may wrap, and
7688 // (c) other casts depend on pointer size.
7689
7690 // Determine whether \p K is a truncation based on an induction variable that
7691 // can be optimized.
7692 auto IsOptimizableIVTruncate =
7693 [&](Instruction *K) -> std::function<bool(ElementCount)> {
7694 return [=](ElementCount VF) -> bool {
7695 return CM.isOptimizableIVTruncate(K, VF);
7696 };
7697 };
7698
7700 IsOptimizableIVTruncate(I), Range))
7701 return nullptr;
7702
7704 VPI->getOperand(0)->getDefiningRecipe());
7705 PHINode *Phi = WidenIV->getPHINode();
7706 VPValue *Start = WidenIV->getStartValue();
7707 const InductionDescriptor &IndDesc = WidenIV->getInductionDescriptor();
7708
7709 // It is always safe to copy over the NoWrap and FastMath flags. In
7710 // particular, when folding tail by masking, the masked-off lanes are never
7711 // used, so it is safe.
7712 VPIRFlags Flags = vputils::getFlagsFromIndDesc(IndDesc);
7713 VPValue *Step =
7715 return new VPWidenIntOrFpInductionRecipe(
7716 Phi, Start, Step, &Plan.getVF(), IndDesc, I, Flags, VPI->getDebugLoc());
7717}
7718
7719VPSingleDefRecipe *VPRecipeBuilder::tryToWidenCall(VPInstruction *VPI,
7720 VFRange &Range) {
7721 CallInst *CI = cast<CallInst>(VPI->getUnderlyingInstr());
7723 [this, CI](ElementCount VF) {
7724 return CM.isScalarWithPredication(CI, VF);
7725 },
7726 Range);
7727
7728 if (IsPredicated)
7729 return nullptr;
7730
7732 if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end ||
7733 ID == Intrinsic::lifetime_start || ID == Intrinsic::sideeffect ||
7734 ID == Intrinsic::pseudoprobe ||
7735 ID == Intrinsic::experimental_noalias_scope_decl))
7736 return nullptr;
7737
7739 VPI->op_begin() + CI->arg_size());
7740
7741 // Is it beneficial to perform intrinsic call compared to lib call?
7742 bool ShouldUseVectorIntrinsic =
7744 [&](ElementCount VF) -> bool {
7745 return CM.getCallWideningDecision(CI, VF).Kind ==
7747 },
7748 Range);
7749 if (ShouldUseVectorIntrinsic)
7750 return new VPWidenIntrinsicRecipe(*CI, ID, Ops, CI->getType(), *VPI, *VPI,
7751 VPI->getDebugLoc());
7752
7753 Function *Variant = nullptr;
7754 std::optional<unsigned> MaskPos;
7755 // Is better to call a vectorized version of the function than to to scalarize
7756 // the call?
7757 auto ShouldUseVectorCall = LoopVectorizationPlanner::getDecisionAndClampRange(
7758 [&](ElementCount VF) -> bool {
7759 // The following case may be scalarized depending on the VF.
7760 // The flag shows whether we can use a usual Call for vectorized
7761 // version of the instruction.
7762
7763 // If we've found a variant at a previous VF, then stop looking. A
7764 // vectorized variant of a function expects input in a certain shape
7765 // -- basically the number of input registers, the number of lanes
7766 // per register, and whether there's a mask required.
7767 // We store a pointer to the variant in the VPWidenCallRecipe, so
7768 // once we have an appropriate variant it's only valid for that VF.
7769 // This will force a different vplan to be generated for each VF that
7770 // finds a valid variant.
7771 if (Variant)
7772 return false;
7773 LoopVectorizationCostModel::CallWideningDecision Decision =
7774 CM.getCallWideningDecision(CI, VF);
7776 Variant = Decision.Variant;
7777 MaskPos = Decision.MaskPos;
7778 return true;
7779 }
7780
7781 return false;
7782 },
7783 Range);
7784 if (ShouldUseVectorCall) {
7785 if (MaskPos.has_value()) {
7786 // We have 2 cases that would require a mask:
7787 // 1) The block needs to be predicated, either due to a conditional
7788 // in the scalar loop or use of an active lane mask with
7789 // tail-folding, and we use the appropriate mask for the block.
7790 // 2) No mask is required for the block, but the only available
7791 // vector variant at this VF requires a mask, so we synthesize an
7792 // all-true mask.
7793 VPValue *Mask = nullptr;
7794 if (Legal->isMaskRequired(CI))
7795 Mask = getBlockInMask(Builder.getInsertBlock());
7796 else
7797 Mask = Plan.getOrAddLiveIn(
7798 ConstantInt::getTrue(IntegerType::getInt1Ty(Plan.getContext())));
7799
7800 Ops.insert(Ops.begin() + *MaskPos, Mask);
7801 }
7802
7803 Ops.push_back(VPI->getOperand(VPI->getNumOperands() - 1));
7804 return new VPWidenCallRecipe(CI, Variant, Ops, *VPI, *VPI,
7805 VPI->getDebugLoc());
7806 }
7807
7808 return nullptr;
7809}
7810
7811bool VPRecipeBuilder::shouldWiden(Instruction *I, VFRange &Range) const {
7813 !isa<StoreInst>(I) && "Instruction should have been handled earlier");
7814 // Instruction should be widened, unless it is scalar after vectorization,
7815 // scalarization is profitable or it is predicated.
7816 auto WillScalarize = [this, I](ElementCount VF) -> bool {
7817 return CM.isScalarAfterVectorization(I, VF) ||
7818 CM.isProfitableToScalarize(I, VF) ||
7819 CM.isScalarWithPredication(I, VF);
7820 };
7822 Range);
7823}
7824
7825VPWidenRecipe *VPRecipeBuilder::tryToWiden(VPInstruction *VPI) {
7826 auto *I = VPI->getUnderlyingInstr();
7827 switch (VPI->getOpcode()) {
7828 default:
7829 return nullptr;
7830 case Instruction::SDiv:
7831 case Instruction::UDiv:
7832 case Instruction::SRem:
7833 case Instruction::URem: {
7834 // If not provably safe, use a select to form a safe divisor before widening the
7835 // div/rem operation itself. Otherwise fall through to general handling below.
7836 if (CM.isPredicatedInst(I)) {
7838 VPValue *Mask = getBlockInMask(Builder.getInsertBlock());
7839 VPValue *One = Plan.getConstantInt(I->getType(), 1u);
7840 auto *SafeRHS =
7841 Builder.createSelect(Mask, Ops[1], One, VPI->getDebugLoc());
7842 Ops[1] = SafeRHS;
7843 return new VPWidenRecipe(*I, Ops, *VPI, *VPI, VPI->getDebugLoc());
7844 }
7845 [[fallthrough]];
7846 }
7847 case Instruction::Add:
7848 case Instruction::And:
7849 case Instruction::AShr:
7850 case Instruction::FAdd:
7851 case Instruction::FCmp:
7852 case Instruction::FDiv:
7853 case Instruction::FMul:
7854 case Instruction::FNeg:
7855 case Instruction::FRem:
7856 case Instruction::FSub:
7857 case Instruction::ICmp:
7858 case Instruction::LShr:
7859 case Instruction::Mul:
7860 case Instruction::Or:
7861 case Instruction::Select:
7862 case Instruction::Shl:
7863 case Instruction::Sub:
7864 case Instruction::Xor:
7865 case Instruction::Freeze: {
7866 SmallVector<VPValue *> NewOps(VPI->operands());
7867 if (Instruction::isBinaryOp(VPI->getOpcode())) {
7868 // The legacy cost model uses SCEV to check if some of the operands are
7869 // constants. To match the legacy cost model's behavior, use SCEV to try
7870 // to replace operands with constants.
7871 ScalarEvolution &SE = *PSE.getSE();
7872 auto GetConstantViaSCEV = [this, &SE](VPValue *Op) {
7873 if (!Op->isLiveIn())
7874 return Op;
7875 Value *V = Op->getUnderlyingValue();
7876 if (isa<Constant>(V) || !SE.isSCEVable(V->getType()))
7877 return Op;
7878 auto *C = dyn_cast<SCEVConstant>(SE.getSCEV(V));
7879 if (!C)
7880 return Op;
7881 return Plan.getOrAddLiveIn(C->getValue());
7882 };
7883 // For Mul, the legacy cost model checks both operands.
7884 if (VPI->getOpcode() == Instruction::Mul)
7885 NewOps[0] = GetConstantViaSCEV(NewOps[0]);
7886 // For other binops, the legacy cost model only checks the second operand.
7887 NewOps[1] = GetConstantViaSCEV(NewOps[1]);
7888 }
7889 return new VPWidenRecipe(*I, NewOps, *VPI, *VPI, VPI->getDebugLoc());
7890 }
7891 case Instruction::ExtractValue: {
7892 SmallVector<VPValue *> NewOps(VPI->operands());
7893 auto *EVI = cast<ExtractValueInst>(I);
7894 assert(EVI->getNumIndices() == 1 && "Expected one extractvalue index");
7895 unsigned Idx = EVI->getIndices()[0];
7896 NewOps.push_back(Plan.getConstantInt(32, Idx));
7897 return new VPWidenRecipe(*I, NewOps, *VPI, *VPI, VPI->getDebugLoc());
7898 }
7899 };
7900}
7901
7902VPHistogramRecipe *VPRecipeBuilder::tryToWidenHistogram(const HistogramInfo *HI,
7903 VPInstruction *VPI) {
7904 // FIXME: Support other operations.
7905 unsigned Opcode = HI->Update->getOpcode();
7906 assert((Opcode == Instruction::Add || Opcode == Instruction::Sub) &&
7907 "Histogram update operation must be an Add or Sub");
7908
7910 // Bucket address.
7911 HGramOps.push_back(VPI->getOperand(1));
7912 // Increment value.
7913 HGramOps.push_back(getVPValueOrAddLiveIn(HI->Update->getOperand(1)));
7914
7915 // In case of predicated execution (due to tail-folding, or conditional
7916 // execution, or both), pass the relevant mask.
7917 if (Legal->isMaskRequired(HI->Store))
7918 HGramOps.push_back(getBlockInMask(Builder.getInsertBlock()));
7919
7920 return new VPHistogramRecipe(Opcode, HGramOps, VPI->getDebugLoc());
7921}
7922
7924 VFRange &Range) {
7925 auto *I = VPI->getUnderlyingInstr();
7927 [&](ElementCount VF) { return CM.isUniformAfterVectorization(I, VF); },
7928 Range);
7929
7930 bool IsPredicated = CM.isPredicatedInst(I);
7931
7932 // Even if the instruction is not marked as uniform, there are certain
7933 // intrinsic calls that can be effectively treated as such, so we check for
7934 // them here. Conservatively, we only do this for scalable vectors, since
7935 // for fixed-width VFs we can always fall back on full scalarization.
7936 if (!IsUniform && Range.Start.isScalable() && isa<IntrinsicInst>(I)) {
7937 switch (cast<IntrinsicInst>(I)->getIntrinsicID()) {
7938 case Intrinsic::assume:
7939 case Intrinsic::lifetime_start:
7940 case Intrinsic::lifetime_end:
7941 // For scalable vectors if one of the operands is variant then we still
7942 // want to mark as uniform, which will generate one instruction for just
7943 // the first lane of the vector. We can't scalarize the call in the same
7944 // way as for fixed-width vectors because we don't know how many lanes
7945 // there are.
7946 //
7947 // The reasons for doing it this way for scalable vectors are:
7948 // 1. For the assume intrinsic generating the instruction for the first
7949 // lane is still be better than not generating any at all. For
7950 // example, the input may be a splat across all lanes.
7951 // 2. For the lifetime start/end intrinsics the pointer operand only
7952 // does anything useful when the input comes from a stack object,
7953 // which suggests it should always be uniform. For non-stack objects
7954 // the effect is to poison the object, which still allows us to
7955 // remove the call.
7956 IsUniform = true;
7957 break;
7958 default:
7959 break;
7960 }
7961 }
7962 VPValue *BlockInMask = nullptr;
7963 if (!IsPredicated) {
7964 // Finalize the recipe for Instr, first if it is not predicated.
7965 LLVM_DEBUG(dbgs() << "LV: Scalarizing:" << *I << "\n");
7966 } else {
7967 LLVM_DEBUG(dbgs() << "LV: Scalarizing and predicating:" << *I << "\n");
7968 // Instructions marked for predication are replicated and a mask operand is
7969 // added initially. Masked replicate recipes will later be placed under an
7970 // if-then construct to prevent side-effects. Generate recipes to compute
7971 // the block mask for this region.
7972 BlockInMask = getBlockInMask(Builder.getInsertBlock());
7973 }
7974
7975 // Note that there is some custom logic to mark some intrinsics as uniform
7976 // manually above for scalable vectors, which this assert needs to account for
7977 // as well.
7978 assert((Range.Start.isScalar() || !IsUniform || !IsPredicated ||
7979 (Range.Start.isScalable() && isa<IntrinsicInst>(I))) &&
7980 "Should not predicate a uniform recipe");
7981 auto *Recipe =
7982 new VPReplicateRecipe(I, VPI->operands(), IsUniform, BlockInMask, *VPI,
7983 *VPI, VPI->getDebugLoc());
7984 return Recipe;
7985}
7986
7987/// Find all possible partial reductions in the loop and track all of those that
7988/// are valid so recipes can be formed later.
7990 // Find all possible partial reductions, grouping chains by their PHI. This
7991 // grouping allows invalidating the whole chain, if any link is not a valid
7992 // partial reduction.
7995 ChainsByPhi;
7996 for (const auto &[Phi, RdxDesc] : Legal->getReductionVars())
7997 getScaledReductions(Phi, RdxDesc.getLoopExitInstr(), Range,
7998 ChainsByPhi[Phi]);
7999
8000 // A partial reduction is invalid if any of its extends are used by
8001 // something that isn't another partial reduction. This is because the
8002 // extends are intended to be lowered along with the reduction itself.
8003
8004 // Build up a set of partial reduction ops for efficient use checking.
8005 SmallPtrSet<User *, 4> PartialReductionOps;
8006 for (const auto &[_, Chains] : ChainsByPhi)
8007 for (const auto &[PartialRdx, _] : Chains)
8008 PartialReductionOps.insert(PartialRdx.ExtendUser);
8009
8010 auto ExtendIsOnlyUsedByPartialReductions =
8011 [&PartialReductionOps](Instruction *Extend) {
8012 return all_of(Extend->users(), [&](const User *U) {
8013 return PartialReductionOps.contains(U);
8014 });
8015 };
8016
8017 // Check if each use of a chain's two extends is a partial reduction
8018 // and only add those that don't have non-partial reduction users.
8019 for (const auto &[_, Chains] : ChainsByPhi) {
8020 for (const auto &[Chain, Scale] : Chains) {
8021 if (ExtendIsOnlyUsedByPartialReductions(Chain.ExtendA) &&
8022 (!Chain.ExtendB ||
8023 ExtendIsOnlyUsedByPartialReductions(Chain.ExtendB)))
8024 ScaledReductionMap.try_emplace(Chain.Reduction, Scale);
8025 }
8026 }
8027
8028 // Check that all partial reductions in a chain are only used by other
8029 // partial reductions with the same scale factor. Otherwise we end up creating
8030 // users of scaled reductions where the types of the other operands don't
8031 // match.
8032 for (const auto &[Phi, Chains] : ChainsByPhi) {
8033 for (const auto &[Chain, Scale] : Chains) {
8034 auto AllUsersPartialRdx = [ScaleVal = Scale, RdxPhi = Phi,
8035 this](const User *U) {
8036 auto *UI = cast<Instruction>(U);
8037 if (isa<PHINode>(UI) && UI->getParent() == OrigLoop->getHeader())
8038 return UI == RdxPhi;
8039 return ScaledReductionMap.lookup_or(UI, 0) == ScaleVal ||
8040 !OrigLoop->contains(UI->getParent());
8041 };
8042
8043 // If any partial reduction entry for the phi is invalid, invalidate the
8044 // whole chain.
8045 if (!all_of(Chain.Reduction->users(), AllUsersPartialRdx)) {
8046 for (const auto &[Chain, _] : Chains)
8047 ScaledReductionMap.erase(Chain.Reduction);
8048 break;
8049 }
8050 }
8051 }
8052}
8053
8054bool VPRecipeBuilder::getScaledReductions(
8055 Instruction *PHI, Instruction *RdxExitInstr, VFRange &Range,
8056 SmallVectorImpl<std::pair<PartialReductionChain, unsigned>> &Chains) {
8057 if (!CM.TheLoop->contains(RdxExitInstr))
8058 return false;
8059
8060 auto *Update = dyn_cast<BinaryOperator>(RdxExitInstr);
8061 if (!Update)
8062 return false;
8063
8064 Value *Op = Update->getOperand(0);
8065 Value *PhiOp = Update->getOperand(1);
8066 if (Op == PHI)
8067 std::swap(Op, PhiOp);
8068
8069 using namespace llvm::PatternMatch;
8070 // If Op is an extend, then it's still a valid partial reduction if the
8071 // extended mul fulfills the other requirements.
8072 // For example, reduce.add(ext(mul(ext(A), ext(B)))) is still a valid partial
8073 // reduction since the inner extends will be widened. We already have oneUse
8074 // checks on the inner extends so widening them is safe.
8075 std::optional<TTI::PartialReductionExtendKind> OuterExtKind = std::nullopt;
8076 if (match(Op, m_ZExtOrSExt(m_Mul(m_Value(), m_Value())))) {
8077 auto *Cast = cast<CastInst>(Op);
8078 OuterExtKind = TTI::getPartialReductionExtendKind(Cast->getOpcode());
8079 Op = Cast->getOperand(0);
8080 }
8081
8082 // Try and get a scaled reduction from the first non-phi operand.
8083 // If one is found, we use the discovered reduction instruction in
8084 // place of the accumulator for costing.
8085 if (auto *OpInst = dyn_cast<Instruction>(Op)) {
8086 if (getScaledReductions(PHI, OpInst, Range, Chains)) {
8087 PHI = Chains.rbegin()->first.Reduction;
8088
8089 Op = Update->getOperand(0);
8090 PhiOp = Update->getOperand(1);
8091 if (Op == PHI)
8092 std::swap(Op, PhiOp);
8093 }
8094 }
8095 if (PhiOp != PHI)
8096 return false;
8097
8098 // If the update is a binary operator, check both of its operands to see if
8099 // they are extends. Otherwise, see if the update comes directly from an
8100 // extend.
8101 Instruction *Exts[2] = {nullptr};
8102 BinaryOperator *ExtendUser = dyn_cast<BinaryOperator>(Op);
8103 std::optional<unsigned> BinOpc;
8104 Type *ExtOpTypes[2] = {nullptr};
8106
8107 auto CollectExtInfo = [this, OuterExtKind, &Exts, &ExtOpTypes,
8108 &ExtKinds](SmallVectorImpl<Value *> &Ops) -> bool {
8109 for (const auto &[I, OpI] : enumerate(Ops)) {
8110 const APInt *C;
8111 if (I > 0 && match(OpI, m_APInt(C)) &&
8112 canConstantBeExtended(C, ExtOpTypes[0], ExtKinds[0])) {
8113 ExtOpTypes[I] = ExtOpTypes[0];
8114 ExtKinds[I] = ExtKinds[0];
8115 continue;
8116 }
8117 Value *ExtOp;
8118 if (!match(OpI, m_ZExtOrSExt(m_Value(ExtOp))))
8119 return false;
8120 Exts[I] = cast<Instruction>(OpI);
8121
8122 // TODO: We should be able to support live-ins.
8123 if (!CM.TheLoop->contains(Exts[I]))
8124 return false;
8125
8126 ExtOpTypes[I] = ExtOp->getType();
8127 ExtKinds[I] = TTI::getPartialReductionExtendKind(Exts[I]);
8128 // The outer extend kind must be the same as the inner extends, so that
8129 // they can be folded together.
8130 if (OuterExtKind.has_value() && OuterExtKind.value() != ExtKinds[I])
8131 return false;
8132 }
8133 return true;
8134 };
8135
8136 if (ExtendUser) {
8137 if (!ExtendUser->hasOneUse())
8138 return false;
8139
8140 // Use the side-effect of match to replace BinOp only if the pattern is
8141 // matched, we don't care at this point whether it actually matched.
8142 match(ExtendUser, m_Neg(m_BinOp(ExtendUser)));
8143
8144 SmallVector<Value *> Ops(ExtendUser->operands());
8145 if (!CollectExtInfo(Ops))
8146 return false;
8147
8148 BinOpc = std::make_optional(ExtendUser->getOpcode());
8149 } else if (match(Update, m_Add(m_Value(), m_Value()))) {
8150 // We already know the operands for Update are Op and PhiOp.
8152 if (!CollectExtInfo(Ops))
8153 return false;
8154
8155 ExtendUser = Update;
8156 BinOpc = std::nullopt;
8157 } else
8158 return false;
8159
8160 PartialReductionChain Chain(RdxExitInstr, Exts[0], Exts[1], ExtendUser);
8161
8162 TypeSize PHISize = PHI->getType()->getPrimitiveSizeInBits();
8163 TypeSize ASize = ExtOpTypes[0]->getPrimitiveSizeInBits();
8164 if (!PHISize.hasKnownScalarFactor(ASize))
8165 return false;
8166 unsigned TargetScaleFactor = PHISize.getKnownScalarFactor(ASize);
8167
8169 [&](ElementCount VF) {
8171 Update->getOpcode(), ExtOpTypes[0], ExtOpTypes[1],
8172 PHI->getType(), VF, ExtKinds[0], ExtKinds[1], BinOpc,
8173 CM.CostKind);
8174 return Cost.isValid();
8175 },
8176 Range)) {
8177 Chains.emplace_back(Chain, TargetScaleFactor);
8178 return true;
8179 }
8180
8181 return false;
8182}
8183
8185 VFRange &Range) {
8186 // First, check for specific widening recipes that deal with inductions, Phi
8187 // nodes, calls and memory operations.
8188 VPRecipeBase *Recipe;
8189 if (auto *PhiR = dyn_cast<VPPhi>(R)) {
8190 VPBasicBlock *Parent = PhiR->getParent();
8191 [[maybe_unused]] VPRegionBlock *LoopRegionOf =
8192 Parent->getEnclosingLoopRegion();
8193 assert(LoopRegionOf && LoopRegionOf->getEntry() == Parent &&
8194 "Non-header phis should have been handled during predication");
8195 auto *Phi = cast<PHINode>(R->getUnderlyingInstr());
8196 assert(R->getNumOperands() == 2 && "Must have 2 operands for header phis");
8197 if ((Recipe = tryToOptimizeInductionPHI(PhiR)))
8198 return Recipe;
8199
8200 VPHeaderPHIRecipe *PhiRecipe = nullptr;
8201 assert((Legal->isReductionVariable(Phi) ||
8202 Legal->isFixedOrderRecurrence(Phi)) &&
8203 "can only widen reductions and fixed-order recurrences here");
8204 VPValue *StartV = R->getOperand(0);
8205 if (Legal->isReductionVariable(Phi)) {
8206 const RecurrenceDescriptor &RdxDesc = Legal->getRecurrenceDescriptor(Phi);
8207 assert(RdxDesc.getRecurrenceStartValue() ==
8208 Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader()));
8209
8210 // If the PHI is used by a partial reduction, set the scale factor.
8211 unsigned ScaleFactor =
8212 getScalingForReduction(RdxDesc.getLoopExitInstr()).value_or(1);
8213 PhiRecipe = new VPReductionPHIRecipe(
8214 Phi, RdxDesc.getRecurrenceKind(), *StartV, CM.isInLoopReduction(Phi),
8215 CM.useOrderedReductions(RdxDesc), ScaleFactor);
8216 } else {
8217 // TODO: Currently fixed-order recurrences are modeled as chains of
8218 // first-order recurrences. If there are no users of the intermediate
8219 // recurrences in the chain, the fixed order recurrence should be modeled
8220 // directly, enabling more efficient codegen.
8221 PhiRecipe = new VPFirstOrderRecurrencePHIRecipe(Phi, *StartV);
8222 }
8223 // Add backedge value.
8224 PhiRecipe->addOperand(R->getOperand(1));
8225 return PhiRecipe;
8226 }
8227 assert(!R->isPhi() && "only VPPhi nodes expected at this point");
8228
8229 auto *VPI = cast<VPInstruction>(R);
8230 Instruction *Instr = R->getUnderlyingInstr();
8231 if (VPI->getOpcode() == Instruction::Trunc &&
8232 (Recipe = tryToOptimizeInductionTruncate(VPI, Range)))
8233 return Recipe;
8234
8235 // All widen recipes below deal only with VF > 1.
8237 [&](ElementCount VF) { return VF.isScalar(); }, Range))
8238 return nullptr;
8239
8240 if (VPI->getOpcode() == Instruction::Call)
8241 return tryToWidenCall(VPI, Range);
8242
8243 if (VPI->getOpcode() == Instruction::Store)
8244 if (auto HistInfo = Legal->getHistogramInfo(cast<StoreInst>(Instr)))
8245 return tryToWidenHistogram(*HistInfo, VPI);
8246
8247 if (VPI->getOpcode() == Instruction::Load ||
8248 VPI->getOpcode() == Instruction::Store)
8249 return tryToWidenMemory(VPI, Range);
8250
8251 if (std::optional<unsigned> ScaleFactor = getScalingForReduction(Instr))
8252 return tryToCreatePartialReduction(VPI, ScaleFactor.value());
8253
8254 if (!shouldWiden(Instr, Range))
8255 return nullptr;
8256
8257 if (VPI->getOpcode() == Instruction::GetElementPtr)
8258 return new VPWidenGEPRecipe(cast<GetElementPtrInst>(Instr), R->operands(),
8259 *VPI, VPI->getDebugLoc());
8260
8261 if (VPI->getOpcode() == Instruction::Select)
8262 return new VPWidenSelectRecipe(cast<SelectInst>(Instr), R->operands(), *VPI,
8263 *VPI, VPI->getDebugLoc());
8264
8265 if (Instruction::isCast(VPI->getOpcode())) {
8266 auto *CI = cast<CastInst>(Instr);
8267 auto *CastR = cast<VPInstructionWithType>(VPI);
8268 return new VPWidenCastRecipe(CI->getOpcode(), VPI->getOperand(0),
8269 CastR->getResultType(), CI, *VPI, *VPI,
8270 VPI->getDebugLoc());
8271 }
8272
8273 return tryToWiden(VPI);
8274}
8275
8278 unsigned ScaleFactor) {
8279 assert(Reduction->getNumOperands() == 2 &&
8280 "Unexpected number of operands for partial reduction");
8281
8282 VPValue *BinOp = Reduction->getOperand(0);
8283 VPValue *Accumulator = Reduction->getOperand(1);
8285 std::swap(BinOp, Accumulator);
8286
8287 assert(ScaleFactor ==
8288 vputils::getVFScaleFactor(Accumulator->getDefiningRecipe()) &&
8289 "all accumulators in chain must have same scale factor");
8290
8291 unsigned ReductionOpcode = Reduction->getOpcode();
8292 auto *ReductionI = Reduction->getUnderlyingInstr();
8293 if (ReductionOpcode == Instruction::Sub) {
8294 auto *const Zero = ConstantInt::get(ReductionI->getType(), 0);
8296 Ops.push_back(Plan.getOrAddLiveIn(Zero));
8297 Ops.push_back(BinOp);
8298 BinOp = new VPWidenRecipe(*ReductionI, Ops, VPIRFlags(*ReductionI),
8299 VPIRMetadata(), ReductionI->getDebugLoc());
8300 Builder.insert(BinOp->getDefiningRecipe());
8301 ReductionOpcode = Instruction::Add;
8302 }
8303
8304 VPValue *Cond = nullptr;
8305 if (CM.blockNeedsPredicationForAnyReason(ReductionI->getParent()))
8306 Cond = getBlockInMask(Builder.getInsertBlock());
8307 return new VPPartialReductionRecipe(ReductionOpcode, Accumulator, BinOp, Cond,
8308 ScaleFactor, ReductionI);
8309}
8310
8311void LoopVectorizationPlanner::buildVPlansWithVPRecipes(ElementCount MinVF,
8312 ElementCount MaxVF) {
8313 if (ElementCount::isKnownGT(MinVF, MaxVF))
8314 return;
8315
8316 assert(OrigLoop->isInnermost() && "Inner loop expected.");
8317
8318 const LoopAccessInfo *LAI = Legal->getLAI();
8320 OrigLoop, LI, DT, PSE.getSE());
8321 if (!LAI->getRuntimePointerChecking()->getChecks().empty() &&
8323 // Only use noalias metadata when using memory checks guaranteeing no
8324 // overlap across all iterations.
8325 LVer.prepareNoAliasMetadata();
8326 }
8327
8328 // Create initial base VPlan0, to serve as common starting point for all
8329 // candidates built later for specific VF ranges.
8330 auto VPlan0 = VPlanTransforms::buildVPlan0(
8331 OrigLoop, *LI, Legal->getWidestInductionType(),
8332 getDebugLocFromInstOrOperands(Legal->getPrimaryInduction()), PSE, &LVer);
8333
8334 auto MaxVFTimes2 = MaxVF * 2;
8335 for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFTimes2);) {
8336 VFRange SubRange = {VF, MaxVFTimes2};
8337 if (auto Plan = tryToBuildVPlanWithVPRecipes(
8338 std::unique_ptr<VPlan>(VPlan0->duplicate()), SubRange, &LVer)) {
8339 // Now optimize the initial VPlan.
8341 *Plan, CM.getMinimalBitwidths());
8343 // TODO: try to put it close to addActiveLaneMask().
