162#define LV_NAME "loop-vectorize"
163#define DEBUG_TYPE LV_NAME
169STATISTIC(LoopsVectorized,
"Number of loops vectorized");
170STATISTIC(LoopsAnalyzed,
"Number of loops analyzed for vectorization");
171STATISTIC(LoopsEpilogueVectorized,
"Number of epilogues vectorized");
172STATISTIC(LoopsEarlyExitVectorized,
"Number of early exit loops vectorized");
176 cl::desc(
"Enable vectorization of epilogue loops."));
180 cl::desc(
"When epilogue vectorization is enabled, and a value greater than "
181 "1 is specified, forces the given VF for all applicable epilogue "
185 "epilogue-vectorization-minimum-VF",
cl::Hidden,
186 cl::desc(
"Only loops with vectorization factor equal to or larger than "
187 "the specified value are considered for epilogue vectorization."));
193 cl::desc(
"Loops with a constant trip count that is smaller than this "
194 "value are vectorized only if no scalar iteration overheads "
199 cl::desc(
"The maximum allowed number of runtime memory checks"));
215 "prefer-predicate-over-epilogue",
218 cl::desc(
"Tail-folding and predication preferences over creating a scalar "
222 "Don't tail-predicate loops, create scalar epilogue"),
224 "predicate-else-scalar-epilogue",
225 "prefer tail-folding, create scalar epilogue if tail "
228 "predicate-dont-vectorize",
229 "prefers tail-folding, don't attempt vectorization if "
230 "tail-folding fails.")));
233 "force-tail-folding-style",
cl::desc(
"Force the tail folding style"),
239 "Create lane mask for data only, using active.lane.mask intrinsic"),
241 "data-without-lane-mask",
242 "Create lane mask with compare/stepvector"),
244 "Create lane mask using active.lane.mask intrinsic, and use "
245 "it for both data and control flow"),
247 "data-and-control-without-rt-check",
248 "Similar to data-and-control, but remove the runtime check"),
250 "Use predicated EVL instructions for tail folding. If EVL "
251 "is unsupported, fallback to data-without-lane-mask.")));
255 cl::desc(
"Enable use of wide lane masks when used for control flow in "
256 "tail-folded loops"));
260 cl::desc(
"Maximize bandwidth when selecting vectorization factor which "
261 "will be determined by the smallest type in loop."));
265 cl::desc(
"Enable vectorization on interleaved memory accesses in a loop"));
271 cl::desc(
"Enable vectorization on masked interleaved memory accesses in a loop"));
275 cl::desc(
"A flag that overrides the target's number of scalar registers."));
279 cl::desc(
"A flag that overrides the target's number of vector registers."));
283 cl::desc(
"A flag that overrides the target's max interleave factor for "
288 cl::desc(
"A flag that overrides the target's max interleave factor for "
289 "vectorized loops."));
293 cl::desc(
"A flag that overrides the target's expected cost for "
294 "an instruction to a single constant value. Mostly "
295 "useful for getting consistent testing."));
300 "Pretend that scalable vectors are supported, even if the target does "
301 "not support them. This flag should only be used for testing."));
306 "The cost of a loop that is considered 'small' by the interleaver."));
310 cl::desc(
"Enable the use of the block frequency analysis to access PGO "
311 "heuristics minimizing code growth in cold regions and being more "
312 "aggressive in hot regions."));
318 "Enable runtime interleaving until load/store ports are saturated"));
323 cl::desc(
"Max number of stores to be predicated behind an if."));
327 cl::desc(
"Count the induction variable only once when interleaving"));
331 cl::desc(
"Enable if predication of stores during vectorization."));
335 cl::desc(
"The maximum interleave count to use when interleaving a scalar "
336 "reduction in a nested loop."));
341 cl::desc(
"Prefer in-loop vector reductions, "
342 "overriding the targets preference."));
346 cl::desc(
"Enable the vectorisation of loops with in-order (strict) "
352 "Prefer predicating a reduction operation over an after loop select."));
356 cl::desc(
"Enable VPlan-native vectorization path with "
357 "support for outer loop vectorization."));
361#ifdef EXPENSIVE_CHECKS
367 cl::desc(
"Verfiy VPlans after VPlan transforms."));
376 "Build VPlan for every supported loop nest in the function and bail "
377 "out right after the build (stress test the VPlan H-CFG construction "
378 "in the VPlan-native vectorization path)."));
382 cl::desc(
"Enable loop interleaving in Loop vectorization passes"));
385 cl::desc(
"Run the Loop vectorization passes"));
388 "force-widen-divrem-via-safe-divisor",
cl::Hidden,
390 "Override cost based safe divisor widening for div/rem instructions"));
393 "vectorizer-maximize-bandwidth-for-vector-calls",
cl::init(
true),
395 cl::desc(
"Try wider VFs if they enable the use of vector variants"));
400 "Enable vectorization of early exit loops with uncountable exits."));
404 cl::desc(
"Discard VFs if their register pressure is too high."));
417 return DL.getTypeAllocSizeInBits(Ty) !=
DL.getTypeSizeInBits(Ty);
452static std::optional<ElementCount>
454 bool CanUseConstantMax =
true) {
464 if (!CanUseConstantMax)
476class GeneratedRTChecks;
508 VF(VecWidth),
UF(UnrollFactor),
Builder(
PSE.getSE()->getContext()),
511 Plan.getVectorLoopRegion()->getSinglePredecessor())) {}
617 "A high UF for the epilogue loop is likely not beneficial.");
637 UnrollFactor, CM, Checks,
Plan),
666 EPI.MainLoopVF,
EPI.MainLoopUF) {}
704 EPI.EpilogueVF,
EPI.EpilogueUF) {}
721 if (
I->getDebugLoc() !=
Empty)
722 return I->getDebugLoc();
725 if (Instruction *OpInst = dyn_cast<Instruction>(Op))
726 if (OpInst->getDebugLoc() != Empty)
727 return OpInst->getDebugLoc();
730 return I->getDebugLoc();
739 dbgs() <<
"LV: " << Prefix << DebugMsg;
755static OptimizationRemarkAnalysis
761 if (
I &&
I->getDebugLoc())
762 DL =
I->getDebugLoc();
766 return OptimizationRemarkAnalysis(
PassName, RemarkName,
DL, CodeRegion);
774 assert(Ty->isIntegerTy() &&
"Expected an integer step");
782 return B.CreateElementCount(Ty, VFxStep);
787 return B.CreateElementCount(Ty, VF);
798 <<
"loop not vectorized: " << OREMsg);
821 "Vectorizing: ", TheLoop->
isInnermost() ?
"innermost loop" :
"outer loop",
827 <<
"vectorized " << LoopType <<
"loop (vectorization width: "
829 <<
", interleaved count: " <<
ore::NV(
"InterleaveCount", IC) <<
")";
886 initializeVScaleForTuning();
897 bool runtimeChecksRequired();
916 std::pair<unsigned, unsigned> getSmallestAndWidestTypes();
935 void collectValuesToIgnore();
938 void collectElementTypesForWidening();
942 void collectInLoopReductions();
963 "Profitable to scalarize relevant only for VF > 1.");
966 "cost-model should not be used for outer loops (in VPlan-native path)");
968 auto Scalars = InstsToScalarize.find(VF);
969 assert(Scalars != InstsToScalarize.end() &&
970 "VF not yet analyzed for scalarization profitability");
971 return Scalars->second.contains(
I);
978 "cost-model should not be used for outer loops (in VPlan-native path)");
988 auto UniformsPerVF = Uniforms.find(VF);
989 assert(UniformsPerVF != Uniforms.end() &&
990 "VF not yet analyzed for uniformity");
991 return UniformsPerVF->second.count(
I);
998 "cost-model should not be used for outer loops (in VPlan-native path)");
1002 auto ScalarsPerVF = Scalars.find(VF);
1003 assert(ScalarsPerVF != Scalars.end() &&
1004 "Scalar values are not calculated for VF");
1005 return ScalarsPerVF->second.count(
I);
1013 I->getType()->getScalarSizeInBits() < MinBWs.lookup(
I))
1015 return VF.
isVector() && MinBWs.contains(
I) &&
1037 WideningDecisions[{
I, VF}] = {W,
Cost};
1056 for (
unsigned Idx = 0; Idx < Grp->
getFactor(); ++Idx) {
1059 WideningDecisions[{
I, VF}] = {W, InsertPosCost};
1061 WideningDecisions[{
I, VF}] = {W, OtherMemberCost};
1073 "cost-model should not be used for outer loops (in VPlan-native path)");
1075 std::pair<Instruction *, ElementCount> InstOnVF(
I, VF);
1076 auto Itr = WideningDecisions.find(InstOnVF);
1077 if (Itr == WideningDecisions.end())
1079 return Itr->second.first;
1086 std::pair<Instruction *, ElementCount> InstOnVF(
I, VF);
1087 assert(WideningDecisions.contains(InstOnVF) &&
1088 "The cost is not calculated");
1089 return WideningDecisions[InstOnVF].second;
1102 std::optional<unsigned> MaskPos,
1105 CallWideningDecisions[{CI, VF}] = {Kind, Variant, IID, MaskPos,
Cost};
1111 auto I = CallWideningDecisions.find({CI, VF});
1112 if (
I == CallWideningDecisions.end())
1135 Value *
Op = Trunc->getOperand(0);
1136 if (
Op !=
Legal->getPrimaryInduction() &&
TTI.isTruncateFree(SrcTy, DestTy))
1140 return Legal->isInductionPhi(
Op);
1156 if (VF.
isScalar() || Uniforms.contains(VF))
1159 collectLoopUniforms(VF);
1161 collectLoopScalars(VF);
1169 return Legal->isConsecutivePtr(DataType, Ptr) &&
1177 return Legal->isConsecutivePtr(DataType, Ptr) &&
1192 return (
LI &&
TTI.isLegalMaskedGather(Ty,
Align)) ||
1199 return (
all_of(
Legal->getReductionVars(), [&](
auto &Reduction) ->
bool {
1200 const RecurrenceDescriptor &RdxDesc = Reduction.second;
1201 return TTI.isLegalToVectorizeReduction(RdxDesc, VF);
1212 return ScalarCost < SafeDivisorCost;
1251 std::pair<InstructionCost, InstructionCost>
1278 LLVM_DEBUG(
dbgs() <<
"LV: Loop does not require scalar epilogue\n");
1285 LLVM_DEBUG(
dbgs() <<
"LV: Loop requires scalar epilogue: not exiting "
1286 "from latch block\n");
1291 "interleaved group requires scalar epilogue\n");
1294 LLVM_DEBUG(
dbgs() <<
"LV: Loop does not require scalar epilogue\n");
1312 if (!ChosenTailFoldingStyle)
1314 return IVUpdateMayOverflow ? ChosenTailFoldingStyle->first
1315 : ChosenTailFoldingStyle->second;
1323 assert(!ChosenTailFoldingStyle &&
"Tail folding must not be selected yet.");
1324 if (!
Legal->canFoldTailByMasking()) {
1330 ChosenTailFoldingStyle = {
1331 TTI.getPreferredTailFoldingStyle(
true),
1332 TTI.getPreferredTailFoldingStyle(
false)};
1342 bool EVLIsLegal = UserIC <= 1 && IsScalableVF &&
1356 dbgs() <<
"LV: Preference for VP intrinsics indicated. Will "
1357 "not try to generate VP Intrinsics "
1359 ?
"since interleave count specified is greater than 1.\n"
1360 :
"due to non-interleaving reasons.\n"));
1405 return InLoopReductions.contains(Phi);
1410 return InLoopReductions;
1421 TTI.preferPredicatedReductionSelect();
1436 WideningDecisions.clear();
1437 CallWideningDecisions.clear();
1455 bool isEpilogueVectorizationProfitable(
const ElementCount VF,
1456 const unsigned IC)
const;
1464 std::optional<InstructionCost> getReductionPatternCost(
Instruction *
I,
1466 Type *VectorTy)
const;
1470 bool shouldConsiderInvariant(
Value *
Op);
1476 unsigned NumPredStores = 0;
1480 std::optional<unsigned> VScaleForTuning;
1485 void initializeVScaleForTuning() {
1490 auto Max = Attr.getVScaleRangeMax();
1491 if (Max && Min == Max) {
1492 VScaleForTuning = Max;
1505 FixedScalableVFPair computeFeasibleMaxVF(
unsigned MaxTripCount,
1506 ElementCount UserVF,
1507 bool FoldTailByMasking);
1511 ElementCount clampVFByMaxTripCount(ElementCount VF,
unsigned MaxTripCount,
1512 bool FoldTailByMasking)
const;
1517 ElementCount getMaximizedVFForTarget(
unsigned MaxTripCount,
1518 unsigned SmallestType,
1519 unsigned WidestType,
1520 ElementCount MaxSafeVF,
1521 bool FoldTailByMasking);
1525 bool isScalableVectorizationAllowed();
1529 ElementCount getMaxLegalScalableVF(
unsigned MaxSafeElements);
1535 InstructionCost getMemInstScalarizationCost(Instruction *
I, ElementCount VF);
1556 ElementCount VF)
const;
1560 bool useEmulatedMaskMemRefHack(Instruction *
I, ElementCount VF);
1565 MapVector<Instruction *, uint64_t> MinBWs;
1570 using ScalarCostsTy = MapVector<Instruction *, InstructionCost>;
1574 DenseMap<ElementCount, SmallPtrSet<BasicBlock *, 4>>
1575 PredicatedBBsAfterVectorization;
1588 std::optional<std::pair<TailFoldingStyle, TailFoldingStyle>>
1589 ChosenTailFoldingStyle;
1592 std::optional<bool> IsScalableVectorizationAllowed;
1598 std::optional<unsigned> MaxSafeElements;
1604 MapVector<ElementCount, ScalarCostsTy> InstsToScalarize;
1608 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Uniforms;
1612 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Scalars;
1616 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> ForcedScalars;
1619 SmallPtrSet<PHINode *, 4> InLoopReductions;
1624 DenseMap<Instruction *, Instruction *> InLoopReductionImmediateChains;
1632 ScalarCostsTy &ScalarCosts,
1644 void collectLoopUniforms(ElementCount VF);
1653 void collectLoopScalars(ElementCount VF);
1657 using DecisionList = DenseMap<std::pair<Instruction *, ElementCount>,
1658 std::pair<InstWidening, InstructionCost>>;
1660 DecisionList WideningDecisions;
1662 using CallDecisionList =
1663 DenseMap<std::pair<CallInst *, ElementCount>, CallWideningDecision>;
1665 CallDecisionList CallWideningDecisions;
1669 bool needsExtract(
Value *V, ElementCount VF)
const {
1673 getWideningDecision(
I, VF) == CM_Scalarize ||
1684 return !Scalars.
contains(VF) || !isScalarAfterVectorization(
I, VF);
1689 ElementCount VF)
const {
1691 SmallPtrSet<const Value *, 4> UniqueOperands;
1695 !needsExtract(
Op, VF))
1781class GeneratedRTChecks {
1787 Value *SCEVCheckCond =
nullptr;
1794 Value *MemRuntimeCheckCond =
nullptr;
1803 bool CostTooHigh =
false;
1805 Loop *OuterLoop =
nullptr;
1816 : DT(DT), LI(LI),
TTI(
TTI),
1817 SCEVExp(*PSE.
getSE(),
"scev.check",
false),
1818 MemCheckExp(*PSE.
getSE(),
"scev.check",
false),
1826 void create(Loop *L,
const LoopAccessInfo &LAI,
1827 const SCEVPredicate &UnionPred, ElementCount VF,
unsigned IC) {
1847 nullptr,
"vector.scevcheck");
1854 SCEVExpanderCleaner SCEVCleaner(SCEVExp);
1855 SCEVCleaner.cleanup();
1860 if (RtPtrChecking.Need) {
1861 auto *Pred = SCEVCheckBlock ? SCEVCheckBlock : Preheader;
1862 MemCheckBlock =
SplitBlock(Pred, Pred->getTerminator(), DT, LI,
nullptr,
1865 auto DiffChecks = RtPtrChecking.getDiffChecks();
1867 Value *RuntimeVF =
nullptr;
1870 [VF, &RuntimeVF](IRBuilderBase &
B,
unsigned Bits) {
1872 RuntimeVF = getRuntimeVF(B, B.getIntNTy(Bits), VF);
1878 MemCheckBlock->
getTerminator(), L, RtPtrChecking.getChecks(),
1881 assert(MemRuntimeCheckCond &&
1882 "no RT checks generated although RtPtrChecking "
1883 "claimed checks are required");
1888 if (!MemCheckBlock && !SCEVCheckBlock)
1898 if (SCEVCheckBlock) {
1901 auto *UI =
new UnreachableInst(Preheader->
getContext(), SCEVCheckBlock);
1905 if (MemCheckBlock) {
1908 auto *UI =
new UnreachableInst(Preheader->
getContext(), MemCheckBlock);
1914 if (MemCheckBlock) {
1918 if (SCEVCheckBlock) {
1924 OuterLoop =
L->getParentLoop();
1928 if (SCEVCheckBlock || MemCheckBlock)
1940 for (Instruction &
I : *SCEVCheckBlock) {
1941 if (SCEVCheckBlock->getTerminator() == &
I)
1947 if (MemCheckBlock) {
1949 for (Instruction &
I : *MemCheckBlock) {
1950 if (MemCheckBlock->getTerminator() == &
I)
1962 ScalarEvolution *SE = MemCheckExp.
getSE();
1967 const SCEV *
Cond = SE->
getSCEV(MemRuntimeCheckCond);
1972 unsigned BestTripCount = 2;
1976 PSE, OuterLoop,
false))
1977 if (EstimatedTC->isFixed())
1978 BestTripCount = EstimatedTC->getFixedValue();
1983 NewMemCheckCost = std::max(NewMemCheckCost.
getValue(),
1984 (InstructionCost::CostType)1);
1986 if (BestTripCount > 1)
1988 <<
"We expect runtime memory checks to be hoisted "
1989 <<
"out of the outer loop. Cost reduced from "
1990 << MemCheckCost <<
" to " << NewMemCheckCost <<
'\n');
1992 MemCheckCost = NewMemCheckCost;
1996 RTCheckCost += MemCheckCost;
1999 if (SCEVCheckBlock || MemCheckBlock)
2000 LLVM_DEBUG(
dbgs() <<
"Total cost of runtime checks: " << RTCheckCost
2008 ~GeneratedRTChecks() {
2009 SCEVExpanderCleaner SCEVCleaner(SCEVExp);
2010 SCEVExpanderCleaner MemCheckCleaner(MemCheckExp);
2011 bool SCEVChecksUsed = !SCEVCheckBlock || !
pred_empty(SCEVCheckBlock);
2012 bool MemChecksUsed = !MemCheckBlock || !
pred_empty(MemCheckBlock);
2014 SCEVCleaner.markResultUsed();
2016 if (MemChecksUsed) {
2017 MemCheckCleaner.markResultUsed();
2019 auto &SE = *MemCheckExp.
getSE();
2026 I.eraseFromParent();
2029 MemCheckCleaner.cleanup();
2030 SCEVCleaner.cleanup();
2032 if (!SCEVChecksUsed)
2033 SCEVCheckBlock->eraseFromParent();
2035 MemCheckBlock->eraseFromParent();
2040 std::pair<Value *, BasicBlock *> getSCEVChecks()
const {
2041 using namespace llvm::PatternMatch;
2043 return {
nullptr,
nullptr};
2045 return {SCEVCheckCond, SCEVCheckBlock};
2050 std::pair<Value *, BasicBlock *> getMemRuntimeChecks()
const {
2051 using namespace llvm::PatternMatch;
2052 if (MemRuntimeCheckCond &&
match(MemRuntimeCheckCond,
m_ZeroInt()))
2053 return {
nullptr,
nullptr};
2054 return {MemRuntimeCheckCond, MemCheckBlock};
2058 bool hasChecks()
const {
2059 return getSCEVChecks().first || getMemRuntimeChecks().first;
2102 LLVM_DEBUG(
dbgs() <<
"LV: Loop hints prevent outer loop vectorization.\n");
2108 LLVM_DEBUG(
dbgs() <<
"LV: Not vectorizing: Interleave is not supported for "
2138 for (
Loop *InnerL : L)
2161 ?
B.CreateSExtOrTrunc(Index, StepTy)
2162 :
B.CreateCast(Instruction::SIToFP, Index, StepTy);
2163 if (CastedIndex != Index) {
2165 Index = CastedIndex;
2175 assert(
X->getType() ==
Y->getType() &&
"Types don't match!");
2180 return B.CreateAdd(
X,
Y);
2186 assert(
X->getType()->getScalarType() ==
Y->getType() &&
2187 "Types don't match!");
2194 Y =
B.CreateVectorSplat(XVTy->getElementCount(),
Y);
2195 return B.CreateMul(
X,
Y);
2198 switch (InductionKind) {
2201 "Vector indices not supported for integer inductions yet");
2203 "Index type does not match StartValue type");
2205 return B.CreateSub(StartValue, Index);
2210 return B.CreatePtrAdd(StartValue,
CreateMul(Index, Step));
2213 "Vector indices not supported for FP inductions yet");
2216 (InductionBinOp->
getOpcode() == Instruction::FAdd ||
2217 InductionBinOp->
getOpcode() == Instruction::FSub) &&
2218 "Original bin op should be defined for FP induction");
2220 Value *MulExp =
B.CreateFMul(Step, Index);
2221 return B.CreateBinOp(InductionBinOp->
getOpcode(), StartValue, MulExp,
2232 if (std::optional<unsigned> MaxVScale =
TTI.getMaxVScale())
2235 if (
F.hasFnAttribute(Attribute::VScaleRange))
2236 return F.getFnAttribute(Attribute::VScaleRange).getVScaleRangeMax();
2238 return std::nullopt;
2247 ElementCount VF, std::optional<unsigned> UF = std::nullopt) {
2249 unsigned MaxUF = UF ? *UF : Cost->TTI.getMaxInterleaveFactor(VF);
2251 IntegerType *IdxTy = Cost->Legal->getWidestInductionType();
2257 if (
unsigned TC = Cost->PSE.getSmallConstantMaxTripCount()) {
2260 std::optional<unsigned> MaxVScale =
2264 MaxVF *= *MaxVScale;
2267 return (MaxUIntTripCount - TC).ugt(MaxVF * MaxUF);
2281 return TTI.enableMaskedInterleavedAccessVectorization();
2294 PreVectorPH = CheckVPIRBB;
2304 "must have incoming values for all operands");
2305 R.addOperand(R.getOperand(NumPredecessors - 2));
2331 auto CreateStep = [&]() ->
Value * {
2338 if (!
VF.isScalable())
2340 return Builder.CreateBinaryIntrinsic(
2346 Value *Step = CreateStep();
2355 CheckMinIters =
Builder.getTrue();
2357 TripCountSCEV, SE.
getSCEV(Step))) {
2360 CheckMinIters =
Builder.CreateICmp(
P,
Count, Step,
"min.iters.check");
2362 }
else if (
VF.isScalable() && !
TTI->isVScaleKnownToBeAPowerOfTwo() &&
2370 Value *MaxUIntTripCount =
2377 return CheckMinIters;
2386 VPlan *Plan =
nullptr) {
2390 auto IP = IRVPBB->
begin();
2392 R.moveBefore(*IRVPBB, IP);
2396 R.moveBefore(*IRVPBB, IRVPBB->
end());
2405 assert(VectorPH &&
"Invalid loop structure");
2407 Cost->requiresScalarEpilogue(
VF.isVector())) &&
2408 "loops not exiting via the latch without required epilogue?");
2415 Twine(Prefix) +
"scalar.ph");
2421 const SCEV2ValueTy &ExpandedSCEVs) {
2422 const SCEV *Step =
ID.getStep();
2424 return C->getValue();
2426 return U->getValue();
2427 Value *V = ExpandedSCEVs.lookup(Step);
2428 assert(V &&
"SCEV must be expanded at this point");
2438 auto *Cmp = L->getLatchCmpInst();
2440 InstsToIgnore.
insert(Cmp);
2441 for (
const auto &KV : IL) {
2450 [&](
const User *U) { return U == IV || U == Cmp; }))
2451 InstsToIgnore.
insert(IVInst);
2463struct CSEDenseMapInfo {
2474 return DenseMapInfo<Instruction *>::getTombstoneKey();
2477 static unsigned getHashValue(
const Instruction *
I) {
2478 assert(canHandle(
I) &&
"Unknown instruction!");
2483 static bool isEqual(
const Instruction *
LHS,
const Instruction *
RHS) {
2484 if (
LHS == getEmptyKey() ||
RHS == getEmptyKey() ||
2485 LHS == getTombstoneKey() ||
RHS == getTombstoneKey())
2487 return LHS->isIdenticalTo(
RHS);
2499 if (!CSEDenseMapInfo::canHandle(&In))
2505 In.replaceAllUsesWith(V);
2506 In.eraseFromParent();
2519 std::optional<unsigned> VScale) {
2523 EstimatedVF *= *VScale;
2524 assert(EstimatedVF >= 1 &&
"Estimated VF shouldn't be less than 1");
2542 for (
auto &ArgOp : CI->
args())
2553 return ScalarCallCost;
2566 assert(
ID &&
"Expected intrinsic call!");
2570 FMF = FPMO->getFastMathFlags();
2576 std::back_inserter(ParamTys),
2577 [&](
Type *Ty) { return maybeVectorizeType(Ty, VF); });
2582 return TTI.getIntrinsicInstrCost(CostAttrs,
CostKind);
2596 BasicBlock *HeaderBB = State.CFG.VPBB2IRBB[HeaderVPBB];
2611 Builder.SetInsertPoint(NewPhi);
2613 NewPhi->
addIncoming(State.get(Inc), State.CFG.VPBB2IRBB[VPBB]);
2618void LoopVectorizationCostModel::collectLoopScalars(
ElementCount VF) {
2623 "This function should not be visited twice for the same VF");
2646 InstWidening WideningDecision = getWideningDecision(MemAccess, VF);
2647 assert(WideningDecision != CM_Unknown &&
2648 "Widening decision should be ready at this moment");
2650 if (Ptr == Store->getValueOperand())
2651 return WideningDecision == CM_Scalarize;
2653 "Ptr is neither a value or pointer operand");
2654 return WideningDecision != CM_GatherScatter;
2659 auto IsLoopVaryingGEP = [&](
Value *
V) {
2670 if (!IsLoopVaryingGEP(Ptr))
2682 if (IsScalarUse(MemAccess, Ptr) &&
2686 PossibleNonScalarPtrs.
insert(
I);
2702 for (
auto *BB : TheLoop->
blocks())
2703 for (
auto &
I : *BB) {
2705 EvaluatePtrUse(Load,
Load->getPointerOperand());
2707 EvaluatePtrUse(Store,
Store->getPointerOperand());
2708 EvaluatePtrUse(Store,
Store->getValueOperand());
2711 for (
auto *
I : ScalarPtrs)
2712 if (!PossibleNonScalarPtrs.
count(
I)) {
2720 auto ForcedScalar = ForcedScalars.
find(VF);
2721 if (ForcedScalar != ForcedScalars.
end())
2722 for (
auto *
I : ForcedScalar->second) {
2723 LLVM_DEBUG(
dbgs() <<
"LV: Found (forced) scalar instruction: " << *
I <<
"\n");
2732 while (Idx != Worklist.
size()) {
2734 if (!IsLoopVaryingGEP(Dst->getOperand(0)))
2738 auto *J = cast<Instruction>(U);
2739 return !TheLoop->contains(J) || Worklist.count(J) ||
2740 ((isa<LoadInst>(J) || isa<StoreInst>(J)) &&
2741 IsScalarUse(J, Src));
2744 LLVM_DEBUG(
dbgs() <<
"LV: Found scalar instruction: " << *Src <<
"\n");
2750 for (
const auto &Induction :
Legal->getInductionVars()) {
2751 auto *Ind = Induction.first;
2756 if (Ind ==
Legal->getPrimaryInduction() && foldTailByMasking())
2761 auto IsDirectLoadStoreFromPtrIndvar = [&](
Instruction *Indvar,
2763 return Induction.second.getKind() ==
2771 bool ScalarInd =
all_of(Ind->users(), [&](User *U) ->
bool {
2772 auto *I = cast<Instruction>(U);
2773 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) ||
2774 IsDirectLoadStoreFromPtrIndvar(Ind, I);
2783 if (IndUpdatePhi &&
Legal->isFixedOrderRecurrence(IndUpdatePhi))
2788 bool ScalarIndUpdate =
all_of(IndUpdate->users(), [&](User *U) ->
bool {
2789 auto *I = cast<Instruction>(U);
2790 return I == Ind || !TheLoop->contains(I) || Worklist.count(I) ||
2791 IsDirectLoadStoreFromPtrIndvar(IndUpdate, I);
2793 if (!ScalarIndUpdate)
2798 Worklist.
insert(IndUpdate);
2799 LLVM_DEBUG(
dbgs() <<
"LV: Found scalar instruction: " << *Ind <<
"\n");
2800 LLVM_DEBUG(
dbgs() <<
"LV: Found scalar instruction: " << *IndUpdate
2814 switch(
I->getOpcode()) {
2817 case Instruction::Call:
2821 case Instruction::Load:
2822 case Instruction::Store: {
2831 TTI.isLegalMaskedGather(VTy, Alignment))
2833 TTI.isLegalMaskedScatter(VTy, Alignment));
2835 case Instruction::UDiv:
2836 case Instruction::SDiv:
2837 case Instruction::SRem:
2838 case Instruction::URem: {
2859 if (
Legal->blockNeedsPredication(
I->getParent()))
2871 switch(
I->getOpcode()) {
2874 "instruction should have been considered by earlier checks");
2875 case Instruction::Call:
2879 "should have returned earlier for calls not needing a mask");
2881 case Instruction::Load:
2884 case Instruction::Store: {
2892 case Instruction::UDiv:
2893 case Instruction::SDiv:
2894 case Instruction::SRem:
2895 case Instruction::URem:
2897 return !
