43#define DEBUG_TYPE "vector-combine"
49STATISTIC(NumVecLoad,
"Number of vector loads formed");
50STATISTIC(NumVecCmp,
"Number of vector compares formed");
51STATISTIC(NumVecBO,
"Number of vector binops formed");
52STATISTIC(NumVecCmpBO,
"Number of vector compare + binop formed");
53STATISTIC(NumShufOfBitcast,
"Number of shuffles moved after bitcast");
54STATISTIC(NumScalarOps,
"Number of scalar unary + binary ops formed");
55STATISTIC(NumScalarCmp,
"Number of scalar compares formed");
56STATISTIC(NumScalarIntrinsic,
"Number of scalar intrinsic calls formed");
60 cl::desc(
"Disable all vector combine transforms"));
64 cl::desc(
"Disable binop extract to shuffle transforms"));
68 cl::desc(
"Max number of instructions to scan for vector combining."));
70static const unsigned InvalidIndex = std::numeric_limits<unsigned>::max();
78 bool TryEarlyFoldsOnly)
81 TryEarlyFoldsOnly(TryEarlyFoldsOnly) {}
88 const TargetTransformInfo &TTI;
89 const DominatorTree &DT;
94 const SimplifyQuery SQ;
98 bool TryEarlyFoldsOnly;
100 InstructionWorklist Worklist;
109 bool vectorizeLoadInsert(Instruction &
I);
110 bool widenSubvectorLoad(Instruction &
I);
111 ExtractElementInst *getShuffleExtract(ExtractElementInst *Ext0,
112 ExtractElementInst *Ext1,
113 unsigned PreferredExtractIndex)
const;
114 bool isExtractExtractCheap(ExtractElementInst *Ext0, ExtractElementInst *Ext1,
115 const Instruction &
I,
116 ExtractElementInst *&ConvertToShuffle,
117 unsigned PreferredExtractIndex);
120 bool foldExtractExtract(Instruction &
I);
121 bool foldInsExtFNeg(Instruction &
I);
122 bool foldInsExtBinop(Instruction &
I);
123 bool foldInsExtVectorToShuffle(Instruction &
I);
124 bool foldBitOpOfCastops(Instruction &
I);
125 bool foldBitOpOfCastConstant(Instruction &
I);
126 bool foldBitcastShuffle(Instruction &
I);
127 bool scalarizeOpOrCmp(Instruction &
I);
128 bool scalarizeVPIntrinsic(Instruction &
I);
129 bool foldExtractedCmps(Instruction &
I);
130 bool foldBinopOfReductions(Instruction &
I);
131 bool foldSingleElementStore(Instruction &
I);
132 bool scalarizeLoad(Instruction &
I);
133 bool scalarizeLoadExtract(LoadInst *LI, VectorType *VecTy,
Value *Ptr);
134 bool scalarizeLoadBitcast(LoadInst *LI, VectorType *VecTy,
Value *Ptr);
135 bool scalarizeExtExtract(Instruction &
I);
136 bool foldConcatOfBoolMasks(Instruction &
I);
137 bool foldPermuteOfBinops(Instruction &
I);
138 bool foldShuffleOfBinops(Instruction &
I);
139 bool foldShuffleOfSelects(Instruction &
I);
140 bool foldShuffleOfCastops(Instruction &
I);
141 bool foldShuffleOfShuffles(Instruction &