8344 if (CM.foldTailWithEVL())
8346 *Plan, CM.getMaxSafeElements());
8347 assert(verifyVPlanIsValid(*Plan) && "VPlan is invalid");
8348 VPlans.push_back(std::move(Plan));
8349 }
8350 VF = SubRange.End;
8351 }
8352}
8353
8354VPlanPtr LoopVectorizationPlanner::tryToBuildVPlanWithVPRecipes(
8355 VPlanPtr Plan, VFRange &Range, LoopVersioning *LVer) {
8356
8357 using namespace llvm::VPlanPatternMatch;
8358 SmallPtrSet<const InterleaveGroup<Instruction> *, 1> InterleaveGroups;
8359
8360 // ---------------------------------------------------------------------------
8361 // Build initial VPlan: Scan the body of the loop in a topological order to
8362 // visit each basic block after having visited its predecessor basic blocks.
8363 // ---------------------------------------------------------------------------
8364
8365 bool RequiresScalarEpilogueCheck =
8367 [this](ElementCount VF) {
8368 return !CM.requiresScalarEpilogue(VF.isVector());
8369 },
8370 Range);
8371 VPlanTransforms::handleEarlyExits(*Plan, Legal->hasUncountableEarlyExit());
8372 VPlanTransforms::addMiddleCheck(*Plan, RequiresScalarEpilogueCheck,
8373 CM.foldTailByMasking());
8374
8376
8377 // Don't use getDecisionAndClampRange here, because we don't know the UF
8378 // so this function is better to be conservative, rather than to split
8379 // it up into different VPlans.
8380 // TODO: Consider using getDecisionAndClampRange here to split up VPlans.
8381 bool IVUpdateMayOverflow = false;
8382 for (ElementCount VF : Range)
8383 IVUpdateMayOverflow |= !isIndvarOverflowCheckKnownFalse(&CM, VF);
8384
8385 TailFoldingStyle Style = CM.getTailFoldingStyle(IVUpdateMayOverflow);
8386 // Use NUW for the induction increment if we proved that it won't overflow in
8387 // the vector loop or when not folding the tail. In the later case, we know
8388 // that the canonical induction increment will not overflow as the vector trip
8389 // count is >= increment and a multiple of the increment.
8390 VPRegionBlock *LoopRegion = Plan->getVectorLoopRegion();
8391 bool HasNUW = !IVUpdateMayOverflow || Style == TailFoldingStyle::None;
8392 if (!HasNUW) {
8393 auto *IVInc =
8394 LoopRegion->getExitingBasicBlock()->getTerminator()->getOperand(0);
8395 assert(match(IVInc,
8396 m_VPInstruction<Instruction::Add>(
8397 m_Specific(LoopRegion->getCanonicalIV()), m_VPValue())) &&
8398 "Did not find the canonical IV increment");
8399 cast<VPRecipeWithIRFlags>(IVInc)->dropPoisonGeneratingFlags();
8400 }
8401
8402 // ---------------------------------------------------------------------------
8403 // Pre-construction: record ingredients whose recipes we'll need to further
8404 // process after constructing the initial VPlan.
8405 // ---------------------------------------------------------------------------
8406
8407 // For each interleave group which is relevant for this (possibly trimmed)
8408 // Range, add it to the set of groups to be later applied to the VPlan and add
8409 // placeholders for its members' Recipes which we'll be replacing with a
8410 // single VPInterleaveRecipe.
8411 for (InterleaveGroup<Instruction> *IG : IAI.getInterleaveGroups()) {
8412 auto ApplyIG = [IG, this](ElementCount VF) -> bool {
8413 bool Result = (VF.isVector() && // Query is illegal for VF == 1
8414 CM.getWideningDecision(IG->getInsertPos(), VF) ==
8416 // For scalable vectors, the interleave factors must be <= 8 since we
8417 // require the (de)interleaveN intrinsics instead of shufflevectors.
8418 assert((!Result || !VF.isScalable() || IG->getFactor() <= 8) &&
8419 "Unsupported interleave factor for scalable vectors");
8420 return Result;
8421 };
8422 if (!getDecisionAndClampRange(ApplyIG, Range))
8423 continue;
8424 InterleaveGroups.insert(IG);
8425 }
8426
8427 // ---------------------------------------------------------------------------
8428 // Predicate and linearize the top-level loop region.
8429 // ---------------------------------------------------------------------------
8430 auto BlockMaskCache = VPlanTransforms::introduceMasksAndLinearize(
8431 *Plan, CM.foldTailByMasking());
8432
8433 // ---------------------------------------------------------------------------
8434 // Construct wide recipes and apply predication for original scalar
8435 // VPInstructions in the loop.
8436 // ---------------------------------------------------------------------------
8437 VPRecipeBuilder RecipeBuilder(*Plan, OrigLoop, TLI, &TTI, Legal, CM, PSE,
8438 Builder, BlockMaskCache);
8439 // TODO: Handle partial reductions with EVL tail folding.
8440 if (!CM.foldTailWithEVL())
8441 RecipeBuilder.collectScaledReductions(Range);
8442
8443 // Scan the body of the loop in a topological order to visit each basic block
8444 // after having visited its predecessor basic blocks.
8445 VPBasicBlock *HeaderVPBB = LoopRegion->getEntryBasicBlock();
8446 ReversePostOrderTraversal<VPBlockShallowTraversalWrapper<VPBlockBase *>> RPOT(
8447 HeaderVPBB);
8448
8449 auto *MiddleVPBB = Plan->getMiddleBlock();
8450 VPBasicBlock::iterator MBIP = MiddleVPBB->getFirstNonPhi();
8451 // Mapping from VPValues in the initial plan to their widened VPValues. Needed
8452 // temporarily to update created block masks.
8453 DenseMap<VPValue *, VPValue *> Old2New;
8454 for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(RPOT)) {
8455 // Convert input VPInstructions to widened recipes.
8456 for (VPRecipeBase &R : make_early_inc_range(*VPBB)) {
8457 auto *SingleDef = cast<VPSingleDefRecipe>(&R);
8458 auto *UnderlyingValue = SingleDef->getUnderlyingValue();
8459 // Skip recipes that do not need transforming, including canonical IV,
8460 // wide canonical IV and VPInstructions without underlying values. The
8461 // latter are added above for masking.
8462 // FIXME: Migrate code relying on the underlying instruction from VPlan0
8463 // to construct recipes below to not use the underlying instruction.
8465 &R) ||
8466 (isa<VPInstruction>(&R) && !UnderlyingValue))
8467 continue;
8468 assert(isa<VPInstruction>(&R) && UnderlyingValue && "unsupported recipe");
8469
8470 // TODO: Gradually replace uses of underlying instruction by analyses on
8471 // VPlan.
8472 Instruction *Instr = cast<Instruction>(UnderlyingValue);
8473 Builder.setInsertPoint(SingleDef);
8474
8475 // The stores with invariant address inside the loop will be deleted, and
8476 // in the exit block, a uniform store recipe will be created for the final
8477 // invariant store of the reduction.
8478 StoreInst *SI;
8479 if ((SI = dyn_cast<StoreInst>(Instr)) &&
8480 Legal->isInvariantAddressOfReduction(SI->getPointerOperand())) {
8481 // Only create recipe for the final invariant store of the reduction.
8482 if (Legal->isInvariantStoreOfReduction(SI)) {
8483 auto *VPI = cast<VPInstruction>(SingleDef);
8484 auto *Recipe = new VPReplicateRecipe(
8485 SI, R.operands(), true /* IsUniform */, nullptr /*Mask*/, *VPI,
8486 *VPI, VPI->getDebugLoc());
8487 Recipe->insertBefore(*MiddleVPBB, MBIP);
8488 }
8489 R.eraseFromParent();
8490 continue;
8491 }
8492
8493 VPRecipeBase *Recipe =
8494 RecipeBuilder.tryToCreateWidenRecipe(SingleDef, Range);
8495 if (!Recipe)
8496 Recipe = RecipeBuilder.handleReplication(cast<VPInstruction>(SingleDef),
8497 Range);
8498
8499 RecipeBuilder.setRecipe(Instr, Recipe);
8500 if (isa<VPWidenIntOrFpInductionRecipe>(Recipe) && isa<TruncInst>(Instr)) {
8501 // Optimized a truncate to VPWidenIntOrFpInductionRecipe. It needs to be
8502 // moved to the phi section in the header.
8503 Recipe->insertBefore(*HeaderVPBB, HeaderVPBB->getFirstNonPhi());
8504 } else {
8505 Builder.insert(Recipe);
8506 }
8507 if (Recipe->getNumDefinedValues() == 1) {
8508 SingleDef->replaceAllUsesWith(Recipe->getVPSingleValue());
8509 Old2New[SingleDef] = Recipe->getVPSingleValue();
8510 } else {
8511 assert(Recipe->getNumDefinedValues() == 0 &&
8512 "Unexpected multidef recipe");
8513 R.eraseFromParent();
8514 }
8515 }
8516 }
8517
8518 // replaceAllUsesWith above may invalidate the block masks. Update them here.
8519 // TODO: Include the masks as operands in the predicated VPlan directly
8520 // to remove the need to keep a map of masks beyond the predication
8521 // transform.
8522 RecipeBuilder.updateBlockMaskCache(Old2New);
8523 for (VPValue *Old : Old2New.keys())
8524 Old->getDefiningRecipe()->eraseFromParent();
8525
8526 assert(isa<VPRegionBlock>(LoopRegion) &&
8527 !LoopRegion->getEntryBasicBlock()->empty() &&
8528 "entry block must be set to a VPRegionBlock having a non-empty entry "
8529 "VPBasicBlock");
8530
8531 // TODO: We can't call runPass on these transforms yet, due to verifier
8532 // failures.
8534 DenseMap<VPValue *, VPValue *> IVEndValues;
8535 VPlanTransforms::addScalarResumePhis(*Plan, RecipeBuilder, IVEndValues);
8536
8537 // ---------------------------------------------------------------------------
8538 // Transform initial VPlan: Apply previously taken decisions, in order, to
8539 // bring the VPlan to its final state.
8540 // ---------------------------------------------------------------------------
8541
8542 // Adjust the recipes for any inloop reductions.
8543 adjustRecipesForReductions(Plan, RecipeBuilder, Range.Start);
8544
8545 // Apply mandatory transformation to handle FP maxnum/minnum reduction with
8546 // NaNs if possible, bail out otherwise.
8548 *Plan))
8549 return nullptr;
8550
8551 // Transform recipes to abstract recipes if it is legal and beneficial and
8552 // clamp the range for better cost estimation.
8553 // TODO: Enable following transform when the EVL-version of extended-reduction
8554 // and mulacc-reduction are implemented.
8555 if (!CM.foldTailWithEVL()) {
8556 VPCostContext CostCtx(CM.TTI, *CM.TLI, *Plan, CM, CM.CostKind,
8557 *CM.PSE.getSE(), OrigLoop);
8559 CostCtx, Range);
8560 }
8561
8562 for (ElementCount VF : Range)
8563 Plan->addVF(VF);
8564 Plan->setName("Initial VPlan");
8565
8566 // Interleave memory: for each Interleave Group we marked earlier as relevant
8567 // for this VPlan, replace the Recipes widening its memory instructions with a
8568 // single VPInterleaveRecipe at its insertion point.
8570 InterleaveGroups, RecipeBuilder,
8571 CM.isScalarEpilogueAllowed());
8572
8573 // Replace VPValues for known constant strides.
8575 Legal->getLAI()->getSymbolicStrides());
8576
8577 auto BlockNeedsPredication = [this](BasicBlock *BB) {
8578 return Legal->blockNeedsPredication(BB);
8579 };
8581 BlockNeedsPredication);
8582
8583 // Sink users of fixed-order recurrence past the recipe defining the previous
8584 // value and introduce FirstOrderRecurrenceSplice VPInstructions.
8586 *Plan, Builder))
8587 return nullptr;
8588
8589 if (useActiveLaneMask(Style)) {
8590 // TODO: Move checks to VPlanTransforms::addActiveLaneMask once
8591 // TailFoldingStyle is visible there.
8592 bool ForControlFlow = useActiveLaneMaskForControlFlow(Style);
8593 bool WithoutRuntimeCheck =
8594 Style == TailFoldingStyle::DataAndControlFlowWithoutRuntimeCheck;
8595 VPlanTransforms::addActiveLaneMask(*Plan, ForControlFlow,
8596 WithoutRuntimeCheck);
8597 }
8598 VPlanTransforms::optimizeInductionExitUsers(*Plan, IVEndValues, *PSE.getSE());
8599
8600 assert(verifyVPlanIsValid(*Plan) && "VPlan is invalid");
8601 return Plan;
8602}
8603
8604VPlanPtr LoopVectorizationPlanner::tryToBuildVPlan(VFRange &Range) {
8605 // Outer loop handling: They may require CFG and instruction level
8606 // transformations before even evaluating whether vectorization is profitable.
8607 // Since we cannot modify the incoming IR, we need to build VPlan upfront in
8608 // the vectorization pipeline.
8609 assert(!OrigLoop->isInnermost());
8610 assert(EnableVPlanNativePath && "VPlan-native path is not enabled.");
8611
8612 auto Plan = VPlanTransforms::buildVPlan0(
8613 OrigLoop, *LI, Legal->getWidestInductionType(),
8614 getDebugLocFromInstOrOperands(Legal->getPrimaryInduction()), PSE);
8616 /*HasUncountableExit*/ false);
8617 VPlanTransforms::addMiddleCheck(*Plan, /*RequiresScalarEpilogue*/ true,
8618 /*TailFolded*/ false);
8619
8621
8622 for (ElementCount VF : Range)
8623 Plan->addVF(VF);
8624
8626 *Plan,
8627 [this](PHINode *P) {
8628 return Legal->getIntOrFpInductionDescriptor(P);
8629 },
8630 *TLI))
8631 return nullptr;
8632
8633 // Collect mapping of IR header phis to header phi recipes, to be used in
8634 // addScalarResumePhis.
8635 DenseMap<VPBasicBlock *, VPValue *> BlockMaskCache;
8636 VPRecipeBuilder RecipeBuilder(*Plan, OrigLoop, TLI, &TTI, Legal, CM, PSE,
8637 Builder, BlockMaskCache);
8638 for (auto &R : Plan->getVectorLoopRegion()->getEntryBasicBlock()->phis()) {
8640 continue;
8641 auto *HeaderR = cast<VPHeaderPHIRecipe>(&R);
8642 RecipeBuilder.setRecipe(HeaderR->getUnderlyingInstr(), HeaderR);
8643 }
8644 DenseMap<VPValue *, VPValue *> IVEndValues;
8645 // TODO: IVEndValues are not used yet in the native path, to optimize exit
8646 // values.
8647 // TODO: We can't call runPass on the transform yet, due to verifier
8648 // failures.
8649 VPlanTransforms::addScalarResumePhis(*Plan, RecipeBuilder, IVEndValues);
8650
8651 assert(verifyVPlanIsValid(*Plan) && "VPlan is invalid");
8652 return Plan;
8653}
8654
8655// Adjust the recipes for reductions. For in-loop reductions the chain of
8656// instructions leading from the loop exit instr to the phi need to be converted
8657// to reductions, with one operand being vector and the other being the scalar
8658// reduction chain. For other reductions, a select is introduced between the phi
8659// and users outside the vector region when folding the tail.
8660//
8661// A ComputeReductionResult recipe is added to the middle block, also for
8662// in-loop reductions which compute their result in-loop, because generating
8663// the subsequent bc.merge.rdx phi is driven by ComputeReductionResult recipes.
8664//
8665// Adjust AnyOf reductions; replace the reduction phi for the selected value
8666// with a boolean reduction phi node to check if the condition is true in any
8667// iteration. The final value is selected by the final ComputeReductionResult.
8668void LoopVectorizationPlanner::adjustRecipesForReductions(
8669 VPlanPtr &Plan, VPRecipeBuilder &RecipeBuilder, ElementCount MinVF) {
8670 using namespace VPlanPatternMatch;
8671 VPTypeAnalysis TypeInfo(*Plan);
8672 VPRegionBlock *VectorLoopRegion = Plan->getVectorLoopRegion();
8673 VPBasicBlock *Header = VectorLoopRegion->getEntryBasicBlock();
8674 VPBasicBlock *MiddleVPBB = Plan->getMiddleBlock();
8676
8677 for (VPRecipeBase &R : Header->phis()) {
8678 auto *PhiR = dyn_cast<VPReductionPHIRecipe>(&R);
8679 if (!PhiR || !PhiR->isInLoop() || (MinVF.isScalar() && !PhiR->isOrdered()))
8680 continue;
8681
8682 RecurKind Kind = PhiR->getRecurrenceKind();
8683 assert(
8686 "AnyOf and FindIV reductions are not allowed for in-loop reductions");
8687
8688 bool IsFPRecurrence =
8690 FastMathFlags FMFs =
8691 IsFPRecurrence ? FastMathFlags::getFast() : FastMathFlags();
8692
8693 // Collect the chain of "link" recipes for the reduction starting at PhiR.
8694 SetVector<VPSingleDefRecipe *> Worklist;
8695 Worklist.insert(PhiR);
8696 for (unsigned I = 0; I != Worklist.size(); ++I) {
8697 VPSingleDefRecipe *Cur = Worklist[I];
8698 for (VPUser *U : Cur->users()) {
8699 auto *UserRecipe = cast<VPSingleDefRecipe>(U);
8700 if (!UserRecipe->getParent()->getEnclosingLoopRegion()) {
8701 assert((UserRecipe->getParent() == MiddleVPBB ||
8702 UserRecipe->getParent() == Plan->getScalarPreheader()) &&
8703 "U must be either in the loop region, the middle block or the "
8704 "scalar preheader.");
8705 continue;
8706 }
8707 Worklist.insert(UserRecipe);
8708 }
8709 }
8710
8711 // Visit operation "Links" along the reduction chain top-down starting from
8712 // the phi until LoopExitValue. We keep track of the previous item
8713 // (PreviousLink) to tell which of the two operands of a Link will remain
8714 // scalar and which will be reduced. For minmax by select(cmp), Link will be
8715 // the select instructions. Blend recipes of in-loop reduction phi's will
8716 // get folded to their non-phi operand, as the reduction recipe handles the
8717 // condition directly.
8718 VPSingleDefRecipe *PreviousLink = PhiR; // Aka Worklist[0].
8719 for (VPSingleDefRecipe *CurrentLink : drop_begin(Worklist)) {
8720 if (auto *Blend = dyn_cast<VPBlendRecipe>(CurrentLink)) {
8721 assert(Blend->getNumIncomingValues() == 2 &&
8722 "Blend must have 2 incoming values");
8723 if (Blend->getIncomingValue(0) == PhiR) {
8724 Blend->replaceAllUsesWith(Blend->getIncomingValue(1));
8725 } else {
8726 assert(Blend->getIncomingValue(1) == PhiR &&
8727 "PhiR must be an operand of the blend");
8728 Blend->replaceAllUsesWith(Blend->getIncomingValue(0));
8729 }
8730 continue;
8731 }
8732
8733 if (IsFPRecurrence) {
8734 FastMathFlags CurFMF =
8735 cast<VPRecipeWithIRFlags>(CurrentLink)->getFastMathFlags();
8736 if (match(CurrentLink, m_Select(m_VPValue(), m_VPValue(), m_VPValue())))
8737 CurFMF |= cast<VPRecipeWithIRFlags>(CurrentLink->getOperand(0))
8738 ->getFastMathFlags();
8739 FMFs &= CurFMF;
8740 }
8741
8742 Instruction *CurrentLinkI = CurrentLink->getUnderlyingInstr();
8743
8744 // Index of the first operand which holds a non-mask vector operand.
8745 unsigned IndexOfFirstOperand;
8746 // Recognize a call to the llvm.fmuladd intrinsic.
8747 bool IsFMulAdd = (Kind == RecurKind::FMulAdd);
8748 VPValue *VecOp;
8749 VPBasicBlock *LinkVPBB = CurrentLink->getParent();
8750 if (IsFMulAdd) {
8751 assert(
8753 "Expected instruction to be a call to the llvm.fmuladd intrinsic");
8754 assert(((MinVF.isScalar() && isa<VPReplicateRecipe>(CurrentLink)) ||
8755 isa<VPWidenIntrinsicRecipe>(CurrentLink)) &&
8756 CurrentLink->getOperand(2) == PreviousLink &&
8757 "expected a call where the previous link is the added operand");
8758
8759 // If the instruction is a call to the llvm.fmuladd intrinsic then we
8760 // need to create an fmul recipe (multiplying the first two operands of
8761 // the fmuladd together) to use as the vector operand for the fadd
8762 // reduction.
8763 VPInstruction *FMulRecipe = new VPInstruction(
8764 Instruction::FMul,
8765 {CurrentLink->getOperand(0), CurrentLink->getOperand(1)},
8766 CurrentLinkI->getFastMathFlags());
8767 LinkVPBB->insert(FMulRecipe, CurrentLink->getIterator());
8768 VecOp = FMulRecipe;
8769 } else if (PhiR->isInLoop() && Kind == RecurKind::AddChainWithSubs &&
8770 match(CurrentLink, m_Sub(m_VPValue(), m_VPValue()))) {
8771 Type *PhiTy = TypeInfo.inferScalarType(PhiR);
8772 auto *Zero = Plan->getConstantInt(PhiTy, 0);
8773 VPWidenRecipe *Sub = new VPWidenRecipe(
8774 Instruction::Sub, {Zero, CurrentLink->getOperand(1)}, {},
8775 VPIRMetadata(), CurrentLinkI->getDebugLoc());
8776 Sub->setUnderlyingValue(CurrentLinkI);
8777 LinkVPBB->insert(Sub, CurrentLink->getIterator());
8778 VecOp = Sub;
8779 } else {
8781 if (match(CurrentLink, m_Cmp(m_VPValue(), m_VPValue())))
8782 continue;
8783 assert(isa<VPWidenSelectRecipe>(CurrentLink) &&
8784 "must be a select recipe");
8785 IndexOfFirstOperand = 1;
8786 } else {
8787 assert((MinVF.isScalar() || isa<VPWidenRecipe>(CurrentLink)) &&
8788 "Expected to replace a VPWidenSC");
8789 IndexOfFirstOperand = 0;
8790 }
8791 // Note that for non-commutable operands (cmp-selects), the semantics of
8792 // the cmp-select are captured in the recurrence kind.
8793 unsigned VecOpId =
8794 CurrentLink->getOperand(IndexOfFirstOperand) == PreviousLink
8795 ? IndexOfFirstOperand + 1
8796 : IndexOfFirstOperand;
8797 VecOp = CurrentLink->getOperand(VecOpId);
8798 assert(VecOp != PreviousLink &&
8799 CurrentLink->getOperand(CurrentLink->getNumOperands() - 1 -
8800 (VecOpId - IndexOfFirstOperand)) ==
8801 PreviousLink &&
8802 "PreviousLink must be the operand other than VecOp");
8803 }
8804
8805 VPValue *CondOp = nullptr;
8806 if (CM.blockNeedsPredicationForAnyReason(CurrentLinkI->getParent()))
8807 CondOp = RecipeBuilder.getBlockInMask(CurrentLink->getParent());
8808
8809 auto *RedRecipe = new VPReductionRecipe(
8810 Kind, FMFs, CurrentLinkI, PreviousLink, VecOp, CondOp,
8811 PhiR->isOrdered(), CurrentLinkI->getDebugLoc());
8812 // Append the recipe to the end of the VPBasicBlock because we need to
8813 // ensure that it comes after all of it's inputs, including CondOp.
8814 // Delete CurrentLink as it will be invalid if its operand is replaced
8815 // with a reduction defined at the bottom of the block in the next link.
8816 if (LinkVPBB->getNumSuccessors() == 0)
8817 RedRecipe->insertBefore(&*std::prev(std::prev(LinkVPBB->end())));
8818 else
8819 LinkVPBB->appendRecipe(RedRecipe);
8820
8821 CurrentLink->replaceAllUsesWith(RedRecipe);
8822 ToDelete.push_back(CurrentLink);
8823 PreviousLink = RedRecipe;
8824 }
8825 }
8826 VPBasicBlock *LatchVPBB = VectorLoopRegion->getExitingBasicBlock();
8827 Builder.setInsertPoint(&*std::prev(std::prev(LatchVPBB->end())));
8828 VPBasicBlock::iterator IP = MiddleVPBB->getFirstNonPhi();
8829 for (VPRecipeBase &R :
8830 Plan->getVectorLoopRegion()->getEntryBasicBlock()->phis()) {
8831 VPReductionPHIRecipe *PhiR = dyn_cast<VPReductionPHIRecipe>(&R);
8832 if (!PhiR)
8833 continue;
8834
8835 const RecurrenceDescriptor &RdxDesc = Legal->getRecurrenceDescriptor(
8837 Type *PhiTy = TypeInfo.inferScalarType(PhiR);
8838 // If tail is folded by masking, introduce selects between the phi
8839 // and the users outside the vector region of each reduction, at the
8840 // beginning of the dedicated latch block.
8841 auto *OrigExitingVPV = PhiR->getBackedgeValue();
8842 auto *NewExitingVPV = PhiR->getBackedgeValue();
8843 // Don't output selects for partial reductions because they have an output
8844 // with fewer lanes than the VF. So the operands of the select would have
8845 // different numbers of lanes. Partial reductions mask the input instead.
8846 if (!PhiR->isInLoop() && CM.foldTailByMasking() &&
8847 !isa<VPPartialReductionRecipe>(OrigExitingVPV)) {
8848 VPValue *Cond = RecipeBuilder.getBlockInMask(PhiR->getParent());
8849 std::optional<FastMathFlags> FMFs =
8850 PhiTy->isFloatingPointTy()
8851 ? std::make_optional(RdxDesc.getFastMathFlags())
8852 : std::nullopt;
8853 NewExitingVPV =
8854 Builder.createSelect(Cond, OrigExitingVPV, PhiR, {}, "", FMFs);
8855 OrigExitingVPV->replaceUsesWithIf(NewExitingVPV, [](VPUser &U, unsigned) {
8856 return isa<VPInstruction>(&U) &&
8857 (cast<VPInstruction>(&U)->getOpcode() ==
8859 cast<VPInstruction>(&U)->getOpcode() ==
8861 cast<VPInstruction>(&U)->getOpcode() ==
8863 });
8864 if (CM.usePredicatedReductionSelect())
8865 PhiR->setOperand(1, NewExitingVPV);
8866 }
8867
8868 // We want code in the middle block to appear to execute on the location of
8869 // the scalar loop's latch terminator because: (a) it is all compiler
8870 // generated, (b) these instructions are always executed after evaluating
8871 // the latch conditional branch, and (c) other passes may add new
8872 // predecessors which terminate on this line. This is the easiest way to
8873 // ensure we don't accidentally cause an extra step back into the loop while
8874 // debugging.
8875 DebugLoc ExitDL = OrigLoop->getLoopLatch()->getTerminator()->getDebugLoc();
8876
8877 // TODO: At the moment ComputeReductionResult also drives creation of the
8878 // bc.merge.rdx phi nodes, hence it needs to be created unconditionally here
8879 // even for in-loop reductions, until the reduction resume value handling is
8880 // also modeled in VPlan.
8881 VPInstruction *FinalReductionResult;
8882 VPBuilder::InsertPointGuard Guard(Builder);
8883 Builder.setInsertPoint(MiddleVPBB, IP);
8884 RecurKind RecurrenceKind = PhiR->getRecurrenceKind();
8886 VPValue *Start = PhiR->getStartValue();
8887 VPValue *Sentinel = Plan->getOrAddLiveIn(RdxDesc.getSentinelValue());
8888 FinalReductionResult =
8889 Builder.createNaryOp(VPInstruction::ComputeFindIVResult,
8890 {PhiR, Start, Sentinel, NewExitingVPV}, ExitDL);
8891 } else if (RecurrenceDescriptor::isAnyOfRecurrenceKind(RecurrenceKind)) {
8892 VPValue *Start = PhiR->getStartValue();
8893 FinalReductionResult =
8894 Builder.createNaryOp(VPInstruction::ComputeAnyOfResult,
8895 {PhiR, Start, NewExitingVPV}, ExitDL);
8896 } else {
8897 VPIRFlags Flags =
8899 ? VPIRFlags(RdxDesc.getFastMathFlags())
8900 : VPIRFlags();
8901 FinalReductionResult =
8902 Builder.createNaryOp(VPInstruction::ComputeReductionResult,
8903 {PhiR, NewExitingVPV}, Flags, ExitDL);
8904 }
8905 // If the vector reduction can be performed in a smaller type, we truncate
8906 // then extend the loop exit value to enable InstCombine to evaluate the
8907 // entire expression in the smaller type.
8908 if (MinVF.isVector() && PhiTy != RdxDesc.getRecurrenceType() &&
8910 assert(!PhiR->isInLoop() && "Unexpected truncated inloop reduction!");
8912 "Unexpected truncated min-max recurrence!");
8913 Type *RdxTy = RdxDesc.getRecurrenceType();
8914 VPWidenCastRecipe *Trunc;
8915 Instruction::CastOps ExtendOpc =
8916 RdxDesc.isSigned() ? Instruction::SExt : Instruction::ZExt;
8917 VPWidenCastRecipe *Extnd;
8918 {
8919 VPBuilder::InsertPointGuard Guard(Builder);
8920 Builder.setInsertPoint(
8921 NewExitingVPV->getDefiningRecipe()->getParent(),
8922 std::next(NewExitingVPV->getDefiningRecipe()->getIterator()));
8923 Trunc =
8924 Builder.createWidenCast(Instruction::Trunc, NewExitingVPV, RdxTy);
8925 Extnd = Builder.createWidenCast(ExtendOpc, Trunc, PhiTy);
8926 }
8927 if (PhiR->getOperand(1) == NewExitingVPV)
8928 PhiR->setOperand(1, Extnd->getVPSingleValue());
8929
8930 // Update ComputeReductionResult with the truncated exiting value and
8931 // extend its result.
8932 FinalReductionResult->setOperand(1, Trunc);
8933 FinalReductionResult =
8934 Builder.createScalarCast(ExtendOpc, FinalReductionResult, PhiTy, {});
8935 }
8936
8937 // Update all users outside the vector region. Also replace redundant
8938 // ExtractLastElement.