Legal->isInvariant(
I->getOperand(1));
2907 if (!
Legal->blockNeedsPredication(BB))
2914 "Header has smaller block freq than dominated BB?");
2915 return std::round((
double)HeaderFreq /
BBFreq);
2918std::pair<InstructionCost, InstructionCost>
2921 assert(
I->getOpcode() == Instruction::UDiv ||
2922 I->getOpcode() == Instruction::SDiv ||
2923 I->getOpcode() == Instruction::SRem ||
2924 I->getOpcode() == Instruction::URem);
2933 ScalarizationCost = 0;
2939 ScalarizationCost +=
2943 ScalarizationCost +=
2945 TTI.getArithmeticInstrCost(
I->getOpcode(),
I->getType(),
CostKind);
2963 TTI.getCmpSelInstrCost(Instruction::Select, VecTy,
2968 SafeDivisorCost +=
TTI.getArithmeticInstrCost(
2970 {TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None},
2971 {TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None},
2973 return {ScalarizationCost, SafeDivisorCost};
2980 "Decision should not be set yet.");
2982 assert(Group &&
"Must have a group.");
2983 unsigned InterleaveFactor = Group->getFactor();
2987 auto &
DL =
I->getDataLayout();
2999 bool ScalarNI =
DL.isNonIntegralPointerType(ScalarTy);
3000 for (
unsigned Idx = 0; Idx < InterleaveFactor; Idx++) {
3005 bool MemberNI =
DL.isNonIntegralPointerType(MemberTy);
3007 if (MemberNI != ScalarNI)
3010 if (MemberNI && ScalarNI &&
3011 ScalarTy->getPointerAddressSpace() !=
3012 MemberTy->getPointerAddressSpace())
3021 bool PredicatedAccessRequiresMasking =
3023 Legal->isMaskRequired(
I);
3024 bool LoadAccessWithGapsRequiresEpilogMasking =
3027 bool StoreAccessWithGapsRequiresMasking =
3029 if (!PredicatedAccessRequiresMasking &&
3030 !LoadAccessWithGapsRequiresEpilogMasking &&
3031 !StoreAccessWithGapsRequiresMasking)
3038 "Masked interleave-groups for predicated accesses are not enabled.");
3040 if (Group->isReverse())
3044 bool NeedsMaskForGaps = LoadAccessWithGapsRequiresEpilogMasking ||
3045 StoreAccessWithGapsRequiresMasking;
3053 :
TTI.isLegalMaskedStore(Ty, Alignment, AS);
3065 if (!
Legal->isConsecutivePtr(ScalarTy, Ptr))
3075 auto &
DL =
I->getDataLayout();
3082void LoopVectorizationCostModel::collectLoopUniforms(
ElementCount VF) {
3089 "This function should not be visited twice for the same VF");
3093 Uniforms[VF].
clear();
3101 auto IsOutOfScope = [&](
Value *V) ->
bool {
3113 auto AddToWorklistIfAllowed = [&](
Instruction *
I) ->
void {
3114 if (IsOutOfScope(
I)) {
3119 if (isPredicatedInst(
I)) {
3121 dbgs() <<
"LV: Found not uniform due to requiring predication: " << *
I
3125 LLVM_DEBUG(
dbgs() <<
"LV: Found uniform instruction: " << *
I <<
"\n");
3135 for (BasicBlock *
E : Exiting) {
3139 if (Cmp && TheLoop->
contains(Cmp) &&
Cmp->hasOneUse())
3140 AddToWorklistIfAllowed(Cmp);
3149 if (PrevVF.isVector()) {
3150 auto Iter = Uniforms.
find(PrevVF);
3151 if (Iter != Uniforms.
end() && !Iter->second.contains(
I))
3154 if (!
Legal->isUniformMemOp(*
I, VF))
3164 auto IsUniformDecision = [&](
Instruction *
I, ElementCount VF) {
3165 InstWidening WideningDecision = getWideningDecision(
I, VF);
3166 assert(WideningDecision != CM_Unknown &&
3167 "Widening decision should be ready at this moment");
3169 if (IsUniformMemOpUse(
I))
3172 return (WideningDecision == CM_Widen ||
3173 WideningDecision == CM_Widen_Reverse ||
3174 WideningDecision == CM_Interleave);
3184 (IsUniformDecision(
I, VF) ||
Legal->isInvariant(Ptr));
3192 SetVector<Value *> HasUniformUse;
3196 for (
auto *BB : TheLoop->
blocks())
3197 for (
auto &
I : *BB) {
3199 switch (
II->getIntrinsicID()) {
3200 case Intrinsic::sideeffect:
3201 case Intrinsic::experimental_noalias_scope_decl:
3202 case Intrinsic::assume:
3203 case Intrinsic::lifetime_start:
3204 case Intrinsic::lifetime_end:
3206 AddToWorklistIfAllowed(&
I);
3214 if (IsOutOfScope(EVI->getAggregateOperand())) {
3215 AddToWorklistIfAllowed(EVI);
3221 "Expected aggregate value to be call return value");
3234 if (IsUniformMemOpUse(&
I))
3235 AddToWorklistIfAllowed(&
I);
3237 if (IsVectorizedMemAccessUse(&
I, Ptr))
3238 HasUniformUse.
insert(Ptr);
3244 for (
auto *V : HasUniformUse) {
3245 if (IsOutOfScope(V))
3248 bool UsersAreMemAccesses =
all_of(
I->users(), [&](User *U) ->
bool {
3249 auto *UI = cast<Instruction>(U);
3250 return TheLoop->contains(UI) && IsVectorizedMemAccessUse(UI, V);
3252 if (UsersAreMemAccesses)
3253 AddToWorklistIfAllowed(
I);
3260 while (Idx != Worklist.
size()) {
3263 for (
auto *OV :
I->operand_values()) {
3265 if (IsOutOfScope(OV))
3270 if (
OP &&
Legal->isFixedOrderRecurrence(
OP))
3276 auto *J = cast<Instruction>(U);
3277 return Worklist.count(J) || IsVectorizedMemAccessUse(J, OI);
3279 AddToWorklistIfAllowed(OI);
3290 for (
const auto &Induction :
Legal->getInductionVars()) {
3291 auto *Ind = Induction.first;
3296 bool UniformInd =
all_of(Ind->users(), [&](User *U) ->
bool {
3297 auto *I = cast<Instruction>(U);
3298 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) ||
3299 IsVectorizedMemAccessUse(I, Ind);
3306 bool UniformIndUpdate =
all_of(IndUpdate->users(), [&](User *U) ->
bool {
3307 auto *I = cast<Instruction>(U);
3308 return I == Ind || Worklist.count(I) ||
3309 IsVectorizedMemAccessUse(I, IndUpdate);
3311 if (!UniformIndUpdate)
3315 AddToWorklistIfAllowed(Ind);
3316 AddToWorklistIfAllowed(IndUpdate);
3325 if (
Legal->getRuntimePointerChecking()->Need) {
3327 "runtime pointer checks needed. Enable vectorization of this "
3328 "loop with '#pragma clang loop vectorize(enable)' when "
3329 "compiling with -Os/-Oz",
3330 "CantVersionLoopWithOptForSize",
ORE,
TheLoop);
3334 if (!
PSE.getPredicate().isAlwaysTrue()) {
3336 "runtime SCEV checks needed. Enable vectorization of this "
3337 "loop with '#pragma clang loop vectorize(enable)' when "
3338 "compiling with -Os/-Oz",
3339 "CantVersionLoopWithOptForSize",
ORE,
TheLoop);
3344 if (!
Legal->getLAI()->getSymbolicStrides().empty()) {
3346 "runtime stride == 1 checks needed. Enable vectorization of "
3347 "this loop without such check by compiling with -Os/-Oz",
3348 "CantVersionLoopWithOptForSize",
ORE,
TheLoop);
3355bool LoopVectorizationCostModel::isScalableVectorizationAllowed() {
3356 if (IsScalableVectorizationAllowed)
3357 return *IsScalableVectorizationAllowed;
3359 IsScalableVectorizationAllowed =
false;
3363 if (Hints->isScalableVectorizationDisabled()) {
3365 "ScalableVectorizationDisabled", ORE, TheLoop);
3369 LLVM_DEBUG(
dbgs() <<
"LV: Scalable vectorization is available\n");
3372 std::numeric_limits<ElementCount::ScalarTy>::max());
3381 if (!canVectorizeReductions(MaxScalableVF)) {
3383 "Scalable vectorization not supported for the reduction "
3384 "operations found in this loop.",
3385 "ScalableVFUnfeasible", ORE, TheLoop);
3391 if (
any_of(ElementTypesInLoop, [&](
Type *Ty) {
3396 "for all element types found in this loop.",
3397 "ScalableVFUnfeasible", ORE, TheLoop);
3403 "for safe distance analysis.",
3404 "ScalableVFUnfeasible", ORE, TheLoop);
3408 IsScalableVectorizationAllowed =
true;
3413LoopVectorizationCostModel::getMaxLegalScalableVF(
unsigned MaxSafeElements) {
3414 if (!isScalableVectorizationAllowed())
3418 std::numeric_limits<ElementCount::ScalarTy>::max());
3419 if (
Legal->isSafeForAnyVectorWidth())
3420 return MaxScalableVF;
3428 "Max legal vector width too small, scalable vectorization "
3430 "ScalableVFUnfeasible", ORE, TheLoop);
3432 return MaxScalableVF;
3435FixedScalableVFPair LoopVectorizationCostModel::computeFeasibleMaxVF(
3436 unsigned MaxTripCount, ElementCount UserVF,
bool FoldTailByMasking) {
3438 unsigned SmallestType, WidestType;
3439 std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes();
3445 unsigned MaxSafeElementsPowerOf2 =
3447 if (!
Legal->isSafeForAnyStoreLoadForwardDistances()) {
3448 unsigned SLDist =
Legal->getMaxStoreLoadForwardSafeDistanceInBits();
3449 MaxSafeElementsPowerOf2 =
3450 std::min(MaxSafeElementsPowerOf2, SLDist / WidestType);
3453 auto MaxSafeScalableVF = getMaxLegalScalableVF(MaxSafeElementsPowerOf2);
3455 if (!
Legal->isSafeForAnyVectorWidth())
3456 this->MaxSafeElements = MaxSafeElementsPowerOf2;
3458 LLVM_DEBUG(
dbgs() <<
"LV: The max safe fixed VF is: " << MaxSafeFixedVF
3460 LLVM_DEBUG(
dbgs() <<
"LV: The max safe scalable VF is: " << MaxSafeScalableVF
3465 auto MaxSafeUserVF =
3466 UserVF.
isScalable() ? MaxSafeScalableVF : MaxSafeFixedVF;
3468 if (ElementCount::isKnownLE(UserVF, MaxSafeUserVF)) {
3471 return FixedScalableVFPair(
3477 assert(ElementCount::isKnownGT(UserVF, MaxSafeUserVF));
3483 <<
" is unsafe, clamping to max safe VF="
3484 << MaxSafeFixedVF <<
".\n");
3486 return OptimizationRemarkAnalysis(
DEBUG_TYPE,
"VectorizationFactor",
3489 <<
"User-specified vectorization factor "
3490 <<
ore::NV(
"UserVectorizationFactor", UserVF)
3491 <<
" is unsafe, clamping to maximum safe vectorization factor "
3492 <<
ore::NV(
"VectorizationFactor", MaxSafeFixedVF);
3494 return MaxSafeFixedVF;
3499 <<
" is ignored because scalable vectors are not "
3502 return OptimizationRemarkAnalysis(
DEBUG_TYPE,
"VectorizationFactor",
3505 <<
"User-specified vectorization factor "
3506 <<
ore::NV(
"UserVectorizationFactor", UserVF)
3507 <<
" is ignored because the target does not support scalable "
3508 "vectors. The compiler will pick a more suitable value.";
3512 <<
" is unsafe. Ignoring scalable UserVF.\n");
3514 return OptimizationRemarkAnalysis(
DEBUG_TYPE,
"VectorizationFactor",
3517 <<
"User-specified vectorization factor "
3518 <<
ore::NV(
"UserVectorizationFactor", UserVF)
3519 <<
" is unsafe. Ignoring the hint to let the compiler pick a "
3520 "more suitable value.";
3525 LLVM_DEBUG(
dbgs() <<
"LV: The Smallest and Widest types: " << SmallestType
3526 <<
" / " << WidestType <<
" bits.\n");
3531 getMaximizedVFForTarget(MaxTripCount, SmallestType, WidestType,
3532 MaxSafeFixedVF, FoldTailByMasking))
3536 getMaximizedVFForTarget(MaxTripCount, SmallestType, WidestType,
3537 MaxSafeScalableVF, FoldTailByMasking))
3538 if (MaxVF.isScalable()) {
3539 Result.ScalableVF = MaxVF;
3540 LLVM_DEBUG(
dbgs() <<
"LV: Found feasible scalable VF = " << MaxVF
3549 if (
Legal->getRuntimePointerChecking()->Need &&
TTI.hasBranchDivergence()) {
3553 "Not inserting runtime ptr check for divergent target",
3554 "runtime pointer checks needed. Not enabled for divergent target",
3555 "CantVersionLoopWithDivergentTarget",
ORE,
TheLoop);
3561 unsigned MaxTC =
PSE.getSmallConstantMaxTripCount();
3564 LLVM_DEBUG(
dbgs() <<
"LV: Found maximum trip count: " << MaxTC <<
'\n');
3567 "loop trip count is one, irrelevant for vectorization",
3578 Legal->getWidestInductionType()->getScalarSizeInBits() &&
3582 "Trip count computation wrapped",
3583 "backedge-taken count is -1, loop trip count wrapped to 0",
3588 switch (ScalarEpilogueStatus) {
3590 return computeFeasibleMaxVF(MaxTC, UserVF,
false);
3595 dbgs() <<
"LV: vector predicate hint/switch found.\n"
3596 <<
"LV: Not allowing scalar epilogue, creating predicated "
3597 <<
"vector loop.\n");
3604 dbgs() <<
"LV: Not allowing scalar epilogue due to -Os/-Oz.\n");
3606 LLVM_DEBUG(
dbgs() <<
"LV: Not allowing scalar epilogue due to low trip "
3622 assert(WideningDecisions.empty() && Uniforms.empty() && Scalars.empty() &&
3623 "No decisions should have been taken at this point");
3633 std::optional<unsigned> MaxPowerOf2RuntimeVF =
3637 if (MaxVScale &&
TTI.isVScaleKnownToBeAPowerOfTwo()) {
3638 MaxPowerOf2RuntimeVF = std::max<unsigned>(
3639 *MaxPowerOf2RuntimeVF,
3642 MaxPowerOf2RuntimeVF = std::nullopt;
3645 auto NoScalarEpilogueNeeded = [
this, &UserIC](
unsigned MaxVF) {
3649 !
Legal->hasUncountableEarlyExit())
3651 unsigned MaxVFtimesIC = UserIC ? MaxVF * UserIC : MaxVF;
3656 const SCEV *BackedgeTakenCount =
PSE.getSymbolicMaxBackedgeTakenCount();
3658 BackedgeTakenCount ==
PSE.getBackedgeTakenCount()) &&
3659 "Invalid loop count");
3661 BackedgeTakenCount, SE->
getOne(BackedgeTakenCount->
getType()));
3668 if (MaxPowerOf2RuntimeVF > 0u) {
3670 "MaxFixedVF must be a power of 2");
3671 if (NoScalarEpilogueNeeded(*MaxPowerOf2RuntimeVF)) {
3673 LLVM_DEBUG(
dbgs() <<
"LV: No tail will remain for any chosen VF.\n");
3679 if (ExpectedTC && ExpectedTC->isFixed() &&
3680 ExpectedTC->getFixedValue() <=
3681 TTI.getMinTripCountTailFoldingThreshold()) {
3682 if (MaxPowerOf2RuntimeVF > 0u) {
3688 LLVM_DEBUG(
dbgs() <<
"LV: Picking a fixed-width so that no tail will "
3689 "remain for any chosen VF.\n");
3696 "The trip count is below the minial threshold value.",
3697 "loop trip count is too low, avoiding vectorization",
"LowTripCount",
3712 <<
"LV: tail is folded with EVL, forcing unroll factor to be 1. Will "
3713 "try to generate VP Intrinsics with scalable vector "
3718 assert(ContainsScalableVF &&
"Expected scalable vector factor.");
3728 LLVM_DEBUG(
dbgs() <<
"LV: Cannot fold tail by masking: vectorize with a "
3729 "scalar epilogue instead.\n");
3735 LLVM_DEBUG(
dbgs() <<
"LV: Can't fold tail by masking: don't vectorize\n");
3741 "unable to calculate the loop count due to complex control flow",
3747 "Cannot optimize for size and vectorize at the same time.",
3748 "cannot optimize for size and vectorize at the same time. "
3749 "Enable vectorization of this loop with '#pragma clang loop "
3750 "vectorize(enable)' when compiling with -Os/-Oz",
3762 if (
TTI.shouldConsiderVectorizationRegPressure())
3778 (
TTI.shouldMaximizeVectorBandwidth(RegKind) ||
3780 Legal->hasVectorCallVariants())));
3783ElementCount LoopVectorizationCostModel::clampVFByMaxTripCount(
3784 ElementCount VF,
unsigned MaxTripCount,
bool FoldTailByMasking)
const {
3786 if (VF.
isScalable() && TheFunction->hasFnAttribute(Attribute::VScaleRange)) {
3787 auto Attr = TheFunction->getFnAttribute(Attribute::VScaleRange);
3788 auto Min = Attr.getVScaleRangeMin();
3795 if (MaxTripCount > 0 && requiresScalarEpilogue(
true))
3798 if (MaxTripCount && MaxTripCount <= EstimatedVF &&
3806 LLVM_DEBUG(
dbgs() <<
"LV: Clamping the MaxVF to maximum power of two not "
3807 "exceeding the constant trip count: "
3808 << ClampedUpperTripCount <<
"\n");
3810 FoldTailByMasking ? VF.
isScalable() :
false);
3815ElementCount LoopVectorizationCostModel::getMaximizedVFForTarget(
3816 unsigned MaxTripCount,
unsigned SmallestType,
unsigned WidestType,
3817 ElementCount MaxSafeVF,
bool FoldTailByMasking) {
3818 bool ComputeScalableMaxVF = MaxSafeVF.
isScalable();
3824 auto MinVF = [](
const ElementCount &
LHS,
const ElementCount &
RHS) {
3826 "Scalable flags must match");
3834 ComputeScalableMaxVF);
3835 MaxVectorElementCount = MinVF(MaxVectorElementCount, MaxSafeVF);
3837 << (MaxVectorElementCount * WidestType) <<
" bits.\n");
3839 if (!MaxVectorElementCount) {
3841 << (ComputeScalableMaxVF ?
"scalable" :
"fixed")
3842 <<
" vector registers.\n");
3846 ElementCount MaxVF = clampVFByMaxTripCount(MaxVectorElementCount,
3847 MaxTripCount, FoldTailByMasking);
3850 if (MaxVF != MaxVectorElementCount)
3858 MaxPermissibleVFWithoutMaxBW.ScalableVF = MaxVF;
3860 MaxPermissibleVFWithoutMaxBW.FixedVF = MaxVF;
3862 if (useMaxBandwidth(RegKind)) {
3865 ComputeScalableMaxVF);
3866 MaxVF = MinVF(MaxVectorElementCountMaxBW, MaxSafeVF);
3868 if (ElementCount MinVF =
3870 if (ElementCount::isKnownLT(MaxVF, MinVF)) {
3872 <<
") with target's minimum: " << MinVF <<
'\n');
3877 MaxVF = clampVFByMaxTripCount(MaxVF, MaxTripCount, FoldTailByMasking);
3879 if (MaxVectorElementCount != MaxVF) {
3883 invalidateCostModelingDecisions();
3891 const unsigned MaxTripCount,
3893 bool IsEpilogue)
const {
3899 unsigned EstimatedWidthB =
B.Width.getKnownMinValue();
3900 if (std::optional<unsigned> VScale = CM.getVScaleForTuning()) {
3901 if (
A.Width.isScalable())
3902 EstimatedWidthA *= *VScale;
3903 if (
B.Width.isScalable())
3904 EstimatedWidthB *= *VScale;
3911 return CostA < CostB ||
3912 (CostA == CostB && EstimatedWidthA > EstimatedWidthB);
3918 A.Width.isScalable() && !
B.Width.isScalable();
3929 return CmpFn(CostA * EstimatedWidthB, CostB * EstimatedWidthA);
3931 auto GetCostForTC = [MaxTripCount, HasTail](
unsigned VF,
3943 return VectorCost * (MaxTripCount / VF) +
3944 ScalarCost * (MaxTripCount % VF);
3945 return VectorCost *
divideCeil(MaxTripCount, VF);
3948 auto RTCostA = GetCostForTC(EstimatedWidthA, CostA,
A.ScalarCost);
3949 auto RTCostB = GetCostForTC(EstimatedWidthB, CostB,
B.ScalarCost);
3950 return CmpFn(RTCostA, RTCostB);
3956 bool IsEpilogue)
const {
3958 return LoopVectorizationPlanner::isMoreProfitable(
A,
B, MaxTripCount, HasTail,
3964 using RecipeVFPair = std::pair<VPRecipeBase *, ElementCount>;
3966 for (
const auto &Plan : VPlans) {
3975 VPCostContext CostCtx(CM.TTI, *CM.TLI, *Plan, CM, CM.CostKind,
3976 *CM.PSE.getSE(), OrigLoop);
3977 precomputeCosts(*Plan, VF, CostCtx);
3980 for (
auto &R : *VPBB) {
3981 if (!R.cost(VF, CostCtx).isValid())
3987 if (InvalidCosts.
empty())
3995 for (
auto &Pair : InvalidCosts)
4000 sort(InvalidCosts, [&Numbering](RecipeVFPair &
A, RecipeVFPair &
B) {
4001 unsigned NA = Numbering[
A.first];
4002 unsigned NB = Numbering[
B.first];
4017 Subset =
Tail.take_front(1);
4024 [](
const auto *R) {
return Instruction::PHI; })
4025 .Case<VPWidenSelectRecipe>(
4026 [](
const auto *R) {
return Instruction::Select; })
4027 .Case<VPWidenStoreRecipe>(
4028 [](
const auto *R) {
return Instruction::Store; })
4029 .Case<VPWidenLoadRecipe>(
4030 [](
const auto *R) {
return Instruction::Load; })
4031 .Case<VPWidenCallRecipe, VPWidenIntrinsicRecipe>(
4032 [](
const auto *R) {
return Instruction::Call; })
4035 [](
const auto *R) {
return R->getOpcode(); })
4037 return R->getStoredValues().empty() ? Instruction::Load
4038 : Instruction::Store;
4040 .Case<VPReductionRecipe>([](
const auto *R) {
4049 if (Subset ==
Tail ||
Tail[Subset.size()].first != R) {
4050 std::string OutString;
4052 assert(!Subset.empty() &&
"Unexpected empty range");
4053 OS <<
"Recipe with invalid costs prevented vectorization at VF=(";
4054 for (
const auto &Pair : Subset)
4055 OS << (Pair.second == Subset.front().second ?
"" :
", ") << Pair.second;
4057 if (Opcode == Instruction::Call) {
4060 Name =
Int->getIntrinsicName();
4064 WidenCall ? WidenCall->getCalledScalarFunction()
4066 ->getLiveInIRValue());
4069 OS <<
" call to " << Name;
4074 Tail =
Tail.drop_front(Subset.size());
4078 Subset =
Tail.take_front(Subset.size() + 1);
4079 }
while (!
Tail.empty());
4101 switch (R.getVPDefID()) {
4102 case VPDef::VPDerivedIVSC:
4103 case VPDef::VPScalarIVStepsSC:
4104 case VPDef::VPReplicateSC:
4105 case VPDef::VPInstructionSC:
4106 case VPDef::VPCanonicalIVPHISC:
4107 case VPDef::VPVectorPointerSC:
4108 case VPDef::VPVectorEndPointerSC:
4109 case VPDef::VPExpandSCEVSC:
4110 case VPDef::VPEVLBasedIVPHISC:
4111 case VPDef::VPPredInstPHISC:
4112 case VPDef::VPBranchOnMaskSC:
4114 case VPDef::VPReductionSC:
4115 case VPDef::VPActiveLaneMaskPHISC:
4116 case VPDef::VPWidenCallSC:
4117 case VPDef::VPWidenCanonicalIVSC:
4118 case VPDef::VPWidenCastSC:
4119 case VPDef::VPWidenGEPSC:
4120 case VPDef::VPWidenIntrinsicSC:
4121 case VPDef::VPWidenSC:
4122 case VPDef::VPWidenSelectSC:
4123 case VPDef::VPBlendSC:
4124 case VPDef::VPFirstOrderRecurrencePHISC:
4125 case VPDef::VPHistogramSC:
4126 case VPDef::VPWidenPHISC:
4127 case VPDef::VPWidenIntOrFpInductionSC:
4128 case VPDef::VPWidenPointerInductionSC:
4129 case VPDef::VPReductionPHISC:
4130 case VPDef::VPInterleaveEVLSC:
4131 case VPDef::VPInterleaveSC:
4132 case VPDef::VPWidenLoadEVLSC:
4133 case VPDef::VPWidenLoadSC:
4134 case VPDef::VPWidenStoreEVLSC:
4135 case VPDef::VPWidenStoreSC:
4141 auto WillGenerateTargetVectors = [&
TTI, VF](
Type *VectorTy) {
4142 unsigned NumLegalParts =
TTI.getNumberOfParts(VectorTy);
4158 if (R.getNumDefinedValues() == 0 &&
4167 R.getNumDefinedValues() >= 1 ? R.getVPValue(0) : R.getOperand(1);
4169 if (!Visited.
insert({ScalarTy}).second)
4183 [](
auto *VPRB) { return VPRB->isReplicator(); });
4189 LLVM_DEBUG(
dbgs() <<
"LV: Scalar loop costs: " << ExpectedCost <<
".\n");
4190 assert(ExpectedCost.
isValid() &&
"Unexpected invalid cost for scalar loop");
4193 [](std::unique_ptr<VPlan> &
P) {
return P->hasScalarVFOnly(); }) &&
4194 "Expected Scalar VF to be a candidate");
4201 if (ForceVectorization &&
4202 (VPlans.size() > 1 || !VPlans[0]->hasScalarVFOnly())) {
4206 ChosenFactor.
Cost = InstructionCost::getMax();
4209 for (
auto &
P : VPlans) {
4211 P->vectorFactors().end());
4214 if (
any_of(VFs, [
this](ElementCount VF) {
4215 return CM.shouldConsiderRegPressureForVF(VF);
4219 for (
unsigned I = 0;
I < VFs.size();
I++) {
4220 ElementCount VF = VFs[
I];
4228 if (CM.shouldConsiderRegPressureForVF(VF) &&
4236 VPCostContext CostCtx(CM.TTI, *CM.TLI, *
P, CM, CM.CostKind,
4237 *CM.PSE.getSE(), OrigLoop);
4238 VPRegionBlock *VectorRegion =
P->getVectorLoopRegion();
4239 assert(VectorRegion &&
"Expected to have a vector region!");
4242 for (VPRecipeBase &R : *VPBB) {
4246 switch (VPI->getOpcode()) {
4249 case Instruction::Select: {
4252 switch (WR->getOpcode()) {
4253 case Instruction::UDiv:
4254 case Instruction::SDiv:
4255 case Instruction::URem:
4256 case Instruction::SRem:
4262 C += VPI->cost(VF, CostCtx);
4266 unsigned Multiplier =
4269 C += VPI->cost(VF * Multiplier, CostCtx);
4273 C += VPI->cost(VF, CostCtx);
4285 <<
" costs: " << (Candidate.Cost / Width));
4288 << CM.getVScaleForTuning().value_or(1) <<
")");
4294 <<
"LV: Not considering vector loop of width " << VF
4295 <<
" because it will not generate any vector instructions.\n");
4302 <<
"LV: Not considering vector loop of width " << VF
4303 <<
" because it would cause replicated blocks to be generated,"
4304 <<
" which isn't allowed when optimizing for size.\n");
4308 if (isMoreProfitable(Candidate, ChosenFactor,
P->hasScalarTail()))
4309 ChosenFactor = Candidate;
4315 "There are conditional stores.",
4316 "store that is conditionally executed prevents vectorization",
4317 "ConditionalStore", ORE, OrigLoop);
4318 ChosenFactor = ScalarCost;
4322 !isMoreProfitable(ChosenFactor, ScalarCost,
4323 !CM.foldTailByMasking()))
dbgs()
4324 <<
"LV: Vectorization seems to be not beneficial, "
4325 <<
"but was forced by a user.\n");
4326 return ChosenFactor;
4330bool LoopVectorizationPlanner::isCandidateForEpilogueVectorization(
4331 ElementCount VF)
const {
4334 if (
any_of(OrigLoop->getHeader()->phis(), [&](PHINode &Phi) {
4335 if (!Legal->isReductionVariable(&Phi))
4336 return Legal->isFixedOrderRecurrence(&Phi);
4337 return RecurrenceDescriptor::isFPMinMaxNumRecurrenceKind(
4338 Legal->getRecurrenceDescriptor(&Phi).getRecurrenceKind());
4344 for (
const auto &Entry :
Legal->getInductionVars()) {
4347 Entry.first->getIncomingValueForBlock(OrigLoop->getLoopLatch());
4348 for (User *U :
PostInc->users())
4352 for (User *U :
Entry.first->users())
4361 if (OrigLoop->getExitingBlock() != OrigLoop->getLoopLatch())
4375 if (!