I);
142 bool foldPermuteOfIntrinsic(Instruction &
I);
143 bool foldShufflesOfLengthChangingShuffles(Instruction &
I);
144 bool foldShuffleOfIntrinsics(Instruction &
I);
145 bool foldShuffleToIdentity(Instruction &
I);
146 bool foldShuffleFromReductions(Instruction &
I);
147 bool foldShuffleChainsToReduce(Instruction &
I);
148 bool foldCastFromReductions(Instruction &
I);
149 bool foldSelectShuffle(Instruction &
I,
bool FromReduction =
false);
150 bool foldInterleaveIntrinsics(Instruction &
I);
151 bool shrinkType(Instruction &
I);
152 bool shrinkLoadForShuffles(Instruction &
I);
153 bool shrinkPhiOfShuffles(Instruction &
I);
155 void replaceValue(Instruction &Old,
Value &New,
bool Erase =
true) {
161 Worklist.pushUsersToWorkList(*NewI);
162 Worklist.pushValue(NewI);
179 SmallPtrSet<Value *, 4> Visited;
184 OpI,
nullptr,
nullptr, [&](
Value *V) {
189 NextInst = NextInst->getNextNode();
194 Worklist.pushUsersToWorkList(*OpI);
195 Worklist.pushValue(OpI);
215 if (!Load || !Load->isSimple() || !Load->hasOneUse() ||
216 Load->getFunction()->hasFnAttribute(Attribute::SanitizeMemTag) ||
222 Type *ScalarTy = Load->getType()->getScalarType();
224 unsigned MinVectorSize =
TTI.getMinVectorRegisterBitWidth();
225 if (!ScalarSize || !MinVectorSize || MinVectorSize % ScalarSize != 0 ||
232bool VectorCombine::vectorizeLoadInsert(
Instruction &
I) {
258 Value *SrcPtr =
Load->getPointerOperand()->stripPointerCasts();
261 unsigned MinVecNumElts = MinVectorSize / ScalarSize;
262 auto *MinVecTy = VectorType::get(ScalarTy, MinVecNumElts,
false);
263 unsigned OffsetEltIndex = 0;
271 unsigned OffsetBitWidth =
DL->getIndexTypeSizeInBits(SrcPtr->
getType());
272 APInt
Offset(OffsetBitWidth, 0);
282 uint64_t ScalarSizeInBytes = ScalarSize / 8;
283 if (
Offset.urem(ScalarSizeInBytes) != 0)
287 OffsetEltIndex =
Offset.udiv(ScalarSizeInBytes).getZExtValue();
288 if (OffsetEltIndex >= MinVecNumElts)
305 unsigned AS =
Load->getPointerAddressSpace();
324 unsigned OutputNumElts = Ty->getNumElements();
326 assert(OffsetEltIndex < MinVecNumElts &&
"Address offset too big");
327 Mask[0] = OffsetEltIndex;
334 if (OldCost < NewCost || !NewCost.
isValid())
345 replaceValue(
I, *VecLd);
353bool VectorCombine::widenSubvectorLoad(Instruction &
I) {
356 if (!Shuf->isIdentityWithPadding())
362 unsigned OpIndex =
any_of(Shuf->getShuffleMask(), [&NumOpElts](
int M) {
363 return M >= (int)(NumOpElts);
374 Value *SrcPtr =
Load->getPointerOperand()->stripPointerCasts();
382 unsigned AS =
Load->getPointerAddressSpace();
397 if (OldCost < NewCost || !NewCost.