8939 for (auto *U : to_vector(OrigExitingVPV->users())) {
8940 auto *Parent = cast<VPRecipeBase>(U)->getParent();
8941 if (FinalReductionResult == U || Parent->getParent())
8942 continue;
8943 U->replaceUsesOfWith(OrigExitingVPV, FinalReductionResult);
8945 cast<VPInstruction>(U)->replaceAllUsesWith(FinalReductionResult);
8946 }
8947
8948 // Adjust AnyOf reductions; replace the reduction phi for the selected value
8949 // with a boolean reduction phi node to check if the condition is true in
8950 // any iteration. The final value is selected by the final
8951 // ComputeReductionResult.
8952 if (RecurrenceDescriptor::isAnyOfRecurrenceKind(RecurrenceKind)) {
8953 auto *Select = cast<VPRecipeBase>(*find_if(PhiR->users(), [](VPUser *U) {
8954 return isa<VPWidenSelectRecipe>(U) ||
8955 (isa<VPReplicateRecipe>(U) &&
8956 cast<VPReplicateRecipe>(U)->getUnderlyingInstr()->getOpcode() ==
8957 Instruction::Select);
8958 }));
8959 VPValue *Cmp = Select->getOperand(0);
8960 // If the compare is checking the reduction PHI node, adjust it to check
8961 // the start value.
8962 if (VPRecipeBase *CmpR = Cmp->getDefiningRecipe())
8963 CmpR->replaceUsesOfWith(PhiR, PhiR->getStartValue());
8964 Builder.setInsertPoint(Select);
8965
8966 // If the true value of the select is the reduction phi, the new value is
8967 // selected if the negated condition is true in any iteration.
8968 if (Select->getOperand(1) == PhiR)
8969 Cmp = Builder.createNot(Cmp);
8970 VPValue *Or = Builder.createOr(PhiR, Cmp);
8971 Select->getVPSingleValue()->replaceAllUsesWith(Or);
8972 // Delete Select now that it has invalid types.
8973 ToDelete.push_back(Select);
8974
8975 // Convert the reduction phi to operate on bools.
8976 PhiR->setOperand(0, Plan->getFalse());
8977 continue;
8978 }
8979
8981 RdxDesc.getRecurrenceKind())) {
8982 // Adjust the start value for FindFirstIV/FindLastIV recurrences to use
8983 // the sentinel value after generating the ResumePhi recipe, which uses
8984 // the original start value.
8985 PhiR->setOperand(0, Plan->getOrAddLiveIn(RdxDesc.getSentinelValue()));
8986 }
8987 RecurKind RK = RdxDesc.getRecurrenceKind();
8991 VPBuilder PHBuilder(Plan->getVectorPreheader());
8992 VPValue *Iden = Plan->getOrAddLiveIn(
8993 getRecurrenceIdentity(RK, PhiTy, RdxDesc.getFastMathFlags()));
8994 // If the PHI is used by a partial reduction, set the scale factor.
8995 unsigned ScaleFactor =
8996 RecipeBuilder.getScalingForReduction(RdxDesc.getLoopExitInstr())
8997 .value_or(1);
8998 auto *ScaleFactorVPV = Plan->getConstantInt(32, ScaleFactor);
8999 VPValue *StartV = PHBuilder.createNaryOp(
9001 {PhiR->getStartValue(), Iden, ScaleFactorVPV},
9002 PhiTy->isFloatingPointTy() ? RdxDesc.getFastMathFlags()
9003 : FastMathFlags());
9004 PhiR->setOperand(0, StartV);
9005 }
9006 }
9007 for (VPRecipeBase *R : ToDelete)
9008 R->eraseFromParent();
9009
9011}
9012
9013void LoopVectorizationPlanner::attachRuntimeChecks(
9014 VPlan &Plan, GeneratedRTChecks &RTChecks, bool HasBranchWeights) const {
9015 const auto &[SCEVCheckCond, SCEVCheckBlock] = RTChecks.getSCEVChecks();
9016 if (SCEVCheckBlock && SCEVCheckBlock->hasNPredecessors(0)) {
9017 assert((!CM.OptForSize ||
9018 CM.Hints->getForce() == LoopVectorizeHints::FK_Enabled) &&
9019 "Cannot SCEV check stride or overflow when optimizing for size");
9020 VPlanTransforms::attachCheckBlock(Plan, SCEVCheckCond, SCEVCheckBlock,
9021 HasBranchWeights);
9022 }
9023 const auto &[MemCheckCond, MemCheckBlock] = RTChecks.getMemRuntimeChecks();
9024 if (MemCheckBlock && MemCheckBlock->hasNPredecessors(0)) {
9025 // VPlan-native path does not do any analysis for runtime checks
9026 // currently.
9027 assert((!EnableVPlanNativePath || OrigLoop->isInnermost()) &&
9028 "Runtime checks are not supported for outer loops yet");
9029
9030 if (CM.OptForSize) {
9031 assert(
9032 CM.Hints->getForce() == LoopVectorizeHints::FK_Enabled &&
9033 "Cannot emit memory checks when optimizing for size, unless forced "
9034 "to vectorize.");
9035 ORE->emit([&]() {
9036 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationCodeSize",
9037 OrigLoop->getStartLoc(),
9038 OrigLoop->getHeader())
9039 << "Code-size may be reduced by not forcing "
9040 "vectorization, or by source-code modifications "
9041 "eliminating the need for runtime checks "
9042 "(e.g., adding 'restrict').";
9043 });
9044 }
9045 VPlanTransforms::attachCheckBlock(Plan, MemCheckCond, MemCheckBlock,
9046 HasBranchWeights);
9047 }
9048}
9049
9051 VPlan &Plan, ElementCount VF, unsigned UF,
9052 ElementCount MinProfitableTripCount) const {
9053 // vscale is not necessarily a power-of-2, which means we cannot guarantee
9054 // an overflow to zero when updating induction variables and so an
9055 // additional overflow check is required before entering the vector loop.
9056 bool IsIndvarOverflowCheckNeededForVF =
9057 VF.isScalable() && !TTI.isVScaleKnownToBeAPowerOfTwo() &&
9058 !isIndvarOverflowCheckKnownFalse(&CM, VF, UF) &&
9059 CM.getTailFoldingStyle() !=
9061 const uint32_t *BranchWeigths =
9062 hasBranchWeightMD(*OrigLoop->getLoopLatch()->getTerminator())
9064 : nullptr;
9066 Plan, VF, UF, MinProfitableTripCount,
9067 CM.requiresScalarEpilogue(VF.isVector()), CM.foldTailByMasking(),
9068 IsIndvarOverflowCheckNeededForVF, OrigLoop, BranchWeigths,
9069 OrigLoop->getLoopPredecessor()->getTerminator()->getDebugLoc(),
9070 *PSE.getSE());
9071}
9072
9074 assert(!State.Lane && "VPDerivedIVRecipe being replicated.");
9075
9076 // Fast-math-flags propagate from the original induction instruction.
9077 IRBuilder<>::FastMathFlagGuard FMFG(State.Builder);
9078 if (FPBinOp)
9079 State.Builder.setFastMathFlags(FPBinOp->getFastMathFlags());
9080
9081 Value *Step = State.get(getStepValue(), VPLane(0));
9082 Value *Index = State.get(getOperand(1), VPLane(0));
9083 Value *DerivedIV = emitTransformedIndex(
9084 State.Builder, Index, getStartValue()->getLiveInIRValue(), Step, Kind,
9086 DerivedIV->setName(Name);
9087 State.set(this, DerivedIV, VPLane(0));
9088}
9089
9090// Determine how to lower the scalar epilogue, which depends on 1) optimising
9091// for minimum code-size, 2) predicate compiler options, 3) loop hints forcing
9092// predication, and 4) a TTI hook that analyses whether the loop is suitable
9093// for predication.
9095 Function *F, Loop *L, LoopVectorizeHints &Hints, bool OptForSize,
9098 // 1) OptSize takes precedence over all other options, i.e. if this is set,
9099 // don't look at hints or options, and don't request a scalar epilogue.
9100 if (F->hasOptSize() ||
9101 (OptForSize && Hints.getForce() != LoopVectorizeHints::FK_Enabled))
9103
9104 // 2) If set, obey the directives
9105 if (PreferPredicateOverEpilogue.getNumOccurrences()) {
9113 };
9114 }
9115
9116 // 3) If set, obey the hints
9117 switch (Hints.getPredicate()) {
9122 };
9123
9124 // 4) if the TTI hook indicates this is profitable, request predication.
9125 TailFoldingInfo TFI(TLI, &LVL, IAI);
9126 if (TTI->preferPredicateOverEpilogue(&TFI))
9128
9130}
9131
9132// Process the loop in the VPlan-native vectorization path. This path builds
9133// VPlan upfront in the vectorization pipeline, which allows to apply
9134// VPlan-to-VPlan transformations from the very beginning without modifying the
9135// input LLVM IR.
9140 OptimizationRemarkEmitter *ORE, bool OptForSize, LoopVectorizeHints &Hints,
9141 LoopVectorizationRequirements &Requirements) {
9142
9144 LLVM_DEBUG(dbgs() << "LV: cannot compute the outer-loop trip count\n");
9145 return false;
9146 }
9147 assert(EnableVPlanNativePath && "VPlan-native path is disabled.");
9148 Function *F = L->getHeader()->getParent();
9149 InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL->getLAI());
9150
9152 getScalarEpilogueLowering(F, L, Hints, OptForSize, TTI, TLI, *LVL, &IAI);
9153
9154 LoopVectorizationCostModel CM(SEL, L, PSE, LI, LVL, *TTI, TLI, DB, AC, ORE, F,
9155 &Hints, IAI, OptForSize);
9156 // Use the planner for outer loop vectorization.
9157 // TODO: CM is not used at this point inside the planner. Turn CM into an
9158 // optional argument if we don't need it in the future.
9159 LoopVectorizationPlanner LVP(L, LI, DT, TLI, *TTI, LVL, CM, IAI, PSE, Hints,
9160 ORE);
9161
9162 // Get user vectorization factor.
9163 ElementCount UserVF = Hints.getWidth();
9164
9166
9167 // Plan how to best vectorize, return the best VF and its cost.
9168 const VectorizationFactor VF = LVP.planInVPlanNativePath(UserVF);
9169
9170 // If we are stress testing VPlan builds, do not attempt to generate vector
9171 // code. Masked vector code generation support will follow soon.
9172 // Also, do not attempt to vectorize if no vector code will be produced.
9174 return false;
9175
9176 VPlan &BestPlan = LVP.getPlanFor(VF.Width);
9177
9178 {
9179 GeneratedRTChecks Checks(PSE, DT, LI, TTI, F->getDataLayout(), CM.CostKind);
9180 InnerLoopVectorizer LB(L, PSE, LI, DT, TTI, AC, VF.Width, /*UF=*/1, &CM,
9181 Checks, BestPlan);
9182 LLVM_DEBUG(dbgs() << "Vectorizing outer loop in \""
9183 << L->getHeader()->getParent()->getName() << "\"\n");
9184 LVP.addMinimumIterationCheck(BestPlan, VF.Width, /*UF=*/1,
9186
9187 LVP.executePlan(VF.Width, /*UF=*/1, BestPlan, LB, DT, false);
9188 }
9189
9190 reportVectorization(ORE, L, VF, 1);
9191
9192 assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()));
9193 return true;
9194}
9195
9196// Emit a remark if there are stores to floats that required a floating point
9197// extension. If the vectorized loop was generated with floating point there
9198// will be a performance penalty from the conversion overhead and the change in
9199// the vector width.
9202 for (BasicBlock *BB : L->getBlocks()) {
9203 for (Instruction &Inst : *BB) {
9204 if (auto *S = dyn_cast<StoreInst>(&Inst)) {
9205 if (S->getValueOperand()->getType()->isFloatTy())
9206 Worklist.push_back(S);
9207 }
9208 }
9209 }
9210
9211 // Traverse the floating point stores upwards searching, for floating point
9212 // conversions.
9215 while (!Worklist.empty()) {
9216 auto *I = Worklist.pop_back_val();
9217 if (!L->contains(I))
9218 continue;
9219 if (!Visited.insert(I).second)
9220 continue;
9221
9222 // Emit a remark if the floating point store required a floating
9223 // point conversion.
9224 // TODO: More work could be done to identify the root cause such as a
9225 // constant or a function return type and point the user to it.
9226 if (isa<FPExtInst>(I) && EmittedRemark.insert(I).second)
9227 ORE->emit([&]() {
9228 return OptimizationRemarkAnalysis(LV_NAME, "VectorMixedPrecision",
9229 I->getDebugLoc(), L->getHeader())
9230 << "floating point conversion changes vector width. "
9231 << "Mixed floating point precision requires an up/down "
9232 << "cast that will negatively impact performance.";
9233 });
9234
9235 for (Use &Op : I->operands())
9236 if (auto *OpI = dyn_cast<Instruction>(Op))
9237 Worklist.push_back(OpI);
9238 }
9239}
9240
9241/// For loops with uncountable early exits, find the cost of doing work when
9242/// exiting the loop early, such as calculating the final exit values of
9243/// variables used outside the loop.
9244/// TODO: This is currently overly pessimistic because the loop may not take
9245/// the early exit, but better to keep this conservative for now. In future,
9246/// it might be possible to relax this by using branch probabilities.
9248 VPlan &Plan, ElementCount VF) {
9249 InstructionCost Cost = 0;
9250 for (auto *ExitVPBB : Plan.getExitBlocks()) {
9251 for (auto *PredVPBB : ExitVPBB->getPredecessors()) {
9252 // If the predecessor is not the middle.block, then it must be the
9253 // vector.early.exit block, which may contain work to calculate the exit
9254 // values of variables used outside the loop.
9255 if (PredVPBB != Plan.getMiddleBlock()) {
9256 LLVM_DEBUG(dbgs() << "Calculating cost of work in exit block "
9257 << PredVPBB->getName() << ":\n");
9258 Cost += PredVPBB->cost(VF, CostCtx);
9259 }
9260 }
9261 }
9262 return Cost;
9263}
9264
9265/// This function determines whether or not it's still profitable to vectorize
9266/// the loop given the extra work we have to do outside of the loop:
9267/// 1. Perform the runtime checks before entering the loop to ensure it's safe
9268/// to vectorize.
9269/// 2. In the case of loops with uncountable early exits, we may have to do
9270/// extra work when exiting the loop early, such as calculating the final
9271/// exit values of variables used outside the loop.
9272static bool isOutsideLoopWorkProfitable(GeneratedRTChecks &Checks,
9273 VectorizationFactor &VF, Loop *L,
9275 VPCostContext &CostCtx, VPlan &Plan,
9277 std::optional<unsigned> VScale) {
9278 InstructionCost TotalCost = Checks.getCost();
9279 if (!TotalCost.isValid())
9280 return false;
9281
9282 // Add on the cost of any work required in the vector early exit block, if
9283 // one exists.
9284 TotalCost += calculateEarlyExitCost(CostCtx, Plan, VF.Width);
9285
9286 // When interleaving only scalar and vector cost will be equal, which in turn
9287 // would lead to a divide by 0. Fall back to hard threshold.
9288 if (VF.Width.isScalar()) {
9289 // TODO: Should we rename VectorizeMemoryCheckThreshold?
9290 if (TotalCost > VectorizeMemoryCheckThreshold) {
9291 LLVM_DEBUG(
9292 dbgs()
9293 << "LV: Interleaving only is not profitable due to runtime checks\n");
9294 return false;
9295 }
9296 return true;
9297 }
9298
9299 // The scalar cost should only be 0 when vectorizing with a user specified
9300 // VF/IC. In those cases, runtime checks should always be generated.
9301 uint64_t ScalarC = VF.ScalarCost.getValue();
9302 if (ScalarC == 0)
9303 return true;
9304
9305 // First, compute the minimum iteration count required so that the vector
9306 // loop outperforms the scalar loop.
9307 // The total cost of the scalar loop is
9308 // ScalarC * TC
9309 // where
9310 // * TC is the actual trip count of the loop.
9311 // * ScalarC is the cost of a single scalar iteration.
9312 //
9313 // The total cost of the vector loop is
9314 // RtC + VecC * (TC / VF) + EpiC
9315 // where
9316 // * RtC is the cost of the generated runtime checks plus the cost of
9317 // performing any additional work in the vector.early.exit block for loops
9318 // with uncountable early exits.
9319 // * VecC is the cost of a single vector iteration.
9320 // * TC is the actual trip count of the loop
9321 // * VF is the vectorization factor
9322 // * EpiCost is the cost of the generated epilogue, including the cost
9323 // of the remaining scalar operations.
9324 //
9325 // Vectorization is profitable once the total vector cost is less than the
9326 // total scalar cost:
9327 // RtC + VecC * (TC / VF) + EpiC < ScalarC * TC
9328 //
9329 // Now we can compute the minimum required trip count TC as
9330 // VF * (RtC + EpiC) / (ScalarC * VF - VecC) < TC
9331 //
9332 // For now we assume the epilogue cost EpiC = 0 for simplicity. Note that
9333 // the computations are performed on doubles, not integers and the result
9334 // is rounded up, hence we get an upper estimate of the TC.
9335 unsigned IntVF = estimateElementCount(VF.Width, VScale);
9336 uint64_t RtC = TotalCost.getValue();
9337 uint64_t Div = ScalarC * IntVF - VF.Cost.getValue();
9338 uint64_t MinTC1 = Div == 0 ? 0 : divideCeil(RtC * IntVF, Div);
9339
9340 // Second, compute a minimum iteration count so that the cost of the
9341 // runtime checks is only a fraction of the total scalar loop cost. This
9342 // adds a loop-dependent bound on the overhead incurred if the runtime
9343 // checks fail. In case the runtime checks fail, the cost is RtC + ScalarC
9344 // * TC. To bound the runtime check to be a fraction 1/X of the scalar
9345 // cost, compute
9346 // RtC < ScalarC * TC * (1 / X) ==> RtC * X / ScalarC < TC
9347 uint64_t MinTC2 = divideCeil(RtC * 10, ScalarC);
9348
9349 // Now pick the larger minimum. If it is not a multiple of VF and a scalar
9350 // epilogue is allowed, choose the next closest multiple of VF. This should
9351 // partly compensate for ignoring the epilogue cost.
9352 uint64_t MinTC = std::max(MinTC1, MinTC2);
9353 if (SEL == CM_ScalarEpilogueAllowed)
9354 MinTC = alignTo(MinTC, IntVF);
9356
9357 LLVM_DEBUG(
9358 dbgs() << "LV: Minimum required TC for runtime checks to be profitable:"
9359 << VF.MinProfitableTripCount << "\n");
9360
9361 // Skip vectorization if the expected trip count is less than the minimum
9362 // required trip count.
9363 if (auto ExpectedTC = getSmallBestKnownTC(PSE, L)) {
9364 if (ElementCount::isKnownLT(*ExpectedTC, VF.MinProfitableTripCount)) {
9365 LLVM_DEBUG(dbgs() << "LV: Vectorization is not beneficial: expected "
9366 "trip count < minimum profitable VF ("
9367 << *ExpectedTC << " < " << VF.MinProfitableTripCount
9368 << ")\n");
9369
9370 return false;
9371 }
9372 }
9373 return true;
9374}
9375
9377 : InterleaveOnlyWhenForced(Opts.InterleaveOnlyWhenForced ||
9379 VectorizeOnlyWhenForced(Opts.VectorizeOnlyWhenForced ||
9381
9382/// Prepare \p MainPlan for vectorizing the main vector loop during epilogue
9383/// vectorization. Remove ResumePhis from \p MainPlan for inductions that
9384/// don't have a corresponding wide induction in \p EpiPlan.
9385static void preparePlanForMainVectorLoop(VPlan &MainPlan, VPlan &EpiPlan) {
9386 // Collect PHI nodes of widened phis in the VPlan for the epilogue. Those
9387 // will need their resume-values computed in the main vector loop. Others
9388 // can be removed from the main VPlan.
9389 SmallPtrSet<PHINode *, 2> EpiWidenedPhis;
9390 for (VPRecipeBase &R :
9393 continue;
9394 EpiWidenedPhis.insert(
9395 cast<PHINode>(R.getVPSingleValue()->getUnderlyingValue()));
9396 }
9397 for (VPRecipeBase &R :
9398 make_early_inc_range(MainPlan.getScalarHeader()->phis())) {
9399 auto *VPIRInst = cast<VPIRPhi>(&R);
9400 if (EpiWidenedPhis.contains(&VPIRInst->getIRPhi()))
9401 continue;
9402 // There is no corresponding wide induction in the epilogue plan that would
9403 // need a resume value. Remove the VPIRInst wrapping the scalar header phi
9404 // together with the corresponding ResumePhi. The resume values for the
9405 // scalar loop will be created during execution of EpiPlan.
9406 VPRecipeBase *ResumePhi = VPIRInst->getOperand(0)->getDefiningRecipe();
9407 VPIRInst->eraseFromParent();
9408 ResumePhi->eraseFromParent();
9409 }
9411
9412 using namespace VPlanPatternMatch;
9413 // When vectorizing the epilogue, FindFirstIV & FindLastIV reductions can
9414 // introduce multiple uses of undef/poison. If the reduction start value may
9415 // be undef or poison it needs to be frozen and the frozen start has to be
9416 // used when computing the reduction result. We also need to use the frozen
9417 // value in the resume phi generated by the main vector loop, as this is also
9418 // used to compute the reduction result after the epilogue vector loop.
9419 auto AddFreezeForFindLastIVReductions = [](VPlan &Plan,
9420 bool UpdateResumePhis) {
9421 VPBuilder Builder(Plan.getEntry());
9422 for (VPRecipeBase &R : *Plan.getMiddleBlock()) {
9423 auto *VPI = dyn_cast<VPInstruction>(&R);
9424 if (!VPI || VPI->getOpcode() != VPInstruction::ComputeFindIVResult)
9425 continue;
9426 VPValue *OrigStart = VPI->getOperand(1);
9428 continue;
9429 VPInstruction *Freeze =
9430 Builder.createNaryOp(Instruction::Freeze, {OrigStart}, {}, "fr");
9431 VPI->setOperand(1, Freeze);
9432 if (UpdateResumePhis)
9433 OrigStart->replaceUsesWithIf(Freeze, [Freeze](VPUser &U, unsigned) {
9434 return Freeze != &U && isa<VPPhi>(&U);
9435 });
9436 }
9437 };
9438 AddFreezeForFindLastIVReductions(MainPlan, true);
9439 AddFreezeForFindLastIVReductions(EpiPlan, false);
9440
9441 VPBasicBlock *MainScalarPH = MainPlan.getScalarPreheader();
9442 VPValue *VectorTC = &MainPlan.getVectorTripCount();
9443 // If there is a suitable resume value for the canonical induction in the
9444 // scalar (which will become vector) epilogue loop, use it and move it to the
9445 // beginning of the scalar preheader. Otherwise create it below.
9446 auto ResumePhiIter =
9447 find_if(MainScalarPH->phis(), [VectorTC](VPRecipeBase &R) {
9448 return match(&R, m_VPInstruction<Instruction::PHI>(m_Specific(VectorTC),
9449 m_ZeroInt()));
9450 });
9451 VPPhi *ResumePhi = nullptr;
9452 if (ResumePhiIter == MainScalarPH->phis().end()) {
9453 VPBuilder ScalarPHBuilder(MainScalarPH, MainScalarPH->begin());
9454 ResumePhi = ScalarPHBuilder.createScalarPhi(
9455 {VectorTC,
9457 {}, "vec.epilog.resume.val");
9458 } else {
9459 ResumePhi = cast<VPPhi>(&*ResumePhiIter);
9460 if (MainScalarPH->begin() == MainScalarPH->end())
9461 ResumePhi->moveBefore(*MainScalarPH, MainScalarPH->end());
9462 else if (&*MainScalarPH->begin() != ResumePhi)
9463 ResumePhi->moveBefore(*MainScalarPH, MainScalarPH->begin());
9464 }
9465 // Add a user to to make sure the resume phi won't get removed.
9466 VPBuilder(MainScalarPH)
9468}
9469
9470/// Prepare \p Plan for vectorizing the epilogue loop. That is, re-use expanded
9471/// SCEVs from \p ExpandedSCEVs and set resume values for header recipes. Some
9472/// reductions require creating new instructions to compute the resume values.
9473/// They are collected in a vector and returned. They must be moved to the
9474/// preheader of the vector epilogue loop, after created by the execution of \p
9475/// Plan.
9477 VPlan &Plan, Loop *L, const SCEV2ValueTy &ExpandedSCEVs,
9479 ScalarEvolution &SE) {
9480 VPRegionBlock *VectorLoop = Plan.getVectorLoopRegion();
9481 VPBasicBlock *Header = VectorLoop->getEntryBasicBlock();
9482 Header->setName("vec.epilog.vector.body");
9483
9484 VPCanonicalIVPHIRecipe *IV = VectorLoop->getCanonicalIV();
9485 // When vectorizing the epilogue loop, the canonical induction needs to be
9486 // adjusted by the value after the main vector loop. Find the resume value
9487 // created during execution of the main VPlan. It must be the first phi in the
9488 // loop preheader. Use the value to increment the canonical IV, and update all
9489 // users in the loop region to use the adjusted value.
9490 // FIXME: Improve modeling for canonical IV start values in the epilogue
9491 // loop.
9492 using namespace llvm::PatternMatch;
9493 PHINode *EPResumeVal = &*L->getLoopPreheader()->phis().begin();
9494 for (Value *Inc : EPResumeVal->incoming_values()) {
9495 if (match(Inc, m_SpecificInt(0)))
9496 continue;
9497 assert(!EPI.VectorTripCount &&
9498 "Must only have a single non-zero incoming value");
9499 EPI.VectorTripCount = Inc;
9500 }
9501 // If we didn't find a non-zero vector trip count, all incoming values
9502 // must be zero, which also means the vector trip count is zero. Pick the
9503 // first zero as vector trip count.
9504 // TODO: We should not choose VF * UF so the main vector loop is known to
9505 // be dead.
9506 if (!EPI.VectorTripCount) {
9507 assert(EPResumeVal->getNumIncomingValues() > 0 &&
9508 all_of(EPResumeVal->incoming_values(),
9509 [](Value *Inc) { return match(Inc, m_SpecificInt(0)); }) &&
9510 "all incoming values must be 0");
9511 EPI.VectorTripCount = EPResumeVal->getOperand(0);
9512 }
9513 VPValue *VPV = Plan.getOrAddLiveIn(EPResumeVal);
9514 assert(all_of(IV->users(),
9515 [](const VPUser *U) {
9516 return isa<VPScalarIVStepsRecipe>(U) ||
9517 isa<VPDerivedIVRecipe>(U) ||
9518 cast<VPRecipeBase>(U)->isScalarCast() ||
9519 cast<VPInstruction>(U)->getOpcode() ==
9520 Instruction::Add;
9521 }) &&
9522 "the canonical IV should only be used by its increment or "
9523 "ScalarIVSteps when resetting the start value");
9524 VPBuilder Builder(Header, Header->getFirstNonPhi());
9525 VPInstruction *Add = Builder.createNaryOp(Instruction::Add, {IV, VPV});
9526 IV->replaceAllUsesWith(Add);
9527 Add->setOperand(0, IV);
9528
9530 SmallVector<Instruction *> InstsToMove;
9531 // Ensure that the start values for all header phi recipes are updated before
9532 // vectorizing the epilogue loop. Skip the canonical IV, which has been
9533 // handled above.
9534 for (VPRecipeBase &R : drop_begin(Header->phis())) {
9535 Value *ResumeV = nullptr;
9536 // TODO: Move setting of resume values to prepareToExecute.
9537 if (auto *ReductionPhi = dyn_cast<VPReductionPHIRecipe>(&R)) {
9538 auto *RdxResult =
9539 cast<VPInstruction>(*find_if(ReductionPhi->users(), [](VPUser *U) {
9540 auto *VPI = dyn_cast<VPInstruction>(U);
9541 return VPI &&
9542 (VPI->getOpcode() == VPInstruction::ComputeAnyOfResult ||
9543 VPI->getOpcode() == VPInstruction::ComputeReductionResult ||
9544 VPI->getOpcode() == VPInstruction::ComputeFindIVResult);
9545 }));
9546 ResumeV = cast<PHINode>(ReductionPhi->getUnderlyingInstr())
9547 ->getIncomingValueForBlock(L->getLoopPreheader());
9548 RecurKind RK = ReductionPhi->getRecurrenceKind();
9550 Value *StartV = RdxResult->getOperand(1)->getLiveInIRValue();
9551 // VPReductionPHIRecipes for AnyOf reductions expect a boolean as
9552 // start value; compare the final value from the main vector loop
9553 // to the start value.
9554 BasicBlock *PBB = cast<Instruction>(ResumeV)->getParent();
9555 IRBuilder<> Builder(PBB, PBB->getFirstNonPHIIt());
9556 ResumeV = Builder.CreateICmpNE(ResumeV, StartV);
9557 if (auto *I = dyn_cast<Instruction>(ResumeV))
9558 InstsToMove.push_back(I);
9560 Value *StartV = getStartValueFromReductionResult(RdxResult);
9561 ToFrozen[StartV] = cast<PHINode>(ResumeV)->getIncomingValueForBlock(
9563
9564 // VPReductionPHIRecipe for FindFirstIV/FindLastIV reductions requires
9565 // an adjustment to the resume value. The resume value is adjusted to
9566 // the sentinel value when the final value from the main vector loop
9567 // equals the start value. This ensures correctness when the start value
9568 // might not be less than the minimum value of a monotonically
9569 // increasing induction variable.
