28#include "llvm/IR/IntrinsicsAArch64.h"
31#include <initializer_list>
33#define DEBUG_TYPE "aarch64-legalinfo"
67 std::initializer_list<LLT> PackedVectorAllTypeList = {
73 std::initializer_list<LLT> ScalarAndPtrTypesList = {s8, s16, s32, s64, p0};
77 const TargetMachine &TM = ST.getTargetLowering()->getTargetMachine();
80 if (!ST.hasNEON() || !ST.hasFPARMv8()) {
87 const bool HasFP16 = ST.hasFullFP16();
88 const LLT &MinFPScalar = HasFP16 ? s16 : s32;
90 const bool HasCSSC = ST.hasCSSC();
91 const bool HasRCPC3 = ST.hasRCPC3();
92 const bool HasSVE = ST.hasSVE();
95 {G_IMPLICIT_DEF, G_FREEZE, G_CONSTANT_FOLD_BARRIER})
96 .legalFor({p0, s8, s16, s32, s64})
97 .legalFor({v2s8, v4s8, v8s8, v16s8, v2s16, v4s16, v8s16, v2s32, v4s32,
99 .widenScalarToNextPow2(0)
112 .legalFor(PackedVectorAllTypeList)
126 .widenScalarToNextPow2(0)
131 .maxScalarIf(
typeInSet(0, {s64, p0}), 1, s32);
136 .widenScalarToNextPow2(1)
141 .maxScalarIf(
typeInSet(1, {s64, p0}), 0, s32)
142 .maxScalarIf(
typeInSet(1, {s128}), 0, s64);
145 .legalFor({s32, s64, v8s8, v16s8, v4s16, v8s16, v2s32, v4s32, v2s64})
146 .legalFor(HasSVE, {nxv16s8, nxv8s16, nxv4s32, nxv2s64})
147 .widenScalarToNextPow2(0)
155 return Query.
Types[0].getNumElements() <= 2;
160 return Query.
Types[0].getNumElements() <= 4;
165 return Query.
Types[0].getNumElements() <= 16;
172 .
legalFor({s32, s64, v8s8, v16s8, v4s16, v8s16, v2s32, v4s32, v2s64})
173 .widenScalarToNextPow2(0)
181 return Query.
Types[0].getNumElements() <= 2;
186 return Query.
Types[0].getNumElements() <= 4;
191 return Query.
Types[0].getNumElements() <= 16;
199 const auto &SrcTy = Query.
Types[0];
200 const auto &AmtTy = Query.
Types[1];
201 return !SrcTy.isVector() && SrcTy.getSizeInBits() == 32 &&
202 AmtTy.getSizeInBits() == 32;
216 .widenScalarToNextPow2(0)
230 .
legalFor({{p0, s64}, {v2p0, v2s64}})
231 .clampScalarOrElt(1, s64, s64)
237 .legalFor({s32, s64})
239 .clampScalar(0, s32, s64)
244 .lowerFor({s8, s16, s32, s64, v2s32, v4s32, v2s64})
253 .widenScalarToNextPow2(0, 32)
258 .legalFor({s64, v16s8, v8s16, v4s32})
262 .legalFor({v8s8, v16s8, v4s16, v8s16, v2s32, v4s32})
263 .legalFor(HasCSSC, {s32, s64})
264 .minScalar(HasCSSC, 0, s32)
273 .legalFor(PackedVectorAllTypeList)
277 return SrcTy.isScalar() && SrcTy.getSizeInBits() < 128;
281 [=](
const LegalityQuery &Query) {
return std::make_pair(0, v4s16); })
284 [=](
const LegalityQuery &Query) {
return std::make_pair(0, v2s32); })
285 .clampNumElements(0, v8s8, v16s8)
293 {G_ABDS, G_ABDU, G_UAVGFLOOR, G_UAVGCEIL, G_SAVGFLOOR, G_SAVGCEIL})
294 .legalFor({v8s8, v16s8, v4s16, v8s16, v2s32, v4s32})
298 {G_SADDE, G_SSUBE, G_UADDE, G_USUBE, G_SADDO, G_SSUBO, G_UADDO, G_USUBO})
299 .legalFor({{s32, s32}, {s64, s32}})
300 .clampScalar(0, s32, s64)
305 .customFor({{s32, s32}, {s32, s64}, {s64, s64}})
311 return Q.
Types[0].isScalar() && Q.
Types[1].getScalarSizeInBits() < 64;
317 .customFor({{s32, s32}, {s64, s64}});
321 .
legalFor(HasCSSC, {{s32, s32}, {s64, s64}})
322 .legalFor({{v8s8, v8s8}, {v16s8, v16s8}})
323 .customFor(!HasCSSC, {{s32, s32}, {s64, s64}})
324 .customFor({{s128, s128},
330 .clampScalar(0, s32, s128)
350 .widenScalarToNextPow2(1, 32)
367 .customFor(!HasCSSC, {s32, s64});
373 .widenScalarToNextPow2(0, 32)
385 .
legalFor({s32, s64, v4s16, v8s16, v2s32, v4s32, v2s64})
394 .legalFor({v8s8, v16s8, v4s16, v8s16, v2s32, v4s32, v2s64})
395 .legalFor(HasSVE, {nxv16s8, nxv8s16, nxv4s32, nxv2s64})
396 .clampNumElements(0, v8s8, v16s8)
405 {G_FADD, G_FSUB, G_FMUL, G_FDIV, G_FMA, G_FSQRT, G_FMAXNUM, G_FMINNUM,
406 G_FMAXIMUM, G_FMINIMUM, G_FCEIL, G_FFLOOR, G_FRINT, G_FNEARBYINT,
407 G_INTRINSIC_TRUNC, G_INTRINSIC_ROUND, G_INTRINSIC_ROUNDEVEN})
408 .legalFor({s32, s64, v2s32, v4s32, v2s64})
409 .legalFor(HasFP16, {s16, v4s16, v8s16})
419 .legalFor({s32, s64, v2s32, v4s32, v2s64})
420 .legalFor(HasFP16, {s16, v4s16, v8s16})
435 .legalFor({{s64, MinFPScalar}, {s64, s32}, {s64, s64}})
436 .libcallFor({{s64, s128}})
437 .minScalarOrElt(1, MinFPScalar);
440 G_FLOG10, G_FTAN, G_FEXP, G_FEXP2, G_FEXP10,
441 G_FACOS, G_FASIN, G_FATAN, G_FATAN2, G_FCOSH,
442 G_FSINH, G_FTANH, G_FMODF})
451 .
libcallFor({{s32, s32}, {s64, s32}, {s128, s32}});
454 .legalFor({{s64, s32}, {s64, s64}})
455 .legalFor(HasFP16, {{s64, s16}})
472 for (
unsigned Op : {G_SEXTLOAD, G_ZEXTLOAD}) {
475 if (
Op == G_SEXTLOAD)
480 .legalForTypesWithMemDesc({{s32, p0, s8, 8},
488 {v2s32, p0, s64, 8}})
489 .widenScalarToNextPow2(0)
490 .clampScalar(0, s32, s64)
493 .unsupportedIfMemSizeNotPow2()
500 return ValTy.isPointerVector() && ValTy.getAddressSpace() == 0;
505 return HasRCPC3 && Query.
Types[0] == s128 &&
509 return Query.
Types[0] == s128 &&
512 .legalForTypesWithMemDesc({{s8, p0, s8, 8},
519 {v16s8, p0, s128, 8},
521 {v8s16, p0, s128, 8},
523 {v4s32, p0, s128, 8},
524 {v2s64, p0, s128, 8}})
526 .legalForTypesWithMemDesc(
527 {{s32, p0, s8, 8}, {s32, p0, s16, 8}, {s64, p0, s32, 8}})
528 .legalForTypesWithMemDesc({
530 {nxv16s8, p0, nxv16s8, 8},
531 {nxv8s16, p0, nxv8s16, 8},
532 {nxv4s32, p0, nxv4s32, 8},
533 {nxv2s64, p0, nxv2s64, 8},
535 .widenScalarToNextPow2(0, 8)
546 return Query.
Types[0].isScalar() &&
548 Query.
Types[0].getSizeInBits() > 32;
557 .customIf(IsPtrVecPred)
563 return HasRCPC3 && Query.
Types[0] == s128 &&
567 return Query.
