LLVM 22.0.0git
AArch64RegisterInfo.cpp
Go to the documentation of this file.
1//===- AArch64RegisterInfo.cpp - AArch64 Register Information -------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file contains the AArch64 implementation of the TargetRegisterInfo
10// class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "AArch64RegisterInfo.h"
16#include "AArch64InstrInfo.h"
19#include "AArch64Subtarget.h"
22#include "llvm/ADT/BitVector.h"
32#include "llvm/IR/Function.h"
35
36using namespace llvm;
37
38#define GET_CC_REGISTER_LISTS
39#include "AArch64GenCallingConv.inc"
40#define GET_REGINFO_TARGET_DESC
41#include "AArch64GenRegisterInfo.inc"
42
44 : AArch64GenRegisterInfo(AArch64::LR, 0, 0, 0, HwMode), TT(TT) {
46}
47
48/// Return whether the register needs a CFI entry. Not all unwinders may know
49/// about SVE registers, so we assume the lowest common denominator, i.e. the
50/// callee-saves required by the base ABI. For the SVE registers z8-z15 only the
51/// lower 64-bits (d8-d15) need to be saved. The lower 64-bits subreg is
52/// returned in \p RegToUseForCFI.
54 MCRegister &RegToUseForCFI) const {
55 if (AArch64::PPRRegClass.contains(Reg))
56 return false;
57
58 if (AArch64::ZPRRegClass.contains(Reg)) {
59 RegToUseForCFI = getSubReg(Reg, AArch64::dsub);
60 for (int I = 0; CSR_AArch64_AAPCS_SaveList[I]; ++I) {
61 if (CSR_AArch64_AAPCS_SaveList[I] == RegToUseForCFI)
62 return true;
63 }
64 return false;
65 }
66
67 RegToUseForCFI = Reg;
68 return true;
69}
70
71const MCPhysReg *
73 assert(MF && "Invalid MachineFunction pointer.");
74
75 auto &AFI = *MF->getInfo<AArch64FunctionInfo>();
76 const auto &F = MF->getFunction();
77 const auto *TLI = MF->getSubtarget<AArch64Subtarget>().getTargetLowering();
78 const bool Darwin = MF->getSubtarget<AArch64Subtarget>().isTargetDarwin();
79 const bool Windows = MF->getSubtarget<AArch64Subtarget>().isTargetWindows();
80
81 if (TLI->supportSwiftError() &&
82 F.getAttributes().hasAttrSomewhere(Attribute::SwiftError)) {
83 if (Darwin)
84 return CSR_Darwin_AArch64_AAPCS_SwiftError_SaveList;
85 if (Windows)
86 return CSR_Win_AArch64_AAPCS_SwiftError_SaveList;
87 return CSR_AArch64_AAPCS_SwiftError_SaveList;
88 }
89
90 switch (F.getCallingConv()) {
92 // GHC set of callee saved regs is empty as all those regs are
93 // used for passing STG regs around
94 return CSR_AArch64_NoRegs_SaveList;
95
97 // FIXME: Windows likely need this to be altered for properly unwinding.
98 return CSR_AArch64_NoneRegs_SaveList;
99
101 return CSR_AArch64_AllRegs_SaveList;
102
104 return CSR_Win_AArch64_Arm64EC_Thunk_SaveList;
105
107 if (Darwin)
108 return CSR_Darwin_AArch64_RT_MostRegs_SaveList;
109 if (Windows)
110 return CSR_Win_AArch64_RT_MostRegs_SaveList;
111 return CSR_AArch64_RT_MostRegs_SaveList;
112
114 if (Darwin)
115 return CSR_Darwin_AArch64_RT_AllRegs_SaveList;
116 if (Windows)
117 return CSR_Win_AArch64_RT_AllRegs_SaveList;
118 return CSR_AArch64_RT_AllRegs_SaveList;
119
121 if (Darwin)
123 "Calling convention CFGuard_Check is unsupported on Darwin.");
124 return CSR_Win_AArch64_CFGuard_Check_SaveList;
125
127 if (Darwin)
128 return CSR_Darwin_AArch64_AAPCS_SwiftTail_SaveList;
129 if (Windows)
130 return CSR_Win_AArch64_AAPCS_SwiftTail_SaveList;
131 return CSR_AArch64_AAPCS_SwiftTail_SaveList;
132
134 if (Darwin)
135 return CSR_Darwin_AArch64_AAVPCS_SaveList;
136 if (Windows)
137 return CSR_Win_AArch64_AAVPCS_SaveList;
138 return CSR_AArch64_AAVPCS_SaveList;
139
141 if (Darwin)
143 "Calling convention SVE_VectorCall is unsupported on Darwin.");
144 if (Windows)
145 return CSR_Win_AArch64_SVE_AAPCS_SaveList;
146 return CSR_AArch64_SVE_AAPCS_SaveList;
147
150 "Calling convention "
151 "AArch64_SME_ABI_Support_Routines_PreserveMost_From_X0 is only "
152 "supported to improve calls to SME ACLE save/restore/disable-za "
153 "functions, and is not intended to be used beyond that scope.");
154
157 "Calling convention "
158 "AArch64_SME_ABI_Support_Routines_PreserveMost_From_X1 is "
159 "only supported to improve calls to SME ACLE __arm_get_current_vg "
160 "function, and is not intended to be used beyond that scope.");
161
164 "Calling convention "
165 "AArch64_SME_ABI_Support_Routines_PreserveMost_From_X2 is "
166 "only supported to improve calls to SME ACLE __arm_sme_state "
167 "and is not intended to be used beyond that scope.");
168
170 if (Darwin)
171 return CSR_Darwin_AArch64_AAPCS_Win64_SaveList;
172 if (Windows)
173 return CSR_Win_AArch64_AAPCS_SaveList;
174 return CSR_AArch64_AAPCS_X18_SaveList;
175
177 if (Darwin)
178 return AFI.isSplitCSR() ? CSR_Darwin_AArch64_CXX_TLS_PE_SaveList
179 : CSR_Darwin_AArch64_CXX_TLS_SaveList;
180 // FIXME: this likely should be a `report_fatal_error` condition, however,
181 // that would be a departure from the previously implemented behaviour.
183
184 default:
185 if (Darwin)
186 return AFI.hasSVE_AAPCS(*MF) ? CSR_Darwin_AArch64_SVE_AAPCS_SaveList
187 : CSR_Darwin_AArch64_AAPCS_SaveList;
188 if (Windows)
189 return AFI.hasSVE_AAPCS(*MF) ? CSR_Win_AArch64_SVE_AAPCS_SaveList
190 : CSR_Win_AArch64_AAPCS_SaveList;
191 return AFI.hasSVE_AAPCS(*MF) ? CSR_AArch64_SVE_AAPCS_SaveList
192 : CSR_AArch64_AAPCS_SaveList;
193 }
194}
195
197 const MachineFunction *MF) const {
198 assert(MF && "Invalid MachineFunction pointer.");
201 return CSR_Darwin_AArch64_CXX_TLS_ViaCopy_SaveList;
202 return nullptr;
203}
204
206 MachineFunction &MF) const {
207 const MCPhysReg *CSRs = getCalleeSavedRegs(&MF);
208 SmallVector<MCPhysReg, 32> UpdatedCSRs;
209 for (const MCPhysReg *I = CSRs; *I; ++I)
210 UpdatedCSRs.push_back(*I);
211
212 for (size_t i = 0; i < AArch64::GPR64commonRegClass.getNumRegs(); ++i) {
214 UpdatedCSRs.push_back(AArch64::GPR64commonRegClass.getRegister(i));
215 }
216 }
217 // Register lists are zero-terminated.
218 UpdatedCSRs.push_back(0);
219 MF.getRegInfo().setCalleeSavedRegs(UpdatedCSRs);
220}
221
224 unsigned Idx) const {
225 // edge case for GPR/FPR register classes
226 if (RC == &AArch64::GPR32allRegClass && Idx == AArch64::hsub)
227 return &AArch64::FPR32RegClass;
228 else if (RC == &AArch64::GPR64allRegClass && Idx == AArch64::hsub)
229 return &AArch64::FPR64RegClass;
230
231 // Forward to TableGen's default version.
232 return AArch64GenRegisterInfo::getSubClassWithSubReg(RC, Idx);
233}
234
235const uint32_t *
237 CallingConv::ID CC) const {
239 "Invalid subtarget for getDarwinCallPreservedMask");
240
242 return CSR_Darwin_AArch64_CXX_TLS_RegMask;
244 return CSR_Darwin_AArch64_AAVPCS_RegMask;
246 return CSR_Darwin_AArch64_SVE_AAPCS_RegMask;
248 return CSR_AArch64_SME_ABI_Support_Routines_PreserveMost_From_X0_RegMask;
250 return CSR_AArch64_SME_ABI_Support_Routines_PreserveMost_From_X1_RegMask;
252 return CSR_AArch64_SME_ABI_Support_Routines_PreserveMost_From_X2_RegMask;
255 "Calling convention CFGuard_Check is unsupported on Darwin.");
258 ->supportSwiftError() &&
259 MF.getFunction().getAttributes().hasAttrSomewhere(Attribute::SwiftError))
260 return CSR_Darwin_AArch64_AAPCS_SwiftError_RegMask;
261 if (CC == CallingConv::SwiftTail)
262 return CSR_Darwin_AArch64_AAPCS_SwiftTail_RegMask;
264 return CSR_Darwin_AArch64_RT_MostRegs_RegMask;
265 if (CC == CallingConv::PreserveAll)
266 return CSR_Darwin_AArch64_RT_AllRegs_RegMask;
267 return CSR_Darwin_AArch64_AAPCS_RegMask;
268}
269
270const uint32_t *
272 CallingConv::ID CC) const {
273 bool SCS = MF.getFunction().hasFnAttribute(Attribute::ShadowCallStack);
274 if (CC == CallingConv::GHC)
275 // This is academic because all GHC calls are (supposed to be) tail calls
276 return SCS ? CSR_AArch64_NoRegs_SCS_RegMask : CSR_AArch64_NoRegs_RegMask;
278 return SCS ? CSR_AArch64_NoneRegs_SCS_RegMask
279 : CSR_AArch64_NoneRegs_RegMask;
280 if (CC == CallingConv::AnyReg)
281 return SCS ? CSR_AArch64_AllRegs_SCS_RegMask : CSR_AArch64_AllRegs_RegMask;
282
283 // All the following calling conventions are handled differently on Darwin.