9570 BasicBlock *ResumeBB = cast<Instruction>(ResumeV)->getParent();
9571 IRBuilder<> Builder(ResumeBB, ResumeBB->getFirstNonPHIIt());
9572 Value *Cmp = Builder.CreateICmpEQ(ResumeV, ToFrozen[StartV]);
9573 if (auto *I = dyn_cast<Instruction>(Cmp))
9574 InstsToMove.push_back(I);
9575 Value *Sentinel = RdxResult->getOperand(2)->getLiveInIRValue();
9576 ResumeV = Builder.CreateSelect(Cmp, Sentinel, ResumeV);
9577 if (auto *I = dyn_cast<Instruction>(ResumeV))
9578 InstsToMove.push_back(I);
9579 } else {
9580 VPValue *StartVal = Plan.getOrAddLiveIn(ResumeV);
9581 auto *PhiR = dyn_cast<VPReductionPHIRecipe>(&R);
9582 if (auto *VPI = dyn_cast<VPInstruction>(PhiR->getStartValue())) {
9584 "unexpected start value");
9585 VPI->setOperand(0, StartVal);
9586 continue;
9587 }
9588 }
9589 } else {
9590 // Retrieve the induction resume values for wide inductions from
9591 // their original phi nodes in the scalar loop.
9592 PHINode *IndPhi = cast<VPWidenInductionRecipe>(&R)->getPHINode();
9593 // Hook up to the PHINode generated by a ResumePhi recipe of main
9594 // loop VPlan, which feeds the scalar loop.
9595 ResumeV = IndPhi->getIncomingValueForBlock(L->getLoopPreheader());
9596 }
9597 assert(ResumeV && "Must have a resume value");
9598 VPValue *StartVal = Plan.getOrAddLiveIn(ResumeV);
9599 cast<VPHeaderPHIRecipe>(&R)->setStartValue(StartVal);
9600 }
9601
9602 // For some VPValues in the epilogue plan we must re-use the generated IR
9603 // values from the main plan. Replace them with live-in VPValues.
9604 // TODO: This is a workaround needed for epilogue vectorization and it
9605 // should be removed once induction resume value creation is done
9606 // directly in VPlan.
9607 for (auto &R : make_early_inc_range(*Plan.getEntry())) {
9608 // Re-use frozen values from the main plan for Freeze VPInstructions in the
9609 // epilogue plan. This ensures all users use the same frozen value.
9610 auto *VPI = dyn_cast<VPInstruction>(&R);
9611 if (VPI && VPI->getOpcode() == Instruction::Freeze) {
9613 ToFrozen.lookup(VPI->getOperand(0)->getLiveInIRValue())));
9614 continue;
9615 }
9616
9617 // Re-use the trip count and steps expanded for the main loop, as
9618 // skeleton creation needs it as a value that dominates both the scalar
9619 // and vector epilogue loops
9620 auto *ExpandR = dyn_cast<VPExpandSCEVRecipe>(&R);
9621 if (!ExpandR)
9622 continue;
9623 VPValue *ExpandedVal =
9624 Plan.getOrAddLiveIn(ExpandedSCEVs.lookup(ExpandR->getSCEV()));
9625 ExpandR->replaceAllUsesWith(ExpandedVal);
9626 if (Plan.getTripCount() == ExpandR)
9627 Plan.resetTripCount(ExpandedVal);
9628 ExpandR->eraseFromParent();
9629 }
9630
9631 auto VScale = CM.getVScaleForTuning();
9632 unsigned MainLoopStep =
9633 estimateElementCount(EPI.MainLoopVF * EPI.MainLoopUF, VScale);
9634 unsigned EpilogueLoopStep =
9635 estimateElementCount(EPI.EpilogueVF * EPI.EpilogueUF, VScale);
9637 Plan, EPI.TripCount, EPI.VectorTripCount,
9639 EPI.EpilogueUF, MainLoopStep, EpilogueLoopStep, SE);
9640
9641 return InstsToMove;
9642}
9643
9644// Generate bypass values from the additional bypass block. Note that when the
9645// vectorized epilogue is skipped due to iteration count check, then the
9646// resume value for the induction variable comes from the trip count of the
9647// main vector loop, passed as the second argument.
9649 PHINode *OrigPhi, const InductionDescriptor &II, IRBuilder<> &BypassBuilder,
9650 const SCEV2ValueTy &ExpandedSCEVs, Value *MainVectorTripCount,
9651 Instruction *OldInduction) {
9652 Value *Step = getExpandedStep(II, ExpandedSCEVs);
9653 // For the primary induction the additional bypass end value is known.
9654 // Otherwise it is computed.
9655 Value *EndValueFromAdditionalBypass = MainVectorTripCount;
9656 if (OrigPhi != OldInduction) {
9657 auto *BinOp = II.getInductionBinOp();
9658 // Fast-math-flags propagate from the original induction instruction.
9660 BypassBuilder.setFastMathFlags(BinOp->getFastMathFlags());
9661
9662 // Compute the end value for the additional bypass.
9663 EndValueFromAdditionalBypass =
9664 emitTransformedIndex(BypassBuilder, MainVectorTripCount,
9665 II.getStartValue(), Step, II.getKind(), BinOp);
9666 EndValueFromAdditionalBypass->setName("ind.end");
9667 }
9668 return EndValueFromAdditionalBypass;
9669}
9670
9672 VPlan &BestEpiPlan,
9674 const SCEV2ValueTy &ExpandedSCEVs,
9675 Value *MainVectorTripCount) {
9676 // Fix reduction resume values from the additional bypass block.
9677 BasicBlock *PH = L->getLoopPreheader();
9678 for (auto *Pred : predecessors(PH)) {
9679 for (PHINode &Phi : PH->phis()) {
9680 if (Phi.getBasicBlockIndex(Pred) != -1)
9681 continue;
9682 Phi.addIncoming(Phi.getIncomingValueForBlock(BypassBlock), Pred);
9683 }
9684 }
9685 auto *ScalarPH = cast<VPIRBasicBlock>(BestEpiPlan.getScalarPreheader());
9686 if (ScalarPH->hasPredecessors()) {
9687 // If ScalarPH has predecessors, we may need to update its reduction
9688 // resume values.
9689 for (const auto &[R, IRPhi] :
9690 zip(ScalarPH->phis(), ScalarPH->getIRBasicBlock()->phis())) {
9692 BypassBlock);
9693 }
9694 }
9695
9696 // Fix induction resume values from the additional bypass block.
9697 IRBuilder<> BypassBuilder(BypassBlock, BypassBlock->getFirstInsertionPt());
9698 for (const auto &[IVPhi, II] : LVL.getInductionVars()) {
9699 auto *Inc = cast<PHINode>(IVPhi->getIncomingValueForBlock(PH));
9701 IVPhi, II, BypassBuilder, ExpandedSCEVs, MainVectorTripCount,
9702 LVL.getPrimaryInduction());
9703 // TODO: Directly add as extra operand to the VPResumePHI recipe.
9704 Inc->setIncomingValueForBlock(BypassBlock, V);
9705 }
9706}
9707
9708/// Connect the epilogue vector loop generated for \p EpiPlan to the main vector
9709// loop, after both plans have executed, updating branches from the iteration
9710// and runtime checks of the main loop, as well as updating various phis. \p
9711// InstsToMove contains instructions that need to be moved to the preheader of
9712// the epilogue vector loop.
9714 VPlan &EpiPlan, Loop *L, EpilogueLoopVectorizationInfo &EPI,
9716 DenseMap<const SCEV *, Value *> &ExpandedSCEVs, GeneratedRTChecks &Checks,
9717 ArrayRef<Instruction *> InstsToMove) {
9718 BasicBlock *VecEpilogueIterationCountCheck =
9719 cast<VPIRBasicBlock>(EpiPlan.getEntry())->getIRBasicBlock();
9720
9721 BasicBlock *VecEpiloguePreHeader =
9722 cast<BranchInst>(VecEpilogueIterationCountCheck->getTerminator())
9723 ->getSuccessor(1);
9724 // Adjust the control flow taking the state info from the main loop
9725 // vectorization into account.
9727 "expected this to be saved from the previous pass.");
9728 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager);
9730 VecEpilogueIterationCountCheck, VecEpiloguePreHeader);
9731
9733 VecEpilogueIterationCountCheck},
9735 VecEpiloguePreHeader}});
9736
9737 BasicBlock *ScalarPH =
9738 cast<VPIRBasicBlock>(EpiPlan.getScalarPreheader())->getIRBasicBlock();
9740 VecEpilogueIterationCountCheck, ScalarPH);
9741 DTU.applyUpdates(
9743 VecEpilogueIterationCountCheck},
9745
9746 // Adjust the terminators of runtime check blocks and phis using them.
9747 BasicBlock *SCEVCheckBlock = Checks.getSCEVChecks().second;
9748 BasicBlock *MemCheckBlock = Checks.getMemRuntimeChecks().second;
9749 if (SCEVCheckBlock) {
9750 SCEVCheckBlock->getTerminator()->replaceUsesOfWith(
9751 VecEpilogueIterationCountCheck, ScalarPH);
9752 DTU.applyUpdates({{DominatorTree::Delete, SCEVCheckBlock,
9753 VecEpilogueIterationCountCheck},
9754 {DominatorTree::Insert, SCEVCheckBlock, ScalarPH}});
9755 }
9756 if (MemCheckBlock) {
9757 MemCheckBlock->getTerminator()->replaceUsesOfWith(
9758 VecEpilogueIterationCountCheck, ScalarPH);
9759 DTU.applyUpdates(
9760 {{DominatorTree::Delete, MemCheckBlock, VecEpilogueIterationCountCheck},
9761 {DominatorTree::Insert, MemCheckBlock, ScalarPH}});
9762 }
9763
9764 // The vec.epilog.iter.check block may contain Phi nodes from inductions
9765 // or reductions which merge control-flow from the latch block and the
9766 // middle block. Update the incoming values here and move the Phi into the
9767 // preheader.
9768 SmallVector<PHINode *, 4> PhisInBlock(
9769 llvm::make_pointer_range(VecEpilogueIterationCountCheck->phis()));
9770
9771 for (PHINode *Phi : PhisInBlock) {
9772 Phi->moveBefore(VecEpiloguePreHeader->getFirstNonPHIIt());
9773 Phi->replaceIncomingBlockWith(
9774 VecEpilogueIterationCountCheck->getSinglePredecessor(),
9775 VecEpilogueIterationCountCheck);
9776
9777 // If the phi doesn't have an incoming value from the
9778 // EpilogueIterationCountCheck, we are done. Otherwise remove the
9779 // incoming value and also those from other check blocks. This is needed
9780 // for reduction phis only.
9781 if (none_of(Phi->blocks(), [&](BasicBlock *IncB) {
9782 return EPI.EpilogueIterationCountCheck == IncB;
9783 }))
9784 continue;
9785 Phi->removeIncomingValue(EPI.EpilogueIterationCountCheck);
9786 if (SCEVCheckBlock)
9787 Phi->removeIncomingValue(SCEVCheckBlock);
9788 if (MemCheckBlock)
9789 Phi->removeIncomingValue(MemCheckBlock);
9790 }
9791
9792 auto IP = VecEpiloguePreHeader->getFirstNonPHIIt();
9793 for (auto *I : InstsToMove)
9794 I->moveBefore(IP);
9795
9796 // VecEpilogueIterationCountCheck conditionally skips over the epilogue loop
9797 // after executing the main loop. We need to update the resume values of
9798 // inductions and reductions during epilogue vectorization.
9799 fixScalarResumeValuesFromBypass(VecEpilogueIterationCountCheck, L, EpiPlan,
9800 LVL, ExpandedSCEVs, EPI.VectorTripCount);
9801}
9802
9804 assert((EnableVPlanNativePath || L->isInnermost()) &&
9805 "VPlan-native path is not enabled. Only process inner loops.");
9806
9807 LLVM_DEBUG(dbgs() << "\nLV: Checking a loop in '"
9808 << L->getHeader()->getParent()->getName() << "' from "
9809 << L->getLocStr() << "\n");
9810
9811 LoopVectorizeHints Hints(L, InterleaveOnlyWhenForced, *ORE, TTI);
9812
9813 LLVM_DEBUG(
9814 dbgs() << "LV: Loop hints:"
9815 << " force="
9817 ? "disabled"
9819 ? "enabled"
9820 : "?"))
9821 << " width=" << Hints.getWidth()
9822 << " interleave=" << Hints.getInterleave() << "\n");
9823
9824 // Function containing loop
9825 Function *F = L->getHeader()->getParent();
9826
9827 // Looking at the diagnostic output is the only way to determine if a loop
9828 // was vectorized (other than looking at the IR or machine code), so it
9829 // is important to generate an optimization remark for each loop. Most of
9830 // these messages are generated as OptimizationRemarkAnalysis. Remarks
9831 // generated as OptimizationRemark and OptimizationRemarkMissed are
9832 // less verbose reporting vectorized loops and unvectorized loops that may
9833 // benefit from vectorization, respectively.
9834
9835 if (!Hints.allowVectorization(F, L, VectorizeOnlyWhenForced)) {
9836 LLVM_DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n");
9837 return false;
9838 }
9839
9840 PredicatedScalarEvolution PSE(*SE, *L);
9841
9842 // Query this against the original loop and save it here because the profile
9843 // of the original loop header may change as the transformation happens.
9844 bool OptForSize = llvm::shouldOptimizeForSize(L->getHeader(), PSI, BFI,
9846
9847 // Check if it is legal to vectorize the loop.
9848 LoopVectorizationRequirements Requirements;
9849 LoopVectorizationLegality LVL(L, PSE, DT, TTI, TLI, F, *LAIs, LI, ORE,
9850 &Requirements, &Hints, DB, AC,
9851 /*AllowRuntimeSCEVChecks=*/!OptForSize, AA);
9853 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n");
9854 Hints.emitRemarkWithHints();
9855 return false;
9856 }
9857
9859 reportVectorizationFailure("Auto-vectorization of loops with uncountable "
9860 "early exit is not enabled",
9861 "UncountableEarlyExitLoopsDisabled", ORE, L);
9862 return false;
9863 }
9864
9865 if (!LVL.getPotentiallyFaultingLoads().empty()) {
9866 reportVectorizationFailure("Auto-vectorization of loops with potentially "
9867 "faulting load is not supported",
9868 "PotentiallyFaultingLoadsNotSupported", ORE, L);
9869 return false;
9870 }
9871
9872 // Entrance to the VPlan-native vectorization path. Outer loops are processed
9873 // here. They may require CFG and instruction level transformations before
9874 // even evaluating whether vectorization is profitable. Since we cannot modify
9875 // the incoming IR, we need to build VPlan upfront in the vectorization
9876 // pipeline.
9877 if (!L->isInnermost())
9878 return processLoopInVPlanNativePath(L, PSE, LI, DT, &LVL, TTI, TLI, DB, AC,
9879 ORE, OptForSize, Hints, Requirements);
9880
9881 assert(L->isInnermost() && "Inner loop expected.");
9882
9883 InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL.getLAI());
9884 bool UseInterleaved = TTI->enableInterleavedAccessVectorization();
9885
9886 // If an override option has been passed in for interleaved accesses, use it.
9887 if (EnableInterleavedMemAccesses.getNumOccurrences() > 0)
9888 UseInterleaved = EnableInterleavedMemAccesses;
9889
9890 // Analyze interleaved memory accesses.
9891 if (UseInterleaved)
9893
9894 if (LVL.hasUncountableEarlyExit()) {
9895 BasicBlock *LoopLatch = L->getLoopLatch();
9896 if (IAI.requiresScalarEpilogue() ||
9898 [LoopLatch](BasicBlock *BB) { return BB != LoopLatch; })) {
9899 reportVectorizationFailure("Auto-vectorization of early exit loops "
9900 "requiring a scalar epilogue is unsupported",
9901 "UncountableEarlyExitUnsupported", ORE, L);
9902 return false;
9903 }
9904 }
9905
9906 // Check the function attributes and profiles to find out if this function
9907 // should be optimized for size.
9909 getScalarEpilogueLowering(F, L, Hints, OptForSize, TTI, TLI, LVL, &IAI);
9910
9911 // Check the loop for a trip count threshold: vectorize loops with a tiny trip
9912 // count by optimizing for size, to minimize overheads.
9913 auto ExpectedTC = getSmallBestKnownTC(PSE, L);
9914 if (ExpectedTC && ExpectedTC->isFixed() &&
9915 ExpectedTC->getFixedValue() < TinyTripCountVectorThreshold) {
9916 LLVM_DEBUG(dbgs() << "LV: Found a loop with a very small trip count. "
9917 << "This loop is worth vectorizing only if no scalar "
9918 << "iteration overheads are incurred.");
9920 LLVM_DEBUG(dbgs() << " But vectorizing was explicitly forced.\n");
9921 else {
9922 LLVM_DEBUG(dbgs() << "\n");
9923 // Predicate tail-folded loops are efficient even when the loop
9924 // iteration count is low. However, setting the epilogue policy to
9925 // `CM_ScalarEpilogueNotAllowedLowTripLoop` prevents vectorizing loops
9926 // with runtime checks. It's more effective to let
9927 // `isOutsideLoopWorkProfitable` determine if vectorization is
9928 // beneficial for the loop.
9931 }
9932 }
9933
9934 // Check the function attributes to see if implicit floats or vectors are
9935 // allowed.
9936 if (F->hasFnAttribute(Attribute::NoImplicitFloat)) {
9938 "Can't vectorize when the NoImplicitFloat attribute is used",
9939 "loop not vectorized due to NoImplicitFloat attribute",
9940 "NoImplicitFloat", ORE, L);
9941 Hints.emitRemarkWithHints();
9942 return false;
9943 }
9944
9945 // Check if the target supports potentially unsafe FP vectorization.
9946 // FIXME: Add a check for the type of safety issue (denormal, signaling)
9947 // for the target we're vectorizing for, to make sure none of the
9948 // additional fp-math flags can help.
9949 if (Hints.isPotentiallyUnsafe() &&
9950 TTI->isFPVectorizationPotentiallyUnsafe()) {
9952 "Potentially unsafe FP op prevents vectorization",
9953 "loop not vectorized due to unsafe FP support.",
9954 "UnsafeFP", ORE, L);
9955 Hints.emitRemarkWithHints();
9956 return false;
9957 }
9958
9959 bool AllowOrderedReductions;
9960 // If the flag is set, use that instead and override the TTI behaviour.
9961 if (ForceOrderedReductions.getNumOccurrences() > 0)
9962 AllowOrderedReductions = ForceOrderedReductions;
9963 else
9964 AllowOrderedReductions = TTI->enableOrderedReductions();
9965 if (!LVL.canVectorizeFPMath(AllowOrderedReductions)) {
9966 ORE->emit([&]() {
9967 auto *ExactFPMathInst = Requirements.getExactFPInst();
9968 return OptimizationRemarkAnalysisFPCommute(DEBUG_TYPE, "CantReorderFPOps",
9969 ExactFPMathInst->getDebugLoc(),
9970 ExactFPMathInst->getParent())
9971 << "loop not vectorized: cannot prove it is safe to reorder "
9972 "floating-point operations";
9973 });
9974 LLVM_DEBUG(dbgs() << "LV: loop not vectorized: cannot prove it is safe to "
9975 "reorder floating-point operations\n");
9976 Hints.emitRemarkWithHints();
9977 return false;
9978 }
9979
9980 // Use the cost model.
9981 LoopVectorizationCostModel CM(SEL, L, PSE, LI, &LVL, *TTI, TLI, DB, AC, ORE,
9982 F, &Hints, IAI, OptForSize);
9983 // Use the planner for vectorization.
9984 LoopVectorizationPlanner LVP(L, LI, DT, TLI, *TTI, &LVL, CM, IAI, PSE, Hints,
9985 ORE);
9986
9987 // Get user vectorization factor and interleave count.
9988 ElementCount UserVF = Hints.getWidth();
9989 unsigned UserIC = Hints.getInterleave();
9990 if (UserIC > 1 && !LVL.isSafeForAnyVectorWidth())
9991 UserIC = 1;
9992
9993 // Plan how to best vectorize.
9994 LVP.plan(UserVF, UserIC);
9996 unsigned IC = 1;
9997
9998 if (ORE->allowExtraAnalysis(LV_NAME))
10000
10001 GeneratedRTChecks Checks(PSE, DT, LI, TTI, F->getDataLayout(), CM.CostKind);
10002 if (LVP.hasPlanWithVF(VF.Width)) {
10003 // Select the interleave count.
10004 IC = LVP.selectInterleaveCount(LVP.getPlanFor(VF.Width), VF.Width, VF.Cost);
10005
10006 unsigned SelectedIC = std::max(IC, UserIC);
10007 // Optimistically generate runtime checks if they are needed. Drop them if
10008 // they turn out to not be profitable.
10009 if (VF.Width.isVector() || SelectedIC > 1) {
10010 Checks.create(L, *LVL.getLAI(), PSE.getPredicate(), VF.Width, SelectedIC);
10011
10012 // Bail out early if either the SCEV or memory runtime checks are known to
10013 // fail. In that case, the vector loop would never execute.
10014 using namespace llvm::PatternMatch;
10015 if (Checks.getSCEVChecks().first &&
10016 match(Checks.getSCEVChecks().first, m_One()))
10017 return false;
10018 if (Checks.getMemRuntimeChecks().first &&
10019 match(Checks.getMemRuntimeChecks().first, m_One()))
10020 return false;
10021 }
10022
10023 // Check if it is profitable to vectorize with runtime checks.
10024 bool ForceVectorization =
10026 VPCostContext CostCtx(CM.TTI, *CM.TLI, LVP.getPlanFor(VF.Width), CM,
10027 CM.CostKind, *CM.PSE.getSE(), L);
10028 if (!ForceVectorization &&
10029 !isOutsideLoopWorkProfitable(Checks, VF, L, PSE, CostCtx,
10030 LVP.getPlanFor(VF.Width), SEL,
10031 CM.getVScaleForTuning())) {
10032 ORE->emit([&]() {
10034 DEBUG_TYPE, "CantReorderMemOps", L->getStartLoc(),
10035 L->getHeader())
10036 << "loop not vectorized: cannot prove it is safe to reorder "
10037 "memory operations";
10038 });
10039 LLVM_DEBUG(dbgs() << "LV: Too many memory checks needed.\n");
10040 Hints.emitRemarkWithHints();
10041 return false;
10042 }
10043 }
10044
10045 // Identify the diagnostic messages that should be produced.
10046 std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg;
10047 bool VectorizeLoop = true, InterleaveLoop = true;
10048 if (VF.Width.isScalar()) {
10049 LLVM_DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n");
10050 VecDiagMsg = {
10051 "VectorizationNotBeneficial",
10052 "the cost-model indicates that vectorization is not beneficial"};
10053 VectorizeLoop = false;
10054 }
10055
10056 if (UserIC == 1 && Hints.getInterleave() > 1) {
10058 "UserIC should only be ignored due to unsafe dependencies");
10059 LLVM_DEBUG(dbgs() << "LV: Ignoring user-specified interleave count.\n");
10060 IntDiagMsg = {"InterleavingUnsafe",
10061 "Ignoring user-specified interleave count due to possibly "
10062 "unsafe dependencies in the loop."};
10063 InterleaveLoop = false;
10064 } else if (!LVP.hasPlanWithVF(VF.Width) && UserIC > 1) {
10065 // Tell the user interleaving was avoided up-front, despite being explicitly
10066 // requested.
10067 LLVM_DEBUG(dbgs() << "LV: Ignoring UserIC, because vectorization and "
10068 "interleaving should be avoided up front\n");
10069 IntDiagMsg = {"InterleavingAvoided",
10070 "Ignoring UserIC, because interleaving was avoided up front"};
10071 InterleaveLoop = false;
10072 } else if (IC == 1 && UserIC <= 1) {
10073 // Tell the user interleaving is not beneficial.
10074 LLVM_DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n");
10075 IntDiagMsg = {
10076 "InterleavingNotBeneficial",
10077 "the cost-model indicates that interleaving is not beneficial"};
10078 InterleaveLoop = false;
10079 if (UserIC == 1) {
10080 IntDiagMsg.first = "InterleavingNotBeneficialAndDisabled";
10081 IntDiagMsg.second +=
10082 " and is explicitly disabled or interleave count is set to 1";
10083 }
10084 } else if (IC > 1 && UserIC == 1) {
10085 // Tell the user interleaving is beneficial, but it explicitly disabled.
10086 LLVM_DEBUG(dbgs() << "LV: Interleaving is beneficial but is explicitly "
10087 "disabled.\n");
10088 IntDiagMsg = {"InterleavingBeneficialButDisabled",
10089 "the cost-model indicates that interleaving is beneficial "
10090 "but is explicitly disabled or interleave count is set to 1"};
10091 InterleaveLoop = false;
10092 }
10093
10094 // If there is a histogram in the loop, do not just interleave without
10095 // vectorizing. The order of operations will be incorrect without the
10096 // histogram intrinsics, which are only used for recipes with VF > 1.
10097 if (!VectorizeLoop && InterleaveLoop && LVL.hasHistograms()) {
10098 LLVM_DEBUG(dbgs() << "LV: Not interleaving without vectorization due "
10099 << "to histogram operations.\n");
10100 IntDiagMsg = {
10101 "HistogramPreventsScalarInterleaving",
10102 "Unable to interleave without vectorization due to constraints on "
10103 "the order of histogram operations"};
10104 InterleaveLoop = false;
10105 }
10106
10107 // Override IC if user provided an interleave count.
10108 IC = UserIC > 0 ? UserIC : IC;
10109
10110 // Emit diagnostic messages, if any.
10111 const char *VAPassName = Hints.vectorizeAnalysisPassName();
10112 if (!VectorizeLoop && !InterleaveLoop) {
10113 // Do not vectorize or interleaving the loop.
10114 ORE->emit([&]() {
10115 return OptimizationRemarkMissed(VAPassName, VecDiagMsg.first,
10116 L->getStartLoc(), L->getHeader())
10117 << VecDiagMsg.second;
10118 });
10119 ORE->emit([&]() {
10120 return OptimizationRemarkMissed(LV_NAME, IntDiagMsg.first,
10121 L->getStartLoc(), L->getHeader())
10122 << IntDiagMsg.second;
10123 });
10124 return false;
10125 }
10126
10127 if (!VectorizeLoop && InterleaveLoop) {
10128 LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n');
10129 ORE->emit([&]() {
10130 return OptimizationRemarkAnalysis(VAPassName, VecDiagMsg.first,
10131 L->getStartLoc(), L->getHeader())
10132 << VecDiagMsg.second;
10133 });
10134 } else if (VectorizeLoop && !InterleaveLoop) {
10135 LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width
10136 << ") in " << L->getLocStr() << '\n');
10137 ORE->emit([&]() {
10138 return OptimizationRemarkAnalysis(LV_NAME, IntDiagMsg.first,
10139 L->getStartLoc(), L->getHeader())
10140 << IntDiagMsg.second;
10141 });
10142 } else if (VectorizeLoop && InterleaveLoop) {
10143 LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width
10144 << ") in " << L->getLocStr() << '\n');
10145 LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n');
10146 }
10147
10148 // Report the vectorization decision.
10149 if (VF.Width.isScalar()) {
10150 using namespace ore;
10151 assert(IC > 1);
10152 ORE->emit([&]() {
10153 return OptimizationRemark(LV_NAME, "Interleaved", L->getStartLoc(),
10154 L->getHeader())
10155 << "interleaved loop (interleaved count: "
10156 << NV("InterleaveCount", IC) << ")";
10157 });
10158 } else {
10159 // Report the vectorization decision.
10160 reportVectorization(ORE, L, VF, IC);
10161 }
10162 if (ORE->allowExtraAnalysis(LV_NAME))
10164
10165 // If we decided that it is *legal* to interleave or vectorize the loop, then
10166 // do it.
10167
10168 VPlan &BestPlan = LVP.getPlanFor(VF.Width);
10169 // Consider vectorizing the epilogue too if it's profitable.
10170 VectorizationFactor EpilogueVF =
10172 if (EpilogueVF.Width.isVector()) {
10173 std::unique_ptr<VPlan> BestMainPlan(BestPlan.duplicate());
10174
10175 // The first pass vectorizes the main loop and creates a scalar epilogue
10176 // to be vectorized by executing the plan (potentially with a different
10177 // factor) again shortly afterwards.
10178 VPlan &BestEpiPlan = LVP.getPlanFor(EpilogueVF.Width);
10179 BestEpiPlan.getMiddleBlock()->setName("vec.epilog.middle.block");
10180 BestEpiPlan.getVectorPreheader()->setName("vec.epilog.ph");
10181 preparePlanForMainVectorLoop(*BestMainPlan, BestEpiPlan);
10182 EpilogueLoopVectorizationInfo EPI(VF.Width, IC, EpilogueVF.Width, 1,
10183 BestEpiPlan);
10184 EpilogueVectorizerMainLoop MainILV(L, PSE, LI, DT, TTI, AC, EPI, &CM,
10185 Checks, *BestMainPlan);
10186 auto ExpandedSCEVs = LVP.executePlan(EPI.MainLoopVF, EPI.MainLoopUF,
10187 *BestMainPlan, MainILV, DT, false);
10188 ++LoopsVectorized;
10189
10190 // Second pass vectorizes the epilogue and adjusts the control flow
10191 // edges from the first pass.
10192 EpilogueVectorizerEpilogueLoop EpilogILV(L, PSE, LI, DT, TTI, AC, EPI, &CM,
10193 Checks, BestEpiPlan);
10195 BestEpiPlan, L, ExpandedSCEVs, EPI, CM, *PSE.getSE());
10196 LVP.executePlan(EPI.EpilogueVF, EPI.EpilogueUF, BestEpiPlan, EpilogILV, DT,
10197 true);
10198 connectEpilogueVectorLoop(BestEpiPlan, L, EPI, DT, LVL, ExpandedSCEVs,
10199 Checks, InstsToMove);
10200 ++LoopsEpilogueVectorized;
10201 } else {
10202 InnerLoopVectorizer LB(L, PSE, LI, DT, TTI, AC, VF.Width, IC, &CM, Checks,
10203 BestPlan);
10204 // TODO: Move to general VPlan pipeline once epilogue loops are also
10205 // supported.