Types[0] == s128 &&
570 .legalForTypesWithMemDesc(
571 {{s8, p0, s8, 8}, {s16, p0, s8, 8},
574 {s16, p0, s16, 8}, {s32, p0, s16, 8},
576 {s32, p0, s8, 8}, {s32, p0, s16, 8}, {s32, p0, s32, 8},
577 {s64, p0, s64, 8}, {s64, p0, s32, 8},
578 {p0, p0, s64, 8}, {s128, p0, s128, 8}, {v16s8, p0, s128, 8},
579 {v8s8, p0, s64, 8}, {v4s16, p0, s64, 8}, {v8s16, p0, s128, 8},
580 {v2s32, p0, s64, 8}, {v4s32, p0, s128, 8}, {v2s64, p0, s128, 8}})
581 .legalForTypesWithMemDesc({
586 {nxv16s8, p0, nxv16s8, 8},
587 {nxv8s16, p0, nxv8s16, 8},
588 {nxv4s32, p0, nxv4s32, 8},
589 {nxv2s64, p0, nxv2s64, 8},
591 .clampScalar(0, s8, s64)
594 return Query.
Types[0].isScalar() &&
598 .clampMaxNumElements(0, s8, 16)
607 return Query.
Types[0].getSizeInBits() ==
608 Query.
MMODescrs[0].MemoryTy.getSizeInBits();
614 .customIf(IsPtrVecPred)
632 {p0, v16s8, v16s8, 8},
633 {p0, v4s16, v4s16, 8},
634 {p0, v8s16, v8s16, 8},
635 {p0, v2s32, v2s32, 8},
636 {p0, v4s32, v4s32, 8},
637 {p0, v2s64, v2s64, 8},
643 auto IndexedLoadBasicPred = [=](
const LegalityQuery &Query) {
671 return MemTy == s8 || MemTy == s16;
673 return MemTy == s8 || MemTy == s16 || MemTy == s32;
681 .widenScalarToNextPow2(0)
686 .clampScalar(0, MinFPScalar, s128);
690 .
legalFor({{s32, s32}, {s32, s64}, {s32, p0}})
699 return Ty.isVector() && !SrcTy.isPointerVector() &&
700 Ty.getElementType() != SrcTy.getElementType();
708 return Query.
Types[1].isPointerVector();
725 .legalFor(HasFP16, {{s32, s16}, {v4s16, v4s16}, {v8s16, v8s16}})
734 return Ty.isVector() && !SrcTy.isPointerVector() &&
735 Ty.getElementType() != SrcTy.getElementType();
738 .clampNumElements(1, v4s16, v8s16)
746 unsigned DstSize = Query.
Types[0].getSizeInBits();
749 if (Query.
Types[0].isVector())
752 if (DstSize < 8 || DstSize >= 128 || !
isPowerOf2_32(DstSize))
760 unsigned SrcSize = SrcTy.getSizeInBits();
767 .legalIf(ExtLegalFunc)
768 .
legalFor({{v8s16, v8s8}, {v4s32, v4s16}, {v2s64, v2s32}})
769 .clampScalar(0, s64, s64)
776 return (Query.
Types[0].getScalarSizeInBits() >
777 Query.
Types[1].getScalarSizeInBits() * 2) &&
778 Query.
Types[0].isVector() &&
779 (Query.
Types[1].getScalarSizeInBits() == 8 ||
780 Query.
Types[1].getScalarSizeInBits() == 16);
782 .clampMinNumElements(1, s8, 8)
787 .
legalFor({{v8s8, v8s16}, {v4s16, v4s32}, {v2s32, v2s64}})
798 return DstTy.
isVector() && SrcTy.getSizeInBits() > 128 &&
801 .clampMinNumElements(0, s8, 8)
806 .legalFor({{v8s8, v8s16}, {v4s16, v4s32}, {v2s32, v2s64}});
810 .legalFor(PackedVectorAllTypeList)
821 {{s16, s32}, {s16, s64}, {s32, s64}, {v4s16, v4s32}, {v2s32, v2s64}})
822 .libcallFor({{s16, s128}, {s32, s128}, {s64, s128}})
823 .clampNumElements(0, v4s16, v4s16)
829 {{s32, s16}, {s64, s16}, {s64, s32}, {v4s32, v4s16}, {v2s64, v2s32}})
830 .libcallFor({{s128, s64}, {s128, s32}, {s128, s16}})
836 return SrcTy.isVector() && DstTy.
isVector() &&
837 SrcTy.getScalarSizeInBits() == 16 &&
841 .clampNumElements(0, v4s32, v4s32)
847 .legalFor({{s32, s32},
855 {{s32, s16}, {s64, s16}, {v4s16, v4s16}, {v8s16, v8s16}})
862 return Query.
Types[1] == s16 && Query.
Types[0].getSizeInBits() > 64;
871 return Query.
Types[0].getScalarSizeInBits() <= 64 &&
872 Query.
Types[0].getScalarSizeInBits() >
873 Query.
Types[1].getScalarSizeInBits();
878 return Query.
Types[1].getScalarSizeInBits() <= 64 &&
879 Query.
Types[0].getScalarSizeInBits() <
880 Query.
Types[1].getScalarSizeInBits();
883 .clampNumElements(0, v4s16, v8s16)
887 {{s32, s128}, {s64, s128}, {s128, s128}, {s128, s32}, {s128, s64}});
890 .legalFor({{s32, s32},
899 {{s16, s16}, {s32, s16}, {s64, s16}, {v4s16, v4s16}, {v8s16, v8s16}})
907 return Query.
Types[1] == s16 && Query.
Types[0].getSizeInBits() > 64;
917 unsigned ITySize = Query.
Types[0].getScalarSizeInBits();
918 return (ITySize == 16 || ITySize == 32 || ITySize == 64) &&
919 ITySize > Query.
Types[1].getScalarSizeInBits();
924 unsigned FTySize = Query.
Types[1].getScalarSizeInBits();
925 return (FTySize == 16 || FTySize == 32 || FTySize == 64) &&
926 Query.
Types[0].getScalarSizeInBits() < FTySize;
935 .legalFor({{s32, s32},
943 {{s16, s32}, {s16, s64}, {v4s16, v4s16}, {v8s16, v8s16}})
950 return Query.
Types[1].isVector() &&
951 Query.
Types[1].getScalarSizeInBits() == 64 &&
952 Query.
Types[0].getScalarSizeInBits() == 16;
954 .widenScalarOrEltToNextPow2OrMinSize(0, HasFP16 ? 16 : 32)
958 return Query.
Types[0].getScalarSizeInBits() == 32 &&
959 Query.
Types[1].getScalarSizeInBits() == 64;
964 return Query.
Types[1].getScalarSizeInBits() <= 64 &&
965 Query.
Types[0].getScalarSizeInBits() <
966 Query.
Types[1].getScalarSizeInBits();
971 return Query.
Types[0].getScalarSizeInBits() <= 64 &&
972 Query.
Types[0].getScalarSizeInBits() >
973 Query.
Types[1].getScalarSizeInBits();
976 .clampNumElements(0, v4s16, v8s16)
990 .clampScalar(0, s32, s32);
994 .
legalFor({{s32, s32}, {s64, s32}, {p0, s32}})
995 .widenScalarToNextPow2(0)
1014 .
legalFor({{s64, p0}, {v2s64, v2p0}})
1015 .widenScalarToNextPow2(0, 64)
1021 return Query.
Types[0].getSizeInBits() != Query.
Types[1].getSizeInBits();
1023 .legalFor({{p0, s64}, {v2p0, v2s64}})
1024 .clampMaxNumElements(1, s64, 2);
1031 .legalForCartesianProduct({s64, v8s8, v4s16, v2s32})
1032 .legalForCartesianProduct({s128, v16s8, v8s16, v4s32, v2s64, v2p0})
1037 return DstTy.
isScalar() && SrcTy.isVector() &&
1038 SrcTy.getScalarSizeInBits() == 1;
1041 return Query.
Types[0].isVector() != Query.
Types[1].isVector();
1055 .clampScalar(0, s8, s64)
1062 bool UseOutlineAtomics = ST.outlineAtomics() && !ST.hasLSE();
1065 .
legalFor(!UseOutlineAtomics, {{s32, p0}, {s64, p0}})
1066 .customFor(!UseOutlineAtomics, {{s128, p0}})
1067 .libcallFor(UseOutlineAtomics,
1068 {{s8, p0}, {s16, p0}, {s32, p0}, {s64, p0}, {s128, p0}})
1069 .clampScalar(0, s32, s64);
1072 G_ATOMICRMW_SUB, G_ATOMICRMW_AND, G_ATOMICRMW_OR,
1074 .legalFor(!UseOutlineAtomics, {{s32, p0}, {s64, p0}})
1075 .libcallFor(UseOutlineAtomics,
1076 {{s8, p0}, {s16, p0}, {s32, p0}, {s64, p0}})
1077 .clampScalar(0, s32, s64);
1082 {G_ATOMICRMW_MIN, G_ATOMICRMW_MAX, G_ATOMICRMW_UMIN, G_ATOMICRMW_UMAX})
1084 .clampScalar(0, s32, s64);
1089 for (
unsigned Op : {G_MERGE_VALUES, G_UNMERGE_VALUES}) {
1090 unsigned BigTyIdx =
Op == G_MERGE_VALUES ? 0 : 1;
1091 unsigned LitTyIdx =
Op == G_MERGE_VALUES ? 1 : 0;
1098 switch (Q.