isValid())
404 replaceValue(
I, *VecLd);
411ExtractElementInst *VectorCombine::getShuffleExtract(
412 ExtractElementInst *Ext0, ExtractElementInst *Ext1,
416 assert(Index0C && Index1C &&
"Expected constant extract indexes");
418 unsigned Index0 = Index0C->getZExtValue();
419 unsigned Index1 = Index1C->getZExtValue();
422 if (Index0 == Index1)
446 if (PreferredExtractIndex == Index0)
448 if (PreferredExtractIndex == Index1)
452 return Index0 > Index1 ? Ext0 : Ext1;
460bool VectorCombine::isExtractExtractCheap(ExtractElementInst *Ext0,
461 ExtractElementInst *Ext1,
462 const Instruction &
I,
463 ExtractElementInst *&ConvertToShuffle,
464 unsigned PreferredExtractIndex) {
467 assert(Ext0IndexC && Ext1IndexC &&
"Expected constant extract indexes");
469 unsigned Opcode =
I.getOpcode();
482 assert((Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) &&
483 "Expected a compare");
493 unsigned Ext0Index = Ext0IndexC->getZExtValue();
494 unsigned Ext1Index = Ext1IndexC->getZExtValue();
508 unsigned BestExtIndex = Extract0Cost > Extract1Cost ? Ext0Index : Ext1Index;
509 unsigned BestInsIndex = Extract0Cost > Extract1Cost ? Ext1Index : Ext0Index;
510 InstructionCost CheapExtractCost = std::min(Extract0Cost, Extract1Cost);
515 if (Ext0Src == Ext1Src && Ext0Index == Ext1Index) {
520 bool HasUseTax = Ext0 == Ext1 ? !Ext0->
hasNUses(2)
522 OldCost = CheapExtractCost + ScalarOpCost;
523 NewCost = VectorOpCost + CheapExtractCost + HasUseTax * CheapExtractCost;
527 OldCost = Extract0Cost + Extract1Cost + ScalarOpCost;
528 NewCost = VectorOpCost + CheapExtractCost +
533 ConvertToShuffle = getShuffleExtract(Ext0, Ext1, PreferredExtractIndex);
534 if (ConvertToShuffle) {
546 SmallVector<int> ShuffleMask(FixedVecTy->getNumElements(),
548 ShuffleMask[BestInsIndex] = BestExtIndex;
550 VecTy, VecTy, ShuffleMask,
CostKind, 0,
551 nullptr, {ConvertToShuffle});
554 VecTy, VecTy, {},
CostKind, 0,
nullptr,
562 return OldCost < NewCost;
574 ShufMask[NewIndex] = OldIndex;
575 return Builder.CreateShuffleVector(Vec, ShufMask,
"shift");
627 V1,
"foldExtExtBinop");
632 VecBOInst->copyIRFlags(&
I);
638bool VectorCombine::foldExtractExtract(Instruction &
I) {
669 ExtractElementInst *ExtractToChange;
670 if (isExtractExtractCheap(Ext0, Ext1,
I, ExtractToChange, InsertIndex))
676 if (ExtractToChange) {
677 unsigned CheapExtractIdx = ExtractToChange == Ext0 ? C1 : C0;
682 if (ExtractToChange == Ext0)
691 ? foldExtExtCmp(ExtOp0, ExtOp1, ExtIndex,
I)
692 : foldExtExtBinop(ExtOp0, ExtOp1, ExtIndex,
I);
695 replaceValue(
I, *NewExt);
701bool VectorCombine::foldInsExtFNeg(Instruction &
I) {
704 uint64_t ExtIdx, InsIdx;
719 auto *DstVecScalarTy = DstVecTy->getScalarType();
721 if (!SrcVecTy || DstVecScalarTy != SrcVecTy->getScalarType())
726 unsigned NumDstElts = DstVecTy->getNumElements();
727 unsigned NumSrcElts = SrcVecTy->getNumElements();
728 if (ExtIdx > NumSrcElts || InsIdx >= NumDstElts || NumDstElts == 1)
734 SmallVector<int>
Mask(NumDstElts);
735 std::iota(
Mask.begin(),
Mask.end(), 0);
736 Mask[InsIdx] = (ExtIdx % NumDstElts) + NumDstElts;
752 bool NeedLenChg = SrcVecTy->getNumElements() != NumDstElts;
755 SmallVector<int> SrcMask;
758 SrcMask[ExtIdx % NumDstElts] = ExtIdx;
760 DstVecTy, SrcVecTy, SrcMask,
CostKind);
764 <<
"\n OldCost: " << OldCost <<
" vs NewCost: " << NewCost
766 if (NewCost > OldCost)
769 Value *NewShuf, *LenChgShuf =