285 if (SCS)
286 report_fatal_error("ShadowCallStack attribute not supported on Darwin.");
287 return getDarwinCallPreservedMask(MF, CC);
288 }
289
291 return SCS ? CSR_AArch64_AAVPCS_SCS_RegMask : CSR_AArch64_AAVPCS_RegMask;
293 return SCS ? CSR_AArch64_SVE_AAPCS_SCS_RegMask
294 : CSR_AArch64_SVE_AAPCS_RegMask;
296 return CSR_AArch64_SME_ABI_Support_Routines_PreserveMost_From_X0_RegMask;
298 return CSR_AArch64_SME_ABI_Support_Routines_PreserveMost_From_X1_RegMask;
300 return CSR_AArch64_SME_ABI_Support_Routines_PreserveMost_From_X2_RegMask;
302 return CSR_Win_AArch64_CFGuard_Check_RegMask;
304 ->supportSwiftError() &&
305 MF.getFunction().getAttributes().hasAttrSomewhere(Attribute::SwiftError))
306 return SCS ? CSR_AArch64_AAPCS_SwiftError_SCS_RegMask
307 : CSR_AArch64_AAPCS_SwiftError_RegMask;
308 if (CC == CallingConv::SwiftTail) {
309 if (SCS)
310 report_fatal_error("ShadowCallStack attribute not supported with swifttail");
311 return CSR_AArch64_AAPCS_SwiftTail_RegMask;
312 }
314 return SCS ? CSR_AArch64_RT_MostRegs_SCS_RegMask
315 : CSR_AArch64_RT_MostRegs_RegMask;
316 if (CC == CallingConv::PreserveAll)
317 return SCS ? CSR_AArch64_RT_AllRegs_SCS_RegMask
318 : CSR_AArch64_RT_AllRegs_RegMask;
319
320 return SCS ? CSR_AArch64_AAPCS_SCS_RegMask : CSR_AArch64_AAPCS_RegMask;
321}
322
324 const MachineFunction &MF) const {
326 return CSR_AArch64_AAPCS_RegMask;
327
328 return nullptr;
329}
330
332 if (TT.isOSDarwin())
333 return CSR_Darwin_AArch64_TLS_RegMask;
334
335 assert(TT.isOSBinFormatELF() && "Invalid target");
336 return CSR_AArch64_TLS_ELF_RegMask;
337}
338
340 const uint32_t **Mask) const {
341 uint32_t *UpdatedMask = MF.allocateRegMask();
342 unsigned RegMaskSize = MachineOperand::getRegMaskSize(getNumRegs());
343 memcpy(UpdatedMask, *Mask, sizeof(UpdatedMask[0]) * RegMaskSize);
344
345 for (size_t i = 0; i < AArch64::GPR64commonRegClass.getNumRegs(); ++i) {
347 for (MCPhysReg SubReg :
348 subregs_inclusive(AArch64::GPR64commonRegClass.getRegister(i))) {
349 // See TargetRegisterInfo::getCallPreservedMask for how to interpret the
350 // register mask.
351 UpdatedMask[SubReg / 32] |= 1u << (SubReg % 32);
352 }
353 }
354 }
355 *Mask = UpdatedMask;
356}
357
359 return CSR_AArch64_SMStartStop_RegMask;
360}
361
362const uint32_t *
364 return CSR_AArch64_SME_ABI_Support_Routines_PreserveMost_From_X0_RegMask;
365}
366
368 return CSR_AArch64_NoRegs_RegMask;
369}
370
371const uint32_t *
373 CallingConv::ID CC) const {
374 // This should return a register mask that is the same as that returned by
375 // getCallPreservedMask but that additionally preserves the register used for
376 // the first i64 argument (which must also be the register used to return a
377 // single i64 return value)
378 //
379 // In case that the calling convention does not use the same register for
380 // both, the function should return NULL (does not currently apply)
381 assert(CC != CallingConv::GHC && "should not be GHC calling convention.");
383 return CSR_Darwin_AArch64_AAPCS_ThisReturn_RegMask;
384 return CSR_AArch64_AAPCS_ThisReturn_RegMask;
385}
386
388 return CSR_AArch64_StackProbe_Windows_RegMask;
389}
390
391std::optional<std::string>
393 MCRegister PhysReg) const {
394 if (hasBasePointer(MF) && MCRegisterInfo::regsOverlap(PhysReg, AArch64::X19))
395 return std::string("X19 is used as the frame base pointer register.");
396
398 bool warn = false;
399 if (MCRegisterInfo::regsOverlap(PhysReg, AArch64::X13) ||
400 MCRegisterInfo::regsOverlap(PhysReg, AArch64::X14) ||
401 MCRegisterInfo::regsOverlap(PhysReg, AArch64::X23) ||
402 MCRegisterInfo::regsOverlap(PhysReg, AArch64::X24) ||
403 MCRegisterInfo::regsOverlap(PhysReg, AArch64::X28))
404 warn = true;
405
406 for (unsigned i = AArch64::B16; i <= AArch64::B31; ++i)
407 if (MCRegisterInfo::regsOverlap(PhysReg, i))
408 warn = true;
409
410 if (warn)
411 return std::string(AArch64InstPrinter::getRegisterName(PhysReg)) +
412 " is clobbered by asynchronous signals when using Arm64EC.";
413 }
414
415 return {};
416}
417
420 const AArch64FrameLowering *TFI = getFrameLowering(MF);
421
422 // FIXME: avoid re-calculating this every time.
423 BitVector Reserved(getNumRegs());
424 markSuperRegs(Reserved, AArch64::WSP);
425 markSuperRegs(Reserved, AArch64::WZR);
426
427 if (TFI->isFPReserved(MF))
428 markSuperRegs(Reserved, AArch64::W29);
429
431 // x13, x14, x23, x24, x28, and v16-v31 are clobbered by asynchronous
432 // signals, so we can't ever use them.
433 markSuperRegs(Reserved, AArch64::W13);
434 markSuperRegs(Reserved, AArch64::W14);
435 markSuperRegs(Reserved, AArch64::W23);
436 markSuperRegs(Reserved, AArch64::W24);
437 markSuperRegs(Reserved, AArch64::W28);
438 for (unsigned i = AArch64::B16; i <= AArch64::B31; ++i)
439 markSuperRegs(Reserved, i);
440 }
441
442 for (size_t i = 0; i < AArch64::GPR32commonRegClass.getNumRegs(); ++i) {
444 markSuperRegs(Reserved, AArch64::GPR32commonRegClass.getRegister(i));
445 }
446
447 if (hasBasePointer(MF))
448 markSuperRegs(Reserved, AArch64::W19);
449
450 // SLH uses register W16/X16 as the taint register.
451 if (MF.getFunction().hasFnAttribute(Attribute::SpeculativeLoadHardening))
452 markSuperRegs(Reserved, AArch64::W16);
453
454 // FFR is modelled as global state that cannot be allocated.
455 if (MF.getSubtarget<AArch64Subtarget>().hasSVE())
456 Reserved.set(AArch64::FFR);
457
458 // SME tiles are not allocatable.
459 if (MF.getSubtarget<AArch64Subtarget>().hasSME()) {
460 for (MCPhysReg SubReg : subregs_inclusive(AArch64::ZA))
461 Reserved.set(SubReg);
462 }
463
464 // VG cannot be allocated
465 Reserved.set(AArch64::VG);
466
467 if (MF.getSubtarget<AArch64Subtarget>().hasSME2()) {
468 for (MCSubRegIterator SubReg(AArch64::ZT0, this, /*self=*/true);
469 SubReg.isValid(); ++SubReg)
470 Reserved.set(*SubReg);
471 }
472
473 markSuperRegs(Reserved, AArch64::FPCR);
474 markSuperRegs(Reserved, AArch64::FPMR);
475 markSuperRegs(Reserved, AArch64::FPSR);
476
478 markSuperRegs(Reserved, AArch64::X27);
479 markSuperRegs(Reserved, AArch64::X28);
480 markSuperRegs(Reserved, AArch64::W27);
481 markSuperRegs(Reserved, AArch64::W28);
482 }
483
484 assert(checkAllSuperRegsMarked(Reserved));
485
486 // Add _HI registers after checkAllSuperRegsMarked as this check otherwise
487 // becomes considerably more expensive.