Types[BigTyIdx].getSizeInBits()) {
1106 switch (Q.
Types[LitTyIdx].getSizeInBits()) {
1120 .
legalFor(HasSVE, {{s16, nxv16s8, s64},
1121 {s16, nxv8s16, s64},
1122 {s32, nxv4s32, s64},
1123 {s64, nxv2s64, s64}})
1125 const LLT &EltTy = Query.
Types[1].getElementType();
1126 if (Query.
Types[1].isScalableVector())
1128 return Query.
Types[0] != EltTy;
1133 return VecTy == v8s8 || VecTy == v16s8 || VecTy == v2s16 ||
1134 VecTy == v4s16 || VecTy == v8s16 || VecTy == v2s32 ||
1135 VecTy == v4s32 || VecTy == v2s64 || VecTy == v2p0;
1141 return Query.
Types[1].isFixedVector() &&
1142 Query.
Types[1].getNumElements() <= 2;
1147 return Query.
Types[1].isFixedVector() &&
1148 Query.
Types[1].getNumElements() <= 4;
1153 return Query.
Types[1].isFixedVector() &&
1154 Query.
Types[1].getNumElements() <= 8;
1159 return Query.
Types[1].isFixedVector() &&
1160 Query.
Types[1].getNumElements() <= 16;
1163 .minScalarOrElt(0, s8)
1174 typeInSet(0, {v8s8, v16s8, v4s16, v8s16, v2s32, v4s32, v2s64, v2p0}))
1175 .legalFor(HasSVE, {{nxv16s8, s32, s64},
1176 {nxv8s16, s32, s64},
1177 {nxv4s32, s32, s64},
1178 {nxv2s64, s64, s64}})
1197 .clampNumElements(0, v4s32, v4s32)
1215 {v8s8, v16s8, v4s16, v8s16, v2s32, v4s32, v2s64}, DstTy);
1219 return Query.
Types[0].getNumElements() >
1220 Query.
Types[1].getNumElements();
1226 return Query.
Types[0].getNumElements() <
1227 Query.
Types[1].getNumElements();
1230 .widenScalarOrEltToNextPow2OrMinSize(0, 8)
1243 .
legalFor({{v16s8, v8s8}, {v8s16, v4s16}, {v4s32, v2s32}})
1246 return Query.
Types[0].isFixedVector() &&
1247 Query.
Types[1].isFixedVector() &&
1248 Query.
Types[0].getSizeInBits() <= 128 &&
1249 Query.
Types[1].getSizeInBits() <= 64;
1258 SrcTy.getNumElements())));
1262 .
legalFor({{v8s8, v16s8}, {v4s16, v8s16}, {v2s32, v4s32}})
1268 .
legalFor(HasSVE, {{nxv4s32, s32}, {nxv2s64, s64}});
1287 .customForCartesianProduct({p0}, {s8}, {s64})
1291 .legalForCartesianProduct({p0}, {p0}, {s64})
1307 .
legalFor({{s32, v2s32}, {s32, v4s32}, {s64, v2s64}})
1308 .legalFor(HasFP16, {{s16, v4s16}, {s16, v8s16}})
1309 .minScalarOrElt(0, MinFPScalar)
1351 G_VECREDUCE_FMINIMUM, G_VECREDUCE_FMAXIMUM})
1352 .legalFor({{s32, v2s32}, {s32, v4s32}, {s64, v2s64}})
1353 .legalFor(HasFP16, {{s16, v4s16}, {s16, v8s16}})
1354 .minScalarOrElt(0, MinFPScalar)
1369 {G_VECREDUCE_SMIN, G_VECREDUCE_SMAX, G_VECREDUCE_UMIN, G_VECREDUCE_UMAX})
1370 .legalFor({{s8, v8s8},
1378 return Query.
Types[1].isVector() &&
1379 Query.
Types[1].getElementType() != s8 &&
1380 Query.
Types[1].getNumElements() & 1;
1383 .clampMaxNumElements(1, s64, 2)
1391 {G_VECREDUCE_OR, G_VECREDUCE_AND, G_VECREDUCE_XOR})
1398 if (SrcTy.isScalar())
1403 return SrcTy.getSizeInBits() > 64;
1407 return std::make_pair(1, SrcTy.divide(2));
1417 G_GET_FPMODE, G_SET_FPMODE, G_RESET_FPMODE})
1427 verify(*ST.getInstrInfo());
1436 switch (
MI.getOpcode()) {
1440 case TargetOpcode::G_VAARG:
1441 return legalizeVaArg(
MI,
MRI, MIRBuilder);
1442 case TargetOpcode::G_LOAD:
1443 case TargetOpcode::G_STORE:
1444 return legalizeLoadStore(
MI,
MRI, MIRBuilder, Observer);
1445 case TargetOpcode::G_SHL:
1446 case TargetOpcode::G_ASHR:
1447 case TargetOpcode::G_LSHR:
1448 return legalizeShlAshrLshr(
MI,
MRI, MIRBuilder, Observer);
1449 case TargetOpcode::G_GLOBAL_VALUE:
1450 return legalizeSmallCMGlobalValue(
MI,
MRI, MIRBuilder, Observer);
1451 case TargetOpcode::G_SBFX:
1452 case TargetOpcode::G_UBFX:
1453 return legalizeBitfieldExtract(
MI,
MRI, Helper);
1454 case TargetOpcode::G_FSHL:
1455 case TargetOpcode::G_FSHR:
1456 return legalizeFunnelShift(
MI,
MRI, MIRBuilder, Observer, Helper);
1457 case TargetOpcode::G_ROTR:
1458 return legalizeRotate(
MI,
MRI, Helper);
1459 case TargetOpcode::G_CTPOP:
1460 return legalizeCTPOP(
MI,
MRI, Helper);
1461 case TargetOpcode::G_ATOMIC_CMPXCHG:
1462 return legalizeAtomicCmpxchg128(
MI,
MRI, Helper);
1463 case TargetOpcode::G_CTTZ:
1464 return legalizeCTTZ(
MI, Helper);
1465 case TargetOpcode::G_BZERO:
1466 case TargetOpcode::G_MEMCPY:
1467 case TargetOpcode::G_MEMMOVE:
1468 case TargetOpcode::G_MEMSET:
1469 return legalizeMemOps(
MI, Helper);
1470 case TargetOpcode::G_EXTRACT_VECTOR_ELT:
1471 return legalizeExtractVectorElt(
MI,
MRI, Helper);
1472 case TargetOpcode::G_DYN_STACKALLOC:
1473 return legalizeDynStackAlloc(
MI, Helper);
1474 case TargetOpcode::G_PREFETCH:
1475 return legalizePrefetch(
MI, Helper);
1476 case TargetOpcode::G_ABS:
1478 case TargetOpcode::G_ICMP:
1479 return legalizeICMP(
MI,
MRI, MIRBuilder);
1480 case TargetOpcode::G_BITCAST:
1481 return legalizeBitcast(
MI, Helper);
1489 assert(
MI.getOpcode() == TargetOpcode::G_BITCAST &&
"Unexpected opcode");
1490 auto [DstReg, DstTy, SrcReg, SrcTy] =
MI.getFirst2RegLLTs();
1493 if (!DstTy.isScalar() || !SrcTy.isVector() ||
1498 MI.eraseFromParent();
1507 assert(
MI.getOpcode() == TargetOpcode::G_FSHL ||
1508 MI.getOpcode() == TargetOpcode::G_FSHR);
1512 Register ShiftNo =
MI.getOperand(3).getReg();
1513 LLT ShiftTy =
MRI.getType(ShiftNo);
1518 LLT OperationTy =
MRI.getType(
MI.getOperand(0).getReg());
1522 if (!VRegAndVal || VRegAndVal->Value.urem(
BitWidth) == 0)
1528 Amount =
MI.getOpcode() == TargetOpcode::G_FSHL ?