10208 IC, PSE);
10209 LVP.addMinimumIterationCheck(BestPlan, VF.Width, IC,
10211
10212 LVP.executePlan(VF.Width, IC, BestPlan, LB, DT, false);
10213 ++LoopsVectorized;
10214 }
10215
10216 assert(DT->verify(DominatorTree::VerificationLevel::Fast) &&
10217 "DT not preserved correctly");
10218 assert(!verifyFunction(*F, &dbgs()));
10219
10220 return true;
10221}
10222
10224
10225 // Don't attempt if
10226 // 1. the target claims to have no vector registers, and
10227 // 2. interleaving won't help ILP.
10228 //
10229 // The second condition is necessary because, even if the target has no
10230 // vector registers, loop vectorization may still enable scalar
10231 // interleaving.
10232 if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true)) &&
10233 TTI->getMaxInterleaveFactor(ElementCount::getFixed(1)) < 2)
10234 return LoopVectorizeResult(false, false);
10235
10236 bool Changed = false, CFGChanged = false;
10237
10238 // The vectorizer requires loops to be in simplified form.
10239 // Since simplification may add new inner loops, it has to run before the
10240 // legality and profitability checks. This means running the loop vectorizer
10241 // will simplify all loops, regardless of whether anything end up being
10242 // vectorized.
10243 for (const auto &L : *LI)
10244 Changed |= CFGChanged |=
10245 simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */);
10246
10247 // Build up a worklist of inner-loops to vectorize. This is necessary as
10248 // the act of vectorizing or partially unrolling a loop creates new loops
10249 // and can invalidate iterators across the loops.
10250 SmallVector<Loop *, 8> Worklist;
10251
10252 for (Loop *L : *LI)
10253 collectSupportedLoops(*L, LI, ORE, Worklist);
10254
10255 LoopsAnalyzed += Worklist.size();
10256
10257 // Now walk the identified inner loops.
10258 while (!Worklist.empty()) {
10259 Loop *L = Worklist.pop_back_val();
10260
10261 // For the inner loops we actually process, form LCSSA to simplify the
10262 // transform.
10263 Changed |= formLCSSARecursively(*L, *DT, LI, SE);
10264
10265 Changed |= CFGChanged |= processLoop(L);
10266
10267 if (Changed) {
10268 LAIs->clear();
10269
10270#ifndef NDEBUG
10271 if (VerifySCEV)
10272 SE->verify();
10273#endif
10274 }
10275 }
10276
10277 // Process each loop nest in the function.
10278 return LoopVectorizeResult(Changed, CFGChanged);
10279}
10280
10283 LI = &AM.getResult<LoopAnalysis>(F);
10284 // There are no loops in the function. Return before computing other
10285 // expensive analyses.
10286 if (LI->empty())
10287 return PreservedAnalyses::all();
10296 AA = &AM.getResult<AAManager>(F);
10297
10298 auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F);
10299 PSI = MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent());
10300 BFI = nullptr;
10301 if (PSI && PSI->hasProfileSummary())
10303 LoopVectorizeResult Result = runImpl(F);
10304 if (!Result.MadeAnyChange)
10305 return PreservedAnalyses::all();
10307
10308 if (isAssignmentTrackingEnabled(*F.getParent())) {
10309 for (auto &BB : F)
10311 }
10312
10313 PA.preserve<LoopAnalysis>();
10317
10318 if (Result.MadeCFGChange) {
10319 // Making CFG changes likely means a loop got vectorized. Indicate that
10320 // extra simplification passes should be run.
10321 // TODO: MadeCFGChanges is not a prefect proxy. Extra passes should only
10322 // be run if runtime checks have been added.
10325 } else {
10327 }
10328 return PA;
10329}
10330
10332 raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) {
10333 static_cast<PassInfoMixin<LoopVectorizePass> *>(this)->printPipeline(
10334 OS, MapClassName2PassName);
10335
10336 OS << '<';
10337 OS << (InterleaveOnlyWhenForced ? "" : "no-") << "interleave-forced-only;";
10338 OS << (VectorizeOnlyWhenForced ? "" : "no-") << "vectorize-forced-only;";
10339 OS << '>';
10340}
for(const MachineOperand &MO :llvm::drop_begin(OldMI.operands(), Desc.getNumOperands()))
static unsigned getIntrinsicID(const SDNode *N)
unsigned RegSize
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
aarch64 promote const
AMDGPU Lower Kernel Arguments
AMDGPU Register Bank Select
Rewrite undef for PHI
This file implements a class to represent arbitrary precision integral constant values and operations...
@ PostInc
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
static bool isEqual(const Function &Caller, const Function &Callee)
This file contains the simple types necessary to represent the attributes associated with functions a...
static const Function * getParent(const Value *V)
This is the interface for LLVM's primary stateless and local alias analysis.
static bool IsEmptyBlock(MachineBasicBlock *MBB)
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
#define clEnumValN(ENUMVAL, FLAGNAME, DESC)
This file contains the declarations for the subclasses of Constant, which represent the different fla...
static cl::opt< OutputCostKind > CostKind("cost-kind", cl::desc("Target cost kind"), cl::init(OutputCostKind::RecipThroughput), cl::values(clEnumValN(OutputCostKind::RecipThroughput, "throughput", "Reciprocal throughput"), clEnumValN(OutputCostKind::Latency, "latency", "Instruction latency"), clEnumValN(OutputCostKind::CodeSize, "code-size", "Code size"), clEnumValN(OutputCostKind::SizeAndLatency, "size-latency", "Code size and latency"), clEnumValN(OutputCostKind::All, "all", "Print all cost kinds")))
static cl::opt< IntrinsicCostStrategy > IntrinsicCost("intrinsic-cost-strategy", cl::desc("Costing strategy for intrinsic instructions"), cl::init(IntrinsicCostStrategy::InstructionCost), cl::values(clEnumValN(IntrinsicCostStrategy::InstructionCost, "instruction-cost", "Use TargetTransformInfo::getInstructionCost"), clEnumValN(IntrinsicCostStrategy::IntrinsicCost, "intrinsic-cost", "Use TargetTransformInfo::getIntrinsicInstrCost"), clEnumValN(IntrinsicCostStrategy::TypeBasedIntrinsicCost, "type-based-intrinsic-cost", "Calculate the intrinsic cost based only on argument types")))
static InstructionCost getCost(Instruction &Inst, TTI::TargetCostKind CostKind, TargetTransformInfo &TTI, TargetLibraryInfo &TLI)
Definition CostModel.cpp:74
This file defines DenseMapInfo traits for DenseMap.
This file defines the DenseMap class.
#define DEBUG_TYPE
This is the interface for a simple mod/ref and alias analysis over globals.
Hexagon Common GEP
#define _
This file provides various utilities for inspecting and working with the control flow graph in LLVM I...
Module.h This file contains the declarations for the Module class.
This defines the Use class.
static bool hasNoUnsignedWrap(BinaryOperator &I)
This file defines an InstructionCost class that is used when calculating the cost of an instruction,...
static std::pair< Value *, APInt > getMask(Value *WideMask, unsigned Factor, ElementCount LeafValueEC)
const AbstractManglingParser< Derived, Alloc >::OperatorInfo AbstractManglingParser< Derived, Alloc >::Ops[]
Legalize the Machine IR a function s Machine IR
Definition Legalizer.cpp:80
static cl::opt< unsigned, true > VectorizationFactor("force-vector-width", cl::Hidden, cl::desc("Sets the SIMD width. Zero is autoselect."), cl::location(VectorizerParams::VectorizationFactor))
This header provides classes for managing per-loop analyses.
static cl::opt< bool > WidenIV("loop-flatten-widen-iv", cl::Hidden, cl::init(true), cl::desc("Widen the loop induction variables, if possible, so " "overflow checks won't reject flattening"))
static const char * VerboseDebug
#define LV_NAME
This file defines the LoopVectorizationLegality class.
This file provides a LoopVectorizationPlanner class.
static void collectSupportedLoops(Loop &L, LoopInfo *LI, OptimizationRemarkEmitter *ORE, SmallVectorImpl< Loop * > &V)
static cl::opt< unsigned > EpilogueVectorizationMinVF("epilogue-vectorization-minimum-VF", cl::Hidden, cl::desc("Only loops with vectorization factor equal to or larger than " "the specified value are considered for epilogue vectorization."))
static cl::opt< unsigned > EpilogueVectorizationForceVF("epilogue-vectorization-force-VF", cl::init(1), cl::Hidden, cl::desc("When epilogue vectorization is enabled, and a value greater than " "1 is specified, forces the given VF for all applicable epilogue " "loops."))
static Type * maybeVectorizeType(Type *Ty, ElementCount VF)
static ElementCount determineVPlanVF(const TargetTransformInfo &TTI, LoopVectorizationCostModel &CM)
static ElementCount getSmallConstantTripCount(ScalarEvolution *SE, const Loop *L)
A version of ScalarEvolution::getSmallConstantTripCount that returns an ElementCount to include loops...
static cl::opt< unsigned > VectorizeMemoryCheckThreshold("vectorize-memory-check-threshold", cl::init(128), cl::Hidden, cl::desc("The maximum allowed number of runtime memory checks"))
static void preparePlanForMainVectorLoop(VPlan &MainPlan, VPlan &EpiPlan)
Prepare MainPlan for vectorizing the main vector loop during epilogue vectorization.
static cl::opt< unsigned > TinyTripCountVectorThreshold("vectorizer-min-trip-count", cl::init(16), cl::Hidden, cl::desc("Loops with a constant trip count that is smaller than this " "value are vectorized only if no scalar iteration overheads " "are incurred."))
Loops with a known constant trip count below this number are vectorized only if no scalar iteration o...
static void debugVectorizationMessage(const StringRef Prefix, const StringRef DebugMsg, Instruction *I)
Write a DebugMsg about vectorization to the debug output stream.
static cl::opt< bool > EnableCondStoresVectorization("enable-cond-stores-vec", cl::init(true), cl::Hidden, cl::desc("Enable if predication of stores during vectorization."))
static void legacyCSE(BasicBlock *BB)
FIXME: This legacy common-subexpression-elimination routine is scheduled for removal,...
static VPIRBasicBlock * replaceVPBBWithIRVPBB(VPBasicBlock *VPBB, BasicBlock *IRBB, VPlan *Plan=nullptr)
Replace VPBB with a VPIRBasicBlock wrapping IRBB.
static Value * emitTransformedIndex(IRBuilderBase &B, Value *Index, Value *StartValue, Value *Step, InductionDescriptor::InductionKind InductionKind, const BinaryOperator *InductionBinOp)
Compute the transformed value of Index at offset StartValue using step StepValue.
static DebugLoc getDebugLocFromInstOrOperands(Instruction *I)
Look for a meaningful debug location on the instruction or its operands.
static Value * createInductionAdditionalBypassValues(PHINode *OrigPhi, const InductionDescriptor &II, IRBuilder<> &BypassBuilder, const SCEV2ValueTy &ExpandedSCEVs, Value *MainVectorTripCount, Instruction *OldInduction)
static void fixReductionScalarResumeWhenVectorizingEpilog(VPPhi *EpiResumePhiR, PHINode &EpiResumePhi, BasicBlock *BypassBlock)
static Value * getStartValueFromReductionResult(VPInstruction *RdxResult)
static cl::opt< bool > ForceTargetSupportsScalableVectors("force-target-supports-scalable-vectors", cl::init(false), cl::Hidden, cl::desc("Pretend that scalable vectors are supported, even if the target does " "not support them. This flag should only be used for testing."))
static bool useActiveLaneMaskForControlFlow(TailFoldingStyle Style)
static VPWidenIntOrFpInductionRecipe * createWidenInductionRecipes(VPInstruction *PhiR, const InductionDescriptor &IndDesc, VPlan &Plan, ScalarEvolution &SE, Loop &OrigLoop)
Creates a VPWidenIntOrFpInductionRecipe for PhiR.
static cl::opt< bool > EnableEarlyExitVectorization("enable-early-exit-vectorization", cl::init(true), cl::Hidden, cl::desc("Enable vectorization of early exit loops with uncountable exits."))
static cl::opt< bool > ConsiderRegPressure("vectorizer-consider-reg-pressure", cl::init(false), cl::Hidden, cl::desc("Discard VFs if their register pressure is too high."))
static unsigned estimateElementCount(ElementCount VF, std::optional< unsigned > VScale)
This function attempts to return a value that represents the ElementCount at runtime.
static constexpr uint32_t MinItersBypassWeights[]
static cl::opt< unsigned > ForceTargetNumScalarRegs("force-target-num-scalar-regs", cl::init(0), cl::Hidden, cl::desc("A flag that overrides the target's number of scalar registers."))
static cl::opt< bool > UseWiderVFIfCallVariantsPresent("vectorizer-maximize-bandwidth-for-vector-calls", cl::init(true), cl::Hidden, cl::desc("Try wider VFs if they enable the use of vector variants"))
static std::optional< unsigned > getMaxVScale(const Function &F, const TargetTransformInfo &TTI)
static cl::opt< unsigned > SmallLoopCost("small-loop-cost", cl::init(20), cl::Hidden, cl::desc("The cost of a loop that is considered 'small' by the interleaver."))
static void connectEpilogueVectorLoop(VPlan &EpiPlan, Loop *L, EpilogueLoopVectorizationInfo &EPI, DominatorTree *DT, LoopVectorizationLegality &LVL, DenseMap< const SCEV *, Value * > &ExpandedSCEVs, GeneratedRTChecks &Checks, ArrayRef< Instruction * > InstsToMove)
Connect the epilogue vector loop generated for EpiPlan to the main vector.
static bool planContainsAdditionalSimplifications(VPlan &Plan, VPCostContext &CostCtx, Loop *TheLoop, ElementCount VF)
Return true if the original loop \ TheLoop contains any instructions that do not have corresponding r...
static cl::opt< unsigned > ForceTargetNumVectorRegs("force-target-num-vector-regs", cl::init(0), cl::Hidden, cl::desc("A flag that overrides the target's number of vector registers."))
static bool isExplicitVecOuterLoop(Loop *OuterLp, OptimizationRemarkEmitter *ORE)
static cl::opt< bool > EnableIndVarRegisterHeur("enable-ind-var-reg-heur", cl::init(true), cl::Hidden, cl::desc("Count the induction variable only once when interleaving"))
static bool processLoopInVPlanNativePath(Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, LoopVectorizationLegality *LVL, TargetTransformInfo *TTI, TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC, OptimizationRemarkEmitter *ORE, bool OptForSize, LoopVectorizeHints &Hints, LoopVectorizationRequirements &Requirements)
static cl::opt< TailFoldingStyle > ForceTailFoldingStyle("force-tail-folding-style", cl::desc("Force the tail folding style"), cl::init(TailFoldingStyle::None), cl::values(clEnumValN(TailFoldingStyle::None, "none", "Disable tail folding"), clEnumValN(TailFoldingStyle::Data, "data", "Create lane mask for data only, using active.lane.mask intrinsic"), clEnumValN(TailFoldingStyle::DataWithoutLaneMask, "data-without-lane-mask", "Create lane mask with compare/stepvector"), clEnumValN(TailFoldingStyle::DataAndControlFlow, "data-and-control", "Create lane mask using active.lane.mask intrinsic, and use " "it for both data and control flow"), clEnumValN(TailFoldingStyle::DataAndControlFlowWithoutRuntimeCheck, "data-and-control-without-rt-check", "Similar to data-and-control, but remove the runtime check"), clEnumValN(TailFoldingStyle::DataWithEVL, "data-with-evl", "Use predicated EVL instructions for tail folding. If EVL " "is unsupported, fallback to data-without-lane-mask.")))
static ScalarEpilogueLowering getScalarEpilogueLowering(Function *F, Loop *L, LoopVectorizeHints &Hints, bool OptForSize, TargetTransformInfo *TTI, TargetLibraryInfo *TLI, LoopVectorizationLegality &LVL, InterleavedAccessInfo *IAI)
static cl::opt< bool > EnableEpilogueVectorization("enable-epilogue-vectorization", cl::init(true), cl::Hidden, cl::desc("Enable vectorization of epilogue loops."))
static cl::opt< bool > PreferPredicatedReductionSelect("prefer-predicated-reduction-select", cl::init(false), cl::Hidden, cl::desc("Prefer predicating a reduction operation over an after loop select."))
static cl::opt< bool > PreferInLoopReductions("prefer-inloop-reductions", cl::init(false), cl::Hidden, cl::desc("Prefer in-loop vector reductions, " "overriding the targets preference."))
static SmallVector< Instruction * > preparePlanForEpilogueVectorLoop(VPlan &Plan, Loop *L, const SCEV2ValueTy &ExpandedSCEVs, EpilogueLoopVectorizationInfo &EPI, LoopVectorizationCostModel &CM, ScalarEvolution &SE)
Prepare Plan for vectorizing the epilogue loop.
static cl::opt< bool > EnableLoadStoreRuntimeInterleave("enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden, cl::desc("Enable runtime interleaving until load/store ports are saturated"))
static cl::opt< bool > VPlanBuildStressTest("vplan-build-stress-test", cl::init(false), cl::Hidden, cl::desc("Build VPlan for every supported loop nest in the function and bail " "out right after the build (stress test the VPlan H-CFG construction " "in the VPlan-native vectorization path)."))
static bool hasIrregularType(Type *Ty, const DataLayout &DL)
A helper function that returns true if the given type is irregular.
static cl::opt< bool > LoopVectorizeWithBlockFrequency("loop-vectorize-with-block-frequency", cl::init(true), cl::Hidden, cl::desc("Enable the use of the block frequency analysis to access PGO " "heuristics minimizing code growth in cold regions and being more " "aggressive in hot regions."))
static std::optional< ElementCount > getSmallBestKnownTC(PredicatedScalarEvolution &PSE, Loop *L, bool CanUseConstantMax=true)
Returns "best known" trip count, which is either a valid positive trip count or std::nullopt when an ...
static Value * getExpandedStep(const InductionDescriptor &ID, const SCEV2ValueTy &ExpandedSCEVs)
Return the expanded step for ID using ExpandedSCEVs to look up SCEV expansion results.
static bool useActiveLaneMask(TailFoldingStyle Style)
static bool hasReplicatorRegion(VPlan &Plan)
static bool isIndvarOverflowCheckKnownFalse(const LoopVectorizationCostModel *Cost, ElementCount VF, std::optional< unsigned > UF=std::nullopt)
For the given VF and UF and maximum trip count computed for the loop, return whether the induction va...
static void addFullyUnrolledInstructionsToIgnore(Loop *L, const LoopVectorizationLegality::InductionList &IL, SmallPtrSetImpl< Instruction * > &InstsToIgnore)
Knowing that loop L executes a single vector iteration, add instructions that will get simplified and...
static cl::opt< PreferPredicateTy::Option > PreferPredicateOverEpilogue("prefer-predicate-over-epilogue", cl::init(PreferPredicateTy::ScalarEpilogue), cl::Hidden, cl::desc("Tail-folding and predication preferences over creating a scalar " "epilogue loop."), cl::values(clEnumValN(PreferPredicateTy::ScalarEpilogue, "scalar-epilogue", "Don't tail-predicate loops, create scalar epilogue"), clEnumValN(PreferPredicateTy::PredicateElseScalarEpilogue, "predicate-else-scalar-epilogue", "prefer tail-folding, create scalar epilogue if tail " "folding fails."), clEnumValN(PreferPredicateTy::PredicateOrDontVectorize, "predicate-dont-vectorize", "prefers tail-folding, don't attempt vectorization if " "tail-folding fails.")))
static cl::opt< bool > EnableInterleavedMemAccesses("enable-interleaved-mem-accesses", cl::init(false), cl::Hidden, cl::desc("Enable vectorization on interleaved memory accesses in a loop"))
static cl::opt< bool > EnableMaskedInterleavedMemAccesses("enable-masked-interleaved-mem-accesses", cl::init(false), cl::Hidden, cl::desc("Enable vectorization on masked interleaved memory accesses in a loop"))
An interleave-group may need masking if it resides in a block that needs predication,...
static cl::opt< bool > ForceOrderedReductions("force-ordered-reductions", cl::init(false), cl::Hidden, cl::desc("Enable the vectorisation of loops with in-order (strict) " "FP reductions"))
static const SCEV * getAddressAccessSCEV(Value *Ptr, LoopVectorizationLegality *Legal, PredicatedScalarEvolution &PSE, const Loop *TheLoop)
Gets Address Access SCEV after verifying that the access pattern is loop invariant except the inducti...
static cl::opt< cl::boolOrDefault > ForceSafeDivisor("force-widen-divrem-via-safe-divisor", cl::Hidden, cl::desc("Override cost based safe divisor widening for div/rem instructions"))
static InstructionCost calculateEarlyExitCost(VPCostContext &CostCtx, VPlan &Plan, ElementCount VF)
For loops with uncountable early exits, find the cost of doing work when exiting the loop early,...
static cl::opt< unsigned > ForceTargetMaxVectorInterleaveFactor("force-target-max-vector-interleave", cl::init(0), cl::Hidden, cl::desc("A flag that overrides the target's max interleave factor for " "vectorized loops."))
static bool useMaskedInterleavedAccesses(const TargetTransformInfo &TTI)
static cl::opt< unsigned > NumberOfStoresToPredicate("vectorize-num-stores-pred", cl::init(1), cl::Hidden, cl::desc("Max number of stores to be predicated behind an if."))
The number of stores in a loop that are allowed to need predication.
static cl::opt< unsigned > MaxNestedScalarReductionIC("max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden, cl::desc("The maximum interleave count to use when interleaving a scalar " "reduction in a nested loop."))
static cl::opt< unsigned > ForceTargetMaxScalarInterleaveFactor("force-target-max-scalar-interleave", cl::init(0), cl::Hidden, cl::desc("A flag that overrides the target's max interleave factor for " "scalar loops."))
static void checkMixedPrecision(Loop *L, OptimizationRemarkEmitter *ORE)
static bool willGenerateVectors(VPlan &Plan, ElementCount VF, const TargetTransformInfo &TTI)
Check if any recipe of Plan will generate a vector value, which will be assigned a vector register.
static bool isOutsideLoopWorkProfitable(GeneratedRTChecks &Checks, VectorizationFactor &VF, Loop *L, PredicatedScalarEvolution &PSE, VPCostContext &CostCtx, VPlan &Plan, ScalarEpilogueLowering SEL, std::optional< unsigned > VScale)
This function determines whether or not it's still profitable to vectorize the loop given the extra w...
static void fixScalarResumeValuesFromBypass(BasicBlock *BypassBlock, Loop *L, VPlan &BestEpiPlan, LoopVectorizationLegality &LVL, const SCEV2ValueTy &ExpandedSCEVs, Value *MainVectorTripCount)
static cl::opt< bool > MaximizeBandwidth("vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden, cl::desc("Maximize bandwidth when selecting vectorization factor which " "will be determined by the smallest type in loop."))
static OptimizationRemarkAnalysis createLVAnalysis(const char *PassName, StringRef RemarkName, Loop *TheLoop, Instruction *I, DebugLoc DL={})
Create an analysis remark that explains why vectorization failed.
#define F(x, y, z)
Definition MD5.cpp:54
#define I(x, y, z)
Definition MD5.cpp:57
This file implements a map that provides insertion order iteration.
This file contains the declarations for metadata subclasses.
#define T
ConstantRange Range(APInt(BitWidth, Low), APInt(BitWidth, High))
uint64_t IntrinsicInst * II
#define P(N)
This file contains the declarations for profiling metadata utility functions.
const SmallVectorImpl< MachineOperand > & Cond
static BinaryOperator * CreateMul(Value *S1, Value *S2, const Twine &Name, BasicBlock::iterator InsertBefore, Value *FlagsOp)
static BinaryOperator * CreateAdd(Value *S1, Value *S2, const Twine &Name, BasicBlock::iterator InsertBefore, Value *FlagsOp)
static bool isValid(const char C)
Returns true if C is a valid mangled character: <0-9a-zA-Z_>.
static InstructionCost getScalarizationOverhead(const TargetTransformInfo &TTI, Type *ScalarTy, VectorType *Ty, const APInt &DemandedElts, bool Insert, bool Extract, TTI::TargetCostKind CostKind, bool ForPoisonSrc=true, ArrayRef< Value * > VL={})
This is similar to TargetTransformInfo::getScalarizationOverhead, but if ScalarTy is a FixedVectorTyp...
This file contains some templates that are useful if you are working with the STL at all.
#define OP(OPC)
Definition Instruction.h:46
This file defines the SmallPtrSet class.
This file defines the SmallVector class.
This file defines the 'Statistic' class, which is designed to be an easy way to expose various metric...
#define STATISTIC(VARNAME, DESC)
Definition Statistic.h:171
#define LLVM_DEBUG(...)
Definition Debug.h:114
#define DEBUG_WITH_TYPE(TYPE,...)
DEBUG_WITH_TYPE macro - This macro should be used by passes to emit debug information.
Definition Debug.h:72
static TableGen::Emitter::Opt Y("gen-skeleton-entry", EmitSkeleton, "Generate example skeleton entry")
static TableGen::Emitter::OptClass< SkeletonEmitter > X("gen-skeleton-class", "Generate example skeleton class")
This pass exposes codegen information to IR-level passes.
LocallyHashedType DenseMapInfo< LocallyHashedType >::Empty
This file implements the TypeSwitch template, which mimics a switch() statement whose cases are type ...
This file contains the declarations of different VPlan-related auxiliary helpers.
This file provides utility VPlan to VPlan transformations.
This file declares the class VPlanVerifier, which contains utility functions to check the consistency...
This file contains the declarations of the Vectorization Plan base classes:
static const char PassName[]
Value * RHS
Value * LHS
static const uint32_t IV[8]
Definition blake3_impl.h:83
A manager for alias analyses.
Class for arbitrary precision integers.
Definition APInt.h:78
static APInt getAllOnes(unsigned numBits)
Return an APInt of a specified width with all bits set.
Definition APInt.h:235
uint64_t getZExtValue() const
Get zero extended value.
Definition APInt.h:1541
unsigned getActiveBits() const
Compute the number of active bits in the value.
Definition APInt.h:1513
PassT::Result & getResult(IRUnitT &IR, ExtraArgTs... ExtraArgs)
Get the result of an analysis pass for a given IR unit.
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Definition ArrayRef.h:40
size_t size() const
size - Get the array size.
Definition ArrayRef.h:142
A function analysis which provides an AssumptionCache.
A cache of @llvm.assume calls within a function.
LLVM_ABI unsigned getVScaleRangeMin() const
Returns the minimum value for the vscale_range attribute.
LLVM Basic Block Representation.
Definition BasicBlock.h:62
iterator_range< const_phi_iterator > phis() const
Returns a range that iterates over the phis in the basic block.
Definition BasicBlock.h:528
LLVM_ABI const_iterator getFirstInsertionPt() const
Returns an iterator to the first instruction in this block that is suitable for inserting a non-PHI i...
const Function * getParent() const
Return the enclosing method, or null if none.
Definition BasicBlock.h:213
LLVM_ABI InstListType::const_iterator getFirstNonPHIIt() const
Returns an iterator to the first instruction in this block that is not a PHINode instruction.
LLVM_ABI const BasicBlock * getSinglePredecessor() const
Return the predecessor of this block if it has a single predecessor block.
LLVM_ABI const BasicBlock * getSingleSuccessor() const
Return the successor of this block if it has a single successor.
LLVM_ABI const DataLayout & getDataLayout() const
Get the data layout of the module this basic block belongs to.
LLVM_ABI LLVMContext & getContext() const
Get the context in which this basic block lives.
const Instruction * getTerminator() const LLVM_READONLY
Returns the terminator instruction if the block is well formed or null if the block is not well forme...
Definition BasicBlock.h:233
BinaryOps getOpcode() const
Definition InstrTypes.h:374
Analysis pass which computes BlockFrequencyInfo.
Conditional or Unconditional Branch instruction.
bool isConditional() const
static BranchInst * Create(BasicBlock *IfTrue, InsertPosition InsertBefore=nullptr)
BasicBlock * getSuccessor(unsigned i) const
Represents analyses that only rely on functions' control flow.
Definition Analysis.h:73
bool isNoBuiltin() const
Return true if the call should not be treated as a call to a builtin.
Function * getCalledFunction() const
Returns the function called, or null if this is an indirect function invocation or the function signa...
Value * getArgOperand(unsigned i) const
iterator_range< User::op_iterator > args()
Iteration adapter for range-for loops.
unsigned arg_size() const
This class represents a function call, abstracting a target machine's calling convention.
static Type * makeCmpResultType(Type *opnd_type)
Create a result type for fcmp/icmp.
Definition InstrTypes.h:982
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
Definition InstrTypes.h:676
@ ICMP_UGT
unsigned greater than
Definition InstrTypes.h:699
@ ICMP_ULT
unsigned less than
Definition InstrTypes.h:701
@ ICMP_NE
not equal
Definition InstrTypes.h:698
@ ICMP_ULE
unsigned less or equal
Definition InstrTypes.h:702
Predicate getInversePredicate() const
For example, EQ -> NE, UGT -> ULE, SLT -> SGE, OEQ -> UNE, UGT -> OLE, OLT -> UGE,...
Definition InstrTypes.h:789
An abstraction over a floating-point predicate, and a pack of an integer predicate with samesign info...
This is the shared class of boolean and integer constants.
Definition Constants.h:87
static LLVM_ABI ConstantInt * getTrue(LLVMContext &Context)
A parsed version of the target data layout string in and methods for querying it.
Definition DataLayout.h:63
A debug info location.
Definition DebugLoc.h:124
static DebugLoc getTemporary()
Definition DebugLoc.h:161
static DebugLoc getUnknown()
Definition DebugLoc.h:162
An analysis that produces DemandedBits for a function.
