43#define DEBUG_TYPE "vector-combine"
49STATISTIC(NumVecLoad,
"Number of vector loads formed");
50STATISTIC(NumVecCmp,
"Number of vector compares formed");
51STATISTIC(NumVecBO,
"Number of vector binops formed");
52STATISTIC(NumVecCmpBO,
"Number of vector compare + binop formed");
53STATISTIC(NumShufOfBitcast,
"Number of shuffles moved after bitcast");
54STATISTIC(NumScalarOps,
"Number of scalar unary + binary ops formed");
55STATISTIC(NumScalarCmp,
"Number of scalar compares formed");
56STATISTIC(NumScalarIntrinsic,
"Number of scalar intrinsic calls formed");
60 cl::desc(
"Disable all vector combine transforms"));
64 cl::desc(
"Disable binop extract to shuffle transforms"));
68 cl::desc(
"Max number of instructions to scan for vector combining."));
70static const unsigned InvalidIndex = std::numeric_limits<unsigned>::max();
78 bool TryEarlyFoldsOnly)
81 TryEarlyFoldsOnly(TryEarlyFoldsOnly) {}
88 const TargetTransformInfo &TTI;
89 const DominatorTree &DT;
94 const SimplifyQuery SQ;
98 bool TryEarlyFoldsOnly;
100 InstructionWorklist Worklist;
109 bool vectorizeLoadInsert(Instruction &
I);
110 bool widenSubvectorLoad(Instruction &
I);
111 ExtractElementInst *getShuffleExtract(ExtractElementInst *Ext0,
112 ExtractElementInst *Ext1,
113 unsigned PreferredExtractIndex)
const;
114 bool isExtractExtractCheap(ExtractElementInst *Ext0, ExtractElementInst *Ext1,
115 const Instruction &
I,
116 ExtractElementInst *&ConvertToShuffle,
117 unsigned PreferredExtractIndex);
120 bool foldExtractExtract(Instruction &
I);
121 bool foldInsExtFNeg(Instruction &
I);
122 bool foldInsExtBinop(Instruction &
I);
123 bool foldInsExtVectorToShuffle(Instruction &
I);
124 bool foldBitOpOfCastops(Instruction &
I);
125 bool foldBitOpOfCastConstant(Instruction &
I);
126 bool foldBitcastShuffle(Instruction &
I);
127 bool scalarizeOpOrCmp(Instruction &
I);
128 bool scalarizeVPIntrinsic(Instruction &
I);
129 bool foldExtractedCmps(Instruction &
I);
130 bool foldBinopOfReductions(Instruction &
I);
131 bool foldSingleElementStore(Instruction &
I);
132 bool scalarizeLoad(Instruction &
I);
133 bool scalarizeLoadExtract(LoadInst *LI, VectorType *VecTy,
Value *Ptr);
134 bool scalarizeLoadBitcast(LoadInst *LI, VectorType *VecTy,
Value *Ptr);
135 bool scalarizeExtExtract(Instruction &
I);
136 bool foldConcatOfBoolMasks(Instruction &
I);
137 bool foldPermuteOfBinops(Instruction &
I);
138 bool foldShuffleOfBinops(Instruction &
I);
139 bool foldShuffleOfSelects(Instruction &
I);
140 bool foldShuffleOfCastops(Instruction &
I);
141 bool foldShuffleOfShuffles(Instruction &
I);
142 bool foldPermuteOfIntrinsic(Instruction &
I);
143 bool foldShufflesOfLengthChangingShuffles(Instruction &
I);
144 bool foldShuffleOfIntrinsics(Instruction &
I);
145 bool foldShuffleToIdentity(Instruction &
I);
146 bool foldShuffleFromReductions(Instruction &
I);
147 bool foldShuffleChainsToReduce(Instruction &
I);
148 bool foldCastFromReductions(Instruction &
I);
149 bool foldSelectShuffle(Instruction &
I,
bool FromReduction =
false);
150 bool foldInterleaveIntrinsics(Instruction &
I);
151 bool shrinkType(Instruction &
I);
152 bool shrinkLoadForShuffles(Instruction &
I);
153 bool shrinkPhiOfShuffles(Instruction &
I);
155 void replaceValue(Instruction &Old,
Value &New,
bool Erase =
true) {
161 Worklist.pushUsersToWorkList(*NewI);
162 Worklist.pushValue(NewI);
179 SmallPtrSet<Value *, 4> Visited;
184 OpI,
nullptr,
nullptr, [&](
Value *V) {
189 NextInst = NextInst->getNextNode();
194 Worklist.pushUsersToWorkList(*OpI);
195 Worklist.pushValue(OpI);
215 if (!Load || !Load->isSimple() || !Load->hasOneUse() ||
216 Load->getFunction()->hasFnAttribute(Attribute::SanitizeMemTag) ||
222 Type *ScalarTy = Load->getType()->getScalarType();
224 unsigned MinVectorSize =
TTI.getMinVectorRegisterBitWidth();
225 if (!ScalarSize || !MinVectorSize || MinVectorSize % ScalarSize != 0 ||
232bool VectorCombine::vectorizeLoadInsert(
Instruction &
I) {
258 Value *SrcPtr =
Load->getPointerOperand()->stripPointerCasts();
261 unsigned MinVecNumElts = MinVectorSize / ScalarSize;
262 auto *MinVecTy = VectorType::get(ScalarTy, MinVecNumElts,
false);
263 unsigned OffsetEltIndex = 0;
271 unsigned OffsetBitWidth =
DL->getIndexTypeSizeInBits(SrcPtr->
getType());
272 APInt
Offset(OffsetBitWidth, 0);
282 uint64_t ScalarSizeInBytes = ScalarSize / 8;
283 if (
Offset.urem(ScalarSizeInBytes) != 0)
287 OffsetEltIndex =
Offset.udiv(ScalarSizeInBytes).getZExtValue();
288 if (OffsetEltIndex >= MinVecNumElts)
305 unsigned AS =
Load->getPointerAddressSpace();
324 unsigned OutputNumElts = Ty->getNumElements();
326 assert(OffsetEltIndex < MinVecNumElts &&
"Address offset too big");
327 Mask[0] = OffsetEltIndex;
334 if (OldCost < NewCost || !NewCost.
isValid())
345 replaceValue(
I, *VecLd);
353bool VectorCombine::widenSubvectorLoad(Instruction &
I) {
356 if (!Shuf->isIdentityWithPadding())
362 unsigned OpIndex =
any_of(Shuf->getShuffleMask(), [&NumOpElts](
int M) {
363 return M >= (int)(NumOpElts);
374 Value *SrcPtr =
Load->getPointerOperand()->stripPointerCasts();
382 unsigned AS =
Load->getPointerAddressSpace();
397 if (OldCost < NewCost || !NewCost.
isValid())
404 replaceValue(
I, *VecLd);
411ExtractElementInst *VectorCombine::getShuffleExtract(
412 ExtractElementInst *Ext0, ExtractElementInst *Ext1,
416 assert(Index0C && Index1C &&
"Expected constant extract indexes");
418 unsigned Index0 = Index0C->getZExtValue();
419 unsigned Index1 = Index1C->getZExtValue();
422 if (Index0 == Index1)
446 if (PreferredExtractIndex == Index0)
448 if (PreferredExtractIndex == Index1)
452 return Index0 > Index1 ? Ext0 : Ext1;
460bool VectorCombine::isExtractExtractCheap(ExtractElementInst *Ext0,
461 ExtractElementInst *Ext1,
462 const Instruction &
I,
463 ExtractElementInst *&ConvertToShuffle,
464 unsigned PreferredExtractIndex) {
467 assert(Ext0IndexC && Ext1IndexC &&
"Expected constant extract indexes");
469 unsigned Opcode =
I.getOpcode();
482 assert((Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) &&
483 "Expected a compare");
493 unsigned Ext0Index = Ext0IndexC->getZExtValue();
494 unsigned Ext1Index = Ext1IndexC->getZExtValue();
508 unsigned BestExtIndex = Extract0Cost > Extract1Cost ? Ext0Index : Ext1Index;
509 unsigned BestInsIndex = Extract0Cost > Extract1Cost ? Ext1Index : Ext0Index;
510 InstructionCost CheapExtractCost = std::min(Extract0Cost, Extract1Cost);
515 if (Ext0Src == Ext1Src && Ext0Index == Ext1Index) {
520 bool HasUseTax = Ext0 == Ext1 ? !Ext0->
hasNUses(2)
522 OldCost = CheapExtractCost + ScalarOpCost;
523 NewCost = VectorOpCost + CheapExtractCost + HasUseTax * CheapExtractCost;
527 OldCost = Extract0Cost + Extract1Cost + ScalarOpCost;
528 NewCost = VectorOpCost + CheapExtractCost +
533 ConvertToShuffle = getShuffleExtract(Ext0, Ext1, PreferredExtractIndex);
534 if (ConvertToShuffle) {
546 SmallVector<int> ShuffleMask(FixedVecTy->getNumElements(),
548 ShuffleMask[BestInsIndex] = BestExtIndex;
550 VecTy, VecTy, ShuffleMask,
CostKind, 0,
551 nullptr, {ConvertToShuffle});
554 VecTy, VecTy, {},
CostKind, 0,
nullptr,
562 return OldCost < NewCost;
574 ShufMask[NewIndex] = OldIndex;
575 return Builder.CreateShuffleVector(Vec, ShufMask,
"shift");
627 V1,
"foldExtExtBinop");
632 VecBOInst->copyIRFlags(&
I);
638bool VectorCombine::foldExtractExtract(Instruction &
I) {
669 ExtractElementInst *ExtractToChange;
670 if (isExtractExtractCheap(Ext0, Ext1,
I, ExtractToChange, InsertIndex))
676 if (ExtractToChange) {
677 unsigned CheapExtractIdx = ExtractToChange == Ext0 ? C1 : C0;
682 if (ExtractToChange == Ext0)
691 ? foldExtExtCmp(ExtOp0, ExtOp1, ExtIndex,
I)
692 : foldExtExtBinop(ExtOp0, ExtOp1, ExtIndex,
I);
695 replaceValue(
I, *NewExt);
701bool VectorCombine::foldInsExtFNeg(Instruction &
I) {
704 uint64_t ExtIdx, InsIdx;
719 auto *DstVecScalarTy = DstVecTy->getScalarType();
721 if (!SrcVecTy || DstVecScalarTy != SrcVecTy->getScalarType())
726 unsigned NumDstElts = DstVecTy->getNumElements();
727 unsigned NumSrcElts = SrcVecTy->getNumElements();
728 if (ExtIdx > NumSrcElts || InsIdx >= NumDstElts || NumDstElts == 1)
734 SmallVector<int>
Mask(NumDstElts);
735 std::iota(
Mask.begin(),
Mask.end(), 0);
736 Mask[InsIdx] = (ExtIdx % NumDstElts) + NumDstElts;
752 bool NeedLenChg = SrcVecTy->getNumElements() != NumDstElts;
755 SmallVector<int> SrcMask;
758 SrcMask[ExtIdx % NumDstElts] = ExtIdx;
760 DstVecTy, SrcVecTy, SrcMask,
CostKind);
764 <<
"\n OldCost: " << OldCost <<
" vs NewCost: " << NewCost
766 if (NewCost > OldCost)
769 Value *NewShuf, *LenChgShuf =
nullptr;
783 replaceValue(
I, *NewShuf);
789bool VectorCombine::foldInsExtBinop(Instruction &
I) {
790 BinaryOperator *VecBinOp, *SclBinOp;
822 <<
"\n OldCost: " << OldCost <<
" vs NewCost: " << NewCost
824 if (NewCost > OldCost)
835 NewInst->copyIRFlags(VecBinOp);
836 NewInst->andIRFlags(SclBinOp);
841 replaceValue(
I, *NewBO);
847bool VectorCombine::foldBitOpOfCastops(Instruction &
I) {
850 if (!BinOp || !BinOp->isBitwiseLogicOp())
856 if (!LHSCast || !RHSCast) {
857 LLVM_DEBUG(
dbgs() <<
" One or both operands are not cast instructions\n");
863 if (CastOpcode != RHSCast->getOpcode())
867 switch (CastOpcode) {
868 case Instruction::BitCast:
869 case Instruction::Trunc:
870 case Instruction::SExt:
871 case Instruction::ZExt:
877 Value *LHSSrc = LHSCast->getOperand(0);
878 Value *RHSSrc = RHSCast->getOperand(0);
884 auto *SrcTy = LHSSrc->
getType();
885 auto *DstTy =
I.getType();
888 if (CastOpcode != Instruction::BitCast &&
893 if (!SrcTy->getScalarType()->isIntegerTy() ||
894 !DstTy->getScalarType()->isIntegerTy())
909 LHSCastCost + RHSCastCost;
920 if (!LHSCast->hasOneUse())
921 NewCost += LHSCastCost;
922 if (!RHSCast->hasOneUse())
923 NewCost += RHSCastCost;
926 <<
" NewCost=" << NewCost <<
"\n");
928 if (NewCost > OldCost)
933 BinOp->getName() +
".inner");
935 NewBinOp->copyIRFlags(BinOp);
949 replaceValue(
I, *Result);
958bool VectorCombine::foldBitOpOfCastConstant(Instruction &
I) {
974 switch (CastOpcode) {
975 case Instruction::BitCast:
976 case Instruction::ZExt:
977 case Instruction::SExt:
978 case Instruction::Trunc:
984 Value *LHSSrc = LHSCast->getOperand(0);
986 auto *SrcTy = LHSSrc->
getType();
987 auto *DstTy =
I.getType();
990 if (CastOpcode != Instruction::BitCast &&
995 if (!SrcTy->getScalarType()->isIntegerTy() ||
996 !DstTy->getScalarType()->isIntegerTy())
1000 PreservedCastFlags RHSFlags;
1025 if (!LHSCast->hasOneUse())
1026 NewCost += LHSCastCost;
1028 LLVM_DEBUG(
dbgs() <<
"foldBitOpOfCastConstant: OldCost=" << OldCost
1029 <<
" NewCost=" << NewCost <<
"\n");
1031 if (NewCost > OldCost)
1036 LHSSrc, InvC,
I.getName() +
".inner");
1038 NewBinOp->copyIRFlags(&
I);
1058 replaceValue(
I, *Result);
1065bool VectorCombine::foldBitcastShuffle(Instruction &
I) {
1079 if (!DestTy || !SrcTy)
1082 unsigned DestEltSize = DestTy->getScalarSizeInBits();
1083 unsigned SrcEltSize = SrcTy->getScalarSizeInBits();
1084 if (SrcTy->getPrimitiveSizeInBits() % DestEltSize != 0)
1094 if (!(BCTy0 && BCTy0->getElementType() == DestTy->getElementType()) &&
1095 !(BCTy1 && BCTy1->getElementType() == DestTy->getElementType()))
1099 SmallVector<int, 16> NewMask;
1100 if (DestEltSize <= SrcEltSize) {
1103 assert(SrcEltSize % DestEltSize == 0 &&
"Unexpected shuffle mask");
1104 unsigned ScaleFactor = SrcEltSize / DestEltSize;
1109 assert(DestEltSize % SrcEltSize == 0 &&
"Unexpected shuffle mask");
1110 unsigned ScaleFactor = DestEltSize / SrcEltSize;
1117 unsigned NumSrcElts = SrcTy->getPrimitiveSizeInBits() / DestEltSize;
1118 auto *NewShuffleTy =
1120 auto *OldShuffleTy =
1122 unsigned NumOps = IsUnary ? 1 : 2;
1132 TargetTransformInfo::CastContextHint::None,
1137 TargetTransformInfo::CastContextHint::None,
1140 LLVM_DEBUG(
dbgs() <<
"Found a bitcasted shuffle: " <<
I <<
"\n OldCost: "
1141 << OldCost <<
" vs NewCost: " << NewCost <<
"\n");
1143 if (NewCost > OldCost || !NewCost.