488 Reserved.set(AArch64::WSP_HI);
489 Reserved.set(AArch64::WZR_HI);
490 static_assert(AArch64::W30_HI - AArch64::W0_HI == 30,
491 "Unexpected order of registers");
492 Reserved.set(AArch64::W0_HI, AArch64::W30_HI);
493 static_assert(AArch64::B31_HI - AArch64::B0_HI == 31,
494 "Unexpected order of registers");
495 Reserved.set(AArch64::B0_HI, AArch64::B31_HI);
496 static_assert(AArch64::H31_HI - AArch64::H0_HI == 31,
497 "Unexpected order of registers");
498 Reserved.set(AArch64::H0_HI, AArch64::H31_HI);
499 static_assert(AArch64::S31_HI - AArch64::S0_HI == 31,
500 "Unexpected order of registers");
501 Reserved.set(AArch64::S0_HI, AArch64::S31_HI);
502 static_assert(AArch64::D31_HI - AArch64::D0_HI == 31,
503 "Unexpected order of registers");
504 Reserved.set(AArch64::D0_HI, AArch64::D31_HI);
505 static_assert(AArch64::Q31_HI - AArch64::Q0_HI == 31,
506 "Unexpected order of registers");
507 Reserved.set(AArch64::Q0_HI, AArch64::Q31_HI);
508
509 return Reserved;
510}
511
514 BitVector Reserved(getNumRegs());
515 for (size_t i = 0; i < AArch64::GPR32commonRegClass.getNumRegs(); ++i) {
516 // ReserveXRegister is set for registers manually reserved
517 // through +reserve-x#i.
519 markSuperRegs(Reserved, AArch64::GPR32commonRegClass.getRegister(i));
520 }
521 return Reserved;
522}
523
526 BitVector Reserved(getNumRegs());
527 for (size_t i = 0; i < AArch64::GPR32commonRegClass.getNumRegs(); ++i) {
529 markSuperRegs(Reserved, AArch64::GPR32commonRegClass.getRegister(i));
530 }
531
533 // In order to prevent the register allocator from using LR, we need to
534 // mark it as reserved. However we don't want to keep it reserved throughout
535 // the pipeline since it prevents other infrastructure from reasoning about
536 // it's liveness. We use the NoVRegs property instead of IsSSA because
537 // IsSSA is removed before VirtRegRewriter runs.
538 if (!MF.getProperties().hasNoVRegs())
539 markSuperRegs(Reserved, AArch64::LR);
540 }
541
542 assert(checkAllSuperRegsMarked(Reserved));
543
544 // Handle strictlyReservedRegs separately to avoid re-evaluating the assert,
545 // which becomes considerably expensive when considering the _HI registers.
547
548 return Reserved;
549}
550
552 MCRegister Reg) const {
553 return getReservedRegs(MF)[Reg];
554}
555
557 MCRegister Reg) const {
558 return getUserReservedRegs(MF)[Reg];
559}
560
562 MCRegister Reg) const {
563 return getStrictlyReservedRegs(MF)[Reg];
564}
565
567 return llvm::any_of(*AArch64::GPR64argRegClass.MC, [this, &MF](MCPhysReg r) {
568 return isStrictlyReservedReg(MF, r);
569 });
570}
571
573 const MachineFunction &MF) const {
574 const Function &F = MF.getFunction();
575 F.getContext().diagnose(DiagnosticInfoUnsupported{F, ("AArch64 doesn't support"
576 " function calls if any of the argument registers is reserved.")});
577}
578
580 MCRegister PhysReg) const {
581 // SLH uses register X16 as the taint register but it will fallback to a different
582 // method if the user clobbers it. So X16 is not reserved for inline asm but is
583 // for normal codegen.
584 if (MF.getFunction().hasFnAttribute(Attribute::SpeculativeLoadHardening) &&
585 MCRegisterInfo::regsOverlap(PhysReg, AArch64::X16))
586 return true;
587
588 // ZA/ZT0 registers are reserved but may be permitted in the clobber list.
589 if (PhysReg == AArch64::ZA || PhysReg == AArch64::ZT0)
590 return true;
591
592 return !isReservedReg(MF, PhysReg);
593}
594
597 return &AArch64::GPR64spRegClass;
598}
599
602 if (RC == &AArch64::CCRRegClass)
603 return &AArch64::GPR64RegClass; // Only MSR & MRS copy NZCV.
604 return RC;
605}
606
607MCRegister AArch64RegisterInfo::getBaseRegister() const { return AArch64::X19; }
608
610 const MachineFrameInfo &MFI = MF.getFrameInfo();
611
612 // In the presence of variable sized objects or funclets, if the fixed stack
613 // size is large enough that referencing from the FP won't result in things
614 // being in range relatively often, we can use a base pointer to allow access
615 // from the other direction like the SP normally works.
616 //
617 // Furthermore, if both variable sized objects are present, and the
618 // stack needs to be dynamically re-aligned, the base pointer is the only
619 // reliable way to reference the locals.
620 if (MFI.hasVarSizedObjects() || MF.hasEHFunclets()) {
621 if (hasStackRealignment(MF))
622 return true;
623
624 auto &ST = MF.getSubtarget<AArch64Subtarget>();
626 if (ST.hasSVE() || ST.isStreaming()) {
627 // Frames that have variable sized objects and scalable SVE objects,
628 // should always use a basepointer.
629 if (!AFI->hasCalculatedStackSizeSVE() || AFI->hasSVEStackSize())
630 return true;
631 }
632
633 // Frames with hazard padding can have a large offset between the frame
634 // pointer and GPR locals, which includes the emergency spill slot. If the
635 // emergency spill slot is not within range of the load/store instructions
636 // (which have a signed 9-bit range), we will fail to compile if it is used.
637 // Since hasBasePointer() is called before we know if we have hazard padding
638 // or an emergency spill slot we need to enable the basepointer
639 // conservatively.
640 if (ST.getStreamingHazardSize() &&
641 !AFI->getSMEFnAttrs().hasNonStreamingInterfaceAndBody()) {
642 return true;
643 }
644
645 // Conservatively estimate whether the negative offset from the frame
646 // pointer will be sufficient to reach. If a function has a smallish
647 // frame, it's less likely to have lots of spills and callee saved
648 // space, so it's all more likely to be within range of the frame pointer.
649 // If it's wrong, we'll materialize the constant and still get to the
650 // object; it's just suboptimal. Negative offsets use the unscaled
651 // load/store instructions, which have a 9-bit signed immediate.
652 return MFI.getLocalFrameSize() >= 256;
653 }
654
655 return false;
656}
657
659 MCRegister Reg) const {
662 bool IsVarArg = STI.isCallingConvWin64(MF.getFunction().getCallingConv(),
663 MF.getFunction().isVarArg());
664
665 auto HasReg = [](ArrayRef<MCRegister> RegList, MCRegister Reg) {
666 return llvm::is_contained(RegList, Reg);
667 };
668
669 switch (CC) {
670 default:
671 report_fatal_error("Unsupported calling convention.");
672 case CallingConv::GHC:
673 return HasReg(CC_AArch64_GHC_ArgRegs, Reg);
675 if (!MF.getFunction().isVarArg())
676 return HasReg(CC_AArch64_Preserve_None_ArgRegs, Reg);
677 [[fallthrough]];
678 case CallingConv::C:
686 if (STI.isTargetWindows()) {
687 if (IsVarArg)
688 return HasReg(CC_AArch64_Win64_VarArg_ArgRegs, Reg);
689 switch (CC) {
690 default:
691 return HasReg(CC_AArch64_Win64PCS_ArgRegs, Reg);
694 return HasReg(CC_AArch64_Win64PCS_Swift_ArgRegs, Reg) ||
695 HasReg(CC_AArch64_Win64PCS_ArgRegs, Reg);
696 }
697 }
698 if (!STI.isTargetDarwin()) {
699 switch (CC) {
700 default:
701 return HasReg(CC_AArch64_AAPCS_ArgRegs, Reg);
704 return HasReg(CC_AArch64_AAPCS_ArgRegs, Reg) ||
705 HasReg(CC_AArch64_AAPCS_Swift_ArgRegs, Reg);
706 }
707 }
708 if (!IsVarArg) {
709 switch (CC) {
710 default:
711 return HasReg(CC_AArch64_DarwinPCS_ArgRegs, Reg);
714 return HasReg(CC_AArch64_DarwinPCS_ArgRegs, Reg) ||
715 HasReg(CC_AArch64_DarwinPCS_Swift_ArgRegs, Reg);
716 }
717 }
718 if (STI.isTargetILP32())
719 return HasReg(CC_AArch64_DarwinPCS_ILP32_VarArg_ArgRegs, Reg);
720 return HasReg(CC_AArch64_DarwinPCS_VarArg_ArgRegs, Reg);
722 if (IsVarArg)
723 HasReg(CC_AArch64_Win64_VarArg_ArgRegs, Reg);
724 return HasReg(CC_AArch64_Win64PCS_ArgRegs, Reg);
726 return HasReg(CC_AArch64_Win64_CFGuard_Check_ArgRegs, Reg);
732 if (STI.isTargetWindows())
733 return HasReg(CC_AArch64_Win64PCS_ArgRegs, Reg);
734 return HasReg(CC_AArch64_AAPCS_ArgRegs, Reg);
735 }
736}
737
740 const AArch64FrameLowering *TFI = getFrameLowering(MF);
741 return TFI->hasFP(MF) ? AArch64::FP : AArch64::SP;
742}
743
745 const MachineFunction &MF) const {
746 return true;
747}
748
750 const MachineFunction &MF) const {
751 return true;
752}
753
754bool
756 // This function indicates whether the emergency spillslot should be placed
757 // close to the beginning of the stackframe (closer to FP) or the end
758 // (closer to SP).
759 //
760 // The beginning works most reliably if we have a frame pointer.
761 // In the presence of any non-constant space between FP and locals,
762 // (e.g. in case of stack realignment or a scalable SVE area), it is
763 // better to use SP or BP.
