LLVM 20.0.0git
OpenMPOpt.cpp
Go to the documentation of this file.
1//===-- IPO/OpenMPOpt.cpp - Collection of OpenMP specific optimizations ---===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// OpenMP specific optimizations:
10//
11// - Deduplication of runtime calls, e.g., omp_get_thread_num.
12// - Replacing globalized device memory with stack memory.
13// - Replacing globalized device memory with shared memory.
14// - Parallel region merging.
15// - Transforming generic-mode device kernels to SPMD mode.
16// - Specializing the state machine for generic-mode device kernels.
17//
18//===----------------------------------------------------------------------===//
19
21
24#include "llvm/ADT/SetVector.h"
27#include "llvm/ADT/Statistic.h"
29#include "llvm/ADT/StringRef.h"
37#include "llvm/IR/Assumptions.h"
38#include "llvm/IR/BasicBlock.h"
39#include "llvm/IR/Constants.h"
41#include "llvm/IR/Dominators.h"
42#include "llvm/IR/Function.h"
43#include "llvm/IR/GlobalValue.h"
45#include "llvm/IR/InstrTypes.h"
46#include "llvm/IR/Instruction.h"
49#include "llvm/IR/IntrinsicsAMDGPU.h"
50#include "llvm/IR/IntrinsicsNVPTX.h"
51#include "llvm/IR/LLVMContext.h"
54#include "llvm/Support/Debug.h"
58
59#include <algorithm>
60#include <optional>
61#include <string>
62
63using namespace llvm;
64using namespace omp;
65
66#define DEBUG_TYPE "openmp-opt"
67
69 "openmp-opt-disable", cl::desc("Disable OpenMP specific optimizations."),
70 cl::Hidden, cl::init(false));
71
73 "openmp-opt-enable-merging",
74 cl::desc("Enable the OpenMP region merging optimization."), cl::Hidden,
75 cl::init(false));
76
77static cl::opt<bool>
78 DisableInternalization("openmp-opt-disable-internalization",
79 cl::desc("Disable function internalization."),
80 cl::Hidden, cl::init(false));
81
82static cl::opt<bool> DeduceICVValues("openmp-deduce-icv-values",
83 cl::init(false), cl::Hidden);
84static cl::opt<bool> PrintICVValues("openmp-print-icv-values", cl::init(false),
86static cl::opt<bool> PrintOpenMPKernels("openmp-print-gpu-kernels",
87 cl::init(false), cl::Hidden);
88
90 "openmp-hide-memory-transfer-latency",
91 cl::desc("[WIP] Tries to hide the latency of host to device memory"
92 " transfers"),
93 cl::Hidden, cl::init(false));
94
96 "openmp-opt-disable-deglobalization",
97 cl::desc("Disable OpenMP optimizations involving deglobalization."),
98 cl::Hidden, cl::init(false));
99
101 "openmp-opt-disable-spmdization",
102 cl::desc("Disable OpenMP optimizations involving SPMD-ization."),
103 cl::Hidden, cl::init(false));
104
106 "openmp-opt-disable-folding",
107 cl::desc("Disable OpenMP optimizations involving folding."), cl::Hidden,
108 cl::init(false));
109
111 "openmp-opt-disable-state-machine-rewrite",
112 cl::desc("Disable OpenMP optimizations that replace the state machine."),
113 cl::Hidden, cl::init(false));
114
116 "openmp-opt-disable-barrier-elimination",
117 cl::desc("Disable OpenMP optimizations that eliminate barriers."),
118 cl::Hidden, cl::init(false));
119
121 "openmp-opt-print-module-after",
122 cl::desc("Print the current module after OpenMP optimizations."),
123 cl::Hidden, cl::init(false));
124
126 "openmp-opt-print-module-before",
127 cl::desc("Print the current module before OpenMP optimizations."),
128 cl::Hidden, cl::init(false));
129
131 "openmp-opt-inline-device",
132 cl::desc("Inline all applicible functions on the device."), cl::Hidden,
133 cl::init(false));
134
135static cl::opt<bool>
136 EnableVerboseRemarks("openmp-opt-verbose-remarks",
137 cl::desc("Enables more verbose remarks."), cl::Hidden,
138 cl::init(false));
139
141 SetFixpointIterations("openmp-opt-max-iterations", cl::Hidden,
142 cl::desc("Maximal number of attributor iterations."),
143 cl::init(256));
144
146 SharedMemoryLimit("openmp-opt-shared-limit", cl::Hidden,
147 cl::desc("Maximum amount of shared memory to use."),
148 cl::init(std::numeric_limits<unsigned>::max()));
149
150STATISTIC(NumOpenMPRuntimeCallsDeduplicated,
151 "Number of OpenMP runtime calls deduplicated");
152STATISTIC(NumOpenMPParallelRegionsDeleted,
153 "Number of OpenMP parallel regions deleted");
154STATISTIC(NumOpenMPRuntimeFunctionsIdentified,
155 "Number of OpenMP runtime functions identified");
156STATISTIC(NumOpenMPRuntimeFunctionUsesIdentified,
157 "Number of OpenMP runtime function uses identified");
158STATISTIC(NumOpenMPTargetRegionKernels,
159 "Number of OpenMP target region entry points (=kernels) identified");
160STATISTIC(NumNonOpenMPTargetRegionKernels,
161 "Number of non-OpenMP target region kernels identified");
162STATISTIC(NumOpenMPTargetRegionKernelsSPMD,
163 "Number of OpenMP target region entry points (=kernels) executed in "
164 "SPMD-mode instead of generic-mode");
165STATISTIC(NumOpenMPTargetRegionKernelsWithoutStateMachine,
166 "Number of OpenMP target region entry points (=kernels) executed in "
167 "generic-mode without a state machines");
168STATISTIC(NumOpenMPTargetRegionKernelsCustomStateMachineWithFallback,
169 "Number of OpenMP target region entry points (=kernels) executed in "
170 "generic-mode with customized state machines with fallback");
171STATISTIC(NumOpenMPTargetRegionKernelsCustomStateMachineWithoutFallback,
172 "Number of OpenMP target region entry points (=kernels) executed in "
173 "generic-mode with customized state machines without fallback");
175 NumOpenMPParallelRegionsReplacedInGPUStateMachine,
176 "Number of OpenMP parallel regions replaced with ID in GPU state machines");
177STATISTIC(NumOpenMPParallelRegionsMerged,
178 "Number of OpenMP parallel regions merged");
179STATISTIC(NumBytesMovedToSharedMemory,
180 "Amount of memory pushed to shared memory");
181STATISTIC(NumBarriersEliminated, "Number of redundant barriers eliminated");
182
183#if !defined(NDEBUG)
184static constexpr auto TAG = "[" DEBUG_TYPE "]";
185#endif
186
187namespace KernelInfo {
188
189// struct ConfigurationEnvironmentTy {
190// uint8_t UseGenericStateMachine;
191// uint8_t MayUseNestedParallelism;
192// llvm::omp::OMPTgtExecModeFlags ExecMode;
193// int32_t MinThreads;
194// int32_t MaxThreads;
195// int32_t MinTeams;
196// int32_t MaxTeams;
197// };
198
199// struct DynamicEnvironmentTy {
200// uint16_t DebugIndentionLevel;
201// };
202
203// struct KernelEnvironmentTy {
204// ConfigurationEnvironmentTy Configuration;
205// IdentTy *Ident;
206// DynamicEnvironmentTy *DynamicEnv;
207// };
208
209#define KERNEL_ENVIRONMENT_IDX(MEMBER, IDX) \
210 constexpr const unsigned MEMBER##Idx = IDX;
211
212KERNEL_ENVIRONMENT_IDX(Configuration, 0)
214
215#undef KERNEL_ENVIRONMENT_IDX
216
217#define KERNEL_ENVIRONMENT_CONFIGURATION_IDX(MEMBER, IDX) \
218 constexpr const unsigned MEMBER##Idx = IDX;
219
220KERNEL_ENVIRONMENT_CONFIGURATION_IDX(UseGenericStateMachine, 0)
221KERNEL_ENVIRONMENT_CONFIGURATION_IDX(MayUseNestedParallelism, 1)
227
228#undef KERNEL_ENVIRONMENT_CONFIGURATION_IDX
229
230#define KERNEL_ENVIRONMENT_GETTER(MEMBER, RETURNTYPE) \
231 RETURNTYPE *get##MEMBER##FromKernelEnvironment(ConstantStruct *KernelEnvC) { \
232 return cast<RETURNTYPE>(KernelEnvC->getAggregateElement(MEMBER##Idx)); \
233 }
234
237
238#undef KERNEL_ENVIRONMENT_GETTER
239
240#define KERNEL_ENVIRONMENT_CONFIGURATION_GETTER(MEMBER) \
241 ConstantInt *get##MEMBER##FromKernelEnvironment( \
242 ConstantStruct *KernelEnvC) { \
243 ConstantStruct *ConfigC = \
244 getConfigurationFromKernelEnvironment(KernelEnvC); \
245 return dyn_cast<ConstantInt>(ConfigC->getAggregateElement(MEMBER##Idx)); \
246 }
247
248KERNEL_ENVIRONMENT_CONFIGURATION_GETTER(UseGenericStateMachine)
249KERNEL_ENVIRONMENT_CONFIGURATION_GETTER(MayUseNestedParallelism)
255
256#undef KERNEL_ENVIRONMENT_CONFIGURATION_GETTER
257
260 constexpr const int InitKernelEnvironmentArgNo = 0;
261 return cast<GlobalVariable>(
262 KernelInitCB->getArgOperand(InitKernelEnvironmentArgNo)
264}
265
267 GlobalVariable *KernelEnvGV =
269 return cast<ConstantStruct>(KernelEnvGV->getInitializer());
270}
271} // namespace KernelInfo
272
273namespace {
274
275struct AAHeapToShared;
276
277struct AAICVTracker;
278
279/// OpenMP specific information. For now, stores RFIs and ICVs also needed for
280/// Attributor runs.
281struct OMPInformationCache : public InformationCache {
282 OMPInformationCache(Module &M, AnalysisGetter &AG,
284 bool OpenMPPostLink)
285 : InformationCache(M, AG, Allocator, CGSCC), OMPBuilder(M),
286 OpenMPPostLink(OpenMPPostLink) {
287
288 OMPBuilder.Config.IsTargetDevice = isOpenMPDevice(OMPBuilder.M);
289 OMPBuilder.initialize();
290 initializeRuntimeFunctions(M);
291 initializeInternalControlVars();
292 }
293
294 /// Generic information that describes an internal control variable.
295 struct InternalControlVarInfo {
296 /// The kind, as described by InternalControlVar enum.
298
299 /// The name of the ICV.
301
302 /// Environment variable associated with this ICV.
303 StringRef EnvVarName;
304
305 /// Initial value kind.
306 ICVInitValue InitKind;
307
308 /// Initial value.
309 ConstantInt *InitValue;
310
311 /// Setter RTL function associated with this ICV.
312 RuntimeFunction Setter;
313
314 /// Getter RTL function associated with this ICV.
315 RuntimeFunction Getter;
316
317 /// RTL Function corresponding to the override clause of this ICV
319 };
320
321 /// Generic information that describes a runtime function
322 struct RuntimeFunctionInfo {
323
324 /// The kind, as described by the RuntimeFunction enum.
326
327 /// The name of the function.
329
330 /// Flag to indicate a variadic function.
331 bool IsVarArg;
332
333 /// The return type of the function.
335
336 /// The argument types of the function.
337 SmallVector<Type *, 8> ArgumentTypes;
338
339 /// The declaration if available.
340 Function *Declaration = nullptr;
341
342 /// Uses of this runtime function per function containing the use.
343 using UseVector = SmallVector<Use *, 16>;
344
345 /// Clear UsesMap for runtime function.
346 void clearUsesMap() { UsesMap.clear(); }
347
348 /// Boolean conversion that is true if the runtime function was found.
349 operator bool() const { return Declaration; }
350
351 /// Return the vector of uses in function \p F.
352 UseVector &getOrCreateUseVector(Function *F) {
353 std::shared_ptr<UseVector> &UV = UsesMap[F];
354 if (!UV)
355 UV = std::make_shared<UseVector>();
356 return *UV;
357 }
358
359 /// Return the vector of uses in function \p F or `nullptr` if there are
360 /// none.
361 const UseVector *getUseVector(Function &F) const {
362 auto I = UsesMap.find(&F);
363 if (I != UsesMap.end())
364 return I->second.get();
365 return nullptr;
366 }
367
368 /// Return how many functions contain uses of this runtime function.
369 size_t getNumFunctionsWithUses() const { return UsesMap.size(); }
370
371 /// Return the number of arguments (or the minimal number for variadic
372 /// functions).
373 size_t getNumArgs() const { return ArgumentTypes.size(); }
374
375 /// Run the callback \p CB on each use and forget the use if the result is
376 /// true. The callback will be fed the function in which the use was
377 /// encountered as second argument.
378 void foreachUse(SmallVectorImpl<Function *> &SCC,
379 function_ref<bool(Use &, Function &)> CB) {
380 for (Function *F : SCC)
381 foreachUse(CB, F);
382 }
383
384 /// Run the callback \p CB on each use within the function \p F and forget
385 /// the use if the result is true.
386 void foreachUse(function_ref<bool(Use &, Function &)> CB, Function *F) {
387 SmallVector<unsigned, 8> ToBeDeleted;
388 ToBeDeleted.clear();
389
390 unsigned Idx = 0;
391 UseVector &UV = getOrCreateUseVector(F);
392
393 for (Use *U : UV) {
394 if (CB(*U, *F))
395 ToBeDeleted.push_back(Idx);
396 ++Idx;
397 }
398
399 // Remove the to-be-deleted indices in reverse order as prior
400 // modifications will not modify the smaller indices.
401 while (!ToBeDeleted.empty()) {
402 unsigned Idx = ToBeDeleted.pop_back_val();
403 UV[Idx] = UV.back();
404 UV.pop_back();
405 }
406 }
407
408 private:
409 /// Map from functions to all uses of this runtime function contained in
410 /// them.
412
413 public:
414 /// Iterators for the uses of this runtime function.
415 decltype(UsesMap)::iterator begin() { return UsesMap.begin(); }
416 decltype(UsesMap)::iterator end() { return UsesMap.end(); }
417 };
418
419 /// An OpenMP-IR-Builder instance
420 OpenMPIRBuilder OMPBuilder;
421
422 /// Map from runtime function kind to the runtime function description.
423 EnumeratedArray<RuntimeFunctionInfo, RuntimeFunction,
424 RuntimeFunction::OMPRTL___last>
425 RFIs;
426
427 /// Map from function declarations/definitions to their runtime enum type.
428 DenseMap<Function *, RuntimeFunction> RuntimeFunctionIDMap;
429
430 /// Map from ICV kind to the ICV description.
431 EnumeratedArray<InternalControlVarInfo, InternalControlVar,
432 InternalControlVar::ICV___last>
433 ICVs;
434
435 /// Helper to initialize all internal control variable information for those
436 /// defined in OMPKinds.def.
437 void initializeInternalControlVars() {
438#define ICV_RT_SET(_Name, RTL) \
439 { \
440 auto &ICV = ICVs[_Name]; \
441 ICV.Setter = RTL; \
442 }
443#define ICV_RT_GET(Name, RTL) \
444 { \
445 auto &ICV = ICVs[Name]; \
446 ICV.Getter = RTL; \
447 }
448#define ICV_DATA_ENV(Enum, _Name, _EnvVarName, Init) \
449 { \
450 auto &ICV = ICVs[Enum]; \
451 ICV.Name = _Name; \
452 ICV.Kind = Enum; \
453 ICV.InitKind = Init; \
454 ICV.EnvVarName = _EnvVarName; \
455 switch (ICV.InitKind) { \
456 case ICV_IMPLEMENTATION_DEFINED: \
457 ICV.InitValue = nullptr; \
458 break; \
459 case ICV_ZERO: \
460 ICV.InitValue = ConstantInt::get( \
461 Type::getInt32Ty(OMPBuilder.Int32->getContext()), 0); \
462 break; \
463 case ICV_FALSE: \
464 ICV.InitValue = ConstantInt::getFalse(OMPBuilder.Int1->getContext()); \
465 break; \
466 case ICV_LAST: \
467 break; \
468 } \
469 }
470#include "llvm/Frontend/OpenMP/OMPKinds.def"
471 }
472
473 /// Returns true if the function declaration \p F matches the runtime
474 /// function types, that is, return type \p RTFRetType, and argument types
475 /// \p RTFArgTypes.
476 static bool declMatchesRTFTypes(Function *F, Type *RTFRetType,
477 SmallVector<Type *, 8> &RTFArgTypes) {
478 // TODO: We should output information to the user (under debug output
479 // and via remarks).
480
481 if (!F)
482 return false;
483 if (F->getReturnType() != RTFRetType)
484 return false;
485 if (F->arg_size() != RTFArgTypes.size())
486 return false;
487
488 auto *RTFTyIt = RTFArgTypes.begin();
489 for (Argument &Arg : F->args()) {
490 if (Arg.getType() != *RTFTyIt)
491 return false;
492
493 ++RTFTyIt;
494 }
495
496 return true;
497 }
498
499 // Helper to collect all uses of the declaration in the UsesMap.
500 unsigned collectUses(RuntimeFunctionInfo &RFI, bool CollectStats = true) {
501 unsigned NumUses = 0;
502 if (!RFI.Declaration)
503 return NumUses;
504 OMPBuilder.addAttributes(RFI.Kind, *RFI.Declaration);
505
506 if (CollectStats) {
507 NumOpenMPRuntimeFunctionsIdentified += 1;
508 NumOpenMPRuntimeFunctionUsesIdentified += RFI.Declaration->getNumUses();
509 }
510
511 // TODO: We directly convert uses into proper calls and unknown uses.
512 for (Use &U : RFI.Declaration->uses()) {
513 if (Instruction *UserI = dyn_cast<Instruction>(U.getUser())) {
514 if (!CGSCC || CGSCC->empty() || CGSCC->contains(UserI->getFunction())) {
515 RFI.getOrCreateUseVector(UserI->getFunction()).push_back(&U);
516 ++NumUses;
517 }
518 } else {
519 RFI.getOrCreateUseVector(nullptr).push_back(&U);
520 ++NumUses;
521 }
522 }
523 return NumUses;
524 }
525
526 // Helper function to recollect uses of a runtime function.
527 void recollectUsesForFunction(RuntimeFunction RTF) {
528 auto &RFI = RFIs[RTF];
529 RFI.clearUsesMap();
530 collectUses(RFI, /*CollectStats*/ false);
531 }
532
533 // Helper function to recollect uses of all runtime functions.
534 void recollectUses() {
535 for (int Idx = 0; Idx < RFIs.size(); ++Idx)
536 recollectUsesForFunction(static_cast<RuntimeFunction>(Idx));
537 }
538
539 // Helper function to inherit the calling convention of the function callee.
540 void setCallingConvention(FunctionCallee Callee, CallInst *CI) {
541 if (Function *Fn = dyn_cast<Function>(Callee.getCallee()))
542 CI->setCallingConv(Fn->getCallingConv());
543 }
544
545 // Helper function to determine if it's legal to create a call to the runtime
546 // functions.
547 bool runtimeFnsAvailable(ArrayRef<RuntimeFunction> Fns) {
548 // We can always emit calls if we haven't yet linked in the runtime.
549 if (!OpenMPPostLink)
550 return true;
551
552 // Once the runtime has been already been linked in we cannot emit calls to
553 // any undefined functions.
554 for (RuntimeFunction Fn : Fns) {
555 RuntimeFunctionInfo &RFI = RFIs[Fn];
556
557 if (RFI.Declaration && RFI.Declaration->isDeclaration())
558 return false;
559 }
560 return true;
561 }
562
563 /// Helper to initialize all runtime function information for those defined
564 /// in OpenMPKinds.def.
565 void initializeRuntimeFunctions(Module &M) {
566
567 // Helper macros for handling __VA_ARGS__ in OMP_RTL
568#define OMP_TYPE(VarName, ...) \
569 Type *VarName = OMPBuilder.VarName; \
570 (void)VarName;
571
572#define OMP_ARRAY_TYPE(VarName, ...) \
573 ArrayType *VarName##Ty = OMPBuilder.VarName##Ty; \
574 (void)VarName##Ty; \
575 PointerType *VarName##PtrTy = OMPBuilder.VarName##PtrTy; \
576 (void)VarName##PtrTy;
577
578#define OMP_FUNCTION_TYPE(VarName, ...) \
579 FunctionType *VarName = OMPBuilder.VarName; \
580 (void)VarName; \
581 PointerType *VarName##Ptr = OMPBuilder.VarName##Ptr; \
582 (void)VarName##Ptr;
583
584#define OMP_STRUCT_TYPE(VarName, ...) \
585 StructType *VarName = OMPBuilder.VarName; \
586 (void)VarName; \
587 PointerType *VarName##Ptr = OMPBuilder.VarName##Ptr; \
588 (void)VarName##Ptr;
589
590#define OMP_RTL(_Enum, _Name, _IsVarArg, _ReturnType, ...) \
591 { \
592 SmallVector<Type *, 8> ArgsTypes({__VA_ARGS__}); \
593 Function *F = M.getFunction(_Name); \
594 RTLFunctions.insert(F); \
595 if (declMatchesRTFTypes(F, OMPBuilder._ReturnType, ArgsTypes)) { \
596 RuntimeFunctionIDMap[F] = _Enum; \
597 auto &RFI = RFIs[_Enum]; \
598 RFI.Kind = _Enum; \
599 RFI.Name = _Name; \
600 RFI.IsVarArg = _IsVarArg; \
601 RFI.ReturnType = OMPBuilder._ReturnType; \
602 RFI.ArgumentTypes = std::move(ArgsTypes); \
603 RFI.Declaration = F; \
604 unsigned NumUses = collectUses(RFI); \
605 (void)NumUses; \
606 LLVM_DEBUG({ \
607 dbgs() << TAG << RFI.Name << (RFI.Declaration ? "" : " not") \
608 << " found\n"; \
609 if (RFI.Declaration) \
610 dbgs() << TAG << "-> got " << NumUses << " uses in " \
611 << RFI.getNumFunctionsWithUses() \
612 << " different functions.\n"; \
613 }); \
614 } \
615 }
616#include "llvm/Frontend/OpenMP/OMPKinds.def"
617
618 // Remove the `noinline` attribute from `__kmpc`, `ompx::` and `omp_`
619 // functions, except if `optnone` is present.
620 if (isOpenMPDevice(M)) {
621 for (Function &F : M) {
622 for (StringRef Prefix : {"__kmpc", "_ZN4ompx", "omp_"})
623 if (F.hasFnAttribute(Attribute::NoInline) &&
624 F.getName().starts_with(Prefix) &&
625 !F.hasFnAttribute(Attribute::OptimizeNone))
626 F.removeFnAttr(Attribute::NoInline);
627 }
628 }
629
630 // TODO: We should attach the attributes defined in OMPKinds.def.
631 }
632
633 /// Collection of known OpenMP runtime functions..
634 DenseSet<const Function *> RTLFunctions;
635
636 /// Indicates if we have already linked in the OpenMP device library.
637 bool OpenMPPostLink = false;
638};
639
640template <typename Ty, bool InsertInvalidates = true>
641struct BooleanStateWithSetVector : public BooleanState {
642 bool contains(const Ty &Elem) const { return Set.contains(Elem); }
643 bool insert(const Ty &Elem) {
644 if (InsertInvalidates)
646 return Set.insert(Elem);
647 }
648
649 const Ty &operator[](int Idx) const { return Set[Idx]; }
650 bool operator==(const BooleanStateWithSetVector &RHS) const {
651 return BooleanState::operator==(RHS) && Set == RHS.Set;
652 }
653 bool operator!=(const BooleanStateWithSetVector &RHS) const {
654 return !(*this == RHS);
655 }
656
657 bool empty() const { return Set.empty(); }
658 size_t size() const { return Set.size(); }
659
660 /// "Clamp" this state with \p RHS.
661 BooleanStateWithSetVector &operator^=(const BooleanStateWithSetVector &RHS) {
662 BooleanState::operator^=(RHS);
663 Set.insert(RHS.Set.begin(), RHS.Set.end());
664 return *this;
665 }
666
667private:
668 /// A set to keep track of elements.
670
671public:
672 typename decltype(Set)::iterator begin() { return Set.begin(); }
673 typename decltype(Set)::iterator end() { return Set.end(); }
674 typename decltype(Set)::const_iterator begin() const { return Set.begin(); }
675 typename decltype(Set)::const_iterator end() const { return Set.end(); }
676};
677
678template <typename Ty, bool InsertInvalidates = true>
679using BooleanStateWithPtrSetVector =
680 BooleanStateWithSetVector<Ty *, InsertInvalidates>;
681
682struct KernelInfoState : AbstractState {
683 /// Flag to track if we reached a fixpoint.
684 bool IsAtFixpoint = false;
685
686 /// The parallel regions (identified by the outlined parallel functions) that
687 /// can be reached from the associated function.
688 BooleanStateWithPtrSetVector<CallBase, /* InsertInvalidates */ false>
689 ReachedKnownParallelRegions;
690
691 /// State to track what parallel region we might reach.
692 BooleanStateWithPtrSetVector<CallBase> ReachedUnknownParallelRegions;
693
694 /// State to track if we are in SPMD-mode, assumed or know, and why we decided
695 /// we cannot be. If it is assumed, then RequiresFullRuntime should also be
696 /// false.
697 BooleanStateWithPtrSetVector<Instruction, false> SPMDCompatibilityTracker;
698
699 /// The __kmpc_target_init call in this kernel, if any. If we find more than
700 /// one we abort as the kernel is malformed.
701 CallBase *KernelInitCB = nullptr;
702
703 /// The constant kernel environement as taken from and passed to
704 /// __kmpc_target_init.
705 ConstantStruct *KernelEnvC = nullptr;
706
707 /// The __kmpc_target_deinit call in this kernel, if any. If we find more than
708 /// one we abort as the kernel is malformed.
709 CallBase *KernelDeinitCB = nullptr;
710
711 /// Flag to indicate if the associated function is a kernel entry.
712 bool IsKernelEntry = false;
713
714 /// State to track what kernel entries can reach the associated function.
715 BooleanStateWithPtrSetVector<Function, false> ReachingKernelEntries;
716
717 /// State to indicate if we can track parallel level of the associated
718 /// function. We will give up tracking if we encounter unknown caller or the
719 /// caller is __kmpc_parallel_51.
720 BooleanStateWithSetVector<uint8_t> ParallelLevels;
721
722 /// Flag that indicates if the kernel has nested Parallelism
723 bool NestedParallelism = false;
724
725 /// Abstract State interface
726 ///{
727
728 KernelInfoState() = default;
729 KernelInfoState(bool BestState) {
730 if (!BestState)
732 }
733
734 /// See AbstractState::isValidState(...)
735 bool isValidState() const override { return true; }
736
737 /// See AbstractState::isAtFixpoint(...)
738 bool isAtFixpoint() const override { return IsAtFixpoint; }
739
740 /// See AbstractState::indicatePessimisticFixpoint(...)
742 IsAtFixpoint = true;
743 ParallelLevels.indicatePessimisticFixpoint();
744 ReachingKernelEntries.indicatePessimisticFixpoint();
745 SPMDCompatibilityTracker.indicatePessimisticFixpoint();
746 ReachedKnownParallelRegions.indicatePessimisticFixpoint();
747 ReachedUnknownParallelRegions.indicatePessimisticFixpoint();
748 NestedParallelism = true;
750 }
751
752 /// See AbstractState::indicateOptimisticFixpoint(...)
754 IsAtFixpoint = true;
755 ParallelLevels.indicateOptimisticFixpoint();
756 ReachingKernelEntries.indicateOptimisticFixpoint();
757 SPMDCompatibilityTracker.indicateOptimisticFixpoint();
758 ReachedKnownParallelRegions.indicateOptimisticFixpoint();
759 ReachedUnknownParallelRegions.indicateOptimisticFixpoint();
761 }
762
763 /// Return the assumed state
764 KernelInfoState &getAssumed() { return *this; }
765 const KernelInfoState &getAssumed() const { return *this; }
766
767 bool operator==(const KernelInfoState &RHS) const {
768 if (SPMDCompatibilityTracker != RHS.SPMDCompatibilityTracker)
769 return false;
770 if (ReachedKnownParallelRegions != RHS.ReachedKnownParallelRegions)
771 return false;
772 if (ReachedUnknownParallelRegions != RHS.ReachedUnknownParallelRegions)
773 return false;
774 if (ReachingKernelEntries != RHS.ReachingKernelEntries)
775 return false;
776 if (ParallelLevels != RHS.ParallelLevels)
777 return false;
778 if (NestedParallelism != RHS.NestedParallelism)
779 return false;
780 return true;
781 }
782
783 /// Returns true if this kernel contains any OpenMP parallel regions.
784 bool mayContainParallelRegion() {
785 return !ReachedKnownParallelRegions.empty() ||
786 !ReachedUnknownParallelRegions.empty();
787 }
788
789 /// Return empty set as the best state of potential values.
790 static KernelInfoState getBestState() { return KernelInfoState(true); }
791
792 static KernelInfoState getBestState(KernelInfoState &KIS) {
793 return getBestState();
794 }
795
796 /// Return full set as the worst state of potential values.