isValid())
1151 replaceValue(
I, *Shuf);
1158bool VectorCombine::scalarizeVPIntrinsic(Instruction &
I) {
1172 if (!ScalarOp0 || !ScalarOp1)
1180 auto IsAllTrueMask = [](
Value *MaskVal) {
1183 return ConstValue->isAllOnesValue();
1197 SmallVector<int>
Mask;
1199 Mask.resize(FVTy->getNumElements(), 0);
1208 Args.push_back(
V->getType());
1209 IntrinsicCostAttributes
Attrs(IntrID, VecTy, Args);
1214 std::optional<unsigned> FunctionalOpcode =
1216 std::optional<Intrinsic::ID> ScalarIntrID = std::nullopt;
1217 if (!FunctionalOpcode) {
1226 IntrinsicCostAttributes
Attrs(*ScalarIntrID, VecTy->getScalarType(), Args);
1236 InstructionCost NewCost = ScalarOpCost + SplatCost + CostToKeepSplats;
1238 LLVM_DEBUG(
dbgs() <<
"Found a VP Intrinsic to scalarize: " << VPI
1241 <<
", Cost of scalarizing:" << NewCost <<
"\n");
1244 if (OldCost < NewCost || !NewCost.
isValid())
1255 bool SafeToSpeculate;
1261 *FunctionalOpcode, &VPI,
nullptr, &AC, &DT);
1262 if (!SafeToSpeculate &&
1269 {ScalarOp0, ScalarOp1})
1271 ScalarOp0, ScalarOp1);
1280bool VectorCombine::scalarizeOpOrCmp(Instruction &
I) {
1285 if (!UO && !BO && !CI && !
II)
1293 if (Arg->getType() !=
II->getType() &&
1303 for (User *U :
I.users())
1310 std::optional<uint64_t>
Index;
1312 auto Ops =
II ?
II->args() :
I.operands();
1316 uint64_t InsIdx = 0;
1321 if (OpTy->getElementCount().getKnownMinValue() <= InsIdx)
1327 else if (InsIdx != *Index)
1344 if (!
Index.has_value())
1348 Type *ScalarTy = VecTy->getScalarType();
1349 assert(VecTy->isVectorTy() &&
1352 "Unexpected types for insert element into binop or cmp");
1354 unsigned Opcode =
I.getOpcode();
1362 }
else if (UO || BO) {
1366 IntrinsicCostAttributes ScalarICA(
1367 II->getIntrinsicID(), ScalarTy,
1370 IntrinsicCostAttributes VectorICA(
1371 II->getIntrinsicID(), VecTy,
1378 Value *NewVecC =
nullptr;
1380 NewVecC =
simplifyCmpInst(CI->getPredicate(), VecCs[0], VecCs[1], SQ);
1383 simplifyUnOp(UO->getOpcode(), VecCs[0], UO->getFastMathFlags(), SQ);
1385 NewVecC =
simplifyBinOp(BO->getOpcode(), VecCs[0], VecCs[1], SQ);
1399 for (
auto [Idx,
Op, VecC, Scalar] :
enumerate(
Ops, VecCs, ScalarOps)) {
1401 II->getIntrinsicID(), Idx, &
TTI)))
1404 Instruction::InsertElement, VecTy,
CostKind, *Index, VecC, Scalar);
1405 OldCost += InsertCost;
1406 NewCost += !
Op->hasOneUse() * InsertCost;
1410 if (OldCost < NewCost || !NewCost.
isValid())
1420 ++NumScalarIntrinsic;
1430 Scalar = Builder.
CreateCmp(CI->getPredicate(), ScalarOps[0], ScalarOps[1]);
1436 Scalar->setName(
I.getName() +
".scalar");
1441 ScalarInst->copyIRFlags(&
I);
1444 replaceValue(
I, *Insert);
1451bool VectorCombine::foldExtractedCmps(Instruction &
I) {
1456 if (!BI || !
I.getType()->isIntegerTy(1))
1461 Value *B0 =
I.getOperand(0), *B1 =
I.getOperand(1);
1464 CmpPredicate
P0,
P1;
1476 uint64_t Index0, Index1;
1483 ExtractElementInst *ConvertToShuf = getShuffleExtract(Ext0, Ext1,
CostKind);
1486 assert((ConvertToShuf == Ext0 || ConvertToShuf == Ext1) &&
1487 "Unknown ExtractElementInst");
1492 unsigned CmpOpcode =
1507 Ext0Cost + Ext1Cost + CmpCost * 2 +
1513 int CheapIndex = ConvertToShuf == Ext0 ? Index1 : Index0;
1514 int ExpensiveIndex = ConvertToShuf == Ext0 ? Index0 : Index1;
1519 ShufMask[CheapIndex] = ExpensiveIndex;
1524 NewCost += Ext0->
hasOneUse() ? 0 : Ext0Cost;
1525 NewCost += Ext1->
hasOneUse() ? 0 : Ext1Cost;
1530 if (OldCost < NewCost || !NewCost.
isValid())
1540 Value *
LHS = ConvertToShuf == Ext0 ? Shuf : VCmp;
1541 Value *
RHS = ConvertToShuf == Ext0 ? VCmp : Shuf;
1544 replaceValue(
I, *NewExt);
1557 unsigned ReductionOpc =
1563 CostBeforeReduction =
1564 TTI.getCastInstrCost(RedOp->getOpcode(), VecRedTy, ExtType,
1566 CostAfterReduction =
1567 TTI.getExtendedReductionCost(ReductionOpc, IsUnsigned,
II.getType(),
1571 if (RedOp &&
II.getIntrinsicID() == Intrinsic::vector_reduce_add &&
1577 (Op0->
getOpcode() == RedOp->getOpcode() || Op0 == Op1)) {
1584 TTI.getCastInstrCost(Op0->
getOpcode(), MulType, ExtType,
1587 TTI.getArithmeticInstrCost(Instruction::Mul, MulType,
CostKind);
1589 TTI.getCastInstrCost(RedOp->getOpcode(), VecRedTy, MulType,
1592 CostBeforeReduction = ExtCost * 2 + MulCost + Ext2Cost;
1593 CostAfterReduction =
TTI.getMulAccReductionCost(
1594 IsUnsigned, ReductionOpc,
II.getType(), ExtType,
CostKind);
1597 CostAfterReduction =
TTI.getArithmeticReductionCost(ReductionOpc, VecRedTy,
1601bool VectorCombine::foldBinopOfReductions(Instruction &
I) {
1604 if (BinOpOpc == Instruction::Sub)
1605 ReductionIID = Intrinsic::vector_reduce_add;
1609 auto checkIntrinsicAndGetItsArgument = [](
Value *
V,
1614 if (
II->getIntrinsicID() == IID &&
II->hasOneUse())
1615 return II->getArgOperand(0);
1619 Value *V0 = checkIntrinsicAndGetItsArgument(
I.getOperand(0), ReductionIID);
1622 Value *V1 = checkIntrinsicAndGetItsArgument(
I.getOperand(1), ReductionIID);
1631 unsigned ReductionOpc =
1644 CostOfRedOperand0 + CostOfRedOperand1 +
1647 if (NewCost >= OldCost || !NewCost.
isValid())
1651 <<
"\n OldCost: " << OldCost <<
" vs NewCost: " << NewCost
1654 if (BinOpOpc == Instruction::Or)
1655 VectorBO = Builder.
CreateOr(V0, V1,
"",
1661 replaceValue(
I, *Rdx);
1669 unsigned NumScanned = 0;
1670 return std::any_of(Begin, End, [&](
const Instruction &Instr) {
1679class ScalarizationResult {
1680 enum class StatusTy { Unsafe, Safe, SafeWithFreeze };
1685 ScalarizationResult(StatusTy Status,
Value *ToFreeze =
nullptr)
1686 : Status(Status), ToFreeze(ToFreeze) {}
1689 ScalarizationResult(
const ScalarizationResult &
Other) =
default;
1690 ~ScalarizationResult() {
1691 assert(!ToFreeze &&
"freeze() not called with ToFreeze being set");
1694 static ScalarizationResult unsafe() {
return {StatusTy::Unsafe}; }
1695 static ScalarizationResult safe() {
return {StatusTy::Safe}; }
1696 static ScalarizationResult safeWithFreeze(
Value *ToFreeze) {
1697 return {StatusTy::SafeWithFreeze, ToFreeze};
1701 bool isSafe()
const {
return Status == StatusTy::Safe; }
1703 bool isUnsafe()
const {
return Status == StatusTy::Unsafe; }
1706 bool isSafeWithFreeze()
const {
return Status == StatusTy::SafeWithFreeze; }
1711 Status = StatusTy::Unsafe;
1715 void freeze(IRBuilderBase &Builder, Instruction &UserI) {
1716 assert(isSafeWithFreeze() &&
1717 "should only be used when freezing is required");
1719 "UserI must be a user of ToFreeze");
1720 IRBuilder<>::InsertPointGuard Guard(Builder);
1725 if (
U.get() == ToFreeze)
1742 uint64_t NumElements = VecTy->getElementCount().getKnownMinValue();
1746 if (
C->getValue().ult(NumElements))
1747 return ScalarizationResult::safe();
1748 return ScalarizationResult::unsafe();
1753 return ScalarizationResult::unsafe();
1755 APInt Zero(IntWidth, 0);
1756 APInt MaxElts(IntWidth, NumElements);
1762 true, &AC, CtxI, &DT)))
1763 return ScalarizationResult::safe();
1764 return ScalarizationResult::unsafe();
1777 if (ValidIndices.
contains(IdxRange))
1778 return ScalarizationResult::safeWithFreeze(IdxBase);
1779 return ScalarizationResult::unsafe();
1791 C->getZExtValue() *
DL.getTypeStoreSize(ScalarType));
1803bool VectorCombine::foldSingleElementStore(Instruction &
I) {
1815 if (!
match(
SI->getValueOperand(),
1822 Value *SrcAddr =
Load->getPointerOperand()->stripPointerCasts();
1825 if (!
Load->isSimple() ||
Load->getParent() !=
SI->getParent() ||
1826 !
DL->typeSizeEqualsStoreSize(
Load->getType()->getScalarType()) ||
1827 SrcAddr !=
SI->getPointerOperand()->stripPointerCasts())
1831 if (ScalarizableIdx.isUnsafe() ||
1838 Worklist.
push(Load);
1840 if (ScalarizableIdx.isSafeWithFreeze())
1843 SI->getValueOperand()->getType(),
SI->getPointerOperand(),
1844 {ConstantInt::get(Idx->getType(), 0), Idx});
1848 std::max(
SI->getAlign(),
Load->getAlign()), NewElement->
getType(), Idx,
1851 replaceValue(
I, *NSI);
1861bool VectorCombine::scalarizeLoad(Instruction &
I) {
1868 if (LI->isVolatile() || !