BitWidth - Amount : Amount;
1532 if (ShiftTy.
getSizeInBits() == 64 &&
MI.getOpcode() == TargetOpcode::G_FSHR &&
1539 if (
MI.getOpcode() == TargetOpcode::G_FSHR) {
1541 MI.getOperand(3).setReg(Cast64.getReg(0));
1546 else if (
MI.getOpcode() == TargetOpcode::G_FSHL) {
1547 MIRBuilder.
buildInstr(TargetOpcode::G_FSHR, {
MI.getOperand(0).getReg()},
1548 {
MI.getOperand(1).getReg(),
MI.getOperand(2).getReg(),
1550 MI.eraseFromParent();
1559 Register SrcReg1 =
MI.getOperand(2).getReg();
1560 Register SrcReg2 =
MI.getOperand(3).getReg();
1561 LLT DstTy =
MRI.getType(DstReg);
1562 LLT SrcTy =
MRI.getType(SrcReg1);
1579 MIRBuilder.
buildNot(DstReg, CmpReg);
1581 MI.eraseFromParent();
1591 LLT AmtTy =
MRI.getType(AmtReg);
1597 MI.getOperand(2).setReg(NewAmt.getReg(0));
1602bool AArch64LegalizerInfo::legalizeSmallCMGlobalValue(
1605 assert(
MI.getOpcode() == TargetOpcode::G_GLOBAL_VALUE);
1610 auto &GlobalOp =
MI.getOperand(1);
1612 if (GlobalOp.isSymbol())
1614 const auto* GV = GlobalOp.getGlobal();
1615 if (GV->isThreadLocal())
1618 auto &TM = ST->getTargetLowering()->getTargetMachine();
1619 unsigned OpFlags = ST->ClassifyGlobalReference(GV, TM);
1624 auto Offset = GlobalOp.getOffset();
1629 MRI.setRegClass(ADRP.getReg(0), &AArch64::GPR64RegClass);
1646 "Should not have folded in an offset for a tagged global!");
1648 .addGlobalAddress(GV, 0x100000000,
1651 MRI.setRegClass(ADRP.getReg(0), &AArch64::GPR64RegClass);
1654 MIRBuilder.
buildInstr(AArch64::G_ADD_LOW, {DstReg}, {ADRP})
1655 .addGlobalAddress(GV,
Offset,
1657 MI.eraseFromParent();
1666 auto LowerUnaryOp = [&
MI, &MIB](
unsigned Opcode) {
1668 MI.eraseFromParent();
1671 auto LowerBinOp = [&
MI, &MIB](
unsigned Opcode) {
1673 {
MI.getOperand(2),
MI.getOperand(3)});
1674 MI.eraseFromParent();
1677 auto LowerTriOp = [&
MI, &MIB](
unsigned Opcode) {
1679 {
MI.getOperand(2),
MI.getOperand(3),
MI.getOperand(4)});
1680 MI.eraseFromParent();
1685 switch (IntrinsicID) {
1686 case Intrinsic::vacopy: {
1687 unsigned PtrSize = ST->isTargetILP32() ? 4 : 8;
1688 unsigned VaListSize =
1689 (ST->isTargetDarwin() || ST->isTargetWindows())
1691 : ST->isTargetILP32() ? 20 : 32;
1699 VaListSize,
Align(PtrSize)));
1703 VaListSize,
Align(PtrSize)));
1704 MI.eraseFromParent();
1707 case Intrinsic::get_dynamic_area_offset: {
1709 MI.eraseFromParent();
1712 case Intrinsic::aarch64_mops_memset_tag: {
1713 assert(
MI.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS);
1716 auto &
Value =
MI.getOperand(3);
1718 Value.setReg(ExtValueReg);
1721 case Intrinsic::aarch64_prefetch: {
1722 auto &AddrVal =
MI.getOperand(1);
1724 int64_t IsWrite =
MI.getOperand(2).getImm();
1725 int64_t
Target =
MI.getOperand(3).getImm();
1726 int64_t IsStream =
MI.getOperand(4).getImm();
1727 int64_t IsData =
MI.getOperand(5).getImm();
1729 unsigned PrfOp = (IsWrite << 4) |
1735 MI.eraseFromParent();
1738 case Intrinsic::aarch64_neon_uaddv:
1739 case Intrinsic::aarch64_neon_saddv:
1740 case Intrinsic::aarch64_neon_umaxv:
1741 case Intrinsic::aarch64_neon_smaxv:
1742 case Intrinsic::aarch64_neon_uminv:
1743 case Intrinsic::aarch64_neon_sminv: {
1744 bool IsSigned = IntrinsicID == Intrinsic::aarch64_neon_saddv ||
1745 IntrinsicID == Intrinsic::aarch64_neon_smaxv ||
1746 IntrinsicID == Intrinsic::aarch64_neon_sminv;
1748 auto OldDst =
MI.getOperand(0).getReg();
1749 auto OldDstTy =
MRI.getType(OldDst);
1750 LLT NewDstTy =
MRI.getType(
MI.getOperand(2).getReg()).getElementType();
1751 if (OldDstTy == NewDstTy)
1754 auto NewDst =
MRI.createGenericVirtualRegister(NewDstTy);
1757 MI.getOperand(0).setReg(NewDst);
1761 MIB.
buildExtOrTrunc(IsSigned ? TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT,
1766 case Intrinsic::aarch64_neon_uaddlp:
1767 case Intrinsic::aarch64_neon_saddlp: {
1768 unsigned Opc = IntrinsicID == Intrinsic::aarch64_neon_uaddlp
1770 : AArch64::G_SADDLP;
1772 MI.eraseFromParent();
1776 case Intrinsic::aarch64_neon_uaddlv:
1777 case Intrinsic::aarch64_neon_saddlv: {
1778 unsigned Opc = IntrinsicID == Intrinsic::aarch64_neon_uaddlv
1780 : AArch64::G_SADDLV;
1783 LLT DstTy =
MRI.getType(DstReg);
1807 MI.eraseFromParent();
1811 case Intrinsic::aarch64_neon_smax:
1812 return LowerBinOp(TargetOpcode::G_SMAX);
1813 case Intrinsic::aarch64_neon_smin:
1814 return LowerBinOp(TargetOpcode::G_SMIN);
1815 case Intrinsic::aarch64_neon_umax:
1816 return LowerBinOp(TargetOpcode::G_UMAX);
1817 case Intrinsic::aarch64_neon_umin:
1818 return LowerBinOp(TargetOpcode::G_UMIN);
1819 case Intrinsic::aarch64_neon_fmax:
1820 return LowerBinOp(TargetOpcode::G_FMAXIMUM);
1821 case Intrinsic::aarch64_neon_fmin:
1822 return LowerBinOp(TargetOpcode::G_FMINIMUM);
1823 case Intrinsic::aarch64_neon_fmaxnm:
1824 return LowerBinOp(TargetOpcode::G_FMAXNUM);
1825 case Intrinsic::aarch64_neon_fminnm:
1826 return LowerBinOp(TargetOpcode::G_FMINNUM);
1827 case Intrinsic::aarch64_neon_pmull:
1828 case Intrinsic::aarch64_neon_pmull64:
1829 return LowerBinOp(AArch64::G_PMULL);
1830 case Intrinsic::aarch64_neon_smull:
1831 return LowerBinOp(AArch64::G_SMULL);
1832 case Intrinsic::aarch64_neon_umull:
1833 return LowerBinOp(AArch64::G_UMULL);
1834 case Intrinsic::aarch64_neon_sabd:
1835 return LowerBinOp(TargetOpcode::G_ABDS);
1836 case Intrinsic::aarch64_neon_uabd:
1837 return LowerBinOp(TargetOpcode::G_ABDU);
1838 case Intrinsic::aarch64_neon_uhadd:
1839 return LowerBinOp(TargetOpcode::G_UAVGFLOOR);
1840 case Intrinsic::aarch64_neon_urhadd:
1841 return LowerBinOp(TargetOpcode::G_UAVGCEIL);
1842 case Intrinsic::aarch64_neon_shadd:
1843 return LowerBinOp(TargetOpcode::G_SAVGFLOOR);
1844 case Intrinsic::aarch64_neon_srhadd:
1845 return LowerBinOp(TargetOpcode::G_SAVGCEIL);