nullptr;
783 replaceValue(
I, *NewShuf);
789bool VectorCombine::foldInsExtBinop(Instruction &
I) {
790 BinaryOperator *VecBinOp, *SclBinOp;
822 <<
"\n OldCost: " << OldCost <<
" vs NewCost: " << NewCost
824 if (NewCost > OldCost)
835 NewInst->copyIRFlags(VecBinOp);
836 NewInst->andIRFlags(SclBinOp);
841 replaceValue(
I, *NewBO);
847bool VectorCombine::foldBitOpOfCastops(Instruction &
I) {
850 if (!BinOp || !BinOp->isBitwiseLogicOp())
856 if (!LHSCast || !RHSCast) {
857 LLVM_DEBUG(
dbgs() <<
" One or both operands are not cast instructions\n");
863 if (CastOpcode != RHSCast->getOpcode())
867 switch (CastOpcode) {
868 case Instruction::BitCast:
869 case Instruction::Trunc:
870 case Instruction::SExt:
871 case Instruction::ZExt:
877 Value *LHSSrc = LHSCast->getOperand(0);
878 Value *RHSSrc = RHSCast->getOperand(0);
884 auto *SrcTy = LHSSrc->
getType();
885 auto *DstTy =
I.getType();
888 if (CastOpcode != Instruction::BitCast &&
893 if (!SrcTy->getScalarType()->isIntegerTy() ||
894 !DstTy->getScalarType()->isIntegerTy())
909 LHSCastCost + RHSCastCost;
920 if (!LHSCast->hasOneUse())
921 NewCost += LHSCastCost;
922 if (!RHSCast->hasOneUse())
923 NewCost += RHSCastCost;
926 <<
" NewCost=" << NewCost <<
"\n");
928 if (NewCost > OldCost)
933 BinOp->getName() +
".inner");
935 NewBinOp->copyIRFlags(BinOp);
949 replaceValue(
I, *Result);
958bool VectorCombine::foldBitOpOfCastConstant(Instruction &
I) {
974 switch (CastOpcode) {
975 case Instruction::BitCast:
976 case Instruction::ZExt:
977 case Instruction::SExt:
978 case Instruction::Trunc:
984 Value *LHSSrc = LHSCast->getOperand(0);
986 auto *SrcTy = LHSSrc->
getType();
987 auto *DstTy =
I.getType();
990 if (CastOpcode != Instruction::BitCast &&
995 if (!SrcTy->getScalarType()->isIntegerTy() ||
996 !DstTy->getScalarType()->isIntegerTy())
1000 PreservedCastFlags RHSFlags;
1025 if (!LHSCast->hasOneUse())
1026 NewCost += LHSCastCost;
1028 LLVM_DEBUG(
dbgs() <<
"foldBitOpOfCastConstant: OldCost=" << OldCost
1029 <<
" NewCost=" << NewCost <<
"\n");
1031 if (NewCost > OldCost)
1036 LHSSrc, InvC,
I.getName() +
".inner");
1038 NewBinOp->copyIRFlags(&
I);
1058 replaceValue(
I, *Result);
1065bool VectorCombine::foldBitcastShuffle(Instruction &
I) {
1079 if (!DestTy || !SrcTy)
1082 unsigned DestEltSize = DestTy->getScalarSizeInBits();
1083 unsigned SrcEltSize = SrcTy->getScalarSizeInBits();
1084 if (SrcTy->getPrimitiveSizeInBits() % DestEltSize != 0)
1094 if (!(BCTy0 && BCTy0->getElementType() == DestTy->getElementType()) &&
1095 !(BCTy1 && BCTy1->getElementType() == DestTy->getElementType()))
1099 SmallVector<int, 16> NewMask;
1100 if (DestEltSize <= SrcEltSize) {
1103 assert(SrcEltSize % DestEltSize == 0 &&
"Unexpected shuffle mask");
1104 unsigned ScaleFactor = SrcEltSize / DestEltSize;
1109 assert(DestEltSize % SrcEltSize == 0 &&
"Unexpected shuffle mask");
1110 unsigned ScaleFactor = DestEltSize / SrcEltSize;
1117 unsigned NumSrcElts = SrcTy->getPrimitiveSizeInBits() / DestEltSize;
1118 auto *NewShuffleTy =
1120 auto *OldShuffleTy =
1122 unsigned NumOps = IsUnary ? 1 : 2;
1132 TargetTransformInfo::CastContextHint::None,
1137 TargetTransformInfo::CastContextHint::None,
1140 LLVM_DEBUG(
dbgs() <<
"Found a bitcasted shuffle: " <<
I <<
"\n OldCost: "
1141 << OldCost <<
" vs NewCost: " << NewCost <<
"\n");
1143 if (NewCost > OldCost || !NewCost.