DL->typeSizeEqualsStoreSize(VecTy->getScalarType()))
1871 bool AllExtracts =
true;
1872 bool AllBitcasts =
true;
1874 unsigned NumInstChecked = 0;
1879 for (User *U : LI->users()) {
1881 if (!UI || UI->getParent() != LI->getParent())
1886 if (UI->use_empty())
1890 AllExtracts =
false;
1892 AllBitcasts =
false;
1896 for (Instruction &
I :
1897 make_range(std::next(LI->getIterator()), UI->getIterator())) {
1904 LastCheckedInst = UI;
1909 return scalarizeLoadExtract(LI, VecTy, Ptr);
1911 return scalarizeLoadBitcast(LI, VecTy, Ptr);
1916bool VectorCombine::scalarizeLoadExtract(LoadInst *LI, VectorType *VecTy,
1921 DenseMap<ExtractElementInst *, ScalarizationResult> NeedFreeze;
1924 for (
auto &Pair : NeedFreeze)
1925 Pair.second.discard();
1933 for (User *U : LI->
users()) {
1938 if (ScalarIdx.isUnsafe())
1940 if (ScalarIdx.isSafeWithFreeze()) {
1941 NeedFreeze.try_emplace(UI, ScalarIdx);
1942 ScalarIdx.discard();
1948 Index ?
Index->getZExtValue() : -1);
1956 LLVM_DEBUG(
dbgs() <<
"Found all extractions of a vector load: " << *LI
1957 <<
"\n LoadExtractCost: " << OriginalCost
1958 <<
" vs ScalarizedCost: " << ScalarizedCost <<
"\n");
1960 if (ScalarizedCost >= OriginalCost)
1967 Type *ElemType = VecTy->getElementType();
1970 for (User *U : LI->
users()) {
1972 Value *Idx = EI->getIndexOperand();
1975 auto It = NeedFreeze.find(EI);
1976 if (It != NeedFreeze.end())
1983 Builder.
CreateLoad(ElemType,
GEP, EI->getName() +
".scalar"));
1985 Align ScalarOpAlignment =
1987 NewLoad->setAlignment(ScalarOpAlignment);
1990 size_t Offset = ConstIdx->getZExtValue() *
DL->getTypeStoreSize(ElemType);
1995 replaceValue(*EI, *NewLoad,
false);
1998 FailureGuard.release();
2003bool VectorCombine::scalarizeLoadBitcast(LoadInst *LI, VectorType *VecTy,
2009 Type *TargetScalarType =
nullptr;
2010 unsigned VecBitWidth =
DL->getTypeSizeInBits(VecTy);
2012 for (User *U : LI->
users()) {
2015 Type *DestTy = BC->getDestTy();
2019 unsigned DestBitWidth =
DL->getTypeSizeInBits(DestTy);
2020 if (DestBitWidth != VecBitWidth)
2024 if (!TargetScalarType)
2025 TargetScalarType = DestTy;
2026 else if (TargetScalarType != DestTy)
2034 if (!TargetScalarType)
2042 LLVM_DEBUG(
dbgs() <<
"Found vector load feeding only bitcasts: " << *LI
2043 <<
"\n OriginalCost: " << OriginalCost
2044 <<
" vs ScalarizedCost: " << ScalarizedCost <<
"\n");
2046 if (ScalarizedCost >= OriginalCost)
2057 ScalarLoad->copyMetadata(*LI);
2060 for (User *U : LI->
users()) {
2062 replaceValue(*BC, *ScalarLoad,
false);
2068bool VectorCombine::scalarizeExtExtract(Instruction &
I) {
2083 Type *ScalarDstTy = DstTy->getElementType();
2084 if (
DL->getTypeSizeInBits(SrcTy) !=
DL->getTypeSizeInBits(ScalarDstTy))
2090 unsigned ExtCnt = 0;
2091 bool ExtLane0 =
false;
2092 for (User *U : Ext->users()) {
2106 Instruction::And, ScalarDstTy,
CostKind,
2109 (ExtCnt - ExtLane0) *
2111 Instruction::LShr, ScalarDstTy,
CostKind,
2114 if (ScalarCost > VectorCost)
2117 Value *ScalarV = Ext->getOperand(0);
2124 SmallDenseSet<ConstantInt *, 8> ExtractedLanes;
2125 bool AllExtractsTriggerUB =
true;
2126 ExtractElementInst *LastExtract =
nullptr;
2128 for (User *U : Ext->users()) {
2131 AllExtractsTriggerUB =
false;
2135 if (!LastExtract || LastExtract->
comesBefore(Extract))
2136 LastExtract = Extract;
2138 if (ExtractedLanes.
size() != DstTy->getNumElements() ||
2139 !AllExtractsTriggerUB ||
2147 uint64_t SrcEltSizeInBits =
DL->getTypeSizeInBits(SrcTy->getElementType());
2148 uint64_t EltBitMask = (1ull << SrcEltSizeInBits) - 1;
2149 uint64_t TotalBits =
DL->getTypeSizeInBits(SrcTy);
2151 Value *
Mask = ConstantInt::get(PackedTy, EltBitMask);
2152 for (User *U : Ext->users()) {
2158 ? (TotalBits - SrcEltSizeInBits - Idx * SrcEltSizeInBits)
2159 : (Idx * SrcEltSizeInBits);
2162 U->replaceAllUsesWith(
And);
2170bool VectorCombine::foldConcatOfBoolMasks(Instruction &
I) {
2171 Type *Ty =
I.getType();
2176 if (
DL->isBigEndian())
2187 uint64_t ShAmtX = 0;
2195 uint64_t ShAmtY = 0;
2203 if (ShAmtX > ShAmtY) {
2211 uint64_t ShAmtDiff = ShAmtY - ShAmtX;
2212 unsigned NumSHL = (ShAmtX > 0) + (ShAmtY > 0);
2217 MaskTy->getNumElements() != ShAmtDiff ||
2218 MaskTy->getNumElements() > (
BitWidth / 2))
2223 Type::getIntNTy(Ty->
getContext(), ConcatTy->getNumElements());
2224 auto *MaskIntTy = Type::getIntNTy(Ty->
getContext(), ShAmtDiff);
2227 std::iota(ConcatMask.begin(), ConcatMask.end(), 0);
2244 if (Ty != ConcatIntTy)
2250 LLVM_DEBUG(
dbgs() <<
"Found a concatenation of bitcasted bool masks: " <<
I
2251 <<
"\n OldCost: " << OldCost <<
" vs NewCost: " << NewCost
2254 if (NewCost > OldCost)
2264 if (Ty != ConcatIntTy) {
2274 replaceValue(
I, *Result);
2280bool VectorCombine::foldPermuteOfBinops(Instruction &
I) {
2281 BinaryOperator *BinOp;
2282 ArrayRef<int> OuterMask;
2291 Value *Op00, *Op01, *Op10, *Op11;
2292 ArrayRef<int> Mask0, Mask1;
2299 if (!Match0 && !Match1)
2312 if (!ShuffleDstTy || !BinOpTy || !Op0Ty || !Op1Ty)
2315 unsigned NumSrcElts = BinOpTy->getNumElements();
2320 any_of(OuterMask, [NumSrcElts](
int M) {
return M >= (int)NumSrcElts; }))
2324 SmallVector<int> NewMask0, NewMask1;
2325 for (
int M : OuterMask) {
2326 if (M < 0 || M >= (
int)NumSrcElts) {
2330 NewMask0.
push_back(Match0 ? Mask0[M] : M);
2331 NewMask1.
push_back(Match1 ? Mask1[M] : M);
2335 unsigned NumOpElts = Op0Ty->getNumElements();
2336 bool IsIdentity0 = ShuffleDstTy == Op0Ty &&
2337 all_of(NewMask0, [NumOpElts](
int M) {
return M < (int)NumOpElts; }) &&
2339 bool IsIdentity1 = ShuffleDstTy == Op1Ty &&
2340 all_of(NewMask1, [NumOpElts](
int M) {
return M < (int)NumOpElts; }) &&
2347 BinOpTy, OuterMask,
CostKind, 0,
nullptr, {BinOp}, &
I);
2363 Op0Ty, NewMask0,
CostKind, 0,
nullptr, {Op00, Op01});
2367 Op1Ty, NewMask1,
CostKind, 0,
nullptr, {Op10, Op11});
2369 LLVM_DEBUG(
dbgs() <<
"Found a shuffle feeding a shuffled binop: " <<
I
2370 <<
"\n OldCost: " << OldCost <<
" vs NewCost: " << NewCost
2374 if (NewCost > OldCost)
2385 NewInst->copyIRFlags(BinOp);
2389 replaceValue(
I, *NewBO);
2395bool VectorCombine::foldShuffleOfBinops(Instruction &
I) {
2396 ArrayRef<int> OldMask;
2403 if (
LHS->getOpcode() !=
RHS->getOpcode())
2407 bool IsCommutative =
false;
2416 IsCommutative = BinaryOperator::isCommutative(BO->getOpcode());
2427 if (!ShuffleDstTy || !BinResTy || !BinOpTy ||
X->getType() !=
Z->getType())
2430 unsigned NumSrcElts = BinOpTy->getNumElements();
2433 if (IsCommutative &&
X != Z &&
Y != W && (
X == W ||
Y == Z))
2436 auto ConvertToUnary = [NumSrcElts](
int &
M) {
2437 if (M >= (
int)NumSrcElts)
2441 SmallVector<int> NewMask0(OldMask);
2449 SmallVector<int> NewMask1(OldMask);
2472 ArrayRef<int> InnerMask;
2474 m_Mask(InnerMask)))) &&
2477 [NumSrcElts](
int M) {
return M < (int)NumSrcElts; })) {
2489 bool ReducedInstCount =
false;
2490 ReducedInstCount |= MergeInner(
X, 0, NewMask0,
CostKind);
2491 ReducedInstCount |= MergeInner(
Y, 0, NewMask1,
CostKind);
2492 ReducedInstCount |= MergeInner(Z, NumSrcElts, NewMask0,
CostKind);
2493 ReducedInstCount |= MergeInner(W, NumSrcElts, NewMask1,
CostKind);
2494 bool SingleSrcBinOp = (
X ==
Y) && (Z == W) && (NewMask0 == NewMask1);
2495 ReducedInstCount |= SingleSrcBinOp;
2497 auto *ShuffleCmpTy =
2500 SK0, ShuffleCmpTy, BinOpTy, NewMask0,
CostKind, 0,
nullptr, {
X,
Z});
2501 if (!SingleSrcBinOp)
2514 <<
"\n OldCost: " << OldCost <<
" vs NewCost: " << NewCost
2521 if (ReducedInstCount ? (NewCost > OldCost) : (NewCost >= OldCost))
2530 : Builder.
CreateCmp(PredLHS, Shuf0, Shuf1);
2534 NewInst->copyIRFlags(
LHS);
2535 NewInst->andIRFlags(
RHS);
2540 replaceValue(
I, *NewBO);
2547bool VectorCombine::foldShuffleOfSelects(Instruction &
I) {
2549 Value *C1, *
T1, *F1, *C2, *T2, *F2;
2558 if (!C1VecTy || !C2VecTy || C1VecTy != C2VecTy)
2564 if (((SI0FOp ==
nullptr) != (SI1FOp ==
nullptr)) ||
2565 ((SI0FOp !=
nullptr) &&
2566 (SI0FOp->getFastMathFlags() != SI1FOp->getFastMathFlags())))
2572 auto SelOp = Instruction::Select;
2579 {
I.getOperand(0),
I.getOperand(1)}, &
I);
2583 Mask,
CostKind, 0,
nullptr, {C1, C2});
2589 toVectorTy(Type::getInt1Ty(
I.getContext()), DstVecTy->getNumElements()));
2594 <<
"\n OldCost: " << OldCost <<
" vs NewCost: " << NewCost
2596 if (NewCost > OldCost)
2605 NewSel = Builder.
CreateSelectFMF(ShuffleCmp, ShuffleTrue, ShuffleFalse,
2606 SI0FOp->getFastMathFlags());
2608 NewSel = Builder.
CreateSelect(ShuffleCmp, ShuffleTrue, ShuffleFalse);
2613 replaceValue(
I, *NewSel);
2619bool VectorCombine::foldShuffleOfCastops(Instruction &
I) {
2621 ArrayRef<int> OldMask;
2630 if (!C0 || (IsBinaryShuffle && !C1))
2637 if (!IsBinaryShuffle && Opcode == Instruction::BitCast)
2640 if (IsBinaryShuffle) {
2641 if (C0->getSrcTy() != C1->getSrcTy())
2644 if (Opcode != C1->getOpcode()) {
2646 Opcode = Instruction::SExt;
2655 if (!ShuffleDstTy || !CastDstTy || !CastSrcTy)
2658 unsigned NumSrcElts = CastSrcTy->getNumElements();
2659 unsigned NumDstElts = CastDstTy->getNumElements();
2660 assert((NumDstElts == NumSrcElts || Opcode == Instruction::BitCast) &&
2661 "Only bitcasts expected to alter src/dst element counts");
2665 if (NumDstElts != NumSrcElts && (NumSrcElts % NumDstElts) != 0 &&
2666 (NumDstElts % NumSrcElts) != 0)
2669 SmallVector<int, 16> NewMask;
2670 if (NumSrcElts >= NumDstElts) {
2673 assert(NumSrcElts % NumDstElts == 0 &&
"Unexpected shuffle mask");
2674 unsigned ScaleFactor = NumSrcElts / NumDstElts;
2679 assert(NumDstElts % NumSrcElts == 0 &&
"Unexpected shuffle mask");
2680 unsigned ScaleFactor = NumDstElts / NumSrcElts;
2685 auto *NewShuffleDstTy =
2694 if (IsBinaryShuffle)
2709 if (IsBinaryShuffle) {
2719 <<
"\n OldCost: " << OldCost <<
" vs NewCost: " << NewCost
2721 if (NewCost > OldCost)
2725 if (IsBinaryShuffle)
2735 NewInst->copyIRFlags(C0);
2736 if (IsBinaryShuffle)
2737 NewInst->andIRFlags(C1);
2741 replaceValue(
I, *Cast);
2751bool VectorCombine::foldShuffleOfShuffles(Instruction &
I) {
2752 ArrayRef<int> OuterMask;
2753 Value *OuterV0, *OuterV1;
2758 ArrayRef<int> InnerMask0, InnerMask1;
2759 Value *X0, *X1, *Y0, *Y1;
2764 if (!Match0 && !Match1)
2769 SmallVector<int, 16> PoisonMask1;
2774 InnerMask1 = PoisonMask1;
2778 X0 = Match0 ? X0 : OuterV0;
2779 Y0 = Match0 ? Y0 : OuterV0;
2780 X1 = Match1 ? X1 : OuterV1;
2781 Y1 = Match1 ? Y1 : OuterV1;
2785 if (!ShuffleDstTy || !ShuffleSrcTy || !ShuffleImmTy ||
2789 unsigned NumSrcElts = ShuffleSrcTy->getNumElements();
2790 unsigned NumImmElts = ShuffleImmTy->getNumElements();
2795 SmallVector<int, 16> NewMask(OuterMask);
2796 Value *NewX =
nullptr, *NewY =
nullptr;
2797 for (
int &M : NewMask) {
2798 Value *Src =
nullptr;
2799 if (0 <= M && M < (
int)NumImmElts) {
2803 Src =
M >= (int)NumSrcElts ? Y0 : X0;
2804 M =
M >= (int)NumSrcElts ? (M - NumSrcElts) :
M;
2806 }
else if (M >= (
int)NumImmElts) {
2811 Src =
M >= (int)NumSrcElts ? Y1 : X1;
2812 M =
M >= (int)NumSrcElts ? (M - NumSrcElts) :
M;
2816 assert(0 <= M && M < (
int)NumSrcElts &&
"Unexpected shuffle mask index");
2825 if (!NewX || NewX == Src) {
2829 if (!NewY || NewY == Src) {
2845 replaceValue(
I, *NewX);
2862 bool IsUnary =
all_of(NewMask, [&](
int M) {
return M < (int)NumSrcElts; });
2868 nullptr, {NewX, NewY});
2870 NewCost += InnerCost0;
2872 NewCost += InnerCost1;
2875 <<
"\n OldCost: " << OldCost <<
" vs NewCost: " << NewCost
2877 if (NewCost > OldCost)
2881 replaceValue(
I, *Shuf);
2897bool VectorCombine::foldShufflesOfLengthChangingShuffles(Instruction &
I) {
2902 unsigned ChainLength = 0;
2903 SmallVector<int>
Mask;
2904 SmallVector<int> YMask;
2914 ArrayRef<int> OuterMask;
2915 Value *OuterV0, *OuterV1;
2916 if (ChainLength != 0 && !Trunk->
hasOneUse())
2919 m_Mask(OuterMask))))
2921 if (OuterV0->
getType() != TrunkType) {
2927 ArrayRef<int> InnerMask0, InnerMask1;
2928 Value *A0, *A1, *B0, *B1;
2933 bool Match0Leaf = Match0 && A0->
getType() !=
I.getType();
2934 bool Match1Leaf = Match1 && A1->
getType() !=
I.getType();
2935 if (Match0Leaf == Match1Leaf) {
2941 SmallVector<int> CommutedOuterMask;
2948 for (
int &M : CommutedOuterMask) {
2951 if (M < (
int)NumTrunkElts)
2956 OuterMask = CommutedOuterMask;
2975 int NumLeafElts = YType->getNumElements();
2976 SmallVector<int> LocalYMask(InnerMask1);
2977 for (
int &M : LocalYMask) {
2978 if (M >= NumLeafElts)