1846 case Intrinsic::aarch64_neon_abs: {
1848 MIB.
buildInstr(TargetOpcode::G_ABS, {
MI.getOperand(0)}, {
MI.getOperand(2)});
1849 MI.eraseFromParent();
1852 case Intrinsic::aarch64_neon_sqadd: {
1853 if (
MRI.getType(
MI.getOperand(0).getReg()).isVector())
1854 return LowerBinOp(TargetOpcode::G_SADDSAT);
1857 case Intrinsic::aarch64_neon_sqsub: {
1858 if (
MRI.getType(
MI.getOperand(0).getReg()).isVector())
1859 return LowerBinOp(TargetOpcode::G_SSUBSAT);
1862 case Intrinsic::aarch64_neon_uqadd: {
1863 if (
MRI.getType(
MI.getOperand(0).getReg()).isVector())
1864 return LowerBinOp(TargetOpcode::G_UADDSAT);
1867 case Intrinsic::aarch64_neon_uqsub: {
1868 if (
MRI.getType(
MI.getOperand(0).getReg()).isVector())
1869 return LowerBinOp(TargetOpcode::G_USUBSAT);
1872 case Intrinsic::aarch64_neon_udot:
1873 return LowerTriOp(AArch64::G_UDOT);
1874 case Intrinsic::aarch64_neon_sdot:
1875 return LowerTriOp(AArch64::G_SDOT);
1876 case Intrinsic::aarch64_neon_usdot:
1877 return LowerTriOp(AArch64::G_USDOT);
1878 case Intrinsic::aarch64_neon_sqxtn:
1879 return LowerUnaryOp(TargetOpcode::G_TRUNC_SSAT_S);
1880 case Intrinsic::aarch64_neon_sqxtun:
1881 return LowerUnaryOp(TargetOpcode::G_TRUNC_SSAT_U);
1882 case Intrinsic::aarch64_neon_uqxtn:
1883 return LowerUnaryOp(TargetOpcode::G_TRUNC_USAT_U);
1885 case Intrinsic::vector_reverse:
1893bool AArch64LegalizerInfo::legalizeShlAshrLshr(
1896 assert(
MI.getOpcode() == TargetOpcode::G_ASHR ||
1897 MI.getOpcode() == TargetOpcode::G_LSHR ||
1898 MI.getOpcode() == TargetOpcode::G_SHL);
1911 MI.getOperand(2).setReg(ExtCst.getReg(0));
1932bool AArch64LegalizerInfo::legalizeLoadStore(
1935 assert(
MI.getOpcode() == TargetOpcode::G_STORE ||
1936 MI.getOpcode() == TargetOpcode::G_LOAD);
1947 const LLT ValTy =
MRI.getType(ValReg);
1952 bool IsLoad =
MI.getOpcode() == TargetOpcode::G_LOAD;
1956 ST->hasLSE2() && ST->hasRCPC3() && (IsLoadAcquire || IsStoreRelease);
1962 Opcode = IsLoad ? AArch64::LDIAPPX : AArch64::STILPX;
1968 assert(ST->hasLSE2() &&
"ldp/stp not single copy atomic without +lse2");
1970 Opcode = IsLoad ? AArch64::LDPXi : AArch64::STPXi;
1973 MachineInstrBuilder NewI;
1975 NewI = MIRBuilder.
buildInstr(Opcode, {s64, s64}, {});
1981 Opcode, {}, {
Split->getOperand(0),
Split->getOperand(1)});
1985 NewI.
addUse(
MI.getOperand(1).getReg());
1996 *
MRI.getTargetRegisterInfo(),
1997 *ST->getRegBankInfo());
1998 MI.eraseFromParent();
2004 LLVM_DEBUG(
dbgs() <<
"Tried to do custom legalization on wrong load/store");
2010 auto &MMO = **
MI.memoperands_begin();
2013 if (
MI.getOpcode() == TargetOpcode::G_STORE) {
2017 auto NewLoad = MIRBuilder.
buildLoad(NewTy,
MI.getOperand(1), MMO);
2020 MI.eraseFromParent();
2027 MachineFunction &MF = MIRBuilder.
getMF();
2028 Align Alignment(
MI.getOperand(2).getImm());
2030 Register ListPtr =
MI.getOperand(1).getReg();
2032 LLT PtrTy =
MRI.getType(ListPtr);
2042 MachineInstrBuilder DstPtr;
2043 if (Alignment > PtrAlign) {
2047 auto ListTmp = MIRBuilder.
buildPtrAdd(PtrTy,
List, AlignMinus1.getReg(0));
2052 LLT ValTy =
MRI.getType(Dst);
2057 ValTy, std::max(Alignment, PtrAlign)));
2068 MI.eraseFromParent();
2072bool AArch64LegalizerInfo::legalizeBitfieldExtract(
2103 MachineIRBuilder &MIRBuilder = Helper.
MIRBuilder;
2106 LLT Ty =
MRI.getType(Val);
2110 "Expected src and dst to have the same type!");
2118 auto Add = MIRBuilder.
buildAdd(s64, CTPOP1, CTPOP2);
2121 MI.eraseFromParent();
2125 if (!ST->hasNEON() ||
2126 MI.getMF()->getFunction().hasFnAttribute(Attribute::NoImplicitFloat)) {
2138 assert((Size == 32 || Size == 64 || Size == 128) &&
"Expected only 32, 64, or 128 bit scalars!");
2140 Val = MIRBuilder.buildZExt(LLT::scalar(64), Val).getReg(0);
2152 LLT Dt = Ty == LLT::fixed_vector(2, 64) ? LLT::fixed_vector(4, 32) : Ty;
2153 auto Zeros = MIRBuilder.buildConstant(Dt, 0);
2154 auto Ones = MIRBuilder.buildConstant(VTy, 1);
2155 MachineInstrBuilder Sum;
2157 if (Ty == LLT::fixed_vector(2, 64)) {
2159 MIRBuilder.buildInstr(AArch64::G_UDOT, {Dt}, {Zeros, Ones, CTPOP});
2160 Sum = MIRBuilder.buildInstr(AArch64::G_UADDLP, {Ty}, {UDOT});
2162 Sum = MIRBuilder.
buildInstr(AArch64::G_UDOT, {Dt}, {Zeros, Ones,
CTPOP});
2164 Sum = MIRBuilder.
buildInstr(AArch64::G_UDOT, {Dt}, {Zeros, Ones,
CTPOP});
2170 MI.eraseFromParent();
2178 Opc = Intrinsic::aarch64_neon_uaddlv;
2179 HAddTys.push_back(LLT::scalar(32));
2181 Opc = Intrinsic::aarch64_neon_uaddlp;
2184 Opc = Intrinsic::aarch64_neon_uaddlp;
2188 Opc = Intrinsic::aarch64_neon_uaddlp;
2193 Opc = Intrinsic::aarch64_neon_uaddlp;
2196 Opc = Intrinsic::aarch64_neon_uaddlp;
2202 for (
LLT HTy : HAddTys) {
2212 MI.eraseFromParent();
2216bool AArch64LegalizerInfo::legalizeAtomicCmpxchg128(
2218 MachineIRBuilder &MIRBuilder = Helper.
MIRBuilder;
2220 auto Addr =
MI.getOperand(1).getReg();
2221 auto DesiredI = MIRBuilder.
buildUnmerge({s64, s64},
MI.getOperand(2));
2222 auto NewI = MIRBuilder.
buildUnmerge({s64, s64},
MI.getOperand(3));
2223 auto DstLo =
MRI.createGenericVirtualRegister(s64);
2224 auto DstHi =
MRI.createGenericVirtualRegister(s64);
2226 MachineInstrBuilder CAS;
2237 auto Ordering = (*
MI.memoperands_begin())->getMergedOrdering();
2241 Opcode = AArch64::CASPAX;
2244 Opcode = AArch64::CASPLX;
2248 Opcode = AArch64::CASPALX;
2251 Opcode = AArch64::CASPX;
2256 auto CASDst =
MRI.createGenericVirtualRegister(s128);
2257 auto CASDesired =
MRI.createGenericVirtualRegister(s128);
2258 auto CASNew =
MRI.createGenericVirtualRegister(s128);
2259 MIRBuilder.
buildInstr(TargetOpcode::REG_SEQUENCE, {CASDesired}, {})
2260 .addUse(DesiredI->getOperand(0).getReg())
2262 .
addUse(DesiredI->getOperand(1).getReg())
2263 .
addImm(AArch64::subo64);
2264 MIRBuilder.
buildInstr(TargetOpcode::REG_SEQUENCE, {CASNew}, {})
2268 .
addImm(AArch64::subo64);
2270 CAS = MIRBuilder.
buildInstr(Opcode, {CASDst}, {CASDesired, CASNew, Addr});
2278 auto Ordering = (*
MI.memoperands_begin())->getMergedOrdering();
2282 Opcode = AArch64::CMP_SWAP_128_ACQUIRE;
2285 Opcode = AArch64::CMP_SWAP_128_RELEASE;
2289 Opcode = AArch64::CMP_SWAP_128;
2292 Opcode = AArch64::CMP_SWAP_128_MONOTONIC;
2296 auto Scratch =
MRI.createVirtualRegister(&AArch64::GPR64RegClass);
2297 CAS = MIRBuilder.
buildInstr(Opcode, {DstLo, DstHi, Scratch},
2298 {Addr, DesiredI->getOperand(0),
2299 DesiredI->getOperand(1), NewI->
getOperand(0),
2305 *
MRI.getTargetRegisterInfo(),
2306 *ST->getRegBankInfo());
2309 MI.eraseFromParent();
2315 MachineIRBuilder &MIRBuilder = Helper.
MIRBuilder;
2316 MachineRegisterInfo &
MRI = *MIRBuilder.