797 static KernelInfoState getWorstState() { return KernelInfoState(false); }
798
799 /// "Clamp" this state with \p KIS.
800 KernelInfoState operator^=(const KernelInfoState &KIS) {
801 // Do not merge two different _init and _deinit call sites.
802 if (KIS.KernelInitCB) {
803 if (KernelInitCB && KernelInitCB != KIS.KernelInitCB)
804 llvm_unreachable("Kernel that calls another kernel violates OpenMP-Opt "
805 "assumptions.");
806 KernelInitCB = KIS.KernelInitCB;
807 }
808 if (KIS.KernelDeinitCB) {
809 if (KernelDeinitCB && KernelDeinitCB != KIS.KernelDeinitCB)
810 llvm_unreachable("Kernel that calls another kernel violates OpenMP-Opt "
811 "assumptions.");
812 KernelDeinitCB = KIS.KernelDeinitCB;
813 }
814 if (KIS.KernelEnvC) {
815 if (KernelEnvC && KernelEnvC != KIS.KernelEnvC)
816 llvm_unreachable("Kernel that calls another kernel violates OpenMP-Opt "
817 "assumptions.");
818 KernelEnvC = KIS.KernelEnvC;
819 }
820 SPMDCompatibilityTracker ^= KIS.SPMDCompatibilityTracker;
821 ReachedKnownParallelRegions ^= KIS.ReachedKnownParallelRegions;
822 ReachedUnknownParallelRegions ^= KIS.ReachedUnknownParallelRegions;
823 NestedParallelism |= KIS.NestedParallelism;
824 return *this;
825 }
826
827 KernelInfoState operator&=(const KernelInfoState &KIS) {
828 return (*this ^= KIS);
829 }
830
831 ///}
832};
833
834/// Used to map the values physically (in the IR) stored in an offload
835/// array, to a vector in memory.
836struct OffloadArray {
837 /// Physical array (in the IR).
838 AllocaInst *Array = nullptr;
839 /// Mapped values.
840 SmallVector<Value *, 8> StoredValues;
841 /// Last stores made in the offload array.
842 SmallVector<StoreInst *, 8> LastAccesses;
843
844 OffloadArray() = default;
845
846 /// Initializes the OffloadArray with the values stored in \p Array before
847 /// instruction \p Before is reached. Returns false if the initialization
848 /// fails.
849 /// This MUST be used immediately after the construction of the object.
850 bool initialize(AllocaInst &Array, Instruction &Before) {
851 if (!Array.getAllocatedType()->isArrayTy())
852 return false;
853
854 if (!getValues(Array, Before))
855 return false;
856
857 this->Array = &Array;
858 return true;
859 }
860
861 static const unsigned DeviceIDArgNum = 1;
862 static const unsigned BasePtrsArgNum = 3;
863 static const unsigned PtrsArgNum = 4;
864 static const unsigned SizesArgNum = 5;
865
866private:
867 /// Traverses the BasicBlock where \p Array is, collecting the stores made to
868 /// \p Array, leaving StoredValues with the values stored before the
869 /// instruction \p Before is reached.
870 bool getValues(AllocaInst &Array, Instruction &Before) {
871 // Initialize container.
872 const uint64_t NumValues = Array.getAllocatedType()->getArrayNumElements();
873 StoredValues.assign(NumValues, nullptr);
874 LastAccesses.assign(NumValues, nullptr);
875
876 // TODO: This assumes the instruction \p Before is in the same
877 // BasicBlock as Array. Make it general, for any control flow graph.
878 BasicBlock *BB = Array.getParent();
879 if (BB != Before.getParent())
880 return false;
881
882 const DataLayout &DL = Array.getDataLayout();
883 const unsigned int PointerSize = DL.getPointerSize();
884
885 for (Instruction &I : *BB) {
886 if (&I == &Before)
887 break;
888
889 if (!isa<StoreInst>(&I))
890 continue;
891
892 auto *S = cast<StoreInst>(&I);
893 int64_t Offset = -1;
894 auto *Dst =
895 GetPointerBaseWithConstantOffset(S->getPointerOperand(), Offset, DL);
896 if (Dst == &Array) {
897 int64_t Idx = Offset / PointerSize;
898 StoredValues[Idx] = getUnderlyingObject(S->getValueOperand());
899 LastAccesses[Idx] = S;
900 }
901 }
902
903 return isFilled();
904 }
905
906 /// Returns true if all values in StoredValues and
907 /// LastAccesses are not nullptrs.
908 bool isFilled() {
909 const unsigned NumValues = StoredValues.size();
910 for (unsigned I = 0; I < NumValues; ++I) {
911 if (!StoredValues[I] || !LastAccesses[I])
912 return false;
913 }
914
915 return true;
916 }
917};
918
919struct OpenMPOpt {
920
921 using OptimizationRemarkGetter =
923
924 OpenMPOpt(SmallVectorImpl<Function *> &SCC, CallGraphUpdater &CGUpdater,
925 OptimizationRemarkGetter OREGetter,
926 OMPInformationCache &OMPInfoCache, Attributor &A)
927 : M(*(*SCC.begin())->getParent()), SCC(SCC), CGUpdater(CGUpdater),
928 OREGetter(OREGetter), OMPInfoCache(OMPInfoCache), A(A) {}
929
930 /// Check if any remarks are enabled for openmp-opt
931 bool remarksEnabled() {
932 auto &Ctx = M.getContext();
933 return Ctx.getDiagHandlerPtr()->isAnyRemarkEnabled(DEBUG_TYPE);
934 }
935
936 /// Run all OpenMP optimizations on the underlying SCC.
937 bool run(bool IsModulePass) {
938 if (SCC.empty())
939 return false;
940
941 bool Changed = false;
942
943 LLVM_DEBUG(dbgs() << TAG << "Run on SCC with " << SCC.size()
944 << " functions\n");
945
946 if (IsModulePass) {
947 Changed |= runAttributor(IsModulePass);
948
949 // Recollect uses, in case Attributor deleted any.
950 OMPInfoCache.recollectUses();
951
952 // TODO: This should be folded into buildCustomStateMachine.
953 Changed |= rewriteDeviceCodeStateMachine();
954
955 if (remarksEnabled())
956 analysisGlobalization();
957 } else {
958 if (PrintICVValues)
959 printICVs();
961 printKernels();
962
963 Changed |= runAttributor(IsModulePass);
964
965 // Recollect uses, in case Attributor deleted any.
966 OMPInfoCache.recollectUses();
967
968 Changed |= deleteParallelRegions();
969
971 Changed |= hideMemTransfersLatency();
972 Changed |= deduplicateRuntimeCalls();
974 if (mergeParallelRegions()) {
975 deduplicateRuntimeCalls();
976 Changed = true;
977 }
978 }
979 }
980
981 if (OMPInfoCache.OpenMPPostLink)
982 Changed |= removeRuntimeSymbols();
983
984 return Changed;
985 }
986
987 /// Print initial ICV values for testing.
988 /// FIXME: This should be done from the Attributor once it is added.
989 void printICVs() const {
990 InternalControlVar ICVs[] = {ICV_nthreads, ICV_active_levels, ICV_cancel,
991 ICV_proc_bind};
992
993 for (Function *F : SCC) {
994 for (auto ICV : ICVs) {
995 auto ICVInfo = OMPInfoCache.ICVs[ICV];
996 auto Remark = [&](OptimizationRemarkAnalysis ORA) {
997 return ORA << "OpenMP ICV " << ore::NV("OpenMPICV", ICVInfo.Name)
998 << " Value: "
999 << (ICVInfo.InitValue
1000 ? toString(ICVInfo.InitValue->getValue(), 10, true)
1001 : "IMPLEMENTATION_DEFINED");
1002 };
1003
1004 emitRemark<OptimizationRemarkAnalysis>(F, "OpenMPICVTracker", Remark);
1005 }
1006 }
1007 }
1008
1009 /// Print OpenMP GPU kernels for testing.
1010 void printKernels() const {
1011 for (Function *F : SCC) {
1012 if (!omp::isOpenMPKernel(*F))
1013 continue;
1014
1015 auto Remark = [&](OptimizationRemarkAnalysis ORA) {
1016 return ORA << "OpenMP GPU kernel "
1017 << ore::NV("OpenMPGPUKernel", F->getName()) << "\n";
1018 };
1019
1020 emitRemark<OptimizationRemarkAnalysis>(F, "OpenMPGPU", Remark);
1021 }
1022 }
1023
1024 /// Return the call if \p U is a callee use in a regular call. If \p RFI is
1025 /// given it has to be the callee or a nullptr is returned.
1026 static CallInst *getCallIfRegularCall(
1027 Use &U, OMPInformationCache::RuntimeFunctionInfo *RFI = nullptr) {
1028 CallInst *CI = dyn_cast<CallInst>(U.getUser());
1029 if (CI && CI->isCallee(&U) && !CI->hasOperandBundles() &&
1030 (!RFI ||
1031 (RFI->Declaration && CI->getCalledFunction() == RFI->Declaration)))
1032 return CI;
1033 return nullptr;
1034 }
1035
1036 /// Return the call if \p V is a regular call. If \p RFI is given it has to be
1037 /// the callee or a nullptr is returned.
1038 static CallInst *getCallIfRegularCall(
1039 Value &V, OMPInformationCache::RuntimeFunctionInfo *RFI = nullptr) {
1040 CallInst *CI = dyn_cast<CallInst>(&V);
1041 if (CI && !CI->hasOperandBundles() &&
1042 (!RFI ||
1043 (RFI->Declaration && CI->getCalledFunction() == RFI->Declaration)))
1044 return CI;
1045 return nullptr;
1046 }
1047
1048private:
1049 /// Merge parallel regions when it is safe.
1050 bool mergeParallelRegions() {
1051 const unsigned CallbackCalleeOperand = 2;
1052 const unsigned CallbackFirstArgOperand = 3;
1053 using InsertPointTy = OpenMPIRBuilder::InsertPointTy;
1054
1055 // Check if there are any __kmpc_fork_call calls to merge.
1056 OMPInformationCache::RuntimeFunctionInfo &RFI =
1057 OMPInfoCache.RFIs[OMPRTL___kmpc_fork_call];
1058
1059 if (!RFI.Declaration)
1060 return false;
1061
1062 // Unmergable calls that prevent merging a parallel region.
1063 OMPInformationCache::RuntimeFunctionInfo UnmergableCallsInfo[] = {
1064 OMPInfoCache.RFIs[OMPRTL___kmpc_push_proc_bind],
1065 OMPInfoCache.RFIs[OMPRTL___kmpc_push_num_threads],
1066 };
1067
1068 bool Changed = false;
1069 LoopInfo *LI = nullptr;
1070 DominatorTree *DT = nullptr;
1071
1073
1074 BasicBlock *StartBB = nullptr, *EndBB = nullptr;
1075 auto BodyGenCB = [&](InsertPointTy AllocaIP, InsertPointTy CodeGenIP) {
1076 BasicBlock *CGStartBB = CodeGenIP.getBlock();
1077 BasicBlock *CGEndBB =
1078 SplitBlock(CGStartBB, &*CodeGenIP.getPoint(), DT, LI);
1079 assert(StartBB != nullptr && "StartBB should not be null");
1080 CGStartBB->getTerminator()->setSuccessor(0, StartBB);
1081 assert(EndBB != nullptr && "EndBB should not be null");
1082 EndBB->getTerminator()->setSuccessor(0, CGEndBB);
1083 };
1084
1085 auto PrivCB = [&](InsertPointTy AllocaIP, InsertPointTy CodeGenIP, Value &,
1086 Value &Inner, Value *&ReplacementValue) -> InsertPointTy {
1087 ReplacementValue = &Inner;
1088 return CodeGenIP;
1089 };
1090
1091 auto FiniCB = [&](InsertPointTy CodeGenIP) {};
1092
1093 /// Create a sequential execution region within a merged parallel region,
1094 /// encapsulated in a master construct with a barrier for synchronization.
1095 auto CreateSequentialRegion = [&](Function *OuterFn,
1096 BasicBlock *OuterPredBB,
1097 Instruction *SeqStartI,
1098 Instruction *SeqEndI) {
1099 // Isolate the instructions of the sequential region to a separate
1100 // block.
1101 BasicBlock *ParentBB = SeqStartI->getParent();
1102 BasicBlock *SeqEndBB =
1103 SplitBlock(ParentBB, SeqEndI->getNextNode(), DT, LI);
1104 BasicBlock *SeqAfterBB =
1105 SplitBlock(SeqEndBB, &*SeqEndBB->getFirstInsertionPt(), DT, LI);
1106 BasicBlock *SeqStartBB =
1107 SplitBlock(ParentBB, SeqStartI, DT, LI, nullptr, "seq.par.merged");
1108
1109 assert(ParentBB->getUniqueSuccessor() == SeqStartBB &&
1110 "Expected a different CFG");
1111 const DebugLoc DL = ParentBB->getTerminator()->getDebugLoc();
1112 ParentBB->getTerminator()->eraseFromParent();
1113
1114 auto BodyGenCB = [&](InsertPointTy AllocaIP, InsertPointTy CodeGenIP) {
1115 BasicBlock *CGStartBB = CodeGenIP.getBlock();
1116 BasicBlock *CGEndBB =
1117 SplitBlock(CGStartBB, &*CodeGenIP.getPoint(), DT, LI);
1118 assert(SeqStartBB != nullptr && "SeqStartBB should not be null");
1119 CGStartBB->getTerminator()->setSuccessor(0, SeqStartBB);
1120 assert(SeqEndBB != nullptr && "SeqEndBB should not be null");
1121 SeqEndBB->getTerminator()->setSuccessor(0, CGEndBB);
1122 };
1123 auto FiniCB = [&](InsertPointTy CodeGenIP) {};
1124
1125 // Find outputs from the sequential region to outside users and
1126 // broadcast their values to them.
1127 for (Instruction &I : *SeqStartBB) {
1128 SmallPtrSet<Instruction *, 4> OutsideUsers;
1129 for (User *Usr : I.users()) {
1130 Instruction &UsrI = *cast<Instruction>(Usr);
1131 // Ignore outputs to LT intrinsics, code extraction for the merged
1132 // parallel region will fix them.
1133 if (UsrI.isLifetimeStartOrEnd())
1134 continue;
1135
1136 if (UsrI.getParent() != SeqStartBB)
1137 OutsideUsers.insert(&UsrI);
1138 }
1139
1140 if (OutsideUsers.empty())
1141 continue;
1142
1143 // Emit an alloca in the outer region to store the broadcasted
1144 // value.
1145 const DataLayout &DL = M.getDataLayout();
1146 AllocaInst *AllocaI = new AllocaInst(
1147 I.getType(), DL.getAllocaAddrSpace(), nullptr,
1148 I.getName() + ".seq.output.alloc", OuterFn->front().begin());
1149
1150 // Emit a store instruction in the sequential BB to update the
1151 // value.
1152 new StoreInst(&I, AllocaI, SeqStartBB->getTerminator()->getIterator());
1153
1154 // Emit a load instruction and replace the use of the output value
1155 // with it.
1156 for (Instruction *UsrI : OutsideUsers) {
1157 LoadInst *LoadI = new LoadInst(I.getType(), AllocaI,
1158 I.getName() + ".seq.output.load",
1159 UsrI->getIterator());
1160 UsrI->replaceUsesOfWith(&I, LoadI);
1161 }
1162 }
1163
1165 InsertPointTy(ParentBB, ParentBB->end()), DL);
1166 InsertPointTy SeqAfterIP =
1167 OMPInfoCache.OMPBuilder.createMaster(Loc, BodyGenCB, FiniCB);
1168
1169 OMPInfoCache.OMPBuilder.createBarrier(SeqAfterIP, OMPD_parallel);
1170
1171 BranchInst::Create(SeqAfterBB, SeqAfterIP.getBlock());
1172
1173 LLVM_DEBUG(dbgs() << TAG << "After sequential inlining " << *OuterFn
1174 << "\n");
1175 };
1176
1177 // Helper to merge the __kmpc_fork_call calls in MergableCIs. They are all
1178 // contained in BB and only separated by instructions that can be
1179 // redundantly executed in parallel. The block BB is split before the first
1180 // call (in MergableCIs) and after the last so the entire region we merge
1181 // into a single parallel region is contained in a single basic block
1182 // without any other instructions. We use the OpenMPIRBuilder to outline
1183 // that block and call the resulting function via __kmpc_fork_call.
1184 auto Merge = [&](const SmallVectorImpl<CallInst *> &MergableCIs,
1185 BasicBlock *BB) {
1186 // TODO: Change the interface to allow single CIs expanded, e.g, to
1187 // include an outer loop.
1188 assert(MergableCIs.size() > 1 && "Assumed multiple mergable CIs");
1189
1190 auto Remark = [&](OptimizationRemark OR) {
1191 OR << "Parallel region merged with parallel region"
1192 << (MergableCIs.size() > 2 ? "s" : "") << " at ";
1193 for (auto *CI : llvm::drop_begin(MergableCIs)) {
1194 OR << ore::NV("OpenMPParallelMerge", CI->getDebugLoc());
1195 if (CI != MergableCIs.back())
1196 OR << ", ";
1197 }
1198 return OR << ".";
1199 };
1200
1201 emitRemark<OptimizationRemark>(MergableCIs.front(), "OMP150", Remark);
1202
1203 Function *OriginalFn = BB->getParent();
1204 LLVM_DEBUG(dbgs() << TAG << "Merge " << MergableCIs.size()
1205 << " parallel regions in " << OriginalFn->getName()
1206 << "\n");
1207
1208 // Isolate the calls to merge in a separate block.
1209 EndBB = SplitBlock(BB, MergableCIs.back()->getNextNode(), DT, LI);
1210 BasicBlock *AfterBB =
1211 SplitBlock(EndBB, &*EndBB->getFirstInsertionPt(), DT, LI);
1212 StartBB = SplitBlock(BB, MergableCIs.front(), DT, LI, nullptr,
1213 "omp.par.merged");
1214
1215 assert(BB->getUniqueSuccessor() == StartBB && "Expected a different CFG");
1216 const DebugLoc DL = BB->getTerminator()->getDebugLoc();
1217 BB->getTerminator()->eraseFromParent();
1218
1219 // Create sequential regions for sequential instructions that are
1220 // in-between mergable parallel regions.
1221 for (auto *It = MergableCIs.begin(), *End = MergableCIs.end() - 1;
1222 It != End; ++It) {
1223 Instruction *ForkCI = *It;
1224 Instruction *NextForkCI = *(It + 1);
1225
1226 // Continue if there are not in-between instructions.
1227 if (ForkCI->getNextNode() == NextForkCI)
1228 continue;
1229
1230 CreateSequentialRegion(OriginalFn, BB, ForkCI->getNextNode(),
1231 NextForkCI->getPrevNode());
1232 }
1233
1234 OpenMPIRBuilder::LocationDescription Loc(InsertPointTy(BB, BB->end()),
1235 DL);
1236 IRBuilder<>::InsertPoint AllocaIP(
1237 &OriginalFn->getEntryBlock(),
1238 OriginalFn->getEntryBlock().getFirstInsertionPt());
1239 // Create the merged parallel region with default proc binding, to
1240 // avoid overriding binding settings, and without explicit cancellation.
1241 InsertPointTy AfterIP = OMPInfoCache.OMPBuilder.createParallel(
1242 Loc, AllocaIP, BodyGenCB, PrivCB, FiniCB, nullptr, nullptr,
1243 OMP_PROC_BIND_default, /* IsCancellable */ false);
1244 BranchInst::Create(AfterBB, AfterIP.getBlock());
1245
1246 // Perform the actual outlining.
1247 OMPInfoCache.OMPBuilder.finalize(OriginalFn);
1248
1249 Function *OutlinedFn = MergableCIs.front()->getCaller();
1250
1251 // Replace the __kmpc_fork_call calls with direct calls to the outlined
1252 // callbacks.
1254 for (auto *CI : MergableCIs) {
1255 Value *Callee = CI->getArgOperand(CallbackCalleeOperand);
1256 FunctionType *FT = OMPInfoCache.OMPBuilder.ParallelTask;
1257 Args.clear();
1258 Args.push_back(OutlinedFn->getArg(0));
1259 Args.push_back(OutlinedFn->getArg(1));
1260 for (unsigned U = CallbackFirstArgOperand, E = CI->arg_size(); U < E;
1261 ++U)
1262 Args.push_back(CI->getArgOperand(U));
1263
1264 CallInst *NewCI =
1265 CallInst::Create(FT, Callee, Args, "", CI->getIterator());
1266 if (CI->getDebugLoc())
1267 NewCI->setDebugLoc(CI->getDebugLoc());
1268
1269 // Forward parameter attributes from the callback to the callee.
1270 for (unsigned U = CallbackFirstArgOperand, E = CI->arg_size(); U < E;
1271 ++U)
1272 for (const Attribute &A : CI->getAttributes().getParamAttrs(U))
1273 NewCI->addParamAttr(
1274 U - (CallbackFirstArgOperand - CallbackCalleeOperand), A);
1275
1276 // Emit an explicit barrier to replace the implicit fork-join barrier.
1277 if (CI != MergableCIs.back()) {
1278 // TODO: Remove barrier if the merged parallel region includes the
1279 // 'nowait' clause.
1280 OMPInfoCache.OMPBuilder.createBarrier(
1281 InsertPointTy(NewCI->getParent(),
1282 NewCI->getNextNode()->getIterator()),
1283 OMPD_parallel);
1284 }
1285
1286 CI->eraseFromParent();
1287 }
1288
1289 assert(OutlinedFn != OriginalFn && "Outlining failed");
1290 CGUpdater.registerOutlinedFunction(*OriginalFn, *OutlinedFn);
1291 CGUpdater.reanalyzeFunction(*OriginalFn);
1292
1293 NumOpenMPParallelRegionsMerged += MergableCIs.size();
1294
1295 return true;
1296 };
1297
1298 // Helper function that identifes sequences of
1299 // __kmpc_fork_call uses in a basic block.
1300 auto DetectPRsCB = [&](Use &U, Function &F) {
1301 CallInst *CI = getCallIfRegularCall(U, &RFI);
1302 BB2PRMap[CI->getParent()].insert(CI);
1303
1304 return false;
1305 };
1306
1307 BB2PRMap.clear();
1308 RFI.foreachUse(SCC, DetectPRsCB);
1309 SmallVector<SmallVector<CallInst *, 4>, 4> MergableCIsVector;
1310 // Find mergable parallel regions within a basic block that are
1311 // safe to merge, that is any in-between instructions can safely
1312 // execute in parallel after merging.
1313 // TODO: support merging across basic-blocks.
1314 for (auto &It : BB2PRMap) {
1315 auto &CIs = It.getSecond();
1316 if (CIs.size() < 2)
1317 continue;
1318
1319 BasicBlock *BB = It.getFirst();
1320 SmallVector<CallInst *, 4> MergableCIs;
1321
1322 /// Returns true if the instruction is mergable, false otherwise.
1323 /// A terminator instruction is unmergable by definition since merging
1324 /// works within a BB. Instructions before the mergable region are
1325 /// mergable if they are not calls to OpenMP runtime functions that may
1326 /// set different execution parameters for subsequent parallel regions.
1327 /// Instructions in-between parallel regions are mergable if they are not
1328 /// calls to any non-intrinsic function since that may call a non-mergable
1329 /// OpenMP runtime function.
1330 auto IsMergable = [&](Instruction &I, bool IsBeforeMergableRegion) {
1331 // We do not merge across BBs, hence return false (unmergable) if the
1332 // instruction is a terminator.
1333 if (I.isTerminator())
1334 return false;
1335
1336 if (!isa<CallInst>(&I))
1337 return true;
1338
1339 CallInst *CI = cast<CallInst>(&I);
1340 if (IsBeforeMergableRegion) {
1341 Function *CalledFunction = CI->getCalledFunction();
1342 if (!CalledFunction)
1343 return false;
1344 // Return false (unmergable) if the call before the parallel
1345 // region calls an explicit affinity (proc_bind) or number of
1346 // threads (num_threads) compiler-generated function. Those settings
1347 // may be incompatible with following parallel regions.
1348 // TODO: ICV tracking to detect compatibility.
1349 for (const auto &RFI : UnmergableCallsInfo) {
1350 if (CalledFunction == RFI.Declaration)
1351 return false;
1352 }
1353 } else {
1354 // Return false (unmergable) if there is a call instruction
1355 // in-between parallel regions when it is not an intrinsic. It
1356 // may call an unmergable OpenMP runtime function in its callpath.
1357 // TODO: Keep track of possible OpenMP calls in the callpath.
1358 if (!isa<IntrinsicInst>(CI))
1359 return false;
1360 }
1361
1362 return true;
1363 };
1364 // Find maximal number of parallel region CIs that are safe to merge.
1365 for (auto It = BB->begin(), End = BB->end(); It != End;) {
1366 Instruction &I = *It;
1367 ++It;
1368
1369 if (CIs.count(&I)) {
1370 MergableCIs.push_back(cast<CallInst>(&I));
1371 continue;
1372 }
1373
1374 // Continue expanding if the instruction is mergable.
1375 if (IsMergable(I, MergableCIs.empty()))
1376 continue;
1377
1378 // Forward the instruction iterator to skip the next parallel region
1379 // since there is an unmergable instruction which can affect it.
1380 for (; It != End; ++It) {
1381 Instruction &SkipI = *It;
1382 if (CIs.count(&SkipI)) {
1383 LLVM_DEBUG(dbgs() << TAG << "Skip parallel region " << SkipI
1384 << " due to " << I << "\n");
1385 ++It;
1386 break;
1387 }
1388 }
1389
1390 // Store mergable regions found.
1391 if (MergableCIs.size() > 1) {
1392 MergableCIsVector.push_back(MergableCIs);
1393 LLVM_DEBUG(dbgs() << TAG << "Found " << MergableCIs.size()
1394 << " parallel regions in block " << BB->getName()
1395 << " of function " << BB->getParent()->getName()
1396 << "\n";);
1397 }
1398
1399 MergableCIs.clear();
1400 }
1401
1402 if (!MergableCIsVector.empty()) {
1403 Changed = true;
1404
1405 for (auto &MergableCIs : MergableCIsVector)
1406 Merge(MergableCIs, BB);
1407 MergableCIsVector.clear();
1408 }
1409 }
1410
1411 if (Changed) {
1412 /// Re-collect use for fork calls, emitted barrier calls, and
1413 /// any emitted master/end_master calls.
1414 OMPInfoCache.recollectUsesForFunction(OMPRTL___kmpc_fork_call);
1415 OMPInfoCache.recollectUsesForFunction(OMPRTL___kmpc_barrier);
1416 OMPInfoCache.recollectUsesForFunction(OMPRTL___kmpc_master);
1417 OMPInfoCache.recollectUsesForFunction(OMPRTL___kmpc_end_master);
1418 }
1419
1420 return Changed;
1421 }
1422
1423 /// Try to delete parallel regions if possible.
1424 bool deleteParallelRegions() {
1425 const unsigned CallbackCalleeOperand = 2;
1426
1427 OMPInformationCache::RuntimeFunctionInfo &RFI =
1428 OMPInfoCache.RFIs[OMPRTL___kmpc_fork_call];
1429
1430 if (!RFI.Declaration)
1431 return false;
1432
1433 bool Changed = false;
1434 auto DeleteCallCB = [&](Use &U, Function &) {
1435 CallInst *CI = getCallIfRegularCall(U);
1436 if (!CI)
1437 return false;
1438 auto *Fn = dyn_cast<Function>(
1439 CI->getArgOperand(CallbackCalleeOperand)->stripPointerCasts());
1440 if (!Fn)
1441 return false;
1442 if (!Fn->onlyReadsMemory())
1443 return false;
1444 if (!Fn->hasFnAttribute(Attribute::WillReturn))
1445 return false;
1446
1447 LLVM_DEBUG(dbgs() << TAG << "Delete read-only parallel region in "
1448 << CI->getCaller()->getName() << "\n");
1449
1450 auto Remark = [&](OptimizationRemark OR) {
1451 return OR << "Removing parallel region with no side-effects.";
1452 };
1453 emitRemark<OptimizationRemark>(CI, "OMP160", Remark);
1454
1455 CI->eraseFromParent();
1456 Changed = true;
1457 ++NumOpenMPParallelRegionsDeleted;
1458 return true;
1459 };
1460
1461 RFI.foreachUse(SCC, DeleteCallCB);
1462
1463 return Changed;
1464 }
1465
1466 /// Try to eliminate runtime calls by reusing existing ones.
1467 bool deduplicateRuntimeCalls() {
1468 bool Changed = false;
1469
1470 RuntimeFunction DeduplicableRuntimeCallIDs[] = {
1471 OMPRTL_omp_get_num_threads,
1472 OMPRTL_omp_in_parallel,
1473 OMPRTL_omp_get_cancellation,
1474 OMPRTL_omp_get_supported_active_levels,
1475 OMPRTL_omp_get_level,
1476 OMPRTL_omp_get_ancestor_thread_num,
1477 OMPRTL_omp_get_team_size,
1478 OMPRTL_omp_get_active_level,
1479 OMPRTL_omp_in_final,
1480 OMPRTL_omp_get_proc_bind,
1481 OMPRTL_omp_get_num_places,
1482 OMPRTL_omp_get_num_procs,
1483 OMPRTL_omp_get_place_num,
1484 OMPRTL_omp_get_partition_num_places,
1485 OMPRTL_omp_get_partition_place_nums};
1486
1487 // Global-tid is handled separately.