2988 Mask.assign(OuterMask);
2989 YMask.
assign(LocalYMask);
2990 OldCost = NewCost = LocalOldCost;
2997 SmallVector<int> NewYMask(YMask);
2999 for (
auto [CombinedM, LeafM] :
llvm::zip(NewYMask, LocalYMask)) {
3000 if (LeafM == -1 || CombinedM == LeafM)
3002 if (CombinedM == -1) {
3012 SmallVector<int> NewMask;
3013 NewMask.
reserve(NumTrunkElts);
3014 for (
int M : Mask) {
3015 if (M < 0 || M >=
static_cast<int>(NumTrunkElts))
3030 if (LocalNewCost >= NewCost && LocalOldCost < LocalNewCost - NewCost)
3034 if (ChainLength == 1) {
3035 dbgs() <<
"Found chain of shuffles fed by length-changing shuffles: "
3038 dbgs() <<
" next chain link: " << *Trunk <<
'\n'
3039 <<
" old cost: " << (OldCost + LocalOldCost)
3040 <<
" new cost: " << LocalNewCost <<
'\n';
3045 OldCost += LocalOldCost;
3046 NewCost = LocalNewCost;
3050 if (ChainLength <= 1)
3054 return M < 0 || M >=
static_cast<int>(NumTrunkElts);
3057 for (
int &M : Mask) {
3058 if (M >=
static_cast<int>(NumTrunkElts))
3059 M = YMask[
M - NumTrunkElts];
3063 replaceValue(
I, *Root);
3070 replaceValue(
I, *Root);
3076bool VectorCombine::foldShuffleOfIntrinsics(Instruction &
I) {
3078 ArrayRef<int> OldMask;
3089 if (IID != II1->getIntrinsicID())
3094 if (!ShuffleDstTy || !II0Ty)
3100 for (
unsigned I = 0,
E = II0->arg_size();
I !=
E; ++
I)
3102 II0->getArgOperand(
I) != II1->getArgOperand(
I))
3109 II0Ty, OldMask,
CostKind, 0,
nullptr, {II0, II1}, &
I);
3113 SmallDenseSet<std::pair<Value *, Value *>> SeenOperandPairs;
3114 for (
unsigned I = 0,
E = II0->arg_size();
I !=
E; ++
I) {
3116 NewArgsTy.
push_back(II0->getArgOperand(
I)->getType());
3120 ShuffleDstTy->getNumElements());
3122 std::pair<Value *, Value *> OperandPair =
3123 std::make_pair(II0->getArgOperand(
I), II1->getArgOperand(
I));
3124 if (!SeenOperandPairs.
insert(OperandPair).second) {
3130 CostKind, 0,
nullptr, {II0->getArgOperand(
I), II1->getArgOperand(
I)});
3133 IntrinsicCostAttributes NewAttr(IID, ShuffleDstTy, NewArgsTy);
3137 <<
"\n OldCost: " << OldCost <<
" vs NewCost: " << NewCost
3140 if (NewCost > OldCost)
3144 SmallDenseMap<std::pair<Value *, Value *>,
Value *> ShuffleCache;
3145 for (
unsigned I = 0,
E = II0->arg_size();
I !=
E; ++
I)
3149 std::pair<Value *, Value *> OperandPair =
3150 std::make_pair(II0->getArgOperand(
I), II1->getArgOperand(
I));
3151 auto It = ShuffleCache.
find(OperandPair);
3152 if (It != ShuffleCache.
end()) {
3158 II1->getArgOperand(
I), OldMask);
3159 ShuffleCache[OperandPair] = Shuf;
3167 NewInst->copyIRFlags(II0);
3168 NewInst->andIRFlags(II1);
3171 replaceValue(
I, *NewIntrinsic);
3177bool VectorCombine::foldPermuteOfIntrinsic(Instruction &
I) {
3189 if (!ShuffleDstTy || !IntrinsicSrcTy)
3193 unsigned NumSrcElts = IntrinsicSrcTy->getNumElements();
3194 if (
any_of(Mask, [NumSrcElts](
int M) {
return M >= (int)NumSrcElts; }))
3205 IntrinsicSrcTy, Mask,
CostKind, 0,
nullptr, {V0}, &
I);
3209 for (
unsigned I = 0,
E = II0->arg_size();
I !=
E; ++
I) {
3211 NewArgsTy.
push_back(II0->getArgOperand(
I)->getType());
3215 ShuffleDstTy->getNumElements());
3218 ArgTy, VecTy, Mask,
CostKind, 0,
nullptr,
3219 {II0->getArgOperand(
I)});
3222 IntrinsicCostAttributes NewAttr(IID, ShuffleDstTy, NewArgsTy);
3225 LLVM_DEBUG(
dbgs() <<
"Found a permute of intrinsic: " <<
I <<
"\n OldCost: "
3226 << OldCost <<
" vs NewCost: " << NewCost <<
"\n");
3228 if (NewCost > OldCost)
3233 for (
unsigned I = 0,
E = II0->arg_size();
I !=
E; ++
I) {
3248 replaceValue(
I, *NewIntrinsic);
3258 int M = SV->getMaskValue(Lane);
3261 if (
static_cast<unsigned>(M) < NumElts) {
3262 U = &SV->getOperandUse(0);
3265 U = &SV->getOperandUse(1);
3276 auto [U, Lane] = IL;
3290 unsigned NumElts = Ty->getNumElements();
3291 if (Item.
size() == NumElts || NumElts == 1 || Item.
size() % NumElts != 0)
3297 std::iota(ConcatMask.
begin(), ConcatMask.
end(), 0);
3303 unsigned NumSlices = Item.
size() / NumElts;
3308 for (
unsigned Slice = 0; Slice < NumSlices; ++Slice) {
3309 Use *SliceV = Item[Slice * NumElts].first;
3310 if (!SliceV || SliceV->get()->
getType() != Ty)
3312 for (
unsigned Elt = 0; Elt < NumElts; ++Elt) {
3313 auto [V, Lane] = Item[Slice * NumElts + Elt];
3314 if (Lane !=
static_cast<int>(Elt) || SliceV->get() != V->get())
3327 auto [FrontU, FrontLane] = Item.
front();
3329 if (IdentityLeafs.
contains(FrontU)) {
3330 return FrontU->get();
3334 return Builder.CreateShuffleVector(FrontU->get(), Mask);
3336 if (ConcatLeafs.
contains(FrontU)) {
3340 for (
unsigned S = 0; S < Values.
size(); ++S)
3341 Values[S] = Item[S * NumElts].first->get();
3343 while (Values.
size() > 1) {
3346 std::iota(Mask.begin(), Mask.end(), 0);
3348 for (
unsigned S = 0; S < NewValues.
size(); ++S)
3350 Builder.CreateShuffleVector(Values[S * 2], Values[S * 2 + 1], Mask);
3358 unsigned NumOps =
I->getNumOperands() - (
II ? 1 : 0);
3360 for (
unsigned Idx = 0; Idx <
NumOps; Idx++) {
3363 Ops[Idx] =
II->getOperand(Idx);
3367 Ty, IdentityLeafs, SplatLeafs, ConcatLeafs,
3372 for (
const auto &Lane : Item)
3385 auto *
Value = Builder.CreateCmp(CI->getPredicate(),
Ops[0],
Ops[1]);
3395 auto *
Value = Builder.CreateCast(CI->getOpcode(),
Ops[0], DstTy);
3400 auto *
Value = Builder.CreateIntrinsic(DstTy,
II->getIntrinsicID(),
Ops);
3414bool VectorCombine::foldShuffleToIdentity(Instruction &
I) {
3416 if (!Ty ||
I.use_empty())
3420 for (
unsigned M = 0,
E = Ty->getNumElements(); M <
E; ++M)
3425 SmallPtrSet<Use *, 4> IdentityLeafs, SplatLeafs, ConcatLeafs;
3426 unsigned NumVisited = 0;
3428 while (!Worklist.
empty()) {
3433 auto [FrontU, FrontLane] = Item.
front();
3441 return X->getType() ==
Y->getType() &&
3446 if (FrontLane == 0 &&
3448 Ty->getNumElements() &&
3451 return !
E.value().first || (IsEquiv(
E.value().first->get(), FrontV) &&
3452 E.value().second == (int)
E.index());
3454 IdentityLeafs.
insert(FrontU);
3459 C &&
C->getSplatValue() &&
3467 SplatLeafs.
insert(FrontU);
3472 auto [FrontU, FrontLane] = Item.
front();
3473 auto [
U, Lane] = IL;
3474 return !
U || (
U->get() == FrontU->get() && Lane == FrontLane);
3476 SplatLeafs.
insert(FrontU);
3482 auto CheckLaneIsEquivalentToFirst = [Item](
InstLane IL) {
3486 Value *
V = IL.first->get();
3492 if (CI->getPredicate() !=
cast<CmpInst>(FrontV)->getPredicate())
3495 if (CI->getSrcTy()->getScalarType() !=
3500 SI->getOperand(0)->getType() !=
3507 II->getIntrinsicID() ==
3509 !
II->hasOperandBundles());
3516 BO && BO->isIntDivRem())
3521 }
else if (
isa<UnaryOperator, TruncInst, ZExtInst, SExtInst, FPToSIInst,
3522 FPToUIInst, SIToFPInst, UIToFPInst>(FrontU)) {
3529 if (DstTy && SrcTy &&
3530 SrcTy->getNumElements() == DstTy->getNumElements()) {
3541 !
II->hasOperandBundles()) {
3542 for (
unsigned Op = 0,
E =
II->getNumOperands() - 1;
Op <
E;
Op++) {
3561 ConcatLeafs.
insert(FrontU);
3568 if (NumVisited <= 1)
3571 LLVM_DEBUG(
dbgs() <<
"Found a superfluous identity shuffle: " <<
I <<
"\n");
3577 ConcatLeafs, Builder, &
TTI);
3578 replaceValue(
I, *V);
3585bool VectorCombine::foldShuffleFromReductions(Instruction &
I) {
3589 switch (
II->getIntrinsicID()) {
3590 case Intrinsic::vector_reduce_add:
3591 case Intrinsic::vector_reduce_mul:
3592 case Intrinsic::vector_reduce_and:
3593 case Intrinsic::vector_reduce_or:
3594 case Intrinsic::vector_reduce_xor:
3595 case Intrinsic::vector_reduce_smin:
3596 case Intrinsic::vector_reduce_smax:
3597 case Intrinsic::vector_reduce_umin:
3598 case Intrinsic::vector_reduce_umax:
3607 std::queue<Value *> Worklist;
3608 SmallPtrSet<Value *, 4> Visited;
3609 ShuffleVectorInst *Shuffle =
nullptr;
3613 while (!Worklist.empty()) {
3614 Value *CV = Worklist.front();
3626 if (CI->isBinaryOp()) {
3627 for (
auto *
Op : CI->operand_values())
3631 if (Shuffle && Shuffle != SV)
3648 for (
auto *V : Visited)
3649 for (
auto *U :
V->users())
3650 if (!Visited.contains(U) && U != &
I)
3653 FixedVectorType *VecType =
3657 FixedVectorType *ShuffleInputType =
3659 if (!ShuffleInputType)
3665 SmallVector<int> ConcatMask;
3667 sort(ConcatMask, [](
int X,
int Y) {
return (
unsigned)
X < (unsigned)
Y; });
3668 bool UsesSecondVec =
3669 any_of(ConcatMask, [&](
int M) {
return M >= (int)NumInputElts; });
3676 ShuffleInputType, ConcatMask,
CostKind);
3678 LLVM_DEBUG(
dbgs() <<
"Found a reduction feeding from a shuffle: " << *Shuffle
3680 LLVM_DEBUG(
dbgs() <<
" OldCost: " << OldCost <<
" vs NewCost: " << NewCost
3682 bool MadeChanges =
false;
3683 if (NewCost < OldCost) {
3687 LLVM_DEBUG(
dbgs() <<
"Created new shuffle: " << *NewShuffle <<
"\n");
3688 replaceValue(*Shuffle, *NewShuffle);
3694 MadeChanges |= foldSelectShuffle(*Shuffle,
true);
3740bool VectorCombine::foldShuffleChainsToReduce(Instruction &
I) {
3742 std::queue<Value *> InstWorklist;
3746 std::optional<unsigned int> CommonCallOp = std::nullopt;
3747 std::optional<Instruction::BinaryOps> CommonBinOp = std::nullopt;
3749 bool IsFirstCallOrBinInst =
true;
3750 bool ShouldBeCallOrBinInst =
true;
3756 SmallVector<Value *, 2> PrevVecV(2,
nullptr);
3766 int64_t
VecSize = FVT->getNumElements();
3772 unsigned int NumLevels =
Log2_64_Ceil(VecSize), VisitedCnt = 0;
3773 int64_t ShuffleMaskHalf = 1, ExpectedParityMask = 0;
3783 for (
int Cur = VecSize, Mask = NumLevels - 1; Cur > 1;
3784 Cur = (Cur + 1) / 2, --
Mask) {
3786 ExpectedParityMask |= (1ll <<
Mask);
3789 InstWorklist.push(VecOpEE);
3791 while (!InstWorklist.empty()) {
3792 Value *CI = InstWorklist.front();
3796 if (!ShouldBeCallOrBinInst)
3799 if (!IsFirstCallOrBinInst &&
3800 any_of(PrevVecV, [](
Value *VecV) {
return VecV ==
nullptr; }))
3805 if (
II != (IsFirstCallOrBinInst ? VecOpEE : PrevVecV[0]))
3807 IsFirstCallOrBinInst =
false;
3810 CommonCallOp =
II->getIntrinsicID();
3811 if (
II->getIntrinsicID() != *CommonCallOp)
3814 switch (
II->getIntrinsicID()) {
3815 case Intrinsic::umin:
3816 case Intrinsic::umax:
3817 case Intrinsic::smin:
3818 case Intrinsic::smax: {
3819 auto *Op0 =
II->getOperand(0);
3820 auto *Op1 =
II->getOperand(1);
3828 ShouldBeCallOrBinInst ^= 1;
3830 IntrinsicCostAttributes ICA(
3831 *CommonCallOp,
II->getType(),
3832 {PrevVecV[0]->getType(), PrevVecV[1]->getType()});
3839 InstWorklist.push(PrevVecV[1]);
3840 InstWorklist.push(PrevVecV[0]);
3844 if (!ShouldBeCallOrBinInst)
3847 if (!IsFirstCallOrBinInst &&
3848 any_of(PrevVecV, [](
Value *VecV) {
return VecV ==
nullptr; }))
3851 if (BinOp != (IsFirstCallOrBinInst ? VecOpEE : PrevVecV[0]))
3853 IsFirstCallOrBinInst =
false;
3861 switch (*CommonBinOp) {
3862 case BinaryOperator::Add:
3863 case BinaryOperator::Mul:
3864 case BinaryOperator::Or:
3865 case BinaryOperator::And:
3866 case BinaryOperator::Xor: {
3876 ShouldBeCallOrBinInst ^= 1;
3883 InstWorklist.push(PrevVecV[1]);
3884 InstWorklist.push(PrevVecV[0]);
3888 if (ShouldBeCallOrBinInst ||
3889 any_of(PrevVecV, [](
Value *VecV) {
return VecV ==
nullptr; }))
3892 if (SVInst != PrevVecV[1])
3895 ArrayRef<int> CurMask;
3901 for (
int Mask = 0, MaskSize = CurMask.