764 const AArch64FrameLowering &TFI = *getFrameLowering(MF);
766 assert((!MF.getSubtarget<AArch64Subtarget>().hasSVE() ||
768 "Expected SVE area to be calculated by this point");
769 return TFI.hasFP(MF) && !hasStackRealignment(MF) && !AFI->hasSVEStackSize() &&
771}
772
774 const MachineFunction &MF) const {
775 return true;
776}
777
778bool
780 const MachineFrameInfo &MFI = MF.getFrameInfo();
782 return true;
783 return MFI.hasVarSizedObjects() || MFI.isFrameAddressTaken();
784}
785
786/// needsFrameBaseReg - Returns true if the instruction's frame index
787/// reference would be better served by a base register other than FP
788/// or SP. Used by LocalStackFrameAllocation to determine which frame index
789/// references it should create new base registers for.
791 int64_t Offset) const {
792 for (unsigned i = 0; !MI->getOperand(i).isFI(); ++i)
793 assert(i < MI->getNumOperands() &&
794 "Instr doesn't have FrameIndex operand!");
795
796 // It's the load/store FI references that cause issues, as it can be difficult
797 // to materialize the offset if it won't fit in the literal field. Estimate
798 // based on the size of the local frame and some conservative assumptions
799 // about the rest of the stack frame (note, this is pre-regalloc, so
800 // we don't know everything for certain yet) whether this offset is likely
801 // to be out of range of the immediate. Return true if so.
802
803 // We only generate virtual base registers for loads and stores, so
804 // return false for everything else.
805 if (!MI->mayLoad() && !MI->mayStore())
806 return false;
807
808 // Without a virtual base register, if the function has variable sized
809 // objects, all fixed-size local references will be via the frame pointer,
810 // Approximate the offset and see if it's legal for the instruction.
811 // Note that the incoming offset is based on the SP value at function entry,
812 // so it'll be negative.
813 MachineFunction &MF = *MI->getParent()->getParent();
814 const AArch64FrameLowering *TFI = getFrameLowering(MF);
815 MachineFrameInfo &MFI = MF.getFrameInfo();
816
817 // Estimate an offset from the frame pointer.
818 // Conservatively assume all GPR callee-saved registers get pushed.
819 // FP, LR, X19-X28, D8-D15. 64-bits each.
820 int64_t FPOffset = Offset - 16 * 20;
821 // Estimate an offset from the stack pointer.
822 // The incoming offset is relating to the SP at the start of the function,
823 // but when we access the local it'll be relative to the SP after local
824 // allocation, so adjust our SP-relative offset by that allocation size.
825 Offset += MFI.getLocalFrameSize();
826 // Assume that we'll have at least some spill slots allocated.
827 // FIXME: This is a total SWAG number. We should run some statistics
828 // and pick a real one.
829 Offset += 128; // 128 bytes of spill slots
830
831 // If there is a frame pointer, try using it.
832 // The FP is only available if there is no dynamic realignment. We
833 // don't know for sure yet whether we'll need that, so we guess based
834 // on whether there are any local variables that would trigger it.
835 if (TFI->hasFP(MF) && isFrameOffsetLegal(MI, AArch64::FP, FPOffset))
836 return false;
837
838 // If we can reference via the stack pointer or base pointer, try that.
839 // FIXME: This (and the code that resolves the references) can be improved
840 // to only disallow SP relative references in the live range of
841 // the VLA(s). In practice, it's unclear how much difference that
842 // would make, but it may be worth doing.
843 if (isFrameOffsetLegal(MI, AArch64::SP, Offset))
844 return false;
845
846 // If even offset 0 is illegal, we don't want a virtual base register.
847 if (!isFrameOffsetLegal(MI, AArch64::SP, 0))
848 return false;
849
850 // The offset likely isn't legal; we want to allocate a virtual base register.
851 return true;
852}
853
855 Register BaseReg,
856 int64_t Offset) const {
857 assert(MI && "Unable to get the legal offset for nil instruction.");
860}
861
862/// Insert defining instruction(s) for BaseReg to be a pointer to FrameIdx
863/// at the beginning of the basic block.
866 int FrameIdx,
867 int64_t Offset) const {
868 MachineBasicBlock::iterator Ins = MBB->begin();
869 DebugLoc DL; // Defaults to "unknown"
870 if (Ins != MBB->end())
871 DL = Ins->getDebugLoc();
872 const MachineFunction &MF = *MBB->getParent();
873 const AArch64InstrInfo *TII =
874 MF.getSubtarget<AArch64Subtarget>().getInstrInfo();
875 const MCInstrDesc &MCID = TII->get(AArch64::ADDXri);
876 MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
877 Register BaseReg = MRI.createVirtualRegister(&AArch64::GPR64spRegClass);
878 MRI.constrainRegClass(BaseReg, TII->getRegClass(MCID, 0));
879 unsigned Shifter = AArch64_AM::getShifterImm(AArch64_AM::LSL, 0);
880
881 BuildMI(*MBB, Ins, DL, MCID, BaseReg)
882 .addFrameIndex(FrameIdx)
883 .addImm(Offset)
884 .addImm(Shifter);
885
886 return BaseReg;
887}
888
890 int64_t Offset) const {
891 // ARM doesn't need the general 64-bit offsets
893
894 unsigned i = 0;
895 while (!MI.getOperand(i).isFI()) {
896 ++i;
897 assert(i < MI.getNumOperands() && "Instr doesn't have FrameIndex operand!");
898 }
899
900 const MachineFunction *MF = MI.getParent()->getParent();
901 const AArch64InstrInfo *TII =
902 MF->getSubtarget<AArch64Subtarget>().getInstrInfo();
903 bool Done = rewriteAArch64FrameIndex(MI, i, BaseReg, Off, TII);
904 assert(Done && "Unable to resolve frame index!");
905 (void)Done;
906}
907
908// Create a scratch register for the frame index elimination in an instruction.
909// This function has special handling of stack tagging loop pseudos, in which
910// case it can also change the instruction opcode.
911static Register
913 const AArch64InstrInfo *TII) {
914 // ST*Gloop have a reserved scratch register in operand 1. Use it, and also
915 // replace the instruction with the writeback variant because it will now
916 // satisfy the operand constraints for it.
917 Register ScratchReg;
918 if (MI.getOpcode() == AArch64::STGloop ||
919 MI.getOpcode() == AArch64::STZGloop) {
920 assert(FIOperandNum == 3 &&
921 "Wrong frame index operand for STGloop/STZGloop");
922 unsigned Op = MI.getOpcode() == AArch64::STGloop ? AArch64::STGloop_wback
923 : AArch64::STZGloop_wback;
924 ScratchReg = MI.getOperand(1).getReg();
925 MI.getOperand(3).ChangeToRegister(ScratchReg, false, false, true);
926 MI.setDesc(TII->get(Op));
927 MI.tieOperands(1, 3);
928 } else {
929 ScratchReg =
930 MI.getMF()->getRegInfo().createVirtualRegister(&AArch64::GPR64RegClass);
931 MI.getOperand(FIOperandNum)
932 .ChangeToRegister(ScratchReg, false, false, true);
933 }
934 return ScratchReg;
935}
936
939 // The smallest scalable element supported by scaled SVE addressing
940 // modes are predicates, which are 2 scalable bytes in size. So the scalable
941 // byte offset must always be a multiple of 2.
942 assert(Offset.getScalable() % 2 == 0 && "Invalid frame offset");
943
944 // Add fixed-sized offset using existing DIExpression interface.
946
947 unsigned VG = getDwarfRegNum(AArch64::VG, true);
948 int64_t VGSized = Offset.getScalable() / 2;
949 if (VGSized > 0) {
950 Ops.push_back(dwarf::DW_OP_constu);
951 Ops.push_back(VGSized);
952 Ops.append({dwarf::DW_OP_bregx, VG, 0ULL});
953 Ops.push_back(dwarf::DW_OP_mul);
954 Ops.push_back(dwarf::DW_OP_plus);
955 } else if (VGSized < 0) {
956 Ops.push_back(dwarf::DW_OP_constu);
957 Ops.push_back(-VGSized);
958 Ops.append({dwarf::DW_OP_bregx, VG, 0ULL});
959 Ops.push_back(dwarf::DW_OP_mul);
960 Ops.push_back(dwarf::DW_OP_minus);
961 }
962}
963
965 int SPAdj, unsigned FIOperandNum,
966 RegScavenger *RS) const {
967 assert(SPAdj == 0 && "Unexpected");
968
969 MachineInstr &MI = *II;
970 MachineBasicBlock &MBB = *MI.getParent();
971 MachineFunction &MF = *MBB.getParent();
972 const MachineFrameInfo &MFI = MF.getFrameInfo();
973 const AArch64InstrInfo *TII =
974 MF.getSubtarget<AArch64Subtarget>().getInstrInfo();
975 const AArch64FrameLowering *TFI = getFrameLowering(MF);
976 int FrameIndex = MI.getOperand(FIOperandNum).getIndex();
977 bool Tagged =
978 MI.getOperand(FIOperandNum).getTargetFlags() & AArch64II::MO_TAGGED;
979 Register FrameReg;
980
981 // Special handling of dbg_value, stackmap patchpoint statepoint instructions.