1489 collectGlobalThreadIdArguments(GTIdArgs);
1490 LLVM_DEBUG(dbgs() << TAG << "Found " << GTIdArgs.size()
1491 << " global thread ID arguments\n");
1492
1493 for (Function *F : SCC) {
1494 for (auto DeduplicableRuntimeCallID : DeduplicableRuntimeCallIDs)
1495 Changed |= deduplicateRuntimeCalls(
1496 *F, OMPInfoCache.RFIs[DeduplicableRuntimeCallID]);
1497
1498 // __kmpc_global_thread_num is special as we can replace it with an
1499 // argument in enough cases to make it worth trying.
1500 Value *GTIdArg = nullptr;
1501 for (Argument &Arg : F->args())
1502 if (GTIdArgs.count(&Arg)) {
1503 GTIdArg = &Arg;
1504 break;
1505 }
1506 Changed |= deduplicateRuntimeCalls(
1507 *F, OMPInfoCache.RFIs[OMPRTL___kmpc_global_thread_num], GTIdArg);
1508 }
1509
1510 return Changed;
1511 }
1512
1513 /// Tries to remove known runtime symbols that are optional from the module.
1514 bool removeRuntimeSymbols() {
1515 // The RPC client symbol is defined in `libc` and indicates that something
1516 // required an RPC server. If its users were all optimized out then we can
1517 // safely remove it.
1518 // TODO: This should be somewhere more common in the future.
1519 if (GlobalVariable *GV = M.getNamedGlobal("__llvm_libc_rpc_client")) {
1520 if (!GV->getType()->isPointerTy())
1521 return false;
1522
1523 Constant *C = GV->getInitializer();
1524 if (!C)
1525 return false;
1526
1527 // Check to see if the only user of the RPC client is the external handle.
1528 GlobalVariable *Client = dyn_cast<GlobalVariable>(C->stripPointerCasts());
1529 if (!Client || Client->getNumUses() > 1 ||
1530 Client->user_back() != GV->getInitializer())
1531 return false;
1532
1533 Client->replaceAllUsesWith(PoisonValue::get(Client->getType()));
1534 Client->eraseFromParent();
1535
1536 GV->replaceAllUsesWith(PoisonValue::get(GV->getType()));
1537 GV->eraseFromParent();
1538
1539 return true;
1540 }
1541 return false;
1542 }
1543
1544 /// Tries to hide the latency of runtime calls that involve host to
1545 /// device memory transfers by splitting them into their "issue" and "wait"
1546 /// versions. The "issue" is moved upwards as much as possible. The "wait" is
1547 /// moved downards as much as possible. The "issue" issues the memory transfer
1548 /// asynchronously, returning a handle. The "wait" waits in the returned
1549 /// handle for the memory transfer to finish.
1550 bool hideMemTransfersLatency() {
1551 auto &RFI = OMPInfoCache.RFIs[OMPRTL___tgt_target_data_begin_mapper];
1552 bool Changed = false;
1553 auto SplitMemTransfers = [&](Use &U, Function &Decl) {
1554 auto *RTCall = getCallIfRegularCall(U, &RFI);
1555 if (!RTCall)
1556 return false;
1557
1558 OffloadArray OffloadArrays[3];
1559 if (!getValuesInOffloadArrays(*RTCall, OffloadArrays))
1560 return false;
1561
1562 LLVM_DEBUG(dumpValuesInOffloadArrays(OffloadArrays));
1563
1564 // TODO: Check if can be moved upwards.
1565 bool WasSplit = false;
1566 Instruction *WaitMovementPoint = canBeMovedDownwards(*RTCall);
1567 if (WaitMovementPoint)
1568 WasSplit = splitTargetDataBeginRTC(*RTCall, *WaitMovementPoint);
1569
1570 Changed |= WasSplit;
1571 return WasSplit;
1572 };
1573 if (OMPInfoCache.runtimeFnsAvailable(
1574 {OMPRTL___tgt_target_data_begin_mapper_issue,
1575 OMPRTL___tgt_target_data_begin_mapper_wait}))
1576 RFI.foreachUse(SCC, SplitMemTransfers);
1577
1578 return Changed;
1579 }
1580
1581 void analysisGlobalization() {
1582 auto &RFI = OMPInfoCache.RFIs[OMPRTL___kmpc_alloc_shared];
1583
1584 auto CheckGlobalization = [&](Use &U, Function &Decl) {
1585 if (CallInst *CI = getCallIfRegularCall(U, &RFI)) {
1586 auto Remark = [&](OptimizationRemarkMissed ORM) {
1587 return ORM
1588 << "Found thread data sharing on the GPU. "
1589 << "Expect degraded performance due to data globalization.";
1590 };
1591 emitRemark<OptimizationRemarkMissed>(CI, "OMP112", Remark);
1592 }
1593
1594 return false;
1595 };
1596
1597 RFI.foreachUse(SCC, CheckGlobalization);
1598 }
1599
1600 /// Maps the values stored in the offload arrays passed as arguments to
1601 /// \p RuntimeCall into the offload arrays in \p OAs.
1602 bool getValuesInOffloadArrays(CallInst &RuntimeCall,
1604 assert(OAs.size() == 3 && "Need space for three offload arrays!");
1605
1606 // A runtime call that involves memory offloading looks something like:
1607 // call void @__tgt_target_data_begin_mapper(arg0, arg1,
1608 // i8** %offload_baseptrs, i8** %offload_ptrs, i64* %offload_sizes,
1609 // ...)
1610 // So, the idea is to access the allocas that allocate space for these
1611 // offload arrays, offload_baseptrs, offload_ptrs, offload_sizes.
1612 // Therefore:
1613 // i8** %offload_baseptrs.
1614 Value *BasePtrsArg =
1615 RuntimeCall.getArgOperand(OffloadArray::BasePtrsArgNum);
1616 // i8** %offload_ptrs.
1617 Value *PtrsArg = RuntimeCall.getArgOperand(OffloadArray::PtrsArgNum);
1618 // i8** %offload_sizes.
1619 Value *SizesArg = RuntimeCall.getArgOperand(OffloadArray::SizesArgNum);
1620
1621 // Get values stored in **offload_baseptrs.
1622 auto *V = getUnderlyingObject(BasePtrsArg);
1623 if (!isa<AllocaInst>(V))
1624 return false;
1625 auto *BasePtrsArray = cast<AllocaInst>(V);
1626 if (!OAs[0].initialize(*BasePtrsArray, RuntimeCall))
1627 return false;
1628
1629 // Get values stored in **offload_baseptrs.
1630 V = getUnderlyingObject(PtrsArg);
1631 if (!isa<AllocaInst>(V))
1632 return false;
1633 auto *PtrsArray = cast<AllocaInst>(V);
1634 if (!OAs[1].initialize(*PtrsArray, RuntimeCall))
1635 return false;
1636
1637 // Get values stored in **offload_sizes.
1638 V = getUnderlyingObject(SizesArg);
1639 // If it's a [constant] global array don't analyze it.
1640 if (isa<GlobalValue>(V))
1641 return isa<Constant>(V);
1642 if (!isa<AllocaInst>(V))
1643 return false;
1644
1645 auto *SizesArray = cast<AllocaInst>(V);
1646 if (!OAs[2].initialize(*SizesArray, RuntimeCall))
1647 return false;
1648
1649 return true;
1650 }
1651
1652 /// Prints the values in the OffloadArrays \p OAs using LLVM_DEBUG.
1653 /// For now this is a way to test that the function getValuesInOffloadArrays
1654 /// is working properly.
1655 /// TODO: Move this to a unittest when unittests are available for OpenMPOpt.
1656 void dumpValuesInOffloadArrays(ArrayRef<OffloadArray> OAs) {
1657 assert(OAs.size() == 3 && "There are three offload arrays to debug!");
1658
1659 LLVM_DEBUG(dbgs() << TAG << " Successfully got offload values:\n");
1660 std::string ValuesStr;
1661 raw_string_ostream Printer(ValuesStr);
1662 std::string Separator = " --- ";
1663
1664 for (auto *BP : OAs[0].StoredValues) {
1665 BP->print(Printer);
1666 Printer << Separator;
1667 }
1668 LLVM_DEBUG(dbgs() << "\t\toffload_baseptrs: " << ValuesStr << "\n");
1669 ValuesStr.clear();
1670
1671 for (auto *P : OAs[1].StoredValues) {
1672 P->print(Printer);
1673 Printer << Separator;
1674 }
1675 LLVM_DEBUG(dbgs() << "\t\toffload_ptrs: " << ValuesStr << "\n");
1676 ValuesStr.clear();
1677
1678 for (auto *S : OAs[2].StoredValues) {
1679 S->print(Printer);
1680 Printer << Separator;
1681 }
1682 LLVM_DEBUG(dbgs() << "\t\toffload_sizes: " << ValuesStr << "\n");
1683 }
1684
1685 /// Returns the instruction where the "wait" counterpart \p RuntimeCall can be
1686 /// moved. Returns nullptr if the movement is not possible, or not worth it.
1687 Instruction *canBeMovedDownwards(CallInst &RuntimeCall) {
1688 // FIXME: This traverses only the BasicBlock where RuntimeCall is.
1689 // Make it traverse the CFG.
1690
1691 Instruction *CurrentI = &RuntimeCall;
1692 bool IsWorthIt = false;
1693 while ((CurrentI = CurrentI->getNextNode())) {
1694
1695 // TODO: Once we detect the regions to be offloaded we should use the
1696 // alias analysis manager to check if CurrentI may modify one of
1697 // the offloaded regions.
1698 if (CurrentI->mayHaveSideEffects() || CurrentI->mayReadFromMemory()) {
1699 if (IsWorthIt)
1700 return CurrentI;
1701
1702 return nullptr;
1703 }
1704
1705 // FIXME: For now if we move it over anything without side effect
1706 // is worth it.
1707 IsWorthIt = true;
1708 }
1709
1710 // Return end of BasicBlock.
1711 return RuntimeCall.getParent()->getTerminator();
1712 }
1713
1714 /// Splits \p RuntimeCall into its "issue" and "wait" counterparts.
1715 bool splitTargetDataBeginRTC(CallInst &RuntimeCall,
1716 Instruction &WaitMovementPoint) {
1717 // Create stack allocated handle (__tgt_async_info) at the beginning of the
1718 // function. Used for storing information of the async transfer, allowing to
1719 // wait on it later.
1720 auto &IRBuilder = OMPInfoCache.OMPBuilder;
1721 Function *F = RuntimeCall.getCaller();
1722 BasicBlock &Entry = F->getEntryBlock();
1723 IRBuilder.Builder.SetInsertPoint(&Entry,
1724 Entry.getFirstNonPHIOrDbgOrAlloca());
1725 Value *Handle = IRBuilder.Builder.CreateAlloca(
1726 IRBuilder.AsyncInfo, /*ArraySize=*/nullptr, "handle");
1727 Handle =
1728 IRBuilder.Builder.CreateAddrSpaceCast(Handle, IRBuilder.AsyncInfoPtr);
1729
1730 // Add "issue" runtime call declaration:
1731 // declare %struct.tgt_async_info @__tgt_target_data_begin_issue(i64, i32,
1732 // i8**, i8**, i64*, i64*)
1733 FunctionCallee IssueDecl = IRBuilder.getOrCreateRuntimeFunction(
1734 M, OMPRTL___tgt_target_data_begin_mapper_issue);
1735
1736 // Change RuntimeCall call site for its asynchronous version.
1738 for (auto &Arg : RuntimeCall.args())
1739 Args.push_back(Arg.get());
1740 Args.push_back(Handle);
1741
1742 CallInst *IssueCallsite = CallInst::Create(IssueDecl, Args, /*NameStr=*/"",
1743 RuntimeCall.getIterator());
1744 OMPInfoCache.setCallingConvention(IssueDecl, IssueCallsite);
1745 RuntimeCall.eraseFromParent();
1746
1747 // Add "wait" runtime call declaration:
1748 // declare void @__tgt_target_data_begin_wait(i64, %struct.__tgt_async_info)
1749 FunctionCallee WaitDecl = IRBuilder.getOrCreateRuntimeFunction(
1750 M, OMPRTL___tgt_target_data_begin_mapper_wait);
1751
1752 Value *WaitParams[2] = {
1753 IssueCallsite->getArgOperand(
1754 OffloadArray::DeviceIDArgNum), // device_id.
1755 Handle // handle to wait on.
1756 };
1757 CallInst *WaitCallsite = CallInst::Create(
1758 WaitDecl, WaitParams, /*NameStr=*/"", WaitMovementPoint.getIterator());
1759 OMPInfoCache.setCallingConvention(WaitDecl, WaitCallsite);
1760
1761 return true;
1762 }
1763
1764 static Value *combinedIdentStruct(Value *CurrentIdent, Value *NextIdent,
1765 bool GlobalOnly, bool &SingleChoice) {
1766 if (CurrentIdent == NextIdent)
1767 return CurrentIdent;
1768
1769 // TODO: Figure out how to actually combine multiple debug locations. For
1770 // now we just keep an existing one if there is a single choice.
1771 if (!GlobalOnly || isa<GlobalValue>(NextIdent)) {
1772 SingleChoice = !CurrentIdent;
1773 return NextIdent;
1774 }
1775 return nullptr;
1776 }
1777
1778 /// Return an `struct ident_t*` value that represents the ones used in the
1779 /// calls of \p RFI inside of \p F. If \p GlobalOnly is true, we will not
1780 /// return a local `struct ident_t*`. For now, if we cannot find a suitable
1781 /// return value we create one from scratch. We also do not yet combine
1782 /// information, e.g., the source locations, see combinedIdentStruct.
1783 Value *
1784 getCombinedIdentFromCallUsesIn(OMPInformationCache::RuntimeFunctionInfo &RFI,
1785 Function &F, bool GlobalOnly) {
1786 bool SingleChoice = true;
1787 Value *Ident = nullptr;
1788 auto CombineIdentStruct = [&](Use &U, Function &Caller) {
1789 CallInst *CI = getCallIfRegularCall(U, &RFI);
1790 if (!CI || &F != &Caller)
1791 return false;
1792 Ident = combinedIdentStruct(Ident, CI->getArgOperand(0),
1793 /* GlobalOnly */ true, SingleChoice);
1794 return false;
1795 };
1796 RFI.foreachUse(SCC, CombineIdentStruct);
1797
1798 if (!Ident || !SingleChoice) {
1799 // The IRBuilder uses the insertion block to get to the module, this is
1800 // unfortunate but we work around it for now.
1801 if (!OMPInfoCache.OMPBuilder.getInsertionPoint().getBlock())
1802 OMPInfoCache.OMPBuilder.updateToLocation(OpenMPIRBuilder::InsertPointTy(
1803 &F.getEntryBlock(), F.getEntryBlock().begin()));
1804 // Create a fallback location if non was found.
1805 // TODO: Use the debug locations of the calls instead.
1806 uint32_t SrcLocStrSize;
1807 Constant *Loc =
1808 OMPInfoCache.OMPBuilder.getOrCreateDefaultSrcLocStr(SrcLocStrSize);
1809 Ident = OMPInfoCache.OMPBuilder.getOrCreateIdent(Loc, SrcLocStrSize);
1810 }
1811 return Ident;
1812 }
1813
1814 /// Try to eliminate calls of \p RFI in \p F by reusing an existing one or
1815 /// \p ReplVal if given.
1816 bool deduplicateRuntimeCalls(Function &F,
1817 OMPInformationCache::RuntimeFunctionInfo &RFI,
1818 Value *ReplVal = nullptr) {
1819 auto *UV = RFI.getUseVector(F);
1820 if (!UV || UV->size() + (ReplVal != nullptr) < 2)
1821 return false;
1822
1823 LLVM_DEBUG(
1824 dbgs() << TAG << "Deduplicate " << UV->size() << " uses of " << RFI.Name
1825 << (ReplVal ? " with an existing value\n" : "\n") << "\n");
1826
1827 assert((!ReplVal || (isa<Argument>(ReplVal) &&
1828 cast<Argument>(ReplVal)->getParent() == &F)) &&
1829 "Unexpected replacement value!");
1830
1831 // TODO: Use dominance to find a good position instead.
1832 auto CanBeMoved = [this](CallBase &CB) {
1833 unsigned NumArgs = CB.arg_size();
1834 if (NumArgs == 0)
1835 return true;
1836 if (CB.getArgOperand(0)->getType() != OMPInfoCache.OMPBuilder.IdentPtr)
1837 return false;
1838 for (unsigned U = 1; U < NumArgs; ++U)
1839 if (isa<Instruction>(CB.getArgOperand(U)))
1840 return false;
1841 return true;
1842 };
1843
1844 if (!ReplVal) {
1845 auto *DT =
1846 OMPInfoCache.getAnalysisResultForFunction<DominatorTreeAnalysis>(F);
1847 if (!DT)
1848 return false;
1849 Instruction *IP = nullptr;
1850 for (Use *U : *UV) {
1851 if (CallInst *CI = getCallIfRegularCall(*U, &RFI)) {
1852 if (IP)
1853 IP = DT->findNearestCommonDominator(IP, CI);
1854 else
1855 IP = CI;
1856 if (!CanBeMoved(*CI))
1857 continue;
1858 if (!ReplVal)
1859 ReplVal = CI;
1860 }
1861 }
1862 if (!ReplVal)
1863 return false;
1864 assert(IP && "Expected insertion point!");
1865 cast<Instruction>(ReplVal)->moveBefore(IP);
1866 }
1867
1868 // If we use a call as a replacement value we need to make sure the ident is
1869 // valid at the new location. For now we just pick a global one, either
1870 // existing and used by one of the calls, or created from scratch.
1871 if (CallBase *CI = dyn_cast<CallBase>(ReplVal)) {
1872 if (!CI->arg_empty() &&
1873 CI->getArgOperand(0)->getType() == OMPInfoCache.OMPBuilder.IdentPtr) {
1874 Value *Ident = getCombinedIdentFromCallUsesIn(RFI, F,
1875 /* GlobalOnly */ true);
1876 CI->setArgOperand(0, Ident);
1877 }
1878 }
1879
1880 bool Changed = false;
1881 auto ReplaceAndDeleteCB = [&](Use &U, Function &Caller) {
1882 CallInst *CI = getCallIfRegularCall(U, &RFI);
1883 if (!CI || CI == ReplVal || &F != &Caller)
1884 return false;
1885 assert(CI->getCaller() == &F && "Unexpected call!");
1886
1887 auto Remark = [&](OptimizationRemark OR) {
1888 return OR << "OpenMP runtime call "
1889 << ore::NV("OpenMPOptRuntime", RFI.Name) << " deduplicated.";
1890 };
1891 if (CI->getDebugLoc())
1892 emitRemark<OptimizationRemark>(CI, "OMP170", Remark);
1893 else
1894 emitRemark<OptimizationRemark>(&F, "OMP170", Remark);
1895
1896 CI->replaceAllUsesWith(ReplVal);
1897 CI->eraseFromParent();
1898 ++NumOpenMPRuntimeCallsDeduplicated;
1899 Changed = true;
1900 return true;
1901 };
1902 RFI.foreachUse(SCC, ReplaceAndDeleteCB);
1903
1904 return Changed;
1905 }
1906
1907 /// Collect arguments that represent the global thread id in \p GTIdArgs.
1908 void collectGlobalThreadIdArguments(SmallSetVector<Value *, 16> &GTIdArgs) {
1909 // TODO: Below we basically perform a fixpoint iteration with a pessimistic
1910 // initialization. We could define an AbstractAttribute instead and
1911 // run the Attributor here once it can be run as an SCC pass.
1912
1913 // Helper to check the argument \p ArgNo at all call sites of \p F for
1914 // a GTId.
1915 auto CallArgOpIsGTId = [&](Function &F, unsigned ArgNo, CallInst &RefCI) {
1916 if (!F.hasLocalLinkage())
1917 return false;
1918 for (Use &U : F.uses()) {
1919 if (CallInst *CI = getCallIfRegularCall(U)) {
1920 Value *ArgOp = CI->getArgOperand(ArgNo);
1921 if (CI == &RefCI || GTIdArgs.count(ArgOp) ||
1922 getCallIfRegularCall(
1923 *ArgOp, &OMPInfoCache.RFIs[OMPRTL___kmpc_global_thread_num]))
1924 continue;
1925 }
1926 return false;
1927 }
1928 return true;
1929 };
1930
1931 // Helper to identify uses of a GTId as GTId arguments.
1932 auto AddUserArgs = [&](Value &GTId) {
1933 for (Use &U : GTId.uses())
1934 if (CallInst *CI = dyn_cast<CallInst>(U.getUser()))
1935 if (CI->isArgOperand(&U))
1936 if (Function *Callee = CI->getCalledFunction())
1937 if (CallArgOpIsGTId(*Callee, U.getOperandNo(), *CI))
1938 GTIdArgs.insert(Callee->getArg(U.getOperandNo()));
1939 };
1940
1941 // The argument users of __kmpc_global_thread_num calls are GTIds.
1942 OMPInformationCache::RuntimeFunctionInfo &GlobThreadNumRFI =
1943 OMPInfoCache.RFIs[OMPRTL___kmpc_global_thread_num];
1944
1945 GlobThreadNumRFI.foreachUse(SCC, [&](Use &U, Function &F) {
1946 if (CallInst *CI = getCallIfRegularCall(U, &GlobThreadNumRFI))
1947 AddUserArgs(*CI);
1948 return false;
1949 });
1950
1951 // Transitively search for more arguments by looking at the users of the
1952 // ones we know already. During the search the GTIdArgs vector is extended
1953 // so we cannot cache the size nor can we use a range based for.
1954 for (unsigned U = 0; U < GTIdArgs.size(); ++U)
1955 AddUserArgs(*GTIdArgs[U]);
1956 }
1957
1958 /// Kernel (=GPU) optimizations and utility functions
1959 ///
1960 ///{{
1961
1962 /// Cache to remember the unique kernel for a function.
1964
1965 /// Find the unique kernel that will execute \p F, if any.
1966 Kernel getUniqueKernelFor(Function &F);
1967
1968 /// Find the unique kernel that will execute \p I, if any.
1969 Kernel getUniqueKernelFor(Instruction &I) {
1970 return getUniqueKernelFor(*I.getFunction());
1971 }
1972
1973 /// Rewrite the device (=GPU) code state machine create in non-SPMD mode in
1974 /// the cases we can avoid taking the address of a function.
1975 bool rewriteDeviceCodeStateMachine();
1976
1977 ///
1978 ///}}
1979
1980 /// Emit a remark generically
1981 ///
1982 /// This template function can be used to generically emit a remark. The
1983 /// RemarkKind should be one of the following:
1984 /// - OptimizationRemark to indicate a successful optimization attempt
1985 /// - OptimizationRemarkMissed to report a failed optimization attempt
1986 /// - OptimizationRemarkAnalysis to provide additional information about an
1987 /// optimization attempt
1988 ///
1989 /// The remark is built using a callback function provided by the caller that
1990 /// takes a RemarkKind as input and returns a RemarkKind.
1991 template <typename RemarkKind, typename RemarkCallBack>
1992 void emitRemark(Instruction *I, StringRef RemarkName,
1993 RemarkCallBack &&RemarkCB) const {
1994 Function *F = I->getParent()->getParent();
1995 auto &ORE = OREGetter(F);
1996
1997 if (RemarkName.starts_with("OMP"))
1998 ORE.emit([&]() {
1999 return RemarkCB(RemarkKind(DEBUG_TYPE, RemarkName, I))
2000 << " [" << RemarkName << "]";
2001 });
2002 else
2003 ORE.emit(
2004 [&]() { return RemarkCB(RemarkKind(DEBUG_TYPE, RemarkName, I)); });
2005 }
2006
2007 /// Emit a remark on a function.
2008 template <typename RemarkKind, typename RemarkCallBack>
2009 void emitRemark(Function *F, StringRef RemarkName,
2010 RemarkCallBack &&RemarkCB) const {
2011 auto &ORE = OREGetter(F);
2012
2013 if (RemarkName.starts_with("OMP"))
2014 ORE.emit([&]() {
2015 return RemarkCB(RemarkKind(DEBUG_TYPE, RemarkName, F))
2016 << " [" << RemarkName << "]";
2017 });
2018 else
2019 ORE.emit(
2020 [&]() { return RemarkCB(RemarkKind(DEBUG_TYPE, RemarkName, F)); });
2021 }
2022
2023 /// The underlying module.
2024 Module &M;
2025
2026 /// The SCC we are operating on.
2028
2029 /// Callback to update the call graph, the first argument is a removed call,
2030 /// the second an optional replacement call.
2031 CallGraphUpdater &CGUpdater;
2032
2033 /// Callback to get an OptimizationRemarkEmitter from a Function *
2034 OptimizationRemarkGetter OREGetter;
2035
2036 /// OpenMP-specific information cache. Also Used for Attributor runs.
2037 OMPInformationCache &OMPInfoCache;
2038
2039 /// Attributor instance.
2040 Attributor &A;
2041
2042 /// Helper function to run Attributor on SCC.
2043 bool runAttributor(bool IsModulePass) {
2044 if (SCC.empty())
2045 return false;
2046
2047 registerAAs(IsModulePass);
2048
2049 ChangeStatus Changed = A.run();
2050
2051 LLVM_DEBUG(dbgs() << "[Attributor] Done with " << SCC.size()
2052 << " functions, result: " << Changed << ".\n");
2053
2054 if (Changed == ChangeStatus::CHANGED)
2055 OMPInfoCache.invalidateAnalyses();
2056
2057 return Changed == ChangeStatus::CHANGED;
2058 }
2059
2060 void registerFoldRuntimeCall(RuntimeFunction RF);
2061
2062 /// Populate the Attributor with abstract attribute opportunities in the
2063 /// functions.
2064 void registerAAs(bool IsModulePass);
2065
2066public:
2067 /// Callback to register AAs for live functions, including internal functions
2068 /// marked live during the traversal.
2069 static void registerAAsForFunction(Attributor &A, const Function &F);
2070};
2071
2072Kernel OpenMPOpt::getUniqueKernelFor(Function &F) {
2073 if (OMPInfoCache.CGSCC && !OMPInfoCache.CGSCC->empty() &&
2074 !OMPInfoCache.CGSCC->contains(&F))
2075 return nullptr;
2076
2077 // Use a scope to keep the lifetime of the CachedKernel short.
2078 {
2079 std::optional<Kernel> &CachedKernel = UniqueKernelMap[&F];
2080 if (CachedKernel)
2081 return *CachedKernel;
2082
2083 // TODO: We should use an AA to create an (optimistic and callback
2084 // call-aware) call graph. For now we stick to simple patterns that
2085 // are less powerful, basically the worst fixpoint.
2086 if (isOpenMPKernel(F)) {
2087 CachedKernel = Kernel(&F);
2088 return *CachedKernel;
2089 }
2090
2091 CachedKernel = nullptr;
2092 if (!F.hasLocalLinkage()) {
2093
2094 // See https://openmp.llvm.org/remarks/OptimizationRemarks.html
2095 auto Remark = [&](OptimizationRemarkAnalysis ORA) {
2096 return ORA << "Potentially unknown OpenMP target region caller.";
2097 };
2098 emitRemark<OptimizationRemarkAnalysis>(&F, "OMP100", Remark);
2099
2100 return nullptr;
2101 }
2102 }
2103
2104 auto GetUniqueKernelForUse = [&](const Use &U) -> Kernel {
2105 if (auto *Cmp = dyn_cast<ICmpInst>(U.getUser())) {
2106 // Allow use in equality comparisons.
2107 if (Cmp->isEquality())
2108 return getUniqueKernelFor(*Cmp);
2109 return nullptr;
2110 }
2111 if (auto *CB = dyn_cast<CallBase>(U.getUser())) {
2112 // Allow direct calls.
2113 if (CB->isCallee(&U))
2114 return getUniqueKernelFor(*CB);
2115
2116 OMPInformationCache::RuntimeFunctionInfo &KernelParallelRFI =
2117 OMPInfoCache.RFIs[OMPRTL___kmpc_parallel_51];
2118 // Allow the use in __kmpc_parallel_51 calls.
2119 if (OpenMPOpt::getCallIfRegularCall(*U.getUser(), &KernelParallelRFI))
2120 return getUniqueKernelFor(*CB);
2121 return nullptr;
2122 }
2123 // Disallow every other use.
2124 return nullptr;
2125 };
2126
2127 // TODO: In the future we want to track more than just a unique kernel.
2128 SmallPtrSet<Kernel, 2> PotentialKernels;
2129 OMPInformationCache::foreachUse(F, [&](const Use &U) {
2130 PotentialKernels.insert(GetUniqueKernelForUse(U));
2131 });
2132
2133 Kernel K = nullptr;
2134 if (PotentialKernels.size() == 1)
2135 K = *PotentialKernels.begin();
2136
2137 // Cache the result.
2138 UniqueKernelMap[&F] = K;
2139
2140 return K;
2141}
2142
2143bool OpenMPOpt::rewriteDeviceCodeStateMachine() {
2144 OMPInformationCache::RuntimeFunctionInfo &KernelParallelRFI =
2145 OMPInfoCache.RFIs[OMPRTL___kmpc_parallel_51];
2146
2147 bool Changed = false;
2148 if (!KernelParallelRFI)
2149 return Changed;
2150
2151 // If we have disabled state machine changes, exit
2153 return Changed;
2154
2155 for (Function *F : SCC) {
2156
2157 // Check if the function is a use in a __kmpc_parallel_51 call at
2158 // all.