size(); Mask != MaskSize; ++Mask) {
3902 if (Mask < ShuffleMaskHalf &&
3903 CurMask[Mask] != ShuffleMaskHalf + Mask - (ExpectedParityMask & 1))
3905 if (Mask >= ShuffleMaskHalf && CurMask[Mask] != -1)
3910 ShuffleMaskHalf *= 2;
3911 ShuffleMaskHalf -= (ExpectedParityMask & 1);
3912 ExpectedParityMask >>= 1;
3915 SVInst->getType(), SVInst->getType(),
3919 if (!ExpectedParityMask && VisitedCnt == NumLevels)
3922 ShouldBeCallOrBinInst ^= 1;
3929 if (ShouldBeCallOrBinInst)
3932 assert(VecSize != -1 &&
"Expected Match for Vector Size");
3934 Value *FinalVecV = PrevVecV[0];
3946 IntrinsicCostAttributes ICA(ReducedOp, FinalVecVTy, {FinalVecV});
3949 if (NewCost >= OrigCost)
3952 auto *ReducedResult =
3954 replaceValue(
I, *ReducedResult);
3963bool VectorCombine::foldCastFromReductions(Instruction &
I) {
3968 bool TruncOnly =
false;
3971 case Intrinsic::vector_reduce_add:
3972 case Intrinsic::vector_reduce_mul:
3975 case Intrinsic::vector_reduce_and:
3976 case Intrinsic::vector_reduce_or:
3977 case Intrinsic::vector_reduce_xor:
3984 Value *ReductionSrc =
I.getOperand(0);
3996 Type *ResultTy =
I.getType();
3999 ReductionOpc, ReductionSrcTy, std::nullopt,
CostKind);
4009 if (OldCost <= NewCost || !NewCost.
isValid())
4013 II->getIntrinsicID(), {Src});
4015 replaceValue(
I, *NewCast);
4024 constexpr unsigned MaxVisited = 32;
4027 bool FoundReduction =
false;
4030 while (!WorkList.
empty()) {
4032 for (
User *U :
I->users()) {
4034 if (!UI || !Visited.
insert(UI).second)
4036 if (Visited.
size() > MaxVisited)
4042 switch (
II->getIntrinsicID()) {
4043 case Intrinsic::vector_reduce_add:
4044 case Intrinsic::vector_reduce_mul:
4045 case Intrinsic::vector_reduce_and:
4046 case Intrinsic::vector_reduce_or:
4047 case Intrinsic::vector_reduce_xor:
4048 case Intrinsic::vector_reduce_smin:
4049 case Intrinsic::vector_reduce_smax:
4050 case Intrinsic::vector_reduce_umin:
4051 case Intrinsic::vector_reduce_umax:
4052 FoundReduction =
true;
4065 return FoundReduction;
4078bool VectorCombine::foldSelectShuffle(Instruction &
I,
bool FromReduction) {
4083 if (!Op0 || !Op1 || Op0 == Op1 || !Op0->isBinaryOp() || !Op1->isBinaryOp() ||
4091 SmallPtrSet<Instruction *, 4> InputShuffles({SVI0A, SVI0B, SVI1A, SVI1B});
4093 if (!
I ||
I->getOperand(0)->getType() != VT)
4095 return any_of(
I->users(), [&](User *U) {
4096 return U != Op0 && U != Op1 &&
4097 !(isa<ShuffleVectorInst>(U) &&
4098 (InputShuffles.contains(cast<Instruction>(U)) ||
4099 isInstructionTriviallyDead(cast<Instruction>(U))));
4102 if (checkSVNonOpUses(SVI0A) || checkSVNonOpUses(SVI0B) ||
4103 checkSVNonOpUses(SVI1A) || checkSVNonOpUses(SVI1B))
4111 for (
auto *U :
I->users()) {
4113 if (!SV || SV->getType() != VT)
4115 if ((SV->getOperand(0) != Op0 && SV->getOperand(0) != Op1) ||
4116 (SV->getOperand(1) != Op0 && SV->getOperand(1) != Op1))
4123 if (!collectShuffles(Op0) || !collectShuffles(Op1))
4127 if (FromReduction && Shuffles.
size() > 1)
4132 if (!FromReduction) {
4133 for (ShuffleVectorInst *SV : Shuffles) {
4134 for (
auto *U : SV->users()) {
4137 Shuffles.push_back(SSV);
4149 int MaxV1Elt = 0, MaxV2Elt = 0;
4150 unsigned NumElts = VT->getNumElements();
4151 for (ShuffleVectorInst *SVN : Shuffles) {
4152 SmallVector<int>
Mask;
4153 SVN->getShuffleMask(Mask);
4157 Value *SVOp0 = SVN->getOperand(0);
4158 Value *SVOp1 = SVN->getOperand(1);
4163 for (
int &Elem : Mask) {
4169 if (SVOp0 == Op1 && SVOp1 == Op0) {
4173 if (SVOp0 != Op0 || SVOp1 != Op1)
4179 SmallVector<int> ReconstructMask;
4180 for (
unsigned I = 0;
I <
Mask.size();
I++) {
4183 }
else if (Mask[
I] <
static_cast<int>(NumElts)) {
4184 MaxV1Elt = std::max(MaxV1Elt, Mask[
I]);
4185 auto It =
find_if(V1, [&](
const std::pair<int, int> &
A) {
4186 return Mask[
I] ==
A.first;
4195 MaxV2Elt = std::max<int>(MaxV2Elt, Mask[
I] - NumElts);
4196 auto It =
find_if(V2, [&](
const std::pair<int, int> &
A) {
4197 return Mask[
I] -
static_cast<int>(NumElts) ==
A.first;
4211 sort(ReconstructMask);
4212 OrigReconstructMasks.
push_back(std::move(ReconstructMask));
4220 (MaxV1Elt ==
static_cast<int>(V1.
size()) - 1 &&
4221 MaxV2Elt ==
static_cast<int>(V2.
size()) - 1))
4233 if (InputShuffles.contains(SSV))
4235 return SV->getMaskValue(M);
4243 std::pair<int, int>
Y) {
4244 int MXA = GetBaseMaskValue(
A,
X.first);
4245 int MYA = GetBaseMaskValue(
A,
Y.first);
4248 stable_sort(V1, [&](std::pair<int, int>
A, std::pair<int, int>
B) {
4249 return SortBase(SVI0A,
A,
B);
4251 stable_sort(V2, [&](std::pair<int, int>
A, std::pair<int, int>
B) {
4252 return SortBase(SVI1A,
A,
B);
4257 for (
const auto &Mask : OrigReconstructMasks) {
4258 SmallVector<int> ReconstructMask;
4259 for (
int M : Mask) {
4261 auto It =
find_if(V, [M](
auto A) {
return A.second ==
M; });
4262 assert(It !=
V.end() &&
"Expected all entries in Mask");
4263 return std::distance(
V.begin(), It);
4267 else if (M <
static_cast<int>(NumElts)) {
4268 ReconstructMask.
push_back(FindIndex(V1, M));
4270 ReconstructMask.
push_back(NumElts + FindIndex(V2, M));
4273 ReconstructMasks.
push_back(std::move(ReconstructMask));
4278 SmallVector<int> V1A, V1B, V2A, V2B;
4279 for (
unsigned I = 0;
I < V1.
size();
I++) {
4280 V1A.
push_back(GetBaseMaskValue(SVI0A, V1[
I].first));
4281 V1B.
push_back(GetBaseMaskValue(SVI0B, V1[
I].first));
4283 for (
unsigned I = 0;
I < V2.
size();
I++) {
4284 V2A.
push_back(GetBaseMaskValue(SVI1A, V2[
I].first));
4285 V2B.
push_back(GetBaseMaskValue(SVI1B, V2[
I].first));
4287 while (V1A.
size() < NumElts) {
4291 while (V2A.