TTI.preferEpilogueVectorization())
4380 if (
TTI.getMaxInterleaveFactor(VF) <= 1)
4385 :
TTI.getEpilogueVectorizationMinVF();
4393 LLVM_DEBUG(
dbgs() <<
"LEV: Epilogue vectorization is disabled.\n");
4397 if (!CM.isScalarEpilogueAllowed()) {
4398 LLVM_DEBUG(
dbgs() <<
"LEV: Unable to vectorize epilogue because no "
4399 "epilogue is allowed.\n");
4405 if (!isCandidateForEpilogueVectorization(MainLoopVF)) {
4406 LLVM_DEBUG(
dbgs() <<
"LEV: Unable to vectorize epilogue because the loop "
4407 "is not a supported candidate.\n");
4412 LLVM_DEBUG(
dbgs() <<
"LEV: Epilogue vectorization factor is forced.\n");
4415 return {ForcedEC, 0, 0};
4417 LLVM_DEBUG(
dbgs() <<
"LEV: Epilogue vectorization forced factor is not "
4422 if (OrigLoop->getHeader()->getParent()->hasOptSize()) {
4424 dbgs() <<
"LEV: Epilogue vectorization skipped due to opt for size.\n");
4428 if (!CM.isEpilogueVectorizationProfitable(MainLoopVF, IC)) {
4429 LLVM_DEBUG(
dbgs() <<
"LEV: Epilogue vectorization is not profitable for "
4441 Type *TCType = Legal->getWidestInductionType();
4442 const SCEV *RemainingIterations =
nullptr;
4443 unsigned MaxTripCount = 0;
4447 const SCEV *KnownMinTC;
4449 bool ScalableRemIter =
false;
4452 ScalableRemIter = ScalableTC;
4453 RemainingIterations =
4455 }
else if (ScalableTC) {
4458 SE.
getConstant(TCType, CM.getVScaleForTuning().value_or(1)));
4462 RemainingIterations =
4466 if (RemainingIterations->
isZero())
4476 << MaxTripCount <<
"\n");
4479 auto SkipVF = [&](
const SCEV *VF,
const SCEV *RemIter) ->
bool {
4482 for (
auto &NextVF : ProfitableVFs) {
4489 if ((!NextVF.Width.isScalable() && MainLoopVF.
isScalable() &&
4491 (NextVF.Width.isScalable() &&
4493 (!NextVF.Width.isScalable() && !MainLoopVF.
isScalable() &&
4502 if (!ScalableRemIter) {
4506 if (NextVF.Width.isScalable())
4513 if (Result.Width.isScalar() ||
4514 isMoreProfitable(NextVF, Result, MaxTripCount, !CM.foldTailByMasking(),
4521 << Result.Width <<
"\n");
4525std::pair<unsigned, unsigned>
4527 unsigned MinWidth = -1U;
4528 unsigned MaxWidth = 8;
4534 for (
const auto &PhiDescriptorPair :
Legal->getReductionVars()) {
4538 MinWidth = std::min(
4542 MaxWidth = std::max(MaxWidth,
4547 MinWidth = std::min<unsigned>(
4548 MinWidth,
DL.getTypeSizeInBits(
T->getScalarType()).getFixedValue());
4549 MaxWidth = std::max<unsigned>(
4550 MaxWidth,
DL.getTypeSizeInBits(
T->getScalarType()).getFixedValue());
4553 return {MinWidth, MaxWidth};
4561 for (
Instruction &
I : BB->instructionsWithoutDebug()) {
4575 if (!
Legal->isReductionVariable(PN))
4578 Legal->getRecurrenceDescriptor(PN);
4588 T = ST->getValueOperand()->getType();
4591 "Expected the load/store/recurrence type to be sized");
4619 if (!CM.isScalarEpilogueAllowed() &&
4620 !(CM.preferPredicatedLoop() && CM.useWideActiveLaneMask()))
4625 LLVM_DEBUG(
dbgs() <<
"LV: Preference for VP intrinsics indicated. "
4626 "Unroll factor forced to be 1.\n");
4631 if (!Legal->isSafeForAnyVectorWidth())
4640 const bool HasReductions =
4646 if (LoopCost == 0) {
4648 LoopCost = CM.expectedCost(VF);
4650 LoopCost = cost(Plan, VF);
4651 assert(LoopCost.
isValid() &&
"Expected to have chosen a VF with valid cost");
4662 for (
auto &Pair : R.MaxLocalUsers) {
4663 Pair.second = std::max(Pair.second, 1U);
4677 unsigned IC = UINT_MAX;
4679 for (
const auto &Pair : R.MaxLocalUsers) {
4680 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(Pair.first);
4683 << TTI.getRegisterClassName(Pair.first)
4684 <<
" register class\n");
4692 unsigned MaxLocalUsers = Pair.second;
4693 unsigned LoopInvariantRegs = 0;
4694 if (R.LoopInvariantRegs.contains(Pair.first))
4695 LoopInvariantRegs = R.LoopInvariantRegs[Pair.first];
4697 unsigned TmpIC =
llvm::bit_floor((TargetNumRegisters - LoopInvariantRegs) /
4701 TmpIC =
llvm::bit_floor((TargetNumRegisters - LoopInvariantRegs - 1) /
4702 std::max(1U, (MaxLocalUsers - 1)));
4705 IC = std::min(IC, TmpIC);
4709 unsigned MaxInterleaveCount = TTI.getMaxInterleaveFactor(VF);
4725 if (BestKnownTC && (BestKnownTC->isFixed() || VF.
isScalable())) {
4727 unsigned AvailableTC =
4733 if (CM.requiresScalarEpilogue(VF.
isVector()))
4736 unsigned InterleaveCountLB =
bit_floor(std::max(
4737 1u, std::min(AvailableTC / (EstimatedVF * 2), MaxInterleaveCount)));
4751 unsigned InterleaveCountUB =
bit_floor(std::max(
4752 1u, std::min(AvailableTC / EstimatedVF, MaxInterleaveCount)));
4753 MaxInterleaveCount = InterleaveCountLB;
4755 if (InterleaveCountUB != InterleaveCountLB) {
4756 unsigned TailTripCountUB =
4757 (AvailableTC % (EstimatedVF * InterleaveCountUB));
4758 unsigned TailTripCountLB =
4759 (AvailableTC % (EstimatedVF * InterleaveCountLB));
4762 if (TailTripCountUB == TailTripCountLB)
4763 MaxInterleaveCount = InterleaveCountUB;
4771 MaxInterleaveCount = InterleaveCountLB;
4775 assert(MaxInterleaveCount > 0 &&
4776 "Maximum interleave count must be greater than 0");
4780 if (IC > MaxInterleaveCount)
4781 IC = MaxInterleaveCount;
4784 IC = std::max(1u, IC);
4786 assert(IC > 0 &&
"Interleave count must be greater than 0.");
4790 if (VF.
isVector() && HasReductions) {
4791 LLVM_DEBUG(
dbgs() <<
"LV: Interleaving because of reductions.\n");
4799 bool ScalarInterleavingRequiresPredication =
4801 return Legal->blockNeedsPredication(BB);
4803 bool ScalarInterleavingRequiresRuntimePointerCheck =
4804 (VF.
isScalar() && Legal->getRuntimePointerChecking()->Need);
4809 <<
"LV: IC is " << IC <<
'\n'
4810 <<
"LV: VF is " << VF <<
'\n');
4811 const bool AggressivelyInterleaveReductions =
4812 TTI.enableAggressiveInterleaving(HasReductions);
4813 if (!ScalarInterleavingRequiresRuntimePointerCheck &&
4814 !ScalarInterleavingRequiresPredication && LoopCost <
SmallLoopCost) {
4823 unsigned NumStores = 0;
4824 unsigned NumLoads = 0;
4838 if (
unsigned StoreOps = InterleaveR->getNumStoreOperands())
4839 NumStores += StoreOps;
4841 NumLoads += InterleaveR->getNumDefinedValues();
4856 unsigned StoresIC = IC / (NumStores ? NumStores : 1);
4857 unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1);
4863 bool HasSelectCmpReductions =
4867 auto *RedR = dyn_cast<VPReductionPHIRecipe>(&R);
4868 return RedR && (RecurrenceDescriptor::isAnyOfRecurrenceKind(
4869 RedR->getRecurrenceKind()) ||
4870 RecurrenceDescriptor::isFindIVRecurrenceKind(
4871 RedR->getRecurrenceKind()));
4873 if (HasSelectCmpReductions) {
4874 LLVM_DEBUG(
dbgs() <<
"LV: Not interleaving select-cmp reductions.\n");
4883 if (HasReductions && OrigLoop->getLoopDepth() > 1) {
4884 bool HasOrderedReductions =
4887 auto *RedR = dyn_cast<VPReductionPHIRecipe>(&R);
4889 return RedR && RedR->isOrdered();
4891 if (HasOrderedReductions) {
4893 dbgs() <<
"LV: Not interleaving scalar ordered reductions.\n");
4898 SmallIC = std::min(SmallIC,
F);
4899 StoresIC = std::min(StoresIC,
F);
4900 LoadsIC = std::min(LoadsIC,
F);
4904 std::max(StoresIC, LoadsIC) > SmallIC) {
4906 dbgs() <<
"LV: Interleaving to saturate store or load ports.\n");
4907 return std::max(StoresIC, LoadsIC);
4912 if (VF.
isScalar() && AggressivelyInterleaveReductions) {
4916 return std::max(IC / 2, SmallIC);
4919 LLVM_DEBUG(
dbgs() <<
"LV: Interleaving to reduce branch cost.\n");
4925 if (AggressivelyInterleaveReductions) {
4934bool LoopVectorizationCostModel::useEmulatedMaskMemRefHack(
Instruction *
I,
4944 assert((isPredicatedInst(
I)) &&
4945 "Expecting a scalar emulated instruction");
4958 if (InstsToScalarize.contains(VF) ||
4959 PredicatedBBsAfterVectorization.contains(VF))
4965 ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF];
4975 ScalarCostsTy ScalarCosts;
4982 !useEmulatedMaskMemRefHack(&
I, VF) &&
4983 computePredInstDiscount(&
I, ScalarCosts, VF) >= 0) {
4984 for (
const auto &[
I, IC] : ScalarCosts)
4985 ScalarCostsVF.
insert({
I, IC});
4988 for (
const auto &[
I,
Cost] : ScalarCosts) {
4990 if (!CI || !CallWideningDecisions.contains({CI, VF}))
4993 CallWideningDecisions[{CI, VF}].Cost =
Cost;
4997 PredicatedBBsAfterVectorization[VF].insert(BB);
4999 if (Pred->getSingleSuccessor() == BB)
5000 PredicatedBBsAfterVectorization[VF].insert(Pred);
5008 assert(!isUniformAfterVectorization(PredInst, VF) &&
5009 "Instruction marked uniform-after-vectorization will be predicated");
5027 if (!
I->hasOneUse() || PredInst->
getParent() !=
I->getParent() ||
5028 isScalarAfterVectorization(
I, VF))
5033 if (isScalarWithPredication(
I, VF))
5046 for (
Use &U :
I->operands())
5048 if (isUniformAfterVectorization(J, VF))
5059 while (!Worklist.
empty()) {
5063 if (ScalarCosts.contains(
I))
5083 if (isScalarWithPredication(
I, VF) && !
I->getType()->isVoidTy()) {
5086 ScalarCost +=
TTI.getScalarizationOverhead(
5099 for (Use &U :
I->operands())
5102 "Instruction has non-scalar type");
5103 if (CanBeScalarized(J))
5105 else if (needsExtract(J, VF)) {
5117 ScalarCost /= getPredBlockCostDivisor(
CostKind,
I->getParent());
5121 Discount += VectorCost - ScalarCost;
5122 ScalarCosts[
I] = ScalarCost;
5138 ValuesToIgnoreForVF);
5145 for (
Instruction &
I : BB->instructionsWithoutDebug()) {
5168 LLVM_DEBUG(
dbgs() <<
"LV: Found an estimated cost of " <<
C <<
" for VF "
5169 << VF <<
" For instruction: " <<
I <<
'\n');
5198 const Loop *TheLoop) {
5206 auto *SE = PSE.
getSE();
5207 unsigned NumOperands = Gep->getNumOperands();
5208 for (
unsigned Idx = 1; Idx < NumOperands; ++Idx) {
5209 Value *Opd = Gep->getOperand(Idx);
5211 !
Legal->isInductionVariable(Opd))
5220LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *
I,
5223 "Scalarization cost of instruction implies vectorization.");
5225 return InstructionCost::getInvalid();
5228 auto *SE = PSE.
getSE();
5259 if (isPredicatedInst(
I)) {
5264 VectorType::get(IntegerType::getInt1Ty(ValTy->
getContext()), VF);
5270 if (useEmulatedMaskMemRefHack(
I, VF))
5280LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *
I,
5286 int ConsecutiveStride =
Legal->isConsecutivePtr(ValTy, Ptr);
5288 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) &&
5289 "Stride should be 1 or -1 for consecutive memory access");
5292 if (
Legal->isMaskRequired(
I)) {
5293 unsigned IID =
I->getOpcode() == Instruction::Load
5294 ? Intrinsic::masked_load
5295 : Intrinsic::masked_store;
5297 MemIntrinsicCostAttributes(IID, VectorTy, Alignment, AS),
CostKind);
5304 bool Reverse = ConsecutiveStride < 0;
5312LoopVectorizationCostModel::getUniformMemOpCost(Instruction *
I,
5330 bool IsLoopInvariantStoreValue =
Legal->isInvariant(
SI->getValueOperand());
5338 if (!IsLoopInvariantStoreValue)
5345LoopVectorizationCostModel::getGatherScatterCost(Instruction *
I,
5353 if (!
Legal->isUniform(Ptr, VF))
5356 unsigned IID =
I->getOpcode() == Instruction::Load
5357 ? Intrinsic::masked_gather
5358 : Intrinsic::masked_scatter;
5361 MemIntrinsicCostAttributes(IID, VectorTy, Ptr,
5362 Legal->isMaskRequired(
I), Alignment,
I),
5367LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *
I,
5369 const auto *Group = getInterleavedAccessGroup(
I);
5370 assert(Group &&
"Fail to get an interleaved access group.");
5377 unsigned InterleaveFactor = Group->getFactor();
5378 auto *WideVecTy = VectorType::get(ValTy, VF * InterleaveFactor);
5381 SmallVector<unsigned, 4> Indices;
5382 for (
unsigned IF = 0; IF < InterleaveFactor; IF++)
5383 if (Group->getMember(IF))
5387 bool UseMaskForGaps =
5388 (Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed()) ||
5391 InsertPos->
getOpcode(), WideVecTy, Group->getFactor(), Indices,
5395 if (Group->isReverse()) {
5398 "Reverse masked interleaved access not supported.");
5399 Cost += Group->getNumMembers() *
5406std::optional<InstructionCost>
5413 return std::nullopt;
5431 return std::nullopt;
5442 Instruction *LastChain = InLoopReductionImmediateChains.lookup(RetI);
5444 return std::nullopt;
5450 ReductionPhi = InLoopReductionImmediateChains.at(ReductionPhi);
5459 BaseCost =
TTI.getMinMaxReductionCost(MinMaxID, VectorTy,
5462 BaseCost =
TTI.getArithmeticReductionCost(
5470 TTI.getArithmeticInstrCost(Instruction::FMul, VectorTy,
CostKind);
5487 if (RedOp && RdxDesc.
getOpcode() == Instruction::Add &&
5493 !
TheLoop->isLoopInvariant(Op0) && !
TheLoop->isLoopInvariant(Op1) &&
5505 TTI.getCastInstrCost(Op0->
getOpcode(), MulType, ExtType,
5508 TTI.getArithmeticInstrCost(Instruction::Mul, MulType,
CostKind);
5510 TTI.getCastInstrCost(RedOp->
getOpcode(), VectorTy, MulType,
5518 RedCost < ExtCost * 2 + MulCost + Ext2Cost + BaseCost)
5519 return I == RetI ? RedCost : 0;
5521 !
TheLoop->isLoopInvariant(RedOp)) {
5530 TTI.getCastInstrCost(RedOp->
getOpcode(), VectorTy, ExtType,
5532 if (RedCost.
isValid() && RedCost < BaseCost + ExtCost)
5533 return I == RetI ? RedCost : 0;
5534 }
else if (RedOp && RdxDesc.
getOpcode() == Instruction::Add &&
5538 !
TheLoop->isLoopInvariant(Op0) && !
TheLoop->isLoopInvariant(Op1)) {
5557 TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy,
CostKind);
5563 if (Op0Ty != LargestOpTy || Op1Ty != LargestOpTy) {
5564 Instruction *ExtraExtOp = (Op0Ty != LargestOpTy) ? Op0 : Op1;
5565 ExtraExtCost =
TTI.getCastInstrCost(
5572 (RedCost + ExtraExtCost) < (ExtCost0 + ExtCost1 + MulCost + BaseCost))
5573 return I == RetI ? RedCost : 0;
5577 TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy,
CostKind);
5583 if (RedCost.
isValid() && RedCost < MulCost + BaseCost)
5584 return I == RetI ? RedCost : 0;
5588 return I == RetI ? std::optional<InstructionCost>(BaseCost) : std::nullopt;
5592LoopVectorizationCostModel::getMemoryInstructionCost(
Instruction *
I,
5603 return TTI.getAddressComputationCost(PtrTy,
nullptr,
nullptr,
CostKind) +
5604 TTI.getMemoryOpCost(
I->getOpcode(), ValTy, Alignment, AS,
CostKind,
5607 return getWideningCost(
I, VF);
5611LoopVectorizationCostModel::getScalarizationOverhead(Instruction *
I,
5612 ElementCount VF)
const {
5617 return InstructionCost::getInvalid();
5645 Instruction::op_range
Ops = CI ? CI->
args() :
I->operands();
5650 for (
auto *V : filterExtractingOperands(
Ops, VF))
5673 if (
Legal->isUniformMemOp(
I, VF)) {
5674 auto IsLegalToScalarize = [&]() {
5694 return TheLoop->isLoopInvariant(
SI.getValueOperand());
5706 IsLegalToScalarize() ? getUniformMemOpCost(&
I, VF)
5712 if (GatherScatterCost < ScalarizationCost)
5722 int ConsecutiveStride =
Legal->isConsecutivePtr(
5724 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) &&
5725 "Expected consecutive stride.");
5734 unsigned NumAccesses = 1;
5737 assert(Group &&
"Fail to get an interleaved access group.");
5743 NumAccesses = Group->getNumMembers();
5745 InterleaveCost = getInterleaveGroupCost(&
I, VF);
5750 ? getGatherScatterCost(&
I, VF) * NumAccesses
5754 getMemInstScalarizationCost(&
I, VF) * NumAccesses;
5760 if (InterleaveCost <= GatherScatterCost &&
5761 InterleaveCost < ScalarizationCost) {
5763 Cost = InterleaveCost;
5764 }
else if (GatherScatterCost < ScalarizationCost) {
5766 Cost = GatherScatterCost;
5769 Cost = ScalarizationCost;
5776 for (
unsigned Idx = 0; Idx < Group->getFactor(); ++Idx) {
5777 if (
auto *
I = Group->getMember(Idx)) {
5779 getMemInstScalarizationCost(
I, VF));
5795 if (
TTI.prefersVectorizedAddressing())
5804 if (PtrDef &&
TheLoop->contains(PtrDef) &&
5812 while (!Worklist.
empty()) {
5814 for (
auto &
Op :
I->operands())
5817 AddrDefs.
insert(InstOp).second)
5821 auto UpdateMemOpUserCost = [
this, VF](
LoadInst *
LI) {
5825 for (
User *U :
LI->users()) {
5835 for (
auto *
I : AddrDefs) {
5856 for (
unsigned Idx = 0; Idx < Group->getFactor(); ++Idx) {
5857 if (
Instruction *Member = Group->getMember(Idx)) {
5861 getMemoryInstructionCost(Member,
5863 : getMemInstScalarizationCost(Member, VF);
5876 ForcedScalars[VF].insert(
I);
5883 "Trying to set a vectorization decision for a scalar VF");
5885 auto ForcedScalar = ForcedScalars.find(VF);
5900 for (
auto &ArgOp : CI->
args())
5909 TTI.getCallInstrCost(ScalarFunc, ScalarRetTy, ScalarTys,
CostKind);
5919 "Unexpected valid cost for scalarizing scalable vectors");
5926 if (VF.
isVector() && ((ForcedScalar != ForcedScalars.end() &&
5927 ForcedScalar->second.contains(CI)) ||
5935 bool MaskRequired =
Legal->isMaskRequired(CI);
5938 for (
Type *ScalarTy : ScalarTys)
5947 std::nullopt, *RedCost);
5958 if (Info.Shape.VF != VF)
5962 if (MaskRequired && !Info.isMasked())
5966 bool ParamsOk =
true;
5968 switch (Param.ParamKind) {
5974 if (!
PSE.getSE()->isLoopInvariant(
PSE.getSCEV(ScalarParam),
6011 VectorCost =
TTI.getCallInstrCost(
nullptr, RetTy, Tys,
CostKind);
6022 if (VectorCost <=
Cost) {
6044 return !OpI || !
TheLoop->contains(OpI) ||
6048 [
this](
Value *
Op) { return shouldConsiderInvariant(Op); }));
6060 return InstsToScalarize[VF][
I];
6063 auto ForcedScalar = ForcedScalars.find(VF);
6064 if (VF.
isVector() && ForcedScalar != ForcedScalars.end()) {
6065 auto InstSet = ForcedScalar->second;
6066 if (InstSet.count(
I))
6071 Type *RetTy =
I->getType();
6074 auto *SE =
PSE.getSE();
6078 [[maybe_unused]]
auto HasSingleCopyAfterVectorization =
6083 auto Scalarized = InstsToScalarize.find(VF);
6084 assert(Scalarized != InstsToScalarize.end() &&
6085 "VF not yet analyzed for scalarization profitability");
6086 return !Scalarized->second.count(
I) &&
6088 auto *UI = cast<Instruction>(U);
6089 return !Scalarized->second.count(UI);
6098 assert(
I->getOpcode() == Instruction::GetElementPtr ||
6099 I->getOpcode() == Instruction::PHI ||
6100 (
I->getOpcode() == Instruction::BitCast &&
6101 I->getType()->isPointerTy()) ||
6102 HasSingleCopyAfterVectorization(
I, VF));
6108 !
TTI.getNumberOfParts(VectorTy))
6112 switch (
I->getOpcode()) {
6113 case Instruction::GetElementPtr:
6119 case Instruction::Br: {
6126 bool ScalarPredicatedBB =
false;
6129 (PredicatedBBsAfterVectorization[VF].count(BI->
getSuccessor(0)) ||
6130 PredicatedBBsAfterVectorization[VF].count(BI->
getSuccessor(1))) &&
6132 ScalarPredicatedBB =
true;
6134 if (ScalarPredicatedBB) {
6142 TTI.getScalarizationOverhead(
6150 return TTI.getCFInstrCost(Instruction::Br,
CostKind);
6158 case Instruction::Switch: {
6160 return TTI.getCFInstrCost(Instruction::Switch,
CostKind);
6162 return Switch->getNumCases() *
6163 TTI.getCmpSelInstrCost(
6165 toVectorTy(Switch->getCondition()->getType(), VF),
6169 case Instruction::PHI: {
6186 Type *ResultTy = Phi->getType();
6192 auto *Phi = dyn_cast<PHINode>(U);
6193 if (Phi && Phi->getParent() == TheLoop->getHeader())
6198 auto &ReductionVars =
Legal->getReductionVars();
6199 auto Iter = ReductionVars.find(HeaderUser);
6200 if (Iter != ReductionVars.end() &&
6202 Iter->second.getRecurrenceKind()))
6205 return (Phi->getNumIncomingValues() - 1) *
6206 TTI.getCmpSelInstrCost(
6207 Instruction::Select,
toVectorTy(ResultTy, VF),
6217 Intrinsic::vp_merge,
toVectorTy(Phi->getType(), VF),
6218 {toVectorTy(Type::getInt1Ty(Phi->getContext()), VF)});
6222 return TTI.getCFInstrCost(Instruction::PHI,
CostKind);
6224 case Instruction::UDiv:
6225 case Instruction::SDiv:
6226 case Instruction::URem:
6227 case Instruction::SRem:
6231 ScalarCost : SafeDivisorCost;
6235 case Instruction::Add:
6236 case Instruction::Sub: {
6237 auto Info =
Legal->getHistogramInfo(
I);
6244 if (!RHS || RHS->getZExtValue() != 1)
6246 TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy,
CostKind);
6250 Type *ScalarTy =
I->getType();
6254 {PtrTy, ScalarTy, MaskTy});
6257 return TTI.getIntrinsicInstrCost(ICA,
CostKind) + MulCost +
6258 TTI.getArithmeticInstrCost(
I->getOpcode(), VectorTy,
CostKind);
6262 case Instruction::FAdd:
6263 case Instruction::FSub:
6264 case Instruction::Mul:
6265 case Instruction::FMul:
6266 case Instruction::FDiv:
6267 case Instruction::FRem:
6268 case Instruction::Shl:
6269 case Instruction::LShr:
6270 case Instruction::AShr:
6271 case Instruction::And:
6272 case Instruction::Or:
6273 case Instruction::Xor: {
6277 if (
I->getOpcode() == Instruction::Mul &&
6278 ((
TheLoop->isLoopInvariant(
I->getOperand(0)) &&
6279 PSE.getSCEV(
I->getOperand(0))->isOne()) ||
6280 (
TheLoop->isLoopInvariant(
I->getOperand(1)) &&
6281 PSE.getSCEV(
I->getOperand(1))->isOne())))
6290 Value *Op2 =
I->getOperand(1);
6296 auto Op2Info =
TTI.getOperandInfo(Op2);
6302 return TTI.getArithmeticInstrCost(
6304 {TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None},
6305 Op2Info, Operands,
I,
TLI);
6307 case Instruction::FNeg: {
6308 return TTI.getArithmeticInstrCost(
6310 {TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None},
6311 {TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None},
6312 I->getOperand(0),
I);
6314 case Instruction::Select: {
6319 const Value *Op0, *Op1;
6330 return TTI.getArithmeticInstrCost(
6332 VectorTy,
CostKind, {Op1VK, Op1VP}, {Op2VK, Op2VP}, {Op0, Op1},
I);
6335 Type *CondTy =
SI->getCondition()->getType();
6341 Pred = Cmp->getPredicate();
6342 return TTI.getCmpSelInstrCost(
I->getOpcode(), VectorTy, CondTy, Pred,
6343 CostKind, {TTI::OK_AnyValue, TTI::OP_None},
6344 {TTI::OK_AnyValue, TTI::OP_None},
I);
6346 case Instruction::ICmp:
6347 case Instruction::FCmp: {
6348 Type *ValTy =
I->getOperand(0)->getType();
6354 MinBWs[
I] == MinBWs[Op0AsInstruction]) &&
6355 "if both the operand and the compare are marked for "
6356 "truncation, they must have the same bitwidth");
6361 return TTI.getCmpSelInstrCost(
6364 {TTI::OK_AnyValue, TTI::OP_None}, {TTI::OK_AnyValue, TTI::OP_None},
I);
6366 case Instruction::Store:
6367 case Instruction::Load: {
6372 "CM decision should be taken at this point");
6379 return getMemoryInstructionCost(
I, VF);
6381 case Instruction::BitCast:
6382 if (
I->getType()->isPointerTy())
6385 case Instruction::ZExt:
6386 case Instruction::SExt:
6387 case Instruction::FPToUI:
6388 case Instruction::FPToSI:
6389 case Instruction::FPExt:
6390 case Instruction::PtrToInt:
6391 case Instruction::IntToPtr:
6392 case Instruction::SIToFP:
6393 case Instruction::UIToFP:
6394 case Instruction::Trunc:
6395 case Instruction::FPTrunc: {
6399 "Expected a load or a store!");
6425 unsigned Opcode =
I->getOpcode();
6428 if (Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) {
6431 CCH = ComputeCCH(Store);
6434 else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt ||
6435 Opcode == Instruction::FPExt) {
6437 CCH = ComputeCCH(Load);
6445 return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(),
6446 Trunc->getSrcTy(), CCH,
CostKind, Trunc);
6453 Type *SrcScalarTy =
I->getOperand(0)->getType();
6465 (
I->getOpcode() == Instruction::ZExt ||
6466 I->getOpcode() == Instruction::SExt))
6470 return TTI.getCastInstrCost(Opcode, VectorTy, SrcVecTy, CCH,
CostKind,
I);
6472 case Instruction::Call:
6474 case Instruction::ExtractValue:
6476 case Instruction::Alloca:
6484 return TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy,
CostKind);
6499 auto IsLiveOutDead = [
this, RequiresScalarEpilogue](
User *U) {
6500 return RequiresScalarEpilogue &&
6514 all_of(
I.users(), [
this, IsLiveOutDead](
User *U) {
6515 return VecValuesToIgnore.contains(U) ||
6516 ValuesToIgnore.contains(U) || IsLiveOutDead(U);
6525 if (Group->getInsertPos() == &
I)
6528 DeadInterleavePointerOps.
push_back(PointerOp);
6534 if (Br->isConditional())
6541 for (
unsigned I = 0;
I != DeadInterleavePointerOps.
size(); ++
I) {
6544 Instruction *UI = cast<Instruction>(U);
6545 return !VecValuesToIgnore.contains(U) &&
6546 (!isAccessInterleaved(UI) ||
6547 getInterleavedAccessGroup(UI)->getInsertPos() == UI);
6567 for (
unsigned I = 0;
I != DeadOps.
size(); ++
I) {
6579 if ((ThenEmpty && ElseEmpty) ||
6581 ElseBB->
phis().empty()) ||
6583 ThenBB->
phis().empty())) {
6595 return !VecValuesToIgnore.contains(U) &&
6596 !ValuesToIgnore.contains(U) && !IsLiveOutDead(U);
6604 [
this](
User *U) { return ValuesToIgnore.contains(U); }))
6613 for (
const auto &Reduction :
Legal->getReductionVars()) {
6620 for (
const auto &Induction :
Legal->getInductionVars()) {
6628 if (!InLoopReductions.empty())
6631 for (
const auto &Reduction :
Legal->getReductionVars()) {
6632 PHINode *Phi = Reduction.first;
6653 !