ValueT lookup(const_arg_type_t< KeyT > Val) const
lookup - Return the entry for the specified key, or a default constructed value if no such entry exis...
Definition DenseMap.h:205
iterator find(const_arg_type_t< KeyT > Val)
Definition DenseMap.h:178
std::pair< iterator, bool > try_emplace(KeyT &&Key, Ts &&...Args)
Definition DenseMap.h:248
iterator end()
Definition DenseMap.h:81
bool contains(const_arg_type_t< KeyT > Val) const
Return true if the specified key is in the map, false otherwise.
Definition DenseMap.h:169
void insert_range(Range &&R)
Inserts range of 'std::pair<KeyT, ValueT>' values into the map.
Definition DenseMap.h:286
Implements a dense probed hash-table based set.
Definition DenseSet.h:279
Analysis pass which computes a DominatorTree.
Definition Dominators.h:283
void changeImmediateDominator(DomTreeNodeBase< NodeT > *N, DomTreeNodeBase< NodeT > *NewIDom)
changeImmediateDominator - This method is used to update the dominator tree information when a node's...
void eraseNode(NodeT *BB)
eraseNode - Removes a node from the dominator tree.
Concrete subclass of DominatorTreeBase that is used to compute a normal dominator tree.
Definition Dominators.h:164
constexpr bool isVector() const
One or more elements.
Definition TypeSize.h:324
static constexpr ElementCount getScalable(ScalarTy MinVal)
Definition TypeSize.h:312
static constexpr ElementCount getFixed(ScalarTy MinVal)
Definition TypeSize.h:309
static constexpr ElementCount get(ScalarTy MinVal, bool Scalable)
Definition TypeSize.h:315
constexpr bool isScalar() const
Exactly one element.
Definition TypeSize.h:320
EpilogueVectorizerEpilogueLoop(Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, const TargetTransformInfo *TTI, AssumptionCache *AC, EpilogueLoopVectorizationInfo &EPI, LoopVectorizationCostModel *CM, GeneratedRTChecks &Checks, VPlan &Plan)
BasicBlock * createVectorizedLoopSkeleton() final
Implements the interface for creating a vectorized skeleton using the epilogue loop strategy (i....
void printDebugTracesAtStart() override
Allow subclasses to override and print debug traces before/after vplan execution, when trace informat...
A specialized derived class of inner loop vectorizer that performs vectorization of main loops in the...
void introduceCheckBlockInVPlan(BasicBlock *CheckIRBB)
Introduces a new VPIRBasicBlock for CheckIRBB to Plan between the vector preheader and its predecesso...
BasicBlock * emitIterationCountCheck(BasicBlock *VectorPH, BasicBlock *Bypass, bool ForEpilogue)
Emits an iteration count bypass check once for the main loop (when ForEpilogue is false) and once for...
Value * createIterationCountCheck(BasicBlock *VectorPH, ElementCount VF, unsigned UF) const
void printDebugTracesAtStart() override
Allow subclasses to override and print debug traces before/after vplan execution, when trace informat...
EpilogueVectorizerMainLoop(Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, const TargetTransformInfo *TTI, AssumptionCache *AC, EpilogueLoopVectorizationInfo &EPI, LoopVectorizationCostModel *CM, GeneratedRTChecks &Check, VPlan &Plan)
BasicBlock * createVectorizedLoopSkeleton() final
Implements the interface for creating a vectorized skeleton using the main loop strategy (i....
Convenience struct for specifying and reasoning about fast-math flags.
Definition FMF.h:22
static FastMathFlags getFast()
Definition FMF.h:50
Class to represent function types.
param_iterator param_begin() const
param_iterator param_end() const
FunctionType * getFunctionType() const
Returns the FunctionType for me.
Definition Function.h:209
Attribute getFnAttribute(Attribute::AttrKind Kind) const
Return the attribute for the given attribute kind.
Definition Function.cpp:765
bool hasFnAttribute(Attribute::AttrKind Kind) const
Return true if the function has the attribute.
Definition Function.cpp:730
Represents flags for the getelementptr instruction/expression.
static GEPNoWrapFlags none()
void applyUpdates(ArrayRef< UpdateT > Updates)
Submit updates to all available trees.
Common base class shared among various IRBuilders.
Definition IRBuilder.h:114
void setFastMathFlags(FastMathFlags NewFMF)
Set the fast-math flags to be used with generated fp-math operators.
Definition IRBuilder.h:345
This provides a uniform API for creating instructions and inserting them into a basic block: either a...
Definition IRBuilder.h:2788
A struct for saving information about induction variables.
const SCEV * getStep() const
InductionKind
This enum represents the kinds of inductions that we support.
@ IK_NoInduction
Not an induction variable.
@ IK_FpInduction
Floating point induction variable.
@ IK_PtrInduction
Pointer induction var. Step = C.
@ IK_IntInduction
Integer induction variable. Step = C.
const SmallVectorImpl< Instruction * > & getCastInsts() const
Returns a reference to the type cast instructions in the induction update chain, that are redundant w...
Value * getStartValue() const
InnerLoopAndEpilogueVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, const TargetTransformInfo *TTI, AssumptionCache *AC, EpilogueLoopVectorizationInfo &EPI, LoopVectorizationCostModel *CM, GeneratedRTChecks &Checks, VPlan &Plan, ElementCount VecWidth, ElementCount MinProfitableTripCount, unsigned UnrollFactor)
EpilogueLoopVectorizationInfo & EPI
Holds and updates state information required to vectorize the main loop and its epilogue in two separ...
InnerLoopVectorizer vectorizes loops which contain only one basic block to a specified vectorization ...
virtual void printDebugTracesAtStart()
Allow subclasses to override and print debug traces before/after vplan execution, when trace informat...
Value * TripCount
Trip count of the original loop.
const TargetTransformInfo * TTI
Target Transform Info.
LoopVectorizationCostModel * Cost
The profitablity analysis.
Value * getTripCount() const
Returns the original loop trip count.
friend class LoopVectorizationPlanner
InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, const TargetTransformInfo *TTI, AssumptionCache *AC, ElementCount VecWidth, unsigned UnrollFactor, LoopVectorizationCostModel *CM, GeneratedRTChecks &RTChecks, VPlan &Plan)
PredicatedScalarEvolution & PSE
A wrapper around ScalarEvolution used to add runtime SCEV checks.
LoopInfo * LI
Loop Info.
DominatorTree * DT
Dominator Tree.
void setTripCount(Value *TC)
Used to set the trip count after ILV's construction and after the preheader block has been executed.
void fixVectorizedLoop(VPTransformState &State)
Fix the vectorized code, taking care of header phi's, and more.
virtual BasicBlock * createVectorizedLoopSkeleton()
Creates a basic block for the scalar preheader.
virtual void printDebugTracesAtEnd()
AssumptionCache * AC
Assumption Cache.
IRBuilder Builder
The builder that we use.
void fixNonInductionPHIs(VPTransformState &State)
Fix the non-induction PHIs in Plan.
VPBasicBlock * VectorPHVPBB
The vector preheader block of Plan, used as target for check blocks introduced during skeleton creati...
unsigned UF
The vectorization unroll factor to use.
GeneratedRTChecks & RTChecks
Structure to hold information about generated runtime checks, responsible for cleaning the checks,...
virtual ~InnerLoopVectorizer()=default
ElementCount VF
The vectorization SIMD factor to use.
Loop * OrigLoop
The original loop.
BasicBlock * createScalarPreheader(StringRef Prefix)
Create and return a new IR basic block for the scalar preheader whose name is prefixed with Prefix.
InstSimplifyFolder - Use InstructionSimplify to fold operations to existing values.
static InstructionCost getInvalid(CostType Val=0)
static InstructionCost getMax()
CostType getValue() const
This function is intended to be used as sparingly as possible, since the class provides the full rang...
bool isCast() const
const DebugLoc & getDebugLoc() const
Return the debug location for this node as a DebugLoc.
LLVM_ABI const Module * getModule() const
Return the module owning the function this instruction belongs to or nullptr it the function does not...
LLVM_ABI void moveBefore(InstListType::iterator InsertPos)
Unlink this instruction from its current basic block and insert it into the basic block that MovePos ...
bool isBinaryOp() const
LLVM_ABI InstListType::iterator eraseFromParent()
This method unlinks 'this' from the containing basic block and deletes it.
Instruction * user_back()
Specialize the methods defined in Value, as we know that an instruction can only be used by other ins...
LLVM_ABI FastMathFlags getFastMathFlags() const LLVM_READONLY
Convenience function for getting all the fast-math flags, which must be an operator which supports th...
const char * getOpcodeName() const
unsigned getOpcode() const
Returns a member of one of the enums like Instruction::Add.
Class to represent integer types.
static LLVM_ABI IntegerType * get(LLVMContext &C, unsigned NumBits)
This static method is the primary way of constructing an IntegerType.
Definition Type.cpp:318
LLVM_ABI APInt getMask() const
For example, this is 0xFF for an 8 bit integer, 0xFFFF for i16, etc.
Definition Type.cpp:342
The group of interleaved loads/stores sharing the same stride and close to each other.
uint32_t getFactor() const
InstTy * getMember(uint32_t Index) const
Get the member with the given index Index.
InstTy * getInsertPos() const
uint32_t getNumMembers() const
Drive the analysis of interleaved memory accesses in the loop.
bool requiresScalarEpilogue() const
Returns true if an interleaved group that may access memory out-of-bounds requires a scalar epilogue ...
LLVM_ABI void analyzeInterleaving(bool EnableMaskedInterleavedGroup)
Analyze the interleaved accesses and collect them in interleave groups.
An instruction for reading from memory.
Type * getPointerOperandType() const
This analysis provides dependence information for the memory accesses of a loop.
Drive the analysis of memory accesses in the loop.
const RuntimePointerChecking * getRuntimePointerChecking() const
unsigned getNumRuntimePointerChecks() const
Number of memchecks required to prove independence of otherwise may-alias pointers.
Analysis pass that exposes the LoopInfo for a function.
Definition LoopInfo.h:569
bool contains(const LoopT *L) const
Return true if the specified loop is contained within in this loop.
BlockT * getLoopLatch() const
If there is a single latch block for this loop, return it.
bool isInnermost() const
Return true if the loop does not contain any (natural) loops.
void getExitingBlocks(SmallVectorImpl< BlockT * > &ExitingBlocks) const
Return all blocks inside the loop that have successors outside of the loop.
BlockT * getHeader() const
iterator_range< block_iterator > blocks() const
ArrayRef< BlockT * > getBlocks() const
Get a list of the basic blocks which make up this loop.
Store the result of a depth first search within basic blocks contained by a single loop.
RPOIterator beginRPO() const
Reverse iterate over the cached postorder blocks.
void perform(const LoopInfo *LI)
Traverse the loop blocks and store the DFS result.
RPOIterator endRPO() const
Wrapper class to LoopBlocksDFS that provides a standard begin()/end() interface for the DFS reverse p...
void perform(const LoopInfo *LI)
Traverse the loop blocks and store the DFS result.
void removeBlock(BlockT *BB)
This method completely removes BB from all data structures, including all of the Loop objects it is n...
LoopVectorizationCostModel - estimates the expected speedups due to vectorization.
SmallPtrSet< Type *, 16 > ElementTypesInLoop
All element types found in the loop.
bool isLegalMaskedLoad(Type *DataType, Value *Ptr, Align Alignment, unsigned AddressSpace) const
Returns true if the target machine supports masked load operation for the given DataType and kind of ...
void collectElementTypesForWidening()
Collect all element types in the loop for which widening is needed.
bool canVectorizeReductions(ElementCount VF) const
Returns true if the target machine supports all of the reduction variables found for the given VF.
bool isLegalMaskedStore(Type *DataType, Value *Ptr, Align Alignment, unsigned AddressSpace) const
Returns true if the target machine supports masked store operation for the given DataType and kind of...
bool isEpilogueVectorizationProfitable(const ElementCount VF, const unsigned IC) const
Returns true if epilogue vectorization is considered profitable, and false otherwise.
bool useWideActiveLaneMask() const
Returns true if the use of wide lane masks is requested and the loop is using tail-folding with a lan...
bool isPredicatedInst(Instruction *I) const
Returns true if I is an instruction that needs to be predicated at runtime.
void collectValuesToIgnore()
Collect values we want to ignore in the cost model.
void collectInLoopReductions()
Split reductions into those that happen in the loop, and those that happen outside.
std::pair< unsigned, unsigned > getSmallestAndWidestTypes()
bool isUniformAfterVectorization(Instruction *I, ElementCount VF) const
Returns true if I is known to be uniform after vectorization.
void collectNonVectorizedAndSetWideningDecisions(ElementCount VF)
Collect values that will not be widened, including Uniforms, Scalars, and Instructions to Scalarize f...
PredicatedScalarEvolution & PSE
Predicated scalar evolution analysis.
const LoopVectorizeHints * Hints
Loop Vectorize Hint.
std::optional< unsigned > getMaxSafeElements() const
Return maximum safe number of elements to be processed per vector iteration, which do not prevent sto...
LoopVectorizationCostModel(ScalarEpilogueLowering SEL, Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, LoopVectorizationLegality *Legal, const TargetTransformInfo &TTI, const TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC, OptimizationRemarkEmitter *ORE, const Function *F, const LoopVectorizeHints *Hints, InterleavedAccessInfo &IAI, bool OptForSize)
const TargetTransformInfo & TTI
Vector target information.
LoopVectorizationLegality * Legal
Vectorization legality.
std::optional< InstructionCost > getReductionPatternCost(Instruction *I, ElementCount VF, Type *VectorTy) const
Return the cost of instructions in an inloop reduction pattern, if I is part of that pattern.
InstructionCost getInstructionCost(Instruction *I, ElementCount VF)
Returns the execution time cost of an instruction for a given vector width.
DemandedBits * DB
Demanded bits analysis.
bool interleavedAccessCanBeWidened(Instruction *I, ElementCount VF) const
Returns true if I is a memory instruction in an interleaved-group of memory accesses that can be vect...
const TargetLibraryInfo * TLI
Target Library Info.
bool memoryInstructionCanBeWidened(Instruction *I, ElementCount VF)
Returns true if I is a memory instruction with consecutive memory access that can be widened.
const InterleaveGroup< Instruction > * getInterleavedAccessGroup(Instruction *Instr) const
Get the interleaved access group that Instr belongs to.
InstructionCost getVectorIntrinsicCost(CallInst *CI, ElementCount VF) const
Estimate cost of an intrinsic call instruction CI if it were vectorized with factor VF.
bool OptForSize
Whether this loop should be optimized for size based on function attribute or profile information.
bool useMaxBandwidth(TargetTransformInfo::RegisterKind RegKind)
bool isScalarAfterVectorization(Instruction *I, ElementCount VF) const
Returns true if I is known to be scalar after vectorization.
bool isOptimizableIVTruncate(Instruction *I, ElementCount VF)
Return True if instruction I is an optimizable truncate whose operand is an induction variable.
FixedScalableVFPair computeMaxVF(ElementCount UserVF, unsigned UserIC)
bool shouldConsiderRegPressureForVF(ElementCount VF)
Loop * TheLoop
The loop that we evaluate.
TTI::TargetCostKind CostKind
The kind of cost that we are calculating.
TailFoldingStyle getTailFoldingStyle(bool IVUpdateMayOverflow=true) const
Returns the TailFoldingStyle that is best for the current loop.
InterleavedAccessInfo & InterleaveInfo
The interleave access information contains groups of interleaved accesses with the same stride and cl...
SmallPtrSet< const Value *, 16 > ValuesToIgnore
Values to ignore in the cost model.
void setVectorizedCallDecision(ElementCount VF)
A call may be vectorized in different ways depending on whether we have vectorized variants available...
void invalidateCostModelingDecisions()
Invalidates decisions already taken by the cost model.
bool isAccessInterleaved(Instruction *Instr) const
Check if Instr belongs to any interleaved access group.
bool selectUserVectorizationFactor(ElementCount UserVF)
Setup cost-based decisions for user vectorization factor.
std::optional< unsigned > getVScaleForTuning() const
Return the value of vscale used for tuning the cost model.
OptimizationRemarkEmitter * ORE
Interface to emit optimization remarks.
bool preferPredicatedLoop() const
Returns true if tail-folding is preferred over a scalar epilogue.
LoopInfo * LI
Loop Info analysis.
bool requiresScalarEpilogue(bool IsVectorizing) const
Returns true if we're required to use a scalar epilogue for at least the final iteration of the origi...
SmallPtrSet< const Value *, 16 > VecValuesToIgnore
Values to ignore in the cost model when VF > 1.
unsigned getPredBlockCostDivisor(TargetTransformInfo::TargetCostKind CostKind, BasicBlock *BB) const
A helper function that returns how much we should divide the cost of a predicated block by.
bool isInLoopReduction(PHINode *Phi) const
Returns true if the Phi is part of an inloop reduction.
bool isProfitableToScalarize(Instruction *I, ElementCount VF) const
void setWideningDecision(const InterleaveGroup< Instruction > *Grp, ElementCount VF, InstWidening W, InstructionCost Cost)
Save vectorization decision W and Cost taken by the cost model for interleaving group Grp and vector ...
const MapVector< Instruction *, uint64_t > & getMinimalBitwidths() const
CallWideningDecision getCallWideningDecision(CallInst *CI, ElementCount VF) const
bool isLegalGatherOrScatter(Value *V, ElementCount VF)
Returns true if the target machine can represent V as a masked gather or scatter operation.
bool canTruncateToMinimalBitwidth(Instruction *I, ElementCount VF) const
bool shouldConsiderInvariant(Value *Op)
Returns true if Op should be considered invariant and if it is trivially hoistable.
bool foldTailByMasking() const
Returns true if all loop blocks should be masked to fold tail loop.
bool foldTailWithEVL() const
Returns true if VP intrinsics with explicit vector length support should be generated in the tail fol...
bool usePredicatedReductionSelect() const
Returns true if the predicated reduction select should be used to set the incoming value for the redu...
bool blockNeedsPredicationForAnyReason(BasicBlock *BB) const
Returns true if the instructions in this block requires predication for any reason,...
void setCallWideningDecision(CallInst *CI, ElementCount VF, InstWidening Kind, Function *Variant, Intrinsic::ID IID, std::optional< unsigned > MaskPos, InstructionCost Cost)
void setTailFoldingStyles(bool IsScalableVF, unsigned UserIC)
Selects and saves TailFoldingStyle for 2 options - if IV update may overflow or not.
AssumptionCache * AC
Assumption cache.
void setWideningDecision(Instruction *I, ElementCount VF, InstWidening W, InstructionCost Cost)
Save vectorization decision W and Cost taken by the cost model for instruction I and vector width VF.
InstWidening
Decision that was taken during cost calculation for memory instruction.
bool isScalarWithPredication(Instruction *I, ElementCount VF) const
Returns true if I is an instruction which requires predication and for which our chosen predication s...
InstructionCost getVectorCallCost(CallInst *CI, ElementCount VF) const
Estimate cost of a call instruction CI if it were vectorized with factor VF.
bool useOrderedReductions(const RecurrenceDescriptor &RdxDesc) const
Returns true if we should use strict in-order reductions for the given RdxDesc.
std::pair< InstructionCost, InstructionCost > getDivRemSpeculationCost(Instruction *I, ElementCount VF) const
Return the costs for our two available strategies for lowering a div/rem operation which requires spe...
bool isDivRemScalarWithPredication(InstructionCost ScalarCost, InstructionCost SafeDivisorCost) const
Given costs for both strategies, return true if the scalar predication lowering should be used for di...
InstructionCost expectedCost(ElementCount VF)
Returns the expected execution cost.
void setCostBasedWideningDecision(ElementCount VF)
Memory access instruction may be vectorized in more than one way.
InstWidening getWideningDecision(Instruction *I, ElementCount VF) const
Return the cost model decision for the given instruction I and vector width VF.
FixedScalableVFPair MaxPermissibleVFWithoutMaxBW
The highest VF possible for this loop, without using MaxBandwidth.
bool isScalarEpilogueAllowed() const
Returns true if a scalar epilogue is not allowed due to optsize or a loop hint annotation.
InstructionCost getWideningCost(Instruction *I, ElementCount VF)
Return the vectorization cost for the given instruction I and vector width VF.
void collectInstsToScalarize(ElementCount VF)
Collects the instructions to scalarize for each predicated instruction in the loop.
LoopVectorizationLegality checks if it is legal to vectorize a loop, and to what vectorization factor...
MapVector< PHINode *, InductionDescriptor > InductionList
InductionList saves induction variables and maps them to the induction descriptor.
const SmallPtrSetImpl< const Instruction * > & getPotentiallyFaultingLoads() const
Returns potentially faulting loads.
bool canVectorize(bool UseVPlanNativePath)
Returns true if it is legal to vectorize this loop.
bool canVectorizeFPMath(bool EnableStrictReductions)
Returns true if it is legal to vectorize the FP math operations in this loop.
PHINode * getPrimaryInduction()
Returns the primary induction variable.
const SmallVector< BasicBlock *, 4 > & getCountableExitingBlocks() const
Returns all exiting blocks with a countable exit, i.e.
const InductionList & getInductionVars() const
Returns the induction variables found in the loop.
bool hasUncountableEarlyExit() const
Returns true if the loop has exactly one uncountable early exit, i.e.
bool hasHistograms() const
Returns a list of all known histogram operations in the loop.
const LoopAccessInfo * getLAI() const
Planner drives the vectorization process after having passed Legality checks.
VectorizationFactor selectEpilogueVectorizationFactor(const ElementCount MaxVF, unsigned IC)
VPlan & getPlanFor(ElementCount VF) const
Return the VPlan for VF.
Definition VPlan.cpp:1576
VectorizationFactor planInVPlanNativePath(ElementCount UserVF)
Use the VPlan-native path to plan how to best vectorize, return the best VF and its cost.
void updateLoopMetadataAndProfileInfo(Loop *VectorLoop, VPBasicBlock *HeaderVPBB, const VPlan &Plan, bool VectorizingEpilogue, MDNode *OrigLoopID, std::optional< unsigned > OrigAverageTripCount, unsigned OrigLoopInvocationWeight, unsigned EstimatedVFxUF, bool DisableRuntimeUnroll)
Update loop metadata and profile info for both the scalar remainder loop and VectorLoop,...
Definition VPlan.cpp:1627
void buildVPlans(ElementCount MinVF, ElementCount MaxVF)
Build VPlans for power-of-2 VF's between MinVF and MaxVF inclusive, according to the information gath...
Definition VPlan.cpp:1560
VectorizationFactor computeBestVF()
Compute and return the most profitable vectorization factor.
DenseMap< const SCEV *, Value * > executePlan(ElementCount VF, unsigned UF, VPlan &BestPlan, InnerLoopVectorizer &LB, DominatorTree *DT, bool VectorizingEpilogue)
Generate the IR code for the vectorized loop captured in VPlan BestPlan according to the best selecte...
unsigned selectInterleaveCount(VPlan &Plan, ElementCount VF, InstructionCost LoopCost)
void emitInvalidCostRemarks(OptimizationRemarkEmitter *ORE)
Emit remarks for recipes with invalid costs in the available VPlans.
static bool getDecisionAndClampRange(const std::function< bool(ElementCount)> &Predicate, VFRange &Range)
Test a Predicate on a Range of VF's.
Definition VPlan.cpp:1541
void printPlans(raw_ostream &O)
Definition VPlan.cpp:1705
void plan(ElementCount UserVF, unsigned UserIC)
Build VPlans for the specified UserVF and UserIC if they are non-zero or all applicable candidate VFs...
void addMinimumIterationCheck(VPlan &Plan, ElementCount VF, unsigned UF, ElementCount MinProfitableTripCount) const
Create a check to Plan to see if the vector loop should be executed based on its trip count.
bool hasPlanWithVF(ElementCount VF) const
Look through the existing plans and return true if we have one with vectorization factor VF.
This holds vectorization requirements that must be verified late in the process.
Utility class for getting and setting loop vectorizer hints in the form of loop metadata.
bool allowVectorization(Function *F, Loop *L, bool VectorizeOnlyWhenForced) const
void emitRemarkWithHints() const
Dumps all the hint information.
const char * vectorizeAnalysisPassName() const
If hints are provided that force vectorization, use the AlwaysPrint pass name to force the frontend t...
This class emits a version of the loop where run-time checks ensure that may-alias pointers can't ove...
Represents a single loop in the control flow graph.
Definition LoopInfo.h:40
bool hasLoopInvariantOperands(const Instruction *I) const
Return true if all the operands of the specified instruction are loop invariant.
Definition LoopInfo.cpp:67
DebugLoc getStartLoc() const
Return the debug location of the start of this loop.
Definition LoopInfo.cpp:632
bool isLoopInvariant(const Value *V) const
Return true if the specified value is loop invariant.
Definition LoopInfo.cpp:61
Metadata node.
Definition Metadata.h:1078
This class implements a map that also provides access to all stored values in a deterministic order.
Definition MapVector.h:36
std::pair< iterator, bool > insert(const std::pair< KeyT, ValueT > &KV)
Definition MapVector.h:119
Function * getFunction(StringRef Name) const
Look up the specified function in the module symbol table.
Definition Module.cpp:230
Diagnostic information for optimization analysis remarks related to pointer aliasing.
Diagnostic information for optimization analysis remarks related to floating-point non-commutativity.
Diagnostic information for optimization analysis remarks.
The optimization diagnostic interface.
LLVM_ABI void emit(DiagnosticInfoOptimizationBase &OptDiag)
Output the remark via the diagnostic handler and to the optimization record file.
Diagnostic information for missed-optimization remarks.
Diagnostic information for applied optimization remarks.
void addIncoming(Value *V, BasicBlock *BB)
Add an incoming value to the end of the PHI list.
op_range incoming_values()
void setIncomingValueForBlock(const BasicBlock *BB, Value *V)
Set every incoming value(s) for block BB to V.
Value * getIncomingValueForBlock(const BasicBlock *BB) const
unsigned getNumIncomingValues() const
Return the number of incoming edges.
An interface layer with SCEV used to manage how we see SCEV expressions for values in the context of ...
ScalarEvolution * getSE() const
Returns the ScalarEvolution analysis used.
LLVM_ABI const SCEVPredicate & getPredicate() const
LLVM_ABI unsigned getSmallConstantMaxTripCount()
Returns the upper bound of the loop trip count as a normal unsigned value, or 0 if the trip count is ...
LLVM_ABI const SCEV * getBackedgeTakenCount()
Get the (predicated) backedge count for the analyzed loop.
LLVM_ABI const SCEV * getSCEV(Value *V)
Returns the SCEV expression of V, in the context of the current SCEV predicate.
A set of analyses that are preserved following a run of a transformation pass.
Definition Analysis.h:112
static PreservedAnalyses all()
Construct a special preserved set that preserves all passes.
Definition Analysis.h:118
PreservedAnalyses & preserveSet()
Mark an analysis set as preserved.
Definition Analysis.h:151
PreservedAnalyses & preserve()
Mark an analysis as preserved.
Definition Analysis.h:132
An analysis pass based on the new PM to deliver ProfileSummaryInfo.
The RecurrenceDescriptor is used to identify recurrences variables in a loop.
static bool isFMulAddIntrinsic(Instruction *I)
Returns true if the instruction is a call to the llvm.fmuladd intrinsic.
FastMathFlags getFastMathFlags() const
Instruction * getLoopExitInstr() const
static LLVM_ABI unsigned getOpcode(RecurKind Kind)
Returns the opcode corresponding to the RecurrenceKind.
Type * getRecurrenceType() const
Returns the type of the recurrence.
const SmallPtrSet< Instruction *, 8 > & getCastInsts() const
Returns a reference to the instructions used for type-promoting the recurrence.
unsigned getMinWidthCastToRecurrenceTypeInBits() const
Returns the minimum width used by the recurrence in bits.
TrackingVH< Value > getRecurrenceStartValue() const
LLVM_ABI SmallVector< Instruction *, 4 > getReductionOpChain(PHINode *Phi, Loop *L) const
Attempts to find a chain of operations from Phi to LoopExitInst that can be treated as a set of reduc...
static bool isAnyOfRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is of the form select(cmp(),x,y) where one of (x,...
bool isSigned() const
Returns true if all source operands of the recurrence are SExtInsts.
RecurKind getRecurrenceKind() const
bool isOrdered() const
Expose an ordered FP reduction to the instance users.
static LLVM_ABI bool isFloatingPointRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is a floating point kind.
static bool isFindIVRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is of the form select(cmp(),x,y) where one of (x,...
Value * getSentinelValue() const
Returns the sentinel value for FindFirstIV & FindLastIV recurrences to replace the start value.
static bool isMinMaxRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is any min/max kind.
std::optional< ArrayRef< PointerDiffInfo > > getDiffChecks() const
const SmallVectorImpl< RuntimePointerCheck > & getChecks() const
Returns the checks that generateChecks created.
This class uses information about analyze scalars to rewrite expressions in canonical form.
ScalarEvolution * getSE()
bool isInsertedInstruction(Instruction *I) const
Return true if the specified instruction was inserted by the code rewriter.
LLVM_ABI Value * expandCodeForPredicate(const SCEVPredicate *Pred, Instruction *Loc)
Generates a code sequence that evaluates this predicate.
void eraseDeadInstructions(Value *Root)
Remove inserted instructions that are dead, e.g.
virtual bool isAlwaysTrue() const =0
Returns true if the predicate is always true.
This class represents an analyzed expression in the program.
LLVM_ABI bool isZero() const
Return true if the expression is a constant zero.
LLVM_ABI Type * getType() const
Return the LLVM type of this SCEV expression.
Analysis pass that exposes the ScalarEvolution for a function.
The main scalar evolution driver.
LLVM_ABI const SCEV * getURemExpr(const SCEV *LHS, const SCEV *RHS)
Represents an unsigned remainder expression based on unsigned division.