size() < NumElts) {
4303 VT, VT, SV->getShuffleMask(),
CostKind);
4310 unsigned ElementSize = VT->getElementType()->getPrimitiveSizeInBits();
4311 unsigned MaxVectorSize =
4313 unsigned MaxElementsInVector = MaxVectorSize / ElementSize;
4314 if (MaxElementsInVector == 0)
4323 std::set<SmallVector<int, 4>> UniqueShuffles;
4328 unsigned NumFullVectors =
Mask.size() / MaxElementsInVector;
4329 if (NumFullVectors < 2)
4330 return C + ShuffleCost;
4331 SmallVector<int, 4> SubShuffle(MaxElementsInVector);
4332 unsigned NumUniqueGroups = 0;
4333 unsigned NumGroups =
Mask.size() / MaxElementsInVector;
4336 for (
unsigned I = 0;
I < NumFullVectors; ++
I) {
4337 for (
unsigned J = 0; J < MaxElementsInVector; ++J)
4338 SubShuffle[J] = Mask[MaxElementsInVector *
I + J];
4339 if (UniqueShuffles.insert(SubShuffle).second)
4340 NumUniqueGroups += 1;
4342 return C + ShuffleCost * NumUniqueGroups / NumGroups;
4348 SmallVector<int, 16>
Mask;
4349 SV->getShuffleMask(Mask);
4350 return AddShuffleMaskAdjustedCost(
C, Mask);
4353 auto AllShufflesHaveSameOperands =
4354 [](SmallPtrSetImpl<Instruction *> &InputShuffles) {
4355 if (InputShuffles.size() < 2)
4357 ShuffleVectorInst *FirstSV =
4364 std::next(InputShuffles.begin()), InputShuffles.end(),
4365 [&](Instruction *
I) {
4366 ShuffleVectorInst *SV = dyn_cast<ShuffleVectorInst>(I);
4367 return SV && SV->getOperand(0) == In0 && SV->getOperand(1) == In1;
4376 CostBefore += std::accumulate(Shuffles.begin(), Shuffles.end(),
4378 if (AllShufflesHaveSameOperands(InputShuffles)) {
4379 UniqueShuffles.clear();
4380 CostBefore += std::accumulate(InputShuffles.begin(), InputShuffles.end(),
4383 CostBefore += std::accumulate(InputShuffles.begin(), InputShuffles.end(),
4389 FixedVectorType *Op0SmallVT =
4391 FixedVectorType *Op1SmallVT =
4396 UniqueShuffles.clear();
4397 CostAfter += std::accumulate(ReconstructMasks.begin(), ReconstructMasks.end(),
4399 std::set<SmallVector<int>> OutputShuffleMasks({V1A, V1B, V2A, V2B});
4401 std::accumulate(OutputShuffleMasks.begin(), OutputShuffleMasks.end(),
4404 LLVM_DEBUG(
dbgs() <<
"Found a binop select shuffle pattern: " <<
I <<
"\n");
4406 <<
" vs CostAfter: " << CostAfter <<
"\n");
4407 if (CostBefore < CostAfter ||
4418 if (InputShuffles.contains(SSV))
4420 return SV->getOperand(
Op);
4424 GetShuffleOperand(SVI0A, 1), V1A);
4427 GetShuffleOperand(SVI0B, 1), V1B);
4430 GetShuffleOperand(SVI1A, 1), V2A);
4433 GetShuffleOperand(SVI1B, 1), V2B);
4438 I->copyIRFlags(Op0,
true);
4443 I->copyIRFlags(Op1,
true);
4445 for (
int S = 0,
E = ReconstructMasks.size(); S !=
E; S++) {
4448 replaceValue(*Shuffles[S], *NSV,
false);
4451 Worklist.pushValue(NSV0A);
4452 Worklist.pushValue(NSV0B);
4453 Worklist.pushValue(NSV1A);
4454 Worklist.pushValue(NSV1B);
4464bool VectorCombine::shrinkType(Instruction &
I) {
4465 Value *ZExted, *OtherOperand;
4471 Value *ZExtOperand =
I.getOperand(
I.getOperand(0) == OtherOperand ? 1 : 0);
4475 unsigned BW = SmallTy->getElementType()->getPrimitiveSizeInBits();
4477 if (
I.getOpcode() == Instruction::LShr) {
4494 Instruction::ZExt, BigTy, SmallTy,
4495 TargetTransformInfo::CastContextHint::None,
CostKind);
4500 for (User *U : ZExtOperand->
users()) {
4507 ShrinkCost += ZExtCost;
4522 ShrinkCost += ZExtCost;
4529 Instruction::Trunc, SmallTy, BigTy,
4530 TargetTransformInfo::CastContextHint::None,
CostKind);
4535 if (ShrinkCost > CurrentCost)
4539 Value *Op0 = ZExted;
4542 if (
I.getOperand(0) == OtherOperand)
4549 replaceValue(
I, *NewZExtr);
4555bool VectorCombine::foldInsExtVectorToShuffle(Instruction &
I) {
4556 Value *DstVec, *SrcVec;
4557 uint64_t ExtIdx, InsIdx;
4567 if (!DstVecTy || !SrcVecTy ||
4568 SrcVecTy->getElementType() != DstVecTy->getElementType())
4571 unsigned NumDstElts = DstVecTy->getNumElements();
4572 unsigned NumSrcElts = SrcVecTy->getNumElements();
4573 if (InsIdx >= NumDstElts || ExtIdx >= NumSrcElts || NumDstElts == 1)
4580 bool NeedExpOrNarrow = NumSrcElts != NumDstElts;
4582 if (NeedDstSrcSwap) {
4584 Mask[InsIdx] = ExtIdx % NumDstElts;
4588 std::iota(
Mask.begin(),
Mask.end(), 0);
4589 Mask[InsIdx] = (ExtIdx % NumDstElts) + NumDstElts;
4602 SmallVector<int> ExtToVecMask;
4603 if (!NeedExpOrNarrow) {
4608 nullptr, {DstVec, SrcVec});
4614 ExtToVecMask[ExtIdx % NumDstElts] = ExtIdx;
4617 DstVecTy, SrcVecTy, ExtToVecMask,
CostKind);
4621 if (!Ext->hasOneUse())
4624 LLVM_DEBUG(
dbgs() <<
"Found a insert/extract shuffle-like pair: " <<
I
4625 <<
"\n OldCost: " << OldCost <<
" vs NewCost: " << NewCost
4628 if (OldCost < NewCost)
4631 if (NeedExpOrNarrow) {
4632 if (!NeedDstSrcSwap)
4645 replaceValue(
I, *Shuf);
4654bool VectorCombine::foldInterleaveIntrinsics(Instruction &
I) {
4655 const APInt *SplatVal0, *SplatVal1;
4665 auto *ExtVTy = VectorType::getExtendedElementVectorType(VTy);
4666 unsigned Width = VTy->getElementType()->getIntegerBitWidth();
4675 LLVM_DEBUG(
dbgs() <<
"VC: The cost to cast from " << *ExtVTy <<
" to "
4676 << *
I.getType() <<
" is too high.\n");
4680 APInt NewSplatVal = SplatVal1->
zext(Width * 2);
4681 NewSplatVal <<= Width;
4682 NewSplatVal |= SplatVal0->
zext(Width * 2);
4684 ExtVTy->getElementCount(), ConstantInt::get(
F.getContext(), NewSplatVal));
4692bool VectorCombine::shrinkLoadForShuffles(Instruction &
I) {
4694 if (!OldLoad || !OldLoad->isSimple())
4701 unsigned const OldNumElements = OldLoadTy->getNumElements();
4707 using IndexRange = std::pair<int, int>;
4708 auto GetIndexRangeInShuffles = [&]() -> std::optional<IndexRange> {
4709 IndexRange OutputRange = IndexRange(OldNumElements, -1);
4710 for (llvm::Use &Use :
I.uses()) {
4712 User *Shuffle =
Use.getUser();
4717 return std::nullopt;
4724 for (
int Index : Mask) {
4725 if (Index >= 0 && Index <
static_cast<int>(OldNumElements)) {
4726 OutputRange.first = std::min(Index, OutputRange.first);
4727 OutputRange.second = std::max(Index, OutputRange.second);
4732 if (OutputRange.second < OutputRange.first)
4733 return std::nullopt;
4739 if (std::optional<IndexRange> Indices = GetIndexRangeInShuffles()) {
4740 unsigned const NewNumElements = Indices->second + 1u;
4744 if (NewNumElements < OldNumElements) {
4749 Type *ElemTy = OldLoadTy->getElementType();
4751 Value *PtrOp = OldLoad->getPointerOperand();
4754 Instruction::Load, OldLoad->getType(), OldLoad->getAlign(),
4755 OldLoad->getPointerAddressSpace(),
CostKind);
4758 OldLoad->getPointerAddressSpace(),
CostKind);
4760 using UseEntry = std::pair<ShuffleVectorInst *, std::vector<int>>;
4762 unsigned const MaxIndex = NewNumElements * 2u;
4764 for (llvm::Use &Use :
I.uses()) {
4766 ArrayRef<int> OldMask = Shuffle->getShuffleMask();
4772 for (
int Index : OldMask) {
4773 if (Index >=
static_cast<int>(MaxIndex))
4787 dbgs() <<
"Found a load used only by shufflevector instructions: "
4788 <<
I <<
"\n OldCost: " << OldCost
4789 <<
" vs NewCost: " << NewCost <<
"\n");
4791 if (OldCost < NewCost || !NewCost.
isValid())
4797 NewLoad->copyMetadata(
I);
4800 for (UseEntry &Use : NewUses) {
4801 ShuffleVectorInst *Shuffle =
Use.first;
4802 std::vector<int> &NewMask =
Use.second;
4809 replaceValue(*Shuffle, *NewShuffle,
false);
4822bool VectorCombine::shrinkPhiOfShuffles(Instruction &
I) {
4824 if (!Phi ||
Phi->getNumIncomingValues() != 2u)
4828 ArrayRef<int> Mask0;
4829 ArrayRef<int> Mask1;
4842 auto const InputNumElements = InputVT->getNumElements();
4844 if (InputNumElements >= ResultVT->getNumElements())
4849 SmallVector<int, 16> NewMask;
4852 for (
auto [
M0,
M1] :
zip(Mask0, Mask1)) {
4853 if (
M0 >= 0 &&
M1 >= 0)
4855 else if (
M0 == -1 &&
M1 == -1)
4868 int MaskOffset = NewMask[0
u];
4869 unsigned Index = (InputNumElements + MaskOffset) % InputNumElements;
4872 for (
unsigned I = 0u;
I < InputNumElements; ++
I) {
4886 <<
"\n OldCost: " << OldCost <<
" vs NewCost: " << NewCost
4889 if (NewCost > OldCost)
4901 auto *NewPhi = Builder.
CreatePHI(NewShuf0->getType(), 2u);
4903 NewPhi->addIncoming(
Op,
Phi->getIncomingBlock(1u));
4909 replaceValue(*Phi, *NewShuf1);
4915bool VectorCombine::run() {
4929 auto Opcode =
I.getOpcode();
4937 if (IsFixedVectorType) {
4939 case Instruction::InsertElement:
4940 if (vectorizeLoadInsert(
I))
4943 case Instruction::ShuffleVector:
4944 if (widenSubvectorLoad(
I))
4955 if (scalarizeOpOrCmp(
I))
4957 if (scalarizeLoad(
I))
4959 if (scalarizeExtExtract(
I))
4961 if (scalarizeVPIntrinsic(
I))
4963 if (foldInterleaveIntrinsics(
I))
4967 if (Opcode == Instruction::Store)
4968 if (foldSingleElementStore(
I))
4972 if (TryEarlyFoldsOnly)
4979 if (IsFixedVectorType) {
4981 case Instruction::InsertElement:
4982 if (foldInsExtFNeg(
I))
4984 if (foldInsExtBinop(
I))
4986 if (foldInsExtVectorToShuffle(
I))
4989 case Instruction::ShuffleVector:
4990 if (foldPermuteOfBinops(
I))
4992 if (foldShuffleOfBinops(
I))
4994 if (foldShuffleOfSelects(
I))
4996 if (foldShuffleOfCastops(
I))
4998 if (foldShuffleOfShuffles(
I))
5000 if (foldPermuteOfIntrinsic(
I))
5002 if (foldShufflesOfLengthChangingShuffles(
I))
5004 if (foldShuffleOfIntrinsics(
I))
5006 if (foldSelectShuffle(
I))
5008 if (foldShuffleToIdentity(
I))
5011 case Instruction::Load:
5012 if (shrinkLoadForShuffles(
I))
5015 case Instruction::BitCast:
5016 if (foldBitcastShuffle(
I))
5019 case Instruction::And:
5020 case Instruction::Or:
5021 case Instruction::Xor:
5022 if (foldBitOpOfCastops(
I))
5024 if (foldBitOpOfCastConstant(
I))
5027 case Instruction::PHI:
5028 if (shrinkPhiOfShuffles(
I))
5038 case Instruction::Call:
5039 if (foldShuffleFromReductions(
I))
5041 if (foldCastFromReductions(
I))
5044 case Instruction::ExtractElement:
5045 if (foldShuffleChainsToReduce(
I))
5048 case Instruction::ICmp:
5049 case Instruction::FCmp:
5050 if (foldExtractExtract(
I))
5053 case Instruction::Or:
5054 if (foldConcatOfBoolMasks(
I))
5059 if (foldExtractExtract(
I))
5061 if (foldExtractedCmps(
I))
5063 if (foldBinopOfReductions(
I))
5072 bool MadeChange =
false;
5073 for (BasicBlock &BB :
F) {
5085 if (!
I->isDebugOrPseudoInst())
5086 MadeChange |= FoldInst(*
I);
5093 while (!Worklist.isEmpty()) {
5103 MadeChange |= FoldInst(*
I);
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
static cl::opt< unsigned > MaxInstrsToScan("aggressive-instcombine-max-scan-instrs", cl::init(64), cl::Hidden, cl::desc("Max number of instructions to scan for aggressive instcombine."))
This is the interface for LLVM's primary stateless and local alias analysis.
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
static cl::opt< OutputCostKind > CostKind("cost-kind", cl::desc("Target cost kind"), cl::init(OutputCostKind::RecipThroughput), cl::values(clEnumValN(OutputCostKind::RecipThroughput, "throughput", "Reciprocal throughput"), clEnumValN(OutputCostKind::Latency, "latency", "Instruction latency"), clEnumValN(OutputCostKind::CodeSize, "code-size", "Code size"), clEnumValN(OutputCostKind::SizeAndLatency, "size-latency", "Code size and latency"), clEnumValN(OutputCostKind::All, "all", "Print all cost kinds")))
This file defines the DenseMap class.
This is the interface for a simple mod/ref and alias analysis over globals.
const size_t AbstractManglingParser< Derived, Alloc >::NumOps
const AbstractManglingParser< Derived, Alloc >::OperatorInfo AbstractManglingParser< Derived, Alloc >::Ops[]
static void eraseInstruction(Instruction &I, ICFLoopSafetyInfo &SafetyInfo, MemorySSAUpdater &MSSAU)
MachineInstr unsigned OpIdx
uint64_t IntrinsicInst * II
FunctionAnalysisManager FAM
This file defines the make_scope_exit function, which executes user-defined cleanup logic at scope ex...
This file defines the SmallVector class.
This file defines the 'Statistic' class, which is designed to be an easy way to expose various metric...
#define STATISTIC(VARNAME, DESC)
static TableGen::Emitter::Opt Y("gen-skeleton-entry", EmitSkeleton, "Generate example skeleton entry")
static TableGen::Emitter::OptClass< SkeletonEmitter > X("gen-skeleton-class", "Generate example skeleton class")
static SymbolRef::Type getType(const Symbol *Sym)
static std::optional< unsigned > getOpcode(ArrayRef< VPValue * > Values)
Returns the opcode of Values or ~0 if they do not all agree.
static Value * generateNewInstTree(ArrayRef< InstLane > Item, FixedVectorType *Ty, const SmallPtrSet< Use *, 4 > &IdentityLeafs, const SmallPtrSet< Use *, 4 > &SplatLeafs, const SmallPtrSet< Use *, 4 > &ConcatLeafs, IRBuilderBase &Builder, const TargetTransformInfo *TTI)
static bool isFreeConcat(ArrayRef< InstLane > Item, TTI::TargetCostKind CostKind, const TargetTransformInfo &TTI)
Detect concat of multiple values into a vector.
static void analyzeCostOfVecReduction(const IntrinsicInst &II, TTI::TargetCostKind CostKind, const TargetTransformInfo &TTI, InstructionCost &CostBeforeReduction, InstructionCost &CostAfterReduction)
static SmallVector< InstLane > generateInstLaneVectorFromOperand(ArrayRef< InstLane > Item, int Op)
static Value * createShiftShuffle(Value *Vec, unsigned OldIndex, unsigned NewIndex, IRBuilderBase &Builder)
Create a shuffle that translates (shifts) 1 element from the input vector to a new element location.
static Align computeAlignmentAfterScalarization(Align VectorAlignment, Type *ScalarType, Value *Idx, const DataLayout &DL)
The memory operation on a vector of ScalarType had alignment of VectorAlignment.
static bool feedsIntoVectorReduction(ShuffleVectorInst *SVI)
Returns true if this ShuffleVectorInst eventually feeds into a vector reduction intrinsic (e....
static ScalarizationResult canScalarizeAccess(VectorType *VecTy, Value *Idx, Instruction *CtxI, AssumptionCache &AC, const DominatorTree &DT)
Check if it is legal to scalarize a memory access to VecTy at index Idx.
static cl::opt< bool > DisableVectorCombine("disable-vector-combine", cl::init(false), cl::Hidden, cl::desc("Disable all vector combine transforms"))
static InstLane lookThroughShuffles(Use *U, int Lane)
static bool canWidenLoad(LoadInst *Load, const TargetTransformInfo &TTI)
static const unsigned InvalidIndex
std::pair< Use *, int > InstLane
static Value * translateExtract(ExtractElementInst *ExtElt, unsigned NewIndex, IRBuilderBase &Builder)
Given an extract element instruction with constant index operand, shuffle the source vector (shift th...
static cl::opt< unsigned > MaxInstrsToScan("vector-combine-max-scan-instrs", cl::init(30), cl::Hidden, cl::desc("Max number of instructions to scan for vector combining."))
static cl::opt< bool > DisableBinopExtractShuffle("disable-binop-extract-shuffle", cl::init(false), cl::Hidden, cl::desc("Disable binop extract to shuffle transforms"))
static bool isMemModifiedBetween(BasicBlock::iterator Begin, BasicBlock::iterator End, const MemoryLocation &Loc, AAResults &AA)
static constexpr int Concat[]
A manager for alias analyses.