isValid())
1151 replaceValue(
I, *Shuf);
1158bool VectorCombine::scalarizeVPIntrinsic(Instruction &
I) {
1172 if (!ScalarOp0 || !ScalarOp1)
1180 auto IsAllTrueMask = [](
Value *MaskVal) {
1183 return ConstValue->isAllOnesValue();
1197 SmallVector<int>
Mask;
1199 Mask.resize(FVTy->getNumElements(), 0);
1208 Args.push_back(
V->getType());
1209 IntrinsicCostAttributes
Attrs(IntrID, VecTy, Args);
1214 std::optional<unsigned> FunctionalOpcode =
1216 std::optional<Intrinsic::ID> ScalarIntrID = std::nullopt;
1217 if (!FunctionalOpcode) {
1226 IntrinsicCostAttributes
Attrs(*ScalarIntrID, VecTy->getScalarType(), Args);
1236 InstructionCost NewCost = ScalarOpCost + SplatCost + CostToKeepSplats;
1238 LLVM_DEBUG(
dbgs() <<
"Found a VP Intrinsic to scalarize: " << VPI
1241 <<
", Cost of scalarizing:" << NewCost <<
"\n");
1244 if (OldCost < NewCost || !NewCost.
isValid())
1255 bool SafeToSpeculate;
1261 *FunctionalOpcode, &VPI,
nullptr, &AC, &DT);
1262 if (!SafeToSpeculate &&
1269 {ScalarOp0, ScalarOp1})
1271 ScalarOp0, ScalarOp1);
1280bool VectorCombine::scalarizeOpOrCmp(Instruction &
I) {
1285 if (!UO && !BO && !CI && !
II)
1293 if (Arg->getType() !=
II->getType() &&
1303 for (User *U :
I.users())
1310 std::optional<uint64_t>
Index;
1312 auto Ops =
II ?
II->args() :
I.operands();
1316 uint64_t InsIdx = 0;
1321 if (OpTy->getElementCount().getKnownMinValue() <= InsIdx)
1327 else if (InsIdx != *Index)
1344 if (!
Index.has_value())
1348 Type *ScalarTy = VecTy->getScalarType();
1349 assert(VecTy->isVectorTy() &&
1352 "Unexpected types for insert element into binop or cmp");
1354 unsigned Opcode =
I.getOpcode();
1362 }
else if (UO || BO) {
1366 IntrinsicCostAttributes ScalarICA(
1367 II->getIntrinsicID(), ScalarTy,
1370 IntrinsicCostAttributes VectorICA(
1371 II->getIntrinsicID(), VecTy,
1378 Value *NewVecC =
nullptr;
1380 NewVecC =
simplifyCmpInst(CI->getPredicate(), VecCs[0], VecCs[1], SQ);
1383 simplifyUnOp(UO->getOpcode(), VecCs[0], UO->getFastMathFlags(), SQ);
1385 NewVecC =
simplifyBinOp(BO->getOpcode(), VecCs[0], VecCs[1], SQ);
1399 for (
auto [Idx,
Op, VecC, Scalar] :
enumerate(
Ops, VecCs, ScalarOps)) {
1401 II->getIntrinsicID(), Idx, &
TTI)))
1404 Instruction::InsertElement, VecTy,
CostKind, *Index, VecC, Scalar);
1405 OldCost += InsertCost;
1406 NewCost += !
Op->hasOneUse() * InsertCost;
1410 if (OldCost < NewCost || !NewCost.
isValid())
1420 ++NumScalarIntrinsic;
1430 Scalar = Builder.
CreateCmp(CI->getPredicate(), ScalarOps[0], ScalarOps[1]);
1436 Scalar->setName(
I.getName() +
".scalar");
1441 ScalarInst->copyIRFlags(&
I);
1444 replaceValue(
I, *Insert);
1451bool VectorCombine::foldExtractedCmps(Instruction &
I) {
1456 if (!BI || !