LLVM_ABI const SCEV * getBackedgeTakenCount(const Loop *L, ExitCountKind Kind=Exact)
If the specified loop has a predictable backedge-taken count, return it, otherwise return a SCEVCould...
LLVM_ABI const SCEV * getConstant(ConstantInt *V)
LLVM_ABI const SCEV * getSCEV(Value *V)
Return a SCEV expression for the full generality of the specified expression.
LLVM_ABI const SCEV * getTripCountFromExitCount(const SCEV *ExitCount)
A version of getTripCountFromExitCount below which always picks an evaluation type which can not resu...
const SCEV * getOne(Type *Ty)
Return a SCEV for the constant 1 of a specific type.
LLVM_ABI void forgetLoop(const Loop *L)
This method should be called by the client when it has changed a loop in a way that may effect Scalar...
LLVM_ABI bool isLoopInvariant(const SCEV *S, const Loop *L)
Return true if the value of the given SCEV is unchanging in the specified loop.
LLVM_ABI bool isSCEVable(Type *Ty) const
Test if values of the given type are analyzable within the SCEV framework.
LLVM_ABI const SCEV * getElementCount(Type *Ty, ElementCount EC, SCEV::NoWrapFlags Flags=SCEV::FlagAnyWrap)
LLVM_ABI void forgetValue(Value *V)
This method should be called by the client when it has changed a value in a way that may effect its v...
LLVM_ABI void forgetBlockAndLoopDispositions(Value *V=nullptr)
Called when the client has changed the disposition of values in a loop or block.
const SCEV * getMinusOne(Type *Ty)
Return a SCEV for the constant -1 of a specific type.
LLVM_ABI void forgetLcssaPhiWithNewPredecessor(Loop *L, PHINode *V)
Forget LCSSA phi node V of loop L to which a new predecessor was added, such that it may no longer be...
LLVM_ABI unsigned getSmallConstantTripCount(const Loop *L)
Returns the exact trip count of the loop if we can compute it, and the result is a small constant.
APInt getUnsignedRangeMax(const SCEV *S)
Determine the max of the unsigned range for a particular SCEV.
LLVM_ABI const SCEV * applyLoopGuards(const SCEV *Expr, const Loop *L)
Try to apply information from loop guards for L to Expr.
LLVM_ABI const SCEV * getMulExpr(SmallVectorImpl< const SCEV * > &Ops, SCEV::NoWrapFlags Flags=SCEV::FlagAnyWrap, unsigned Depth=0)
Get a canonical multiply expression, or something simpler if possible.
LLVM_ABI const SCEV * getAddExpr(SmallVectorImpl< const SCEV * > &Ops, SCEV::NoWrapFlags Flags=SCEV::FlagAnyWrap, unsigned Depth=0)
Get a canonical add expression, or something simpler if possible.
LLVM_ABI bool isKnownPredicate(CmpPredicate Pred, const SCEV *LHS, const SCEV *RHS)
Test if the given expression is known to satisfy the condition described by Pred, LHS,...
This class represents the LLVM 'select' instruction.
A vector that has set insertion semantics.
Definition SetVector.h:58
size_type size() const
Determine the number of elements in the SetVector.
Definition SetVector.h:101
void insert_range(Range &&R)
Definition SetVector.h:174
size_type count(const key_type &key) const
Count the number of elements of a given key in the SetVector.
Definition SetVector.h:260
bool insert(const value_type &X)
Insert a new element into the SetVector.
Definition SetVector.h:149
A templated base class for SmallPtrSet which provides the typesafe interface that is common across al...
size_type count(ConstPtrType Ptr) const
count - Return 1 if the specified pointer is in the set, 0 otherwise.
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
bool contains(ConstPtrType Ptr) const
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
A SetVector that performs no allocations if smaller than a certain size.
Definition SetVector.h:337
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
reference emplace_back(ArgTypes &&... Args)
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
An instruction for storing to memory.
StringRef - Represent a constant reference to a string, i.e.
Definition StringRef.h:55
Analysis pass providing the TargetTransformInfo.
Analysis pass providing the TargetLibraryInfo.
Provides information about what library functions are available for the current target.
This pass provides access to the codegen interfaces that are needed for IR-level transformations.
LLVM_ABI std::optional< unsigned > getVScaleForTuning() const
LLVM_ABI InstructionCost getScalarizationOverhead(VectorType *Ty, const APInt &DemandedElts, bool Insert, bool Extract, TTI::TargetCostKind CostKind, bool ForPoisonSrc=true, ArrayRef< Value * > VL={}) const
Estimate the overhead of scalarizing an instruction.
LLVM_ABI bool supportsEfficientVectorElementLoadStore() const
If target has efficient vector element load/store instructions, it can return true here so that inser...
LLVM_ABI bool prefersVectorizedAddressing() const
Return true if target doesn't mind addresses in vectors.
LLVM_ABI TypeSize getRegisterBitWidth(RegisterKind K) const
LLVM_ABI bool preferFixedOverScalableIfEqualCost(bool IsEpilogue) const
LLVM_ABI InstructionCost getMemoryOpCost(unsigned Opcode, Type *Src, Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind=TTI::TCK_RecipThroughput, OperandValueInfo OpdInfo={OK_AnyValue, OP_None}, const Instruction *I=nullptr) const
LLVM_ABI InstructionCost getInterleavedMemoryOpCost(unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef< unsigned > Indices, Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind=TTI::TCK_RecipThroughput, bool UseMaskForCond=false, bool UseMaskForGaps=false) const
LLVM_ABI InstructionCost getShuffleCost(ShuffleKind Kind, VectorType *DstTy, VectorType *SrcTy, ArrayRef< int > Mask={}, TTI::TargetCostKind CostKind=TTI::TCK_RecipThroughput, int Index=0, VectorType *SubTp=nullptr, ArrayRef< const Value * > Args={}, const Instruction *CxtI=nullptr) const
static LLVM_ABI PartialReductionExtendKind getPartialReductionExtendKind(Instruction *I)
Get the kind of extension that an instruction represents.
static LLVM_ABI OperandValueInfo getOperandInfo(const Value *V)
Collect properties of V used in cost analysis, e.g. OP_PowerOf2.
LLVM_ABI bool isElementTypeLegalForScalableVector(Type *Ty) const
LLVM_ABI ElementCount getMinimumVF(unsigned ElemWidth, bool IsScalable) const
TargetCostKind
The kind of cost model.
@ TCK_RecipThroughput
Reciprocal throughput.
@ TCK_CodeSize
Instruction code size.
@ TCK_SizeAndLatency
The weighted sum of size and latency.
@ TCK_Latency
The latency of instruction.
LLVM_ABI InstructionCost getAddressComputationCost(Type *PtrTy, ScalarEvolution *SE, const SCEV *Ptr, TTI::TargetCostKind CostKind) const
LLVM_ABI InstructionCost getPartialReductionCost(unsigned Opcode, Type *InputTypeA, Type *InputTypeB, Type *AccumType, ElementCount VF, PartialReductionExtendKind OpAExtend, PartialReductionExtendKind OpBExtend, std::optional< unsigned > BinOp, TTI::TargetCostKind CostKind) const
LLVM_ABI InstructionCost getMaskedMemoryOpCost(const MemIntrinsicCostAttributes &MICA, TTI::TargetCostKind CostKind=TTI::TCK_RecipThroughput) const
LLVM_ABI InstructionCost getGatherScatterOpCost(unsigned Opcode, Type *DataTy, const Value *Ptr, bool VariableMask, Align Alignment, TTI::TargetCostKind CostKind=TTI::TCK_RecipThroughput, const Instruction *I=nullptr) const
LLVM_ABI bool supportsScalableVectors() const
@ TCC_Free
Expected to fold away in lowering.
LLVM_ABI InstructionCost getInstructionCost(const User *U, ArrayRef< const Value * > Operands, TargetCostKind CostKind) const
Estimate the cost of a given IR user when lowered.
LLVM_ABI InstructionCost getIndexedVectorInstrCostFromEnd(unsigned Opcode, Type *Val, TTI::TargetCostKind CostKind, unsigned Index) const
LLVM_ABI InstructionCost getOperandsScalarizationOverhead(ArrayRef< Type * > Tys, TTI::TargetCostKind CostKind) const
Estimate the overhead of scalarizing operands with the given types.
@ SK_Splice
Concatenates elements from the first input vector with elements of the second input vector.
@ SK_Broadcast
Broadcast element 0 to all other elements.
@ SK_Reverse
Reverse the order of the vector.
LLVM_ABI InstructionCost getCFInstrCost(unsigned Opcode, TTI::TargetCostKind CostKind=TTI::TCK_SizeAndLatency, const Instruction *I=nullptr) const
CastContextHint
Represents a hint about the context in which a cast is used.
@ Reversed
The cast is used with a reversed load/store.
@ Masked
The cast is used with a masked load/store.
@ None
The cast is not used with a load/store of any kind.
@ Normal
The cast is used with a normal load/store.
@ Interleave
The cast is used with an interleaved load/store.
@ GatherScatter
The cast is used with a gather/scatter.
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
Definition Twine.h:82
This class implements a switch-like dispatch statement for a value of 'T' using dyn_cast functionalit...
Definition TypeSwitch.h:88
TypeSwitch< T, ResultT > & Case(CallableT &&caseFn)
Add a case on the given type.
Definition TypeSwitch.h:97
The instances of the Type class are immutable: once they are created, they are never changed.
Definition Type.h:45
LLVM_ABI unsigned getIntegerBitWidth() const
bool isVectorTy() const
True if this is an instance of VectorType.
Definition Type.h:273
static LLVM_ABI Type * getVoidTy(LLVMContext &C)
Definition Type.cpp:280
Type * getScalarType() const
If this is a vector type, return the element type, otherwise return 'this'.
Definition Type.h:352
LLVM_ABI TypeSize getPrimitiveSizeInBits() const LLVM_READONLY
Return the basic size of this type if it is a primitive type.
Definition Type.cpp:197
LLVMContext & getContext() const
Return the LLVMContext in which this type was uniqued.
Definition Type.h:128
LLVM_ABI unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type.
Definition Type.cpp:230
static LLVM_ABI IntegerType * getInt1Ty(LLVMContext &C)
Definition Type.cpp:293
bool isFloatingPointTy() const
Return true if this is one of the floating-point types.
Definition Type.h:184
bool isIntegerTy() const
True if this is an instance of IntegerType.
Definition Type.h:240
bool isVoidTy() const
Return true if this is 'void'.
Definition Type.h:139
A Use represents the edge between a Value definition and its users.
Definition Use.h:35
op_range operands()
Definition User.h:292
LLVM_ABI bool replaceUsesOfWith(Value *From, Value *To)
Replace uses of one Value with another.
Definition User.cpp:24
Value * getOperand(unsigned i) const
Definition User.h:232
static SmallVector< VFInfo, 8 > getMappings(const CallInst &CI)
Retrieve all the VFInfo instances associated to the CallInst CI.
Definition VectorUtils.h:74
VPBasicBlock serves as the leaf of the Hierarchical Control-Flow Graph.
Definition VPlan.h:3983
void appendRecipe(VPRecipeBase *Recipe)
Augment the existing recipes of a VPBasicBlock with an additional Recipe as the last recipe.
Definition VPlan.h:4058
RecipeListTy::iterator iterator
Instruction iterators...
Definition VPlan.h:4010
iterator end()
Definition VPlan.h:4020
iterator begin()
Recipe iterator methods.
Definition VPlan.h:4018
iterator_range< iterator > phis()
Returns an iterator range over the PHI-like recipes in the block.
Definition VPlan.h:4071
iterator getFirstNonPhi()
Return the position of the first non-phi node recipe in the block.
Definition VPlan.cpp:216
VPRegionBlock * getEnclosingLoopRegion()
Definition VPlan.cpp:578
VPRecipeBase * getTerminator()
If the block has multiple successors, return the branch recipe terminating the block.
Definition VPlan.cpp:623
void insert(VPRecipeBase *Recipe, iterator InsertPt)
Definition VPlan.h:4049
bool empty() const
Definition VPlan.h:4029
VPBlockBase is the building block of the Hierarchical Control-Flow Graph.
Definition VPlan.h:80
VPRegionBlock * getParent()
Definition VPlan.h:172
const VPBasicBlock * getExitingBasicBlock() const
Definition VPlan.cpp:186
void setName(const Twine &newName)
Definition VPlan.h:165
size_t getNumSuccessors() const
Definition VPlan.h:218
void swapSuccessors()
Swap successors of the block. The block must have exactly 2 successors.
Definition VPlan.h:321
size_t getNumPredecessors() const
Definition VPlan.h:219
VPlan * getPlan()
Definition VPlan.cpp:161
const VPBasicBlock * getEntryBasicBlock() const
Definition VPlan.cpp:166
VPBlockBase * getSingleSuccessor() const
Definition VPlan.h:208
const VPBlocksTy & getSuccessors() const
Definition VPlan.h:197
static auto blocksOnly(const T &Range)
Return an iterator range over Range which only includes BlockTy blocks.
Definition VPlanUtils.h:211
static void insertOnEdge(VPBlockBase *From, VPBlockBase *To, VPBlockBase *BlockPtr)
Inserts BlockPtr on the edge between From and To.
Definition VPlanUtils.h:232
static void connectBlocks(VPBlockBase *From, VPBlockBase *To, unsigned PredIdx=-1u, unsigned SuccIdx=-1u)
Connect VPBlockBases From and To bi-directionally.
Definition VPlanUtils.h:170
static void reassociateBlocks(VPBlockBase *Old, VPBlockBase *New)
Reassociate all the blocks connected to Old so that they now point to New.
Definition VPlanUtils.h:197
VPlan-based builder utility analogous to IRBuilder.
VPPhi * createScalarPhi(ArrayRef< VPValue * > IncomingValues, DebugLoc DL, const Twine &Name="")
VPInstruction * createNaryOp(unsigned Opcode, ArrayRef< VPValue * > Operands, Instruction *Inst=nullptr, const VPIRFlags &Flags={}, const VPIRMetadata &MD={}, DebugLoc DL=DebugLoc::getUnknown(), const Twine &Name="")
Create an N-ary operation with Opcode, Operands and set Inst as its underlying Instruction.
Canonical scalar induction phi of the vector loop.
Definition VPlan.h:3564
unsigned getNumDefinedValues() const
Returns the number of values defined by the VPDef.
Definition VPlanValue.h:432
VPValue * getVPSingleValue()
Returns the only VPValue defined by the VPDef.
Definition VPlanValue.h:405
void execute(VPTransformState &State) override
Generate the transformed value of the induction at offset StartValue (1.
VPValue * getStepValue() const
Definition VPlan.h:3783
VPValue * getStartValue() const
Definition VPlan.h:3782
A pure virtual base class for all recipes modeling header phis, including phis for first order recurr...
Definition VPlan.h:2055
virtual VPValue * getBackedgeValue()
Returns the incoming value from the loop backedge.
Definition VPlan.h:2095
VPValue * getStartValue()
Returns the start value of the phi, if one is set.
Definition VPlan.h:2084
A special type of VPBasicBlock that wraps an existing IR basic block.
Definition VPlan.h:4136
Class to record and manage LLVM IR flags.
Definition VPlan.h:609
Helper to manage IR metadata for recipes.
Definition VPlan.h:982
This is a concrete Recipe that models a single VPlan-level instruction.
Definition VPlan.h:1031
@ ComputeAnyOfResult
Compute the final result of a AnyOf reduction with select(cmp(),x,y), where one of (x,...
Definition VPlan.h:1069
@ ResumeForEpilogue
Explicit user for the resume phi of the canonical induction in the main VPlan, used by the epilogue v...
Definition VPlan.h:1118
@ ReductionStartVector
Start vector for reductions with 3 operands: the original start value, the identity value for the red...
Definition VPlan.h:1109
unsigned getOpcode() const
Definition VPlan.h:1170
VPInterleaveRecipe is a recipe for transforming an interleave group of load or stores into one wide l...
Definition VPlan.h:2654
In what follows, the term "input IR" refers to code that is fed into the vectorizer whereas the term ...
A recipe for forming partial reductions.
Definition VPlan.h:2844
detail::zippy< llvm::detail::zip_first, VPUser::const_operand_range, const_incoming_blocks_range > incoming_values_and_blocks() const
Returns an iterator range over pairs of incoming values and corresponding incoming blocks.
Definition VPlan.h:1347
VPRecipeBase is a base class modeling a sequence of one or more output IR instructions.
Definition VPlan.h:386
VPBasicBlock * getParent()
Definition VPlan.h:407
DebugLoc getDebugLoc() const
Returns the debug location of the recipe.
Definition VPlan.h:478
void moveBefore(VPBasicBlock &BB, iplist< VPRecipeBase >::iterator I)
Unlink this recipe and insert into BB before I.
void insertBefore(VPRecipeBase *InsertPos)
Insert an unlinked recipe into a basic block immediately before the specified recipe.
iplist< VPRecipeBase >::iterator eraseFromParent()
This method unlinks 'this' from the containing basic block and deletes it.
VPRecipeBase * tryToCreateWidenRecipe(VPSingleDefRecipe *R, VFRange &Range)
Create and return a widened recipe for R if one can be created within the given VF Range.
VPValue * getBlockInMask(VPBasicBlock *VPBB) const
Returns the entry mask for block VPBB or null if the mask is all-true.
VPRecipeBase * tryToCreatePartialReduction(VPInstruction *Reduction, unsigned ScaleFactor)
Create and return a partial reduction recipe for a reduction instruction along with binary operation ...
std::optional< unsigned > getScalingForReduction(const Instruction *ExitInst)
void collectScaledReductions(VFRange &Range)
Find all possible partial reductions in the loop and track all of those that are valid so recipes can...
VPReplicateRecipe * handleReplication(VPInstruction *VPI, VFRange &Range)
Build a VPReplicationRecipe for VPI.
A recipe for handling reduction phis.
Definition VPlan.h:2407
bool isInLoop() const
Returns true, if the phi is part of an in-loop reduction.
Definition VPlan.h:2461
RecurKind getRecurrenceKind() const
Returns the recurrence kind of the reduction.
Definition VPlan.h:2455
VPRegionBlock represents a collection of VPBasicBlocks and VPRegionBlocks which form a Single-Entry-S...
Definition VPlan.h:4171
const VPBlockBase * getEntry() const
Definition VPlan.h:4207
VPCanonicalIVPHIRecipe * getCanonicalIV()
Returns the canonical induction recipe of the region.
Definition VPlan.h:4269
VPReplicateRecipe replicates a given instruction producing multiple scalar copies of the original sca...
Definition VPlan.h:2952
VPSingleDef is a base class for recipes for modeling a sequence of one or more output IR that define ...
Definition VPlan.h:530
Instruction * getUnderlyingInstr()
Returns the underlying instruction.
Definition VPlan.h:595
An analysis for type-inference for VPValues.
Type * inferScalarType(const VPValue *V)
Infer the type of V. Returns the scalar type of V.
This class augments VPValue with operands which provide the inverse def-use edges from VPValue's user...
Definition VPlanValue.h:207
operand_range operands()
Definition VPlanValue.h:275
void setOperand(unsigned I, VPValue *New)
Definition VPlanValue.h:251
unsigned getNumOperands() const
Definition VPlanValue.h:245
operand_iterator op_begin()
Definition VPlanValue.h:271
VPValue * getOperand(unsigned N) const
Definition VPlanValue.h:246
void addOperand(VPValue *Operand)
Definition VPlanValue.h:240
This is the base class of the VPlan Def/Use graph, used for modeling the data flow into,...
Definition VPlanValue.h:48
VPRecipeBase * getDefiningRecipe()
Returns the recipe defining this VPValue or nullptr if it is not defined by a recipe,...
Definition VPlan.cpp:131
Value * getLiveInIRValue() const
Returns the underlying IR value, if this VPValue is defined outside the scope of VPlan.
Definition VPlanValue.h:183
Value * getUnderlyingValue() const
Return the underlying Value attached to this VPValue.
Definition VPlanValue.h:85
void replaceAllUsesWith(VPValue *New)
Definition VPlan.cpp:1377
void replaceUsesWithIf(VPValue *New, llvm::function_ref< bool(VPUser &U, unsigned Idx)> ShouldReplace)
Go through the uses list for this VPValue and make each use point to New if the callback ShouldReplac...
Definition VPlan.cpp:1381
user_range users()
Definition VPlanValue.h:134
A recipe to compute a pointer to the last element of each part of a widened memory access for widened...
Definition VPlan.h:1917
VPWidenCastRecipe is a recipe to create vector cast instructions.
Definition VPlan.h:1545
A recipe for handling GEP instructions.
Definition VPlan.h:1841
A recipe for handling phi nodes of integer and floating-point inductions, producing their vector valu...
Definition VPlan.h:2195
A common base class for widening memory operations.
Definition VPlan.h:3263
A recipe for widened phis.
Definition VPlan.h:2329
VPWidenRecipe is a recipe for producing a widened instruction using the opcode and operands of the re...
Definition VPlan.h:1497
VPlan models a candidate for vectorization, encoding various decisions take to produce efficient outp...
Definition VPlan.h:4301
bool hasVF(ElementCount VF) const
Definition VPlan.h:4506
LLVMContext & getContext() const
Definition VPlan.h:4494
VPBasicBlock * getEntry()
Definition VPlan.h:4394
VPValue & getVectorTripCount()
The vector trip count.
Definition VPlan.h:4485
VPValue & getVFxUF()
Returns VF * UF of the vector loop region.
Definition VPlan.h:4492
VPValue & getVF()
Returns the VF of the vector loop region.
Definition VPlan.h:4488
VPValue * getTripCount() const
The trip count of the original loop.
Definition VPlan.h:4456
iterator_range< SmallSetVector< ElementCount, 2 >::iterator > vectorFactors() const
Returns an iterator range over all VFs of the plan.
Definition VPlan.h:4513
bool hasUF(unsigned UF) const
Definition VPlan.h:4524
ArrayRef< VPIRBasicBlock * > getExitBlocks() const
Return an ArrayRef containing VPIRBasicBlocks wrapping the exit blocks of the original scalar loop.
Definition VPlan.h:4446
VPValue * getConstantInt(Type *Ty, uint64_t Val, bool IsSigned=false)
Return a VPValue wrapping a ConstantInt with the given type and value.
Definition VPlan.h:4569
LLVM_ABI_FOR_TEST VPRegionBlock * getVectorLoopRegion()
Returns the VPRegionBlock of the vector loop.
Definition VPlan.cpp:1011
bool hasEarlyExit() const
Returns true if the VPlan is based on a loop with an early exit.
Definition VPlan.h:4662
InstructionCost cost(ElementCount VF, VPCostContext &Ctx)
Return the cost of this plan.
Definition VPlan.cpp:993
void resetTripCount(VPValue *NewTripCount)
Resets the trip count for the VPlan.
Definition VPlan.h:4470
VPBasicBlock * getMiddleBlock()
Returns the 'middle' block of the plan, that is the block that selects whether to execute the scalar ...
Definition VPlan.h:4419
VPValue * getOrAddLiveIn(Value *V)
Gets the live-in VPValue for V or adds a new live-in (if none exists yet) for V.
Definition VPlan.h:4548
VPBasicBlock * getScalarPreheader() const
Return the VPBasicBlock for the preheader of the scalar loop.
Definition VPlan.h:4437
void execute(VPTransformState *State)
Generate the IR code for this VPlan.
Definition VPlan.cpp:905
VPIRBasicBlock * getScalarHeader() const
Return the VPIRBasicBlock wrapping the header of the scalar loop.
Definition VPlan.h:4442
VPValue * getLiveIn(Value *V) const
Return the live-in VPValue for V, if there is one or nullptr otherwise.
Definition VPlan.h:4585
VPBasicBlock * getVectorPreheader()
Returns the preheader of the vector loop region, if one exists, or null otherwise.
Definition VPlan.h:4399
LLVM_ABI_FOR_TEST VPlan * duplicate()
Clone the current VPlan, update all VPValues of the new VPlan and cloned recipes to refer to the clon...
Definition VPlan.cpp:1153
LLVM Value Representation.
Definition Value.h:75
Type * getType() const
All values are typed, get the type of this value.
Definition Value.h:256
LLVM_ABI bool hasOneUser() const
Return true if there is exactly one user of this value.
Definition Value.cpp:166
LLVM_ABI void setName(const Twine &Name)
Change the name of the value.
Definition Value.cpp:390
bool hasOneUse() const
Return true if there is exactly one use of this value.
Definition Value.h:439
LLVM_ABI void replaceAllUsesWith(Value *V)
Change all uses of this to point to a new Value.
Definition Value.cpp:546
iterator_range< user_iterator > users()
Definition Value.h:426
LLVM_ABI const Value * stripPointerCasts() const
Strip off pointer casts, all-zero GEPs and address space casts.
Definition Value.cpp:701
LLVM_ABI StringRef getName() const
Return a constant reference to the value's name.
Definition Value.cpp:322
static LLVM_ABI VectorType * get(Type *ElementType, ElementCount EC)
This static method is the primary way to construct an VectorType.
std::pair< iterator, bool > insert(const ValueT &V)
Definition DenseSet.h:202
bool contains(const_arg_type_t< ValueT > V) const
Check if the set contains the given element.
Definition DenseSet.h:175
constexpr bool hasKnownScalarFactor(const FixedOrScalableQuantity &RHS) const
Returns true if there exists a value X where RHS.multiplyCoefficientBy(X) will result in a value whos...
Definition TypeSize.h:269
constexpr ScalarTy getFixedValue() const
Definition TypeSize.h:200
static constexpr bool isKnownLE(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
Definition TypeSize.h:230
constexpr bool isNonZero() const
Definition TypeSize.h:155
constexpr ScalarTy getKnownScalarFactor(const FixedOrScalableQuantity &RHS) const
Returns a value X where RHS.multiplyCoefficientBy(X) will result in a value whose quantity matches ou...
Definition TypeSize.h:277
static constexpr bool isKnownLT(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
Definition TypeSize.h:216
constexpr bool isScalable() const
Returns whether the quantity is scaled by a runtime quantity (vscale).
Definition TypeSize.h:168
constexpr LeafTy multiplyCoefficientBy(ScalarTy RHS) const
Definition TypeSize.h:256
constexpr bool isFixed() const
Returns true if the quantity is not scaled by vscale.
Definition TypeSize.h:171
constexpr ScalarTy getKnownMinValue() const
Returns the minimum value this quantity can represent.
Definition TypeSize.h:165
constexpr bool isZero() const
Definition TypeSize.h:153
static constexpr bool isKnownGT(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
Definition TypeSize.h:223
constexpr LeafTy divideCoefficientBy(ScalarTy RHS) const
We do not provide the '/' operator here because division for polynomial types does not work in the sa...
Definition TypeSize.h:252
static constexpr bool isKnownGE(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
Definition TypeSize.h:237
An efficient, type-erasing, non-owning reference to a callable.
const ParentTy * getParent() const
Definition ilist_node.h:34
self_iterator getIterator()
Definition ilist_node.h:123
IteratorT end() const
This class implements an extremely fast bulk output stream that can only output to a stream.
Definition raw_ostream.h:53
A raw_ostream that writes to an std::string.
Changed
This provides a very simple, boring adaptor for a begin and end iterator into a range type.
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
constexpr char Align[]
Key for Kernel::Arg::Metadata::mAlign.
constexpr std::underlying_type_t< E > Mask()
Get a bitmask with 1s in all places up to the high-order bit of E's largest value.
@ Entry
Definition COFF.h:862
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
Definition CallingConv.h:24
@ Tail
Attemps to make calls as fast as possible while guaranteeing that tail call optimization can always b...
Definition CallingConv.h:76
@ C
The default llvm calling convention, compatible with C.
Definition CallingConv.h:34
@ BasicBlock
Various leaf nodes.
Definition ISDOpcodes.h:81
std::variant< std::monostate, Loc::Single, Loc::Multi, Loc::MMI, Loc::EntryValue > Variant
Alias for the std::variant specialization base class of DbgVariable.
Definition DwarfDebug.h:189
SpecificConstantMatch m_ZeroInt()
Convenience matchers for specific integer values.
BinaryOp_match< SpecificConstantMatch, SrcTy, TargetOpcode::G_SUB > m_Neg(const SrcTy &&Src)
Matches a register negated by a G_SUB.
OneUse_match< SubPat > m_OneUse(const SubPat &SP)
BinaryOp_match< LHS, RHS, Instruction::Add > m_Add(const LHS &L, const RHS &R)
class_match< BinaryOperator > m_BinOp()
Match an arbitrary binary operation and ignore it.
OneOps_match< OpTy, Instruction::Freeze > m_Freeze(const OpTy &Op)
Matches FreezeInst.
ap_match< APInt > m_APInt(const APInt *&Res)
Match a ConstantInt or splatted ConstantVector, binding the specified pointer to the contained APInt.
specific_intval< false > m_SpecificInt(const APInt &V)
Match a specific integer value or vector with all elements equal to the value.
bool match(Val *V, const Pattern &P)
bind_ty< Instruction > m_Instruction(Instruction *&I)
Match an instruction, capturing it if we match.
specificval_ty m_Specific(const Value *V)
Match if we have a specific specified value.
cst_pred_ty< is_one > m_One()
Match an integer 1 or a vector with all elements equal to 1.
ThreeOps_match< Cond, LHS, RHS, Instruction::Select > m_Select(const Cond &C, const LHS &L, const RHS &R)
Matches SelectInst.
BinaryOp_match< LHS, RHS, Instruction::Mul > m_Mul(const LHS &L, const RHS &R)
auto m_LogicalOr()
Matches L || R where L and R are arbitrary values.
SpecificCmpClass_match< LHS, RHS, ICmpInst > m_SpecificICmp(CmpPredicate MatchPred, const LHS &L, const RHS &R)
class_match< CmpInst > m_Cmp()
Matches any compare instruction and ignore it.
class_match< Value > m_Value()
Match an arbitrary value and ignore it.
match_combine_or< CastInst_match< OpTy, ZExtInst >, CastInst_match< OpTy, SExtInst > > m_ZExtOrSExt(const OpTy &Op)
auto m_LogicalAnd()
Matches L && R where L and R are arbitrary values.