Class for arbitrary precision integers.
LLVM_ABI APInt zext(unsigned width) const
Zero extend to a new width.
static APInt getOneBitSet(unsigned numBits, unsigned BitNo)
Return an APInt with exactly one bit set in the result.
bool uge(const APInt &RHS) const
Unsigned greater or equal comparison.
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
const T & front() const
front - Get the first element.
size_t size() const
size - Get the array size.
A function analysis which provides an AssumptionCache.
A cache of @llvm.assume calls within a function.
LLVM_ABI bool hasAttribute(Attribute::AttrKind Kind) const
Return true if the attribute exists in this set.
InstListType::iterator iterator
Instruction iterators...
BinaryOps getOpcode() const
Represents analyses that only rely on functions' control flow.
Value * getArgOperand(unsigned i) const
iterator_range< User::op_iterator > args()
Iteration adapter for range-for loops.
static LLVM_ABI CastInst * Create(Instruction::CastOps, Value *S, Type *Ty, const Twine &Name="", InsertPosition InsertBefore=nullptr)
Provides a way to construct any of the CastInst subclasses using an opcode instead of the subclass's ...
static Type * makeCmpResultType(Type *opnd_type)
Create a result type for fcmp/icmp.
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
bool isFPPredicate() const
static LLVM_ABI std::optional< CmpPredicate > getMatching(CmpPredicate A, CmpPredicate B)
Compares two CmpPredicates taking samesign into account and returns the canonicalized CmpPredicate if...
static LLVM_ABI Constant * getExtractElement(Constant *Vec, Constant *Idx, Type *OnlyIfReducedTy=nullptr)
This is the shared class of boolean and integer constants.
const APInt & getValue() const
Return the constant as an APInt value reference.
This class represents a range of values.
LLVM_ABI ConstantRange urem(const ConstantRange &Other) const
Return a new range representing the possible values resulting from an unsigned remainder operation of...
LLVM_ABI ConstantRange binaryAnd(const ConstantRange &Other) const
Return a new range representing the possible values resulting from a binary-and of a value in this ra...
LLVM_ABI bool contains(const APInt &Val) const
Return true if the specified value is in the set.
static LLVM_ABI Constant * getSplat(ElementCount EC, Constant *Elt)
Return a ConstantVector with the specified constant in each element.
static LLVM_ABI Constant * get(ArrayRef< Constant * > V)
A parsed version of the target data layout string in and methods for querying it.
iterator find(const_arg_type_t< KeyT > Val)
Analysis pass which computes a DominatorTree.
Concrete subclass of DominatorTreeBase that is used to compute a normal dominator tree.
LLVM_ABI bool isReachableFromEntry(const Use &U) const
Provide an overload for a Use.
Convenience struct for specifying and reasoning about fast-math flags.
Class to represent fixed width SIMD vectors.
unsigned getNumElements() const
static FixedVectorType * getDoubleElementsVectorType(FixedVectorType *VTy)
static LLVM_ABI FixedVectorType * get(Type *ElementType, unsigned NumElts)
Common base class shared among various IRBuilders.
Value * CreateInsertElement(Type *VecTy, Value *NewElt, Value *Idx, const Twine &Name="")
Value * CreateExtractElement(Value *Vec, Value *Idx, const Twine &Name="")
LoadInst * CreateAlignedLoad(Type *Ty, Value *Ptr, MaybeAlign Align, const char *Name)
LLVM_ABI Value * CreateSelectFMF(Value *C, Value *True, Value *False, FMFSource FMFSource, const Twine &Name="", Instruction *MDFrom=nullptr)
LLVM_ABI Value * CreateVectorSplat(unsigned NumElts, Value *V, const Twine &Name="")
Return a vector value that contains.
LLVM_ABI Value * CreateSelect(Value *C, Value *True, Value *False, const Twine &Name="", Instruction *MDFrom=nullptr)
Value * CreateFreeze(Value *V, const Twine &Name="")
Value * CreateLShr(Value *LHS, Value *RHS, const Twine &Name="", bool isExact=false)
Value * CreateCast(Instruction::CastOps Op, Value *V, Type *DestTy, const Twine &Name="", MDNode *FPMathTag=nullptr, FMFSource FMFSource={})
void SetCurrentDebugLocation(DebugLoc L)
Set location information used by debugging information.
Value * CreateInBoundsGEP(Type *Ty, Value *Ptr, ArrayRef< Value * > IdxList, const Twine &Name="")
Value * CreatePointerBitCastOrAddrSpaceCast(Value *V, Type *DestTy, const Twine &Name="")
ConstantInt * getInt64(uint64_t C)
Get a constant 64-bit value.
LLVM_ABI CallInst * CreateIntrinsic(Intrinsic::ID ID, ArrayRef< Type * > Types, ArrayRef< Value * > Args, FMFSource FMFSource={}, const Twine &Name="")
Create a call to intrinsic ID with Args, mangled using Types.
ConstantInt * getInt32(uint32_t C)
Get a constant 32-bit value.
Value * CreateCmp(CmpInst::Predicate Pred, Value *LHS, Value *RHS, const Twine &Name="", MDNode *FPMathTag=nullptr)
PHINode * CreatePHI(Type *Ty, unsigned NumReservedValues, const Twine &Name="")
InstTy * Insert(InstTy *I, const Twine &Name="") const
Insert and return the specified instruction.
Value * CreateBitCast(Value *V, Type *DestTy, const Twine &Name="")
LoadInst * CreateLoad(Type *Ty, Value *Ptr, const char *Name)
Provided to resolve 'CreateLoad(Ty, Ptr, "...")' correctly, instead of converting the string to 'bool...
Value * CreateShl(Value *LHS, Value *RHS, const Twine &Name="", bool HasNUW=false, bool HasNSW=false)
LLVM_ABI Value * CreateNAryOp(unsigned Opc, ArrayRef< Value * > Ops, const Twine &Name="", MDNode *FPMathTag=nullptr)
Create either a UnaryOperator or BinaryOperator depending on Opc.
Value * CreateZExt(Value *V, Type *DestTy, const Twine &Name="", bool IsNonNeg=false)
Value * CreateShuffleVector(Value *V1, Value *V2, Value *Mask, const Twine &Name="")
Value * CreateAnd(Value *LHS, Value *RHS, const Twine &Name="")
StoreInst * CreateStore(Value *Val, Value *Ptr, bool isVolatile=false)
Value * CreateTrunc(Value *V, Type *DestTy, const Twine &Name="", bool IsNUW=false, bool IsNSW=false)
PointerType * getPtrTy(unsigned AddrSpace=0)
Fetch the type representing a pointer.
Value * CreateBinOp(Instruction::BinaryOps Opc, Value *LHS, Value *RHS, const Twine &Name="", MDNode *FPMathTag=nullptr)
void SetInsertPoint(BasicBlock *TheBB)
This specifies that created instructions should be appended to the end of the specified block.
Value * CreateFNegFMF(Value *V, FMFSource FMFSource, const Twine &Name="", MDNode *FPMathTag=nullptr)
Value * CreateOr(Value *LHS, Value *RHS, const Twine &Name="", bool IsDisjoint=false)
InstSimplifyFolder - Use InstructionSimplify to fold operations to existing values.
void push(Instruction *I)
Push the instruction onto the worklist stack.
LLVM_ABI void setHasNoUnsignedWrap(bool b=true)
Set or clear the nuw flag on this instruction, which must be an operator which supports this flag.
LLVM_ABI void copyIRFlags(const Value *V, bool IncludeWrapFlags=true)
Convenience method to copy supported exact, fast-math, and (optionally) wrapping flags from V to this...
LLVM_ABI void setHasNoSignedWrap(bool b=true)
Set or clear the nsw flag on this instruction, which must be an operator which supports this flag.
const DebugLoc & getDebugLoc() const
Return the debug location for this node as a DebugLoc.
LLVM_ABI void andIRFlags(const Value *V)
Logical 'and' of any supported wrapping, exact, and fast-math flags of V and this instruction.
LLVM_ABI void setNonNeg(bool b=true)
Set or clear the nneg flag on this instruction, which must be a zext instruction.
LLVM_ABI bool comesBefore(const Instruction *Other) const
Given an instruction Other in the same basic block as this instruction, return true if this instructi...
LLVM_ABI AAMDNodes getAAMetadata() const
Returns the AA metadata for this instruction.
unsigned getOpcode() const
Returns a member of one of the enums like Instruction::Add.
LLVM_ABI void copyMetadata(const Instruction &SrcInst, ArrayRef< unsigned > WL=ArrayRef< unsigned >())
Copy metadata from SrcInst to this instruction.
static LLVM_ABI IntegerType * get(LLVMContext &C, unsigned NumBits)
This static method is the primary way of constructing an IntegerType.
A wrapper class for inspecting calls to intrinsic functions.
Intrinsic::ID getIntrinsicID() const
Return the intrinsic ID of this intrinsic.
An instruction for reading from memory.
unsigned getPointerAddressSpace() const
Returns the address space of the pointer operand.
void setAlignment(Align Align)
Type * getPointerOperandType() const
Align getAlign() const
Return the alignment of the access that is being performed.
Representation for a specific memory location.
static LLVM_ABI MemoryLocation get(const LoadInst *LI)
Return a location with information about the memory reference by the given instruction.
void addIncoming(Value *V, BasicBlock *BB)
Add an incoming value to the end of the PHI list.
static LLVM_ABI PoisonValue * get(Type *T)
Static factory methods - Return an 'poison' object of the specified type.
A set of analyses that are preserved following a run of a transformation pass.
static PreservedAnalyses all()
Construct a special preserved set that preserves all passes.
PreservedAnalyses & preserveSet()
Mark an analysis set as preserved.
const SDValue & getOperand(unsigned Num) const
This instruction constructs a fixed permutation of two input vectors.
int getMaskValue(unsigned Elt) const
Return the shuffle mask value of this instruction for the given element index.
VectorType * getType() const
Overload to return most specific vector type.
static LLVM_ABI void getShuffleMask(const Constant *Mask, SmallVectorImpl< int > &Result)
Convert the input shuffle mask operand to a vector of integers.
static LLVM_ABI bool isIdentityMask(ArrayRef< int > Mask, int NumSrcElts)
Return true if this shuffle mask chooses elements from exactly one source vector without lane crossin...
static void commuteShuffleMask(MutableArrayRef< int > Mask, unsigned InVecNumElts)
Change values in a shuffle permute mask assuming the two vector operands of length InVecNumElts have ...
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
bool contains(ConstPtrType Ptr) const
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
void assign(size_type NumElts, ValueParamT Elt)
reference emplace_back(ArgTypes &&... Args)
void reserve(size_type N)
void append(ItTy in_start, ItTy in_end)
Add the specified range to the end of the SmallVector.
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
void setAlignment(Align Align)
Analysis pass providing the TargetTransformInfo.
The instances of the Type class are immutable: once they are created, they are never changed.
bool isPointerTy() const
True if this is an instance of PointerType.
LLVM_ABI TypeSize getPrimitiveSizeInBits() const LLVM_READONLY
Return the basic size of this type if it is a primitive type.
LLVMContext & getContext() const
Return the LLVMContext in which this type was uniqued.
LLVM_ABI unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type.
bool isFloatingPointTy() const
Return true if this is one of the floating-point types.
bool isIntegerTy() const
True if this is an instance of IntegerType.
A Use represents the edge between a Value definition and its users.
Value * getOperand(unsigned i) const
static LLVM_ABI bool isVPBinOp(Intrinsic::ID ID)
std::optional< unsigned > getFunctionalIntrinsicID() const
std::optional< unsigned > getFunctionalOpcode() const
LLVM Value Representation.
Type * getType() const
All values are typed, get the type of this value.
const Value * stripAndAccumulateInBoundsConstantOffsets(const DataLayout &DL, APInt &Offset) const
This is a wrapper around stripAndAccumulateConstantOffsets with the in-bounds requirement set to fals...
bool hasOneUse() const
Return true if there is exactly one use of this value.
LLVM_ABI void replaceAllUsesWith(Value *V)
Change all uses of this to point to a new Value.
iterator_range< user_iterator > users()
LLVM_ABI Align getPointerAlignment(const DataLayout &DL) const
Returns an alignment of the pointer value.
unsigned getValueID() const
Return an ID for the concrete type of this object.
LLVM_ABI bool hasNUses(unsigned N) const
Return true if this Value has exactly N uses.
LLVM_ABI StringRef getName() const
Return a constant reference to the value's name.
PreservedAnalyses run(Function &F, FunctionAnalysisManager &)
static LLVM_ABI VectorType * get(Type *ElementType, ElementCount EC)
This static method is the primary way to construct an VectorType.
std::pair< iterator, bool > insert(const ValueT &V)
const ParentTy * getParent() const
self_iterator getIterator()
NodeTy * getNextNode()
Get the next node, or nullptr for the list tail.
Abstract Attribute helper functions.
constexpr char Align[]
Key for Kernel::Arg::Metadata::mAlign.
constexpr char Args[]
Key for Kernel::Metadata::mArgs.
constexpr char Attrs[]
Key for Kernel::Metadata::mAttrs.
constexpr std::underlying_type_t< E > Mask()
Get a bitmask with 1s in all places up to the high-order bit of E's largest value.
@ C
The default llvm calling convention, compatible with C.
@ BasicBlock
Various leaf nodes.