982 if (MI.getOpcode() == TargetOpcode::STACKMAP ||
983 MI.getOpcode() == TargetOpcode::PATCHPOINT ||
984 MI.getOpcode() == TargetOpcode::STATEPOINT) {
986 TFI->resolveFrameIndexReference(MF, FrameIndex, FrameReg,
987 /*PreferFP=*/true,
988 /*ForSimm=*/false);
989 Offset += StackOffset::getFixed(MI.getOperand(FIOperandNum + 1).getImm());
990 MI.getOperand(FIOperandNum).ChangeToRegister(FrameReg, false /*isDef*/);
991 MI.getOperand(FIOperandNum + 1).ChangeToImmediate(Offset.getFixed());
992 return false;
993 }
994
995 if (MI.getOpcode() == TargetOpcode::LOCAL_ESCAPE) {
996 MachineOperand &FI = MI.getOperand(FIOperandNum);
998 assert(!Offset.getScalable() &&
999 "Frame offsets with a scalable component are not supported");
1000 FI.ChangeToImmediate(Offset.getFixed());
1001 return false;
1002 }
1003
1005 if (MI.getOpcode() == AArch64::TAGPstack) {
1006 // TAGPstack must use the virtual frame register in its 3rd operand.
1008 FrameReg = MI.getOperand(3).getReg();
1009 Offset = StackOffset::getFixed(MFI.getObjectOffset(FrameIndex) +
1011 } else if (Tagged) {
1013 MFI.getObjectOffset(FrameIndex) + (int64_t)MFI.getStackSize());
1014 if (MFI.hasVarSizedObjects() ||
1015 isAArch64FrameOffsetLegal(MI, SPOffset, nullptr, nullptr, nullptr) !=
1017 // Can't update to SP + offset in place. Precalculate the tagged pointer
1018 // in a scratch register.
1020 MF, FrameIndex, FrameReg, /*PreferFP=*/false, /*ForSimm=*/true);
1021 Register ScratchReg =
1022 MF.getRegInfo().createVirtualRegister(&AArch64::GPR64RegClass);
1023 emitFrameOffset(MBB, II, MI.getDebugLoc(), ScratchReg, FrameReg, Offset,
1024 TII);
1025 BuildMI(MBB, MI, MI.getDebugLoc(), TII->get(AArch64::LDG), ScratchReg)
1026 .addReg(ScratchReg)
1027 .addReg(ScratchReg)
1028 .addImm(0);
1029 MI.getOperand(FIOperandNum)
1030 .ChangeToRegister(ScratchReg, false, false, true);
1031 return false;
1032 }
1033 FrameReg = AArch64::SP;
1034 Offset = StackOffset::getFixed(MFI.getObjectOffset(FrameIndex) +
1035 (int64_t)MFI.getStackSize());
1036 } else {
1038 MF, FrameIndex, FrameReg, /*PreferFP=*/false, /*ForSimm=*/true);
1039 }
1040
1041 // Modify MI as necessary to handle as much of 'Offset' as possible
1042 if (rewriteAArch64FrameIndex(MI, FIOperandNum, FrameReg, Offset, TII))
1043 return true;
1044
1045 assert((!RS || !RS->isScavengingFrameIndex(FrameIndex)) &&
1046 "Emergency spill slot is out of reach");
1047
1048 // If we get here, the immediate doesn't fit into the instruction. We folded
1049 // as much as possible above. Handle the rest, providing a register that is
1050 // SP+LargeImm.
1051 Register ScratchReg =
1053 emitFrameOffset(MBB, II, MI.getDebugLoc(), ScratchReg, FrameReg, Offset, TII);
1054 return false;
1055}
1056
1058 MachineFunction &MF) const {
1059 const AArch64FrameLowering *TFI = getFrameLowering(MF);
1060
1061 switch (RC->getID()) {
1062 default:
1063 return 0;
1064 case AArch64::GPR32RegClassID:
1065 case AArch64::GPR32spRegClassID:
1066 case AArch64::GPR32allRegClassID:
1067 case AArch64::GPR64spRegClassID:
1068 case AArch64::GPR64allRegClassID:
1069 case AArch64::GPR64RegClassID:
1070 case AArch64::GPR32commonRegClassID:
1071 case AArch64::GPR64commonRegClassID:
1072 return 32 - 1 // XZR/SP
1073 - (TFI->hasFP(MF) || TT.isOSDarwin()) // FP
1074 - MF.getSubtarget<AArch64Subtarget>().getNumXRegisterReserved()
1075 - hasBasePointer(MF); // X19
1076 case AArch64::FPR8RegClassID:
1077 case AArch64::FPR16RegClassID:
1078 case AArch64::FPR32RegClassID:
1079 case AArch64::FPR64RegClassID:
1080 case AArch64::FPR128RegClassID:
1081 return 32;
1082
1083 case AArch64::MatrixIndexGPR32_8_11RegClassID:
1084 case AArch64::MatrixIndexGPR32_12_15RegClassID:
1085 return 4;
1086
1087 case AArch64::DDRegClassID:
1088 case AArch64::DDDRegClassID:
1089 case AArch64::DDDDRegClassID:
1090 case AArch64::QQRegClassID:
1091 case AArch64::QQQRegClassID:
1092 case AArch64::QQQQRegClassID:
1093 return 32;
1094
1095 case AArch64::FPR128_loRegClassID:
1096 case AArch64::FPR64_loRegClassID:
1097 case AArch64::FPR16_loRegClassID:
1098 return 16;
1099 case AArch64::FPR128_0to7RegClassID:
1100 return 8;
1101 }
1102}
1103
1104// We add regalloc hints for different cases:
1105// * Choosing a better destination operand for predicated SVE instructions
1106// where the inactive lanes are undef, by choosing a register that is not
1107// unique to the other operands of the instruction.
1108//
1109// * Improve register allocation for SME multi-vector instructions where we can
1110// benefit from the strided- and contiguous register multi-vector tuples.
1111//
1112// Here FORM_TRANSPOSED_REG_TUPLE nodes are created to improve register
1113// allocation where a consecutive multi-vector tuple is constructed from the
1114// same indices of multiple strided loads. This may still result in
1115// unnecessary copies between the loads and the tuple. Here we try to return a
1116// hint to assign the contiguous ZPRMulReg starting at the same register as
1117// the first operand of the pseudo, which should be a subregister of the first
1118// strided load.
1119//
1120// For example, if the first strided load has been assigned $z16_z20_z24_z28
1121// and the operands of the pseudo are each accessing subregister zsub2, we
1122// should look through through Order to find a contiguous register which
1123// begins with $z24 (i.e. $z24_z25_z26_z27).
1125 Register VirtReg, ArrayRef<MCPhysReg> Order,
1127 const VirtRegMap *VRM, const LiveRegMatrix *Matrix) const {
1128 auto &ST = MF.getSubtarget<AArch64Subtarget>();
1129 const AArch64InstrInfo *TII =
1130 MF.getSubtarget<AArch64Subtarget>().getInstrInfo();
1131 const MachineRegisterInfo &MRI = MF.getRegInfo();
1132
1133 // For predicated SVE instructions where the inactive lanes are undef,
1134 // pick a destination register that is not unique to avoid introducing
1135 // a movprfx.
1136 const TargetRegisterClass *RegRC = MRI.getRegClass(VirtReg);
1137 if (AArch64::ZPRRegClass.hasSubClassEq(RegRC)) {
1138 bool ConsiderOnlyHints = TargetRegisterInfo::getRegAllocationHints(
1139 VirtReg, Order, Hints, MF, VRM);
1140
1141 for (const MachineOperand &DefOp : MRI.def_operands(VirtReg)) {
1142 const MachineInstr &Def = *DefOp.getParent();
1143 if (DefOp.isImplicit() ||
1144 (TII->get(Def.getOpcode()).TSFlags & AArch64::FalseLanesMask) !=
1146 continue;
1147
1148 unsigned InstFlags =
1149 TII->get(AArch64::getSVEPseudoMap(Def.getOpcode())).TSFlags;
1150
1151 for (MCPhysReg R : Order) {
1152 auto AddHintIfSuitable = [&](MCPhysReg R,
1153 const MachineOperand &MO) -> bool {
1154 // R is a suitable register hint if R can reuse one of the other
1155 // source operands.
1156 if (VRM->getPhys(MO.getReg()) != R)
1157 return false;
1158 Hints.push_back(R);
1159 return true;
1160 };
1161
1162 switch (InstFlags & AArch64::DestructiveInstTypeMask) {
1163 default:
1164 break;
1166 AddHintIfSuitable(R, Def.getOperand(2)) ||
1167 AddHintIfSuitable(R, Def.getOperand(3)) ||
1168 AddHintIfSuitable(R, Def.getOperand(4));
1169 break;
1172 AddHintIfSuitable(R, Def.getOperand(2)) ||
1173 AddHintIfSuitable(R, Def.getOperand(3));
1174 break;
1177 AddHintIfSuitable(R, Def.getOperand(2));
1178 break;
1179 }
1180 }
1181 }
1182
1183 if (Hints.size())
1184 return ConsiderOnlyHints;
1185 }
1186
1187 if (!ST.hasSME() || !ST.isStreaming())
1188 return TargetRegisterInfo::getRegAllocationHints(VirtReg, Order, Hints, MF,
1189 VRM);
1190
1191 // The SVE calling convention preserves registers Z8-Z23. As a result, there
1192 // are no ZPR2Strided or ZPR4Strided registers that do not overlap with the
1193 // callee-saved registers and so by default these will be pushed to the back
1194 // of the allocation order for the ZPRStridedOrContiguous classes.
1195 // If any of the instructions which define VirtReg are used by the
1196 // FORM_TRANSPOSED_REG_TUPLE pseudo, we want to favour reducing copy
1197 // instructions over reducing the number of clobbered callee-save registers,
1198 // so we add the strided registers as a hint.
1199 unsigned RegID = RegRC->getID();
1200 if (RegID == AArch64::ZPR2StridedOrContiguousRegClassID ||
1201 RegID == AArch64::ZPR4StridedOrContiguousRegClassID) {
1202
1203 // Look through uses of the register for FORM_TRANSPOSED_REG_TUPLE.