I.getType()->isIntegerTy(1))
1461 Value *B0 =
I.getOperand(0), *B1 =
I.getOperand(1);
1464 CmpPredicate
P0,
P1;
1476 uint64_t Index0, Index1;
1483 ExtractElementInst *ConvertToShuf = getShuffleExtract(Ext0, Ext1,
CostKind);
1486 assert((ConvertToShuf == Ext0 || ConvertToShuf == Ext1) &&
1487 "Unknown ExtractElementInst");
1492 unsigned CmpOpcode =
1507 Ext0Cost + Ext1Cost + CmpCost * 2 +
1513 int CheapIndex = ConvertToShuf == Ext0 ? Index1 : Index0;
1514 int ExpensiveIndex = ConvertToShuf == Ext0 ? Index0 : Index1;
1519 ShufMask[CheapIndex] = ExpensiveIndex;
1524 NewCost += Ext0->
hasOneUse() ? 0 : Ext0Cost;
1525 NewCost += Ext1->
hasOneUse() ? 0 : Ext1Cost;
1530 if (OldCost < NewCost || !NewCost.
isValid())
1540 Value *
LHS = ConvertToShuf == Ext0 ? Shuf : VCmp;
1541 Value *
RHS = ConvertToShuf == Ext0 ? VCmp : Shuf;
1544 replaceValue(
I, *NewExt);
1557 unsigned ReductionOpc =
1563 CostBeforeReduction =
1564 TTI.getCastInstrCost(RedOp->getOpcode(), VecRedTy, ExtType,
1566 CostAfterReduction =
1567 TTI.getExtendedReductionCost(ReductionOpc, IsUnsigned,
II.getType(),
1571 if (RedOp &&
II.getIntrinsicID() == Intrinsic::vector_reduce_add &&
1577 (Op0->
getOpcode() == RedOp->getOpcode() || Op0 == Op1)) {
1584 TTI.getCastInstrCost(Op0->
getOpcode(), MulType, ExtType,
1587 TTI.getArithmeticInstrCost(Instruction::Mul, MulType,
CostKind);
1589 TTI.getCastInstrCost(RedOp->getOpcode(), VecRedTy, MulType,
1592 CostBeforeReduction = ExtCost * 2 + MulCost + Ext2Cost;
1593 CostAfterReduction =
TTI.getMulAccReductionCost(
1594 IsUnsigned, ReductionOpc,
II.getType(), ExtType,
CostKind);
1597 CostAfterReduction =
TTI.getArithmeticReductionCost(ReductionOpc, VecRedTy,
1601bool VectorCombine::foldBinopOfReductions(Instruction &
I) {
1604 if (BinOpOpc == Instruction::Sub)
1605 ReductionIID = Intrinsic::vector_reduce_add;
1609 auto checkIntrinsicAndGetItsArgument = [](
Value *
V,
1614 if (
II->getIntrinsicID() == IID &&
II->hasOneUse())
1615 return II->getArgOperand(0);
1619 Value *V0 = checkIntrinsicAndGetItsArgument(
I.getOperand(0), ReductionIID);
1622 Value *V1 = checkIntrinsicAndGetItsArgument(
I.getOperand(1), ReductionIID);
1631 unsigned ReductionOpc =
1644 CostOfRedOperand0 + CostOfRedOperand1 +
1647 if (NewCost >= OldCost || !NewCost.