2159 bool UnknownUse = false;
2160 bool KernelParallelUse = false;
2161 unsigned NumDirectCalls = 0;
2162
2163 SmallVector<Use *, 2> ToBeReplacedStateMachineUses;
2164 OMPInformationCache::foreachUse(*F, [&](Use &U) {
2165 if (auto *CB = dyn_cast<CallBase>(U.getUser()))
2166 if (CB->isCallee(&U)) {
2167 ++NumDirectCalls;
2168 return;
2169 }
2170
2171 if (isa<ICmpInst>(U.getUser())) {
2172 ToBeReplacedStateMachineUses.push_back(&U);
2173 return;
2174 }
2175
2176 // Find wrapper functions that represent parallel kernels.
2177 CallInst *CI =
2178 OpenMPOpt::getCallIfRegularCall(*U.getUser(), &KernelParallelRFI);
2179 const unsigned int WrapperFunctionArgNo = 6;
2180 if (!KernelParallelUse && CI &&
2181 CI->getArgOperandNo(&U) == WrapperFunctionArgNo) {
2182 KernelParallelUse = true;
2183 ToBeReplacedStateMachineUses.push_back(&U);
2184 return;
2185 }
2186 UnknownUse = true;
2187 });
2188
2189 // Do not emit a remark if we haven't seen a __kmpc_parallel_51
2190 // use.
2191 if (!KernelParallelUse)
2192 continue;
2193
2194 // If this ever hits, we should investigate.
2195 // TODO: Checking the number of uses is not a necessary restriction and
2196 // should be lifted.
2197 if (UnknownUse || NumDirectCalls != 1 ||
2198 ToBeReplacedStateMachineUses.size() > 2) {
2199 auto Remark = [&](OptimizationRemarkAnalysis ORA) {
2200 return ORA << "Parallel region is used in "
2201 << (UnknownUse ? "unknown" : "unexpected")
2202 << " ways. Will not attempt to rewrite the state machine.";
2203 };
2204 emitRemark<OptimizationRemarkAnalysis>(F, "OMP101", Remark);
2205 continue;
2206 }
2207
2208 // Even if we have __kmpc_parallel_51 calls, we (for now) give
2209 // up if the function is not called from a unique kernel.
2210 Kernel K = getUniqueKernelFor(*F);
2211 if (!K) {
2212 auto Remark = [&](OptimizationRemarkAnalysis ORA) {
2213 return ORA << "Parallel region is not called from a unique kernel. "
2214 "Will not attempt to rewrite the state machine.";
2215 };
2216 emitRemark<OptimizationRemarkAnalysis>(F, "OMP102", Remark);
2217 continue;
2218 }
2219
2220 // We now know F is a parallel body function called only from the kernel K.
2221 // We also identified the state machine uses in which we replace the
2222 // function pointer by a new global symbol for identification purposes. This
2223 // ensures only direct calls to the function are left.
2224
2225 Module &M = *F->getParent();
2226 Type *Int8Ty = Type::getInt8Ty(M.getContext());
2227
2228 auto *ID = new GlobalVariable(
2229 M, Int8Ty, /* isConstant */ true, GlobalValue::PrivateLinkage,
2230 UndefValue::get(Int8Ty), F->getName() + ".ID");
2231
2232 for (Use *U : ToBeReplacedStateMachineUses)
2234 ID, U->get()->getType()));
2235
2236 ++NumOpenMPParallelRegionsReplacedInGPUStateMachine;
2237
2238 Changed = true;
2239 }
2240
2241 return Changed;
2242}
2243
2244/// Abstract Attribute for tracking ICV values.
2245struct AAICVTracker : public StateWrapper<BooleanState, AbstractAttribute> {
2247 AAICVTracker(const IRPosition &IRP, Attributor &A) : Base(IRP) {}
2248
2249 /// Returns true if value is assumed to be tracked.
2250 bool isAssumedTracked() const { return getAssumed(); }
2251
2252 /// Returns true if value is known to be tracked.
2253 bool isKnownTracked() const { return getAssumed(); }
2254
2255 /// Create an abstract attribute biew for the position \p IRP.
2256 static AAICVTracker &createForPosition(const IRPosition &IRP, Attributor &A);
2257
2258 /// Return the value with which \p I can be replaced for specific \p ICV.
2259 virtual std::optional<Value *> getReplacementValue(InternalControlVar ICV,
2260 const Instruction *I,
2261 Attributor &A) const {
2262 return std::nullopt;
2263 }
2264
2265 /// Return an assumed unique ICV value if a single candidate is found. If
2266 /// there cannot be one, return a nullptr. If it is not clear yet, return
2267 /// std::nullopt.
2268 virtual std::optional<Value *>
2269 getUniqueReplacementValue(InternalControlVar ICV) const = 0;
2270
2271 // Currently only nthreads is being tracked.
2272 // this array will only grow with time.
2273 InternalControlVar TrackableICVs[1] = {ICV_nthreads};
2274
2275 /// See AbstractAttribute::getName()
2276 const std::string getName() const override { return "AAICVTracker"; }
2277
2278 /// See AbstractAttribute::getIdAddr()
2279 const char *getIdAddr() const override { return &ID; }
2280
2281 /// This function should return true if the type of the \p AA is AAICVTracker
2282 static bool classof(const AbstractAttribute *AA) {
2283 return (AA->getIdAddr() == &ID);
2284 }
2285
2286 static const char ID;
2287};
2288
2289struct AAICVTrackerFunction : public AAICVTracker {
2290 AAICVTrackerFunction(const IRPosition &IRP, Attributor &A)
2291 : AAICVTracker(IRP, A) {}
2292
2293 // FIXME: come up with better string.
2294 const std::string getAsStr(Attributor *) const override {
2295 return "ICVTrackerFunction";
2296 }
2297
2298 // FIXME: come up with some stats.
2299 void trackStatistics() const override {}
2300
2301 /// We don't manifest anything for this AA.
2302 ChangeStatus manifest(Attributor &A) override {
2303 return ChangeStatus::UNCHANGED;
2304 }
2305
2306 // Map of ICV to their values at specific program point.
2308 InternalControlVar::ICV___last>
2309 ICVReplacementValuesMap;
2310
2311 ChangeStatus updateImpl(Attributor &A) override {
2312 ChangeStatus HasChanged = ChangeStatus::UNCHANGED;
2313
2314 Function *F = getAnchorScope();
2315
2316 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache());
2317
2318 for (InternalControlVar ICV : TrackableICVs) {
2319 auto &SetterRFI = OMPInfoCache.RFIs[OMPInfoCache.ICVs[ICV].Setter];
2320
2321 auto &ValuesMap = ICVReplacementValuesMap[ICV];
2322 auto TrackValues = [&](Use &U, Function &) {
2323 CallInst *CI = OpenMPOpt::getCallIfRegularCall(U);
2324 if (!CI)
2325 return false;
2326
2327 // FIXME: handle setters with more that 1 arguments.
2328 /// Track new value.
2329 if (ValuesMap.insert(std::make_pair(CI, CI->getArgOperand(0))).second)
2330 HasChanged = ChangeStatus::CHANGED;
2331
2332 return false;
2333 };
2334
2335 auto CallCheck = [&](Instruction &I) {
2336 std::optional<Value *> ReplVal = getValueForCall(A, I, ICV);
2337 if (ReplVal && ValuesMap.insert(std::make_pair(&I, *ReplVal)).second)
2338 HasChanged = ChangeStatus::CHANGED;
2339
2340 return true;
2341 };
2342
2343 // Track all changes of an ICV.
2344 SetterRFI.foreachUse(TrackValues, F);
2345
2346 bool UsedAssumedInformation = false;
2347 A.checkForAllInstructions(CallCheck, *this, {Instruction::Call},
2348 UsedAssumedInformation,
2349 /* CheckBBLivenessOnly */ true);
2350
2351 /// TODO: Figure out a way to avoid adding entry in
2352 /// ICVReplacementValuesMap
2353 Instruction *Entry = &F->getEntryBlock().front();
2354 if (HasChanged == ChangeStatus::CHANGED && !ValuesMap.count(Entry))
2355 ValuesMap.insert(std::make_pair(Entry, nullptr));
2356 }
2357
2358 return HasChanged;
2359 }
2360
2361 /// Helper to check if \p I is a call and get the value for it if it is
2362 /// unique.
2363 std::optional<Value *> getValueForCall(Attributor &A, const Instruction &I,
2364 InternalControlVar &ICV) const {
2365
2366 const auto *CB = dyn_cast<CallBase>(&I);
2367 if (!CB || CB->hasFnAttr("no_openmp") ||
2368 CB->hasFnAttr("no_openmp_routines"))
2369 return std::nullopt;
2370
2371 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache());
2372 auto &GetterRFI = OMPInfoCache.RFIs[OMPInfoCache.ICVs[ICV].Getter];
2373 auto &SetterRFI = OMPInfoCache.RFIs[OMPInfoCache.ICVs[ICV].Setter];
2374 Function *CalledFunction = CB->getCalledFunction();
2375
2376 // Indirect call, assume ICV changes.
2377 if (CalledFunction == nullptr)
2378 return nullptr;
2379 if (CalledFunction == GetterRFI.Declaration)
2380 return std::nullopt;
2381 if (CalledFunction == SetterRFI.Declaration) {
2382 if (ICVReplacementValuesMap[ICV].count(&I))
2383 return ICVReplacementValuesMap[ICV].lookup(&I);
2384
2385 return nullptr;
2386 }
2387
2388 // Since we don't know, assume it changes the ICV.
2389 if (CalledFunction->isDeclaration())
2390 return nullptr;
2391
2392 const auto *ICVTrackingAA = A.getAAFor<AAICVTracker>(
2393 *this, IRPosition::callsite_returned(*CB), DepClassTy::REQUIRED);
2394
2395 if (ICVTrackingAA->isAssumedTracked()) {
2396 std::optional<Value *> URV =
2397 ICVTrackingAA->getUniqueReplacementValue(ICV);
2398 if (!URV || (*URV && AA::isValidAtPosition(AA::ValueAndContext(**URV, I),
2399 OMPInfoCache)))
2400 return URV;
2401 }
2402
2403 // If we don't know, assume it changes.
2404 return nullptr;
2405 }
2406
2407 // We don't check unique value for a function, so return std::nullopt.
2408 std::optional<Value *>
2409 getUniqueReplacementValue(InternalControlVar ICV) const override {
2410 return std::nullopt;
2411 }
2412
2413 /// Return the value with which \p I can be replaced for specific \p ICV.
2414 std::optional<Value *> getReplacementValue(InternalControlVar ICV,
2415 const Instruction *I,
2416 Attributor &A) const override {
2417 const auto &ValuesMap = ICVReplacementValuesMap[ICV];
2418 if (ValuesMap.count(I))
2419 return ValuesMap.lookup(I);
2420
2423 Worklist.push_back(I);
2424
2425 std::optional<Value *> ReplVal;
2426
2427 while (!Worklist.empty()) {
2428 const Instruction *CurrInst = Worklist.pop_back_val();
2429 if (!Visited.insert(CurrInst).second)
2430 continue;
2431
2432 const BasicBlock *CurrBB = CurrInst->getParent();
2433
2434 // Go up and look for all potential setters/calls that might change the
2435 // ICV.
2436 while ((CurrInst = CurrInst->getPrevNode())) {
2437 if (ValuesMap.count(CurrInst)) {
2438 std::optional<Value *> NewReplVal = ValuesMap.lookup(CurrInst);
2439 // Unknown value, track new.
2440 if (!ReplVal) {
2441 ReplVal = NewReplVal;
2442 break;
2443 }
2444
2445 // If we found a new value, we can't know the icv value anymore.
2446 if (NewReplVal)
2447 if (ReplVal != NewReplVal)
2448 return nullptr;
2449
2450 break;
2451 }
2452
2453 std::optional<Value *> NewReplVal = getValueForCall(A, *CurrInst, ICV);
2454 if (!NewReplVal)
2455 continue;
2456
2457 // Unknown value, track new.
2458 if (!ReplVal) {
2459 ReplVal = NewReplVal;
2460 break;
2461 }
2462
2463 // if (NewReplVal.hasValue())
2464 // We found a new value, we can't know the icv value anymore.
2465 if (ReplVal != NewReplVal)
2466 return nullptr;
2467 }
2468
2469 // If we are in the same BB and we have a value, we are done.
2470 if (CurrBB == I->getParent() && ReplVal)
2471 return ReplVal;
2472
2473 // Go through all predecessors and add terminators for analysis.
2474 for (const BasicBlock *Pred : predecessors(CurrBB))
2475 if (const Instruction *Terminator = Pred->getTerminator())
2476 Worklist.push_back(Terminator);
2477 }
2478
2479 return ReplVal;
2480 }
2481};
2482
2483struct AAICVTrackerFunctionReturned : AAICVTracker {
2484 AAICVTrackerFunctionReturned(const IRPosition &IRP, Attributor &A)
2485 : AAICVTracker(IRP, A) {}
2486
2487 // FIXME: come up with better string.
2488 const std::string getAsStr(Attributor *) const override {
2489 return "ICVTrackerFunctionReturned";
2490 }
2491
2492 // FIXME: come up with some stats.
2493 void trackStatistics() const override {}
2494
2495 /// We don't manifest anything for this AA.
2496 ChangeStatus manifest(Attributor &A) override {
2497 return ChangeStatus::UNCHANGED;
2498 }
2499
2500 // Map of ICV to their values at specific program point.
2502 InternalControlVar::ICV___last>
2503 ICVReplacementValuesMap;
2504
2505 /// Return the value with which \p I can be replaced for specific \p ICV.
2506 std::optional<Value *>
2507 getUniqueReplacementValue(InternalControlVar ICV) const override {
2508 return ICVReplacementValuesMap[ICV];
2509 }
2510
2511 ChangeStatus updateImpl(Attributor &A) override {
2512 ChangeStatus Changed = ChangeStatus::UNCHANGED;
2513 const auto *ICVTrackingAA = A.getAAFor<AAICVTracker>(
2514 *this, IRPosition::function(*getAnchorScope()), DepClassTy::REQUIRED);
2515
2516 if (!ICVTrackingAA->isAssumedTracked())
2517 return indicatePessimisticFixpoint();
2518
2519 for (InternalControlVar ICV : TrackableICVs) {
2520 std::optional<Value *> &ReplVal = ICVReplacementValuesMap[ICV];
2521 std::optional<Value *> UniqueICVValue;
2522
2523 auto CheckReturnInst = [&](Instruction &I) {
2524 std::optional<Value *> NewReplVal =
2525 ICVTrackingAA->getReplacementValue(ICV, &I, A);
2526
2527 // If we found a second ICV value there is no unique returned value.
2528 if (UniqueICVValue && UniqueICVValue != NewReplVal)
2529 return false;
2530
2531 UniqueICVValue = NewReplVal;
2532
2533 return true;
2534 };
2535
2536 bool UsedAssumedInformation = false;
2537 if (!A.checkForAllInstructions(CheckReturnInst, *this, {Instruction::Ret},
2538 UsedAssumedInformation,
2539 /* CheckBBLivenessOnly */ true))
2540 UniqueICVValue = nullptr;
2541
2542 if (UniqueICVValue == ReplVal)
2543 continue;
2544
2545 ReplVal = UniqueICVValue;
2546 Changed = ChangeStatus::CHANGED;
2547 }
2548
2549 return Changed;
2550 }
2551};
2552
2553struct AAICVTrackerCallSite : AAICVTracker {
2554 AAICVTrackerCallSite(const IRPosition &IRP, Attributor &A)
2555 : AAICVTracker(IRP, A) {}
2556
2557 void initialize(Attributor &A) override {
2558 assert(getAnchorScope() && "Expected anchor function");
2559
2560 // We only initialize this AA for getters, so we need to know which ICV it
2561 // gets.
2562 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache());
2563 for (InternalControlVar ICV : TrackableICVs) {
2564 auto ICVInfo = OMPInfoCache.ICVs[ICV];
2565 auto &Getter = OMPInfoCache.RFIs[ICVInfo.Getter];
2566 if (Getter.Declaration == getAssociatedFunction()) {
2567 AssociatedICV = ICVInfo.Kind;
2568 return;
2569 }
2570 }
2571
2572 /// Unknown ICV.
2573 indicatePessimisticFixpoint();
2574 }
2575
2576 ChangeStatus manifest(Attributor &A) override {
2577 if (!ReplVal || !*ReplVal)
2578 return ChangeStatus::UNCHANGED;
2579
2580 A.changeAfterManifest(IRPosition::inst(*getCtxI()), **ReplVal);
2581 A.deleteAfterManifest(*getCtxI());
2582
2583 return ChangeStatus::CHANGED;
2584 }
2585
2586 // FIXME: come up with better string.
2587 const std::string getAsStr(Attributor *) const override {
2588 return "ICVTrackerCallSite";
2589 }
2590
2591 // FIXME: come up with some stats.
2592 void trackStatistics() const override {}
2593
2594 InternalControlVar AssociatedICV;
2595 std::optional<Value *> ReplVal;
2596
2597 ChangeStatus updateImpl(Attributor &A) override {
2598 const auto *ICVTrackingAA = A.getAAFor<AAICVTracker>(
2599 *this, IRPosition::function(*getAnchorScope()), DepClassTy::REQUIRED);
2600
2601 // We don't have any information, so we assume it changes the ICV.
2602 if (!ICVTrackingAA->isAssumedTracked())
2603 return indicatePessimisticFixpoint();
2604
2605 std::optional<Value *> NewReplVal =
2606 ICVTrackingAA->getReplacementValue(AssociatedICV, getCtxI(), A);
2607
2608 if (ReplVal == NewReplVal)
2609 return ChangeStatus::UNCHANGED;
2610
2611 ReplVal = NewReplVal;
2612 return ChangeStatus::CHANGED;
2613 }
2614
2615 // Return the value with which associated value can be replaced for specific
2616 // \p ICV.
2617 std::optional<Value *>
2618 getUniqueReplacementValue(InternalControlVar ICV) const override {
2619 return ReplVal;
2620 }
2621};
2622
2623struct AAICVTrackerCallSiteReturned : AAICVTracker {
2624 AAICVTrackerCallSiteReturned(const IRPosition &IRP, Attributor &A)
2625 : AAICVTracker(IRP, A) {}
2626
2627 // FIXME: come up with better string.
2628 const std::string getAsStr(Attributor *) const override {
2629 return "ICVTrackerCallSiteReturned";
2630 }
2631
2632 // FIXME: come up with some stats.
2633 void trackStatistics() const override {}
2634
2635 /// We don't manifest anything for this AA.
2636 ChangeStatus manifest(Attributor &A) override {
2637 return ChangeStatus::UNCHANGED;
2638 }
2639
2640 // Map of ICV to their values at specific program point.
2642 InternalControlVar::ICV___last>
2643 ICVReplacementValuesMap;
2644
2645 /// Return the value with which associated value can be replaced for specific
2646 /// \p ICV.
2647 std::optional<Value *>
2648 getUniqueReplacementValue(InternalControlVar ICV) const override {
2649 return ICVReplacementValuesMap[ICV];
2650 }
2651
2652 ChangeStatus updateImpl(Attributor &A) override {
2653 ChangeStatus Changed = ChangeStatus::UNCHANGED;
2654 const auto *ICVTrackingAA = A.getAAFor<AAICVTracker>(
2655 *this, IRPosition::returned(*getAssociatedFunction()),
2656 DepClassTy::REQUIRED);
2657
2658 // We don't have any information, so we assume it changes the ICV.
2659 if (!ICVTrackingAA->isAssumedTracked())
2660 return indicatePessimisticFixpoint();
2661
2662 for (InternalControlVar ICV : TrackableICVs) {
2663 std::optional<Value *> &ReplVal = ICVReplacementValuesMap[ICV];
2664 std::optional<Value *> NewReplVal =
2665 ICVTrackingAA->getUniqueReplacementValue(ICV);
2666
2667 if (ReplVal == NewReplVal)
2668 continue;
2669
2670 ReplVal = NewReplVal;
2671 Changed = ChangeStatus::CHANGED;
2672 }
2673 return Changed;
2674 }
2675};
2676
2677/// Determines if \p BB exits the function unconditionally itself or reaches a
2678/// block that does through only unique successors.
2679static bool hasFunctionEndAsUniqueSuccessor(const BasicBlock *BB) {
2680 if (succ_empty(BB))
2681 return true;
2682 const BasicBlock *const Successor = BB->getUniqueSuccessor();
2683 if (!Successor)
2684 return false;
2685 return hasFunctionEndAsUniqueSuccessor(Successor);
2686}
2687
2688struct AAExecutionDomainFunction : public AAExecutionDomain {
2689 AAExecutionDomainFunction(const IRPosition &IRP, Attributor &A)
2690 : AAExecutionDomain(IRP, A) {}
2691
2692 ~AAExecutionDomainFunction() { delete RPOT; }
2693
2694 void initialize(Attributor &A) override {
2696 assert(F && "Expected anchor function");
2698 }
2699
2700 const std::string getAsStr(Attributor *) const override {
2701 unsigned TotalBlocks = 0, InitialThreadBlocks = 0, AlignedBlocks = 0;
2702 for (auto &It : BEDMap) {
2703 if (!It.getFirst())
2704 continue;
2705 TotalBlocks++;
2706 InitialThreadBlocks += It.getSecond().IsExecutedByInitialThreadOnly;
2707 AlignedBlocks += It.getSecond().IsReachedFromAlignedBarrierOnly &&
2708 It.getSecond().IsReachingAlignedBarrierOnly;
2709 }
2710 return "[AAExecutionDomain] " + std::to_string(InitialThreadBlocks) + "/" +
2711 std::to_string(AlignedBlocks) + " of " +
2712 std::to_string(TotalBlocks) +
2713 " executed by initial thread / aligned";
2714 }
2715
2716 /// See AbstractAttribute::trackStatistics().
2717 void trackStatistics() const override {}
2718
2719 ChangeStatus manifest(Attributor &A) override {
2720 LLVM_DEBUG({
2721 for (const BasicBlock &BB : *getAnchorScope()) {
2723 continue;
2724 dbgs() << TAG << " Basic block @" << getAnchorScope()->getName() << " "
2725 << BB.getName() << " is executed by a single thread.\n";
2726 }
2727 });
2728
2730
2732 return Changed;
2733
2734 SmallPtrSet<CallBase *, 16> DeletedBarriers;
2735 auto HandleAlignedBarrier = [&](CallBase *CB) {
2736 const ExecutionDomainTy &ED = CB ? CEDMap[{CB, PRE}] : BEDMap[nullptr];
2737 if (!ED.IsReachedFromAlignedBarrierOnly ||
2738 ED.EncounteredNonLocalSideEffect)
2739 return;
2740 if (!ED.EncounteredAssumes.empty() && !A.isModulePass())
2741 return;
2742
2743 // We can remove this barrier, if it is one, or aligned barriers reaching
2744 // the kernel end (if CB is nullptr). Aligned barriers reaching the kernel
2745 // end should only be removed if the kernel end is their unique successor;
2746 // otherwise, they may have side-effects that aren't accounted for in the
2747 // kernel end in their other successors. If those barriers have other
2748 // barriers reaching them, those can be transitively removed as well as
2749 // long as the kernel end is also their unique successor.
2750 if (CB) {
2751 DeletedBarriers.insert(CB);
2752 A.deleteAfterManifest(*CB);
2753 ++NumBarriersEliminated;
2754 Changed = ChangeStatus::CHANGED;
2755 } else if (!ED.AlignedBarriers.empty()) {
2756 Changed = ChangeStatus::CHANGED;
2757 SmallVector<CallBase *> Worklist(ED.AlignedBarriers.begin(),
2758 ED.AlignedBarriers.end());
2760 while (!Worklist.empty()) {
2761 CallBase *LastCB = Worklist.pop_back_val();
2762 if (!Visited.insert(LastCB))
2763 continue;
2764 if (LastCB->getFunction() != getAnchorScope())
2765 continue;
2766 if (!hasFunctionEndAsUniqueSuccessor(LastCB->getParent()))
2767 continue;
2768 if (!DeletedBarriers.count(LastCB)) {
2769 ++NumBarriersEliminated;
2770 A.deleteAfterManifest(*LastCB);
2771 continue;
2772 }
2773 // The final aligned barrier (LastCB) reaching the kernel end was
2774 // removed already. This means we can go one step further and remove
2775 // the barriers encoutered last before (LastCB).
2776 const ExecutionDomainTy &LastED = CEDMap[{LastCB, PRE}];
2777 Worklist.append(LastED.AlignedBarriers.begin(),
2778 LastED.AlignedBarriers.end());
2779 }
2780 }
2781
2782 // If we actually eliminated a barrier we need to eliminate the associated
2783 // llvm.assumes as well to avoid creating UB.
2784 if (!ED.EncounteredAssumes.empty() && (CB || !ED.AlignedBarriers.empty()))
2785 for (auto *AssumeCB : ED.EncounteredAssumes)
2786 A.deleteAfterManifest(*AssumeCB);
2787 };
2788
2789 for (auto *CB : AlignedBarriers)
2790 HandleAlignedBarrier(CB);
2791
2792 // Handle the "kernel end barrier" for kernels too.
2794 HandleAlignedBarrier(nullptr);
2795
2796 return Changed;
2797 }
2798
2799 bool isNoOpFence(const FenceInst &FI) const override {
2800 return getState().isValidState() && !NonNoOpFences.count(&FI);
2801 }
2802
2803 /// Merge barrier and assumption information from \p PredED into the successor
2804 /// \p ED.
2805 void
2806 mergeInPredecessorBarriersAndAssumptions(Attributor &A, ExecutionDomainTy &ED,
2807 const ExecutionDomainTy &PredED);
2808
2809 /// Merge all information from \p PredED into the successor \p ED. If
2810 /// \p InitialEdgeOnly is set, only the initial edge will enter the block
2811 /// represented by \p ED from this predecessor.
2812 bool mergeInPredecessor(Attributor &A, ExecutionDomainTy &ED,
2813 const ExecutionDomainTy &PredED,
2814 bool InitialEdgeOnly = false);
2815
2816 /// Accumulate information for the entry block in \p EntryBBED.
2817 bool handleCallees(Attributor &A, ExecutionDomainTy &EntryBBED);
2818
2819 /// See AbstractAttribute::updateImpl.
2821
2822 /// Query interface, see AAExecutionDomain
2823 ///{
2824 bool isExecutedByInitialThreadOnly(const BasicBlock &BB) const override {
2825 if (!isValidState())
2826 return false;
2827 assert(BB.getParent() == getAnchorScope() && "Block is out of scope!");
2828 return BEDMap.lookup(&BB).IsExecutedByInitialThreadOnly;
2829 }
2830
2832 const Instruction &I) const override {
2833 assert(I.getFunction() == getAnchorScope() &&
2834 "Instruction is out of scope!");
2835 if (!isValidState())
2836 return false;
2837
2838 bool ForwardIsOk = true;
2839 const Instruction *CurI;
2840
2841 // Check forward until a call or the block end is reached.
2842 CurI = &I;
2843 do {
2844 auto *CB = dyn_cast<CallBase>(CurI);
2845 if (!CB)
2846 continue;
2847 if (CB != &I && AlignedBarriers.contains(const_cast<CallBase *>(CB)))
2848 return true;
2849 const auto &It = CEDMap.find({CB, PRE});
2850 if (It == CEDMap.end())
2851 continue;
2852 if (!It->getSecond().IsReachingAlignedBarrierOnly)
2853 ForwardIsOk = false;
2854 break;
2855 } while ((CurI = CurI->getNextNonDebugInstruction()));
2856
2857 if (!CurI && !BEDMap.lookup(I.getParent()).IsReachingAlignedBarrierOnly)
2858 ForwardIsOk = false;
2859
2860 // Check backward until a call or the block beginning is reached.
2861 CurI = &I;
2862 do {
2863 auto *CB = dyn_cast<CallBase>(CurI);
2864 if (!CB)
2865 continue;
2866 if (CB != &I && AlignedBarriers.contains(const_cast<CallBase *>(CB)))
2867 return true;
2868 const auto &It = CEDMap.find({CB, POST});
2869 if (It == CEDMap.end())
2870 continue;
2871 if (It->getSecond().IsReachedFromAlignedBarrierOnly)
2872 break;
2873 return false;
2874 } while ((CurI = CurI->getPrevNonDebugInstruction()));
2875
2876 // Delayed decision on the forward pass to allow aligned barrier detection
2877 // in the backwards traversal.
2878 if (!ForwardIsOk)
2879 return false;
2880
2881 if (!CurI) {
2882 const BasicBlock *BB = I.getParent();
2883 if (BB == &BB->getParent()->getEntryBlock())
2884 return BEDMap.lookup(nullptr).IsReachedFromAlignedBarrierOnly;
2885 if (!llvm::all_of(predecessors(BB), [&](const BasicBlock *PredBB) {
2886 return BEDMap.lookup(PredBB).IsReachedFromAlignedBarrierOnly;
2887 })) {
2888 return false;
2889 }
2890 }
2891
2892 // On neither traversal we found a anything but aligned barriers.