TTI.preferInLoopReduction(Kind, Phi->getType()))
6661 bool InLoop = !ReductionOperations.
empty();
6664 InLoopReductions.insert(Phi);
6667 for (
auto *
I : ReductionOperations) {
6668 InLoopReductionImmediateChains[
I] = LastChain;
6672 LLVM_DEBUG(
dbgs() <<
"LV: Using " << (InLoop ?
"inloop" :
"out of loop")
6673 <<
" reduction for phi: " << *Phi <<
"\n");
6686 unsigned WidestType;
6690 TTI.enableScalableVectorization()
6695 unsigned N =
RegSize.getKnownMinValue() / WidestType;
6706 if (!OrigLoop->isInnermost()) {
6716 <<
"overriding computed VF.\n");
6719 }
else if (UserVF.
isScalable() && !TTI.supportsScalableVectors() &&
6721 LLVM_DEBUG(
dbgs() <<
"LV: Not vectorizing. Scalable VF requested, but "
6722 <<
"not supported by the target.\n");
6724 "Scalable vectorization requested but not supported by the target",
6725 "the scalable user-specified vectorization width for outer-loop "
6726 "vectorization cannot be used because the target does not support "
6727 "scalable vectors.",
6728 "ScalableVFUnfeasible", ORE, OrigLoop);
6733 "VF needs to be a power of two");
6735 <<
"VF " << VF <<
" to build VPlans.\n");
6745 return {VF, 0 , 0 };
6749 dbgs() <<
"LV: Not vectorizing. Inner loops aren't supported in the "
6750 "VPlan-native path.\n");
6755 assert(OrigLoop->isInnermost() &&
"Inner loop expected.");
6756 CM.collectValuesToIgnore();
6757 CM.collectElementTypesForWidening();
6764 if (CM.blockNeedsPredicationForAnyReason(OrigLoop->getHeader()) &&
6768 <<
"LV: Invalidate all interleaved groups due to fold-tail by masking "
6769 "which requires masked-interleaved support.\n");
6770 if (CM.InterleaveInfo.invalidateGroups())
6774 CM.invalidateCostModelingDecisions();
6777 if (CM.foldTailByMasking())
6778 Legal->prepareToFoldTailByMasking();
6785 "UserVF ignored because it may be larger than the maximal safe VF",
6786 "InvalidUserVF", ORE, OrigLoop);
6789 "VF needs to be a power of two");
6792 CM.collectInLoopReductions();
6793 if (CM.selectUserVectorizationFactor(UserVF)) {
6795 buildVPlansWithVPRecipes(UserVF, UserVF);
6800 "InvalidCost", ORE, OrigLoop);
6813 CM.collectInLoopReductions();
6814 for (
const auto &VF : VFCandidates) {
6816 CM.collectNonVectorizedAndSetWideningDecisions(VF);
6835 return CM.isUniformAfterVectorization(
I, VF);
6839 return CM.ValuesToIgnore.contains(UI) ||
6840 (IsVector &&
CM.VecValuesToIgnore.contains(UI)) ||
6845 return CM.getPredBlockCostDivisor(
CostKind, BB);
6864 for (
const auto &[
IV, IndDesc] :
Legal->getInductionVars()) {
6866 IV->getIncomingValueForBlock(OrigLoop->getLoopLatch()));
6868 for (
unsigned I = 0;
I != IVInsts.
size();
I++) {
6869 for (
Value *
Op : IVInsts[
I]->operands()) {
6871 if (
Op ==
IV || !OpI || !OrigLoop->contains(OpI) || !
Op->hasOneUse())
6877 for (User *U :
IV->users()) {
6890 if (TC == VF && !CM.foldTailByMasking())
6894 for (Instruction *IVInst : IVInsts) {
6899 dbgs() <<
"Cost of " << InductionCost <<
" for VF " << VF
6900 <<
": induction instruction " << *IVInst <<
"\n";
6902 Cost += InductionCost;
6912 CM.TheLoop->getExitingBlocks(Exiting);
6913 SetVector<Instruction *> ExitInstrs;
6915 for (BasicBlock *EB : Exiting) {
6920 ExitInstrs.
insert(CondI);
6924 for (
unsigned I = 0;
I != ExitInstrs.
size(); ++
I) {
6926 if (!OrigLoop->contains(CondI) ||
6931 dbgs() <<
"Cost of " << CondICost <<
" for VF " << VF
6932 <<
": exit condition instruction " << *CondI <<
"\n";
6938 any_of(OpI->users(), [&ExitInstrs,
this](User *U) {
6939 return OrigLoop->contains(cast<Instruction>(U)->getParent()) &&
6940 !ExitInstrs.contains(cast<Instruction>(U));
6952 for (BasicBlock *BB : OrigLoop->blocks()) {
6956 if (BB == OrigLoop->getLoopLatch())
6958 auto BranchCost = CostCtx.
getLegacyCost(BB->getTerminator(), VF);
6965 for (Instruction *ForcedScalar : CM.ForcedScalars[VF]) {
6971 dbgs() <<
"Cost of " << ForcedCost <<
" for VF " << VF
6972 <<
": forced scalar " << *ForcedScalar <<
"\n";
6976 for (
const auto &[Scalarized, ScalarCost] : CM.InstsToScalarize[VF]) {
6981 dbgs() <<
"Cost of " << ScalarCost <<
" for VF " << VF
6982 <<
": profitable to scalarize " << *Scalarized <<
"\n";
6991 ElementCount VF)
const {
6992 VPCostContext CostCtx(CM.TTI, *CM.TLI, Plan, CM, CM.CostKind, *PSE.
getSE(),
7001 <<
" (Estimated cost per lane: ");
7003 double CostPerLane = double(
Cost.
getValue()) / EstimatedWidth;
7026 return &WidenMem->getIngredient();
7035 if (!VPI || VPI->getOpcode() != Instruction::Select)
7039 switch (WR->getOpcode()) {
7040 case Instruction::UDiv:
7041 case Instruction::SDiv:
7042 case Instruction::URem:
7043 case Instruction::SRem:
7056 auto *IG =
IR->getInterleaveGroup();
7057 unsigned NumMembers = IG->getNumMembers();
7058 for (
unsigned I = 0;
I != NumMembers; ++
I) {
7076 if (VPR->isPartialReduction())
7099 if (RepR->isSingleScalar() &&
7101 RepR->getUnderlyingInstr(), VF))
7104 if (
Instruction *UI = GetInstructionForCost(&R)) {
7109 if (
match(&R,
m_Cmp(Pred, m_VPValue(), m_VPValue())) &&
7121 return any_of(TheLoop->
blocks(), [&SeenInstrs, &CostCtx,
7123 return any_of(*BB, [&SeenInstrs, &CostCtx, TheLoop, BB](Instruction &I) {
7126 if (isa<PHINode>(&I) && BB == TheLoop->getHeader() &&
7127 CostCtx.CM.Legal->isInductionPhi(cast<PHINode>(&I)))
7129 return !SeenInstrs.contains(&I) && !CostCtx.skipCostComputation(&I, true);
7139 VPlan &FirstPlan = *VPlans[0];
7145 ?
"Reciprocal Throughput\n"
7147 ?
"Instruction Latency\n"
7150 ?
"Code Size and Latency\n"
7155 "More than a single plan/VF w/o any plan having scalar VF");
7159 LLVM_DEBUG(
dbgs() <<
"LV: Scalar loop costs: " << ScalarCost <<
".\n");
7164 if (ForceVectorization) {
7171 for (
auto &
P : VPlans) {
7173 P->vectorFactors().end());
7177 return CM.shouldConsiderRegPressureForVF(VF);
7181 for (
unsigned I = 0;
I < VFs.
size();
I++) {
7188 <<
"LV: Not considering vector loop of width " << VF
7189 <<
" because it will not generate any vector instructions.\n");
7195 <<
"LV: Not considering vector loop of width " << VF
7196 <<
" because it would cause replicated blocks to be generated,"
7197 <<
" which isn't allowed when optimizing for size.\n");
7204 if (CM.shouldConsiderRegPressureForVF(VF) &&
7206 LLVM_DEBUG(
dbgs() <<
"LV(REG): Not considering vector loop of width "
7207 << VF <<
" because it uses too many registers\n");
7211 if (isMoreProfitable(CurrentFactor, BestFactor,
P->hasScalarTail()))
7212 BestFactor = CurrentFactor;
7215 if (isMoreProfitable(CurrentFactor, ScalarFactor,
P->hasScalarTail()))
7216 ProfitableVFs.push_back(CurrentFactor);
7232 VPCostContext CostCtx(CM.TTI, *CM.TLI, BestPlan, CM, CM.CostKind,
7233 *CM.PSE.getSE(), OrigLoop);
7234 precomputeCosts(BestPlan, BestFactor.
Width, CostCtx);
7241 bool UsesEVLGatherScatter =
7245 return any_of(*VPBB, [](VPRecipeBase &R) {
7246 return isa<VPWidenLoadEVLRecipe, VPWidenStoreEVLRecipe>(&R) &&
7247 !cast<VPWidenMemoryRecipe>(&R)->isConsecutive();
7251 (BestFactor.Width == LegacyVF.Width || BestPlan.hasEarlyExit() ||
7252 !
Legal->getLAI()->getSymbolicStrides().empty() || UsesEVLGatherScatter ||
7254 getPlanFor(BestFactor.Width), CostCtx, OrigLoop, BestFactor.Width) ||
7256 getPlanFor(LegacyVF.Width), CostCtx, OrigLoop, LegacyVF.Width)) &&
7257 " VPlan cost model and legacy cost model disagreed");
7258 assert((BestFactor.Width.isScalar() || BestFactor.ScalarCost > 0) &&
7259 "when vectorizing, the scalar cost must be computed.");
7262 LLVM_DEBUG(
dbgs() <<
"LV: Selecting VF: " << BestFactor.Width <<
".\n");
7269 "RdxResult must be ComputeFindIVResult");
7287 if (!EpiRedResult ||
7293 auto *EpiRedHeaderPhi =
7295 RecurKind Kind = EpiRedHeaderPhi->getRecurrenceKind();
7296 Value *MainResumeValue;
7300 "unexpected start recipe");
7301 MainResumeValue = VPI->getOperand(0)->getUnderlyingValue();
7303 MainResumeValue = EpiRedHeaderPhi->getStartValue()->getUnderlyingValue();
7305 [[maybe_unused]]
Value *StartV =
7306 EpiRedResult->getOperand(1)->getLiveInIRValue();
7309 "AnyOf expected to start with ICMP_NE");
7310 assert(Cmp->getOperand(1) == StartV &&
7311 "AnyOf expected to start by comparing main resume value to original "
7313 MainResumeValue = Cmp->getOperand(0);
7316 Value *SentinelV = EpiRedResult->getOperand(2)->getLiveInIRValue();
7318 Value *Cmp, *OrigResumeV, *CmpOp;
7319 [[maybe_unused]]
bool IsExpectedPattern =
7320 match(MainResumeValue,
7326 assert(IsExpectedPattern &&
"Unexpected reduction resume pattern");
7327 MainResumeValue = OrigResumeV;
7342 "Trying to execute plan with unsupported VF");
7344 "Trying to execute plan with unsupported UF");
7346 ++LoopsEarlyExitVectorized;
7354 bool HasBranchWeights =
7356 if (HasBranchWeights) {
7357 std::optional<unsigned> VScale = CM.getVScaleForTuning();
7359 BestVPlan, BestVF, VScale);
7364 attachRuntimeChecks(BestVPlan, ILV.
RTChecks, HasBranchWeights);
7377 OrigLoop->getStartLoc(),
7378 OrigLoop->getHeader())
7379 <<
"Created vector loop never executes due to insufficient trip "
7400 BestVPlan, VectorPH, CM.foldTailByMasking(),
7401 CM.requiresScalarEpilogue(BestVF.
isVector()));
7413 assert(VectorizingEpilogue &&
"should only re-use the existing trip "
7414 "count during epilogue vectorization");
7418 OrigLoop->getParentLoop(),
7419 Legal->getWidestInductionType());
7421#ifdef EXPENSIVE_CHECKS
7422 assert(DT->verify(DominatorTree::VerificationLevel::Fast));
7433 "final VPlan is invalid");
7440 if (!Exit->hasPredecessors())
7462 MDNode *LID = OrigLoop->getLoopID();
7463 unsigned OrigLoopInvocationWeight = 0;
7464 std::optional<unsigned> OrigAverageTripCount =
7476 bool DisableRuntimeUnroll = !ILV.
RTChecks.hasChecks() && !BestVF.
isScalar();
7478 HeaderVPBB ? LI->getLoopFor(State.CFG.VPBB2IRBB.lookup(HeaderVPBB))
7480 HeaderVPBB, BestVPlan, VectorizingEpilogue, LID, OrigAverageTripCount,
7481 OrigLoopInvocationWeight,
7483 DisableRuntimeUnroll);
7491 return ExpandedSCEVs;
7506 EPI.EpilogueIterationCountCheck =
7508 EPI.EpilogueIterationCountCheck->setName(
"iter.check");
7518 EPI.MainLoopIterationCountCheck =
7527 dbgs() <<
"Create Skeleton for epilogue vectorized loop (first pass)\n"
7528 <<
"Main Loop VF:" <<
EPI.MainLoopVF
7529 <<
", Main Loop UF:" <<
EPI.MainLoopUF
7530 <<
", Epilogue Loop VF:" <<
EPI.EpilogueVF
7531 <<
", Epilogue Loop UF:" <<
EPI.EpilogueUF <<
"\n";
7537 dbgs() <<
"intermediate fn:\n"
7538 << *
OrigLoop->getHeader()->getParent() <<
"\n";
7544 assert(Bypass &&
"Expected valid bypass basic block.");
7548 VectorPH, ForEpilogue ?
EPI.EpilogueVF :
EPI.MainLoopVF,
7549 ForEpilogue ?
EPI.EpilogueUF :
EPI.MainLoopUF);
7553 TCCheckBlock->
setName(
"vector.main.loop.iter.check");
7579 return TCCheckBlock;
7592 OriginalScalarPH->
setName(
"vec.epilog.iter.check");
7600 R.moveBefore(*NewEntry, NewEntry->
end());
7604 Plan.setEntry(NewEntry);
7607 return OriginalScalarPH;
7612 dbgs() <<
"Create Skeleton for epilogue vectorized loop (second pass)\n"
7613 <<
"Epilogue Loop VF:" <<
EPI.EpilogueVF
7614 <<
", Epilogue Loop UF:" <<
EPI.EpilogueUF <<
"\n";
7620 dbgs() <<
"final fn:\n" << *
OrigLoop->getHeader()->getParent() <<
"\n";
7627 VPI->
getOpcode() == Instruction::Store) &&
7628 "Must be called with either a load or store");
7635 "CM decision should be taken at this point.");
7648 if (
Legal->isMaskRequired(
I))
7673 :
GEP->getNoWrapFlags().withoutNoUnsignedWrap();
7679 GEP ?
GEP->getNoWrapFlags()
7683 Builder.insert(VectorPtr);
7686 if (VPI->
getOpcode() == Instruction::Load) {
7688 return new VPWidenLoadRecipe(*Load, Ptr, Mask, Consecutive,
Reverse, *VPI,
7693 return new VPWidenStoreRecipe(*Store, Ptr, VPI->
getOperand(0), Mask,
7698VPRecipeBuilder::tryToOptimizeInductionTruncate(
VPInstruction *VPI,
7708 auto IsOptimizableIVTruncate =
7709 [&](
Instruction *
K) -> std::function<
bool(ElementCount)> {
7710 return [=](ElementCount VF) ->
bool {
7711 return CM.isOptimizableIVTruncate(K, VF);
7716 IsOptimizableIVTruncate(
I),
Range))
7723 const InductionDescriptor &IndDesc =
WidenIV->getInductionDescriptor();
7731 return new VPWidenIntOrFpInductionRecipe(
7732 Phi, Start, Step, &Plan.getVF(), IndDesc,
I, Flags, VPI->
getDebugLoc());
7739 [
this, CI](ElementCount VF) {
7740 return CM.isScalarWithPredication(CI, VF);
7748 if (
ID && (
ID == Intrinsic::assume ||
ID == Intrinsic::lifetime_end ||
7749 ID == Intrinsic::lifetime_start ||
ID == Intrinsic::sideeffect ||
7750 ID == Intrinsic::pseudoprobe ||
7751 ID == Intrinsic::experimental_noalias_scope_decl))
7758 bool ShouldUseVectorIntrinsic =
7760 [&](ElementCount VF) ->
bool {
7761 return CM.getCallWideningDecision(CI, VF).Kind ==
7765 if (ShouldUseVectorIntrinsic)
7766 return new VPWidenIntrinsicRecipe(*CI,
ID,
Ops, CI->
getType(), *VPI, *VPI,
7770 std::optional<unsigned> MaskPos;
7774 [&](ElementCount VF) ->
bool {
7789 LoopVectorizationCostModel::CallWideningDecision Decision =
7790 CM.getCallWideningDecision(CI, VF);
7800 if (ShouldUseVectorCall) {
7801 if (MaskPos.has_value()) {
7809 VPValue *
Mask = Legal->isMaskRequired(CI)
7813 Ops.insert(
Ops.begin() + *MaskPos, Mask);
7817 return new VPWidenCallRecipe(CI, Variant,
Ops, *VPI, *VPI,
7826 !
isa<StoreInst>(
I) &&
"Instruction should have been handled earlier");
7829 auto WillScalarize = [
this,
I](ElementCount VF) ->
bool {
7830 return CM.isScalarAfterVectorization(
I, VF) ||
7831 CM.isProfitableToScalarize(
I, VF) ||
7832 CM.isScalarWithPredication(
I, VF);
7843 case Instruction::SDiv:
7844 case Instruction::UDiv:
7845 case Instruction::SRem:
7846 case Instruction::URem: {
7849 if (CM.isPredicatedInst(
I)) {
7852 VPValue *One = Plan.getConstantInt(
I->getType(), 1u);
7860 case Instruction::Add:
7861 case Instruction::And:
7862 case Instruction::AShr:
7863 case Instruction::FAdd:
7864 case Instruction::FCmp:
7865 case Instruction::FDiv:
7866 case Instruction::FMul:
7867 case Instruction::FNeg:
7868 case Instruction::FRem:
7869 case Instruction::FSub:
7870 case Instruction::ICmp:
7871 case Instruction::LShr:
7872 case Instruction::Mul:
7873 case Instruction::Or:
7874 case Instruction::Select:
7875 case Instruction::Shl:
7876 case Instruction::Sub:
7877 case Instruction::Xor:
7878 case Instruction::Freeze:
7879 return new VPWidenRecipe(*
I, VPI->
operands(), *VPI, *VPI,
7881 case Instruction::ExtractValue: {
7884 assert(EVI->getNumIndices() == 1 &&
"Expected one extractvalue index");
7885 unsigned Idx = EVI->getIndices()[0];
7886 NewOps.push_back(Plan.getConstantInt(32, Idx));
7887 return new VPWidenRecipe(*
I, NewOps, *VPI, *VPI, VPI->
getDebugLoc());
7895 unsigned Opcode =
HI->Update->getOpcode();
7896 assert((Opcode == Instruction::Add || Opcode == Instruction::Sub) &&
7897 "Histogram update operation must be an Add or Sub");
7907 if (Legal->isMaskRequired(
HI->Store))
7910 return new VPHistogramRecipe(Opcode, HGramOps, VPI->
getDebugLoc());
7917 [&](
ElementCount VF) {
return CM.isUniformAfterVectorization(
I, VF); },
7920 bool IsPredicated = CM.isPredicatedInst(
I);
7928 case Intrinsic::assume:
7929 case Intrinsic::lifetime_start:
7930 case Intrinsic::lifetime_end:
7952 VPValue *BlockInMask =
nullptr;
7953 if (!IsPredicated) {
7957 LLVM_DEBUG(
dbgs() <<
"LV: Scalarizing and predicating:" << *
I <<
"\n");
7968 assert((
Range.Start.isScalar() || !IsUniform || !IsPredicated ||
7970 "Should not predicate a uniform recipe");
7986 for (
const auto &[Phi, RdxDesc] : Legal->getReductionVars()) {
7987 if (
Instruction *RdxExitInstr = RdxDesc.getLoopExitInstr())
7988 getScaledReductions(Phi, RdxExitInstr,
Range, ChainsByPhi[Phi]);
7997 for (
const auto &[
_, Chains] : ChainsByPhi)
7998 for (
const auto &[PartialRdx,
_] : Chains)
7999 PartialReductionOps.
insert(PartialRdx.ExtendUser);
8001 auto ExtendIsOnlyUsedByPartialReductions =
8003 return all_of(Extend->users(), [&](
const User *U) {
8004 return PartialReductionOps.contains(U);
8010 for (
const auto &[
_, Chains] : ChainsByPhi) {
8011 for (
const auto &[Chain, Scale] : Chains) {
8012 if (ExtendIsOnlyUsedByPartialReductions(Chain.ExtendA) &&
8014 ExtendIsOnlyUsedByPartialReductions(Chain.ExtendB)))
8015 ScaledReductionMap.try_emplace(Chain.Reduction, Scale);
8023 for (
const auto &[Phi, Chains] : ChainsByPhi) {
8024 for (
const auto &[Chain, Scale] : Chains) {
8025 auto AllUsersPartialRdx = [ScaleVal = Scale, RdxPhi = Phi,
8026 this](
const User *U) {
8028 if (
isa<PHINode>(UI) && UI->getParent() == OrigLoop->getHeader())
8029 return UI == RdxPhi;
8030 return ScaledReductionMap.lookup_or(UI, 0) == ScaleVal ||
8031 !OrigLoop->contains(UI->getParent());
8036 if (!
all_of(Chain.Reduction->users(), AllUsersPartialRdx)) {
8037 for (
const auto &[Chain,
_] : Chains)
8038 ScaledReductionMap.erase(Chain.Reduction);
8045bool VPRecipeBuilder::getScaledReductions(
8047 SmallVectorImpl<std::pair<PartialReductionChain, unsigned>> &Chains) {
8055 Value *
Op = Update->getOperand(0);
8056 Value *PhiOp = Update->getOperand(1);
8066 std::optional<TTI::PartialReductionExtendKind> OuterExtKind = std::nullopt;
8070 Op = Cast->getOperand(0);
8077 if (getScaledReductions(
PHI, OpInst,
Range, Chains)) {
8078 PHI = Chains.rbegin()->first.Reduction;
8080 Op = Update->getOperand(0);
8081 PhiOp = Update->getOperand(1);
8094 std::optional<unsigned> BinOpc;
8095 Type *ExtOpTypes[2] = {
nullptr};
8098 auto CollectExtInfo = [
this, OuterExtKind, &Exts, &ExtOpTypes,
8099 &ExtKinds](SmallVectorImpl<Value *> &
Ops) ->
bool {
8104 ExtOpTypes[
I] = ExtOpTypes[0];
8105 ExtKinds[
I] = ExtKinds[0];
8114 if (!CM.TheLoop->contains(Exts[
I]))
8121 if (OuterExtKind.has_value() && OuterExtKind.value() != ExtKinds[
I])
8136 if (!CollectExtInfo(
Ops))
8139 BinOpc = std::make_optional(ExtendUser->
getOpcode());
8143 if (!CollectExtInfo(
Ops))
8146 ExtendUser = Update;
8147 BinOpc = std::nullopt;
8151 PartialReductionChain Chain(RdxExitInstr, Exts[0], Exts[1], ExtendUser);
8153 TypeSize PHISize =
PHI->getType()->getPrimitiveSizeInBits();
8160 [&](ElementCount VF) {
8162 Update->getOpcode(), ExtOpTypes[0], ExtOpTypes[1],
8163 PHI->getType(), VF, ExtKinds[0], ExtKinds[1], BinOpc,
8168 Chains.emplace_back(Chain, TargetScaleFactor);
8178 assert(!R->isPhi() &&
"phis must be handled earlier");
8184 if (VPI->
getOpcode() == Instruction::Trunc &&
8185 (Recipe = tryToOptimizeInductionTruncate(VPI,
Range)))
8193 if (VPI->
getOpcode() == Instruction::Call)
8194 return tryToWidenCall(VPI,
Range);
8197 if (VPI->
getOpcode() == Instruction::Store)
8199 return tryToWidenHistogram(*HistInfo, VPI);
8201 if (VPI->
getOpcode() == Instruction::Load ||
8203 return tryToWidenMemory(VPI,
Range);
8208 if (!shouldWiden(Instr,
Range))
8211 if (VPI->
getOpcode() == Instruction::GetElementPtr)
8215 if (VPI->
getOpcode() == Instruction::Select)
8223 CastR->getResultType(), CI, *VPI, *VPI,
8227 return tryToWiden(VPI);
8232 unsigned ScaleFactor) {
8233 assert(Reduction->getNumOperands() == 2 &&
8234 "Unexpected number of operands for partial reduction");
8236 VPValue *BinOp = Reduction->getOperand(0);
8245 RedPhiR->setVFScaleFactor(ScaleFactor);
8249 "all accumulators in chain must have same scale factor");
8251 auto *ReductionI = Reduction->getUnderlyingInstr();
8252 if (Reduction->getOpcode() == Instruction::Sub) {
8254 Ops.push_back(Plan.getConstantInt(ReductionI->getType(), 0));
8255 Ops.push_back(BinOp);
8262 if (CM.blockNeedsPredicationForAnyReason(ReductionI->getParent()))
8270void LoopVectorizationPlanner::buildVPlansWithVPRecipes(
ElementCount MinVF,
8279 OrigLoop, LI, DT, PSE.
getSE());
8284 LVer.prepareNoAliasMetadata();
8290 OrigLoop, *LI,
Legal->getWidestInductionType(),
8295 *VPlan0, *PSE.
getSE(), *OrigLoop,
Legal->getInductionVars(),
8296 Legal->getReductionVars(),
Legal->getFixedOrderRecurrences(),
8299 auto MaxVFTimes2 = MaxVF * 2;
8301 VFRange SubRange = {VF, MaxVFTimes2};
8302 if (
auto Plan = tryToBuildVPlanWithVPRecipes(
8303 std::unique_ptr<VPlan>(VPlan0->duplicate()), SubRange, &LVer)) {
8308 *Plan, CM.getMinimalBitwidths());
8311 if (CM.foldTailWithEVL())
8313 *Plan, CM.getMaxSafeElements());
8315 VPlans.push_back(std::move(Plan));
8321VPlanPtr LoopVectorizationPlanner::tryToBuildVPlanWithVPRecipes(
8324 using namespace llvm::VPlanPatternMatch;
8325 SmallPtrSet<const InterleaveGroup<Instruction> *, 1> InterleaveGroups;
8332 bool RequiresScalarEpilogueCheck =
8334 [
this](ElementCount VF) {
8335 return !CM.requiresScalarEpilogue(VF.
isVector());
8340 CM.foldTailByMasking());
8348 bool IVUpdateMayOverflow =
false;
8349 for (ElementCount VF :
Range)
8357 VPRegionBlock *LoopRegion = Plan->getVectorLoopRegion();
8363 m_VPInstruction<Instruction::Add>(
8365 "Did not find the canonical IV increment");
8378 for (InterleaveGroup<Instruction> *IG : IAI.getInterleaveGroups()) {
8379 auto ApplyIG = [IG,
this](ElementCount VF) ->
bool {
8381 CM.getWideningDecision(IG->getInsertPos(), VF) ==
8386 "Unsupported interleave factor for scalable vectors");
8391 InterleaveGroups.
insert(IG);
8398 *Plan, CM.foldTailByMasking());
8404 VPRecipeBuilder RecipeBuilder(*Plan, OrigLoop, TLI, &TTI, Legal, CM, Builder,
8407 if (!CM.foldTailWithEVL())
8408 RecipeBuilder.collectScaledReductions(
Range);
8413 ReversePostOrderTraversal<VPBlockShallowTraversalWrapper<VPBlockBase *>> RPOT(
8416 auto *MiddleVPBB = Plan->getMiddleBlock();
8420 DenseMap<VPValue *, VPValue *> Old2New;
8436 Builder.setInsertPoint(VPI);
8443 Legal->isInvariantAddressOfReduction(
SI->getPointerOperand())) {
8445 if (Legal->isInvariantStoreOfReduction(SI)) {
8446 auto *Recipe =
new VPReplicateRecipe(
8447 SI,
R.operands(),
true ,
nullptr , *VPI,
8449 Recipe->insertBefore(*MiddleVPBB, MBIP);
8451 R.eraseFromParent();
8455 VPRecipeBase *Recipe =
8456 RecipeBuilder.tryToCreateWidenNonPhiRecipe(VPI,
Range);
8461 RecipeBuilder.setRecipe(Instr, Recipe);
8467 Builder.insert(Recipe);
8474 "Unexpected multidef recipe");
8475 R.eraseFromParent();
8484 RecipeBuilder.updateBlockMaskCache(Old2New);
8485 for (VPValue *Old : Old2New.