isValid())
1651 <<
"\n OldCost: " << OldCost <<
" vs NewCost: " << NewCost
1654 if (BinOpOpc == Instruction::Or)
1655 VectorBO = Builder.
CreateOr(V0, V1,
"",
1661 replaceValue(
I, *Rdx);
1669 unsigned NumScanned = 0;
1670 return std::any_of(Begin, End, [&](
const Instruction &Instr) {
1679class ScalarizationResult {
1680 enum class StatusTy { Unsafe, Safe, SafeWithFreeze };
1685 ScalarizationResult(StatusTy Status,
Value *ToFreeze =
nullptr)
1686 : Status(Status), ToFreeze(ToFreeze) {}
1689 ScalarizationResult(
const ScalarizationResult &
Other) =
default;
1690 ~ScalarizationResult() {
1691 assert(!ToFreeze &&
"freeze() not called with ToFreeze being set");
1694 static ScalarizationResult unsafe() {
return {StatusTy::Unsafe}; }
1695 static ScalarizationResult safe() {
return {StatusTy::Safe}; }
1696 static ScalarizationResult safeWithFreeze(
Value *ToFreeze) {
1697 return {StatusTy::SafeWithFreeze, ToFreeze};
1701 bool isSafe()
const {
return Status == StatusTy::Safe; }
1703 bool isUnsafe()
const {
return Status == StatusTy::Unsafe; }
1706 bool isSafeWithFreeze()
const {
return Status == StatusTy::SafeWithFreeze; }
1711 Status = StatusTy::Unsafe;
1715 void freeze(IRBuilderBase &Builder, Instruction &UserI) {
1716 assert(isSafeWithFreeze() &&
1717 "should only be used when freezing is required");
1719 "UserI must be a user of ToFreeze");
1720 IRBuilder<>::InsertPointGuard Guard(Builder);
1725 if (
U.get() == ToFreeze)
1742 uint64_t NumElements = VecTy->getElementCount().getKnownMinValue();
1746 if (
C->getValue().ult(NumElements))
1747 return ScalarizationResult::safe();
1748 return ScalarizationResult::unsafe();
1753 return ScalarizationResult::unsafe();
1755 APInt Zero(IntWidth, 0);
1756 APInt MaxElts(IntWidth, NumElements);
1762 true, &AC, CtxI, &DT)))
1763 return ScalarizationResult::safe();
1764 return ScalarizationResult::unsafe();
1777 if (ValidIndices.
contains(IdxRange))
1778 return ScalarizationResult::safeWithFreeze(IdxBase);
1779 return ScalarizationResult::unsafe();
1791 C->getZExtValue() *
DL.getTypeStoreSize(ScalarType));
1803bool VectorCombine::foldSingleElementStore(Instruction &
I) {
1815 if (!
match(
SI->getValueOperand(),
1822 Value *SrcAddr =
Load->getPointerOperand()->stripPointerCasts();
1825 if (!
Load->isSimple() ||
Load->getParent() !=
SI->getParent() ||
1826 !
DL->typeSizeEqualsStoreSize(
Load->getType()->getScalarType()) ||
1827 SrcAddr !=
SI->getPointerOperand()->stripPointerCasts())
1831 if (ScalarizableIdx.isUnsafe() ||
1838 Worklist.
push(Load);
1840 if (ScalarizableIdx.isSafeWithFreeze())
1843 SI->getValueOperand()->getType(),
SI->getPointerOperand(),
1844 {ConstantInt::get(Idx->getType(), 0), Idx});
1848 std::max(
SI->getAlign(),
Load->getAlign()), NewElement->
getType(), Idx,
1851 replaceValue(
I, *NSI);
1861bool VectorCombine::scalarizeLoad(Instruction &
I) {
1868 if (LI->isVolatile() || !