getMRI();
2317 LLT Ty =
MRI.getType(
MI.getOperand(1).getReg());
2319 MIRBuilder.
buildCTLZ(
MI.getOperand(0).getReg(), BitReverse);
2320 MI.eraseFromParent();
2326 MachineIRBuilder &MIRBuilder = Helper.
MIRBuilder;
2329 if (
MI.getOpcode() == TargetOpcode::G_MEMSET) {
2332 auto &
Value =
MI.getOperand(1);
2335 Value.setReg(ExtValueReg);
2342bool AArch64LegalizerInfo::legalizeExtractVectorElt(
2356bool AArch64LegalizerInfo::legalizeDynStackAlloc(
2358 MachineFunction &MF = *
MI.getParent()->getParent();
2359 MachineIRBuilder &MIRBuilder = Helper.
MIRBuilder;
2360 MachineRegisterInfo &
MRI = *MIRBuilder.
getMRI();
2372 Register AllocSize =
MI.getOperand(1).getReg();
2376 "Unexpected type for dynamic alloca");
2378 "Unexpected type for dynamic alloca");
2380 LLT PtrTy =
MRI.getType(Dst);
2386 MIRBuilder.
buildInstr(AArch64::PROBED_STACKALLOC_DYN, {}, {SPTmp});
2387 MRI.setRegClass(NewMI.getReg(0), &AArch64::GPR64commonRegClass);
2388 MIRBuilder.
setInsertPt(*NewMI->getParent(), NewMI);
2391 MI.eraseFromParent();
2398 auto &AddrVal =
MI.getOperand(0);
2400 int64_t IsWrite =
MI.getOperand(1).getImm();
2401 int64_t Locality =
MI.getOperand(2).getImm();
2402 int64_t
IsData =
MI.getOperand(3).getImm();
2404 bool IsStream = Locality == 0;
2405 if (Locality != 0) {
2406 assert(Locality <= 3 &&
"Prefetch locality out-of-range");
2410 Locality = 3 - Locality;
2413 unsigned PrfOp = (IsWrite << 4) | (!IsData << 3) | (Locality << 1) | IsStream;
2416 MI.eraseFromParent();
unsigned const MachineRegisterInfo * MRI
static void matchLDPSTPAddrMode(Register Root, Register &Base, int &Offset, MachineRegisterInfo &MRI)
This file declares the targeting of the Machinelegalizer class for AArch64.
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
Declares convenience wrapper classes for interpreting MachineInstr instances as specific generic oper...
Interface for Targets to specify which operations they can successfully select and how the others sho...
Contains matchers for matching SSA Machine Instructions.
This file declares the MachineIRBuilder class.
Promote Memory to Register
static MCRegister getReg(const MCDisassembler *D, unsigned RC, unsigned RegNo)
static constexpr MCPhysReg SPReg
bool legalizeCustom(LegalizerHelper &Helper, MachineInstr &MI, LostDebugLocObserver &LocObserver) const override
Called for instructions with the Custom LegalizationAction.
bool legalizeIntrinsic(LegalizerHelper &Helper, MachineInstr &MI) const override
AArch64LegalizerInfo(const AArch64Subtarget &ST)
Class for arbitrary precision integers.
LLVM_ABI APInt zext(unsigned width) const
Zero extend to a new width.
LLVM_ABI APInt urem(const APInt &RHS) const
Unsigned remainder operation.
int64_t getSExtValue() const
Get sign extended value.
LLVM_ABI StringRef getValueAsString() const
Return the attribute's value as a string.
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
Attribute getFnAttribute(Attribute::AttrKind Kind) const
Return the attribute for the given attribute kind.
bool hasFnAttribute(Attribute::AttrKind Kind) const
Return true if the function has the attribute.
Abstract class that contains various methods for clients to notify about changes.
virtual void changingInstr(MachineInstr &MI)=0
This instruction is about to be mutated in some way.
virtual void changedInstr(MachineInstr &MI)=0
This instruction was mutated in some way.
constexpr bool isScalableVector() const
Returns true if the LLT is a scalable vector.
constexpr unsigned getScalarSizeInBits() const
constexpr bool isScalar() const
static constexpr LLT scalable_vector(unsigned MinNumElements, unsigned ScalarSizeInBits)
Get a low-level scalable vector of some number of elements and element width.
static constexpr LLT vector(ElementCount EC, unsigned ScalarSizeInBits)
Get a low-level vector of some number of elements and element width.
constexpr bool isPointerVector() const
static constexpr LLT scalar(unsigned SizeInBits)
Get a low-level scalar or aggregate "bag of bits".
constexpr uint16_t getNumElements() const
Returns the number of elements in a vector LLT.
constexpr bool isVector() const
static constexpr LLT pointer(unsigned AddressSpace, unsigned SizeInBits)
Get a low-level pointer in the given address space.
constexpr TypeSize getSizeInBits() const
Returns the total size of the type. Must only be called on sized types.
constexpr LLT getElementType() const
Returns the vector's element type. Only valid for vector types.
constexpr ElementCount getElementCount() const
constexpr LLT changeElementSize(unsigned NewEltSize) const
If this type is a vector, return a vector with the same number of elements but the new element size.
constexpr unsigned getAddressSpace() const
static constexpr LLT fixed_vector(unsigned NumElements, unsigned ScalarSizeInBits)
Get a low-level fixed-width vector of some number of elements and element width.
constexpr LLT changeElementCount(ElementCount EC) const
Return a vector or scalar with the same element type and the new element count.
LLVM_ABI void computeTables()
Compute any ancillary tables needed to quickly decide how an operation should be handled.
LegalizeRuleSet & minScalar(unsigned TypeIdx, const LLT Ty)
Ensure the scalar is at least as wide as Ty.
LegalizeRuleSet & widenScalarOrEltToNextPow2OrMinSize(unsigned TypeIdx, unsigned MinSize=0)
Widen the scalar or vector element type to the next power of two that is at least MinSize.
LegalizeRuleSet & legalFor(std::initializer_list< LLT > Types)
The instruction is legal when type index 0 is any type in the given list.
LegalizeRuleSet & maxScalarEltSameAsIf(LegalityPredicate Predicate, unsigned TypeIdx, unsigned SmallTypeIdx)
Conditionally narrow the scalar or elt to match the size of another.
LegalizeRuleSet & unsupported()
The instruction is unsupported.
LegalizeRuleSet & scalarSameSizeAs(unsigned TypeIdx, unsigned SameSizeIdx)
Change the type TypeIdx to have the same scalar size as type SameSizeIdx.
LegalizeRuleSet & bitcastIf(LegalityPredicate Predicate, LegalizeMutation Mutation)
The specified type index is coerced if predicate is true.
LegalizeRuleSet & libcallFor(std::initializer_list< LLT > Types)
LegalizeRuleSet & maxScalar(unsigned TypeIdx, const LLT Ty)
Ensure the scalar is at most as wide as Ty.
LegalizeRuleSet & minScalarOrElt(unsigned TypeIdx, const LLT Ty)
Ensure the scalar or element is at least as wide as Ty.
LegalizeRuleSet & clampMaxNumElements(unsigned TypeIdx, const LLT EltTy, unsigned MaxElements)
Limit the number of elements in EltTy vectors to at most MaxElements.
LegalizeRuleSet & clampMinNumElements(unsigned TypeIdx, const LLT EltTy, unsigned MinElements)
Limit the number of elements in EltTy vectors to at least MinElements.
LegalizeRuleSet & widenVectorEltsToVectorMinSize(unsigned TypeIdx, unsigned VectorSize)
Ensure the vector size is at least as wide as VectorSize by promoting the element.
LegalizeRuleSet & lowerIfMemSizeNotPow2()
Lower a memory operation if the memory size, rounded to bytes, is not a power of 2.
LegalizeRuleSet & minScalarEltSameAsIf(LegalityPredicate Predicate, unsigned TypeIdx, unsigned LargeTypeIdx)
Conditionally widen the scalar or elt to match the size of another.
LegalizeRuleSet & customForCartesianProduct(std::initializer_list< LLT > Types)
LegalizeRuleSet & lowerIfMemSizeNotByteSizePow2()
Lower a memory operation if the memory access size is not a round power of 2 byte size.