LLVM_ABI AttributeSet getFnAttributes(LLVMContext &C, ID id)
Return the function attributes for an intrinsic.
SpecificConstantMatch m_ZeroInt()
Convenience matchers for specific integer values.
OneUse_match< SubPat > m_OneUse(const SubPat &SP)
class_match< PoisonValue > m_Poison()
Match an arbitrary poison constant.
BinaryOp_match< LHS, RHS, Instruction::And > m_And(const LHS &L, const RHS &R)
class_match< BinaryOperator > m_BinOp()
Match an arbitrary binary operation and ignore it.
BinaryOp_match< LHS, RHS, Instruction::URem > m_URem(const LHS &L, const RHS &R)
class_match< Constant > m_Constant()
Match an arbitrary Constant and ignore it.
ap_match< APInt > m_APInt(const APInt *&Res)
Match a ConstantInt or splatted ConstantVector, binding the specified pointer to the contained APInt.
CastInst_match< OpTy, TruncInst > m_Trunc(const OpTy &Op)
Matches Trunc.
bool match(Val *V, const Pattern &P)
bind_ty< Instruction > m_Instruction(Instruction *&I)
Match an instruction, capturing it if we match.
specificval_ty m_Specific(const Value *V)
Match if we have a specific specified value.
DisjointOr_match< LHS, RHS > m_DisjointOr(const LHS &L, const RHS &R)
TwoOps_match< Val_t, Idx_t, Instruction::ExtractElement > m_ExtractElt(const Val_t &Val, const Idx_t &Idx)
Matches ExtractElementInst.
class_match< ConstantInt > m_ConstantInt()
Match an arbitrary ConstantInt and ignore it.
IntrinsicID_match m_Intrinsic()
Match intrinsic calls like this: m_Intrinsic<Intrinsic::fabs>(m_Value(X))
ThreeOps_match< Cond, LHS, RHS, Instruction::Select > m_Select(const Cond &C, const LHS &L, const RHS &R)
Matches SelectInst.
match_combine_and< LTy, RTy > m_CombineAnd(const LTy &L, const RTy &R)
Combine two pattern matchers matching L && R.
BinaryOp_match< LHS, RHS, Instruction::Mul > m_Mul(const LHS &L, const RHS &R)
TwoOps_match< V1_t, V2_t, Instruction::ShuffleVector > m_Shuffle(const V1_t &v1, const V2_t &v2)
Matches ShuffleVectorInst independently of mask value.
OneOps_match< OpTy, Instruction::Load > m_Load(const OpTy &Op)
Matches LoadInst.
CastInst_match< OpTy, ZExtInst > m_ZExt(const OpTy &Op)
Matches ZExt.
BinOpPred_match< LHS, RHS, is_bitwiselogic_op, true > m_c_BitwiseLogic(const LHS &L, const RHS &R)
Matches bitwise logic operations in either order.
class_match< CmpInst > m_Cmp()
Matches any compare instruction and ignore it.
CastOperator_match< OpTy, Instruction::BitCast > m_BitCast(const OpTy &Op)
Matches BitCast.
match_combine_or< CastInst_match< OpTy, SExtInst >, NNegZExt_match< OpTy > > m_SExtLike(const OpTy &Op)
Match either "sext" or "zext nneg".
class_match< Value > m_Value()
Match an arbitrary value and ignore it.
BinaryOp_match< LHS, RHS, Instruction::LShr > m_LShr(const LHS &L, const RHS &R)
match_combine_or< CastInst_match< OpTy, ZExtInst >, CastInst_match< OpTy, SExtInst > > m_ZExtOrSExt(const OpTy &Op)
FNeg_match< OpTy > m_FNeg(const OpTy &X)
Match 'fneg X' as 'fsub -0.0, X'.
BinaryOp_match< LHS, RHS, Instruction::Shl > m_Shl(const LHS &L, const RHS &R)
auto m_Undef()
Match an arbitrary undef constant.
is_zero m_Zero()
Match any null constant or a vector with all elements equal to 0.
ThreeOps_match< Val_t, Elt_t, Idx_t, Instruction::InsertElement > m_InsertElt(const Val_t &Val, const Elt_t &Elt, const Idx_t &Idx)
Matches InsertElementInst.
@ Valid
The data is already valid.
initializer< Ty > init(const Ty &Val)
PointerTypeMap run(const Module &M)
Compute the PointerTypeMap for the module M.
@ User
could "use" a pointer
NodeAddr< PhiNode * > Phi
NodeAddr< UseNode * > Use
friend class Instruction
Iterator for Instructions in a `BasicBlock.
This is an optimization pass for GlobalISel generic memory operations.
auto drop_begin(T &&RangeOrContainer, size_t N=1)
Return a range covering RangeOrContainer with the first N elements excluded.
detail::zippy< detail::zip_shortest, T, U, Args... > zip(T &&t, U &&u, Args &&...args)
zip iterator for two or more iteratable types.
FunctionAddr VTableAddr Value
void stable_sort(R &&Range)
UnaryFunction for_each(R &&Range, UnaryFunction F)
Provide wrappers to std::for_each which take ranges instead of having to pass begin/end explicitly.
LLVM_ABI bool RecursivelyDeleteTriviallyDeadInstructions(Value *V, const TargetLibraryInfo *TLI=nullptr, MemorySSAUpdater *MSSAU=nullptr, std::function< void(Value *)> AboutToDeleteCallback=std::function< void(Value *)>())
If the specified value is a trivially dead instruction, delete it.
detail::scope_exit< std::decay_t< Callable > > make_scope_exit(Callable &&F)
LLVM_ABI SDValue peekThroughBitcasts(SDValue V)
Return the non-bitcasted source operand of V if it exists.
auto enumerate(FirstRange &&First, RestRanges &&...Rest)
Given two or more input ranges, returns a new range whose values are tuples (A, B,...
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
unsigned Log2_64_Ceil(uint64_t Value)
Return the ceil log base 2 of the specified value, 64 if the value is zero.
LLVM_ABI Value * simplifyUnOp(unsigned Opcode, Value *Op, const SimplifyQuery &Q)
Given operand for a UnaryOperator, fold the result or return null.
iterator_range< T > make_range(T x, T y)
Convenience function for iterating over sub-ranges.
LLVM_ABI unsigned getArithmeticReductionInstruction(Intrinsic::ID RdxID)
Returns the arithmetic instruction opcode used when expanding a reduction.
void append_range(Container &C, Range &&R)
Wrapper function to append range R to container C.
constexpr bool isUIntN(unsigned N, uint64_t x)
Checks if an unsigned integer fits into the given (dynamic) bit width.
LLVM_ABI Value * simplifyCall(CallBase *Call, Value *Callee, ArrayRef< Value * > Args, const SimplifyQuery &Q)
Given a callsite, callee, and arguments, fold the result or return null.
iterator_range< early_inc_iterator_impl< detail::IterOfRange< RangeT > > > make_early_inc_range(RangeT &&Range)
Make a range that does early increment to allow mutation of the underlying range without disrupting i...
LLVM_ABI bool mustSuppressSpeculation(const LoadInst &LI)
Return true if speculation of the given load must be suppressed to avoid ordering or interfering with...
LLVM_ABI bool widenShuffleMaskElts(int Scale, ArrayRef< int > Mask, SmallVectorImpl< int > &ScaledMask)
Try to transform a shuffle mask by replacing elements with the scaled index for an equivalent mask of...
constexpr bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
LLVM_ABI bool isSafeToSpeculativelyExecute(const Instruction *I, const Instruction *CtxI=nullptr, AssumptionCache *AC=nullptr, const DominatorTree *DT=nullptr, const TargetLibraryInfo *TLI=nullptr, bool UseVariableInfo=true, bool IgnoreUBImplyingAttrs=true)
Return true if the instruction does not have any effects besides calculating the result and does not ...
LLVM_ABI Value * getSplatValue(const Value *V)
Get splat value if the input is a splat vector or return nullptr.
LLVM_ABI ConstantRange computeConstantRange(const Value *V, bool ForSigned, bool UseInstrInfo=true, AssumptionCache *AC=nullptr, const Instruction *CtxI=nullptr, const DominatorTree *DT=nullptr, unsigned Depth=0)
Determine the possible constant range of an integer or vector of integer value.
unsigned M1(unsigned Val)
LLVM_ABI bool isInstructionTriviallyDead(Instruction *I, const TargetLibraryInfo *TLI=nullptr)
Return true if the result produced by the instruction is not used, and the instruction will return.
LLVM_ABI bool isSplatValue(const Value *V, int Index=-1, unsigned Depth=0)
Return true if each element of the vector value V is poisoned or equal to every other non-poisoned el...
constexpr bool isPowerOf2_32(uint32_t Value)
Return true if the argument is a power of two > 0.
bool isModSet(const ModRefInfo MRI)
void sort(IteratorTy Start, IteratorTy End)
LLVM_ABI void computeKnownBits(const Value *V, KnownBits &Known, const DataLayout &DL, AssumptionCache *AC=nullptr, const Instruction *CxtI=nullptr, const DominatorTree *DT=nullptr, bool UseInstrInfo=true, unsigned Depth=0)
Determine which bits of V are known to be either zero or one and return them in the KnownZero/KnownOn...
LLVM_ABI bool programUndefinedIfPoison(const Instruction *Inst)
LLVM_ABI bool isSafeToLoadUnconditionally(Value *V, Align Alignment, const APInt &Size, const DataLayout &DL, Instruction *ScanFrom, AssumptionCache *AC=nullptr, const DominatorTree *DT=nullptr, const TargetLibraryInfo *TLI=nullptr)
Return true if we know that executing a load from this value cannot trap.
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
class LLVM_GSL_OWNER SmallVector
Forward declaration of SmallVector so that calculateSmallVectorDefaultInlinedElements can reference s...
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
LLVM_ABI void propagateIRFlags(Value *I, ArrayRef< Value * > VL, Value *OpValue=nullptr, bool IncludeWrapFlags=true)
Get the intersection (logical and) of all of the potential IR flags of each scalar operation (VL) tha...
LLVM_ABI bool isKnownNonZero(const Value *V, const SimplifyQuery &Q, unsigned Depth=0)
Return true if the given value is known to be non-zero when defined.
MutableArrayRef(T &OneElt) -> MutableArrayRef< T >
constexpr int PoisonMaskElem
LLVM_ABI bool isSafeToSpeculativelyExecuteWithOpcode(unsigned Opcode, const Instruction *Inst, const Instruction *CtxI=nullptr, AssumptionCache *AC=nullptr, const DominatorTree *DT=nullptr, const TargetLibraryInfo *TLI=nullptr, bool UseVariableInfo=true, bool IgnoreUBImplyingAttrs=true)
This returns the same result as isSafeToSpeculativelyExecute if Opcode is the actual opcode of Inst.
IRBuilder(LLVMContext &, FolderTy, InserterTy, MDNode *, ArrayRef< OperandBundleDef >) -> IRBuilder< FolderTy, InserterTy >
LLVM_ABI Value * simplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, const SimplifyQuery &Q)
Given operands for a BinaryOperator, fold the result or return null.
LLVM_ABI void narrowShuffleMaskElts(int Scale, ArrayRef< int > Mask, SmallVectorImpl< int > &ScaledMask)
Replace each shuffle mask index with the scaled sequential indices for an equivalent mask of narrowed...
LLVM_ABI Intrinsic::ID getReductionForBinop(Instruction::BinaryOps Opc)
Returns the reduction intrinsic id corresponding to the binary operation.
@ And
Bitwise or logical AND of integers.
LLVM_ABI bool isVectorIntrinsicWithScalarOpAtArg(Intrinsic::ID ID, unsigned ScalarOpdIdx, const TargetTransformInfo *TTI)
Identifies if the vector form of the intrinsic has a scalar operand.
DWARFExpression::Operation Op
unsigned M0(unsigned Val)
constexpr unsigned BitWidth
LLVM_ABI bool isGuaranteedToTransferExecutionToSuccessor(const Instruction *I)
Return true if this function can prove that the instruction I will always transfer execution to one o...
constexpr bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
LLVM_ABI Constant * getLosslessInvCast(Constant *C, Type *InvCastTo, unsigned CastOp, const DataLayout &DL, PreservedCastFlags *Flags=nullptr)
Try to cast C to InvC losslessly, satisfying CastOp(InvC) equals C, or CastOp(InvC) is a refined valu...
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
auto find_if(R &&Range, UnaryPredicate P)
Provide wrappers to std::find_if which take ranges instead of having to pass begin/end explicitly.
bool is_contained(R &&Range, const E &Element)
Returns true if Element is found in Range.
Align commonAlignment(Align A, uint64_t Offset)
Returns the alignment that satisfies both alignments.
bool all_equal(std::initializer_list< T > Values)
Returns true if all Values in the initializer lists are equal or the list.
LLVM_ABI Value * simplifyCmpInst(CmpPredicate Predicate, Value *LHS, Value *RHS, const SimplifyQuery &Q)
Given operands for a CmpInst, fold the result or return null.
AnalysisManager< Function > FunctionAnalysisManager
Convenience typedef for the Function analysis manager.
LLVM_ABI bool isGuaranteedNotToBePoison(const Value *V, AssumptionCache *AC=nullptr, const Instruction *CtxI=nullptr, const DominatorTree *DT=nullptr, unsigned Depth=0)
Returns true if V cannot be poison, but may be undef.
Type * toVectorTy(Type *Scalar, ElementCount EC)
A helper function for converting Scalar types to vector types.
LLVM_ABI bool isTriviallyVectorizable(Intrinsic::ID ID)
Identify if the intrinsic is trivially vectorizable.
LLVM_ABI Intrinsic::ID getMinMaxReductionIntrinsicID(Intrinsic::ID IID)
Returns the llvm.vector.reduce min/max intrinsic that corresponds to the intrinsic op.
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
LLVM_ABI AAMDNodes adjustForAccess(unsigned AccessSize)
Create a new AAMDNode for accessing AccessSize bytes of this AAMDNode.
This struct is a compact representation of a valid (non-zero power of two) alignment.
unsigned countMaxActiveBits() const
Returns the maximum number of bits needed to represent all possible unsigned values with these known ...
APInt getMaxValue() const
Return the maximal unsigned value possible given these KnownBits.