2893 return true;
2894 }
2895
2896 ExecutionDomainTy getExecutionDomain(const BasicBlock &BB) const override {
2897 assert(isValidState() &&
2898 "No request should be made against an invalid state!");
2899 return BEDMap.lookup(&BB);
2900 }
2901 std::pair<ExecutionDomainTy, ExecutionDomainTy>
2902 getExecutionDomain(const CallBase &CB) const override {
2903 assert(isValidState() &&
2904 "No request should be made against an invalid state!");
2905 return {CEDMap.lookup({&CB, PRE}), CEDMap.lookup({&CB, POST})};
2906 }
2907 ExecutionDomainTy getFunctionExecutionDomain() const override {
2908 assert(isValidState() &&
2909 "No request should be made against an invalid state!");
2910 return InterProceduralED;
2911 }
2912 ///}
2913
2914 // Check if the edge into the successor block contains a condition that only
2915 // lets the main thread execute it.
2916 static bool isInitialThreadOnlyEdge(Attributor &A, BranchInst *Edge,
2917 BasicBlock &SuccessorBB) {
2918 if (!Edge || !Edge->isConditional())
2919 return false;
2920 if (Edge->getSuccessor(0) != &SuccessorBB)
2921 return false;
2922
2923 auto *Cmp = dyn_cast<CmpInst>(Edge->getCondition());
2924 if (!Cmp || !Cmp->isTrueWhenEqual() || !Cmp->isEquality())
2925 return false;
2926
2927 ConstantInt *C = dyn_cast<ConstantInt>(Cmp->getOperand(1));
2928 if (!C)
2929 return false;
2930
2931 // Match: -1 == __kmpc_target_init (for non-SPMD kernels only!)
2932 if (C->isAllOnesValue()) {
2933 auto *CB = dyn_cast<CallBase>(Cmp->getOperand(0));
2934 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache());
2935 auto &RFI = OMPInfoCache.RFIs[OMPRTL___kmpc_target_init];
2936 CB = CB ? OpenMPOpt::getCallIfRegularCall(*CB, &RFI) : nullptr;
2937 if (!CB)
2938 return false;
2939 ConstantStruct *KernelEnvC =
2941 ConstantInt *ExecModeC =
2942 KernelInfo::getExecModeFromKernelEnvironment(KernelEnvC);
2943 return ExecModeC->getSExtValue() & OMP_TGT_EXEC_MODE_GENERIC;
2944 }
2945
2946 if (C->isZero()) {
2947 // Match: 0 == llvm.nvvm.read.ptx.sreg.tid.x()
2948 if (auto *II = dyn_cast<IntrinsicInst>(Cmp->getOperand(0)))
2949 if (II->getIntrinsicID() == Intrinsic::nvvm_read_ptx_sreg_tid_x)
2950 return true;
2951
2952 // Match: 0 == llvm.amdgcn.workitem.id.x()
2953 if (auto *II = dyn_cast<IntrinsicInst>(Cmp->getOperand(0)))
2954 if (II->getIntrinsicID() == Intrinsic::amdgcn_workitem_id_x)
2955 return true;
2956 }
2957
2958 return false;
2959 };
2960
2961 /// Mapping containing information about the function for other AAs.
2962 ExecutionDomainTy InterProceduralED;
2963
2964 enum Direction { PRE = 0, POST = 1 };
2965 /// Mapping containing information per block.
2968 CEDMap;
2969 SmallSetVector<CallBase *, 16> AlignedBarriers;
2970
2972
2973 /// Set \p R to \V and report true if that changed \p R.
2974 static bool setAndRecord(bool &R, bool V) {
2975 bool Eq = (R == V);
2976 R = V;
2977 return !Eq;
2978 }
2979
2980 /// Collection of fences known to be non-no-opt. All fences not in this set
2981 /// can be assumed no-opt.
2983};
2984
2985void AAExecutionDomainFunction::mergeInPredecessorBarriersAndAssumptions(
2986 Attributor &A, ExecutionDomainTy &ED, const ExecutionDomainTy &PredED) {
2987 for (auto *EA : PredED.EncounteredAssumes)
2988 ED.addAssumeInst(A, *EA);
2989
2990 for (auto *AB : PredED.AlignedBarriers)
2991 ED.addAlignedBarrier(A, *AB);
2992}
2993
2994bool AAExecutionDomainFunction::mergeInPredecessor(
2995 Attributor &A, ExecutionDomainTy &ED, const ExecutionDomainTy &PredED,
2996 bool InitialEdgeOnly) {
2997
2998 bool Changed = false;
2999 Changed |=
3000 setAndRecord(ED.IsExecutedByInitialThreadOnly,
3001 InitialEdgeOnly || (PredED.IsExecutedByInitialThreadOnly &&
3002 ED.IsExecutedByInitialThreadOnly));
3003
3004 Changed |= setAndRecord(ED.IsReachedFromAlignedBarrierOnly,
3005 ED.IsReachedFromAlignedBarrierOnly &&
3006 PredED.IsReachedFromAlignedBarrierOnly);
3007 Changed |= setAndRecord(ED.EncounteredNonLocalSideEffect,
3008 ED.EncounteredNonLocalSideEffect |
3009 PredED.EncounteredNonLocalSideEffect);
3010 // Do not track assumptions and barriers as part of Changed.
3011 if (ED.IsReachedFromAlignedBarrierOnly)
3012 mergeInPredecessorBarriersAndAssumptions(A, ED, PredED);
3013 else
3014 ED.clearAssumeInstAndAlignedBarriers();
3015 return Changed;
3016}
3017
3018bool AAExecutionDomainFunction::handleCallees(Attributor &A,
3019 ExecutionDomainTy &EntryBBED) {
3021 auto PredForCallSite = [&](AbstractCallSite ACS) {
3022 const auto *EDAA = A.getAAFor<AAExecutionDomain>(
3023 *this, IRPosition::function(*ACS.getInstruction()->getFunction()),
3024 DepClassTy::OPTIONAL);
3025 if (!EDAA || !EDAA->getState().isValidState())
3026 return false;
3027 CallSiteEDs.emplace_back(
3028 EDAA->getExecutionDomain(*cast<CallBase>(ACS.getInstruction())));
3029 return true;
3030 };
3031
3032 ExecutionDomainTy ExitED;
3033 bool AllCallSitesKnown;
3034 if (A.checkForAllCallSites(PredForCallSite, *this,
3035 /* RequiresAllCallSites */ true,
3036 AllCallSitesKnown)) {
3037 for (const auto &[CSInED, CSOutED] : CallSiteEDs) {
3038 mergeInPredecessor(A, EntryBBED, CSInED);
3039 ExitED.IsReachingAlignedBarrierOnly &=
3040 CSOutED.IsReachingAlignedBarrierOnly;
3041 }
3042
3043 } else {
3044 // We could not find all predecessors, so this is either a kernel or a
3045 // function with external linkage (or with some other weird uses).
3046 if (omp::isOpenMPKernel(*getAnchorScope())) {
3047 EntryBBED.IsExecutedByInitialThreadOnly = false;
3048 EntryBBED.IsReachedFromAlignedBarrierOnly = true;
3049 EntryBBED.EncounteredNonLocalSideEffect = false;
3050 ExitED.IsReachingAlignedBarrierOnly = false;
3051 } else {
3052 EntryBBED.IsExecutedByInitialThreadOnly = false;
3053 EntryBBED.IsReachedFromAlignedBarrierOnly = false;
3054 EntryBBED.EncounteredNonLocalSideEffect = true;
3055 ExitED.IsReachingAlignedBarrierOnly = false;
3056 }
3057 }
3058
3059 bool Changed = false;
3060 auto &FnED = BEDMap[nullptr];
3061 Changed |= setAndRecord(FnED.IsReachedFromAlignedBarrierOnly,
3062 FnED.IsReachedFromAlignedBarrierOnly &
3063 EntryBBED.IsReachedFromAlignedBarrierOnly);
3064 Changed |= setAndRecord(FnED.IsReachingAlignedBarrierOnly,
3065 FnED.IsReachingAlignedBarrierOnly &
3066 ExitED.IsReachingAlignedBarrierOnly);
3067 Changed |= setAndRecord(FnED.IsExecutedByInitialThreadOnly,
3068 EntryBBED.IsExecutedByInitialThreadOnly);
3069 return Changed;
3070}
3071
3072ChangeStatus AAExecutionDomainFunction::updateImpl(Attributor &A) {
3073
3074 bool Changed = false;
3075
3076 // Helper to deal with an aligned barrier encountered during the forward
3077 // traversal. \p CB is the aligned barrier, \p ED is the execution domain when
3078 // it was encountered.
3079 auto HandleAlignedBarrier = [&](CallBase &CB, ExecutionDomainTy &ED) {
3080 Changed |= AlignedBarriers.insert(&CB);
3081 // First, update the barrier ED kept in the separate CEDMap.
3082 auto &CallInED = CEDMap[{&CB, PRE}];
3083 Changed |= mergeInPredecessor(A, CallInED, ED);
3084 CallInED.IsReachingAlignedBarrierOnly = true;
3085 // Next adjust the ED we use for the traversal.
3086 ED.EncounteredNonLocalSideEffect = false;
3087 ED.IsReachedFromAlignedBarrierOnly = true;
3088 // Aligned barrier collection has to come last.
3089 ED.clearAssumeInstAndAlignedBarriers();
3090 ED.addAlignedBarrier(A, CB);
3091 auto &CallOutED = CEDMap[{&CB, POST}];
3092 Changed |= mergeInPredecessor(A, CallOutED, ED);
3093 };
3094
3095 auto *LivenessAA =
3096 A.getAAFor<AAIsDead>(*this, getIRPosition(), DepClassTy::OPTIONAL);
3097
3098 Function *F = getAnchorScope();
3099 BasicBlock &EntryBB = F->getEntryBlock();
3100 bool IsKernel = omp::isOpenMPKernel(*F);
3101
3102 SmallVector<Instruction *> SyncInstWorklist;
3103 for (auto &RIt : *RPOT) {
3104 BasicBlock &BB = *RIt;
3105
3106 bool IsEntryBB = &BB == &EntryBB;
3107 // TODO: We use local reasoning since we don't have a divergence analysis
3108 // running as well. We could basically allow uniform branches here.
3109 bool AlignedBarrierLastInBlock = IsEntryBB && IsKernel;
3110 bool IsExplicitlyAligned = IsEntryBB && IsKernel;
3111 ExecutionDomainTy ED;
3112 // Propagate "incoming edges" into information about this block.
3113 if (IsEntryBB) {
3114 Changed |= handleCallees(A, ED);
3115 } else {
3116 // For live non-entry blocks we only propagate
3117 // information via live edges.
3118 if (LivenessAA && LivenessAA->isAssumedDead(&BB))
3119 continue;
3120
3121 for (auto *PredBB : predecessors(&BB)) {
3122 if (LivenessAA && LivenessAA->isEdgeDead(PredBB, &BB))
3123 continue;
3124 bool InitialEdgeOnly = isInitialThreadOnlyEdge(
3125 A, dyn_cast<BranchInst>(PredBB->getTerminator()), BB);
3126 mergeInPredecessor(A, ED, BEDMap[PredBB], InitialEdgeOnly);
3127 }
3128 }
3129
3130 // Now we traverse the block, accumulate effects in ED and attach
3131 // information to calls.
3132 for (Instruction &I : BB) {
3133 bool UsedAssumedInformation;
3134 if (A.isAssumedDead(I, *this, LivenessAA, UsedAssumedInformation,
3135 /* CheckBBLivenessOnly */ false, DepClassTy::OPTIONAL,
3136 /* CheckForDeadStore */ true))
3137 continue;
3138
3139 // Asummes and "assume-like" (dbg, lifetime, ...) are handled first, the
3140 // former is collected the latter is ignored.
3141 if (auto *II = dyn_cast<IntrinsicInst>(&I)) {
3142 if (auto *AI = dyn_cast_or_null<AssumeInst>(II)) {
3143 ED.addAssumeInst(A, *AI);
3144 continue;
3145 }
3146 // TODO: Should we also collect and delete lifetime markers?
3147 if (II->isAssumeLikeIntrinsic())
3148 continue;
3149 }
3150
3151 if (auto *FI = dyn_cast<FenceInst>(&I)) {
3152 if (!ED.EncounteredNonLocalSideEffect) {
3153 // An aligned fence without non-local side-effects is a no-op.
3154 if (ED.IsReachedFromAlignedBarrierOnly)
3155 continue;
3156 // A non-aligned fence without non-local side-effects is a no-op
3157 // if the ordering only publishes non-local side-effects (or less).
3158 switch (FI->getOrdering()) {
3159 case AtomicOrdering::NotAtomic:
3160 continue;
3161 case AtomicOrdering::Unordered:
3162 continue;
3163 case AtomicOrdering::Monotonic:
3164 continue;
3165 case AtomicOrdering::Acquire:
3166 break;
3167 case AtomicOrdering::Release:
3168 continue;
3169 case AtomicOrdering::AcquireRelease:
3170 break;
3171 case AtomicOrdering::SequentiallyConsistent:
3172 break;
3173 };
3174 }
3175 NonNoOpFences.insert(FI);
3176 }
3177
3178 auto *CB = dyn_cast<CallBase>(&I);
3179 bool IsNoSync = AA::isNoSyncInst(A, I, *this);
3180 bool IsAlignedBarrier =
3181 !IsNoSync && CB &&
3182 AANoSync::isAlignedBarrier(*CB, AlignedBarrierLastInBlock);
3183
3184 AlignedBarrierLastInBlock &= IsNoSync;
3185 IsExplicitlyAligned &= IsNoSync;
3186
3187 // Next we check for calls. Aligned barriers are handled
3188 // explicitly, everything else is kept for the backward traversal and will
3189 // also affect our state.
3190 if (CB) {
3191 if (IsAlignedBarrier) {
3192 HandleAlignedBarrier(*CB, ED);
3193 AlignedBarrierLastInBlock = true;
3194 IsExplicitlyAligned = true;
3195 continue;
3196 }
3197
3198 // Check the pointer(s) of a memory intrinsic explicitly.
3199 if (isa<MemIntrinsic>(&I)) {
3200 if (!ED.EncounteredNonLocalSideEffect &&
3202 ED.EncounteredNonLocalSideEffect = true;
3203 if (!IsNoSync) {
3204 ED.IsReachedFromAlignedBarrierOnly = false;
3205 SyncInstWorklist.push_back(&I);
3206 }
3207 continue;
3208 }
3209
3210 // Record how we entered the call, then accumulate the effect of the
3211 // call in ED for potential use by the callee.
3212 auto &CallInED = CEDMap[{CB, PRE}];
3213 Changed |= mergeInPredecessor(A, CallInED, ED);
3214
3215 // If we have a sync-definition we can check if it starts/ends in an
3216 // aligned barrier. If we are unsure we assume any sync breaks
3217 // alignment.
3219 if (!IsNoSync && Callee && !Callee->isDeclaration()) {
3220 const auto *EDAA = A.getAAFor<AAExecutionDomain>(
3221 *this, IRPosition::function(*Callee), DepClassTy::OPTIONAL);
3222 if (EDAA && EDAA->getState().isValidState()) {
3223 const auto &CalleeED = EDAA->getFunctionExecutionDomain();
3225 CalleeED.IsReachedFromAlignedBarrierOnly;
3226 AlignedBarrierLastInBlock = ED.IsReachedFromAlignedBarrierOnly;
3227 if (IsNoSync || !CalleeED.IsReachedFromAlignedBarrierOnly)
3228 ED.EncounteredNonLocalSideEffect |=
3229 CalleeED.EncounteredNonLocalSideEffect;
3230 else
3231 ED.EncounteredNonLocalSideEffect =
3232 CalleeED.EncounteredNonLocalSideEffect;
3233 if (!CalleeED.IsReachingAlignedBarrierOnly) {
3234 Changed |=
3235 setAndRecord(CallInED.IsReachingAlignedBarrierOnly, false);
3236 SyncInstWorklist.push_back(&I);
3237 }
3238 if (CalleeED.IsReachedFromAlignedBarrierOnly)
3239 mergeInPredecessorBarriersAndAssumptions(A, ED, CalleeED);
3240 auto &CallOutED = CEDMap[{CB, POST}];
3241 Changed |= mergeInPredecessor(A, CallOutED, ED);
3242 continue;
3243 }
3244 }
3245 if (!IsNoSync) {
3246 ED.IsReachedFromAlignedBarrierOnly = false;
3247 Changed |= setAndRecord(CallInED.IsReachingAlignedBarrierOnly, false);
3248 SyncInstWorklist.push_back(&I);
3249 }
3250 AlignedBarrierLastInBlock &= ED.IsReachedFromAlignedBarrierOnly;
3251 ED.EncounteredNonLocalSideEffect |= !CB->doesNotAccessMemory();
3252 auto &CallOutED = CEDMap[{CB, POST}];
3253 Changed |= mergeInPredecessor(A, CallOutED, ED);
3254 }
3255
3256 if (!I.mayHaveSideEffects() && !I.mayReadFromMemory())
3257 continue;
3258
3259 // If we have a callee we try to use fine-grained information to
3260 // determine local side-effects.
3261 if (CB) {
3262 const auto *MemAA = A.getAAFor<AAMemoryLocation>(
3263 *this, IRPosition::callsite_function(*CB), DepClassTy::OPTIONAL);
3264
3265 auto AccessPred = [&](const Instruction *I, const Value *Ptr,
3268 return !AA::isPotentiallyAffectedByBarrier(A, {Ptr}, *this, I);
3269 };
3270 if (MemAA && MemAA->getState().isValidState() &&
3271 MemAA->checkForAllAccessesToMemoryKind(
3273 continue;
3274 }
3275
3276 auto &InfoCache = A.getInfoCache();
3277 if (!I.mayHaveSideEffects() && InfoCache.isOnlyUsedByAssume(I))
3278 continue;
3279
3280 if (auto *LI = dyn_cast<LoadInst>(&I))
3281 if (LI->hasMetadata(LLVMContext::MD_invariant_load))
3282 continue;
3283
3284 if (!ED.EncounteredNonLocalSideEffect &&
3286 ED.EncounteredNonLocalSideEffect = true;
3287 }
3288
3289 bool IsEndAndNotReachingAlignedBarriersOnly = false;
3290 if (!isa<UnreachableInst>(BB.getTerminator()) &&
3291 !BB.getTerminator()->getNumSuccessors()) {
3292
3293 Changed |= mergeInPredecessor(A, InterProceduralED, ED);
3294
3295 auto &FnED = BEDMap[nullptr];
3296 if (IsKernel && !IsExplicitlyAligned)
3297 FnED.IsReachingAlignedBarrierOnly = false;
3298 Changed |= mergeInPredecessor(A, FnED, ED);
3299
3300 if (!FnED.IsReachingAlignedBarrierOnly) {
3301 IsEndAndNotReachingAlignedBarriersOnly = true;
3302 SyncInstWorklist.push_back(BB.getTerminator());
3303 auto &BBED = BEDMap[&BB];
3304 Changed |= setAndRecord(BBED.IsReachingAlignedBarrierOnly, false);
3305 }
3306 }
3307
3308 ExecutionDomainTy &StoredED = BEDMap[&BB];
3309 ED.IsReachingAlignedBarrierOnly = StoredED.IsReachingAlignedBarrierOnly &
3310 !IsEndAndNotReachingAlignedBarriersOnly;
3311
3312 // Check if we computed anything different as part of the forward
3313 // traversal. We do not take assumptions and aligned barriers into account
3314 // as they do not influence the state we iterate. Backward traversal values
3315 // are handled later on.
3316 if (ED.IsExecutedByInitialThreadOnly !=
3317 StoredED.IsExecutedByInitialThreadOnly ||
3318 ED.IsReachedFromAlignedBarrierOnly !=
3319 StoredED.IsReachedFromAlignedBarrierOnly ||
3320 ED.EncounteredNonLocalSideEffect !=
3321 StoredED.EncounteredNonLocalSideEffect)
3322 Changed = true;
3323
3324 // Update the state with the new value.
3325 StoredED = std::move(ED);
3326 }
3327
3328 // Propagate (non-aligned) sync instruction effects backwards until the
3329 // entry is hit or an aligned barrier.
3331 while (!SyncInstWorklist.empty()) {
3332 Instruction *SyncInst = SyncInstWorklist.pop_back_val();
3333 Instruction *CurInst = SyncInst;
3334 bool HitAlignedBarrierOrKnownEnd = false;
3335 while ((CurInst = CurInst->getPrevNode())) {
3336 auto *CB = dyn_cast<CallBase>(CurInst);
3337 if (!CB)
3338 continue;
3339 auto &CallOutED = CEDMap[{CB, POST}];
3340 Changed |= setAndRecord(CallOutED.IsReachingAlignedBarrierOnly, false);
3341 auto &CallInED = CEDMap[{CB, PRE}];
3342 HitAlignedBarrierOrKnownEnd =
3343 AlignedBarriers.count(CB) || !CallInED.IsReachingAlignedBarrierOnly;
3344 if (HitAlignedBarrierOrKnownEnd)
3345 break;
3346 Changed |= setAndRecord(CallInED.IsReachingAlignedBarrierOnly, false);
3347 }
3348 if (HitAlignedBarrierOrKnownEnd)
3349 continue;
3350 BasicBlock *SyncBB = SyncInst->getParent();
3351 for (auto *PredBB : predecessors(SyncBB)) {
3352 if (LivenessAA && LivenessAA->isEdgeDead(PredBB, SyncBB))
3353 continue;
3354 if (!Visited.insert(PredBB))
3355 continue;
3356 auto &PredED = BEDMap[PredBB];
3357 if (setAndRecord(PredED.IsReachingAlignedBarrierOnly, false)) {
3358 Changed = true;
3359 SyncInstWorklist.push_back(PredBB->getTerminator());
3360 }
3361 }
3362 if (SyncBB != &EntryBB)
3363 continue;
3364 Changed |=
3365 setAndRecord(InterProceduralED.IsReachingAlignedBarrierOnly, false);
3366 }
3367
3368 return Changed ? ChangeStatus::CHANGED : ChangeStatus::UNCHANGED;
3369}
3370
3371/// Try to replace memory allocation calls called by a single thread with a
3372/// static buffer of shared memory.
3373struct AAHeapToShared : public StateWrapper<BooleanState, AbstractAttribute> {
3375 AAHeapToShared(const IRPosition &IRP, Attributor &A) : Base(IRP) {}
3376
3377 /// Create an abstract attribute view for the position \p IRP.
3378 static AAHeapToShared &createForPosition(const IRPosition &IRP,
3379 Attributor &A);
3380
3381 /// Returns true if HeapToShared conversion is assumed to be possible.
3382 virtual bool isAssumedHeapToShared(CallBase &CB) const = 0;
3383
3384 /// Returns true if HeapToShared conversion is assumed and the CB is a
3385 /// callsite to a free operation to be removed.
3386 virtual bool isAssumedHeapToSharedRemovedFree(CallBase &CB) const = 0;
3387
3388 /// See AbstractAttribute::getName().
3389 const std::string getName() const override { return "AAHeapToShared"; }
3390
3391 /// See AbstractAttribute::getIdAddr().
3392 const char *getIdAddr() const override { return &ID; }
3393
3394 /// This function should return true if the type of the \p AA is
3395 /// AAHeapToShared.
3396 static bool classof(const AbstractAttribute *AA) {
3397 return (AA->getIdAddr() == &ID);
3398 }
3399
3400 /// Unique ID (due to the unique address)
3401 static const char ID;
3402};
3403
3404struct AAHeapToSharedFunction : public AAHeapToShared {
3405 AAHeapToSharedFunction(const IRPosition &IRP, Attributor &A)
3406 : AAHeapToShared(IRP, A) {}
3407
3408 const std::string getAsStr(Attributor *) const override {
3409 return "[AAHeapToShared] " + std::to_string(MallocCalls.size()) +
3410 " malloc calls eligible.";
3411 }
3412
3413 /// See AbstractAttribute::trackStatistics().
3414 void trackStatistics() const override {}
3415
3416 /// This functions finds free calls that will be removed by the
3417 /// HeapToShared transformation.
3418 void findPotentialRemovedFreeCalls(Attributor &A) {
3419 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache());
3420 auto &FreeRFI = OMPInfoCache.RFIs[OMPRTL___kmpc_free_shared];
3421
3422 PotentialRemovedFreeCalls.clear();
3423 // Update free call users of found malloc calls.
3424 for (CallBase *CB : MallocCalls) {
3426 for (auto *U : CB->users()) {
3427 CallBase *C = dyn_cast<CallBase>(U);
3428 if (C && C->getCalledFunction() == FreeRFI.Declaration)
3429 FreeCalls.push_back(C);
3430 }
3431
3432 if (FreeCalls.size() != 1)
3433 continue;
3434
3435 PotentialRemovedFreeCalls.insert(FreeCalls.front());
3436 }
3437 }
3438
3439 void initialize(Attributor &A) override {
3441 indicatePessimisticFixpoint();
3442 return;
3443 }
3444
3445 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache());
3446 auto &RFI = OMPInfoCache.RFIs[OMPRTL___kmpc_alloc_shared];
3447 if (!RFI.Declaration)
3448 return;
3449
3451 [](const IRPosition &, const AbstractAttribute *,
3452 bool &) -> std::optional<Value *> { return nullptr; };
3453
3454 Function *F = getAnchorScope();
3455 for (User *U : RFI.Declaration->users())
3456 if (CallBase *CB = dyn_cast<CallBase>(U)) {
3457 if (CB->getFunction() != F)
3458 continue;
3459 MallocCalls.insert(CB);
3460 A.registerSimplificationCallback(IRPosition::callsite_returned(*CB),
3461 SCB);
3462 }
3463
3464 findPotentialRemovedFreeCalls(A);
3465 }
3466
3467 bool isAssumedHeapToShared(CallBase &CB) const override {
3468 return isValidState() && MallocCalls.count(&CB);
3469 }
3470
3471 bool isAssumedHeapToSharedRemovedFree(CallBase &CB) const override {
3472 return isValidState() && PotentialRemovedFreeCalls.count(&CB);
3473 }
3474
3475 ChangeStatus manifest(Attributor &A) override {
3476 if (MallocCalls.empty())
3477 return ChangeStatus::UNCHANGED;
3478
3479 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache());
3480 auto &FreeCall = OMPInfoCache.RFIs[OMPRTL___kmpc_free_shared];
3481
3482 Function *F = getAnchorScope();
3483 auto *HS = A.lookupAAFor<AAHeapToStack>(IRPosition::function(*F), this,
3484 DepClassTy::OPTIONAL);
3485
3486 ChangeStatus Changed = ChangeStatus::UNCHANGED;
3487 for (CallBase *CB : MallocCalls) {
3488 // Skip replacing this if HeapToStack has already claimed it.
3489 if (HS && HS->isAssumedHeapToStack(*CB))
3490 continue;
3491
3492 // Find the unique free call to remove it.
3494 for (auto *U : CB->users()) {
3495 CallBase *C = dyn_cast<CallBase>(U);
3496 if (C && C->getCalledFunction() == FreeCall.Declaration)
3497 FreeCalls.push_back(C);
3498 }
3499 if (FreeCalls.size() != 1)
3500 continue;
3501
3502 auto *AllocSize = cast<ConstantInt>(CB->getArgOperand(0));
3503
3504 if (AllocSize->getZExtValue() + SharedMemoryUsed > SharedMemoryLimit) {
3505 LLVM_DEBUG(dbgs() << TAG << "Cannot replace call " << *CB
3506 << " with shared memory."
3507 << " Shared memory usage is limited to "
3508 << SharedMemoryLimit << " bytes\n");
3509 continue;
3510 }
3511
3512 LLVM_DEBUG(dbgs() << TAG << "Replace globalization call " << *CB
3513 << " with " << AllocSize->getZExtValue()
3514 << " bytes of shared memory\n");
3515
3516 // Create a new shared memory buffer of the same size as the allocation
3517 // and replace all the uses of the original allocation with it.
3518 Module *M = CB->getModule();
3519 Type *Int8Ty = Type::getInt8Ty(M->getContext());
3520 Type *Int8ArrTy = ArrayType::get(Int8Ty, AllocSize->getZExtValue());
3521 auto *SharedMem = new GlobalVariable(
3522 *M, Int8ArrTy, /* IsConstant */ false, GlobalValue::InternalLinkage,
3523 PoisonValue::get(Int8ArrTy), CB->getName() + "_shared", nullptr,
3525 static_cast<unsigned>(AddressSpace::Shared));
3526 auto *NewBuffer =
3527 ConstantExpr::getPointerCast(SharedMem, Int8Ty->getPointerTo());
3528
3529 auto Remark = [&](OptimizationRemark OR) {
3530 return OR << "Replaced globalized variable with "
3531 << ore::NV("SharedMemory", AllocSize->getZExtValue())
3532 << (AllocSize->isOne() ? " byte " : " bytes ")
3533 << "of shared memory.";
3534 };
3535 A.emitRemark<OptimizationRemark>(CB, "OMP111", Remark);
3536
3537 MaybeAlign Alignment = CB->getRetAlign();
3538 assert(Alignment &&
3539 "HeapToShared on allocation without alignment attribute");
3540 SharedMem->setAlignment(*Alignment);
3541
3542 A.changeAfterManifest(IRPosition::callsite_returned(*CB), *NewBuffer);
3543 A.deleteAfterManifest(*CB);
3544 A.deleteAfterManifest(*FreeCalls.front());
3545
3546 SharedMemoryUsed += AllocSize->getZExtValue();
3547 NumBytesMovedToSharedMemory = SharedMemoryUsed;
3548 Changed = ChangeStatus::CHANGED;
3549 }
3550
3551 return Changed;
3552 }
3553
3554 ChangeStatus updateImpl(Attributor &A) override {
3555 if (MallocCalls.empty())
3556 return indicatePessimisticFixpoint();
3557 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache());
3558 auto &RFI = OMPInfoCache.RFIs[OMPRTL___kmpc_alloc_shared];
3559 if (!RFI.Declaration)
3560 return ChangeStatus::UNCHANGED;
3561
3562 Function *F = getAnchorScope();
3563
3564 auto NumMallocCalls = MallocCalls.size();
3565
3566 // Only consider malloc calls executed by a single thread with a constant.