LegalizeRuleSet & moreElementsToNextPow2(unsigned TypeIdx)
Add more elements to the vector to reach the next power of two.
LegalizeRuleSet & narrowScalarIf(LegalityPredicate Predicate, LegalizeMutation Mutation)
Narrow the scalar to the one selected by the mutation if the predicate is true.
LegalizeRuleSet & lower()
The instruction is lowered.
LegalizeRuleSet & moreElementsIf(LegalityPredicate Predicate, LegalizeMutation Mutation)
Add more elements to reach the type selected by the mutation if the predicate is true.
LegalizeRuleSet & lowerFor(std::initializer_list< LLT > Types)
The instruction is lowered when type index 0 is any type in the given list.
LegalizeRuleSet & scalarizeIf(LegalityPredicate Predicate, unsigned TypeIdx)
LegalizeRuleSet & lowerIf(LegalityPredicate Predicate)
The instruction is lowered if predicate is true.
LegalizeRuleSet & clampScalar(unsigned TypeIdx, const LLT MinTy, const LLT MaxTy)
Limit the range of scalar sizes to MinTy and MaxTy.
LegalizeRuleSet & custom()
Unconditionally custom lower.
LegalizeRuleSet & minScalarSameAs(unsigned TypeIdx, unsigned LargeTypeIdx)
Widen the scalar to match the size of another.
LegalizeRuleSet & unsupportedIf(LegalityPredicate Predicate)
LegalizeRuleSet & minScalarOrEltIf(LegalityPredicate Predicate, unsigned TypeIdx, const LLT Ty)
Ensure the scalar or element is at least as wide as Ty.
LegalizeRuleSet & widenScalarIf(LegalityPredicate Predicate, LegalizeMutation Mutation)
Widen the scalar to the one selected by the mutation if the predicate is true.
LegalizeRuleSet & alwaysLegal()
LegalizeRuleSet & clampNumElements(unsigned TypeIdx, const LLT MinTy, const LLT MaxTy)
Limit the number of elements for the given vectors to at least MinTy's number of elements and at most...
LegalizeRuleSet & maxScalarIf(LegalityPredicate Predicate, unsigned TypeIdx, const LLT Ty)
Conditionally limit the maximum size of the scalar.
LegalizeRuleSet & customIf(LegalityPredicate Predicate)
LegalizeRuleSet & widenScalarToNextPow2(unsigned TypeIdx, unsigned MinSize=0)
Widen the scalar to the next power of two that is at least MinSize.
LegalizeRuleSet & scalarize(unsigned TypeIdx)
LegalizeRuleSet & legalForCartesianProduct(std::initializer_list< LLT > Types)
The instruction is legal when type indexes 0 and 1 are both in the given list.
LegalizeRuleSet & legalForTypesWithMemDesc(std::initializer_list< LegalityPredicates::TypePairAndMemDesc > TypesAndMemDesc)
The instruction is legal when type indexes 0 and 1 along with the memory size and minimum alignment i...
unsigned immIdx(unsigned ImmIdx)
LegalizeRuleSet & widenScalarOrEltToNextPow2(unsigned TypeIdx, unsigned MinSize=0)
Widen the scalar or vector element type to the next power of two that is at least MinSize.
LegalizeRuleSet & legalIf(LegalityPredicate Predicate)
The instruction is legal if predicate is true.
LLVM_ABI LegalizeResult lowerDynStackAlloc(MachineInstr &MI)
LLVM_ABI LegalizeResult lowerBitCount(MachineInstr &MI)
LLVM_ABI LegalizeResult lowerExtractInsertVectorElt(MachineInstr &MI)
Lower a vector extract or insert by writing the vector to a stack temporary and reloading the element...
LLVM_ABI LegalizeResult lowerAbsToCNeg(MachineInstr &MI)
const TargetLowering & getTargetLowering() const
LLVM_ABI LegalizeResult lowerFunnelShiftAsShifts(MachineInstr &MI)
LLVM_ABI MachineInstrBuilder createStackStoreLoad(const DstOp &Res, const SrcOp &Val)
Create a store of Val to a stack temporary and return a load as the same type as Res.
@ Legalized
Instruction has been legalized and the MachineFunction changed.
@ UnableToLegalize
Some kind of error has occurred and we could not legalize this instruction.
GISelChangeObserver & Observer
To keep track of changes made by the LegalizerHelper.
LLVM_ABI Register getDynStackAllocTargetPtr(Register SPReg, Register AllocSize, Align Alignment, LLT PtrTy)
MachineIRBuilder & MIRBuilder
Expose MIRBuilder so clients can set their own RecordInsertInstruction functions.
LegalizeRuleSet & getActionDefinitionsBuilder(unsigned Opcode)
Get the action definition builder for the given opcode.
const LegacyLegalizerInfo & getLegacyLegalizerInfo() const
MachineMemOperand * getMachineMemOperand(MachinePointerInfo PtrInfo, MachineMemOperand::Flags f, LLT MemTy, Align base_alignment, const AAMDNodes &AAInfo=AAMDNodes(), const MDNode *Ranges=nullptr, SyncScope::ID SSID=SyncScope::System, AtomicOrdering Ordering=AtomicOrdering::NotAtomic, AtomicOrdering FailureOrdering=AtomicOrdering::NotAtomic)
getMachineMemOperand - Allocate a new MachineMemOperand.
MachineRegisterInfo & getRegInfo()
getRegInfo - Return information about the registers currently in use.
Function & getFunction()
Return the LLVM function that this machine code represents.
Helper class to build MachineInstr.
void setInsertPt(MachineBasicBlock &MBB, MachineBasicBlock::iterator II)
Set the insertion point before the specified position.
MachineInstrBuilder buildAdd(const DstOp &Dst, const SrcOp &Src0, const SrcOp &Src1, std::optional< unsigned > Flags=std::nullopt)
Build and insert Res = G_ADD Op0, Op1.
MachineInstrBuilder buildNot(const DstOp &Dst, const SrcOp &Src0)
Build and insert a bitwise not, NegOne = G_CONSTANT -1 Res = G_OR Op0, NegOne.
MachineInstrBuilder buildUnmerge(ArrayRef< LLT > Res, const SrcOp &Op)
Build and insert Res0, ... = G_UNMERGE_VALUES Op.
MachineInstrBuilder buildExtract(const DstOp &Res, const SrcOp &Src, uint64_t Index)
Build and insert Res0, ... = G_EXTRACT Src, Idx0.
MachineInstrBuilder buildICmp(CmpInst::Predicate Pred, const DstOp &Res, const SrcOp &Op0, const SrcOp &Op1, std::optional< unsigned > Flags=std::nullopt)
Build and insert a Res = G_ICMP Pred, Op0, Op1.
MachineBasicBlock::iterator getInsertPt()
Current insertion point for new instructions.
MachineInstrBuilder buildZExt(const DstOp &Res, const SrcOp &Op, std::optional< unsigned > Flags=std::nullopt)
Build and insert Res = G_ZEXT Op.
MachineInstrBuilder buildIntrinsic(Intrinsic::ID ID, ArrayRef< Register > Res, bool HasSideEffects, bool isConvergent)
Build and insert a G_INTRINSIC instruction.
MachineInstrBuilder buildCTLZ(const DstOp &Dst, const SrcOp &Src0)
Build and insert Res = G_CTLZ Op0, Src0.
MachineInstrBuilder buildMergeLikeInstr(const DstOp &Res, ArrayRef< Register > Ops)
Build and insert Res = G_MERGE_VALUES Op0, ... or Res = G_BUILD_VECTOR Op0, ... or Res = G_CONCAT_VEC...
MachineInstrBuilder buildLoad(const DstOp &Res, const SrcOp &Addr, MachineMemOperand &MMO)
Build and insert Res = G_LOAD Addr, MMO.
MachineInstrBuilder buildPtrAdd(const DstOp &Res, const SrcOp &Op0, const SrcOp &Op1, std::optional< unsigned > Flags=std::nullopt)
Build and insert Res = G_PTR_ADD Op0, Op1.
MachineInstrBuilder buildBitReverse(const DstOp &Dst, const SrcOp &Src)
Build and insert Dst = G_BITREVERSE Src.
MachineInstrBuilder buildStore(const SrcOp &Val, const SrcOp &Addr, MachineMemOperand &MMO)
Build and insert G_STORE Val, Addr, MMO.
MachineInstrBuilder buildInstr(unsigned Opcode)
Build and insert <empty> = Opcode <empty>.
MachineInstrBuilder buildCTPOP(const DstOp &Dst, const SrcOp &Src0)
Build and insert Res = G_CTPOP Op0, Src0.