keys())
8486 Old->getDefiningRecipe()->eraseFromParent();
8490 "entry block must be set to a VPRegionBlock having a non-empty entry "
8496 DenseMap<VPValue *, VPValue *> IVEndValues;
8505 adjustRecipesForReductions(Plan, RecipeBuilder,
Range.Start);
8522 if (!CM.foldTailWithEVL()) {
8523 VPCostContext CostCtx(CM.TTI, *CM.TLI, *Plan, CM, CM.CostKind,
8524 *CM.PSE.getSE(), OrigLoop);
8529 for (ElementCount VF :
Range)
8531 Plan->setName(
"Initial VPlan");
8537 InterleaveGroups, RecipeBuilder,
8538 CM.isScalarEpilogueAllowed());
8542 Legal->getLAI()->getSymbolicStrides());
8544 auto BlockNeedsPredication = [
this](
BasicBlock *BB) {
8545 return Legal->blockNeedsPredication(BB);
8548 BlockNeedsPredication);
8560 bool WithoutRuntimeCheck =
8563 WithoutRuntimeCheck);
8576 assert(!OrigLoop->isInnermost());
8580 OrigLoop, *LI, Legal->getWidestInductionType(),
8589 for (ElementCount VF :
Range)
8594 [
this](PHINode *
P) {
8595 return Legal->getIntOrFpInductionDescriptor(
P);
8604 DenseMap<VPValue *, VPValue *> IVEndValues;
8624void LoopVectorizationPlanner::adjustRecipesForReductions(
8626 using namespace VPlanPatternMatch;
8627 VPTypeAnalysis TypeInfo(*Plan);
8628 VPRegionBlock *VectorLoopRegion = Plan->getVectorLoopRegion();
8630 VPBasicBlock *MiddleVPBB = Plan->getMiddleBlock();
8633 for (VPRecipeBase &R : Header->phis()) {
8635 if (!PhiR || !PhiR->isInLoop() || (MinVF.
isScalar() && !PhiR->isOrdered()))
8642 "AnyOf and FindIV reductions are not allowed for in-loop reductions");
8644 bool IsFPRecurrence =
8646 FastMathFlags FMFs =
8650 SetVector<VPSingleDefRecipe *> Worklist;
8652 for (
unsigned I = 0;
I != Worklist.
size(); ++
I) {
8653 VPSingleDefRecipe *Cur = Worklist[
I];
8654 for (VPUser *U : Cur->
users()) {
8656 if (!UserRecipe->getParent()->getEnclosingLoopRegion()) {
8657 assert((UserRecipe->getParent() == MiddleVPBB ||
8658 UserRecipe->getParent() == Plan->getScalarPreheader()) &&
8659 "U must be either in the loop region, the middle block or the "
8660 "scalar preheader.");
8663 Worklist.
insert(UserRecipe);
8674 VPSingleDefRecipe *PreviousLink = PhiR;
8675 for (VPSingleDefRecipe *CurrentLink :
drop_begin(Worklist)) {
8677 assert(Blend->getNumIncomingValues() == 2 &&
8678 "Blend must have 2 incoming values");
8679 if (Blend->getIncomingValue(0) == PhiR) {
8680 Blend->replaceAllUsesWith(Blend->getIncomingValue(1));
8682 assert(Blend->getIncomingValue(1) == PhiR &&
8683 "PhiR must be an operand of the blend");
8684 Blend->replaceAllUsesWith(Blend->getIncomingValue(0));
8689 if (IsFPRecurrence) {
8690 FastMathFlags CurFMF =
8694 ->getFastMathFlags();
8698 Instruction *CurrentLinkI = CurrentLink->getUnderlyingInstr();
8701 unsigned IndexOfFirstOperand;
8705 VPBasicBlock *LinkVPBB = CurrentLink->getParent();
8709 "Expected instruction to be a call to the llvm.fmuladd intrinsic");
8712 CurrentLink->getOperand(2) == PreviousLink &&
8713 "expected a call where the previous link is the added operand");
8719 VPInstruction *FMulRecipe =
new VPInstruction(
8721 {CurrentLink->getOperand(0), CurrentLink->getOperand(1)},
8723 LinkVPBB->
insert(FMulRecipe, CurrentLink->getIterator());
8727 Type *PhiTy = TypeInfo.inferScalarType(PhiR);
8728 auto *
Zero = Plan->getConstantInt(PhiTy, 0);
8729 auto *
Sub =
new VPInstruction(Instruction::Sub,
8730 {
Zero, CurrentLink->getOperand(1)}, {},
8732 Sub->setUnderlyingValue(CurrentLinkI);
8733 LinkVPBB->
insert(
Sub, CurrentLink->getIterator());
8740 "must be a select recipe");
8741 IndexOfFirstOperand = 1;
8744 "Expected to replace a VPWidenSC");
8745 IndexOfFirstOperand = 0;
8750 CurrentLink->getOperand(IndexOfFirstOperand) == PreviousLink
8751 ? IndexOfFirstOperand + 1
8752 : IndexOfFirstOperand;
8753 VecOp = CurrentLink->getOperand(VecOpId);
8754 assert(VecOp != PreviousLink &&
8755 CurrentLink->getOperand(CurrentLink->getNumOperands() - 1 -
8756 (VecOpId - IndexOfFirstOperand)) ==
8758 "PreviousLink must be the operand other than VecOp");
8761 VPValue *CondOp =
nullptr;
8762 if (CM.blockNeedsPredicationForAnyReason(CurrentLinkI->
getParent()))
8767 new VPReductionRecipe(Kind, FMFs, CurrentLinkI, PreviousLink, VecOp,
8774 RedRecipe->insertBefore(&*std::prev(std::prev(LinkVPBB->
end())));
8778 CurrentLink->replaceAllUsesWith(RedRecipe);
8780 PreviousLink = RedRecipe;
8784 Builder.setInsertPoint(&*std::prev(std::prev(LatchVPBB->
end())));
8786 for (VPRecipeBase &R :
8787 Plan->getVectorLoopRegion()->getEntryBasicBlock()->phis()) {
8792 const RecurrenceDescriptor &RdxDesc = Legal->getRecurrenceDescriptor(
8794 Type *PhiTy = TypeInfo.inferScalarType(PhiR);
8804 if (!PhiR->
isInLoop() && CM.foldTailByMasking() &&
8805 (!RR || !RR->isPartialReduction())) {
8807 std::optional<FastMathFlags> FMFs =
8812 Builder.createSelect(
Cond, OrigExitingVPV, PhiR, {},
"", FMFs);
8813 OrigExitingVPV->replaceUsesWithIf(NewExitingVPV, [](VPUser &U,
unsigned) {
8822 if (CM.usePredicatedReductionSelect())
8833 DebugLoc ExitDL = OrigLoop->getLoopLatch()->getTerminator()->getDebugLoc();
8839 VPInstruction *FinalReductionResult;
8840 VPBuilder::InsertPointGuard Guard(Builder);
8841 Builder.setInsertPoint(MiddleVPBB, IP);
8846 FinalReductionResult =
8851 FinalReductionResult =
8853 {PhiR,
Start, NewExitingVPV}, ExitDL);
8859 FinalReductionResult =
8861 {PhiR, NewExitingVPV},
Flags, ExitDL);
8868 assert(!PhiR->
isInLoop() &&
"Unexpected truncated inloop reduction!");
8870 "Unexpected truncated min-max recurrence!");
8872 VPWidenCastRecipe *Trunc;
8874 RdxDesc.
isSigned() ? Instruction::SExt : Instruction::ZExt;
8875 VPWidenCastRecipe *Extnd;
8877 VPBuilder::InsertPointGuard Guard(Builder);
8878 Builder.setInsertPoint(
8879 NewExitingVPV->getDefiningRecipe()->getParent(),
8880 std::next(NewExitingVPV->getDefiningRecipe()->getIterator()));
8882 Builder.createWidenCast(Instruction::Trunc, NewExitingVPV, RdxTy);
8883 Extnd = Builder.createWidenCast(ExtendOpc, Trunc, PhiTy);
8891 FinalReductionResult =
8892 Builder.createScalarCast(ExtendOpc, FinalReductionResult, PhiTy, {});
8897 for (
auto *U :
to_vector(OrigExitingVPV->users())) {
8899 if (FinalReductionResult == U || Parent->getParent())
8901 U->replaceUsesOfWith(OrigExitingVPV, FinalReductionResult);
8918 return isa<VPWidenSelectRecipe>(U) ||
8919 (isa<VPReplicateRecipe>(U) &&
8920 cast<VPReplicateRecipe>(U)->getUnderlyingInstr()->getOpcode() ==
8921 Instruction::Select);
8926 if (VPRecipeBase *CmpR =
Cmp->getDefiningRecipe())
8928 Builder.setInsertPoint(
Select);
8932 if (
Select->getOperand(1) == PhiR)
8933 Cmp = Builder.createNot(Cmp);
8934 VPValue *
Or = Builder.createOr(PhiR, Cmp);
8935 Select->getVPSingleValue()->replaceAllUsesWith(
Or);
8955 VPBuilder PHBuilder(Plan->getVectorPreheader());
8956 VPValue *Iden = Plan->getOrAddLiveIn(
8959 unsigned ScaleFactor =
8962 auto *ScaleFactorVPV = Plan->getConstantInt(32, ScaleFactor);
8963 VPValue *StartV = PHBuilder.createNaryOp(
8971 for (VPRecipeBase *R : ToDelete)
8972 R->eraseFromParent();
8977void LoopVectorizationPlanner::attachRuntimeChecks(
8978 VPlan &Plan, GeneratedRTChecks &RTChecks,
bool HasBranchWeights)
const {
8979 const auto &[SCEVCheckCond, SCEVCheckBlock] = RTChecks.getSCEVChecks();
8980 if (SCEVCheckBlock && SCEVCheckBlock->hasNPredecessors(0)) {
8981 assert((!CM.OptForSize ||
8983 "Cannot SCEV check stride or overflow when optimizing for size");
8987 const auto &[MemCheckCond, MemCheckBlock] = RTChecks.getMemRuntimeChecks();
8988 if (MemCheckBlock && MemCheckBlock->hasNPredecessors(0)) {
8992 "Runtime checks are not supported for outer loops yet");
8994 if (CM.OptForSize) {
8997 "Cannot emit memory checks when optimizing for size, unless forced "
9000 return OptimizationRemarkAnalysis(
DEBUG_TYPE,
"VectorizationCodeSize",
9001 OrigLoop->getStartLoc(),
9002 OrigLoop->getHeader())
9003 <<
"Code-size may be reduced by not forcing "
9004 "vectorization, or by source-code modifications "
9005 "eliminating the need for runtime checks "
9006 "(e.g., adding 'restrict').";
9020 bool IsIndvarOverflowCheckNeededForVF =
9021 VF.
isScalable() && !TTI.isVScaleKnownToBeAPowerOfTwo() &&
9023 CM.getTailFoldingStyle() !=
9030 Plan, VF, UF, MinProfitableTripCount,
9031 CM.requiresScalarEpilogue(VF.
isVector()), CM.foldTailByMasking(),
9032 IsIndvarOverflowCheckNeededForVF, OrigLoop, BranchWeigths,
9033 OrigLoop->getLoopPredecessor()->getTerminator()->getDebugLoc(),
9038 assert(!State.Lane &&
"VPDerivedIVRecipe being replicated.");
9043 State.Builder.setFastMathFlags(FPBinOp->getFastMathFlags());
9051 State.set(
this, DerivedIV,
VPLane(0));
9064 if (
F->hasOptSize() ||
9090 if (
TTI->preferPredicateOverEpilogue(&TFI))
9109 LLVM_DEBUG(
dbgs() <<
"LV: cannot compute the outer-loop trip count\n");
9113 Function *
F = L->getHeader()->getParent();
9119 LoopVectorizationCostModel CM(
SEL, L, PSE, LI, LVL, *
TTI, TLI, DB, AC, ORE,
9120 GetBFI,
F, &Hints, IAI, OptForSize);
9124 LoopVectorizationPlanner LVP(L, LI, DT, TLI, *
TTI, LVL, CM, IAI, PSE, Hints,
9144 GeneratedRTChecks Checks(PSE, DT, LI,
TTI, CM.
CostKind);
9148 << L->getHeader()->getParent()->getName() <<
"\"\n");
9170 if (S->getValueOperand()->getType()->isFloatTy())
9180 while (!Worklist.
empty()) {
9182 if (!L->contains(
I))
9184 if (!Visited.
insert(
I).second)
9194 I->getDebugLoc(), L->getHeader())
9195 <<
"floating point conversion changes vector width. "
9196 <<
"Mixed floating point precision requires an up/down "
9197 <<
"cast that will negatively impact performance.";
9200 for (
Use &
Op :
I->operands())
9216 for (
auto *PredVPBB : ExitVPBB->getPredecessors()) {
9222 << PredVPBB->getName() <<
":\n");
9223 Cost += PredVPBB->cost(VF, CostCtx);
9243 std::optional<unsigned> VScale) {
9261 <<
"LV: Interleaving only is not profitable due to runtime checks\n");
9322 uint64_t MinTC = std::max(MinTC1, MinTC2);
9324 MinTC =
alignTo(MinTC, IntVF);
9328 dbgs() <<
"LV: Minimum required TC for runtime checks to be profitable:"
9335 LLVM_DEBUG(
dbgs() <<
"LV: Vectorization is not beneficial: expected "
9336 "trip count < minimum profitable VF ("
9347 : InterleaveOnlyWhenForced(Opts.InterleaveOnlyWhenForced ||
9349 VectorizeOnlyWhenForced(Opts.VectorizeOnlyWhenForced ||
9370 if (EpiWidenedPhis.
contains(&VPIRInst->getIRPhi()))
9389 auto AddFreezeForFindLastIVReductions = [](
VPlan &Plan,
9390 bool UpdateResumePhis) {
9400 Builder.createNaryOp(Instruction::Freeze, {OrigStart}, {},
"fr");
9402 if (UpdateResumePhis)
9408 AddFreezeForFindLastIVReductions(MainPlan,
true);
9409 AddFreezeForFindLastIVReductions(EpiPlan,
false);
9416 auto ResumePhiIter =
9418 return match(&R, m_VPInstruction<Instruction::PHI>(m_Specific(VectorTC),
9421 VPPhi *ResumePhi =
nullptr;
9422 if (ResumePhiIter == MainScalarPH->
phis().
end()) {
9427 {},
"vec.epilog.resume.val");
9430 if (MainScalarPH->
begin() == MainScalarPH->
end())
9432 else if (&*MainScalarPH->
begin() != ResumePhi)
9447 VPlan &Plan,
Loop *L,
const SCEV2ValueTy &ExpandedSCEVs,
9452 Header->
setName(
"vec.epilog.vector.body");
9463 PHINode *EPResumeVal = &*L->getLoopPreheader()->phis().begin();
9468 "Must only have a single non-zero incoming value");
9479 [](
Value *Inc) { return match(Inc, m_SpecificInt(0)); }) &&
9480 "all incoming values must be 0");
9486 return isa<VPScalarIVStepsRecipe>(U) ||
9487 isa<VPDerivedIVRecipe>(U) ||
9488 cast<VPRecipeBase>(U)->isScalarCast() ||
9489 cast<VPInstruction>(U)->getOpcode() ==
9492 "the canonical IV should only be used by its increment or "
9493 "ScalarIVSteps when resetting the start value");
9494 VPBuilder Builder(Header, Header->getFirstNonPhi());
9496 IV->replaceAllUsesWith(
Add);
9497 Add->setOperand(0,
IV);
9505 Value *ResumeV =
nullptr;
9510 auto *VPI = dyn_cast<VPInstruction>(U);
9512 (VPI->getOpcode() == VPInstruction::ComputeAnyOfResult ||
9513 VPI->getOpcode() == VPInstruction::ComputeReductionResult ||
9514 VPI->getOpcode() == VPInstruction::ComputeFindIVResult);
9517 ->getIncomingValueForBlock(L->getLoopPreheader());
9518 RecurKind RK = ReductionPhi->getRecurrenceKind();
9526 ResumeV = Builder.CreateICmpNE(ResumeV, StartV);
9531 ToFrozen[StartV] =
cast<PHINode>(ResumeV)->getIncomingValueForBlock(
9542 Value *Cmp = Builder.CreateICmpEQ(ResumeV, ToFrozen[StartV]);
9545 Value *
Sentinel = RdxResult->getOperand(2)->getLiveInIRValue();
9546 ResumeV = Builder.CreateSelect(Cmp,
Sentinel, ResumeV);
9554 "unexpected start value");
9567 assert(ResumeV &&
"Must have a resume value");
9581 if (VPI && VPI->
getOpcode() == Instruction::Freeze) {
9598 ExpandR->eraseFromParent();
9602 unsigned MainLoopStep =
9604 unsigned EpilogueLoopStep =
9609 EPI.
EpilogueUF, MainLoopStep, EpilogueLoopStep, SE);
9620 const SCEV2ValueTy &ExpandedSCEVs,
Value *MainVectorTripCount,
9625 Value *EndValueFromAdditionalBypass = MainVectorTripCount;
9626 if (OrigPhi != OldInduction) {
9627 auto *BinOp =
II.getInductionBinOp();
9633 EndValueFromAdditionalBypass =
9635 II.getStartValue(), Step,
II.getKind(), BinOp);
9636 EndValueFromAdditionalBypass->
setName(
"ind.end");
9638 return EndValueFromAdditionalBypass;
9644 const SCEV2ValueTy &ExpandedSCEVs,
9645 Value *MainVectorTripCount) {
9650 if (Phi.getBasicBlockIndex(Pred) != -1)
9652 Phi.addIncoming(Phi.getIncomingValueForBlock(BypassBlock), Pred);
9656 if (ScalarPH->hasPredecessors()) {
9659 for (
const auto &[R, IRPhi] :
9660 zip(ScalarPH->phis(), ScalarPH->getIRBasicBlock()->phis())) {
9669 auto *Inc =
cast<PHINode>(IVPhi->getIncomingValueForBlock(PH));
9671 IVPhi,
II, BypassBuilder, ExpandedSCEVs, MainVectorTripCount,
9674 Inc->setIncomingValueForBlock(BypassBlock, V);
9697 "expected this to be saved from the previous pass.");
9700 VecEpilogueIterationCountCheck, VecEpiloguePreHeader);
9703 VecEpilogueIterationCountCheck},
9705 VecEpiloguePreHeader}});
9710 VecEpilogueIterationCountCheck, ScalarPH);
9713 VecEpilogueIterationCountCheck},
9717 BasicBlock *SCEVCheckBlock = Checks.getSCEVChecks().second;
9718 BasicBlock *MemCheckBlock = Checks.getMemRuntimeChecks().second;
9719 if (SCEVCheckBlock) {
9721 VecEpilogueIterationCountCheck, ScalarPH);
9723 VecEpilogueIterationCountCheck},
9726 if (MemCheckBlock) {
9728 VecEpilogueIterationCountCheck, ScalarPH);
9741 for (
PHINode *Phi : PhisInBlock) {
9743 Phi->replaceIncomingBlockWith(
9745 VecEpilogueIterationCountCheck);
9752 return EPI.EpilogueIterationCountCheck == IncB;
9757 Phi->removeIncomingValue(SCEVCheckBlock);
9759 Phi->removeIncomingValue(MemCheckBlock);
9763 for (
auto *
I : InstsToMove)
9775 "VPlan-native path is not enabled. Only process inner loops.");
9778 << L->getHeader()->getParent()->getName() <<
"' from "
9779 << L->getLocStr() <<
"\n");
9784 dbgs() <<
"LV: Loop hints:"
9795 Function *
F = L->getHeader()->getParent();
9815 L->getHeader(),
PSI,
9822 &Requirements, &Hints,
DB,
AC,
9825 LLVM_DEBUG(
dbgs() <<
"LV: Not vectorizing: Cannot prove legality.\n");
9832 "early exit is not enabled",
9833 "UncountableEarlyExitLoopsDisabled",
ORE, L);
9839 "faulting load is not supported",
9840 "PotentiallyFaultingLoadsNotSupported",
ORE, L);
9849 if (!L->isInnermost())
9854 assert(L->isInnermost() &&
"Inner loop expected.");
9857 bool UseInterleaved =
TTI->enableInterleavedAccessVectorization();
9871 [LoopLatch](
BasicBlock *BB) { return BB != LoopLatch; })) {
9873 "requiring a scalar epilogue is unsupported",
9874 "UncountableEarlyExitUnsupported",
ORE, L);
9887 if (ExpectedTC && ExpectedTC->isFixed() &&
9889 LLVM_DEBUG(
dbgs() <<
"LV: Found a loop with a very small trip count. "
9890 <<
"This loop is worth vectorizing only if no scalar "
9891 <<
"iteration overheads are incurred.");
9893 LLVM_DEBUG(
dbgs() <<
" But vectorizing was explicitly forced.\n");
9909 if (
F->hasFnAttribute(Attribute::NoImplicitFloat)) {
9911 "Can't vectorize when the NoImplicitFloat attribute is used",
9912 "loop not vectorized due to NoImplicitFloat attribute",
9913 "NoImplicitFloat",
ORE, L);
9923 TTI->isFPVectorizationPotentiallyUnsafe()) {
9925 "Potentially unsafe FP op prevents vectorization",
9926 "loop not vectorized due to unsafe FP support.",
9927 "UnsafeFP",
ORE, L);
9932 bool AllowOrderedReductions;
9937 AllowOrderedReductions =
TTI->enableOrderedReductions();
9942 ExactFPMathInst->getDebugLoc(),
9943 ExactFPMathInst->getParent())
9944 <<
"loop not vectorized: cannot prove it is safe to reorder "
9945 "floating-point operations";
9947 LLVM_DEBUG(
dbgs() <<
"LV: loop not vectorized: cannot prove it is safe to "
9948 "reorder floating-point operations\n");
9954 LoopVectorizationCostModel CM(
SEL, L, PSE,
LI, &LVL, *
TTI,
TLI,
DB,
AC,
ORE,
9955 GetBFI,
F, &Hints, IAI, OptForSize);
9957 LoopVectorizationPlanner LVP(L,
LI,
DT,
TLI, *
TTI, &LVL, CM, IAI, PSE, Hints,
9967 LVP.
plan(UserVF, UserIC);
9979 unsigned SelectedIC = std::max(IC, UserIC);
9988 if (Checks.getSCEVChecks().first &&
9989 match(Checks.getSCEVChecks().first,
m_One()))
9991 if (Checks.getMemRuntimeChecks().first &&
9992 match(Checks.getMemRuntimeChecks().first,
m_One()))
9997 bool ForceVectorization =
10001 if (!ForceVectorization &&
10007 DEBUG_TYPE,
"CantReorderMemOps", L->getStartLoc(),
10009 <<
"loop not vectorized: cannot prove it is safe to reorder "
10010 "memory operations";
10019 std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg;
10020 bool VectorizeLoop =
true, InterleaveLoop =
true;
10022 LLVM_DEBUG(
dbgs() <<
"LV: Vectorization is possible but not beneficial.\n");
10024 "VectorizationNotBeneficial",
10025 "the cost-model indicates that vectorization is not beneficial"};
10026 VectorizeLoop =
false;
10031 "UserIC should only be ignored due to unsafe dependencies");
10032 LLVM_DEBUG(
dbgs() <<
"LV: Ignoring user-specified interleave count.\n");
10033 IntDiagMsg = {
"InterleavingUnsafe",
10034 "Ignoring user-specified interleave count due to possibly "
10035 "unsafe dependencies in the loop."};
10036 InterleaveLoop =
false;
10040 LLVM_DEBUG(
dbgs() <<
"LV: Ignoring UserIC, because vectorization and "
10041 "interleaving should be avoided up front\n");
10042 IntDiagMsg = {
"InterleavingAvoided",
10043 "Ignoring UserIC, because interleaving was avoided up front"};
10044 InterleaveLoop =
false;
10045 }
else if (IC == 1 && UserIC <= 1) {
10049 "InterleavingNotBeneficial",
10050 "the cost-model indicates that interleaving is not beneficial"};
10051 InterleaveLoop =
false;
10053 IntDiagMsg.first =
"InterleavingNotBeneficialAndDisabled";
10054 IntDiagMsg.second +=
10055 " and is explicitly disabled or interleave count is set to 1";
10057 }
else if (IC > 1 && UserIC == 1) {
10059 LLVM_DEBUG(
dbgs() <<
"LV: Interleaving is beneficial but is explicitly "
10061 IntDiagMsg = {
"InterleavingBeneficialButDisabled",
10062 "the cost-model indicates that interleaving is beneficial "
10063 "but is explicitly disabled or interleave count is set to 1"};
10064 InterleaveLoop =
false;
10070 if (!VectorizeLoop && InterleaveLoop && LVL.
hasHistograms()) {
10071 LLVM_DEBUG(
dbgs() <<
"LV: Not interleaving without vectorization due "
10072 <<
"to histogram operations.\n");
10074 "HistogramPreventsScalarInterleaving",
10075 "Unable to interleave without vectorization due to constraints on "
10076 "the order of histogram operations"};
10077 InterleaveLoop =
false;
10081 IC = UserIC > 0 ? UserIC : IC;
10085 if (!VectorizeLoop && !InterleaveLoop) {
10089 L->getStartLoc(), L->getHeader())
10090 << VecDiagMsg.second;
10094 L->getStartLoc(), L->getHeader())
10095 << IntDiagMsg.second;
10100 if (!VectorizeLoop && InterleaveLoop) {
10104 L->getStartLoc(), L->getHeader())
10105 << VecDiagMsg.second;
10107 }
else if (VectorizeLoop && !InterleaveLoop) {
10109 <<
") in " << L->getLocStr() <<
'\n');
10112 L->getStartLoc(), L->getHeader())
10113 << IntDiagMsg.second;
10115 }
else if (VectorizeLoop && InterleaveLoop) {
10117 <<
") in " << L->getLocStr() <<
'\n');
10123 using namespace ore;
10128 <<
"interleaved loop (interleaved count: "
10129 << NV(
"InterleaveCount", IC) <<
")";
10146 std::unique_ptr<VPlan> BestMainPlan(BestPlan.
duplicate());
10158 Checks, *BestMainPlan);
10160 *BestMainPlan, MainILV,
DT,
false);
10166 Checks, BestEpiPlan);
10168 BestEpiPlan, L, ExpandedSCEVs, EPI, CM, *PSE.
getSE());
10172 Checks, InstsToMove);
10173 ++LoopsEpilogueVectorized;
10175 InnerLoopVectorizer LB(L, PSE,
LI,
DT,
TTI,
AC, VF.
Width, IC, &CM, Checks,
10189 assert(
DT->verify(DominatorTree::VerificationLevel::Fast) &&
10190 "DT not preserved correctly");
10205 if (!
TTI->getNumberOfRegisters(
TTI->getRegisterClassForType(
true)) &&
10209 bool Changed =
false, CFGChanged =
false;
10216 for (
const auto &L : *
LI)
10228 LoopsAnalyzed += Worklist.
size();
10231 while (!Worklist.
empty()) {
10277 if (!Result.MadeAnyChange)
10291 if (Result.MadeCFGChange) {
10307 OS, MapClassName2PassName);
10310 OS << (InterleaveOnlyWhenForced ?
"" :
"no-") <<
"interleave-forced-only;";
10311 OS << (VectorizeOnlyWhenForced ?
"" :
"no-") <<
"vectorize-forced-only;";
for(const MachineOperand &MO :llvm::drop_begin(OldMI.operands(), Desc.getNumOperands()))
static unsigned getIntrinsicID(const SDNode *N)
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
AMDGPU Lower Kernel Arguments
AMDGPU Register Bank Select
This file implements a class to represent arbitrary precision integral constant values and operations...
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
static bool isEqual(const Function &Caller, const Function &Callee)
This file contains the simple types necessary to represent the attributes associated with functions a...
static const Function * getParent(const Value *V)
This is the interface for LLVM's primary stateless and local alias analysis.
static bool IsEmptyBlock(MachineBasicBlock *MBB)
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
#define clEnumValN(ENUMVAL, FLAGNAME, DESC)
This file contains the declarations for the subclasses of Constant, which represent the different fla...
static cl::opt< OutputCostKind > CostKind("cost-kind", cl::desc("Target cost kind"), cl::init(OutputCostKind::RecipThroughput), cl::values(clEnumValN(OutputCostKind::RecipThroughput, "throughput", "Reciprocal throughput"), clEnumValN(OutputCostKind::Latency, "latency", "Instruction latency"), clEnumValN(OutputCostKind::CodeSize, "code-size", "Code size"), clEnumValN(OutputCostKind::SizeAndLatency, "size-latency", "Code size and latency"), clEnumValN(OutputCostKind::All, "all", "Print all cost kinds")))
static cl::opt< IntrinsicCostStrategy > IntrinsicCost("intrinsic-cost-strategy", cl::desc("Costing strategy for intrinsic instructions"), cl::init(IntrinsicCostStrategy::InstructionCost), cl::values(clEnumValN(IntrinsicCostStrategy::InstructionCost, "instruction-cost", "Use TargetTransformInfo::getInstructionCost"), clEnumValN(IntrinsicCostStrategy::IntrinsicCost, "intrinsic-cost", "Use TargetTransformInfo::getIntrinsicInstrCost"), clEnumValN(IntrinsicCostStrategy::TypeBasedIntrinsicCost, "type-based-intrinsic-cost", "Calculate the intrinsic cost based only on argument types")))
static InstructionCost getCost(Instruction &Inst, TTI::TargetCostKind CostKind, TargetTransformInfo &TTI, TargetLibraryInfo &TLI)
This file defines DenseMapInfo traits for DenseMap.
This file defines the DenseMap class.
This is the interface for a simple mod/ref and alias analysis over globals.
This file provides various utilities for inspecting and working with the control flow graph in LLVM I...
Module.h This file contains the declarations for the Module class.
This defines the Use class.
static bool hasNoUnsignedWrap(BinaryOperator &I)
This file defines an InstructionCost class that is used when calculating the cost of an instruction,...
static Constant * getTrue(Type *Ty)
For a boolean type or a vector of boolean type, return true or a vector with every element true.
static std::pair< Value *, APInt > getMask(Value *WideMask, unsigned Factor, ElementCount LeafValueEC)
const AbstractManglingParser< Derived, Alloc >::OperatorInfo AbstractManglingParser< Derived, Alloc >::Ops[]
Legalize the Machine IR a function s Machine IR
static cl::opt< unsigned, true > VectorizationFactor("force-vector-width", cl::Hidden, cl::desc("Sets the SIMD width. Zero is autoselect."), cl::location(VectorizerParams::VectorizationFactor))
This header provides classes for managing per-loop analyses.
static cl::opt< bool > WidenIV("loop-flatten-widen-iv", cl::Hidden, cl::init(true), cl::desc("Widen the loop induction variables, if possible, so " "overflow checks won't reject flattening"))
static const char * VerboseDebug
This file defines the LoopVectorizationLegality class.