3567 for (User *U : RFI.Declaration->users()) {
3568 if (CallBase *CB = dyn_cast<CallBase>(U)) {
3569 if (CB->getCaller() != F)
3570 continue;
3571 if (!MallocCalls.count(CB))
3572 continue;
3573 if (!isa<ConstantInt>(CB->getArgOperand(0))) {
3574 MallocCalls.remove(CB);
3575 continue;
3576 }
3577 const auto *ED = A.getAAFor<AAExecutionDomain>(
3578 *this, IRPosition::function(*F), DepClassTy::REQUIRED);
3579 if (!ED || !ED->isExecutedByInitialThreadOnly(*CB))
3580 MallocCalls.remove(CB);
3581 }
3582 }
3583
3584 findPotentialRemovedFreeCalls(A);
3585
3586 if (NumMallocCalls != MallocCalls.size())
3587 return ChangeStatus::CHANGED;
3588
3589 return ChangeStatus::UNCHANGED;
3590 }
3591
3592 /// Collection of all malloc calls in a function.
3594 /// Collection of potentially removed free calls in a function.
3595 SmallPtrSet<CallBase *, 4> PotentialRemovedFreeCalls;
3596 /// The total amount of shared memory that has been used for HeapToShared.
3597 unsigned SharedMemoryUsed = 0;
3598};
3599
3600struct AAKernelInfo : public StateWrapper<KernelInfoState, AbstractAttribute> {
3602 AAKernelInfo(const IRPosition &IRP, Attributor &A) : Base(IRP) {}
3603
3604 /// The callee value is tracked beyond a simple stripPointerCasts, so we allow
3605 /// unknown callees.
3606 static bool requiresCalleeForCallBase() { return false; }
3607
3608 /// Statistics are tracked as part of manifest for now.
3609 void trackStatistics() const override {}
3610
3611 /// See AbstractAttribute::getAsStr()
3612 const std::string getAsStr(Attributor *) const override {
3613 if (!isValidState())
3614 return "<invalid>";
3615 return std::string(SPMDCompatibilityTracker.isAssumed() ? "SPMD"
3616 : "generic") +
3617 std::string(SPMDCompatibilityTracker.isAtFixpoint() ? " [FIX]"
3618 : "") +
3619 std::string(" #PRs: ") +
3620 (ReachedKnownParallelRegions.isValidState()
3621 ? std::to_string(ReachedKnownParallelRegions.size())
3622 : "<invalid>") +
3623 ", #Unknown PRs: " +
3624 (ReachedUnknownParallelRegions.isValidState()
3625 ? std::to_string(ReachedUnknownParallelRegions.size())
3626 : "<invalid>") +
3627 ", #Reaching Kernels: " +
3628 (ReachingKernelEntries.isValidState()
3629 ? std::to_string(ReachingKernelEntries.size())
3630 : "<invalid>") +
3631 ", #ParLevels: " +
3632 (ParallelLevels.isValidState()
3633 ? std::to_string(ParallelLevels.size())
3634 : "<invalid>") +
3635 ", NestedPar: " + (NestedParallelism ? "yes" : "no");
3636 }
3637
3638 /// Create an abstract attribute biew for the position \p IRP.
3639 static AAKernelInfo &createForPosition(const IRPosition &IRP, Attributor &A);
3640
3641 /// See AbstractAttribute::getName()
3642 const std::string getName() const override { return "AAKernelInfo"; }
3643
3644 /// See AbstractAttribute::getIdAddr()
3645 const char *getIdAddr() const override { return &ID; }
3646
3647 /// This function should return true if the type of the \p AA is AAKernelInfo
3648 static bool classof(const AbstractAttribute *AA) {
3649 return (AA->getIdAddr() == &ID);
3650 }
3651
3652 static const char ID;
3653};
3654
3655/// The function kernel info abstract attribute, basically, what can we say
3656/// about a function with regards to the KernelInfoState.
3657struct AAKernelInfoFunction : AAKernelInfo {
3658 AAKernelInfoFunction(const IRPosition &IRP, Attributor &A)
3659 : AAKernelInfo(IRP, A) {}
3660
3661 SmallPtrSet<Instruction *, 4> GuardedInstructions;
3662
3663 SmallPtrSetImpl<Instruction *> &getGuardedInstructions() {
3664 return GuardedInstructions;
3665 }
3666
3667 void setConfigurationOfKernelEnvironment(ConstantStruct *ConfigC) {
3669 KernelEnvC, ConfigC, {KernelInfo::ConfigurationIdx});
3670 assert(NewKernelEnvC && "Failed to create new kernel environment");
3671 KernelEnvC = cast<ConstantStruct>(NewKernelEnvC);
3672 }
3673
3674#define KERNEL_ENVIRONMENT_CONFIGURATION_SETTER(MEMBER) \
3675 void set##MEMBER##OfKernelEnvironment(ConstantInt *NewVal) { \
3676 ConstantStruct *ConfigC = \
3677 KernelInfo::getConfigurationFromKernelEnvironment(KernelEnvC); \
3678 Constant *NewConfigC = ConstantFoldInsertValueInstruction( \
3679 ConfigC, NewVal, {KernelInfo::MEMBER##Idx}); \
3680 assert(NewConfigC && "Failed to create new configuration environment"); \
3681 setConfigurationOfKernelEnvironment(cast<ConstantStruct>(NewConfigC)); \
3682 }
3683
3684 KERNEL_ENVIRONMENT_CONFIGURATION_SETTER(UseGenericStateMachine)
3685 KERNEL_ENVIRONMENT_CONFIGURATION_SETTER(MayUseNestedParallelism)
3691
3692#undef KERNEL_ENVIRONMENT_CONFIGURATION_SETTER
3693
3694 /// See AbstractAttribute::initialize(...).
3695 void initialize(Attributor &A) override {
3696 // This is a high-level transform that might change the constant arguments
3697 // of the init and dinit calls. We need to tell the Attributor about this
3698 // to avoid other parts using the current constant value for simpliication.
3699 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache());
3700
3701 Function *Fn = getAnchorScope();
3702
3703 OMPInformationCache::RuntimeFunctionInfo &InitRFI =
3704 OMPInfoCache.RFIs[OMPRTL___kmpc_target_init];
3705 OMPInformationCache::RuntimeFunctionInfo &DeinitRFI =
3706 OMPInfoCache.RFIs[OMPRTL___kmpc_target_deinit];
3707
3708 // For kernels we perform more initialization work, first we find the init
3709 // and deinit calls.
3710 auto StoreCallBase = [](Use &U,
3711 OMPInformationCache::RuntimeFunctionInfo &RFI,
3712 CallBase *&Storage) {
3713 CallBase *CB = OpenMPOpt::getCallIfRegularCall(U, &RFI);
3714 assert(CB &&
3715 "Unexpected use of __kmpc_target_init or __kmpc_target_deinit!");
3716 assert(!Storage &&
3717 "Multiple uses of __kmpc_target_init or __kmpc_target_deinit!");
3718 Storage = CB;
3719 return false;
3720 };
3721 InitRFI.foreachUse(
3722 [&](Use &U, Function &) {
3723 StoreCallBase(U, InitRFI, KernelInitCB);
3724 return false;
3725 },
3726 Fn);
3727 DeinitRFI.foreachUse(
3728 [&](Use &U, Function &) {
3729 StoreCallBase(U, DeinitRFI, KernelDeinitCB);
3730 return false;
3731 },
3732 Fn);
3733
3734 // Ignore kernels without initializers such as global constructors.
3735 if (!KernelInitCB || !KernelDeinitCB)
3736 return;
3737
3738 // Add itself to the reaching kernel and set IsKernelEntry.
3739 ReachingKernelEntries.insert(Fn);
3740 IsKernelEntry = true;
3741
3742 KernelEnvC =
3744 GlobalVariable *KernelEnvGV =
3746
3748 KernelConfigurationSimplifyCB =
3749 [&](const GlobalVariable &GV, const AbstractAttribute *AA,
3750 bool &UsedAssumedInformation) -> std::optional<Constant *> {
3751 if (!isAtFixpoint()) {
3752 if (!AA)
3753 return nullptr;
3754 UsedAssumedInformation = true;
3755 A.recordDependence(*this, *AA, DepClassTy::OPTIONAL);
3756 }
3757 return KernelEnvC;
3758 };
3759
3760 A.registerGlobalVariableSimplificationCallback(
3761 *KernelEnvGV, KernelConfigurationSimplifyCB);
3762
3763 // Check if we know we are in SPMD-mode already.
3764 ConstantInt *ExecModeC =
3765 KernelInfo::getExecModeFromKernelEnvironment(KernelEnvC);
3766 ConstantInt *AssumedExecModeC = ConstantInt::get(
3767 ExecModeC->getIntegerType(),
3769 if (ExecModeC->getSExtValue() & OMP_TGT_EXEC_MODE_SPMD)
3770 SPMDCompatibilityTracker.indicateOptimisticFixpoint();
3772 // This is a generic region but SPMDization is disabled so stop
3773 // tracking.
3774 SPMDCompatibilityTracker.indicatePessimisticFixpoint();
3775 else
3776 setExecModeOfKernelEnvironment(AssumedExecModeC);
3777
3778 const Triple T(Fn->getParent()->getTargetTriple());
3779 auto *Int32Ty = Type::getInt32Ty(Fn->getContext());
3780 auto [MinThreads, MaxThreads] =
3782 if (MinThreads)
3783 setMinThreadsOfKernelEnvironment(ConstantInt::get(Int32Ty, MinThreads));
3784 if (MaxThreads)
3785 setMaxThreadsOfKernelEnvironment(ConstantInt::get(Int32Ty, MaxThreads));
3786 auto [MinTeams, MaxTeams] =
3788 if (MinTeams)
3789 setMinTeamsOfKernelEnvironment(ConstantInt::get(Int32Ty, MinTeams));
3790 if (MaxTeams)
3791 setMaxTeamsOfKernelEnvironment(ConstantInt::get(Int32Ty, MaxTeams));
3792
3793 ConstantInt *MayUseNestedParallelismC =
3794 KernelInfo::getMayUseNestedParallelismFromKernelEnvironment(KernelEnvC);
3795 ConstantInt *AssumedMayUseNestedParallelismC = ConstantInt::get(
3796 MayUseNestedParallelismC->getIntegerType(), NestedParallelism);
3797 setMayUseNestedParallelismOfKernelEnvironment(
3798 AssumedMayUseNestedParallelismC);
3799
3801 ConstantInt *UseGenericStateMachineC =
3802 KernelInfo::getUseGenericStateMachineFromKernelEnvironment(
3803 KernelEnvC);
3804 ConstantInt *AssumedUseGenericStateMachineC =
3805 ConstantInt::get(UseGenericStateMachineC->getIntegerType(), false);
3806 setUseGenericStateMachineOfKernelEnvironment(
3807 AssumedUseGenericStateMachineC);
3808 }
3809
3810 // Register virtual uses of functions we might need to preserve.
3811 auto RegisterVirtualUse = [&](RuntimeFunction RFKind,
3813 if (!OMPInfoCache.RFIs[RFKind].Declaration)
3814 return;
3815 A.registerVirtualUseCallback(*OMPInfoCache.RFIs[RFKind].Declaration, CB);
3816 };
3817
3818 // Add a dependence to ensure updates if the state changes.
3819 auto AddDependence = [](Attributor &A, const AAKernelInfo *KI,
3820 const AbstractAttribute *QueryingAA) {
3821 if (QueryingAA) {
3822 A.recordDependence(*KI, *QueryingAA, DepClassTy::OPTIONAL);
3823 }
3824 return true;
3825 };
3826
3827 Attributor::VirtualUseCallbackTy CustomStateMachineUseCB =
3828 [&](Attributor &A, const AbstractAttribute *QueryingAA) {
3829 // Whenever we create a custom state machine we will insert calls to
3830 // __kmpc_get_hardware_num_threads_in_block,
3831 // __kmpc_get_warp_size,
3832 // __kmpc_barrier_simple_generic,
3833 // __kmpc_kernel_parallel, and
3834 // __kmpc_kernel_end_parallel.
3835 // Not needed if we are on track for SPMDzation.
3836 if (SPMDCompatibilityTracker.isValidState())
3837 return AddDependence(A, this, QueryingAA);
3838 // Not needed if we can't rewrite due to an invalid state.
3839 if (!ReachedKnownParallelRegions.isValidState())
3840 return AddDependence(A, this, QueryingAA);
3841 return false;
3842 };
3843
3844 // Not needed if we are pre-runtime merge.
3845 if (!KernelInitCB->getCalledFunction()->isDeclaration()) {
3846 RegisterVirtualUse(OMPRTL___kmpc_get_hardware_num_threads_in_block,
3847 CustomStateMachineUseCB);
3848 RegisterVirtualUse(OMPRTL___kmpc_get_warp_size, CustomStateMachineUseCB);
3849 RegisterVirtualUse(OMPRTL___kmpc_barrier_simple_generic,
3850 CustomStateMachineUseCB);
3851 RegisterVirtualUse(OMPRTL___kmpc_kernel_parallel,
3852 CustomStateMachineUseCB);
3853 RegisterVirtualUse(OMPRTL___kmpc_kernel_end_parallel,
3854 CustomStateMachineUseCB);
3855 }
3856
3857 // If we do not perform SPMDzation we do not need the virtual uses below.
3858 if (SPMDCompatibilityTracker.isAtFixpoint())
3859 return;
3860
3861 Attributor::VirtualUseCallbackTy HWThreadIdUseCB =
3862 [&](Attributor &A, const AbstractAttribute *QueryingAA) {
3863 // Whenever we perform SPMDzation we will insert
3864 // __kmpc_get_hardware_thread_id_in_block calls.
3865 if (!SPMDCompatibilityTracker.isValidState())
3866 return AddDependence(A, this, QueryingAA);
3867 return false;
3868 };
3869 RegisterVirtualUse(OMPRTL___kmpc_get_hardware_thread_id_in_block,
3870 HWThreadIdUseCB);
3871
3872 Attributor::VirtualUseCallbackTy SPMDBarrierUseCB =
3873 [&](Attributor &A, const AbstractAttribute *QueryingAA) {
3874 // Whenever we perform SPMDzation with guarding we will insert
3875 // __kmpc_simple_barrier_spmd calls. If SPMDzation failed, there is
3876 // nothing to guard, or there are no parallel regions, we don't need
3877 // the calls.
3878 if (!SPMDCompatibilityTracker.isValidState())
3879 return AddDependence(A, this, QueryingAA);
3880 if (SPMDCompatibilityTracker.empty())
3881 return AddDependence(A, this, QueryingAA);
3882 if (!mayContainParallelRegion())
3883 return AddDependence(A, this, QueryingAA);
3884 return false;
3885 };
3886 RegisterVirtualUse(OMPRTL___kmpc_barrier_simple_spmd, SPMDBarrierUseCB);
3887 }
3888
3889 /// Sanitize the string \p S such that it is a suitable global symbol name.
3890 static std::string sanitizeForGlobalName(std::string S) {
3891 std::replace_if(
3892 S.begin(), S.end(),
3893 [](const char C) {
3894 return !((C >= 'a' && C <= 'z') || (C >= 'A' && C <= 'Z') ||
3895 (C >= '0' && C <= '9') || C == '_');
3896 },
3897 '.');
3898 return S;
3899 }
3900
3901 /// Modify the IR based on the KernelInfoState as the fixpoint iteration is
3902 /// finished now.
3903 ChangeStatus manifest(Attributor &A) override {
3904 // If we are not looking at a kernel with __kmpc_target_init and
3905 // __kmpc_target_deinit call we cannot actually manifest the information.
3906 if (!KernelInitCB || !KernelDeinitCB)
3907 return ChangeStatus::UNCHANGED;
3908
3909 ChangeStatus Changed = ChangeStatus::UNCHANGED;
3910
3911 bool HasBuiltStateMachine = true;
3912 if (!changeToSPMDMode(A, Changed)) {
3913 if (!KernelInitCB->getCalledFunction()->isDeclaration())
3914 HasBuiltStateMachine = buildCustomStateMachine(A, Changed);
3915 else
3916 HasBuiltStateMachine = false;
3917 }
3918
3919 // We need to reset KernelEnvC if specific rewriting is not done.
3920 ConstantStruct *ExistingKernelEnvC =
3922 ConstantInt *OldUseGenericStateMachineVal =
3923 KernelInfo::getUseGenericStateMachineFromKernelEnvironment(
3924 ExistingKernelEnvC);
3925 if (!HasBuiltStateMachine)
3926 setUseGenericStateMachineOfKernelEnvironment(
3927 OldUseGenericStateMachineVal);
3928
3929 // At last, update the KernelEnvc
3930 GlobalVariable *KernelEnvGV =
3932 if (KernelEnvGV->getInitializer() != KernelEnvC) {
3933 KernelEnvGV->setInitializer(KernelEnvC);
3934 Changed = ChangeStatus::CHANGED;
3935 }
3936
3937 return Changed;
3938 }
3939
3940 void insertInstructionGuardsHelper(Attributor &A) {
3941 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache());
3942
3943 auto CreateGuardedRegion = [&](Instruction *RegionStartI,
3944 Instruction *RegionEndI) {
3945 LoopInfo *LI = nullptr;
3946 DominatorTree *DT = nullptr;
3947 MemorySSAUpdater *MSU = nullptr;
3948 using InsertPointTy = OpenMPIRBuilder::InsertPointTy;
3949
3950 BasicBlock *ParentBB = RegionStartI->getParent();
3951 Function *Fn = ParentBB->getParent();
3952 Module &M = *Fn->getParent();
3953
3954 // Create all the blocks and logic.
3955 // ParentBB:
3956 // goto RegionCheckTidBB
3957 // RegionCheckTidBB:
3958 // Tid = __kmpc_hardware_thread_id()
3959 // if (Tid != 0)
3960 // goto RegionBarrierBB
3961 // RegionStartBB:
3962 // <execute instructions guarded>
3963 // goto RegionEndBB
3964 // RegionEndBB:
3965 // <store escaping values to shared mem>
3966 // goto RegionBarrierBB
3967 // RegionBarrierBB:
3968 // __kmpc_simple_barrier_spmd()
3969 // // second barrier is omitted if lacking escaping values.
3970 // <load escaping values from shared mem>
3971 // __kmpc_simple_barrier_spmd()
3972 // goto RegionExitBB
3973 // RegionExitBB:
3974 // <execute rest of instructions>
3975
3976 BasicBlock *RegionEndBB = SplitBlock(ParentBB, RegionEndI->getNextNode(),
3977 DT, LI, MSU, "region.guarded.end");
3978 BasicBlock *RegionBarrierBB =
3979 SplitBlock(RegionEndBB, &*RegionEndBB->getFirstInsertionPt(), DT, LI,
3980 MSU, "region.barrier");
3981 BasicBlock *RegionExitBB =
3982 SplitBlock(RegionBarrierBB, &*RegionBarrierBB->getFirstInsertionPt(),
3983 DT, LI, MSU, "region.exit");
3984 BasicBlock *RegionStartBB =
3985 SplitBlock(ParentBB, RegionStartI, DT, LI, MSU, "region.guarded");
3986
3987 assert(ParentBB->getUniqueSuccessor() == RegionStartBB &&
3988 "Expected a different CFG");
3989
3990 BasicBlock *RegionCheckTidBB = SplitBlock(
3991 ParentBB, ParentBB->getTerminator(), DT, LI, MSU, "region.check.tid");
3992
3993 // Register basic blocks with the Attributor.
3994 A.registerManifestAddedBasicBlock(*RegionEndBB);
3995 A.registerManifestAddedBasicBlock(*RegionBarrierBB);
3996 A.registerManifestAddedBasicBlock(*RegionExitBB);
3997 A.registerManifestAddedBasicBlock(*RegionStartBB);
3998 A.registerManifestAddedBasicBlock(*RegionCheckTidBB);
3999
4000 bool HasBroadcastValues = false;
4001 // Find escaping outputs from the guarded region to outside users and
4002 // broadcast their values to them.
4003 for (Instruction &I : *RegionStartBB) {
4004 SmallVector<Use *, 4> OutsideUses;
4005 for (Use &U : I.uses()) {
4006 Instruction &UsrI = *cast<Instruction>(U.getUser());
4007 if (UsrI.getParent() != RegionStartBB)
4008 OutsideUses.push_back(&U);
4009 }
4010
4011 if (OutsideUses.empty())
4012 continue;
4013
4014 HasBroadcastValues = true;
4015
4016 // Emit a global variable in shared memory to store the broadcasted
4017 // value.
4018 auto *SharedMem = new GlobalVariable(
4019 M, I.getType(), /* IsConstant */ false,
4021 sanitizeForGlobalName(
4022 (I.getName() + ".guarded.output.alloc").str()),
4024 static_cast<unsigned>(AddressSpace::Shared));
4025
4026 // Emit a store instruction to update the value.
4027 new StoreInst(&I, SharedMem,
4028 RegionEndBB->getTerminator()->getIterator());
4029
4030 LoadInst *LoadI = new LoadInst(
4031 I.getType(), SharedMem, I.getName() + ".guarded.output.load",
4032 RegionBarrierBB->getTerminator()->getIterator());
4033
4034 // Emit a load instruction and replace uses of the output value.
4035 for (Use *U : OutsideUses)
4036 A.changeUseAfterManifest(*U, *LoadI);
4037 }
4038
4039 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache());
4040
4041 // Go to tid check BB in ParentBB.
4042 const DebugLoc DL = ParentBB->getTerminator()->getDebugLoc();
4043 ParentBB->getTerminator()->eraseFromParent();
4045 InsertPointTy(ParentBB, ParentBB->end()), DL);
4046 OMPInfoCache.OMPBuilder.updateToLocation(Loc);
4047 uint32_t SrcLocStrSize;
4048 auto *SrcLocStr =
4049 OMPInfoCache.OMPBuilder.getOrCreateSrcLocStr(Loc, SrcLocStrSize);
4050 Value *Ident =
4051 OMPInfoCache.OMPBuilder.getOrCreateIdent(SrcLocStr, SrcLocStrSize);
4052 BranchInst::Create(RegionCheckTidBB, ParentBB)->setDebugLoc(DL);
4053
4054 // Add check for Tid in RegionCheckTidBB
4055 RegionCheckTidBB->getTerminator()->eraseFromParent();
4056 OpenMPIRBuilder::LocationDescription LocRegionCheckTid(
4057 InsertPointTy(RegionCheckTidBB, RegionCheckTidBB->end()), DL);
4058 OMPInfoCache.OMPBuilder.updateToLocation(LocRegionCheckTid);
4059 FunctionCallee HardwareTidFn =
4060 OMPInfoCache.OMPBuilder.getOrCreateRuntimeFunction(
4061 M, OMPRTL___kmpc_get_hardware_thread_id_in_block);
4062 CallInst *Tid =
4063 OMPInfoCache.OMPBuilder.Builder.CreateCall(HardwareTidFn, {});
4064 Tid->setDebugLoc(DL);
4065 OMPInfoCache.setCallingConvention(HardwareTidFn, Tid);
4066 Value *TidCheck = OMPInfoCache.OMPBuilder.Builder.CreateIsNull(Tid);
4067 OMPInfoCache.OMPBuilder.Builder
4068 .CreateCondBr(TidCheck, RegionStartBB, RegionBarrierBB)
4069 ->setDebugLoc(DL);
4070
4071 // First barrier for synchronization, ensures main thread has updated
4072 // values.
4073 FunctionCallee BarrierFn =
4074 OMPInfoCache.OMPBuilder.getOrCreateRuntimeFunction(
4075 M, OMPRTL___kmpc_barrier_simple_spmd);
4076 OMPInfoCache.OMPBuilder.updateToLocation(InsertPointTy(
4077 RegionBarrierBB, RegionBarrierBB->getFirstInsertionPt()));
4078 CallInst *Barrier =
4079 OMPInfoCache.OMPBuilder.Builder.CreateCall(BarrierFn, {Ident, Tid});
4080 Barrier->setDebugLoc(DL);
4081 OMPInfoCache.setCallingConvention(BarrierFn, Barrier);
4082
4083 // Second barrier ensures workers have read broadcast values.
4084 if (HasBroadcastValues) {
4085 CallInst *Barrier =
4086 CallInst::Create(BarrierFn, {Ident, Tid}, "",
4087 RegionBarrierBB->getTerminator()->getIterator());
4088 Barrier->setDebugLoc(DL);
4089 OMPInfoCache.setCallingConvention(BarrierFn, Barrier);
4090 }
4091 };
4092
4093 auto &AllocSharedRFI = OMPInfoCache.RFIs[OMPRTL___kmpc_alloc_shared];
4095 for (Instruction *GuardedI : SPMDCompatibilityTracker) {
4096 BasicBlock *BB = GuardedI->getParent();
4097 if (!Visited.insert(BB).second)
4098 continue;
4099
4101 Instruction *LastEffect = nullptr;
4102 BasicBlock::reverse_iterator IP = BB->rbegin(), IPEnd = BB->rend();
4103 while (++IP != IPEnd) {
4104 if (!IP->mayHaveSideEffects() && !IP->mayReadFromMemory())
4105 continue;
4106 Instruction *I = &*IP;
4107 if (OpenMPOpt::getCallIfRegularCall(*I, &AllocSharedRFI))
4108 continue;
4109 if (!I->user_empty() || !SPMDCompatibilityTracker.contains(I)) {
4110 LastEffect = nullptr;
4111 continue;
4112 }
4113 if (LastEffect)
4114 Reorders.push_back({I, LastEffect});
4115 LastEffect = &*IP;
4116 }
4117 for (auto &Reorder : Reorders)
4118 Reorder.first->moveBefore(Reorder.second);
4119 }
4120
4122
4123 for (Instruction *GuardedI : SPMDCompatibilityTracker) {
4124 BasicBlock *BB = GuardedI->getParent();
4125 auto *CalleeAA = A.lookupAAFor<AAKernelInfo>(
4126 IRPosition::function(*GuardedI->getFunction()), nullptr,
4127 DepClassTy::NONE);
4128 assert(CalleeAA != nullptr && "Expected Callee AAKernelInfo");
4129 auto &CalleeAAFunction = *cast<AAKernelInfoFunction>(CalleeAA);
4130 // Continue if instruction is already guarded.
4131 if (CalleeAAFunction.getGuardedInstructions().contains(GuardedI))
4132 continue;
4133
4134 Instruction *GuardedRegionStart = nullptr, *GuardedRegionEnd = nullptr;
4135 for (Instruction &I : *BB) {
4136 // If instruction I needs to be guarded update the guarded region
4137 // bounds.
4138 if (SPMDCompatibilityTracker.contains(&I)) {
4139 CalleeAAFunction.getGuardedInstructions().insert(&I);
4140 if (GuardedRegionStart)
4141 GuardedRegionEnd = &I;
4142 else
4143 GuardedRegionStart = GuardedRegionEnd = &I;
4144
4145 continue;
4146 }
4147
4148 // Instruction I does not need guarding, store
4149 // any region found and reset bounds.
4150 if (GuardedRegionStart) {
4151 GuardedRegions.push_back(
4152 std::make_pair(GuardedRegionStart, GuardedRegionEnd));
4153 GuardedRegionStart = nullptr;
4154 GuardedRegionEnd = nullptr;
4155 }
4156 }
4157 }
4158
4159 for (auto &GR : GuardedRegions)
4160 CreateGuardedRegion(GR.first, GR.second);
4161 }
4162
4163 void forceSingleThreadPerWorkgroupHelper(Attributor &A) {
4164 // Only allow 1 thread per workgroup to continue executing the user code.
4165 //
4166 // InitCB = __kmpc_target_init(...)
4167 // ThreadIdInBlock = __kmpc_get_hardware_thread_id_in_block();
4168 // if (ThreadIdInBlock != 0) return;
4169 // UserCode:
4170 // // user code
4171 //
4172 auto &Ctx = getAnchorValue().getContext();
4173 Function *Kernel = getAssociatedFunction();
4174 assert(Kernel && "Expected an associated function!");
4175
4176 // Create block for user code to branch to from initial block.