1204 for (const MachineInstr &Use : MRI.use_nodbg_instructions(VirtReg)) {
1205 if (Use.getOpcode() != AArch64::FORM_TRANSPOSED_REG_TUPLE_X2_PSEUDO &&
1206 Use.getOpcode() != AArch64::FORM_TRANSPOSED_REG_TUPLE_X4_PSEUDO)
1207 continue;
1208
1209 unsigned UseOps = Use.getNumOperands() - 1;
1210 const TargetRegisterClass *StridedRC;
1211 switch (RegID) {
1212 case AArch64::ZPR2StridedOrContiguousRegClassID:
1213 StridedRC = &AArch64::ZPR2StridedRegClass;
1214 break;
1215 case AArch64::ZPR4StridedOrContiguousRegClassID:
1216 StridedRC = &AArch64::ZPR4StridedRegClass;
1217 break;
1218 default:
1219 llvm_unreachable("Unexpected RegID");
1220 }
1221
1222 SmallVector<MCPhysReg, 4> StridedOrder;
1223 for (MCPhysReg Reg : Order)
1224 if (StridedRC->contains(Reg))
1225 StridedOrder.push_back(Reg);
1226
1227 int OpIdx = Use.findRegisterUseOperandIdx(VirtReg, this);
1228 assert(OpIdx != -1 && "Expected operand index from register use.");
1229
1230 unsigned TupleID = MRI.getRegClass(Use.getOperand(0).getReg())->getID();
1231 bool IsMulZPR = TupleID == AArch64::ZPR2Mul2RegClassID ||
1232 TupleID == AArch64::ZPR4Mul4RegClassID;
1233
1234 const MachineOperand *AssignedRegOp = llvm::find_if(
1235 make_range(Use.operands_begin() + 1, Use.operands_end()),
1236 [&VRM](const MachineOperand &Op) {
1237 return VRM->hasPhys(Op.getReg());
1238 });
1239
1240 // Example:
1241 //
1242 // When trying to find a suitable register allocation for VirtReg %v2 in:
1243 //
1244 // %v0:zpr2stridedorcontiguous = ld1 p0/z, [...]
1245 // %v1:zpr2stridedorcontiguous = ld1 p0/z, [...]
1246 // %v2:zpr2stridedorcontiguous = ld1 p0/z, [...]
1247 // %v3:zpr2stridedorcontiguous = ld1 p0/z, [...]
1248 // %v4:zpr4mul4 = FORM_TRANSPOSED_X4 %v0:0, %v1:0, %v2:0, %v3:0
1249 //
1250 // One such suitable allocation would be:
1251 //
1252 // { z0, z8 } = ld1 p0/z, [...]
1253 // { z1, z9 } = ld1 p0/z, [...]
1254 // { z2, z10 } = ld1 p0/z, [...]
1255 // { z3, z11 } = ld1 p0/z, [...]
1256 // { z0, z1, z2, z3 } =
1257 // FORM_TRANSPOSED_X4 {z0, z8}:0, {z1, z9}:0, {z2, z10}:0, {z3, z11}:0
1258 //
1259 // Below we distinguish two cases when trying to find a register:
1260 // * None of the registers used by FORM_TRANSPOSED_X4 have been assigned
1261 // yet. In this case the code muse ensure that there are at least UseOps
1262 // free consecutive registers. If IsMulZPR is true, then the first of
1263 // registers must also be a multiple of UseOps, e.g. { z0, z1, z2, z3 }
1264 // is valid but { z1, z2, z3, z5 } is not.
1265 // * One or more of the registers used by FORM_TRANSPOSED_X4 is already
1266 // assigned a physical register, which means only checking that a
1267 // consecutive range of free tuple registers exists which includes
1268 // the assigned register.
1269 // e.g. in the example above, if { z0, z8 } is already allocated for
1270 // %v0, we just need to ensure that { z1, z9 }, { z2, z10 } and
1271 // { z3, z11 } are also free. If so, we add { z2, z10 }.
1272
1273 if (AssignedRegOp == Use.operands_end()) {
1274 // There are no registers already assigned to any of the pseudo
1275 // operands. Look for a valid starting register for the group.
1276 for (unsigned I = 0; I < StridedOrder.size(); ++I) {
1277 MCPhysReg Reg = StridedOrder[I];
1278
1279 // If the FORM_TRANSPOSE nodes use the ZPRMul classes, the starting
1280 // register of the first load should be a multiple of 2 or 4.
1281 unsigned SubRegIdx = Use.getOperand(OpIdx).getSubReg();
1282 if (IsMulZPR && (getSubReg(Reg, SubRegIdx) - AArch64::Z0) % UseOps !=
1283 ((unsigned)OpIdx - 1))
1284 continue;
1285
1286 // In the example above, if VirtReg is the third operand of the
1287 // tuple (%v2) and Reg == Z2_Z10, then we need to make sure that
1288 // Z0_Z8, Z1_Z9 and Z3_Z11 are also available.
1289 auto IsFreeConsecutiveReg = [&](unsigned UseOp) {
1290 unsigned R = Reg - (OpIdx - 1) + UseOp;
1291 return StridedRC->contains(R) &&
1292 (UseOp == 0 ||
1293 ((getSubReg(R, AArch64::zsub0) - AArch64::Z0) ==
1294 (getSubReg(R - 1, AArch64::zsub0) - AArch64::Z0) + 1)) &&
1295 !Matrix->isPhysRegUsed(R);
1296 };
1297 if (all_of(iota_range<unsigned>(0U, UseOps, /*Inclusive=*/false),
1298 IsFreeConsecutiveReg))
1299 Hints.push_back(Reg);
1300 }
1301 } else {
1302 // At least one operand already has a physical register assigned.
1303 // Find the starting sub-register of this and use it to work out the
1304 // correct strided register to suggest based on the current op index.
1305 MCPhysReg TargetStartReg =
1306 getSubReg(VRM->getPhys(AssignedRegOp->getReg()), AArch64::zsub0) +
1307 (OpIdx - AssignedRegOp->getOperandNo());
1308
1309 for (unsigned I = 0; I < StridedOrder.size(); ++I)
1310 if (getSubReg(StridedOrder[I], AArch64::zsub0) == TargetStartReg)
1311 Hints.push_back(StridedOrder[I]);
1312 }
1313
1314 if (!Hints.empty())
1315 return TargetRegisterInfo::getRegAllocationHints(VirtReg, Order, Hints,
1316 MF, VRM);
1317 }
1318 }
1319
1320 for (MachineInstr &MI : MRI.def_instructions(VirtReg)) {
1321 if (MI.getOpcode() != AArch64::FORM_TRANSPOSED_REG_TUPLE_X2_PSEUDO &&
1322 MI.getOpcode() != AArch64::FORM_TRANSPOSED_REG_TUPLE_X4_PSEUDO)
1323 return TargetRegisterInfo::getRegAllocationHints(VirtReg, Order, Hints,
1324 MF, VRM);
1325
1326 unsigned FirstOpSubReg = MI.getOperand(1).getSubReg();
1327 switch (FirstOpSubReg) {
1328 case AArch64::zsub0:
1329 case AArch64::zsub1:
1330 case AArch64::zsub2:
1331 case AArch64::zsub3:
1332 break;
1333 default:
1334 continue;
1335 }
1336
1337 // Look up the physical register mapped to the first operand of the pseudo.
1338 Register FirstOpVirtReg = MI.getOperand(1).getReg();
1339 if (!VRM->hasPhys(FirstOpVirtReg))
1340 continue;
1341
1342 MCRegister TupleStartReg =
1343 getSubReg(VRM->getPhys(FirstOpVirtReg), FirstOpSubReg);
1344 for (unsigned I = 0; I < Order.size(); ++I)
1345 if (MCRegister R = getSubReg(Order[I], AArch64::zsub0))
1346 if (R == TupleStartReg)
1347 Hints.push_back(Order[I]);
1348 }
1349
1350 return TargetRegisterInfo::getRegAllocationHints(VirtReg, Order, Hints, MF,
1351 VRM);
1352}
1353
1355 const MachineFunction &MF) const {
1356 const auto &MFI = MF.getFrameInfo();
1357 if (!MF.hasEHFunclets() && !MFI.hasVarSizedObjects())
1358 return AArch64::SP;
1359 else if (hasStackRealignment(MF))
1360 return getBaseRegister();
1361 return getFrameRegister(MF);
1362}
1363
1364/// SrcRC and DstRC will be morphed into NewRC if this returns true
1366 MachineInstr *MI, const TargetRegisterClass *SrcRC, unsigned SubReg,
1367 const TargetRegisterClass *DstRC, unsigned DstSubReg,
1368 const TargetRegisterClass *NewRC, LiveIntervals &LIS) const {
1369 MachineRegisterInfo &MRI = MI->getMF()->getRegInfo();
1370
1371 if (MI->isCopy() &&
1372 ((DstRC->getID() == AArch64::GPR64RegClassID) ||
1373 (DstRC->getID() == AArch64::GPR64commonRegClassID)) &&
1374 MI->getOperand(0).getSubReg() && MI->getOperand(1).getSubReg())
1375 // Do not coalesce in the case of a 32-bit subregister copy
1376 // which implements a 32 to 64 bit zero extension
1377 // which relies on the upper 32 bits being zeroed.