This file provides a LoopVectorizationPlanner class.
static void collectSupportedLoops(Loop &L, LoopInfo *LI, OptimizationRemarkEmitter *ORE, SmallVectorImpl< Loop * > &V)
static cl::opt< unsigned > EpilogueVectorizationMinVF("epilogue-vectorization-minimum-VF", cl::Hidden, cl::desc("Only loops with vectorization factor equal to or larger than " "the specified value are considered for epilogue vectorization."))
static cl::opt< unsigned > EpilogueVectorizationForceVF("epilogue-vectorization-force-VF", cl::init(1), cl::Hidden, cl::desc("When epilogue vectorization is enabled, and a value greater than " "1 is specified, forces the given VF for all applicable epilogue " "loops."))
static Type * maybeVectorizeType(Type *Ty, ElementCount VF)
static ElementCount determineVPlanVF(const TargetTransformInfo &TTI, LoopVectorizationCostModel &CM)
static ElementCount getSmallConstantTripCount(ScalarEvolution *SE, const Loop *L)
A version of ScalarEvolution::getSmallConstantTripCount that returns an ElementCount to include loops...
static cl::opt< unsigned > VectorizeMemoryCheckThreshold("vectorize-memory-check-threshold", cl::init(128), cl::Hidden, cl::desc("The maximum allowed number of runtime memory checks"))
static void preparePlanForMainVectorLoop(VPlan &MainPlan, VPlan &EpiPlan)
Prepare MainPlan for vectorizing the main vector loop during epilogue vectorization.
static cl::opt< unsigned > TinyTripCountVectorThreshold("vectorizer-min-trip-count", cl::init(16), cl::Hidden, cl::desc("Loops with a constant trip count that is smaller than this " "value are vectorized only if no scalar iteration overheads " "are incurred."))
Loops with a known constant trip count below this number are vectorized only if no scalar iteration o...
static void debugVectorizationMessage(const StringRef Prefix, const StringRef DebugMsg, Instruction *I)
Write a DebugMsg about vectorization to the debug output stream.
static cl::opt< bool > EnableCondStoresVectorization("enable-cond-stores-vec", cl::init(true), cl::Hidden, cl::desc("Enable if predication of stores during vectorization."))
static void legacyCSE(BasicBlock *BB)
FIXME: This legacy common-subexpression-elimination routine is scheduled for removal,...
static VPIRBasicBlock * replaceVPBBWithIRVPBB(VPBasicBlock *VPBB, BasicBlock *IRBB, VPlan *Plan=nullptr)
Replace VPBB with a VPIRBasicBlock wrapping IRBB.
static Value * emitTransformedIndex(IRBuilderBase &B, Value *Index, Value *StartValue, Value *Step, InductionDescriptor::InductionKind InductionKind, const BinaryOperator *InductionBinOp)
Compute the transformed value of Index at offset StartValue using step StepValue.
static DebugLoc getDebugLocFromInstOrOperands(Instruction *I)
Look for a meaningful debug location on the instruction or its operands.
static Value * createInductionAdditionalBypassValues(PHINode *OrigPhi, const InductionDescriptor &II, IRBuilder<> &BypassBuilder, const SCEV2ValueTy &ExpandedSCEVs, Value *MainVectorTripCount, Instruction *OldInduction)
static void fixReductionScalarResumeWhenVectorizingEpilog(VPPhi *EpiResumePhiR, PHINode &EpiResumePhi, BasicBlock *BypassBlock)
static Value * getStartValueFromReductionResult(VPInstruction *RdxResult)
static cl::opt< bool > ForceTargetSupportsScalableVectors("force-target-supports-scalable-vectors", cl::init(false), cl::Hidden, cl::desc("Pretend that scalable vectors are supported, even if the target does " "not support them. This flag should only be used for testing."))
static bool useActiveLaneMaskForControlFlow(TailFoldingStyle Style)
static cl::opt< bool > EnableEarlyExitVectorization("enable-early-exit-vectorization", cl::init(true), cl::Hidden, cl::desc("Enable vectorization of early exit loops with uncountable exits."))
static bool processLoopInVPlanNativePath(Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, LoopVectorizationLegality *LVL, TargetTransformInfo *TTI, TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC, OptimizationRemarkEmitter *ORE, std::function< BlockFrequencyInfo &()> GetBFI, bool OptForSize, LoopVectorizeHints &Hints, LoopVectorizationRequirements &Requirements)
static cl::opt< bool > ConsiderRegPressure("vectorizer-consider-reg-pressure", cl::init(false), cl::Hidden, cl::desc("Discard VFs if their register pressure is too high."))
static unsigned estimateElementCount(ElementCount VF, std::optional< unsigned > VScale)
This function attempts to return a value that represents the ElementCount at runtime.
static constexpr uint32_t MinItersBypassWeights[]
static cl::opt< unsigned > ForceTargetNumScalarRegs("force-target-num-scalar-regs", cl::init(0), cl::Hidden, cl::desc("A flag that overrides the target's number of scalar registers."))
static cl::opt< bool > UseWiderVFIfCallVariantsPresent("vectorizer-maximize-bandwidth-for-vector-calls", cl::init(true), cl::Hidden, cl::desc("Try wider VFs if they enable the use of vector variants"))
static std::optional< unsigned > getMaxVScale(const Function &F, const TargetTransformInfo &TTI)
static cl::opt< unsigned > SmallLoopCost("small-loop-cost", cl::init(20), cl::Hidden, cl::desc("The cost of a loop that is considered 'small' by the interleaver."))
static void connectEpilogueVectorLoop(VPlan &EpiPlan, Loop *L, EpilogueLoopVectorizationInfo &EPI, DominatorTree *DT, LoopVectorizationLegality &LVL, DenseMap< const SCEV *, Value * > &ExpandedSCEVs, GeneratedRTChecks &Checks, ArrayRef< Instruction * > InstsToMove)
Connect the epilogue vector loop generated for EpiPlan to the main vector.
static bool planContainsAdditionalSimplifications(VPlan &Plan, VPCostContext &CostCtx, Loop *TheLoop, ElementCount VF)
Return true if the original loop \ TheLoop contains any instructions that do not have corresponding r...
static cl::opt< unsigned > ForceTargetNumVectorRegs("force-target-num-vector-regs", cl::init(0), cl::Hidden, cl::desc("A flag that overrides the target's number of vector registers."))
static bool isExplicitVecOuterLoop(Loop *OuterLp, OptimizationRemarkEmitter *ORE)
static cl::opt< bool > EnableIndVarRegisterHeur("enable-ind-var-reg-heur", cl::init(true), cl::Hidden, cl::desc("Count the induction variable only once when interleaving"))
static cl::opt< TailFoldingStyle > ForceTailFoldingStyle("force-tail-folding-style", cl::desc("Force the tail folding style"), cl::init(TailFoldingStyle::None), cl::values(clEnumValN(TailFoldingStyle::None, "none", "Disable tail folding"), clEnumValN(TailFoldingStyle::Data, "data", "Create lane mask for data only, using active.lane.mask intrinsic"), clEnumValN(TailFoldingStyle::DataWithoutLaneMask, "data-without-lane-mask", "Create lane mask with compare/stepvector"), clEnumValN(TailFoldingStyle::DataAndControlFlow, "data-and-control", "Create lane mask using active.lane.mask intrinsic, and use " "it for both data and control flow"), clEnumValN(TailFoldingStyle::DataAndControlFlowWithoutRuntimeCheck, "data-and-control-without-rt-check", "Similar to data-and-control, but remove the runtime check"), clEnumValN(TailFoldingStyle::DataWithEVL, "data-with-evl", "Use predicated EVL instructions for tail folding. If EVL " "is unsupported, fallback to data-without-lane-mask.")))
static ScalarEpilogueLowering getScalarEpilogueLowering(Function *F, Loop *L, LoopVectorizeHints &Hints, bool OptForSize, TargetTransformInfo *TTI, TargetLibraryInfo *TLI, LoopVectorizationLegality &LVL, InterleavedAccessInfo *IAI)
static cl::opt< bool > EnableEpilogueVectorization("enable-epilogue-vectorization", cl::init(true), cl::Hidden, cl::desc("Enable vectorization of epilogue loops."))
static cl::opt< bool > PreferPredicatedReductionSelect("prefer-predicated-reduction-select", cl::init(false), cl::Hidden, cl::desc("Prefer predicating a reduction operation over an after loop select."))
static cl::opt< bool > PreferInLoopReductions("prefer-inloop-reductions", cl::init(false), cl::Hidden, cl::desc("Prefer in-loop vector reductions, " "overriding the targets preference."))
static SmallVector< Instruction * > preparePlanForEpilogueVectorLoop(VPlan &Plan, Loop *L, const SCEV2ValueTy &ExpandedSCEVs, EpilogueLoopVectorizationInfo &EPI, LoopVectorizationCostModel &CM, ScalarEvolution &SE)
Prepare Plan for vectorizing the epilogue loop.
static cl::opt< bool > EnableLoadStoreRuntimeInterleave("enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden, cl::desc("Enable runtime interleaving until load/store ports are saturated"))
static cl::opt< bool > VPlanBuildStressTest("vplan-build-stress-test", cl::init(false), cl::Hidden, cl::desc("Build VPlan for every supported loop nest in the function and bail " "out right after the build (stress test the VPlan H-CFG construction " "in the VPlan-native vectorization path)."))
static bool hasIrregularType(Type *Ty, const DataLayout &DL)
A helper function that returns true if the given type is irregular.
static cl::opt< bool > LoopVectorizeWithBlockFrequency("loop-vectorize-with-block-frequency", cl::init(true), cl::Hidden, cl::desc("Enable the use of the block frequency analysis to access PGO " "heuristics minimizing code growth in cold regions and being more " "aggressive in hot regions."))
static std::optional< ElementCount > getSmallBestKnownTC(PredicatedScalarEvolution &PSE, Loop *L, bool CanUseConstantMax=true)
Returns "best known" trip count, which is either a valid positive trip count or std::nullopt when an ...
static Value * getExpandedStep(const InductionDescriptor &ID, const SCEV2ValueTy &ExpandedSCEVs)
Return the expanded step for ID using ExpandedSCEVs to look up SCEV expansion results.
static bool useActiveLaneMask(TailFoldingStyle Style)
static bool hasReplicatorRegion(VPlan &Plan)
static bool isIndvarOverflowCheckKnownFalse(const LoopVectorizationCostModel *Cost, ElementCount VF, std::optional< unsigned > UF=std::nullopt)
For the given VF and UF and maximum trip count computed for the loop, return whether the induction va...
static void addFullyUnrolledInstructionsToIgnore(Loop *L, const LoopVectorizationLegality::InductionList &IL, SmallPtrSetImpl< Instruction * > &InstsToIgnore)
Knowing that loop L executes a single vector iteration, add instructions that will get simplified and...
static cl::opt< PreferPredicateTy::Option > PreferPredicateOverEpilogue("prefer-predicate-over-epilogue", cl::init(PreferPredicateTy::ScalarEpilogue), cl::Hidden, cl::desc("Tail-folding and predication preferences over creating a scalar " "epilogue loop."), cl::values(clEnumValN(PreferPredicateTy::ScalarEpilogue, "scalar-epilogue", "Don't tail-predicate loops, create scalar epilogue"), clEnumValN(PreferPredicateTy::PredicateElseScalarEpilogue, "predicate-else-scalar-epilogue", "prefer tail-folding, create scalar epilogue if tail " "folding fails."), clEnumValN(PreferPredicateTy::PredicateOrDontVectorize, "predicate-dont-vectorize", "prefers tail-folding, don't attempt vectorization if " "tail-folding fails.")))
static cl::opt< bool > EnableInterleavedMemAccesses("enable-interleaved-mem-accesses", cl::init(false), cl::Hidden, cl::desc("Enable vectorization on interleaved memory accesses in a loop"))
static cl::opt< bool > EnableMaskedInterleavedMemAccesses("enable-masked-interleaved-mem-accesses", cl::init(false), cl::Hidden, cl::desc("Enable vectorization on masked interleaved memory accesses in a loop"))
An interleave-group may need masking if it resides in a block that needs predication,...
static cl::opt< bool > ForceOrderedReductions("force-ordered-reductions", cl::init(false), cl::Hidden, cl::desc("Enable the vectorisation of loops with in-order (strict) " "FP reductions"))
static const SCEV * getAddressAccessSCEV(Value *Ptr, LoopVectorizationLegality *Legal, PredicatedScalarEvolution &PSE, const Loop *TheLoop)
Gets Address Access SCEV after verifying that the access pattern is loop invariant except the inducti...
static cl::opt< cl::boolOrDefault > ForceSafeDivisor("force-widen-divrem-via-safe-divisor", cl::Hidden, cl::desc("Override cost based safe divisor widening for div/rem instructions"))
static InstructionCost calculateEarlyExitCost(VPCostContext &CostCtx, VPlan &Plan, ElementCount VF)
For loops with uncountable early exits, find the cost of doing work when exiting the loop early,...
static cl::opt< unsigned > ForceTargetMaxVectorInterleaveFactor("force-target-max-vector-interleave", cl::init(0), cl::Hidden, cl::desc("A flag that overrides the target's max interleave factor for " "vectorized loops."))
static bool useMaskedInterleavedAccesses(const TargetTransformInfo &TTI)
static cl::opt< unsigned > NumberOfStoresToPredicate("vectorize-num-stores-pred", cl::init(1), cl::Hidden, cl::desc("Max number of stores to be predicated behind an if."))
The number of stores in a loop that are allowed to need predication.
static cl::opt< unsigned > MaxNestedScalarReductionIC("max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden, cl::desc("The maximum interleave count to use when interleaving a scalar " "reduction in a nested loop."))
static cl::opt< unsigned > ForceTargetMaxScalarInterleaveFactor("force-target-max-scalar-interleave", cl::init(0), cl::Hidden, cl::desc("A flag that overrides the target's max interleave factor for " "scalar loops."))
static void checkMixedPrecision(Loop *L, OptimizationRemarkEmitter *ORE)
static bool willGenerateVectors(VPlan &Plan, ElementCount VF, const TargetTransformInfo &TTI)
Check if any recipe of Plan will generate a vector value, which will be assigned a vector register.
static bool isOutsideLoopWorkProfitable(GeneratedRTChecks &Checks, VectorizationFactor &VF, Loop *L, PredicatedScalarEvolution &PSE, VPCostContext &CostCtx, VPlan &Plan, ScalarEpilogueLowering SEL, std::optional< unsigned > VScale)
This function determines whether or not it's still profitable to vectorize the loop given the extra w...
static void fixScalarResumeValuesFromBypass(BasicBlock *BypassBlock, Loop *L, VPlan &BestEpiPlan, LoopVectorizationLegality &LVL, const SCEV2ValueTy &ExpandedSCEVs, Value *MainVectorTripCount)
static cl::opt< bool > MaximizeBandwidth("vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden, cl::desc("Maximize bandwidth when selecting vectorization factor which " "will be determined by the smallest type in loop."))
static OptimizationRemarkAnalysis createLVAnalysis(const char *PassName, StringRef RemarkName, Loop *TheLoop, Instruction *I, DebugLoc DL={})
Create an analysis remark that explains why vectorization failed.
This file implements a map that provides insertion order iteration.
ConstantRange Range(APInt(BitWidth, Low), APInt(BitWidth, High))
uint64_t IntrinsicInst * II
This file contains the declarations for profiling metadata utility functions.
const SmallVectorImpl< MachineOperand > & Cond
static BinaryOperator * CreateMul(Value *S1, Value *S2, const Twine &Name, BasicBlock::iterator InsertBefore, Value *FlagsOp)
static BinaryOperator * CreateAdd(Value *S1, Value *S2, const Twine &Name, BasicBlock::iterator InsertBefore, Value *FlagsOp)
static bool isValid(const char C)
Returns true if C is a valid mangled character: <0-9a-zA-Z_>.
static InstructionCost getScalarizationOverhead(const TargetTransformInfo &TTI, Type *ScalarTy, VectorType *Ty, const APInt &DemandedElts, bool Insert, bool Extract, TTI::TargetCostKind CostKind, bool ForPoisonSrc=true, ArrayRef< Value * > VL={})
This is similar to TargetTransformInfo::getScalarizationOverhead, but if ScalarTy is a FixedVectorTyp...
This file defines the SmallPtrSet class.
This file defines the SmallVector class.
This file defines the 'Statistic' class, which is designed to be an easy way to expose various metric...
#define STATISTIC(VARNAME, DESC)
#define DEBUG_WITH_TYPE(TYPE,...)
DEBUG_WITH_TYPE macro - This macro should be used by passes to emit debug information.
static TableGen::Emitter::Opt Y("gen-skeleton-entry", EmitSkeleton, "Generate example skeleton entry")
static TableGen::Emitter::OptClass< SkeletonEmitter > X("gen-skeleton-class", "Generate example skeleton class")
LocallyHashedType DenseMapInfo< LocallyHashedType >::Empty
This file implements the TypeSwitch template, which mimics a switch() statement whose cases are type ...
This file contains the declarations of different VPlan-related auxiliary helpers.
This file declares the class VPlanVerifier, which contains utility functions to check the consistency...
This file contains the declarations of the Vectorization Plan base classes:
static const char PassName[]
static const uint32_t IV[8]
A manager for alias analyses.
Class for arbitrary precision integers.
static APInt getAllOnes(unsigned numBits)
Return an APInt of a specified width with all bits set.
uint64_t getZExtValue() const
Get zero extended value.
unsigned getActiveBits() const
Compute the number of active bits in the value.
PassT::Result & getResult(IRUnitT &IR, ExtraArgTs... ExtraArgs)
Get the result of an analysis pass for a given IR unit.
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
size_t size() const
size - Get the array size.
A function analysis which provides an AssumptionCache.
A cache of @llvm.assume calls within a function.
LLVM_ABI unsigned getVScaleRangeMin() const
Returns the minimum value for the vscale_range attribute.
LLVM Basic Block Representation.
iterator_range< const_phi_iterator > phis() const
Returns a range that iterates over the phis in the basic block.
LLVM_ABI const_iterator getFirstInsertionPt() const
Returns an iterator to the first instruction in this block that is suitable for inserting a non-PHI i...
const Function * getParent() const
Return the enclosing method, or null if none.
LLVM_ABI InstListType::const_iterator getFirstNonPHIIt() const
Returns an iterator to the first instruction in this block that is not a PHINode instruction.
LLVM_ABI const BasicBlock * getSinglePredecessor() const
Return the predecessor of this block if it has a single predecessor block.
LLVM_ABI const BasicBlock * getSingleSuccessor() const
Return the successor of this block if it has a single successor.
LLVM_ABI const DataLayout & getDataLayout() const
Get the data layout of the module this basic block belongs to.
LLVM_ABI LLVMContext & getContext() const
Get the context in which this basic block lives.
const Instruction * getTerminator() const LLVM_READONLY
Returns the terminator instruction if the block is well formed or null if the block is not well forme...
BinaryOps getOpcode() const
Analysis pass which computes BlockFrequencyInfo.
BlockFrequencyInfo pass uses BlockFrequencyInfoImpl implementation to estimate IR basic block frequen...
Conditional or Unconditional Branch instruction.
bool isConditional() const
static BranchInst * Create(BasicBlock *IfTrue, InsertPosition InsertBefore=nullptr)
BasicBlock * getSuccessor(unsigned i) const
Represents analyses that only rely on functions' control flow.
bool isNoBuiltin() const
Return true if the call should not be treated as a call to a builtin.
Function * getCalledFunction() const
Returns the function called, or null if this is an indirect function invocation or the function signa...
Value * getArgOperand(unsigned i) const
iterator_range< User::op_iterator > args()
Iteration adapter for range-for loops.
unsigned arg_size() const
This class represents a function call, abstracting a target machine's calling convention.
static Type * makeCmpResultType(Type *opnd_type)
Create a result type for fcmp/icmp.
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
@ ICMP_UGT
unsigned greater than
@ ICMP_ULT
unsigned less than
@ ICMP_ULE
unsigned less or equal
Predicate getInversePredicate() const
For example, EQ -> NE, UGT -> ULE, SLT -> SGE, OEQ -> UNE, UGT -> OLE, OLT -> UGE,...
An abstraction over a floating-point predicate, and a pack of an integer predicate with samesign info...
This is the shared class of boolean and integer constants.
A parsed version of the target data layout string in and methods for querying it.
static DebugLoc getTemporary()
static DebugLoc getUnknown()
An analysis that produces DemandedBits for a function.
ValueT lookup(const_arg_type_t< KeyT > Val) const
lookup - Return the entry for the specified key, or a default constructed value if no such entry exis...
iterator find(const_arg_type_t< KeyT > Val)
std::pair< iterator, bool > try_emplace(KeyT &&Key, Ts &&...Args)
bool contains(const_arg_type_t< KeyT > Val) const
Return true if the specified key is in the map, false otherwise.
void insert_range(Range &&R)
Inserts range of 'std::pair<KeyT, ValueT>' values into the map.
Implements a dense probed hash-table based set.
Analysis pass which computes a DominatorTree.
void changeImmediateDominator(DomTreeNodeBase< NodeT > *N, DomTreeNodeBase< NodeT > *NewIDom)
changeImmediateDominator - This method is used to update the dominator tree information when a node's...
static constexpr UpdateKind Delete
static constexpr UpdateKind Insert
void eraseNode(NodeT *BB)
eraseNode - Removes a node from the dominator tree.
Concrete subclass of DominatorTreeBase that is used to compute a normal dominator tree.
constexpr bool isVector() const
One or more elements.
static constexpr ElementCount getScalable(ScalarTy MinVal)
static constexpr ElementCount getFixed(ScalarTy MinVal)
static constexpr ElementCount get(ScalarTy MinVal, bool Scalable)
constexpr bool isScalar() const
Exactly one element.
void printDebugTracesAtEnd() override
EpilogueVectorizerEpilogueLoop(Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, const TargetTransformInfo *TTI, AssumptionCache *AC, EpilogueLoopVectorizationInfo &EPI, LoopVectorizationCostModel *CM, GeneratedRTChecks &Checks, VPlan &Plan)
BasicBlock * createVectorizedLoopSkeleton() final
Implements the interface for creating a vectorized skeleton using the epilogue loop strategy (i....
void printDebugTracesAtStart() override
Allow subclasses to override and print debug traces before/after vplan execution, when trace informat...
A specialized derived class of inner loop vectorizer that performs vectorization of main loops in the...
void introduceCheckBlockInVPlan(BasicBlock *CheckIRBB)
Introduces a new VPIRBasicBlock for CheckIRBB to Plan between the vector preheader and its predecesso...
BasicBlock * emitIterationCountCheck(BasicBlock *VectorPH, BasicBlock *Bypass, bool ForEpilogue)
Emits an iteration count bypass check once for the main loop (when ForEpilogue is false) and once for...
void printDebugTracesAtEnd() override
Value * createIterationCountCheck(BasicBlock *VectorPH, ElementCount VF, unsigned UF) const
void printDebugTracesAtStart() override
Allow subclasses to override and print debug traces before/after vplan execution, when trace informat...
EpilogueVectorizerMainLoop(Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, const TargetTransformInfo *TTI, AssumptionCache *AC, EpilogueLoopVectorizationInfo &EPI, LoopVectorizationCostModel *CM, GeneratedRTChecks &Check, VPlan &Plan)
BasicBlock * createVectorizedLoopSkeleton() final
Implements the interface for creating a vectorized skeleton using the main loop strategy (i....
Convenience struct for specifying and reasoning about fast-math flags.
static FastMathFlags getFast()
Class to represent function types.
param_iterator param_begin() const
param_iterator param_end() const
FunctionType * getFunctionType() const
Returns the FunctionType for me.
Attribute getFnAttribute(Attribute::AttrKind Kind) const
Return the attribute for the given attribute kind.
bool hasFnAttribute(Attribute::AttrKind Kind) const
Return true if the function has the attribute.
Represents flags for the getelementptr instruction/expression.
static GEPNoWrapFlags none()
void applyUpdates(ArrayRef< UpdateT > Updates)
Submit updates to all available trees.
Common base class shared among various IRBuilders.
void setFastMathFlags(FastMathFlags NewFMF)
Set the fast-math flags to be used with generated fp-math operators.
This provides a uniform API for creating instructions and inserting them into a basic block: either a...
A struct for saving information about induction variables.
const SCEV * getStep() const
ArrayRef< Instruction * > getCastInsts() const
Returns an ArrayRef to the type cast instructions in the induction update chain, that are redundant w...
InductionKind
This enum represents the kinds of inductions that we support.
@ IK_NoInduction
Not an induction variable.
@ IK_FpInduction
Floating point induction variable.
@ IK_PtrInduction
Pointer induction var. Step = C.
@ IK_IntInduction
Integer induction variable. Step = C.
ElementCount MinProfitableTripCount
InnerLoopAndEpilogueVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, const TargetTransformInfo *TTI, AssumptionCache *AC, EpilogueLoopVectorizationInfo &EPI, LoopVectorizationCostModel *CM, GeneratedRTChecks &Checks, VPlan &Plan, ElementCount VecWidth, ElementCount MinProfitableTripCount, unsigned UnrollFactor)
EpilogueLoopVectorizationInfo & EPI
Holds and updates state information required to vectorize the main loop and its epilogue in two separ...
InnerLoopVectorizer vectorizes loops which contain only one basic block to a specified vectorization ...
virtual void printDebugTracesAtStart()
Allow subclasses to override and print debug traces before/after vplan execution, when trace informat...
Value * TripCount
Trip count of the original loop.
const TargetTransformInfo * TTI
Target Transform Info.
LoopVectorizationCostModel * Cost
The profitablity analysis.
Value * getTripCount() const
Returns the original loop trip count.
friend class LoopVectorizationPlanner
InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, const TargetTransformInfo *TTI, AssumptionCache *AC, ElementCount VecWidth, unsigned UnrollFactor, LoopVectorizationCostModel *CM, GeneratedRTChecks &RTChecks, VPlan &Plan)
PredicatedScalarEvolution & PSE
A wrapper around ScalarEvolution used to add runtime SCEV checks.
DominatorTree * DT
Dominator Tree.
void setTripCount(Value *TC)
Used to set the trip count after ILV's construction and after the preheader block has been executed.
void fixVectorizedLoop(VPTransformState &State)
Fix the vectorized code, taking care of header phi's, and more.
virtual BasicBlock * createVectorizedLoopSkeleton()
Creates a basic block for the scalar preheader.
virtual void printDebugTracesAtEnd()
AssumptionCache * AC
Assumption Cache.
IRBuilder Builder
The builder that we use.
void fixNonInductionPHIs(VPTransformState &State)
Fix the non-induction PHIs in Plan.
VPBasicBlock * VectorPHVPBB
The vector preheader block of Plan, used as target for check blocks introduced during skeleton creati...
unsigned UF
The vectorization unroll factor to use.
GeneratedRTChecks & RTChecks
Structure to hold information about generated runtime checks, responsible for cleaning the checks,...
virtual ~InnerLoopVectorizer()=default
ElementCount VF
The vectorization SIMD factor to use.
Loop * OrigLoop
The original loop.
BasicBlock * createScalarPreheader(StringRef Prefix)
Create and return a new IR basic block for the scalar preheader whose name is prefixed with Prefix.
InstSimplifyFolder - Use InstructionSimplify to fold operations to existing values.
static InstructionCost getInvalid(CostType Val=0)
static InstructionCost getMax()
CostType getValue() const
This function is intended to be used as sparingly as possible, since the class provides the full rang...
const DebugLoc & getDebugLoc() const
Return the debug location for this node as a DebugLoc.
LLVM_ABI const Module * getModule() const
Return the module owning the function this instruction belongs to or nullptr it the function does not...
LLVM_ABI void moveBefore(InstListType::iterator InsertPos)
Unlink this instruction from its current basic block and insert it into the basic block that MovePos ...
LLVM_ABI InstListType::iterator eraseFromParent()
This method unlinks 'this' from the containing basic block and deletes it.
Instruction * user_back()
Specialize the methods defined in Value, as we know that an instruction can only be used by other ins...
LLVM_ABI FastMathFlags getFastMathFlags() const LLVM_READONLY
Convenience function for getting all the fast-math flags, which must be an operator which supports th...
const char * getOpcodeName() const
unsigned getOpcode() const
Returns a member of one of the enums like Instruction::Add.
Class to represent integer types.
static LLVM_ABI IntegerType * get(LLVMContext &C, unsigned NumBits)
This static method is the primary way of constructing an IntegerType.
LLVM_ABI APInt getMask() const
For example, this is 0xFF for an 8 bit integer, 0xFFFF for i16, etc.
The group of interleaved loads/stores sharing the same stride and close to each other.
uint32_t getFactor() const
InstTy * getMember(uint32_t Index) const
Get the member with the given index Index.
InstTy * getInsertPos() const
uint32_t getNumMembers() const
Drive the analysis of interleaved memory accesses in the loop.
bool requiresScalarEpilogue() const
Returns true if an interleaved group that may access memory out-of-bounds requires a scalar epilogue ...
LLVM_ABI void analyzeInterleaving(bool EnableMaskedInterleavedGroup)
Analyze the interleaved accesses and collect them in interleave groups.
An instruction for reading from memory.
Type * getPointerOperandType() const
This analysis provides dependence information for the memory accesses of a loop.
Drive the analysis of memory accesses in the loop.
const RuntimePointerChecking * getRuntimePointerChecking() const
unsigned getNumRuntimePointerChecks() const
Number of memchecks required to prove independence of otherwise may-alias pointers.
Analysis pass that exposes the LoopInfo for a function.
bool contains(const LoopT *L) const
Return true if the specified loop is contained within in this loop.
BlockT * getLoopLatch() const
If there is a single latch block for this loop, return it.
bool isInnermost() const
Return true if the loop does not contain any (natural) loops.
void getExitingBlocks(SmallVectorImpl< BlockT * > &ExitingBlocks) const
Return all blocks inside the loop that have successors outside of the loop.