MatchFunctor< Val, Pattern > match_fn(const Pattern &P)
A match functor that can be used as a UnaryPredicate in functional algorithms like all_of.
BinaryOp_match< LHS, RHS, Instruction::Sub > m_Sub(const LHS &L, const RHS &R)
class_match< const SCEVVScale > m_SCEVVScale()
bind_cst_ty m_scev_APInt(const APInt *&C)
Match an SCEV constant and bind it to an APInt.
specificloop_ty m_SpecificLoop(const Loop *L)
cst_pred_ty< is_specific_signed_cst > m_scev_SpecificSInt(int64_t V)
Match an SCEV constant with a plain signed integer (sign-extended value will be matched)
SCEVAffineAddRec_match< Op0_t, Op1_t, class_match< const Loop > > m_scev_AffineAddRec(const Op0_t &Op0, const Op1_t &Op1)
bind_ty< const SCEVMulExpr > m_scev_Mul(const SCEVMulExpr *&V)
bool match(const SCEV *S, const Pattern &P)
SCEVBinaryExpr_match< SCEVMulExpr, Op0_t, Op1_t, SCEV::FlagAnyWrap, true > m_scev_c_Mul(const Op0_t &Op0, const Op1_t &Op1)
class_match< const SCEV > m_SCEV()
match_combine_or< AllRecipe_match< Instruction::ZExt, Op0_t >, AllRecipe_match< Instruction::SExt, Op0_t > > m_ZExtOrSExt(const Op0_t &Op0)
VPInstruction_match< VPInstruction::ExtractLastElement, Op0_t > m_ExtractLastElement(const Op0_t &Op0)
class_match< VPValue > m_VPValue()
Match an arbitrary VPValue and ignore it.
ValuesClass values(OptsTy... Options)
Helper to build a ValuesClass by forwarding a variable number of arguments as an initializer list to ...
initializer< Ty > init(const Ty &Val)
Add a small namespace to avoid name clashes with the classes used in the streaming interface.
DiagnosticInfoOptimizationBase::Argument NV
NodeAddr< InstrNode * > Instr
Definition RDFGraph.h:389
NodeAddr< PhiNode * > Phi
Definition RDFGraph.h:390
friend class Instruction
Iterator for Instructions in a `BasicBlock.
Definition BasicBlock.h:73
bool isSingleScalar(const VPValue *VPV)
Returns true if VPV is a single scalar, either because it produces the same value for all lanes or on...
VPValue * getOrCreateVPValueForSCEVExpr(VPlan &Plan, const SCEV *Expr)
Get or create a VPValue that corresponds to the expansion of Expr.
VPBasicBlock * getFirstLoopHeader(VPlan &Plan, VPDominatorTree &VPDT)
Returns the header block of the first, top-level loop, or null if none exist.
VPIRFlags getFlagsFromIndDesc(const InductionDescriptor &ID)
Extracts and returns NoWrap and FastMath flags from the induction binop in ID.
Definition VPlanUtils.h:85
unsigned getVFScaleFactor(VPRecipeBase *R)
Get the VF scaling factor applied to the recipe's output, if the recipe has one.
const SCEV * getSCEVExprForVPValue(const VPValue *V, ScalarEvolution &SE, const Loop *L=nullptr)
Return the SCEV expression for V.
This is an optimization pass for GlobalISel generic memory operations.
LLVM_ABI bool simplifyLoop(Loop *L, DominatorTree *DT, LoopInfo *LI, ScalarEvolution *SE, AssumptionCache *AC, MemorySSAUpdater *MSSAU, bool PreserveLCSSA)
Simplify each loop in a loop nest recursively.
LLVM_ABI void ReplaceInstWithInst(BasicBlock *BB, BasicBlock::iterator &BI, Instruction *I)
Replace the instruction specified by BI with the instruction specified by I.
auto drop_begin(T &&RangeOrContainer, size_t N=1)
Return a range covering RangeOrContainer with the first N elements excluded.
Definition STLExtras.h:316
@ Offset
Definition DWP.cpp:532
detail::zippy< detail::zip_shortest, T, U, Args... > zip(T &&t, U &&u, Args &&...args)
zip iterator for two or more iteratable types.
Definition STLExtras.h:829
FunctionAddr VTableAddr Value
Definition InstrProf.h:137
LLVM_ABI Value * addRuntimeChecks(Instruction *Loc, Loop *TheLoop, const SmallVectorImpl< RuntimePointerCheck > &PointerChecks, SCEVExpander &Expander, bool HoistRuntimeChecks=false)
Add code that checks at runtime if the accessed arrays in PointerChecks overlap.
auto cast_if_present(const Y &Val)
cast_if_present<X> - Functionally identical to cast, except that a null value is accepted.
Definition Casting.h:683
LLVM_ABI bool RemoveRedundantDbgInstrs(BasicBlock *BB)
Try to remove redundant dbg.value instructions from given basic block.
LLVM_ABI_FOR_TEST cl::opt< bool > VerifyEachVPlan
LLVM_ABI std::optional< unsigned > getLoopEstimatedTripCount(Loop *L, unsigned *EstimatedLoopInvocationWeight=nullptr)
Return either:
static void reportVectorization(OptimizationRemarkEmitter *ORE, Loop *TheLoop, VectorizationFactor VF, unsigned IC)
Report successful vectorization of the loop.
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1725
unsigned getLoadStoreAddressSpace(const Value *I)
A helper function that returns the address space of the pointer operand of load or store instruction.
LLVM_ABI Intrinsic::ID getMinMaxReductionIntrinsicOp(Intrinsic::ID RdxID)
Returns the min/max intrinsic used when expanding a min/max reduction.
auto size(R &&Range, std::enable_if_t< std::is_base_of< std::random_access_iterator_tag, typename std::iterator_traits< decltype(Range.begin())>::iterator_category >::value, void > *=nullptr)
Get the size of a range.
Definition STLExtras.h:1655
LLVM_ABI_FOR_TEST bool verifyVPlanIsValid(const VPlan &Plan, bool VerifyLate=false)
Verify invariants for general VPlans.
LLVM_ABI Intrinsic::ID getVectorIntrinsicIDForCall(const CallInst *CI, const TargetLibraryInfo *TLI)
Returns intrinsic ID for call.
InstructionCost Cost
auto enumerate(FirstRange &&First, RestRanges &&...Rest)
Given two or more input ranges, returns a new range whose values are tuples (A, B,...
Definition STLExtras.h:2472
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:643
LLVM_ABI bool verifyFunction(const Function &F, raw_ostream *OS=nullptr)
Check a function for errors, useful for use when debugging a pass.
const Value * getLoadStorePointerOperand(const Value *V)
A helper function that returns the pointer operand of a load or store instruction.
OuterAnalysisManagerProxy< ModuleAnalysisManager, Function > ModuleAnalysisManagerFunctionProxy
Provide the ModuleAnalysisManager to Function proxy.
Value * getRuntimeVF(IRBuilderBase &B, Type *Ty, ElementCount VF)
Return the runtime value for VF.
LLVM_ABI bool formLCSSARecursively(Loop &L, const DominatorTree &DT, const LoopInfo *LI, ScalarEvolution *SE)
Put a loop nest into LCSSA form.
Definition LCSSA.cpp:449
iterator_range< T > make_range(T x, T y)
Convenience function for iterating over sub-ranges.
void append_range(Container &C, Range &&R)
Wrapper function to append range R to container C.
Definition STLExtras.h:2136
LLVM_ABI bool shouldOptimizeForSize(const MachineFunction *MF, ProfileSummaryInfo *PSI, const MachineBlockFrequencyInfo *BFI, PGSOQueryType QueryType=PGSOQueryType::Other)
Returns true if machine function MF is suggested to be size-optimized based on the profile.
iterator_range< early_inc_iterator_impl< detail::IterOfRange< RangeT > > > make_early_inc_range(RangeT &&Range)
Make a range that does early increment to allow mutation of the underlying range without disrupting i...
Definition STLExtras.h:632
constexpr bool isPowerOf2_64(uint64_t Value)
Return true if the argument is a power of two > 0 (64 bit edition.)
Definition MathExtras.h:284
Align getLoadStoreAlignment(const Value *I)
A helper function that returns the alignment of load or store instruction.
iterator_range< df_iterator< VPBlockShallowTraversalWrapper< VPBlockBase * > > > vp_depth_first_shallow(VPBlockBase *G)
Returns an iterator range to traverse the graph starting at G in depth-first order.
Definition VPlanCFG.h:216
LLVM_ABI bool VerifySCEV
LLVM_ABI bool isSafeToSpeculativelyExecute(const Instruction *I, const Instruction *CtxI=nullptr, AssumptionCache *AC=nullptr, const DominatorTree *DT=nullptr, const TargetLibraryInfo *TLI=nullptr, bool UseVariableInfo=true, bool IgnoreUBImplyingAttrs=true)
Return true if the instruction does not have any effects besides calculating the result and does not ...
bool isa_and_nonnull(const Y &Val)
Definition Casting.h:676
iterator_range< df_iterator< VPBlockDeepTraversalWrapper< VPBlockBase * > > > vp_depth_first_deep(VPBlockBase *G)
Returns an iterator range to traverse the graph starting at G in depth-first order while traversing t...
Definition VPlanCFG.h:243
SmallVector< VPRegisterUsage, 8 > calculateRegisterUsageForPlan(VPlan &Plan, ArrayRef< ElementCount > VFs, const TargetTransformInfo &TTI, const SmallPtrSetImpl< const Value * > &ValuesToIgnore)
Estimate the register usage for Plan and vectorization factors in VFs by calculating the highest numb...
unsigned Log2_64(uint64_t Value)
Return the floor log base 2 of the specified value, -1 if the value is zero.
Definition MathExtras.h:337
LLVM_ABI void setBranchWeights(Instruction &I, ArrayRef< uint32_t > Weights, bool IsExpected, bool ElideAllZero=false)
Create a new branch_weights metadata node and add or overwrite a prof metadata reference to instructi...
auto dyn_cast_or_null(const Y &Val)
Definition Casting.h:753
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1732
void collectEphemeralRecipesForVPlan(VPlan &Plan, DenseSet< VPRecipeBase * > &EphRecipes)
auto reverse(ContainerTy &&C)
Definition STLExtras.h:406
bool containsIrreducibleCFG(RPOTraversalT &RPOTraversal, const LoopInfoT &LI)
Return true if the control flow in RPOTraversal is irreducible.
Definition CFG.h:149
constexpr bool isPowerOf2_32(uint32_t Value)
Return true if the argument is a power of two > 0.
Definition MathExtras.h:279
void sort(IteratorTy Start, IteratorTy End)
Definition STLExtras.h:1622
LLVM_ABI_FOR_TEST cl::opt< bool > EnableWideActiveLaneMask
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition Debug.cpp:207
bool none_of(R &&Range, UnaryPredicate P)
Provide wrappers to std::none_of which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1739
LLVM_ABI cl::opt< bool > EnableLoopVectorization
LLVM_ABI bool wouldInstructionBeTriviallyDead(const Instruction *I, const TargetLibraryInfo *TLI=nullptr)
Return true if the result produced by the instruction would have no side effects if it was not used.
Definition Local.cpp:421
FunctionAddr VTableAddr Count
Definition InstrProf.h:139
SmallVector< ValueTypeFromRangeType< R >, Size > to_vector(R &&Range)
Given a range of type R, iterate the entire range and return a SmallVector with elements of the vecto...
Type * toVectorizedTy(Type *Ty, ElementCount EC)
A helper for converting to vectorized types.
LLVM_ABI void llvm_unreachable_internal(const char *msg=nullptr, const char *file=nullptr, unsigned line=0)
This function calls abort(), and prints the optional message to stderr.
bool canConstantBeExtended(const APInt *C, Type *NarrowType, TTI::PartialReductionExtendKind ExtKind)
Check if a constant CI can be safely treated as having been extended from a narrower type with the gi...
Definition VPlan.cpp:1718
T * find_singleton(R &&Range, Predicate P, bool AllowRepeats=false)
Return the single value in Range that satisfies P(<member of Range> *, AllowRepeats)->T * returning n...
Definition STLExtras.h:1787
class LLVM_GSL_OWNER SmallVector
Forward declaration of SmallVector so that calculateSmallVectorDefaultInlinedElements can reference s...
cl::opt< unsigned > ForceTargetInstructionCost
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
Definition Casting.h:547
format_object< Ts... > format(const char *Fmt, const Ts &... Vals)
These are helper functions used to produce formatted output.
Definition Format.h:129
constexpr T divideCeil(U Numerator, V Denominator)
Returns the integer ceil(Numerator / Denominator).
Definition MathExtras.h:394
bool canVectorizeTy(Type *Ty)
Returns true if Ty is a valid vector element type, void, or an unpacked literal struct where all elem...
TargetTransformInfo TTI
static void reportVectorizationInfo(const StringRef Msg, const StringRef ORETag, OptimizationRemarkEmitter *ORE, Loop *TheLoop, Instruction *I=nullptr, DebugLoc DL={})
Reports an informative message: print Msg for debugging purposes as well as an optimization remark.
LLVM_ABI bool isAssignmentTrackingEnabled(const Module &M)
Return true if assignment tracking is enabled for module M.
RecurKind
These are the kinds of recurrences that we support.
@ Or
Bitwise or logical OR of integers.
@ FMulAdd
Sum of float products with llvm.fmuladd(a * b + sum).
@ Sub
Subtraction of integers.
@ Add
Sum of integers.
LLVM_ABI Value * getRecurrenceIdentity(RecurKind K, Type *Tp, FastMathFlags FMF)
Given information about an recurrence kind, return the identity for the @llvm.vector....
uint64_t alignTo(uint64_t Size, Align A)
Returns a multiple of A needed to store Size bytes.
Definition Alignment.h:144
LLVM_ABI void reportVectorizationFailure(const StringRef DebugMsg, const StringRef OREMsg, const StringRef ORETag, OptimizationRemarkEmitter *ORE, Loop *TheLoop, Instruction *I=nullptr)
Reports a vectorization failure: print DebugMsg for debugging purposes along with the corresponding o...
DWARFExpression::Operation Op
ScalarEpilogueLowering
@ CM_ScalarEpilogueNotAllowedLowTripLoop
@ CM_ScalarEpilogueNotNeededUsePredicate
@ CM_ScalarEpilogueNotAllowedOptSize
@ CM_ScalarEpilogueAllowed
@ CM_ScalarEpilogueNotAllowedUsePredicate
LLVM_ABI bool isGuaranteedNotToBeUndefOrPoison(const Value *V, AssumptionCache *AC=nullptr, const Instruction *CtxI=nullptr, const DominatorTree *DT=nullptr, unsigned Depth=0)
Return true if this function can prove that V does not have undef bits and is never poison.
ArrayRef(const T &OneElt) -> ArrayRef< T >
Value * createStepForVF(IRBuilderBase &B, Type *Ty, ElementCount VF, int64_t Step)
Return a value for Step multiplied by VF.
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:559
LLVM_ABI BasicBlock * SplitBlock(BasicBlock *Old, BasicBlock::iterator SplitPt, DominatorTree *DT, LoopInfo *LI=nullptr, MemorySSAUpdater *MSSAU=nullptr, const Twine &BBName="", bool Before=false)
Split the specified block at the specified instruction.
auto find_if(R &&Range, UnaryPredicate P)
Provide wrappers to std::find_if which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1758
auto predecessors(const MachineBasicBlock *BB)
iterator_range< pointer_iterator< WrappedIteratorT > > make_pointer_range(RangeT &&Range)
Definition iterator.h:363
cl::opt< bool > EnableVPlanNativePath
Type * getLoadStoreType(const Value *I)
A helper function that returns the type of a load or store instruction.
ArrayRef< Type * > getContainedTypes(Type *const &Ty)
Returns the types contained in Ty.
LLVM_ABI Value * addDiffRuntimeChecks(Instruction *Loc, ArrayRef< PointerDiffInfo > Checks, SCEVExpander &Expander, function_ref< Value *(IRBuilderBase &, unsigned)> GetVF, unsigned IC)
bool pred_empty(const BasicBlock *BB)
Definition CFG.h:119
@ DataAndControlFlowWithoutRuntimeCheck
Use predicate to control both data and control flow, but modify the trip count so that a runtime over...
@ None
Don't use tail folding.
@ DataWithEVL
Use predicated EVL instructions for tail-folding.
@ DataAndControlFlow
Use predicate to control both data and control flow.
@ DataWithoutLaneMask
Same as Data, but avoids using the get.active.lane.mask intrinsic to calculate the mask and instead i...
@ Data
Use predicate only to mask operations on data in the loop.
AnalysisManager< Function > FunctionAnalysisManager
Convenience typedef for the Function analysis manager.
LLVM_ABI bool hasBranchWeightMD(const Instruction &I)
Checks if an instructions has Branch Weight Metadata.
hash_code hash_combine(const Ts &...args)
Combine values into a single hash_code.
Definition Hashing.h:592
T bit_floor(T Value)
Returns the largest integral power of two no greater than Value if Value is nonzero.
Definition bit.h:330
Type * toVectorTy(Type *Scalar, ElementCount EC)
A helper function for converting Scalar types to vector types.
std::unique_ptr< VPlan > VPlanPtr
Definition VPlan.h:76
constexpr detail::IsaCheckPredicate< Types... > IsaPred
Function object wrapper for the llvm::isa type check.
Definition Casting.h:866
LLVM_ABI MapVector< Instruction *, uint64_t > computeMinimumValueSizes(ArrayRef< BasicBlock * > Blocks, DemandedBits &DB, const TargetTransformInfo *TTI=nullptr)
Compute a map of integer instructions to their minimum legal type size.
hash_code hash_combine_range(InputIteratorT first, InputIteratorT last)
Compute a hash_code for a sequence of values.
Definition Hashing.h:466
LLVM_ABI cl::opt< bool > EnableLoopInterleaving
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
Definition BitVector.h:869
#define N
This struct is a compact representation of a valid (non-zero power of two) alignment.
Definition Alignment.h:39
A special type used by analysis passes to provide an address that identifies that particular analysis...
Definition Analysis.h:29
static LLVM_ABI void collectEphemeralValues(const Loop *L, AssumptionCache *AC, SmallPtrSetImpl< const Value * > &EphValues)
Collect a loop's ephemeral values (those used only by an assume or similar intrinsics in the loop).
An information struct used to provide DenseMap with the various necessary components for a given valu...
Encapsulate information regarding vectorization of a loop and its epilogue.
EpilogueLoopVectorizationInfo(ElementCount MVF, unsigned MUF, ElementCount EVF, unsigned EUF, VPlan &EpiloguePlan)
A class that represents two vectorization factors (initialized with 0 by default).
static FixedScalableVFPair getNone()
This holds details about a histogram operation – a load -> update -> store sequence where each lane i...
Incoming for lane maks phi as machine instruction, incoming register Reg and incoming block Block are...
TargetLibraryInfo * TLI
LLVM_ABI LoopVectorizeResult runImpl(Function &F)
LLVM_ABI bool processLoop(Loop *L)
ProfileSummaryInfo * PSI
LoopAccessInfoManager * LAIs
LLVM_ABI void printPipeline(raw_ostream &OS, function_ref< StringRef(StringRef)> MapClassName2PassName)
LLVM_ABI LoopVectorizePass(LoopVectorizeOptions Opts={})
BlockFrequencyInfo * BFI
ScalarEvolution * SE
AssumptionCache * AC
LLVM_ABI PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM)
OptimizationRemarkEmitter * ORE
TargetTransformInfo * TTI
Storage for information about made changes.
A CRTP mix-in to automatically provide informational APIs needed for passes.
Definition PassManager.h:69
A marker analysis to determine if extra passes should be run after loop vectorization.
static LLVM_ABI AnalysisKey Key
Holds the VFShape for a specific scalar to vector function mapping.
std::optional< unsigned > getParamIndexForOptionalMask() const
Instruction Set Architecture.
Encapsulates information needed to describe a parameter.
A range of powers-of-2 vectorization factors with fixed start and adjustable end.
ElementCount End
Struct to hold various analysis needed for cost computations.
unsigned getPredBlockCostDivisor(BasicBlock *BB) const
LoopVectorizationCostModel & CM
bool isLegacyUniformAfterVectorization(Instruction *I, ElementCount VF) const
Return true if I is considered uniform-after-vectorization in the legacy cost model for VF.
bool skipCostComputation(Instruction *UI, bool IsVector) const
Return true if the cost for UI shouldn't be computed, e.g.
InstructionCost getLegacyCost(Instruction *UI, ElementCount VF) const
Return the cost for UI with VF using the legacy cost model as fallback until computing the cost of al...
TargetTransformInfo::TargetCostKind CostKind
SmallPtrSet< Instruction *, 8 > SkipCostComputation
A recipe for handling first-order recurrence phis.
Definition VPlan.h:2371
A struct that represents some properties of the register usage of a loop.
VPTransformState holds information passed down when "executing" a VPlan, needed for generating the ou...
A recipe for widening select instructions.
Definition VPlan.h:1794
static void materializeBroadcasts(VPlan &Plan)
Add explicit broadcasts for live-ins and VPValues defined in Plan's entry block if they are used as v...
static void materializePacksAndUnpacks(VPlan &Plan)
Add explicit Build[Struct]Vector recipes to Pack multiple scalar values into vectors and Unpack recip...
static LLVM_ABI_FOR_TEST std::unique_ptr< VPlan > buildVPlan0(Loop *TheLoop, LoopInfo &LI, Type *InductionTy, DebugLoc IVDL, PredicatedScalarEvolution &PSE, LoopVersioning *LVer=nullptr)
Create a base VPlan0, serving as the common starting point for all later candidates.
static void materializeBackedgeTakenCount(VPlan &Plan, VPBasicBlock *VectorPH)
Materialize the backedge-taken count to be computed explicitly using VPInstructions.
static void optimizeInductionExitUsers(VPlan &Plan, DenseMap< VPValue *, VPValue * > &EndValues, ScalarEvolution &SE)
If there's a single exit block, optimize its phi recipes that use exiting IV values by feeding them p...
static LLVM_ABI_FOR_TEST void handleEarlyExits(VPlan &Plan, bool HasUncountableExit)
Update Plan to account for all early exits.
static void addScalarResumePhis(VPlan &Plan, VPRecipeBuilder &Builder, DenseMap< VPValue *, VPValue * > &IVEndValues)
Create resume phis in the scalar preheader for first-order recurrences, reductions and inductions,...
static void canonicalizeEVLLoops(VPlan &Plan)
Transform EVL loops to use variable-length stepping after region dissolution.
static void dropPoisonGeneratingRecipes(VPlan &Plan, const std::function< bool(BasicBlock *)> &BlockNeedsPredication)
Drop poison flags from recipes that may generate a poison value that is used after vectorization,...
static void createInterleaveGroups(VPlan &Plan, const SmallPtrSetImpl< const InterleaveGroup< Instruction > * > &InterleaveGroups, VPRecipeBuilder &RecipeBuilder, const bool &ScalarEpilogueAllowed)
static bool runPass(bool(*Transform)(VPlan &, ArgsTy...), VPlan &Plan, typename std::remove_reference< ArgsTy >::type &...Args)
Helper to run a VPlan transform Transform on VPlan, forwarding extra arguments to the transform.
static void addBranchWeightToMiddleTerminator(VPlan &Plan, ElementCount VF, std::optional< unsigned > VScaleForTuning)
Add branch weight metadata, if the Plan's middle block is terminated by a BranchOnCond recipe.
static void narrowInterleaveGroups(VPlan &Plan, ElementCount VF, TypeSize VectorRegWidth)
Try to convert a plan with interleave groups with VF elements to a plan with the interleave groups re...
static void unrollByUF(VPlan &Plan, unsigned UF)
Explicitly unroll Plan by UF.
static DenseMap< const SCEV *, Value * > expandSCEVs(VPlan &Plan, ScalarEvolution &SE)
Expand VPExpandSCEVRecipes in Plan's entry block.
static void convertToConcreteRecipes(VPlan &Plan)
Lower abstract recipes to concrete ones, that can be codegen'd.
static void addMinimumIterationCheck(VPlan &Plan, ElementCount VF, unsigned UF, ElementCount MinProfitableTripCount, bool RequiresScalarEpilogue, bool TailFolded, bool CheckNeededWithTailFolding, Loop *OrigLoop, const uint32_t *MinItersBypassWeights, DebugLoc DL, ScalarEvolution &SE)
static void convertToAbstractRecipes(VPlan &Plan, VPCostContext &Ctx, VFRange &Range)
This function converts initial recipes to the abstract recipes and clamps Range based on cost model f...
static void materializeConstantVectorTripCount(VPlan &Plan, ElementCount BestVF, unsigned BestUF, PredicatedScalarEvolution &PSE)
static LLVM_ABI_FOR_TEST bool tryToConvertVPInstructionsToVPRecipes(VPlan &Plan, function_ref< const InductionDescriptor *(PHINode *)> GetIntOrFpInductionDescriptor, const TargetLibraryInfo &TLI)
Replaces the VPInstructions in Plan with corresponding widen recipes.
static void addExitUsersForFirstOrderRecurrences(VPlan &Plan, VFRange &Range)
Handle users in the exit block for first order reductions in the original exit block.
static DenseMap< VPBasicBlock *, VPValue * > introduceMasksAndLinearize(VPlan &Plan, bool FoldTail)
Predicate and linearize the control-flow in the only loop region of Plan.
static void addExplicitVectorLength(VPlan &Plan, const std::optional< unsigned > &MaxEVLSafeElements)
Add a VPEVLBasedIVPHIRecipe and related recipes to Plan and replaces all uses except the canonical IV...
static void replaceSymbolicStrides(VPlan &Plan, PredicatedScalarEvolution &PSE, const DenseMap< Value *, const SCEV * > &StridesMap)
Replace symbolic strides from StridesMap in Plan with constants when possible.
static bool handleMaxMinNumReductions(VPlan &Plan)
Check if Plan contains any FMaxNum or FMinNum reductions.
static void removeBranchOnConst(VPlan &Plan)
Remove BranchOnCond recipes with true or false conditions together with removing dead edges to their ...
static LLVM_ABI_FOR_TEST void createLoopRegions(VPlan &Plan)
Replace loops in Plan's flat CFG with VPRegionBlocks, turning Plan's flat CFG into a hierarchical CFG...
static void removeDeadRecipes(VPlan &Plan)
Remove dead recipes from Plan.
static void attachCheckBlock(VPlan &Plan, Value *Cond, BasicBlock *CheckBlock, bool AddBranchWeights)
Wrap runtime check block CheckBlock in a VPIRBB and Cond in a VPValue and connect the block to Plan,...
static void materializeVectorTripCount(VPlan &Plan, VPBasicBlock *VectorPHVPBB, bool TailByMasking, bool RequiresScalarEpilogue)
Materialize vector trip count computations to a set of VPInstructions.
static void simplifyRecipes(VPlan &Plan)
Perform instcombine-like simplifications on recipes in Plan.
static void replicateByVF(VPlan &Plan, ElementCount VF)
Replace each replicating VPReplicateRecipe and VPInstruction outside of any replicate region in Plan ...
static void clearReductionWrapFlags(VPlan &Plan)
Clear NSW/NUW flags from reduction instructions if necessary.
static void cse(VPlan &Plan)
Perform common-subexpression-elimination on Plan.
static void addActiveLaneMask(VPlan &Plan, bool UseActiveLaneMaskForControlFlow, bool DataAndControlFlowWithoutRuntimeCheck)
Replace (ICMP_ULE, wide canonical IV, backedge-taken-count) checks with an (active-lane-mask recipe,...
static LLVM_ABI_FOR_TEST void optimize(VPlan &Plan)
Apply VPlan-to-VPlan optimizations to Plan, including induction recipe optimizations,...
static void dissolveLoopRegions(VPlan &Plan)
Replace loop regions with explicit CFG.
static void truncateToMinimalBitwidths(VPlan &Plan, const MapVector< Instruction *, uint64_t > &MinBWs)
Insert truncates and extends for any truncated recipe.
static bool adjustFixedOrderRecurrences(VPlan &Plan, VPBuilder &Builder)
Try to have all users of fixed-order recurrences appear after the recipe defining their previous valu...
static void optimizeForVFAndUF(VPlan &Plan, ElementCount BestVF, unsigned BestUF, PredicatedScalarEvolution &PSE)
Optimize Plan based on BestVF and BestUF.
static void materializeVFAndVFxUF(VPlan &Plan, VPBasicBlock *VectorPH, ElementCount VF)
Materialize VF and VFxUF to be computed explicitly using VPInstructions.
static void addMinimumVectorEpilogueIterationCheck(VPlan &Plan, Value *TripCount, Value *VectorTripCount, bool RequiresScalarEpilogue, ElementCount EpilogueVF, unsigned EpilogueUF, unsigned MainLoopStep, unsigned EpilogueLoopStep, ScalarEvolution &SE)
Add a check to Plan to see if the epilogue vector loop should be executed.
static LLVM_ABI_FOR_TEST void addMiddleCheck(VPlan &Plan, bool RequiresScalarEpilogueCheck, bool TailFolded)
If a check is needed to guard executing the scalar epilogue loop, it will be added to the middle bloc...
TODO: The following VectorizationFactor was pulled out of LoopVectorizationCostModel class.
InstructionCost Cost
Cost of the loop with that width.
ElementCount MinProfitableTripCount
The minimum trip count required to make vectorization profitable, e.g.
ElementCount Width
Vector width with best cost.
InstructionCost ScalarCost
Cost of the scalar loop.
static VectorizationFactor Disabled()
Width 1 means no vectorization, cost 0 means uncomputed cost.
static LLVM_ABI bool HoistRuntimeChecks