1378 return false;
1379
1380 auto IsCoalescerBarrier = [](const MachineInstr &MI) {
1381 switch (MI.getOpcode()) {
1382 case AArch64::COALESCER_BARRIER_FPR16:
1383 case AArch64::COALESCER_BARRIER_FPR32:
1384 case AArch64::COALESCER_BARRIER_FPR64:
1385 case AArch64::COALESCER_BARRIER_FPR128:
1386 return true;
1387 default:
1388 return false;
1389 }
1390 };
1391
1392 // For calls that temporarily have to toggle streaming mode as part of the
1393 // call-sequence, we need to be more careful when coalescing copy instructions
1394 // so that we don't end up coalescing the NEON/FP result or argument register
1395 // with a whole Z-register, such that after coalescing the register allocator
1396 // will try to spill/reload the entire Z register.
1397 //
1398 // We do this by checking if the node has any defs/uses that are
1399 // COALESCER_BARRIER pseudos. These are 'nops' in practice, but they exist to
1400 // instruct the coalescer to avoid coalescing the copy.
1401 if (MI->isCopy() && SubReg != DstSubReg &&
1402 (AArch64::ZPRRegClass.hasSubClassEq(DstRC) ||
1403 AArch64::ZPRRegClass.hasSubClassEq(SrcRC))) {
1404 unsigned SrcReg = MI->getOperand(1).getReg();
1405 if (any_of(MRI.def_instructions(SrcReg), IsCoalescerBarrier))
1406 return false;
1407 unsigned DstReg = MI->getOperand(0).getReg();
1408 if (any_of(MRI.use_nodbg_instructions(DstReg), IsCoalescerBarrier))
1409 return false;
1410 }
1411
1412 return true;
1413}
1414
1416 MCRegister R) const {
1417 return R == AArch64::VG;
1418}
1419
1421 return (LLVMReg >= AArch64::Z0 && LLVMReg <= AArch64::Z31) ||
1422 (LLVMReg >= AArch64::P0 && LLVMReg <= AArch64::P15);
1423}
unsigned SubReg
unsigned const MachineRegisterInfo * MRI
static bool isTargetWindows(const MachineFunction &MF)
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
static Register createScratchRegisterForInstruction(MachineInstr &MI, unsigned FIOperandNum, const AArch64InstrInfo *TII)
MachineBasicBlock & MBB
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
This file implements the BitVector class.
#define LLVM_FALLTHROUGH
LLVM_FALLTHROUGH - Mark fallthrough cases in switch statements.
Definition Compiler.h:404
This file contains constants used for implementing Dwarf debug support.
const HexagonInstrInfo * TII
IRTranslator LLVM IR MI
const AbstractManglingParser< Derived, Alloc >::OperatorInfo AbstractManglingParser< Derived, Alloc >::Ops[]
Live Register Matrix
#define F(x, y, z)
Definition MD5.cpp:54
#define I(x, y, z)
Definition MD5.cpp:57
MachineInstr unsigned OpIdx
uint64_t IntrinsicInst * II
This file declares the machine register scavenger class.
static bool contains(SmallPtrSetImpl< ConstantExpr * > &Cache, ConstantExpr *Expr, Constant *C)
Definition Value.cpp:480
static unsigned getDwarfRegNum(MCRegister Reg, const TargetRegisterInfo *TRI)
Go up the super-register chain until we hit a valid dwarf register number.
StackOffset getNonLocalFrameIndexReference(const MachineFunction &MF, int FI) const override
getNonLocalFrameIndexReference - This method returns the offset used to reference a frame index locat...
bool isFPReserved(const MachineFunction &MF) const
Should the Frame Pointer be reserved for the current function?
StackOffset resolveFrameIndexReference(const MachineFunction &MF, int FI, Register &FrameReg, bool PreferFP, bool ForSimm) const
AArch64FunctionInfo - This class is derived from MachineFunctionInfo and contains private AArch64-spe...
static const char * getRegisterName(MCRegister Reg, unsigned AltIdx=AArch64::NoRegAltName)
BitVector getStrictlyReservedRegs(const MachineFunction &MF) const
const TargetRegisterClass * getCrossCopyRegClass(const TargetRegisterClass *RC) const override
const uint32_t * getThisReturnPreservedMask(const MachineFunction &MF, CallingConv::ID) const
getThisReturnPreservedMask - Returns a call preserved mask specific to the case that 'returned' is on...
bool isReservedReg(const MachineFunction &MF, MCRegister Reg) const
const uint32_t * getCallPreservedMask(const MachineFunction &MF, CallingConv::ID) const override
const MCPhysReg * getCalleeSavedRegsViaCopy(const MachineFunction *MF) const
bool isIgnoredCVReg(MCRegister LLVMReg) const override
BitVector getReservedRegs(const MachineFunction &MF) const override
const TargetRegisterClass * getPointerRegClass(unsigned Kind=0) const override
bool shouldCoalesce(MachineInstr *MI, const TargetRegisterClass *SrcRC, unsigned SubReg, const TargetRegisterClass *DstRC, unsigned DstSubReg, const TargetRegisterClass *NewRC, LiveIntervals &LIS) const override
SrcRC and DstRC will be morphed into NewRC if this returns true.
bool requiresVirtualBaseRegisters(const MachineFunction &MF) const override
bool isUserReservedReg(const MachineFunction &MF, MCRegister Reg) const
const TargetRegisterClass * getSubClassWithSubReg(const TargetRegisterClass *RC, unsigned Idx) const override
unsigned getRegPressureLimit(const TargetRegisterClass *RC, MachineFunction &MF) const override
bool getRegAllocationHints(Register VirtReg, ArrayRef< MCPhysReg > Order, SmallVectorImpl< MCPhysReg > &Hints, const MachineFunction &MF, const VirtRegMap *VRM, const LiveRegMatrix *Matrix) const override
Register materializeFrameBaseRegister(MachineBasicBlock *MBB, int FrameIdx, int64_t Offset) const override
Insert defining instruction(s) for BaseReg to be a pointer to FrameIdx at the beginning of the basic ...
void UpdateCustomCalleeSavedRegs(MachineFunction &MF) const
bool requiresRegisterScavenging(const MachineFunction &MF) const override
bool isFrameOffsetLegal(const MachineInstr *MI, Register BaseReg, int64_t Offset) const override
BitVector getUserReservedRegs(const MachineFunction &MF) const
void resolveFrameIndex(MachineInstr &MI, Register BaseReg, int64_t Offset) const override
bool needsFrameBaseReg(MachineInstr *MI, int64_t Offset) const override
needsFrameBaseReg - Returns true if the instruction's frame index reference would be better served by...
const uint32_t * getWindowsStackProbePreservedMask() const
Stack probing calls preserve different CSRs to the normal CC.
bool regNeedsCFI(MCRegister Reg, MCRegister &RegToUseForCFI) const
Return whether the register needs a CFI entry.
bool isAnyArgRegReserved(const MachineFunction &MF) const
void emitReservedArgRegCallError(const MachineFunction &MF) const
bool isStrictlyReservedReg(const MachineFunction &MF, MCRegister Reg) const
bool eliminateFrameIndex(MachineBasicBlock::iterator II, int SPAdj, unsigned FIOperandNum, RegScavenger *RS=nullptr) const override
const uint32_t * getTLSCallPreservedMask() const
const uint32_t * getNoPreservedMask() const override
Register getFrameRegister(const MachineFunction &MF) const override
bool shouldAnalyzePhysregInMachineLoopInfo(MCRegister R) const override
void getOffsetOpcodes(const StackOffset &Offset, SmallVectorImpl< uint64_t > &Ops) const override
bool isAsmClobberable(const MachineFunction &MF, MCRegister PhysReg) const override
AArch64RegisterInfo(const Triple &TT, unsigned HwMode)
const uint32_t * SMEABISupportRoutinesCallPreservedMaskFromX0() const
const MCPhysReg * getCalleeSavedRegs(const MachineFunction *MF) const override
Code Generation virtual methods...
const uint32_t * getCustomEHPadPreservedMask(const MachineFunction &MF) const override
unsigned getLocalAddressRegister(const MachineFunction &MF) const
bool hasBasePointer(const MachineFunction &MF) const
const uint32_t * getDarwinCallPreservedMask(const MachineFunction &MF, CallingConv::ID) const
const uint32_t * getSMStartStopCallPreservedMask() const
bool useFPForScavengingIndex(const MachineFunction &MF) const override
bool cannotEliminateFrame(const MachineFunction &MF) const
bool isArgumentRegister(const MachineFunction &MF, MCRegister Reg) const override
void UpdateCustomCallPreservedMask(MachineFunction &MF, const uint32_t **Mask) const
std::optional< std::string > explainReservedReg(const MachineFunction &MF, MCRegister PhysReg) const override
bool requiresFrameIndexScavenging(const MachineFunction &MF) const override
bool isXRegisterReservedForRA(size_t i) const
const AArch64TargetLowering * getTargetLowering() const override
bool isXRegCustomCalleeSaved(size_t i) const
bool isXRegisterReserved(size_t i) const
bool isCallingConvWin64(CallingConv::ID CC, bool IsVarArg) const
bool supportSwiftError() const override
Return true if the target supports swifterror attribute.
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Definition ArrayRef.h:40
size_t size() const
size - Get the array size.
Definition ArrayRef.h:142
static LLVM_ABI void appendOffset(SmallVectorImpl< uint64_t > &Ops, int64_t Offset)
Append Ops with operations to apply the Offset.
A debug info location.
Definition DebugLoc.h:124
Diagnostic information for unsupported feature in backend.
CallingConv::ID getCallingConv() const
getCallingConv()/setCallingConv(CC) - These method get and set the calling convention of this functio...
Definition Function.h:270
AttributeList getAttributes() const
Return the attribute list for this Function.