BlockT * getHeader() const
iterator_range< block_iterator > blocks() const
ArrayRef< BlockT * > getBlocks() const
Get a list of the basic blocks which make up this loop.
Store the result of a depth first search within basic blocks contained by a single loop.
RPOIterator beginRPO() const
Reverse iterate over the cached postorder blocks.
void perform(const LoopInfo *LI)
Traverse the loop blocks and store the DFS result.
RPOIterator endRPO() const
Wrapper class to LoopBlocksDFS that provides a standard begin()/end() interface for the DFS reverse p...
void perform(const LoopInfo *LI)
Traverse the loop blocks and store the DFS result.
void removeBlock(BlockT *BB)
This method completely removes BB from all data structures, including all of the Loop objects it is n...
LoopVectorizationCostModel - estimates the expected speedups due to vectorization.
SmallPtrSet< Type *, 16 > ElementTypesInLoop
All element types found in the loop.
bool isLegalMaskedLoad(Type *DataType, Value *Ptr, Align Alignment, unsigned AddressSpace) const
Returns true if the target machine supports masked load operation for the given DataType and kind of ...
void collectElementTypesForWidening()
Collect all element types in the loop for which widening is needed.
bool canVectorizeReductions(ElementCount VF) const
Returns true if the target machine supports all of the reduction variables found for the given VF.
bool isLegalMaskedStore(Type *DataType, Value *Ptr, Align Alignment, unsigned AddressSpace) const
Returns true if the target machine supports masked store operation for the given DataType and kind of...
bool isEpilogueVectorizationProfitable(const ElementCount VF, const unsigned IC) const
Returns true if epilogue vectorization is considered profitable, and false otherwise.
bool useWideActiveLaneMask() const
Returns true if the use of wide lane masks is requested and the loop is using tail-folding with a lan...
bool isPredicatedInst(Instruction *I) const
Returns true if I is an instruction that needs to be predicated at runtime.
bool hasPredStores() const
void collectValuesToIgnore()
Collect values we want to ignore in the cost model.
BlockFrequencyInfo * BFI
The BlockFrequencyInfo returned from GetBFI.
void collectInLoopReductions()
Split reductions into those that happen in the loop, and those that happen outside.
BlockFrequencyInfo & getBFI()
Returns the BlockFrequencyInfo for the function if cached, otherwise fetches it via GetBFI.
std::pair< unsigned, unsigned > getSmallestAndWidestTypes()
bool isUniformAfterVectorization(Instruction *I, ElementCount VF) const
Returns true if I is known to be uniform after vectorization.
void collectNonVectorizedAndSetWideningDecisions(ElementCount VF)
Collect values that will not be widened, including Uniforms, Scalars, and Instructions to Scalarize f...
PredicatedScalarEvolution & PSE
Predicated scalar evolution analysis.
const LoopVectorizeHints * Hints
Loop Vectorize Hint.
std::optional< unsigned > getMaxSafeElements() const
Return maximum safe number of elements to be processed per vector iteration, which do not prevent sto...
const TargetTransformInfo & TTI
Vector target information.
friend class LoopVectorizationPlanner
const Function * TheFunction
LoopVectorizationLegality * Legal
Vectorization legality.
uint64_t getPredBlockCostDivisor(TargetTransformInfo::TargetCostKind CostKind, const BasicBlock *BB)
A helper function that returns how much we should divide the cost of a predicated block by.
std::optional< InstructionCost > getReductionPatternCost(Instruction *I, ElementCount VF, Type *VectorTy) const
Return the cost of instructions in an inloop reduction pattern, if I is part of that pattern.
InstructionCost getInstructionCost(Instruction *I, ElementCount VF)
Returns the execution time cost of an instruction for a given vector width.
DemandedBits * DB
Demanded bits analysis.
bool interleavedAccessCanBeWidened(Instruction *I, ElementCount VF) const
Returns true if I is a memory instruction in an interleaved-group of memory accesses that can be vect...
const TargetLibraryInfo * TLI
Target Library Info.
bool memoryInstructionCanBeWidened(Instruction *I, ElementCount VF)
Returns true if I is a memory instruction with consecutive memory access that can be widened.
const InterleaveGroup< Instruction > * getInterleavedAccessGroup(Instruction *Instr) const
Get the interleaved access group that Instr belongs to.
InstructionCost getVectorIntrinsicCost(CallInst *CI, ElementCount VF) const
Estimate cost of an intrinsic call instruction CI if it were vectorized with factor VF.
bool OptForSize
Whether this loop should be optimized for size based on function attribute or profile information.
bool useMaxBandwidth(TargetTransformInfo::RegisterKind RegKind)
bool isScalarAfterVectorization(Instruction *I, ElementCount VF) const
Returns true if I is known to be scalar after vectorization.
bool isOptimizableIVTruncate(Instruction *I, ElementCount VF)
Return True if instruction I is an optimizable truncate whose operand is an induction variable.
FixedScalableVFPair computeMaxVF(ElementCount UserVF, unsigned UserIC)
bool shouldConsiderRegPressureForVF(ElementCount VF)
Loop * TheLoop
The loop that we evaluate.
TTI::TargetCostKind CostKind
The kind of cost that we are calculating.
TailFoldingStyle getTailFoldingStyle(bool IVUpdateMayOverflow=true) const
Returns the TailFoldingStyle that is best for the current loop.
InterleavedAccessInfo & InterleaveInfo
The interleave access information contains groups of interleaved accesses with the same stride and cl...
SmallPtrSet< const Value *, 16 > ValuesToIgnore
Values to ignore in the cost model.
void setVectorizedCallDecision(ElementCount VF)
A call may be vectorized in different ways depending on whether we have vectorized variants available...
void invalidateCostModelingDecisions()
Invalidates decisions already taken by the cost model.
bool isAccessInterleaved(Instruction *Instr) const
Check if Instr belongs to any interleaved access group.
bool selectUserVectorizationFactor(ElementCount UserVF)
Setup cost-based decisions for user vectorization factor.
std::optional< unsigned > getVScaleForTuning() const
Return the value of vscale used for tuning the cost model.
OptimizationRemarkEmitter * ORE
Interface to emit optimization remarks.
bool preferPredicatedLoop() const
Returns true if tail-folding is preferred over a scalar epilogue.
LoopInfo * LI
Loop Info analysis.
bool requiresScalarEpilogue(bool IsVectorizing) const
Returns true if we're required to use a scalar epilogue for at least the final iteration of the origi...
SmallPtrSet< const Value *, 16 > VecValuesToIgnore
Values to ignore in the cost model when VF > 1.
bool isInLoopReduction(PHINode *Phi) const
Returns true if the Phi is part of an inloop reduction.
bool isProfitableToScalarize(Instruction *I, ElementCount VF) const
void setWideningDecision(const InterleaveGroup< Instruction > *Grp, ElementCount VF, InstWidening W, InstructionCost Cost)
Save vectorization decision W and Cost taken by the cost model for interleaving group Grp and vector ...
const MapVector< Instruction *, uint64_t > & getMinimalBitwidths() const
CallWideningDecision getCallWideningDecision(CallInst *CI, ElementCount VF) const
bool isLegalGatherOrScatter(Value *V, ElementCount VF)
Returns true if the target machine can represent V as a masked gather or scatter operation.
bool canTruncateToMinimalBitwidth(Instruction *I, ElementCount VF) const
bool runtimeChecksRequired()
bool shouldConsiderInvariant(Value *Op)
Returns true if Op should be considered invariant and if it is trivially hoistable.
bool foldTailByMasking() const
Returns true if all loop blocks should be masked to fold tail loop.
bool foldTailWithEVL() const
Returns true if VP intrinsics with explicit vector length support should be generated in the tail fol...
bool usePredicatedReductionSelect() const
Returns true if the predicated reduction select should be used to set the incoming value for the redu...
bool blockNeedsPredicationForAnyReason(BasicBlock *BB) const
Returns true if the instructions in this block requires predication for any reason,...
void setCallWideningDecision(CallInst *CI, ElementCount VF, InstWidening Kind, Function *Variant, Intrinsic::ID IID, std::optional< unsigned > MaskPos, InstructionCost Cost)
void setTailFoldingStyles(bool IsScalableVF, unsigned UserIC)
Selects and saves TailFoldingStyle for 2 options - if IV update may overflow or not.
AssumptionCache * AC
Assumption cache.
void setWideningDecision(Instruction *I, ElementCount VF, InstWidening W, InstructionCost Cost)
Save vectorization decision W and Cost taken by the cost model for instruction I and vector width VF.
InstWidening
Decision that was taken during cost calculation for memory instruction.
std::pair< InstructionCost, InstructionCost > getDivRemSpeculationCost(Instruction *I, ElementCount VF)
Return the costs for our two available strategies for lowering a div/rem operation which requires spe...
InstructionCost getVectorCallCost(CallInst *CI, ElementCount VF) const
Estimate cost of a call instruction CI if it were vectorized with factor VF.
bool isScalarWithPredication(Instruction *I, ElementCount VF)
Returns true if I is an instruction which requires predication and for which our chosen predication s...
bool useOrderedReductions(const RecurrenceDescriptor &RdxDesc) const
Returns true if we should use strict in-order reductions for the given RdxDesc.
bool isDivRemScalarWithPredication(InstructionCost ScalarCost, InstructionCost SafeDivisorCost) const
Given costs for both strategies, return true if the scalar predication lowering should be used for di...
std::function< BlockFrequencyInfo &()> GetBFI
A function to lazily fetch BlockFrequencyInfo.
LoopVectorizationCostModel(ScalarEpilogueLowering SEL, Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, LoopVectorizationLegality *Legal, const TargetTransformInfo &TTI, const TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC, OptimizationRemarkEmitter *ORE, std::function< BlockFrequencyInfo &()> GetBFI, const Function *F, const LoopVectorizeHints *Hints, InterleavedAccessInfo &IAI, bool OptForSize)
InstructionCost expectedCost(ElementCount VF)
Returns the expected execution cost.
void setCostBasedWideningDecision(ElementCount VF)
Memory access instruction may be vectorized in more than one way.
InstWidening getWideningDecision(Instruction *I, ElementCount VF) const
Return the cost model decision for the given instruction I and vector width VF.
FixedScalableVFPair MaxPermissibleVFWithoutMaxBW
The highest VF possible for this loop, without using MaxBandwidth.
const SmallPtrSetImpl< PHINode * > & getInLoopReductions() const
Returns the set of in-loop reduction PHIs.
bool isScalarEpilogueAllowed() const
Returns true if a scalar epilogue is not allowed due to optsize or a loop hint annotation.
InstructionCost getWideningCost(Instruction *I, ElementCount VF)
Return the vectorization cost for the given instruction I and vector width VF.
void collectInstsToScalarize(ElementCount VF)
Collects the instructions to scalarize for each predicated instruction in the loop.
LoopVectorizationLegality checks if it is legal to vectorize a loop, and to what vectorization factor...
MapVector< PHINode *, InductionDescriptor > InductionList
InductionList saves induction variables and maps them to the induction descriptor.
const SmallPtrSetImpl< const Instruction * > & getPotentiallyFaultingLoads() const
Returns potentially faulting loads.
bool canVectorize(bool UseVPlanNativePath)
Returns true if it is legal to vectorize this loop.
bool canVectorizeFPMath(bool EnableStrictReductions)
Returns true if it is legal to vectorize the FP math operations in this loop.
PHINode * getPrimaryInduction()
Returns the primary induction variable.
const SmallVector< BasicBlock *, 4 > & getCountableExitingBlocks() const
Returns all exiting blocks with a countable exit, i.e.
const InductionList & getInductionVars() const
Returns the induction variables found in the loop.
bool isSafeForAnyVectorWidth() const
bool hasUncountableEarlyExit() const
Returns true if the loop has exactly one uncountable early exit, i.e.
bool hasHistograms() const
Returns a list of all known histogram operations in the loop.
const LoopAccessInfo * getLAI() const
Planner drives the vectorization process after having passed Legality checks.
VectorizationFactor selectEpilogueVectorizationFactor(const ElementCount MaxVF, unsigned IC)
VPlan & getPlanFor(ElementCount VF) const
Return the VPlan for VF.
VectorizationFactor planInVPlanNativePath(ElementCount UserVF)
Use the VPlan-native path to plan how to best vectorize, return the best VF and its cost.
void updateLoopMetadataAndProfileInfo(Loop *VectorLoop, VPBasicBlock *HeaderVPBB, const VPlan &Plan, bool VectorizingEpilogue, MDNode *OrigLoopID, std::optional< unsigned > OrigAverageTripCount, unsigned OrigLoopInvocationWeight, unsigned EstimatedVFxUF, bool DisableRuntimeUnroll)
Update loop metadata and profile info for both the scalar remainder loop and VectorLoop,...
void buildVPlans(ElementCount MinVF, ElementCount MaxVF)
Build VPlans for power-of-2 VF's between MinVF and MaxVF inclusive, according to the information gath...
VectorizationFactor computeBestVF()
Compute and return the most profitable vectorization factor.
DenseMap< const SCEV *, Value * > executePlan(ElementCount VF, unsigned UF, VPlan &BestPlan, InnerLoopVectorizer &LB, DominatorTree *DT, bool VectorizingEpilogue)
Generate the IR code for the vectorized loop captured in VPlan BestPlan according to the best selecte...
unsigned selectInterleaveCount(VPlan &Plan, ElementCount VF, InstructionCost LoopCost)
void emitInvalidCostRemarks(OptimizationRemarkEmitter *ORE)
Emit remarks for recipes with invalid costs in the available VPlans.
static bool getDecisionAndClampRange(const std::function< bool(ElementCount)> &Predicate, VFRange &Range)
Test a Predicate on a Range of VF's.
void printPlans(raw_ostream &O)
void plan(ElementCount UserVF, unsigned UserIC)
Build VPlans for the specified UserVF and UserIC if they are non-zero or all applicable candidate VFs...
void addMinimumIterationCheck(VPlan &Plan, ElementCount VF, unsigned UF, ElementCount MinProfitableTripCount) const
Create a check to Plan to see if the vector loop should be executed based on its trip count.
bool hasPlanWithVF(ElementCount VF) const
Look through the existing plans and return true if we have one with vectorization factor VF.
This holds vectorization requirements that must be verified late in the process.
Instruction * getExactFPInst()
Utility class for getting and setting loop vectorizer hints in the form of loop metadata.
enum ForceKind getForce() const
bool allowVectorization(Function *F, Loop *L, bool VectorizeOnlyWhenForced) const
bool allowReordering() const
When enabling loop hints are provided we allow the vectorizer to change the order of operations that ...
void emitRemarkWithHints() const
Dumps all the hint information.
bool isPotentiallyUnsafe() const
ElementCount getWidth() const
@ FK_Enabled
Forcing enabled.
@ FK_Undefined
Not selected.
@ FK_Disabled
Forcing disabled.
unsigned getPredicate() const
const char * vectorizeAnalysisPassName() const
If hints are provided that force vectorization, use the AlwaysPrint pass name to force the frontend t...
unsigned getInterleave() const
This class emits a version of the loop where run-time checks ensure that may-alias pointers can't ove...
Represents a single loop in the control flow graph.
bool hasLoopInvariantOperands(const Instruction *I) const
Return true if all the operands of the specified instruction are loop invariant.
DebugLoc getStartLoc() const
Return the debug location of the start of this loop.
bool isLoopInvariant(const Value *V) const
Return true if the specified value is loop invariant.
This class implements a map that also provides access to all stored values in a deterministic order.
std::pair< iterator, bool > insert(const std::pair< KeyT, ValueT > &KV)
Function * getFunction(StringRef Name) const
Look up the specified function in the module symbol table.
void addIncoming(Value *V, BasicBlock *BB)
Add an incoming value to the end of the PHI list.
op_range incoming_values()
void setIncomingValueForBlock(const BasicBlock *BB, Value *V)
Set every incoming value(s) for block BB to V.
Value * getIncomingValueForBlock(const BasicBlock *BB) const
unsigned getNumIncomingValues() const
Return the number of incoming edges.
An interface layer with SCEV used to manage how we see SCEV expressions for values in the context of ...
ScalarEvolution * getSE() const
Returns the ScalarEvolution analysis used.
LLVM_ABI const SCEVPredicate & getPredicate() const
LLVM_ABI unsigned getSmallConstantMaxTripCount()
Returns the upper bound of the loop trip count as a normal unsigned value, or 0 if the trip count is ...
LLVM_ABI const SCEV * getBackedgeTakenCount()
Get the (predicated) backedge count for the analyzed loop.
LLVM_ABI const SCEV * getSCEV(Value *V)
Returns the SCEV expression of V, in the context of the current SCEV predicate.
A set of analyses that are preserved following a run of a transformation pass.
static PreservedAnalyses all()
Construct a special preserved set that preserves all passes.
PreservedAnalyses & preserveSet()
Mark an analysis set as preserved.
PreservedAnalyses & preserve()
Mark an analysis as preserved.
An analysis pass based on the new PM to deliver ProfileSummaryInfo.
The RecurrenceDescriptor is used to identify recurrences variables in a loop.
static bool isFMulAddIntrinsic(Instruction *I)
Returns true if the instruction is a call to the llvm.fmuladd intrinsic.
FastMathFlags getFastMathFlags() const
Instruction * getLoopExitInstr() const
static LLVM_ABI unsigned getOpcode(RecurKind Kind)
Returns the opcode corresponding to the RecurrenceKind.
unsigned getOpcode() const
Type * getRecurrenceType() const
Returns the type of the recurrence.
bool hasUsesOutsideReductionChain() const
Returns true if the reduction PHI has any uses outside the reduction chain.
const SmallPtrSet< Instruction *, 8 > & getCastInsts() const
Returns a reference to the instructions used for type-promoting the recurrence.
unsigned getMinWidthCastToRecurrenceTypeInBits() const
Returns the minimum width used by the recurrence in bits.
LLVM_ABI SmallVector< Instruction *, 4 > getReductionOpChain(PHINode *Phi, Loop *L) const
Attempts to find a chain of operations from Phi to LoopExitInst that can be treated as a set of reduc...
static bool isAnyOfRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is of the form select(cmp(),x,y) where one of (x,...
bool isSigned() const
Returns true if all source operands of the recurrence are SExtInsts.
RecurKind getRecurrenceKind() const
bool isOrdered() const
Expose an ordered FP reduction to the instance users.
static LLVM_ABI bool isFloatingPointRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is a floating point kind.
static bool isFindIVRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is of the form select(cmp(),x,y) where one of (x,...
Value * getSentinelValue() const
Returns the sentinel value for FindFirstIV & FindLastIV recurrences to replace the start value.
static bool isMinMaxRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is any min/max kind.
std::optional< ArrayRef< PointerDiffInfo > > getDiffChecks() const
const SmallVectorImpl< RuntimePointerCheck > & getChecks() const
Returns the checks that generateChecks created.
This class uses information about analyze scalars to rewrite expressions in canonical form.
ScalarEvolution * getSE()
bool isInsertedInstruction(Instruction *I) const
Return true if the specified instruction was inserted by the code rewriter.
LLVM_ABI Value * expandCodeForPredicate(const SCEVPredicate *Pred, Instruction *Loc)
Generates a code sequence that evaluates this predicate.
void eraseDeadInstructions(Value *Root)
Remove inserted instructions that are dead, e.g.
virtual bool isAlwaysTrue() const =0
Returns true if the predicate is always true.
This class represents an analyzed expression in the program.
LLVM_ABI bool isZero() const
Return true if the expression is a constant zero.
LLVM_ABI Type * getType() const
Return the LLVM type of this SCEV expression.
Analysis pass that exposes the ScalarEvolution for a function.
The main scalar evolution driver.
LLVM_ABI const SCEV * getURemExpr(const SCEV *LHS, const SCEV *RHS)
Represents an unsigned remainder expression based on unsigned division.
LLVM_ABI const SCEV * getBackedgeTakenCount(const Loop *L, ExitCountKind Kind=Exact)
If the specified loop has a predictable backedge-taken count, return it, otherwise return a SCEVCould...
LLVM_ABI const SCEV * getConstant(ConstantInt *V)
LLVM_ABI const SCEV * getSCEV(Value *V)
Return a SCEV expression for the full generality of the specified expression.
LLVM_ABI const SCEV * getTripCountFromExitCount(const SCEV *ExitCount)
A version of getTripCountFromExitCount below which always picks an evaluation type which can not resu...
const SCEV * getOne(Type *Ty)
Return a SCEV for the constant 1 of a specific type.
LLVM_ABI void forgetLoop(const Loop *L)
This method should be called by the client when it has changed a loop in a way that may effect Scalar...
LLVM_ABI bool isLoopInvariant(const SCEV *S, const Loop *L)
Return true if the value of the given SCEV is unchanging in the specified loop.
LLVM_ABI const SCEV * getElementCount(Type *Ty, ElementCount EC, SCEV::NoWrapFlags Flags=SCEV::FlagAnyWrap)
LLVM_ABI void forgetValue(Value *V)
This method should be called by the client when it has changed a value in a way that may effect its v...
LLVM_ABI void forgetBlockAndLoopDispositions(Value *V=nullptr)
Called when the client has changed the disposition of values in a loop or block.
const SCEV * getMinusOne(Type *Ty)
Return a SCEV for the constant -1 of a specific type.
LLVM_ABI void forgetLcssaPhiWithNewPredecessor(Loop *L, PHINode *V)
Forget LCSSA phi node V of loop L to which a new predecessor was added, such that it may no longer be...
LLVM_ABI unsigned getSmallConstantTripCount(const Loop *L)
Returns the exact trip count of the loop if we can compute it, and the result is a small constant.
APInt getUnsignedRangeMax(const SCEV *S)
Determine the max of the unsigned range for a particular SCEV.
LLVM_ABI const SCEV * applyLoopGuards(const SCEV *Expr, const Loop *L)
Try to apply information from loop guards for L to Expr.
LLVM_ABI const SCEV * getMulExpr(SmallVectorImpl< const SCEV * > &Ops, SCEV::NoWrapFlags Flags=SCEV::FlagAnyWrap, unsigned Depth=0)
Get a canonical multiply expression, or something simpler if possible.
LLVM_ABI const SCEV * getAddExpr(SmallVectorImpl< const SCEV * > &Ops, SCEV::NoWrapFlags Flags=SCEV::FlagAnyWrap, unsigned Depth=0)
Get a canonical add expression, or something simpler if possible.
LLVM_ABI bool isKnownPredicate(CmpPredicate Pred, const SCEV *LHS, const SCEV *RHS)
Test if the given expression is known to satisfy the condition described by Pred, LHS,...
This class represents the LLVM 'select' instruction.
A vector that has set insertion semantics.
size_type size() const
Determine the number of elements in the SetVector.
void insert_range(Range &&R)
size_type count(const_arg_type key) const
Count the number of elements of a given key in the SetVector.
bool insert(const value_type &X)
Insert a new element into the SetVector.
A templated base class for SmallPtrSet which provides the typesafe interface that is common across al...
size_type count(ConstPtrType Ptr) const
count - Return 1 if the specified pointer is in the set, 0 otherwise.
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
bool contains(ConstPtrType Ptr) const
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
A SetVector that performs no allocations if smaller than a certain size.
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
reference emplace_back(ArgTypes &&... Args)
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
An instruction for storing to memory.
StringRef - Represent a constant reference to a string, i.e.
Analysis pass providing the TargetTransformInfo.
Analysis pass providing the TargetLibraryInfo.
Provides information about what library functions are available for the current target.
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
This class implements a switch-like dispatch statement for a value of 'T' using dyn_cast functionalit...
TypeSwitch< T, ResultT > & Case(CallableT &&caseFn)
Add a case on the given type.
The instances of the Type class are immutable: once they are created, they are never changed.
LLVM_ABI unsigned getIntegerBitWidth() const
bool isVectorTy() const
True if this is an instance of VectorType.
static LLVM_ABI Type * getVoidTy(LLVMContext &C)
Type * getScalarType() const
If this is a vector type, return the element type, otherwise return 'this'.
LLVM_ABI TypeSize getPrimitiveSizeInBits() const LLVM_READONLY
Return the basic size of this type if it is a primitive type.
LLVMContext & getContext() const
Return the LLVMContext in which this type was uniqued.
LLVM_ABI unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type.
static LLVM_ABI IntegerType * getInt1Ty(LLVMContext &C)
bool isFloatingPointTy() const
Return true if this is one of the floating-point types.
bool isIntegerTy() const
True if this is an instance of IntegerType.
bool isVoidTy() const
Return true if this is 'void'.
A Use represents the edge between a Value definition and its users.
LLVM_ABI bool replaceUsesOfWith(Value *From, Value *To)
Replace uses of one Value with another.
Value * getOperand(unsigned i) const
static SmallVector< VFInfo, 8 > getMappings(const CallInst &CI)
Retrieve all the VFInfo instances associated to the CallInst CI.
VPBasicBlock serves as the leaf of the Hierarchical Control-Flow Graph.
void appendRecipe(VPRecipeBase *Recipe)
Augment the existing recipes of a VPBasicBlock with an additional Recipe as the last recipe.
RecipeListTy::iterator iterator
Instruction iterators...
iterator begin()
Recipe iterator methods.
iterator_range< iterator > phis()
Returns an iterator range over the PHI-like recipes in the block.
InstructionCost cost(ElementCount VF, VPCostContext &Ctx) override
Return the cost of this VPBasicBlock.
iterator getFirstNonPhi()
Return the position of the first non-phi node recipe in the block.
VPRecipeBase * getTerminator()
If the block has multiple successors, return the branch recipe terminating the block.
void insert(VPRecipeBase *Recipe, iterator InsertPt)
VPBlockBase is the building block of the Hierarchical Control-Flow Graph.
const VPBasicBlock * getExitingBasicBlock() const
void setName(const Twine &newName)
size_t getNumSuccessors() const
void swapSuccessors()
Swap successors of the block. The block must have exactly 2 successors.
size_t getNumPredecessors() const
const VPBasicBlock * getEntryBasicBlock() const
VPBlockBase * getSingleSuccessor() const
const VPBlocksTy & getSuccessors() const
static auto blocksOnly(const T &Range)
Return an iterator range over Range which only includes BlockTy blocks.
static void insertOnEdge(VPBlockBase *From, VPBlockBase *To, VPBlockBase *BlockPtr)
Inserts BlockPtr on the edge between From and To.
static void connectBlocks(VPBlockBase *From, VPBlockBase *To, unsigned PredIdx=-1u, unsigned SuccIdx=-1u)
Connect VPBlockBases From and To bi-directionally.
static void reassociateBlocks(VPBlockBase *Old, VPBlockBase *New)
Reassociate all the blocks connected to Old so that they now point to New.
VPlan-based builder utility analogous to IRBuilder.
VPPhi * createScalarPhi(ArrayRef< VPValue * > IncomingValues, DebugLoc DL, const Twine &Name="")
VPInstruction * createNaryOp(unsigned Opcode, ArrayRef< VPValue * > Operands, Instruction *Inst=nullptr, const VPIRFlags &Flags={}, const VPIRMetadata &MD={}, DebugLoc DL=DebugLoc::getUnknown(), const Twine &Name="")
Create an N-ary operation with Opcode, Operands and set Inst as its underlying Instruction.
Canonical scalar induction phi of the vector loop.
unsigned getNumDefinedValues() const
Returns the number of values defined by the VPDef.
VPValue * getVPSingleValue()
Returns the only VPValue defined by the VPDef.
void execute(VPTransformState &State) override
Generate the transformed value of the induction at offset StartValue (1.
VPValue * getStepValue() const
VPValue * getStartValue() const
A recipe representing a sequence of load -> update -> store as part of a histogram operation.
A special type of VPBasicBlock that wraps an existing IR basic block.
Class to record and manage LLVM IR flags.
This is a concrete Recipe that models a single VPlan-level instruction.
@ ComputeAnyOfResult
Compute the final result of a AnyOf reduction with select(cmp(),x,y), where one of (x,...
@ ResumeForEpilogue
Explicit user for the resume phi of the canonical induction in the main VPlan, used by the epilogue v...
@ FirstOrderRecurrenceSplice
@ ReductionStartVector
Start vector for reductions with 3 operands: the original start value, the identity value for the red...
unsigned getOpcode() const
VPInterleaveRecipe is a recipe for transforming an interleave group of load or stores into one wide l...
In what follows, the term "input IR" refers to code that is fed into the vectorizer whereas the term ...
detail::zippy< llvm::detail::zip_first, VPUser::const_operand_range, const_incoming_blocks_range > incoming_values_and_blocks() const
Returns an iterator range over pairs of incoming values and corresponding incoming blocks.
VPRecipeBase is a base class modeling a sequence of one or more output IR instructions.
VPBasicBlock * getParent()
DebugLoc getDebugLoc() const
Returns the debug location of the recipe.
void moveBefore(VPBasicBlock &BB, iplist< VPRecipeBase >::iterator I)
Unlink this recipe and insert into BB before I.
void insertBefore(VPRecipeBase *InsertPos)
Insert an unlinked recipe into a basic block immediately before the specified recipe.
iplist< VPRecipeBase >::iterator eraseFromParent()
This method unlinks 'this' from the containing basic block and deletes it.
Helper class to create VPRecipies from IR instructions.
VPValue * getBlockInMask(VPBasicBlock *VPBB) const
Returns the entry mask for block VPBB or null if the mask is all-true.
VPRecipeBase * tryToCreateWidenNonPhiRecipe(VPSingleDefRecipe *R, VFRange &Range)
Create and return a widened recipe for a non-phi recipe R if one can be created within the given VF R...
VPValue * getVPValueOrAddLiveIn(Value *V)
VPRecipeBase * tryToCreatePartialReduction(VPInstruction *Reduction, unsigned ScaleFactor)
Create and return a partial reduction recipe for a reduction instruction along with binary operation ...
std::optional< unsigned > getScalingForReduction(const Instruction *ExitInst)
void collectScaledReductions(VFRange &Range)
Find all possible partial reductions in the loop and track all of those that are valid so recipes can...