MachineFunction & getMF()
Getter for the function we currently build.
MachineInstrBuilder buildExtOrTrunc(unsigned ExtOpc, const DstOp &Res, const SrcOp &Op)
Build and insert Res = ExtOpc, Res = G_TRUNC Op, or Res = COPY Op depending on the differing sizes of...
MachineInstrBuilder buildTrunc(const DstOp &Res, const SrcOp &Op, std::optional< unsigned > Flags=std::nullopt)
Build and insert Res = G_TRUNC Op.
const MachineBasicBlock & getMBB() const
Getter for the basic block we currently build.
MachineInstrBuilder buildAnyExt(const DstOp &Res, const SrcOp &Op)
Build and insert Res = G_ANYEXT Op0.
MachineInstrBuilder buildBitcast(const DstOp &Dst, const SrcOp &Src)
Build and insert Dst = G_BITCAST Src.
MachineRegisterInfo * getMRI()
Getter for MRI.
MachineInstrBuilder buildCopy(const DstOp &Res, const SrcOp &Op)
Build and insert Res = COPY Op.
MachineInstrBuilder buildMaskLowPtrBits(const DstOp &Res, const SrcOp &Op0, uint32_t NumBits)
Build and insert Res = G_PTRMASK Op0, G_CONSTANT (1 << NumBits) - 1.
virtual MachineInstrBuilder buildConstant(const DstOp &Res, const ConstantInt &Val)
Build and insert Res = G_CONSTANT Val.
Register getReg(unsigned Idx) const
Get the register for the operand index.
const MachineInstrBuilder & addImm(int64_t Val) const
Add a new immediate operand.
const MachineInstrBuilder & add(const MachineOperand &MO) const
const MachineInstrBuilder & cloneMemRefs(const MachineInstr &OtherMI) const
const MachineInstrBuilder & addUse(Register RegNo, unsigned Flags=0, unsigned SubReg=0) const
Add a virtual register use operand.
Representation of each machine instruction.
const MachineOperand & getOperand(unsigned i) const
@ MOLoad
The memory access reads data.
@ MOStore
The memory access writes data.
LLVM_ABI void setReg(Register Reg)
Change the register this operand corresponds to.
Register getReg() const
getReg - Returns the register number.
MachineRegisterInfo - Keep track of information for virtual and physical registers,...
LLVM_ABI Register createGenericVirtualRegister(LLT Ty, StringRef Name="")
Create and return a new generic virtual register with low-level type Ty.
Wrapper class representing virtual and physical registers.
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
Register getStackPointerRegisterToSaveRestore() const
If a physical register, this specifies the register that llvm.savestack/llvm.restorestack should save...
Primary interface to the complete machine description for the target machine.
CodeModel::Model getCodeModel() const
Returns the code model.
Target - Wrapper for Target specific information.
LLVM Value Representation.
constexpr LeafTy divideCoefficientBy(ScalarTy RHS) const
We do not provide the '/' operator here because division for polynomial types does not work in the sa...
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
@ MO_NC
MO_NC - Indicates whether the linker is expected to check the symbol reference for overflow.
@ MO_PAGEOFF
MO_PAGEOFF - A symbol operand with this flag represents the offset of that symbol within a 4K page.
@ MO_GOT
MO_GOT - This flag indicates that a symbol operand represents the address of the GOT entry for the sy...
@ MO_PREL
MO_PREL - Indicates that the bits of the symbol operand represented by MO_G0 etc are PC relative.
@ MO_PAGE
MO_PAGE - A symbol operand with this flag represents the pc-relative offset of the 4K page containing...
@ MO_TAGGED
MO_TAGGED - With MO_PAGE, indicates that the page includes a memory tag in bits 56-63.
@ MO_G3
MO_G3 - A symbol operand with this flag (granule 3) represents the high 16-bits of a 64-bit address,...
constexpr char Align[]
Key for Kernel::Arg::Metadata::mAlign.
LLVM_ABI LegalityPredicate scalarOrEltWiderThan(unsigned TypeIdx, unsigned Size)
True iff the specified type index is a scalar or a vector with an element type that's wider than the ...
LLVM_ABI LegalityPredicate isPointerVector(unsigned TypeIdx)
True iff the specified type index is a vector of pointers (with any address space).
LLVM_ABI LegalityPredicate typeInSet(unsigned TypeIdx, std::initializer_list< LLT > TypesInit)
True iff the given type index is one of the specified types.
LLVM_ABI LegalityPredicate smallerThan(unsigned TypeIdx0, unsigned TypeIdx1)
True iff the first type index has a smaller total bit size than second type index.
LLVM_ABI LegalityPredicate atomicOrderingAtLeastOrStrongerThan(unsigned MMOIdx, AtomicOrdering Ordering)
True iff the specified MMO index has at an atomic ordering of at Ordering or stronger.
Predicate any(Predicate P0, Predicate P1)
True iff P0 or P1 are true.
LLVM_ABI LegalityPredicate isVector(unsigned TypeIdx)
True iff the specified type index is a vector.
Predicate all(Predicate P0, Predicate P1)
True iff P0 and P1 are true.
LLVM_ABI LegalityPredicate typeIs(unsigned TypeIdx, LLT TypesInit)
True iff the given type index is the specified type.
LLVM_ABI LegalityPredicate scalarWiderThan(unsigned TypeIdx, unsigned Size)
True iff the specified type index is a scalar that's wider than the given size.
@ Bitcast
Perform the operation on a different, but equivalently sized type.
LLVM_ABI LegalizeMutation moreElementsToNextPow2(unsigned TypeIdx, unsigned Min=0)
Add more elements to the type for the given type index to the next power of.
LLVM_ABI LegalizeMutation scalarize(unsigned TypeIdx)
Break up the vector type for the given type index into the element type.
LLVM_ABI LegalizeMutation changeElementTo(unsigned TypeIdx, unsigned FromTypeIdx)
Keep the same scalar or element type as the given type index.
LLVM_ABI LegalizeMutation widenScalarOrEltToNextPow2(unsigned TypeIdx, unsigned Min=0)
Widen the scalar type or vector element type for the given type index to the next power of 2.
LLVM_ABI LegalizeMutation changeTo(unsigned TypeIdx, LLT Ty)
Select this specific type for the given type index.
LLVM_ABI LegalizeMutation changeElementSizeTo(unsigned TypeIdx, unsigned FromTypeIdx)
Change the scalar size or element size to have the same scalar size as type index FromIndex.
operand_type_match m_Reg()
ConstantMatch< APInt > m_ICst(APInt &Cst)
bool mi_match(Reg R, const MachineRegisterInfo &MRI, Pattern &&P)
BinaryOp_match< LHS, RHS, TargetOpcode::G_PTR_ADD, false > m_GPtrAdd(const LHS &L, const RHS &R)
Invariant opcodes: All instruction sets have these as their low opcodes.
This is an optimization pass for GlobalISel generic memory operations.
FunctionAddr VTableAddr Value
LLVM_ABI bool constrainSelectedInstRegOperands(MachineInstr &I, const TargetInstrInfo &TII, const TargetRegisterInfo &TRI, const RegisterBankInfo &RBI)
Mutate the newly-selected instruction I to constrain its (possibly generic) virtual register operands...
std::function< bool(const LegalityQuery &)> LegalityPredicate
constexpr bool isPowerOf2_32(uint32_t Value)
Return true if the argument is a power of two > 0.
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
AtomicOrdering
Atomic ordering for LLVM's memory model.
uint64_t alignTo(uint64_t Size, Align A)
Returns a multiple of A needed to store Size bytes.
DWARFExpression::Operation Op
constexpr bool isShiftedInt(int64_t x)
Checks if a signed integer is an N bit number shifted left by S.
constexpr unsigned BitWidth
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
LLVM_ABI std::optional< ValueAndVReg > getIConstantVRegValWithLookThrough(Register VReg, const MachineRegisterInfo &MRI, bool LookThroughInstrs=true)
If VReg is defined by a statically evaluable chain of instructions rooted on a G_CONSTANT returns its...
bool is_contained(R &&Range, const E &Element)
Returns true if Element is found in Range.
Align assumeAligned(uint64_t Value)
Treats the value 0 as a 1, so Align is always at least 1.
unsigned Log2(Align A)
Returns the log2 of the alignment.
This struct is a compact representation of a valid (non-zero power of two) alignment.
The LegalityQuery object bundles together all the information that's needed to decide whether a given...
ArrayRef< MemDesc > MMODescrs
Operations which require memory can use this to place requirements on the memory type for each MMO.
This class contains a discriminated union of information about pointers in memory operands,...