4177 BasicBlock *InitBB = KernelInitCB->getParent();
4178 BasicBlock *UserCodeBB = InitBB->splitBasicBlock(
4179 KernelInitCB->getNextNode(), "main.thread.user_code");
4180 BasicBlock *ReturnBB =
4181 BasicBlock::Create(Ctx, "exit.threads", Kernel, UserCodeBB);
4182
4183 // Register blocks with attributor:
4184 A.registerManifestAddedBasicBlock(*InitBB);
4185 A.registerManifestAddedBasicBlock(*UserCodeBB);
4186 A.registerManifestAddedBasicBlock(*ReturnBB);
4187
4188 // Debug location:
4189 const DebugLoc &DLoc = KernelInitCB->getDebugLoc();
4190 ReturnInst::Create(Ctx, ReturnBB)->setDebugLoc(DLoc);
4191 InitBB->getTerminator()->eraseFromParent();
4192
4193 // Prepare call to OMPRTL___kmpc_get_hardware_thread_id_in_block.
4194 Module &M = *Kernel->getParent();
4195 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache());
4196 FunctionCallee ThreadIdInBlockFn =
4197 OMPInfoCache.OMPBuilder.getOrCreateRuntimeFunction(
4198 M, OMPRTL___kmpc_get_hardware_thread_id_in_block);
4199
4200 // Get thread ID in block.
4201 CallInst *ThreadIdInBlock =
4202 CallInst::Create(ThreadIdInBlockFn, "thread_id.in.block", InitBB);
4203 OMPInfoCache.setCallingConvention(ThreadIdInBlockFn, ThreadIdInBlock);
4204 ThreadIdInBlock->setDebugLoc(DLoc);
4205
4206 // Eliminate all threads in the block with ID not equal to 0:
4207 Instruction *IsMainThread =
4208 ICmpInst::Create(ICmpInst::ICmp, CmpInst::ICMP_NE, ThreadIdInBlock,
4209 ConstantInt::get(ThreadIdInBlock->getType(), 0),
4210 "thread.is_main", InitBB);
4211 IsMainThread->setDebugLoc(DLoc);
4212 BranchInst::Create(ReturnBB, UserCodeBB, IsMainThread, InitBB);
4213 }
4214
4215 bool changeToSPMDMode(Attributor &A, ChangeStatus &Changed) {
4216 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache());
4217
4218 // We cannot change to SPMD mode if the runtime functions aren't availible.
4219 if (!OMPInfoCache.runtimeFnsAvailable(
4220 {OMPRTL___kmpc_get_hardware_thread_id_in_block,
4221 OMPRTL___kmpc_barrier_simple_spmd}))
4222 return false;
4223
4224 if (!SPMDCompatibilityTracker.isAssumed()) {
4225 for (Instruction *NonCompatibleI : SPMDCompatibilityTracker) {
4226 if (!NonCompatibleI)
4227 continue;
4228
4229 // Skip diagnostics on calls to known OpenMP runtime functions for now.
4230 if (auto *CB = dyn_cast<CallBase>(NonCompatibleI))
4231 if (OMPInfoCache.RTLFunctions.contains(CB->getCalledFunction()))
4232 continue;
4233
4234 auto Remark = [&](OptimizationRemarkAnalysis ORA) {
4235 ORA << "Value has potential side effects preventing SPMD-mode "
4236 "execution";
4237 if (isa<CallBase>(NonCompatibleI)) {
4238 ORA << ". Add `[[omp::assume(\"ompx_spmd_amenable\")]]` to "
4239 "the called function to override";
4240 }
4241 return ORA << ".";
4242 };
4243 A.emitRemark<OptimizationRemarkAnalysis>(NonCompatibleI, "OMP121",
4244 Remark);
4245
4246 LLVM_DEBUG(dbgs() << TAG << "SPMD-incompatible side-effect: "
4247 << *NonCompatibleI << "\n");
4248 }
4249
4250 return false;
4251 }
4252
4253 // Get the actual kernel, could be the caller of the anchor scope if we have
4254 // a debug wrapper.
4255 Function *Kernel = getAnchorScope();
4256 if (Kernel->hasLocalLinkage()) {
4257 assert(Kernel->hasOneUse() && "Unexpected use of debug kernel wrapper.");
4258 auto *CB = cast<CallBase>(Kernel->user_back());
4259 Kernel = CB->getCaller();
4260 }
4261 assert(omp::isOpenMPKernel(*Kernel) && "Expected kernel function!");
4262
4263 // Check if the kernel is already in SPMD mode, if so, return success.
4264 ConstantStruct *ExistingKernelEnvC =
4266 auto *ExecModeC =
4267 KernelInfo::getExecModeFromKernelEnvironment(ExistingKernelEnvC);
4268 const int8_t ExecModeVal = ExecModeC->getSExtValue();
4269 if (ExecModeVal != OMP_TGT_EXEC_MODE_GENERIC)
4270 return true;
4271
4272 // We will now unconditionally modify the IR, indicate a change.
4273 Changed = ChangeStatus::CHANGED;
4274
4275 // Do not use instruction guards when no parallel is present inside
4276 // the target region.
4277 if (mayContainParallelRegion())
4278 insertInstructionGuardsHelper(A);
4279 else
4280 forceSingleThreadPerWorkgroupHelper(A);
4281
4282 // Adjust the global exec mode flag that tells the runtime what mode this
4283 // kernel is executed in.
4284 assert(ExecModeVal == OMP_TGT_EXEC_MODE_GENERIC &&
4285 "Initially non-SPMD kernel has SPMD exec mode!");
4286 setExecModeOfKernelEnvironment(
4287 ConstantInt::get(ExecModeC->getIntegerType(),
4288 ExecModeVal | OMP_TGT_EXEC_MODE_GENERIC_SPMD));
4289
4290 ++NumOpenMPTargetRegionKernelsSPMD;
4291
4292 auto Remark = [&](OptimizationRemark OR) {
4293 return OR << "Transformed generic-mode kernel to SPMD-mode.";
4294 };
4295 A.emitRemark<OptimizationRemark>(KernelInitCB, "OMP120", Remark);
4296 return true;
4297 };
4298
4299 bool buildCustomStateMachine(Attributor &A, ChangeStatus &Changed) {
4300 // If we have disabled state machine rewrites, don't make a custom one
4302 return false;
4303
4304 // Don't rewrite the state machine if we are not in a valid state.
4305 if (!ReachedKnownParallelRegions.isValidState())
4306 return false;
4307
4308 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache());
4309 if (!OMPInfoCache.runtimeFnsAvailable(
4310 {OMPRTL___kmpc_get_hardware_num_threads_in_block,
4311 OMPRTL___kmpc_get_warp_size, OMPRTL___kmpc_barrier_simple_generic,
4312 OMPRTL___kmpc_kernel_parallel, OMPRTL___kmpc_kernel_end_parallel}))
4313 return false;
4314
4315 ConstantStruct *ExistingKernelEnvC =
4317
4318 // Check if the current configuration is non-SPMD and generic state machine.
4319 // If we already have SPMD mode or a custom state machine we do not need to
4320 // go any further. If it is anything but a constant something is weird and
4321 // we give up.
4322 ConstantInt *UseStateMachineC =
4323 KernelInfo::getUseGenericStateMachineFromKernelEnvironment(
4324 ExistingKernelEnvC);
4325 ConstantInt *ModeC =
4326 KernelInfo::getExecModeFromKernelEnvironment(ExistingKernelEnvC);
4327
4328 // If we are stuck with generic mode, try to create a custom device (=GPU)
4329 // state machine which is specialized for the parallel regions that are
4330 // reachable by the kernel.
4331 if (UseStateMachineC->isZero() ||
4333 return false;
4334
4335 Changed = ChangeStatus::CHANGED;
4336
4337 // If not SPMD mode, indicate we use a custom state machine now.
4338 setUseGenericStateMachineOfKernelEnvironment(
4339 ConstantInt::get(UseStateMachineC->getIntegerType(), false));
4340
4341 // If we don't actually need a state machine we are done here. This can
4342 // happen if there simply are no parallel regions. In the resulting kernel
4343 // all worker threads will simply exit right away, leaving the main thread
4344 // to do the work alone.
4345 if (!mayContainParallelRegion()) {
4346 ++NumOpenMPTargetRegionKernelsWithoutStateMachine;
4347
4348 auto Remark = [&](OptimizationRemark OR) {
4349 return OR << "Removing unused state machine from generic-mode kernel.";
4350 };
4351 A.emitRemark<OptimizationRemark>(KernelInitCB, "OMP130", Remark);
4352
4353 return true;
4354 }
4355
4356 // Keep track in the statistics of our new shiny custom state machine.
4357 if (ReachedUnknownParallelRegions.empty()) {
4358 ++NumOpenMPTargetRegionKernelsCustomStateMachineWithoutFallback;
4359
4360 auto Remark = [&](OptimizationRemark OR) {
4361 return OR << "Rewriting generic-mode kernel with a customized state "
4362 "machine.";
4363 };
4364 A.emitRemark<OptimizationRemark>(KernelInitCB, "OMP131", Remark);
4365 } else {
4366 ++NumOpenMPTargetRegionKernelsCustomStateMachineWithFallback;
4367
4369 return OR << "Generic-mode kernel is executed with a customized state "
4370 "machine that requires a fallback.";
4371 };
4372 A.emitRemark<OptimizationRemarkAnalysis>(KernelInitCB, "OMP132", Remark);
4373
4374 // Tell the user why we ended up with a fallback.
4375 for (CallBase *UnknownParallelRegionCB : ReachedUnknownParallelRegions) {
4376 if (!UnknownParallelRegionCB)
4377 continue;
4378 auto Remark = [&](OptimizationRemarkAnalysis ORA) {
4379 return ORA << "Call may contain unknown parallel regions. Use "
4380 << "`[[omp::assume(\"omp_no_parallelism\")]]` to "
4381 "override.";
4382 };
4383 A.emitRemark<OptimizationRemarkAnalysis>(UnknownParallelRegionCB,
4384 "OMP133", Remark);
4385 }
4386 }
4387
4388 // Create all the blocks:
4389 //
4390 // InitCB = __kmpc_target_init(...)
4391 // BlockHwSize =
4392 // __kmpc_get_hardware_num_threads_in_block();
4393 // WarpSize = __kmpc_get_warp_size();
4394 // BlockSize = BlockHwSize - WarpSize;
4395 // IsWorkerCheckBB: bool IsWorker = InitCB != -1;
4396 // if (IsWorker) {
4397 // if (InitCB >= BlockSize) return;
4398 // SMBeginBB: __kmpc_barrier_simple_generic(...);
4399 // void *WorkFn;
4400 // bool Active = __kmpc_kernel_parallel(&WorkFn);
4401 // if (!WorkFn) return;
4402 // SMIsActiveCheckBB: if (Active) {
4403 // SMIfCascadeCurrentBB: if (WorkFn == <ParFn0>)
4404 // ParFn0(...);
4405 // SMIfCascadeCurrentBB: else if (WorkFn == <ParFn1>)
4406 // ParFn1(...);
4407 // ...
4408 // SMIfCascadeCurrentBB: else
4409 // ((WorkFnTy*)WorkFn)(...);
4410 // SMEndParallelBB: __kmpc_kernel_end_parallel(...);
4411 // }
4412 // SMDoneBB: __kmpc_barrier_simple_generic(...);
4413 // goto SMBeginBB;
4414 // }
4415 // UserCodeEntryBB: // user code
4416 // __kmpc_target_deinit(...)
4417 //
4418 auto &Ctx = getAnchorValue().getContext();
4419 Function *Kernel = getAssociatedFunction();
4420 assert(Kernel && "Expected an associated function!");
4421
4422 BasicBlock *InitBB = KernelInitCB->getParent();
4423 BasicBlock *UserCodeEntryBB = InitBB->splitBasicBlock(
4424 KernelInitCB->getNextNode(), "thread.user_code.check");
4425 BasicBlock *IsWorkerCheckBB =
4426 BasicBlock::Create(Ctx, "is_worker_check", Kernel, UserCodeEntryBB);
4427 BasicBlock *StateMachineBeginBB = BasicBlock::Create(
4428 Ctx, "worker_state_machine.begin", Kernel, UserCodeEntryBB);
4429 BasicBlock *StateMachineFinishedBB = BasicBlock::Create(
4430 Ctx, "worker_state_machine.finished", Kernel, UserCodeEntryBB);
4431 BasicBlock *StateMachineIsActiveCheckBB = BasicBlock::Create(
4432 Ctx, "worker_state_machine.is_active.check", Kernel, UserCodeEntryBB);
4433 BasicBlock *StateMachineIfCascadeCurrentBB =
4434 BasicBlock::Create(Ctx, "worker_state_machine.parallel_region.check",
4435 Kernel, UserCodeEntryBB);
4436 BasicBlock *StateMachineEndParallelBB =
4437 BasicBlock::Create(Ctx, "worker_state_machine.parallel_region.end",
4438 Kernel, UserCodeEntryBB);
4439 BasicBlock *StateMachineDoneBarrierBB = BasicBlock::Create(
4440 Ctx, "worker_state_machine.done.barrier", Kernel, UserCodeEntryBB);
4441 A.registerManifestAddedBasicBlock(*InitBB);
4442 A.registerManifestAddedBasicBlock(*UserCodeEntryBB);
4443 A.registerManifestAddedBasicBlock(*IsWorkerCheckBB);
4444 A.registerManifestAddedBasicBlock(*StateMachineBeginBB);
4445 A.registerManifestAddedBasicBlock(*StateMachineFinishedBB);
4446 A.registerManifestAddedBasicBlock(*StateMachineIsActiveCheckBB);
4447 A.registerManifestAddedBasicBlock(*StateMachineIfCascadeCurrentBB);
4448 A.registerManifestAddedBasicBlock(*StateMachineEndParallelBB);
4449 A.registerManifestAddedBasicBlock(*StateMachineDoneBarrierBB);
4450
4451 const DebugLoc &DLoc = KernelInitCB->getDebugLoc();
4452 ReturnInst::Create(Ctx, StateMachineFinishedBB)->setDebugLoc(DLoc);
4453 InitBB->getTerminator()->eraseFromParent();
4454
4455 Instruction *IsWorker =
4456 ICmpInst::Create(ICmpInst::ICmp, llvm::CmpInst::ICMP_NE, KernelInitCB,
4457 ConstantInt::get(KernelInitCB->getType(), -1),
4458 "thread.is_worker", InitBB);
4459 IsWorker->setDebugLoc(DLoc);
4460 BranchInst::Create(IsWorkerCheckBB, UserCodeEntryBB, IsWorker, InitBB);
4461
4462 Module &M = *Kernel->getParent();
4463 FunctionCallee BlockHwSizeFn =
4464 OMPInfoCache.OMPBuilder.getOrCreateRuntimeFunction(
4465 M, OMPRTL___kmpc_get_hardware_num_threads_in_block);
4466 FunctionCallee WarpSizeFn =
4467 OMPInfoCache.OMPBuilder.getOrCreateRuntimeFunction(
4468 M, OMPRTL___kmpc_get_warp_size);
4469 CallInst *BlockHwSize =
4470 CallInst::Create(BlockHwSizeFn, "block.hw_size", IsWorkerCheckBB);
4471 OMPInfoCache.setCallingConvention(BlockHwSizeFn, BlockHwSize);
4472 BlockHwSize->setDebugLoc(DLoc);
4473 CallInst *WarpSize =
4474 CallInst::Create(WarpSizeFn, "warp.size", IsWorkerCheckBB);
4475 OMPInfoCache.setCallingConvention(WarpSizeFn, WarpSize);
4476 WarpSize->setDebugLoc(DLoc);
4477 Instruction *BlockSize = BinaryOperator::CreateSub(
4478 BlockHwSize, WarpSize, "block.size", IsWorkerCheckBB);
4479 BlockSize->setDebugLoc(DLoc);
4480 Instruction *IsMainOrWorker = ICmpInst::Create(
4481 ICmpInst::ICmp, llvm::CmpInst::ICMP_SLT, KernelInitCB, BlockSize,
4482 "thread.is_main_or_worker", IsWorkerCheckBB);
4483 IsMainOrWorker->setDebugLoc(DLoc);
4484 BranchInst::Create(StateMachineBeginBB, StateMachineFinishedBB,
4485 IsMainOrWorker, IsWorkerCheckBB);
4486
4487 // Create local storage for the work function pointer.
4488 const DataLayout &DL = M.getDataLayout();
4489 Type *VoidPtrTy = PointerType::getUnqual(Ctx);
4490 Instruction *WorkFnAI =
4491 new AllocaInst(VoidPtrTy, DL.getAllocaAddrSpace(), nullptr,
4492 "worker.work_fn.addr", Kernel->getEntryBlock().begin());
4493 WorkFnAI->setDebugLoc(DLoc);
4494
4495 OMPInfoCache.OMPBuilder.updateToLocation(
4497 IRBuilder<>::InsertPoint(StateMachineBeginBB,
4498 StateMachineBeginBB->end()),
4499 DLoc));
4500
4501 Value *Ident = KernelInfo::getIdentFromKernelEnvironment(KernelEnvC);
4502 Value *GTid = KernelInitCB;
4503
4504 FunctionCallee BarrierFn =
4505 OMPInfoCache.OMPBuilder.getOrCreateRuntimeFunction(
4506 M, OMPRTL___kmpc_barrier_simple_generic);
4507 CallInst *Barrier =
4508 CallInst::Create(BarrierFn, {Ident, GTid}, "", StateMachineBeginBB);
4509 OMPInfoCache.setCallingConvention(BarrierFn, Barrier);
4510 Barrier->setDebugLoc(DLoc);
4511
4512 if (WorkFnAI->getType()->getPointerAddressSpace() !=
4513 (unsigned int)AddressSpace::Generic) {
4514 WorkFnAI = new AddrSpaceCastInst(
4515 WorkFnAI, PointerType::get(Ctx, (unsigned int)AddressSpace::Generic),
4516 WorkFnAI->getName() + ".generic", StateMachineBeginBB);
4517 WorkFnAI->setDebugLoc(DLoc);
4518 }
4519
4520 FunctionCallee KernelParallelFn =
4521 OMPInfoCache.OMPBuilder.getOrCreateRuntimeFunction(
4522 M, OMPRTL___kmpc_kernel_parallel);
4523 CallInst *IsActiveWorker = CallInst::Create(
4524 KernelParallelFn, {WorkFnAI}, "worker.is_active", StateMachineBeginBB);
4525 OMPInfoCache.setCallingConvention(KernelParallelFn, IsActiveWorker);
4526 IsActiveWorker->setDebugLoc(DLoc);
4527 Instruction *WorkFn = new LoadInst(VoidPtrTy, WorkFnAI, "worker.work_fn",
4528 StateMachineBeginBB);
4529 WorkFn->setDebugLoc(DLoc);
4530
4531 FunctionType *ParallelRegionFnTy = FunctionType::get(
4533 false);
4534
4535 Instruction *IsDone =
4536 ICmpInst::Create(ICmpInst::ICmp, llvm::CmpInst::ICMP_EQ, WorkFn,
4537 Constant::getNullValue(VoidPtrTy), "worker.is_done",
4538 StateMachineBeginBB);
4539 IsDone->setDebugLoc(DLoc);
4540 BranchInst::Create(StateMachineFinishedBB, StateMachineIsActiveCheckBB,
4541 IsDone, StateMachineBeginBB)
4542 ->setDebugLoc(DLoc);
4543
4544 BranchInst::Create(StateMachineIfCascadeCurrentBB,
4545 StateMachineDoneBarrierBB, IsActiveWorker,
4546 StateMachineIsActiveCheckBB)
4547 ->setDebugLoc(DLoc);
4548
4549 Value *ZeroArg =
4550 Constant::getNullValue(ParallelRegionFnTy->getParamType(0));
4551
4552 const unsigned int WrapperFunctionArgNo = 6;
4553
4554 // Now that we have most of the CFG skeleton it is time for the if-cascade
4555 // that checks the function pointer we got from the runtime against the
4556 // parallel regions we expect, if there are any.
4557 for (int I = 0, E = ReachedKnownParallelRegions.size(); I < E; ++I) {
4558 auto *CB = ReachedKnownParallelRegions[I];
4559 auto *ParallelRegion = dyn_cast<Function>(
4560 CB->getArgOperand(WrapperFunctionArgNo)->stripPointerCasts());
4561 BasicBlock *PRExecuteBB = BasicBlock::Create(
4562 Ctx, "worker_state_machine.parallel_region.execute", Kernel,
4563 StateMachineEndParallelBB);
4564 CallInst::Create(ParallelRegion, {ZeroArg, GTid}, "", PRExecuteBB)
4565 ->setDebugLoc(DLoc);
4566 BranchInst::Create(StateMachineEndParallelBB, PRExecuteBB)
4567 ->setDebugLoc(DLoc);
4568
4569 BasicBlock *PRNextBB =
4570 BasicBlock::Create(Ctx, "worker_state_machine.parallel_region.check",
4571 Kernel, StateMachineEndParallelBB);
4572 A.registerManifestAddedBasicBlock(*PRExecuteBB);
4573 A.registerManifestAddedBasicBlock(*PRNextBB);
4574
4575 // Check if we need to compare the pointer at all or if we can just
4576 // call the parallel region function.
4577 Value *IsPR;
4578 if (I + 1 < E || !ReachedUnknownParallelRegions.empty()) {
4579 Instruction *CmpI = ICmpInst::Create(
4580 ICmpInst::ICmp, llvm::CmpInst::ICMP_EQ, WorkFn, ParallelRegion,
4581 "worker.check_parallel_region", StateMachineIfCascadeCurrentBB);
4582 CmpI->setDebugLoc(DLoc);
4583 IsPR = CmpI;
4584 } else {
4585 IsPR = ConstantInt::getTrue(Ctx);
4586 }
4587
4588 BranchInst::Create(PRExecuteBB, PRNextBB, IsPR,
4589 StateMachineIfCascadeCurrentBB)
4590 ->setDebugLoc(DLoc);
4591 StateMachineIfCascadeCurrentBB = PRNextBB;
4592 }
4593
4594 // At the end of the if-cascade we place the indirect function pointer call
4595 // in case we might need it, that is if there can be parallel regions we
4596 // have not handled in the if-cascade above.
4597 if (!ReachedUnknownParallelRegions.empty()) {
4598 StateMachineIfCascadeCurrentBB->setName(
4599 "worker_state_machine.parallel_region.fallback.execute");
4600 CallInst::Create(ParallelRegionFnTy, WorkFn, {ZeroArg, GTid}, "",
4601 StateMachineIfCascadeCurrentBB)
4602 ->setDebugLoc(DLoc);
4603 }
4604 BranchInst::Create(StateMachineEndParallelBB,
4605 StateMachineIfCascadeCurrentBB)
4606 ->setDebugLoc(DLoc);
4607
4608 FunctionCallee EndParallelFn =
4609 OMPInfoCache.OMPBuilder.getOrCreateRuntimeFunction(
4610 M, OMPRTL___kmpc_kernel_end_parallel);
4611 CallInst *EndParallel =
4612 CallInst::Create(EndParallelFn, {}, "", StateMachineEndParallelBB);
4613 OMPInfoCache.setCallingConvention(EndParallelFn, EndParallel);
4614 EndParallel->setDebugLoc(DLoc);
4615 BranchInst::Create(StateMachineDoneBarrierBB, StateMachineEndParallelBB)
4616 ->setDebugLoc(DLoc);
4617
4618 CallInst::Create(BarrierFn, {Ident, GTid}, "", StateMachineDoneBarrierBB)
4619 ->setDebugLoc(DLoc);
4620 BranchInst::Create(StateMachineBeginBB, StateMachineDoneBarrierBB)
4621 ->setDebugLoc(DLoc);
4622
4623 return true;
4624 }
4625
4626 /// Fixpoint iteration update function. Will be called every time a dependence
4627 /// changed its state (and in the beginning).
4628 ChangeStatus updateImpl(Attributor &A) override {
4629 KernelInfoState StateBefore = getState();
4630
4631 // When we leave this function this RAII will make sure the member
4632 // KernelEnvC is updated properly depending on the state. That member is
4633 // used for simplification of values and needs to be up to date at all
4634 // times.
4635 struct UpdateKernelEnvCRAII {
4636 AAKernelInfoFunction &AA;
4637
4638 UpdateKernelEnvCRAII(AAKernelInfoFunction &AA) : AA(AA) {}
4639
4640 ~UpdateKernelEnvCRAII() {
4641 if (!AA.KernelEnvC)
4642 return;
4643
4644 ConstantStruct *ExistingKernelEnvC =
4646
4647 if (!AA.isValidState()) {
4648 AA.KernelEnvC = ExistingKernelEnvC;
4649 return;
4650 }
4651
4652 if (!AA.ReachedKnownParallelRegions.isValidState())
4653 AA.setUseGenericStateMachineOfKernelEnvironment(
4654 KernelInfo::getUseGenericStateMachineFromKernelEnvironment(
4655 ExistingKernelEnvC));
4656
4657 if (!AA.SPMDCompatibilityTracker.isValidState())
4658 AA.setExecModeOfKernelEnvironment(
4659 KernelInfo::getExecModeFromKernelEnvironment(ExistingKernelEnvC));
4660
4661 ConstantInt *MayUseNestedParallelismC =
4662 KernelInfo::getMayUseNestedParallelismFromKernelEnvironment(
4663 AA.KernelEnvC);
4664 ConstantInt *NewMayUseNestedParallelismC = ConstantInt::get(
4665 MayUseNestedParallelismC->getIntegerType(), AA.NestedParallelism);
4666 AA.setMayUseNestedParallelismOfKernelEnvironment(
4667 NewMayUseNestedParallelismC);
4668 }
4669 } RAII(*this);
4670
4671 // Callback to check a read/write instruction.
4672 auto CheckRWInst = [&](Instruction &I) {
4673 // We handle calls later.
4674 if (isa<CallBase>(I))
4675 return true;
4676 // We only care about write effects.
4677 if (!I.mayWriteToMemory())
4678 return true;
4679 if (auto *SI = dyn_cast<StoreInst>(&I)) {
4680 const auto *UnderlyingObjsAA = A.getAAFor<AAUnderlyingObjects>(
4681 *this, IRPosition::value(*SI->getPointerOperand()),
4682 DepClassTy::OPTIONAL);
4683 auto *HS = A.getAAFor<AAHeapToStack>(
4684 *this, IRPosition::function(*I.getFunction()),
4685 DepClassTy::OPTIONAL);
4686 if (UnderlyingObjsAA &&
4687 UnderlyingObjsAA->forallUnderlyingObjects([&](Value &Obj) {
4688 if (AA::isAssumedThreadLocalObject(A, Obj, *this))
4689 return true;
4690 // Check for AAHeapToStack moved objects which must not be
4691 // guarded.
4692 auto *CB = dyn_cast<CallBase>(&Obj);
4693 return CB && HS && HS->isAssumedHeapToStack(*CB);
4694 }))
4695 return true;
4696 }
4697
4698 // Insert instruction that needs guarding.
4699 SPMDCompatibilityTracker.insert(&I);
4700 return true;
4701 };
4702
4703 bool UsedAssumedInformationInCheckRWInst = false;
4704 if (!SPMDCompatibilityTracker.isAtFixpoint())
4705 if (!A.checkForAllReadWriteInstructions(
4706 CheckRWInst, *this, UsedAssumedInformationInCheckRWInst))
4707 SPMDCompatibilityTracker.indicatePessimisticFixpoint();
4708
4709 bool UsedAssumedInformationFromReachingKernels = false;
4710 if (!IsKernelEntry) {
4711 updateParallelLevels(A);
4712
4713 bool AllReachingKernelsKnown = true;
4714 updateReachingKernelEntries(A, AllReachingKernelsKnown);
4715 UsedAssumedInformationFromReachingKernels = !AllReachingKernelsKnown;
4716
4717 if (!SPMDCompatibilityTracker.empty()) {
4718 if (!ParallelLevels.isValidState())
4719 SPMDCompatibilityTracker.indicatePessimisticFixpoint();
4720 else if (!ReachingKernelEntries.isValidState())
4721 SPMDCompatibilityTracker.indicatePessimisticFixpoint();
4722 else {
4723 // Check if all reaching kernels agree on the mode as we can otherwise
4724 // not guard instructions. We might not be sure about the mode so we
4725 // we cannot fix the internal spmd-zation state either.
4726 int SPMD = 0, Generic = 0;
4727 for (auto *Kernel : ReachingKernelEntries) {
4728 auto *CBAA = A.getAAFor<AAKernelInfo>(
4729 *this, IRPosition::function(*Kernel), DepClassTy::OPTIONAL);
4730 if (CBAA && CBAA->SPMDCompatibilityTracker.isValidState() &&
4731 CBAA->SPMDCompatibilityTracker.isAssumed())
4732 ++SPMD;
4733 else
4734 ++Generic;
4735 if (!CBAA || !CBAA->SPMDCompatibilityTracker.isAtFixpoint())
4736 UsedAssumedInformationFromReachingKernels = true;
4737 }
4738 if (SPMD != 0 && Generic != 0)
4739 SPMDCompatibilityTracker.indicatePessimisticFixpoint();
4740 }
4741 }
4742 }
4743
4744 // Callback to check a call instruction.