VPReplicateRecipe * handleReplication(VPInstruction *VPI, VFRange &Range)
Build a VPReplicationRecipe for VPI.
bool isInLoop() const
Returns true if the phi is part of an in-loop reduction.
RecurKind getRecurrenceKind() const
Returns the recurrence kind of the reduction.
A recipe to represent inloop, ordered or partial reduction operations.
VPRegionBlock represents a collection of VPBasicBlocks and VPRegionBlocks which form a Single-Entry-S...
const VPBlockBase * getEntry() const
VPCanonicalIVPHIRecipe * getCanonicalIV()
Returns the canonical induction recipe of the region.
VPReplicateRecipe replicates a given instruction producing multiple scalar copies of the original sca...
VPSingleDef is a base class for recipes for modeling a sequence of one or more output IR that define ...
Instruction * getUnderlyingInstr()
Returns the underlying instruction.
An analysis for type-inference for VPValues.
Type * inferScalarType(const VPValue *V)
Infer the type of V. Returns the scalar type of V.
This class augments VPValue with operands which provide the inverse def-use edges from VPValue's user...
void setOperand(unsigned I, VPValue *New)
unsigned getNumOperands() const
operand_iterator op_begin()
VPValue * getOperand(unsigned N) const
This is the base class of the VPlan Def/Use graph, used for modeling the data flow into,...
VPRecipeBase * getDefiningRecipe()
Returns the recipe defining this VPValue or nullptr if it is not defined by a recipe,...
Value * getLiveInIRValue() const
Returns the underlying IR value, if this VPValue is defined outside the scope of VPlan.
Value * getUnderlyingValue() const
Return the underlying Value attached to this VPValue.
void replaceAllUsesWith(VPValue *New)
void replaceUsesWithIf(VPValue *New, llvm::function_ref< bool(VPUser &U, unsigned Idx)> ShouldReplace)
Go through the uses list for this VPValue and make each use point to New if the callback ShouldReplac...
A recipe to compute a pointer to the last element of each part of a widened memory access for widened...
VPWidenCastRecipe is a recipe to create vector cast instructions.
A recipe for handling GEP instructions.
A recipe for handling phi nodes of integer and floating-point inductions, producing their vector valu...
A common base class for widening memory operations.
A recipe for widened phis.
VPWidenRecipe is a recipe for producing a widened instruction using the opcode and operands of the re...
VPlan models a candidate for vectorization, encoding various decisions take to produce efficient outp...
bool hasVF(ElementCount VF) const
VPBasicBlock * getEntry()
VPValue & getVectorTripCount()
The vector trip count.
VPValue & getVF()
Returns the VF of the vector loop region.
VPValue * getTripCount() const
The trip count of the original loop.
iterator_range< SmallSetVector< ElementCount, 2 >::iterator > vectorFactors() const
Returns an iterator range over all VFs of the plan.
bool hasUF(unsigned UF) const
ArrayRef< VPIRBasicBlock * > getExitBlocks() const
Return an ArrayRef containing VPIRBasicBlocks wrapping the exit blocks of the original scalar loop.
LLVM_ABI_FOR_TEST VPRegionBlock * getVectorLoopRegion()
Returns the VPRegionBlock of the vector loop.
bool hasEarlyExit() const
Returns true if the VPlan is based on a loop with an early exit.
InstructionCost cost(ElementCount VF, VPCostContext &Ctx)
Return the cost of this plan.
void resetTripCount(VPValue *NewTripCount)
Resets the trip count for the VPlan.
VPBasicBlock * getMiddleBlock()
Returns the 'middle' block of the plan, that is the block that selects whether to execute the scalar ...
VPValue * getOrAddLiveIn(Value *V)
Gets the live-in VPValue for V or adds a new live-in (if none exists yet) for V.
VPBasicBlock * getScalarPreheader() const
Return the VPBasicBlock for the preheader of the scalar loop.
void execute(VPTransformState *State)
Generate the IR code for this VPlan.
VPIRBasicBlock * getScalarHeader() const
Return the VPIRBasicBlock wrapping the header of the scalar loop.
VPBasicBlock * getVectorPreheader()
Returns the preheader of the vector loop region, if one exists, or null otherwise.
LLVM_ABI_FOR_TEST VPlan * duplicate()
Clone the current VPlan, update all VPValues of the new VPlan and cloned recipes to refer to the clon...
LLVM Value Representation.
Type * getType() const
All values are typed, get the type of this value.
LLVM_ABI bool hasOneUser() const
Return true if there is exactly one user of this value.
LLVM_ABI void setName(const Twine &Name)
Change the name of the value.
bool hasOneUse() const
Return true if there is exactly one use of this value.
LLVM_ABI void replaceAllUsesWith(Value *V)
Change all uses of this to point to a new Value.
iterator_range< user_iterator > users()
LLVM_ABI const Value * stripPointerCasts() const
Strip off pointer casts, all-zero GEPs and address space casts.
LLVM_ABI StringRef getName() const
Return a constant reference to the value's name.
static LLVM_ABI VectorType * get(Type *ElementType, ElementCount EC)
This static method is the primary way to construct an VectorType.
std::pair< iterator, bool > insert(const ValueT &V)
bool contains(const_arg_type_t< ValueT > V) const
Check if the set contains the given element.
constexpr bool hasKnownScalarFactor(const FixedOrScalableQuantity &RHS) const
Returns true if there exists a value X where RHS.multiplyCoefficientBy(X) will result in a value whos...
constexpr ScalarTy getFixedValue() const
static constexpr bool isKnownLE(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
constexpr bool isNonZero() const
constexpr ScalarTy getKnownScalarFactor(const FixedOrScalableQuantity &RHS) const
Returns a value X where RHS.multiplyCoefficientBy(X) will result in a value whose quantity matches ou...
static constexpr bool isKnownLT(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
constexpr bool isScalable() const
Returns whether the quantity is scaled by a runtime quantity (vscale).
constexpr LeafTy multiplyCoefficientBy(ScalarTy RHS) const
constexpr bool isFixed() const
Returns true if the quantity is not scaled by vscale.
constexpr ScalarTy getKnownMinValue() const
Returns the minimum value this quantity can represent.
constexpr bool isZero() const
static constexpr bool isKnownGT(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
constexpr LeafTy divideCoefficientBy(ScalarTy RHS) const
We do not provide the '/' operator here because division for polynomial types does not work in the sa...
static constexpr bool isKnownGE(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
An efficient, type-erasing, non-owning reference to a callable.
const ParentTy * getParent() const
self_iterator getIterator()
This class implements an extremely fast bulk output stream that can only output to a stream.
A raw_ostream that writes to an std::string.
This provides a very simple, boring adaptor for a begin and end iterator into a range type.
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
@ PredicateElseScalarEpilogue
@ PredicateOrDontVectorize
constexpr char Align[]
Key for Kernel::Arg::Metadata::mAlign.
constexpr std::underlying_type_t< E > Mask()
Get a bitmask with 1s in all places up to the high-order bit of E's largest value.
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
@ Tail
Attemps to make calls as fast as possible while guaranteeing that tail call optimization can always b...
@ C
The default llvm calling convention, compatible with C.
@ BasicBlock
Various leaf nodes.
std::variant< std::monostate, Loc::Single, Loc::Multi, Loc::MMI, Loc::EntryValue > Variant
Alias for the std::variant specialization base class of DbgVariable.
SpecificConstantMatch m_ZeroInt()
Convenience matchers for specific integer values.
BinaryOp_match< SpecificConstantMatch, SrcTy, TargetOpcode::G_SUB > m_Neg(const SrcTy &&Src)
Matches a register negated by a G_SUB.
OneUse_match< SubPat > m_OneUse(const SubPat &SP)
BinaryOp_match< LHS, RHS, Instruction::Add > m_Add(const LHS &L, const RHS &R)
class_match< BinaryOperator > m_BinOp()
Match an arbitrary binary operation and ignore it.
OneOps_match< OpTy, Instruction::Freeze > m_Freeze(const OpTy &Op)
Matches FreezeInst.
ap_match< APInt > m_APInt(const APInt *&Res)
Match a ConstantInt or splatted ConstantVector, binding the specified pointer to the contained APInt.
specific_intval< false > m_SpecificInt(const APInt &V)
Match a specific integer value or vector with all elements equal to the value.
bool match(Val *V, const Pattern &P)
bind_ty< Instruction > m_Instruction(Instruction *&I)
Match an instruction, capturing it if we match.
specificval_ty m_Specific(const Value *V)
Match if we have a specific specified value.
cst_pred_ty< is_one > m_One()
Match an integer 1 or a vector with all elements equal to 1.
ThreeOps_match< Cond, LHS, RHS, Instruction::Select > m_Select(const Cond &C, const LHS &L, const RHS &R)
Matches SelectInst.
BinaryOp_match< LHS, RHS, Instruction::Mul > m_Mul(const LHS &L, const RHS &R)
auto m_LogicalOr()
Matches L || R where L and R are arbitrary values.
SpecificCmpClass_match< LHS, RHS, ICmpInst > m_SpecificICmp(CmpPredicate MatchPred, const LHS &L, const RHS &R)
class_match< CmpInst > m_Cmp()
Matches any compare instruction and ignore it.
class_match< Value > m_Value()
Match an arbitrary value and ignore it.
match_combine_or< CastInst_match< OpTy, ZExtInst >, CastInst_match< OpTy, SExtInst > > m_ZExtOrSExt(const OpTy &Op)
auto m_LogicalAnd()
Matches L && R where L and R are arbitrary values.
MatchFunctor< Val, Pattern > match_fn(const Pattern &P)
A match functor that can be used as a UnaryPredicate in functional algorithms like all_of.
BinaryOp_match< LHS, RHS, Instruction::Sub > m_Sub(const LHS &L, const RHS &R)
match_combine_or< LTy, RTy > m_CombineOr(const LTy &L, const RTy &R)
Combine two pattern matchers matching L || R.
class_match< const SCEVVScale > m_SCEVVScale()
bind_cst_ty m_scev_APInt(const APInt *&C)
Match an SCEV constant and bind it to an APInt.
specificloop_ty m_SpecificLoop(const Loop *L)
cst_pred_ty< is_specific_signed_cst > m_scev_SpecificSInt(int64_t V)
Match an SCEV constant with a plain signed integer (sign-extended value will be matched)
SCEVAffineAddRec_match< Op0_t, Op1_t, class_match< const Loop > > m_scev_AffineAddRec(const Op0_t &Op0, const Op1_t &Op1)
bind_ty< const SCEVMulExpr > m_scev_Mul(const SCEVMulExpr *&V)
bool match(const SCEV *S, const Pattern &P)
SCEVBinaryExpr_match< SCEVMulExpr, Op0_t, Op1_t, SCEV::FlagAnyWrap, true > m_scev_c_Mul(const Op0_t &Op0, const Op1_t &Op1)
class_match< const SCEV > m_SCEV()
match_combine_or< AllRecipe_match< Instruction::ZExt, Op0_t >, AllRecipe_match< Instruction::SExt, Op0_t > > m_ZExtOrSExt(const Op0_t &Op0)
VPInstruction_match< VPInstruction::ExtractLastLane, Op0_t > m_ExtractLastLane(const Op0_t &Op0)
VPInstruction_match< VPInstruction::ExtractLastPart, Op0_t > m_ExtractLastPart(const Op0_t &Op0)
class_match< VPValue > m_VPValue()
Match an arbitrary VPValue and ignore it.
VPInstruction_match< VPInstruction::ExtractLane, Op0_t, Op1_t > m_ExtractLane(const Op0_t &Op0, const Op1_t &Op1)
ValuesClass values(OptsTy... Options)
Helper to build a ValuesClass by forwarding a variable number of arguments as an initializer list to ...
initializer< Ty > init(const Ty &Val)
Add a small namespace to avoid name clashes with the classes used in the streaming interface.
DiagnosticInfoOptimizationBase::Argument NV
NodeAddr< InstrNode * > Instr
NodeAddr< PhiNode * > Phi
friend class Instruction
Iterator for Instructions in a `BasicBlock.
bool isSingleScalar(const VPValue *VPV)
Returns true if VPV is a single scalar, either because it produces the same value for all lanes or on...
VPValue * getOrCreateVPValueForSCEVExpr(VPlan &Plan, const SCEV *Expr)
Get or create a VPValue that corresponds to the expansion of Expr.
VPBasicBlock * getFirstLoopHeader(VPlan &Plan, VPDominatorTree &VPDT)
Returns the header block of the first, top-level loop, or null if none exist.
bool onlyFirstLaneUsed(const VPValue *Def)
Returns true if only the first lane of Def is used.
VPIRFlags getFlagsFromIndDesc(const InductionDescriptor &ID)
Extracts and returns NoWrap and FastMath flags from the induction binop in ID.
unsigned getVFScaleFactor(VPRecipeBase *R)
Get the VF scaling factor applied to the recipe's output, if the recipe has one.
const SCEV * getSCEVExprForVPValue(const VPValue *V, ScalarEvolution &SE, const Loop *L=nullptr)
Return the SCEV expression for V.
This is an optimization pass for GlobalISel generic memory operations.
LLVM_ABI bool simplifyLoop(Loop *L, DominatorTree *DT, LoopInfo *LI, ScalarEvolution *SE, AssumptionCache *AC, MemorySSAUpdater *MSSAU, bool PreserveLCSSA)
Simplify each loop in a loop nest recursively.
LLVM_ABI void ReplaceInstWithInst(BasicBlock *BB, BasicBlock::iterator &BI, Instruction *I)
Replace the instruction specified by BI with the instruction specified by I.
auto drop_begin(T &&RangeOrContainer, size_t N=1)
Return a range covering RangeOrContainer with the first N elements excluded.
detail::zippy< detail::zip_shortest, T, U, Args... > zip(T &&t, U &&u, Args &&...args)
zip iterator for two or more iteratable types.
FunctionAddr VTableAddr Value
LLVM_ABI Value * addRuntimeChecks(Instruction *Loc, Loop *TheLoop, const SmallVectorImpl< RuntimePointerCheck > &PointerChecks, SCEVExpander &Expander, bool HoistRuntimeChecks=false)
Add code that checks at runtime if the accessed arrays in PointerChecks overlap.
auto cast_if_present(const Y &Val)
cast_if_present<X> - Functionally identical to cast, except that a null value is accepted.
LLVM_ABI bool RemoveRedundantDbgInstrs(BasicBlock *BB)
Try to remove redundant dbg.value instructions from given basic block.
LLVM_ABI_FOR_TEST cl::opt< bool > VerifyEachVPlan
LLVM_ABI std::optional< unsigned > getLoopEstimatedTripCount(Loop *L, unsigned *EstimatedLoopInvocationWeight=nullptr)
Return either:
static void reportVectorization(OptimizationRemarkEmitter *ORE, Loop *TheLoop, VectorizationFactor VF, unsigned IC)
Report successful vectorization of the loop.
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
unsigned getLoadStoreAddressSpace(const Value *I)
A helper function that returns the address space of the pointer operand of load or store instruction.
LLVM_ABI Intrinsic::ID getMinMaxReductionIntrinsicOp(Intrinsic::ID RdxID)
Returns the min/max intrinsic used when expanding a min/max reduction.
auto size(R &&Range, std::enable_if_t< std::is_base_of< std::random_access_iterator_tag, typename std::iterator_traits< decltype(Range.begin())>::iterator_category >::value, void > *=nullptr)
Get the size of a range.
LLVM_ABI_FOR_TEST bool verifyVPlanIsValid(const VPlan &Plan, bool VerifyLate=false)
Verify invariants for general VPlans.
LLVM_ABI Intrinsic::ID getVectorIntrinsicIDForCall(const CallInst *CI, const TargetLibraryInfo *TLI)
Returns intrinsic ID for call.
ReductionStyle getReductionStyle(bool InLoop, bool Ordered, unsigned ScaleFactor)
auto enumerate(FirstRange &&First, RestRanges &&...Rest)
Given two or more input ranges, returns a new range whose values are tuples (A, B,...
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
LLVM_ABI bool verifyFunction(const Function &F, raw_ostream *OS=nullptr)
Check a function for errors, useful for use when debugging a pass.
const Value * getLoadStorePointerOperand(const Value *V)
A helper function that returns the pointer operand of a load or store instruction.
OuterAnalysisManagerProxy< ModuleAnalysisManager, Function > ModuleAnalysisManagerFunctionProxy
Provide the ModuleAnalysisManager to Function proxy.
Value * getRuntimeVF(IRBuilderBase &B, Type *Ty, ElementCount VF)
Return the runtime value for VF.
LLVM_ABI bool formLCSSARecursively(Loop &L, const DominatorTree &DT, const LoopInfo *LI, ScalarEvolution *SE)
Put a loop nest into LCSSA form.
iterator_range< T > make_range(T x, T y)
Convenience function for iterating over sub-ranges.
void append_range(Container &C, Range &&R)
Wrapper function to append range R to container C.
LLVM_ABI bool shouldOptimizeForSize(const MachineFunction *MF, ProfileSummaryInfo *PSI, const MachineBlockFrequencyInfo *BFI, PGSOQueryType QueryType=PGSOQueryType::Other)
Returns true if machine function MF is suggested to be size-optimized based on the profile.
iterator_range< early_inc_iterator_impl< detail::IterOfRange< RangeT > > > make_early_inc_range(RangeT &&Range)
Make a range that does early increment to allow mutation of the underlying range without disrupting i...
constexpr bool isPowerOf2_64(uint64_t Value)
Return true if the argument is a power of two > 0 (64 bit edition.)
Align getLoadStoreAlignment(const Value *I)
A helper function that returns the alignment of load or store instruction.
iterator_range< df_iterator< VPBlockShallowTraversalWrapper< VPBlockBase * > > > vp_depth_first_shallow(VPBlockBase *G)
Returns an iterator range to traverse the graph starting at G in depth-first order.
LLVM_ABI bool isSafeToSpeculativelyExecute(const Instruction *I, const Instruction *CtxI=nullptr, AssumptionCache *AC=nullptr, const DominatorTree *DT=nullptr, const TargetLibraryInfo *TLI=nullptr, bool UseVariableInfo=true, bool IgnoreUBImplyingAttrs=true)
Return true if the instruction does not have any effects besides calculating the result and does not ...
bool isa_and_nonnull(const Y &Val)
iterator_range< df_iterator< VPBlockDeepTraversalWrapper< VPBlockBase * > > > vp_depth_first_deep(VPBlockBase *G)
Returns an iterator range to traverse the graph starting at G in depth-first order while traversing t...
SmallVector< VPRegisterUsage, 8 > calculateRegisterUsageForPlan(VPlan &Plan, ArrayRef< ElementCount > VFs, const TargetTransformInfo &TTI, const SmallPtrSetImpl< const Value * > &ValuesToIgnore)
Estimate the register usage for Plan and vectorization factors in VFs by calculating the highest numb...
unsigned Log2_64(uint64_t Value)
Return the floor log base 2 of the specified value, -1 if the value is zero.
LLVM_ABI void setBranchWeights(Instruction &I, ArrayRef< uint32_t > Weights, bool IsExpected, bool ElideAllZero=false)
Create a new branch_weights metadata node and add or overwrite a prof metadata reference to instructi...
auto dyn_cast_or_null(const Y &Val)
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
void collectEphemeralRecipesForVPlan(VPlan &Plan, DenseSet< VPRecipeBase * > &EphRecipes)
auto reverse(ContainerTy &&C)
bool containsIrreducibleCFG(RPOTraversalT &RPOTraversal, const LoopInfoT &LI)
Return true if the control flow in RPOTraversal is irreducible.
constexpr bool isPowerOf2_32(uint32_t Value)
Return true if the argument is a power of two > 0.
void sort(IteratorTy Start, IteratorTy End)
LLVM_ABI_FOR_TEST cl::opt< bool > EnableWideActiveLaneMask
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
bool none_of(R &&Range, UnaryPredicate P)
Provide wrappers to std::none_of which take ranges instead of having to pass begin/end explicitly.
LLVM_ABI cl::opt< bool > EnableLoopVectorization
LLVM_ABI bool wouldInstructionBeTriviallyDead(const Instruction *I, const TargetLibraryInfo *TLI=nullptr)
Return true if the result produced by the instruction would have no side effects if it was not used.
FunctionAddr VTableAddr Count
SmallVector< ValueTypeFromRangeType< R >, Size > to_vector(R &&Range)
Given a range of type R, iterate the entire range and return a SmallVector with elements of the vecto...
Type * toVectorizedTy(Type *Ty, ElementCount EC)
A helper for converting to vectorized types.
LLVM_ABI void llvm_unreachable_internal(const char *msg=nullptr, const char *file=nullptr, unsigned line=0)
This function calls abort(), and prints the optional message to stderr.
bool canConstantBeExtended(const APInt *C, Type *NarrowType, TTI::PartialReductionExtendKind ExtKind)
Check if a constant CI can be safely treated as having been extended from a narrower type with the gi...
T * find_singleton(R &&Range, Predicate P, bool AllowRepeats=false)
Return the single value in Range that satisfies P(<member of Range> *, AllowRepeats)->T * returning n...
class LLVM_GSL_OWNER SmallVector
Forward declaration of SmallVector so that calculateSmallVectorDefaultInlinedElements can reference s...
cl::opt< unsigned > ForceTargetInstructionCost
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
format_object< Ts... > format(const char *Fmt, const Ts &... Vals)
These are helper functions used to produce formatted output.
constexpr T divideCeil(U Numerator, V Denominator)
Returns the integer ceil(Numerator / Denominator).
bool canVectorizeTy(Type *Ty)
Returns true if Ty is a valid vector element type, void, or an unpacked literal struct where all elem...
static void reportVectorizationInfo(const StringRef Msg, const StringRef ORETag, OptimizationRemarkEmitter *ORE, Loop *TheLoop, Instruction *I=nullptr, DebugLoc DL={})
Reports an informative message: print Msg for debugging purposes as well as an optimization remark.
LLVM_ABI bool isAssignmentTrackingEnabled(const Module &M)
Return true if assignment tracking is enabled for module M.
RecurKind
These are the kinds of recurrences that we support.
@ Or
Bitwise or logical OR of integers.
@ FMulAdd
Sum of float products with llvm.fmuladd(a * b + sum).
@ Sub
Subtraction of integers.
@ AddChainWithSubs
A chain of adds and subs.
LLVM_ABI Value * getRecurrenceIdentity(RecurKind K, Type *Tp, FastMathFlags FMF)
Given information about an recurrence kind, return the identity for the @llvm.vector....
uint64_t alignTo(uint64_t Size, Align A)
Returns a multiple of A needed to store Size bytes.
LLVM_ABI void reportVectorizationFailure(const StringRef DebugMsg, const StringRef OREMsg, const StringRef ORETag, OptimizationRemarkEmitter *ORE, Loop *TheLoop, Instruction *I=nullptr)
Reports a vectorization failure: print DebugMsg for debugging purposes along with the corresponding o...
DWARFExpression::Operation Op
@ CM_ScalarEpilogueNotAllowedLowTripLoop
@ CM_ScalarEpilogueNotNeededUsePredicate
@ CM_ScalarEpilogueNotAllowedOptSize
@ CM_ScalarEpilogueAllowed
@ CM_ScalarEpilogueNotAllowedUsePredicate
LLVM_ABI bool isGuaranteedNotToBeUndefOrPoison(const Value *V, AssumptionCache *AC=nullptr, const Instruction *CtxI=nullptr, const DominatorTree *DT=nullptr, unsigned Depth=0)
Return true if this function can prove that V does not have undef bits and is never poison.
ArrayRef(const T &OneElt) -> ArrayRef< T >
Value * createStepForVF(IRBuilderBase &B, Type *Ty, ElementCount VF, int64_t Step)
Return a value for Step multiplied by VF.
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
LLVM_ABI BasicBlock * SplitBlock(BasicBlock *Old, BasicBlock::iterator SplitPt, DominatorTree *DT, LoopInfo *LI=nullptr, MemorySSAUpdater *MSSAU=nullptr, const Twine &BBName="", bool Before=false)
Split the specified block at the specified instruction.
auto find_if(R &&Range, UnaryPredicate P)
Provide wrappers to std::find_if which take ranges instead of having to pass begin/end explicitly.
auto predecessors(const MachineBasicBlock *BB)
iterator_range< pointer_iterator< WrappedIteratorT > > make_pointer_range(RangeT &&Range)
cl::opt< bool > EnableVPlanNativePath
Type * getLoadStoreType(const Value *I)
A helper function that returns the type of a load or store instruction.
ArrayRef< Type * > getContainedTypes(Type *const &Ty)
Returns the types contained in Ty.
LLVM_ABI Value * addDiffRuntimeChecks(Instruction *Loc, ArrayRef< PointerDiffInfo > Checks, SCEVExpander &Expander, function_ref< Value *(IRBuilderBase &, unsigned)> GetVF, unsigned IC)
std::variant< RdxOrdered, RdxInLoop, RdxUnordered > ReductionStyle
bool pred_empty(const BasicBlock *BB)
@ DataAndControlFlowWithoutRuntimeCheck
Use predicate to control both data and control flow, but modify the trip count so that a runtime over...
@ None
Don't use tail folding.
@ DataWithEVL
Use predicated EVL instructions for tail-folding.
@ DataAndControlFlow
Use predicate to control both data and control flow.
@ DataWithoutLaneMask
Same as Data, but avoids using the get.active.lane.mask intrinsic to calculate the mask and instead i...
@ Data
Use predicate only to mask operations on data in the loop.
AnalysisManager< Function > FunctionAnalysisManager
Convenience typedef for the Function analysis manager.
LLVM_ABI bool hasBranchWeightMD(const Instruction &I)
Checks if an instructions has Branch Weight Metadata.
hash_code hash_combine(const Ts &...args)
Combine values into a single hash_code.
T bit_floor(T Value)
Returns the largest integral power of two no greater than Value if Value is nonzero.
Type * toVectorTy(Type *Scalar, ElementCount EC)
A helper function for converting Scalar types to vector types.
std::unique_ptr< VPlan > VPlanPtr
constexpr detail::IsaCheckPredicate< Types... > IsaPred
Function object wrapper for the llvm::isa type check.
LLVM_ABI MapVector< Instruction *, uint64_t > computeMinimumValueSizes(ArrayRef< BasicBlock * > Blocks, DemandedBits &DB, const TargetTransformInfo *TTI=nullptr)
Compute a map of integer instructions to their minimum legal type size.
hash_code hash_combine_range(InputIteratorT first, InputIteratorT last)
Compute a hash_code for a sequence of values.
LLVM_ABI cl::opt< bool > EnableLoopInterleaving
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
This struct is a compact representation of a valid (non-zero power of two) alignment.
A special type used by analysis passes to provide an address that identifies that particular analysis...
static LLVM_ABI void collectEphemeralValues(const Loop *L, AssumptionCache *AC, SmallPtrSetImpl< const Value * > &EphValues)
Collect a loop's ephemeral values (those used only by an assume or similar intrinsics in the loop).
An information struct used to provide DenseMap with the various necessary components for a given valu...
Encapsulate information regarding vectorization of a loop and its epilogue.
EpilogueLoopVectorizationInfo(ElementCount MVF, unsigned MUF, ElementCount EVF, unsigned EUF, VPlan &EpiloguePlan)
BasicBlock * MainLoopIterationCountCheck
BasicBlock * EpilogueIterationCountCheck
A class that represents two vectorization factors (initialized with 0 by default).
static FixedScalableVFPair getNone()
This holds details about a histogram operation – a load -> update -> store sequence where each lane i...
Incoming for lane maks phi as machine instruction, incoming register Reg and incoming block Block are...
std::optional< unsigned > MaskPos
LLVM_ABI LoopVectorizeResult runImpl(Function &F)
LLVM_ABI bool processLoop(Loop *L)
LoopAccessInfoManager * LAIs
LLVM_ABI void printPipeline(raw_ostream &OS, function_ref< StringRef(StringRef)> MapClassName2PassName)
LLVM_ABI LoopVectorizePass(LoopVectorizeOptions Opts={})
LLVM_ABI PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM)
OptimizationRemarkEmitter * ORE
std::function< BlockFrequencyInfo &()> GetBFI
TargetTransformInfo * TTI
Storage for information about made changes.
A CRTP mix-in to automatically provide informational APIs needed for passes.
This reduction is unordered with the partial result scaled down by some factor.
Holds the VFShape for a specific scalar to vector function mapping.
std::optional< unsigned > getParamIndexForOptionalMask() const
Instruction Set Architecture.
Encapsulates information needed to describe a parameter.
A range of powers-of-2 vectorization factors with fixed start and adjustable end.
Struct to hold various analysis needed for cost computations.
unsigned getPredBlockCostDivisor(BasicBlock *BB) const
LoopVectorizationCostModel & CM
bool isLegacyUniformAfterVectorization(Instruction *I, ElementCount VF) const
Return true if I is considered uniform-after-vectorization in the legacy cost model for VF.
bool skipCostComputation(Instruction *UI, bool IsVector) const
Return true if the cost for UI shouldn't be computed, e.g.
InstructionCost getLegacyCost(Instruction *UI, ElementCount VF) const
Return the cost for UI with VF using the legacy cost model as fallback until computing the cost of al...
TargetTransformInfo::TargetCostKind CostKind
SmallPtrSet< Instruction *, 8 > SkipCostComputation
A struct that represents some properties of the register usage of a loop.
A recipe for widening select instructions.
TODO: The following VectorizationFactor was pulled out of LoopVectorizationCostModel class.
InstructionCost Cost
Cost of the loop with that width.
ElementCount MinProfitableTripCount
The minimum trip count required to make vectorization profitable, e.g.
ElementCount Width
Vector width with best cost.
InstructionCost ScalarCost
Cost of the scalar loop.
static VectorizationFactor Disabled()
Width 1 means no vectorization, cost 0 means uncomputed cost.
static LLVM_ABI bool HoistRuntimeChecks