Definition Function.h:352
bool isVarArg() const
isVarArg - Return true if this function takes a variable number of arguments.
Definition Function.h:227
bool hasFnAttribute(Attribute::AttrKind Kind) const
Return true if the function has the attribute.
Definition Function.cpp:730
Describe properties that are true of each instruction in the target description file.
bool regsOverlap(MCRegister RegA, MCRegister RegB) const
Returns true if the two registers are equal or alias each other.
Wrapper class representing physical registers. Should be passed by value.
Definition MCRegister.h:41
MCSubRegIterator enumerates all sub-registers of Reg.
MachineInstrBundleIterator< MachineInstr > iterator
The MachineFrameInfo class represents an abstract stack frame until prolog/epilog code is inserted.
bool hasVarSizedObjects() const
This method may be called any time after instruction selection is complete to determine if the stack ...
uint64_t getStackSize() const
Return the number of bytes that must be allocated to hold all of the fixed size frame objects.
bool adjustsStack() const
Return true if this function adjusts the stack – e.g., when calling another function.
bool isFrameAddressTaken() const
This method may be called any time after instruction selection is complete to determine if there is a...
int64_t getLocalFrameSize() const
Get the size of the local object blob.
int64_t getObjectOffset(int ObjectIdx) const
Return the assigned stack offset of the specified object from the incoming stack pointer.
const TargetSubtargetInfo & getSubtarget() const
getSubtarget - Return the subtarget for which this machine code is being compiled.
MachineFrameInfo & getFrameInfo()
getFrameInfo - Return the frame info object for the current function.
uint32_t * allocateRegMask()
Allocate and initialize a register mask with NumRegister bits.
MachineRegisterInfo & getRegInfo()
getRegInfo - Return information about the registers currently in use.
Function & getFunction()
Return the LLVM function that this machine code represents.
Ty * getInfo()
getInfo - Keep track of various per-function pieces of information for backends that would like to do...
const MachineFunctionProperties & getProperties() const
Get the function properties.
const TargetMachine & getTarget() const
getTarget - Return the target machine this machine code is compiled with
const MachineInstrBuilder & addImm(int64_t Val) const
Add a new immediate operand.
const MachineInstrBuilder & addFrameIndex(int Idx) const
const MachineInstrBuilder & addReg(Register RegNo, unsigned flags=0, unsigned SubReg=0) const
Add a new virtual register operand.
Representation of each machine instruction.
MachineOperand class - Representation of each machine instruction operand.
LLVM_ABI unsigned getOperandNo() const
Returns the index of this operand in the instruction that it belongs to.
LLVM_ABI void ChangeToImmediate(int64_t ImmVal, unsigned TargetFlags=0)
ChangeToImmediate - Replace this operand with a new immediate operand of the specified value.
static unsigned getRegMaskSize(unsigned NumRegs)
Returns number of elements needed for a regmask array.
Register getReg() const
getReg - Returns the register number.
MachineRegisterInfo - Keep track of information for virtual and physical registers,...
LLVM_ABI Register createVirtualRegister(const TargetRegisterClass *RegClass, StringRef Name="")
createVirtualRegister - Create and return a new virtual register in the function with the specified r...
LLVM_ABI void setCalleeSavedRegs(ArrayRef< MCPhysReg > CSRs)
Sets the updated Callee Saved Registers list.
Wrapper class representing virtual and physical registers.
Definition Register.h:20
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
StackOffset holds a fixed and a scalable offset in bytes.
Definition TypeSize.h:30
int64_t getFixed() const
Returns the fixed component of the stack.
Definition TypeSize.h:46
bool hasFP(const MachineFunction &MF) const
hasFP - Return true if the specified function should have a dedicated frame pointer register.
TargetOptions Options
LLVM_ABI bool DisableFramePointerElim(const MachineFunction &MF) const
DisableFramePointerElim - This returns true if frame pointer elimination optimization should be disab...
unsigned getID() const
Return the register class ID number.
bool contains(Register Reg) const
Return true if the specified register is included in this register class.
virtual bool getRegAllocationHints(Register VirtReg, ArrayRef< MCPhysReg > Order, SmallVectorImpl< MCPhysReg > &Hints, const MachineFunction &MF, const VirtRegMap *VRM=nullptr, const LiveRegMatrix *Matrix=nullptr) const
Get a list of 'hint' registers that the register allocator should try first when allocating a physica...
Triple - Helper class for working with autoconf configuration names.
Definition Triple.h:47
A Use represents the edge between a Value definition and its users.
Definition Use.h:35
MCRegister getPhys(Register virtReg) const
returns the physical register mapped to the specified virtual register
Definition VirtRegMap.h:91
bool hasPhys(Register virtReg) const
returns true if the specified virtual register is mapped to a physical register
Definition VirtRegMap.h:87
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
@ MO_TAGGED
MO_TAGGED - With MO_PAGE, indicates that the page includes a memory tag in bits 56-63.
static unsigned getShifterImm(AArch64_AM::ShiftExtendType ST, unsigned Imm)
getShifterImm - Encode the shift type and amount: imm: 6-bit shift amount shifter: 000 ==> lsl 001 ==...
void initLLVMToCVRegMapping(MCRegisterInfo *MRI)
int getSVEPseudoMap(uint16_t Opcode)
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
Definition CallingConv.h:24
@ AArch64_VectorCall
Used between AArch64 Advanced SIMD functions.
@ Swift
Calling convention for Swift.
Definition CallingConv.h:69
@ AArch64_SVE_VectorCall
Used between AArch64 SVE functions.
@ CFGuard_Check
Special calling convention on Windows for calling the Control Guard Check ICall funtion.
Definition CallingConv.h:82
@ PreserveMost
Used for runtime calls that preserves most registers.
Definition CallingConv.h:63
@ AnyReg
OBSOLETED - Used for stack based JavaScript calls.
Definition CallingConv.h:60
@ AArch64_SME_ABI_Support_Routines_PreserveMost_From_X2
Preserve X2-X15, X19-X29, SP, Z0-Z31, P0-P15.
@ CXX_FAST_TLS
Used for access functions.
Definition CallingConv.h:72
@ AArch64_SME_ABI_Support_Routines_PreserveMost_From_X0
Preserve X0-X13, X19-X29, SP, Z0-Z31, P0-P15.
@ GHC
Used by the Glasgow Haskell Compiler (GHC).
Definition CallingConv.h:50
@ AArch64_SME_ABI_Support_Routines_PreserveMost_From_X1
Preserve X1-X15, X19-X29, SP, Z0-Z31, P0-P15.
@ PreserveAll
Used for runtime calls that preserves (almost) all registers.
Definition CallingConv.h:66
@ Fast
Attempts to make calls as fast as possible (e.g.
Definition CallingConv.h:41
@ PreserveNone
Used for runtime calls that preserves none general registers.
Definition CallingConv.h:90
@ Tail
Attemps to make calls as fast as possible while guaranteeing that tail call optimization can always b...
Definition CallingConv.h:76
@ Win64
The C convention as implemented on Windows/x86-64 and AArch64.
@ SwiftTail
This follows the Swift calling convention in how arguments are passed but guarantees tail calls will ...
Definition CallingConv.h:87
@ GRAAL
Used by GraalVM. Two additional registers are reserved.
@ ARM64EC_Thunk_X64
Calling convention used in the ARM64EC ABI to implement calls between x64 code and thunks.
@ C
The default llvm calling convention, compatible with C.
Definition CallingConv.h:34
This is an optimization pass for GlobalISel generic memory operations.
@ Offset
Definition DWP.cpp:532
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1725
MachineInstrBuilder BuildMI(MachineFunction &MF, const MIMetadata &MIMD, const MCInstrDesc &MCID)
Builder interface. Specify how to create the initial instruction itself.
int isAArch64FrameOffsetLegal(const MachineInstr &MI, StackOffset &Offset, bool *OutUseUnscaledOp=nullptr, unsigned *OutUnscaledOp=nullptr, int64_t *EmittableOffset=nullptr)
Check if the Offset is a valid frame offset for MI.
@ Done
Definition Threading.h:60
iterator_range< T > make_range(T x, T y)
Convenience function for iterating over sub-ranges.
@ AArch64FrameOffsetIsLegal
Offset is legal.
@ AArch64FrameOffsetCanUpdate
Offset can apply, at least partly.
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1732
void emitFrameOffset(MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, const DebugLoc &DL, unsigned DestReg, unsigned SrcReg, StackOffset Offset, const TargetInstrInfo *TII, MachineInstr::MIFlag=MachineInstr::NoFlags, bool SetNZCV=false, bool NeedsWinCFI=false, bool *HasWinCFI=nullptr, bool EmitCFAOffset=false, StackOffset InitialOffset={}, unsigned FrameReg=AArch64::SP)
emitFrameOffset - Emit instructions as needed to set DestReg to SrcReg plus Offset.
LLVM_ABI void report_fatal_error(Error Err, bool gen_crash_diag=true)
Definition Error.cpp:167
uint16_t MCPhysReg
An unsigned integer type large enough to represent all physical registers, but not necessarily virtua...
Definition MCRegister.h:21
DWARFExpression::Operation Op
auto find_if(R &&Range, UnaryPredicate P)
Provide wrappers to std::find_if which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1758
bool rewriteAArch64FrameIndex(MachineInstr &MI, unsigned FrameRegIdx, unsigned FrameReg, StackOffset &Offset, const AArch64InstrInfo *TII)
rewriteAArch64FrameIndex - Rewrite MI to access 'Offset' bytes from the FP.
bool is_contained(R &&Range, const E &Element)
Returns true if Element is found in Range.
Definition STLExtras.h:1897