4745 bool AllParallelRegionStatesWereFixed = true;
4746 bool AllSPMDStatesWereFixed = true;
4747 auto CheckCallInst = [&](Instruction &I) {
4748 auto &CB = cast<CallBase>(I);
4749 auto *CBAA = A.getAAFor<AAKernelInfo>(
4750 *this, IRPosition::callsite_function(CB), DepClassTy::OPTIONAL);
4751 if (!CBAA)
4752 return false;
4753 getState() ^= CBAA->getState();
4754 AllSPMDStatesWereFixed &= CBAA->SPMDCompatibilityTracker.isAtFixpoint();
4755 AllParallelRegionStatesWereFixed &=
4756 CBAA->ReachedKnownParallelRegions.isAtFixpoint();
4757 AllParallelRegionStatesWereFixed &=
4758 CBAA->ReachedUnknownParallelRegions.isAtFixpoint();
4759 return true;
4760 };
4761
4762 bool UsedAssumedInformationInCheckCallInst = false;
4763 if (!A.checkForAllCallLikeInstructions(
4764 CheckCallInst, *this, UsedAssumedInformationInCheckCallInst)) {
4765 LLVM_DEBUG(dbgs() << TAG
4766 << "Failed to visit all call-like instructions!\n";);
4767 return indicatePessimisticFixpoint();
4768 }
4769
4770 // If we haven't used any assumed information for the reached parallel
4771 // region states we can fix it.
4772 if (!UsedAssumedInformationInCheckCallInst &&
4773 AllParallelRegionStatesWereFixed) {
4774 ReachedKnownParallelRegions.indicateOptimisticFixpoint();
4775 ReachedUnknownParallelRegions.indicateOptimisticFixpoint();
4776 }
4777
4778 // If we haven't used any assumed information for the SPMD state we can fix
4779 // it.
4780 if (!UsedAssumedInformationInCheckRWInst &&
4781 !UsedAssumedInformationInCheckCallInst &&
4782 !UsedAssumedInformationFromReachingKernels && AllSPMDStatesWereFixed)
4783 SPMDCompatibilityTracker.indicateOptimisticFixpoint();
4784
4785 return StateBefore == getState() ? ChangeStatus::UNCHANGED
4786 : ChangeStatus::CHANGED;
4787 }
4788
4789private:
4790 /// Update info regarding reaching kernels.
4791 void updateReachingKernelEntries(Attributor &A,
4792 bool &AllReachingKernelsKnown) {
4793 auto PredCallSite = [&](AbstractCallSite ACS) {
4794 Function *Caller = ACS.getInstruction()->getFunction();
4795
4796 assert(Caller && "Caller is nullptr");
4797
4798 auto *CAA = A.getOrCreateAAFor<AAKernelInfo>(
4799 IRPosition::function(*Caller), this, DepClassTy::REQUIRED);
4800 if (CAA && CAA->ReachingKernelEntries.isValidState()) {
4801 ReachingKernelEntries ^= CAA->ReachingKernelEntries;
4802 return true;
4803 }
4804
4805 // We lost track of the caller of the associated function, any kernel
4806 // could reach now.
4807 ReachingKernelEntries.indicatePessimisticFixpoint();
4808
4809 return true;
4810 };
4811
4812 if (!A.checkForAllCallSites(PredCallSite, *this,
4813 true /* RequireAllCallSites */,
4814 AllReachingKernelsKnown))
4815 ReachingKernelEntries.indicatePessimisticFixpoint();
4816 }
4817
4818 /// Update info regarding parallel levels.
4819 void updateParallelLevels(Attributor &A) {
4820 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache());
4821 OMPInformationCache::RuntimeFunctionInfo &Parallel51RFI =
4822 OMPInfoCache.RFIs[OMPRTL___kmpc_parallel_51];
4823
4824 auto PredCallSite = [&](AbstractCallSite ACS) {
4825 Function *Caller = ACS.getInstruction()->getFunction();
4826
4827 assert(Caller && "Caller is nullptr");
4828
4829 auto *CAA =
4830 A.getOrCreateAAFor<AAKernelInfo>(IRPosition::function(*Caller));
4831 if (CAA && CAA->ParallelLevels.isValidState()) {
4832 // Any function that is called by `__kmpc_parallel_51` will not be
4833 // folded as the parallel level in the function is updated. In order to
4834 // get it right, all the analysis would depend on the implentation. That
4835 // said, if in the future any change to the implementation, the analysis
4836 // could be wrong. As a consequence, we are just conservative here.
4837 if (Caller == Parallel51RFI.Declaration) {
4838 ParallelLevels.indicatePessimisticFixpoint();
4839 return true;
4840 }
4841
4842 ParallelLevels ^= CAA->ParallelLevels;
4843
4844 return true;
4845 }
4846
4847 // We lost track of the caller of the associated function, any kernel
4848 // could reach now.
4849 ParallelLevels.indicatePessimisticFixpoint();
4850
4851 return true;
4852 };
4853
4854 bool AllCallSitesKnown = true;
4855 if (!A.checkForAllCallSites(PredCallSite, *this,
4856 true /* RequireAllCallSites */,
4857 AllCallSitesKnown))
4858 ParallelLevels.indicatePessimisticFixpoint();
4859 }
4860};
4861
4862/// The call site kernel info abstract attribute, basically, what can we say
4863/// about a call site with regards to the KernelInfoState. For now this simply
4864/// forwards the information from the callee.
4865struct AAKernelInfoCallSite : AAKernelInfo {
4866 AAKernelInfoCallSite(const IRPosition &IRP, Attributor &A)
4867 : AAKernelInfo(IRP, A) {}
4868
4869 /// See AbstractAttribute::initialize(...).
4870 void initialize(Attributor &A) override {
4871 AAKernelInfo::initialize(A);
4872
4873 CallBase &CB = cast<CallBase>(getAssociatedValue());
4874 auto *AssumptionAA = A.getAAFor<AAAssumptionInfo>(
4875 *this, IRPosition::callsite_function(CB), DepClassTy::OPTIONAL);
4876
4877 // Check for SPMD-mode assumptions.
4878 if (AssumptionAA && AssumptionAA->hasAssumption("ompx_spmd_amenable")) {
4879 indicateOptimisticFixpoint();
4880 return;
4881 }
4882
4883 // First weed out calls we do not care about, that is readonly/readnone
4884 // calls, intrinsics, and "no_openmp" calls. Neither of these can reach a
4885 // parallel region or anything else we are looking for.
4886 if (!CB.mayWriteToMemory() || isa<IntrinsicInst>(CB)) {
4887 indicateOptimisticFixpoint();
4888 return;
4889 }
4890
4891 // Next we check if we know the callee. If it is a known OpenMP function
4892 // we will handle them explicitly in the switch below. If it is not, we
4893 // will use an AAKernelInfo object on the callee to gather information and
4894 // merge that into the current state. The latter happens in the updateImpl.
4895 auto CheckCallee = [&](Function *Callee, unsigned NumCallees) {
4896 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache());
4897 const auto &It = OMPInfoCache.RuntimeFunctionIDMap.find(Callee);
4898 if (It == OMPInfoCache.RuntimeFunctionIDMap.end()) {
4899 // Unknown caller or declarations are not analyzable, we give up.
4900 if (!Callee || !A.isFunctionIPOAmendable(*Callee)) {
4901
4902 // Unknown callees might contain parallel regions, except if they have
4903 // an appropriate assumption attached.
4904 if (!AssumptionAA ||
4905 !(AssumptionAA->hasAssumption("omp_no_openmp") ||
4906 AssumptionAA->hasAssumption("omp_no_parallelism")))
4907 ReachedUnknownParallelRegions.insert(&CB);
4908
4909 // If SPMDCompatibilityTracker is not fixed, we need to give up on the
4910 // idea we can run something unknown in SPMD-mode.
4911 if (!SPMDCompatibilityTracker.isAtFixpoint()) {
4912 SPMDCompatibilityTracker.indicatePessimisticFixpoint();
4913 SPMDCompatibilityTracker.insert(&CB);
4914 }
4915
4916 // We have updated the state for this unknown call properly, there
4917 // won't be any change so we indicate a fixpoint.
4918 indicateOptimisticFixpoint();
4919 }
4920 // If the callee is known and can be used in IPO, we will update the
4921 // state based on the callee state in updateImpl.
4922 return;
4923 }
4924 if (NumCallees > 1) {
4925 indicatePessimisticFixpoint();
4926 return;
4927 }
4928
4929 RuntimeFunction RF = It->getSecond();
4930 switch (RF) {
4931 // All the functions we know are compatible with SPMD mode.
4932 case OMPRTL___kmpc_is_spmd_exec_mode:
4933 case OMPRTL___kmpc_distribute_static_fini:
4934 case OMPRTL___kmpc_for_static_fini:
4935 case OMPRTL___kmpc_global_thread_num:
4936 case OMPRTL___kmpc_get_hardware_num_threads_in_block:
4937 case OMPRTL___kmpc_get_hardware_num_blocks:
4938 case OMPRTL___kmpc_single:
4939 case OMPRTL___kmpc_end_single:
4940 case OMPRTL___kmpc_master:
4941 case OMPRTL___kmpc_end_master:
4942 case OMPRTL___kmpc_barrier:
4943 case OMPRTL___kmpc_nvptx_parallel_reduce_nowait_v2:
4944 case OMPRTL___kmpc_nvptx_teams_reduce_nowait_v2:
4945 case OMPRTL___kmpc_error:
4946 case OMPRTL___kmpc_flush:
4947 case OMPRTL___kmpc_get_hardware_thread_id_in_block:
4948 case OMPRTL___kmpc_get_warp_size:
4949 case OMPRTL_omp_get_thread_num:
4950 case OMPRTL_omp_get_num_threads:
4951 case OMPRTL_omp_get_max_threads:
4952 case OMPRTL_omp_in_parallel:
4953 case OMPRTL_omp_get_dynamic:
4954 case OMPRTL_omp_get_cancellation:
4955 case OMPRTL_omp_get_nested:
4956 case OMPRTL_omp_get_schedule:
4957 case OMPRTL_omp_get_thread_limit:
4958 case OMPRTL_omp_get_supported_active_levels:
4959 case OMPRTL_omp_get_max_active_levels:
4960 case OMPRTL_omp_get_level:
4961 case OMPRTL_omp_get_ancestor_thread_num:
4962 case OMPRTL_omp_get_team_size:
4963 case OMPRTL_omp_get_active_level:
4964 case OMPRTL_omp_in_final:
4965 case OMPRTL_omp_get_proc_bind:
4966 case OMPRTL_omp_get_num_places:
4967 case OMPRTL_omp_get_num_procs:
4968 case OMPRTL_omp_get_place_proc_ids:
4969 case OMPRTL_omp_get_place_num:
4970 case OMPRTL_omp_get_partition_num_places:
4971 case OMPRTL_omp_get_partition_place_nums:
4972 case OMPRTL_omp_get_wtime:
4973 break;
4974 case OMPRTL___kmpc_distribute_static_init_4:
4975 case OMPRTL___kmpc_distribute_static_init_4u:
4976 case OMPRTL___kmpc_distribute_static_init_8:
4977 case OMPRTL___kmpc_distribute_static_init_8u:
4978 case OMPRTL___kmpc_for_static_init_4:
4979 case OMPRTL___kmpc_for_static_init_4u:
4980 case OMPRTL___kmpc_for_static_init_8:
4981 case OMPRTL___kmpc_for_static_init_8u: {
4982 // Check the schedule and allow static schedule in SPMD mode.
4983 unsigned ScheduleArgOpNo = 2;
4984 auto *ScheduleTypeCI =
4985 dyn_cast<ConstantInt>(CB.getArgOperand(ScheduleArgOpNo));
4986 unsigned ScheduleTypeVal =
4987 ScheduleTypeCI ? ScheduleTypeCI->getZExtValue() : 0;
4988 switch (OMPScheduleType(ScheduleTypeVal)) {
4989 case OMPScheduleType::UnorderedStatic:
4990 case OMPScheduleType::UnorderedStaticChunked:
4991 case OMPScheduleType::OrderedDistribute:
4992 case OMPScheduleType::OrderedDistributeChunked:
4993 break;
4994 default:
4995 SPMDCompatibilityTracker.indicatePessimisticFixpoint();
4996 SPMDCompatibilityTracker.insert(&CB);
4997 break;
4998 };
4999 } break;
5000 case OMPRTL___kmpc_target_init:
5001 KernelInitCB = &CB;
5002 break;
5003 case OMPRTL___kmpc_target_deinit:
5004 KernelDeinitCB = &CB;
5005 break;
5006 case OMPRTL___kmpc_parallel_51:
5007 if (!handleParallel51(A, CB))
5008 indicatePessimisticFixpoint();
5009 return;
5010 case OMPRTL___kmpc_omp_task:
5011 // We do not look into tasks right now, just give up.
5012 SPMDCompatibilityTracker.indicatePessimisticFixpoint();
5013 SPMDCompatibilityTracker.insert(&CB);
5014 ReachedUnknownParallelRegions.insert(&CB);
5015 break;
5016 case OMPRTL___kmpc_alloc_shared:
5017 case OMPRTL___kmpc_free_shared:
5018 // Return without setting a fixpoint, to be resolved in updateImpl.
5019 return;
5020 default:
5021 // Unknown OpenMP runtime calls cannot be executed in SPMD-mode,
5022 // generally. However, they do not hide parallel regions.
5023 SPMDCompatibilityTracker.indicatePessimisticFixpoint();
5024 SPMDCompatibilityTracker.insert(&CB);
5025 break;
5026 }
5027 // All other OpenMP runtime calls will not reach parallel regions so they
5028 // can be safely ignored for now. Since it is a known OpenMP runtime call
5029 // we have now modeled all effects and there is no need for any update.
5030 indicateOptimisticFixpoint();
5031 };
5032
5033 const auto *AACE =
5034 A.getAAFor<AACallEdges>(*this, getIRPosition(), DepClassTy::OPTIONAL);
5035 if (!AACE || !AACE->getState().isValidState() || AACE->hasUnknownCallee()) {
5036 CheckCallee(getAssociatedFunction(), 1);
5037 return;
5038 }
5039 const auto &OptimisticEdges = AACE->getOptimisticEdges();
5040 for (auto *Callee : OptimisticEdges) {
5041 CheckCallee(Callee, OptimisticEdges.size());
5042 if (isAtFixpoint())
5043 break;
5044 }
5045 }
5046
5047 ChangeStatus updateImpl(Attributor &A) override {
5048 // TODO: Once we have call site specific value information we can provide
5049 // call site specific liveness information and then it makes
5050 // sense to specialize attributes for call sites arguments instead of
5051 // redirecting requests to the callee argument.
5052 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache());
5053 KernelInfoState StateBefore = getState();
5054
5055 auto CheckCallee = [&](Function *F, int NumCallees) {
5056 const auto &It = OMPInfoCache.RuntimeFunctionIDMap.find(F);
5057
5058 // If F is not a runtime function, propagate the AAKernelInfo of the
5059 // callee.
5060 if (It == OMPInfoCache.RuntimeFunctionIDMap.end()) {
5061 const IRPosition &FnPos = IRPosition::function(*F);
5062 auto *FnAA =
5063 A.getAAFor<AAKernelInfo>(*this, FnPos, DepClassTy::REQUIRED);
5064 if (!FnAA)
5065 return indicatePessimisticFixpoint();
5066 if (getState() == FnAA->getState())
5067 return ChangeStatus::UNCHANGED;
5068 getState() = FnAA->getState();
5069 return ChangeStatus::CHANGED;
5070 }
5071 if (NumCallees > 1)
5072 return indicatePessimisticFixpoint();
5073
5074 CallBase &CB = cast<CallBase>(getAssociatedValue());
5075 if (It->getSecond() == OMPRTL___kmpc_parallel_51) {
5076 if (!handleParallel51(A, CB))
5077 return indicatePessimisticFixpoint();
5078 return StateBefore == getState() ? ChangeStatus::UNCHANGED
5079 : ChangeStatus::CHANGED;
5080 }
5081
5082 // F is a runtime function that allocates or frees memory, check
5083 // AAHeapToStack and AAHeapToShared.
5084 assert(
5085 (It->getSecond() == OMPRTL___kmpc_alloc_shared ||
5086 It->getSecond() == OMPRTL___kmpc_free_shared) &&
5087 "Expected a __kmpc_alloc_shared or __kmpc_free_shared runtime call");
5088
5089 auto *HeapToStackAA = A.getAAFor<AAHeapToStack>(
5090 *this, IRPosition::function(*CB.getCaller()), DepClassTy::OPTIONAL);
5091 auto *HeapToSharedAA = A.getAAFor<AAHeapToShared>(
5092 *this, IRPosition::function(*CB.getCaller()), DepClassTy::OPTIONAL);
5093
5094 RuntimeFunction RF = It->getSecond();
5095
5096 switch (RF) {
5097 // If neither HeapToStack nor HeapToShared assume the call is removed,
5098 // assume SPMD incompatibility.
5099 case OMPRTL___kmpc_alloc_shared:
5100 if ((!HeapToStackAA || !HeapToStackAA->isAssumedHeapToStack(CB)) &&
5101 (!HeapToSharedAA || !HeapToSharedAA->isAssumedHeapToShared(CB)))
5102 SPMDCompatibilityTracker.insert(&CB);
5103 break;
5104 case OMPRTL___kmpc_free_shared:
5105 if ((!HeapToStackAA ||
5106 !HeapToStackAA->isAssumedHeapToStackRemovedFree(CB)) &&
5107 (!HeapToSharedAA ||
5108 !HeapToSharedAA->isAssumedHeapToSharedRemovedFree(CB)))
5109 SPMDCompatibilityTracker.insert(&CB);
5110 break;
5111 default:
5112 SPMDCompatibilityTracker.indicatePessimisticFixpoint();
5113 SPMDCompatibilityTracker.insert(&CB);
5114 }
5115 return ChangeStatus::CHANGED;
5116 };
5117
5118 const auto *AACE =
5119 A.getAAFor<AACallEdges>(*this, getIRPosition(), DepClassTy::OPTIONAL);
5120 if (!AACE || !AACE->getState().isValidState() || AACE->hasUnknownCallee()) {
5121 if (Function *F = getAssociatedFunction())
5122 CheckCallee(F, /*NumCallees=*/1);
5123 } else {
5124 const auto &OptimisticEdges = AACE->getOptimisticEdges();
5125 for (auto *Callee : OptimisticEdges) {
5126 CheckCallee(Callee, OptimisticEdges.size());
5127 if (isAtFixpoint())
5128 break;
5129 }
5130 }
5131
5132 return StateBefore == getState() ? ChangeStatus::UNCHANGED
5133 : ChangeStatus::CHANGED;
5134 }
5135
5136 /// Deal with a __kmpc_parallel_51 call (\p CB). Returns true if the call was
5137 /// handled, if a problem occurred, false is returned.
5138 bool handleParallel51(Attributor &A, CallBase &CB) {
5139 const unsigned int NonWrapperFunctionArgNo = 5;
5140 const unsigned int WrapperFunctionArgNo = 6;
5141 auto ParallelRegionOpArgNo = SPMDCompatibilityTracker.isAssumed()
5142 ? NonWrapperFunctionArgNo
5143 : WrapperFunctionArgNo;
5144
5145 auto *ParallelRegion = dyn_cast<Function>(
5146 CB.getArgOperand(ParallelRegionOpArgNo)->stripPointerCasts());
5147 if (!ParallelRegion)
5148 return false;
5149
5150 ReachedKnownParallelRegions.insert(&CB);
5151 /// Check nested parallelism
5152 auto *FnAA = A.getAAFor<AAKernelInfo>(
5153 *this, IRPosition::function(*ParallelRegion), DepClassTy::OPTIONAL);
5154 NestedParallelism |= !FnAA || !FnAA->getState().isValidState() ||
5155 !FnAA->ReachedKnownParallelRegions.empty() ||
5156 !FnAA->ReachedKnownParallelRegions.isValidState() ||
5157 !FnAA->ReachedUnknownParallelRegions.isValidState() ||
5158 !FnAA->ReachedUnknownParallelRegions.empty();
5159 return true;
5160 }
5161};
5162
5163struct AAFoldRuntimeCall
5164 : public StateWrapper<BooleanState, AbstractAttribute> {
5166
5167 AAFoldRuntimeCall(const IRPosition &IRP, Attributor &A) : Base(IRP) {}
5168
5169 /// Statistics are tracked as part of manifest for now.
5170 void trackStatistics() const override {}
5171
5172 /// Create an abstract attribute biew for the position \p IRP.
5173 static AAFoldRuntimeCall &createForPosition(const IRPosition &IRP,
5174 Attributor &A);
5175
5176 /// See AbstractAttribute::getName()
5177 const std::string getName() const override { return "AAFoldRuntimeCall"; }
5178
5179 /// See AbstractAttribute::getIdAddr()
5180 const char *getIdAddr() const override { return &ID; }
5181
5182 /// This function should return true if the type of the \p AA is
5183 /// AAFoldRuntimeCall
5184 static bool classof(const AbstractAttribute *AA) {
5185 return (AA->getIdAddr() == &ID);
5186 }
5187
5188 static const char ID;
5189};
5190
5191struct AAFoldRuntimeCallCallSiteReturned : AAFoldRuntimeCall {
5192 AAFoldRuntimeCallCallSiteReturned(const IRPosition &IRP, Attributor &A)
5193 : AAFoldRuntimeCall(IRP, A) {}
5194
5195 /// See AbstractAttribute::getAsStr()
5196 const std::string getAsStr(Attributor *) const override {
5197 if (!isValidState())
5198 return "<invalid>";
5199
5200 std::string Str("simplified value: ");
5201
5202 if (!SimplifiedValue)
5203 return Str + std::string("none");
5204
5205 if (!*SimplifiedValue)
5206 return Str + std::string("nullptr");
5207
5208 if (ConstantInt *CI = dyn_cast<ConstantInt>(*SimplifiedValue))
5209 return Str + std::to_string(CI->getSExtValue());
5210
5211 return Str + std::string("unknown");
5212 }
5213
5214 void initialize(Attributor &A) override {
5216 indicatePessimisticFixpoint();
5217
5218 Function *Callee = getAssociatedFunction();
5219
5220 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache());
5221 const auto &It = OMPInfoCache.RuntimeFunctionIDMap.find(Callee);
5222 assert(It != OMPInfoCache.RuntimeFunctionIDMap.end() &&
5223 "Expected a known OpenMP runtime function");
5224
5225 RFKind = It->getSecond();
5226
5227 CallBase &CB = cast<CallBase>(getAssociatedValue());
5228 A.registerSimplificationCallback(
5230 [&](const IRPosition &IRP, const AbstractAttribute *AA,
5231 bool &UsedAssumedInformation) -> std::optional<Value *> {
5232 assert((isValidState() ||
5233 (SimplifiedValue && *SimplifiedValue == nullptr)) &&
5234 "Unexpected invalid state!");
5235
5236 if (!isAtFixpoint()) {
5237 UsedAssumedInformation = true;
5238 if (AA)
5239 A.recordDependence(*this, *AA, DepClassTy::OPTIONAL);
5240 }
5241 return SimplifiedValue;
5242 });
5243 }
5244
5245 ChangeStatus updateImpl(Attributor &A) override {
5246 ChangeStatus Changed = ChangeStatus::UNCHANGED;
5247 switch (RFKind) {
5248 case OMPRTL___kmpc_is_spmd_exec_mode:
5249 Changed |= foldIsSPMDExecMode(A);
5250 break;
5251 case OMPRTL___kmpc_parallel_level:
5252 Changed |= foldParallelLevel(A);
5253 break;
5254 case OMPRTL___kmpc_get_hardware_num_threads_in_block:
5255 Changed = Changed | foldKernelFnAttribute(A, "omp_target_thread_limit");
5256 break;
5257 case OMPRTL___kmpc_get_hardware_num_blocks:
5258 Changed = Changed | foldKernelFnAttribute(A, "omp_target_num_teams");
5259 break;
5260 default:
5261 llvm_unreachable("Unhandled OpenMP runtime function!");
5262 }
5263
5264 return Changed;
5265 }
5266
5267 ChangeStatus manifest(Attributor &A) override {
5268 ChangeStatus Changed = ChangeStatus::UNCHANGED;
5269
5270 if (SimplifiedValue && *SimplifiedValue) {
5271 Instruction &I = *getCtxI();
5272 A.changeAfterManifest(IRPosition::inst(I), **SimplifiedValue);
5273 A.deleteAfterManifest(I);
5274
5275 CallBase *CB = dyn_cast<CallBase>(&I);
5276 auto Remark = [&](OptimizationRemark OR) {
5277 if (auto *C = dyn_cast<ConstantInt>(*SimplifiedValue))
5278 return OR << "Replacing OpenMP runtime call "
5279 << CB->getCalledFunction()->getName() << " with "
5280 << ore::NV("FoldedValue", C->getZExtValue()) << ".";
5281 return OR << "Replacing OpenMP runtime call "
5282 << CB->getCalledFunction()->getName() << ".";
5283 };
5284
5285 if (CB && EnableVerboseRemarks)
5286 A.emitRemark<OptimizationRemark>(CB, "OMP180", Remark);
5287
5288 LLVM_DEBUG(dbgs() << TAG << "Replacing runtime call: " << I << " with "
5289 << **SimplifiedValue << "\n");
5290
5291 Changed = ChangeStatus::CHANGED;
5292 }
5293
5294 return Changed;
5295 }
5296
5297 ChangeStatus indicatePessimisticFixpoint() override {
5298 SimplifiedValue = nullptr;
5299 return AAFoldRuntimeCall::indicatePessimisticFixpoint();
5300 }
5301
5302private:
5303 /// Fold __kmpc_is_spmd_exec_mode into a constant if possible.
5304 ChangeStatus foldIsSPMDExecMode(Attributor &A) {
5305 std::optional<Value *> SimplifiedValueBefore = SimplifiedValue;
5306
5307 unsigned AssumedSPMDCount = 0, KnownSPMDCount = 0;
5308 unsigned AssumedNonSPMDCount = 0, KnownNonSPMDCount = 0;
5309 auto *CallerKernelInfoAA = A.getAAFor<AAKernelInfo>(
5310 *this, IRPosition::function(*getAnchorScope()), DepClassTy::REQUIRED);
5311
5312 if (!CallerKernelInfoAA ||
5313 !CallerKernelInfoAA->ReachingKernelEntries.isValidState())
5314 return indicatePessimisticFixpoint();
5315
5316 for (Kernel K : CallerKernelInfoAA->ReachingKernelEntries) {
5317 auto *AA = A.getAAFor<AAKernelInfo>(*this, IRPosition::function(*K),
5318 DepClassTy::REQUIRED);
5319
5320 if (!AA || !AA->isValidState()) {
5321 SimplifiedValue = nullptr;
5322 return indicatePessimisticFixpoint();
5323 }
5324
5325 if (AA->SPMDCompatibilityTracker.isAssumed()) {
5326 if (AA->SPMDCompatibilityTracker.isAtFixpoint())
5327 ++KnownSPMDCount;
5328 else
5329 ++AssumedSPMDCount;
5330 } else {
5331 if (AA->SPMDCompatibilityTracker.isAtFixpoint())
5332 ++KnownNonSPMDCount;
5333 else
5334 ++AssumedNonSPMDCount;
5335 }
5336 }
5337
5338 if ((AssumedSPMDCount + KnownSPMDCount) &&
5339 (AssumedNonSPMDCount + KnownNonSPMDCount))
5340 return indicatePessimisticFixpoint();
5341
5342 auto &Ctx = getAnchorValue().getContext();
5343 if (KnownSPMDCount || AssumedSPMDCount) {
5344 assert(KnownNonSPMDCount == 0 && AssumedNonSPMDCount == 0 &&
5345 "Expected only SPMD kernels!");
5346 // All reaching kernels are in SPMD mode. Update all function calls to
5347 // __kmpc_is_spmd_exec_mode to 1.
5348 SimplifiedValue = ConstantInt::get(Type::getInt8Ty(Ctx), true);
5349 } else if (KnownNonSPMDCount || AssumedNonSPMDCount) {
5350 assert(KnownSPMDCount == 0 && AssumedSPMDCount == 0 &&
5351 "Expected only non-SPMD kernels!");
5352 // All reaching kernels are in non-SPMD mode. Update all function
5353 // calls to __kmpc_is_spmd_exec_mode to 0.
5354 SimplifiedValue = ConstantInt::get(Type::getInt8Ty(Ctx), false);
5355 } else {
5356 // We have empty reaching kernels, therefore we cannot tell if the
5357 // associated call site can be folded. At this moment, SimplifiedValue
5358 // must be none.
5359 assert(!SimplifiedValue && "SimplifiedValue should be none");
5360 }
5361
5362 return SimplifiedValue == SimplifiedValueBefore ? ChangeStatus::UNCHANGED
5363 : ChangeStatus::CHANGED;
5364 }
5365
5366 /// Fold __kmpc_parallel_level into a constant if possible.
5367 ChangeStatus foldParallelLevel(Attributor &A) {
5368 std::optional<Value *> SimplifiedValueBefore = SimplifiedValue;
5369
5370 auto *CallerKernelInfoAA = A.getAAFor<AAKernelInfo>(
5371 *this, IRPosition::function(*getAnchorScope()), DepClassTy::REQUIRED);
5372
5373 if (!CallerKernelInfoAA ||
5374 !CallerKernelInfoAA->ParallelLevels.isValidState())
5375 return indicatePessimisticFixpoint();
5376
5377 if (!CallerKernelInfoAA->ReachingKernelEntries.isValidState())
5378 return indicatePessimisticFixpoint();
5379
5380 if (CallerKernelInfoAA->ReachingKernelEntries.empty()) {
5381 assert(!SimplifiedValue &&
5382 "SimplifiedValue should keep none at this point");
5383 return ChangeStatus::UNCHANGED;
5384 }
5385