DL->typeSizeEqualsStoreSize(VecTy->getScalarType()))
1871 bool AllExtracts =
true;
1872 bool AllBitcasts =
true;
1874 unsigned NumInstChecked = 0;
1879 for (User *U : LI->users()) {
1881 if (!UI || UI->getParent() != LI->getParent())
1886 if (UI->use_empty())
1890 AllExtracts =
false;
1892 AllBitcasts =
false;
1896 for (Instruction &
I :
1897 make_range(std::next(LI->getIterator()), UI->getIterator())) {
1904 LastCheckedInst = UI;
1909 return scalarizeLoadExtract(LI, VecTy, Ptr);
1911 return scalarizeLoadBitcast(LI, VecTy, Ptr);
1916bool VectorCombine::scalarizeLoadExtract(LoadInst *LI, VectorType *VecTy,
1921 DenseMap<ExtractElementInst *, ScalarizationResult> NeedFreeze;
1924 for (
auto &Pair : NeedFreeze)
1925 Pair.second.discard();
1933 for (User *U : LI->
users()) {
1938 if (ScalarIdx.isUnsafe())
1940 if (ScalarIdx.isSafeWithFreeze()) {
1941 NeedFreeze.try_emplace(UI, ScalarIdx);
1942 ScalarIdx.discard();
1948 Index ?
Index->getZExtValue() : -1);
1956 LLVM_DEBUG(
dbgs() <<
"Found all extractions of a vector load: " << *LI
1957 <<
"\n LoadExtractCost: " << OriginalCost
1958 <<
" vs ScalarizedCost: " << ScalarizedCost <<
"\n");
1960 if (ScalarizedCost >= OriginalCost)
1967 Type *ElemType = VecTy->getElementType();
1970 for (User *U : LI->
users()) {
1972 Value *Idx = EI->getIndexOperand();
1975 auto It = NeedFreeze.find(EI);
1976 if (It != NeedFreeze.end())
1983 Builder.
CreateLoad(ElemType,
GEP, EI->getName() +
".scalar"));
1985 Align ScalarOpAlignment =
1987 NewLoad->setAlignment(ScalarOpAlignment);
1990 size_t Offset = ConstIdx->getZExtValue() *
DL->getTypeStoreSize(ElemType);
1995 replaceValue(*EI, *NewLoad,
false);
1998 FailureGuard.release();
2003bool VectorCombine::scalarizeLoadBitcast(LoadInst *LI, VectorType *VecTy,
2009 Type *TargetScalarType =
nullptr;
2010 unsigned VecBitWidth =
DL->getTypeSizeInBits(VecTy);
2012 for (User *U : LI->
users()) {
2015 Type *DestTy = BC->getDestTy();
2019 unsigned DestBitWidth =
DL->getTypeSizeInBits(DestTy);
2020 if (DestBitWidth != VecBitWidth)
2024 if (!TargetScalarType)
2025 TargetScalarType = DestTy;
2026 else if (TargetScalarType != DestTy)
2034 if (!TargetScalarType)
2042 LLVM_DEBUG(
dbgs() <<
"Found vector load feeding only bitcasts: " << *LI
2043 <<
"\n OriginalCost: " << OriginalCost
2044 <<
" vs ScalarizedCost: " << ScalarizedCost <<
"\n");
2046 if (ScalarizedCost >= OriginalCost)
2057 ScalarLoad->copyMetadata(*LI);
2060 for (User *U : LI->
users()) {
2062 replaceValue(*BC, *ScalarLoad,
false);
2068bool VectorCombine::scalarizeExtExtract(Instruction &
I) {
2083 Type *ScalarDstTy = DstTy->getElementType();
2084 if (
DL->getTypeSizeInBits(SrcTy) !=
DL->getTypeSizeInBits(ScalarDstTy))
2090 unsigned ExtCnt = 0;
2091 bool ExtLane0 =
false;
2092 for (User *U : Ext->users()) {
2106 Instruction::And, ScalarDstTy,
CostKind,
2109 (ExtCnt - ExtLane0) *
2111 Instruction::LShr, ScalarDstTy,
CostKind,
2114 if (ScalarCost > VectorCost)
2117 Value *ScalarV = Ext->getOperand(0);
2124 SmallDenseSet<ConstantInt *, 8> ExtractedLanes;
2125 bool AllExtractsTriggerUB =
true;
2126 ExtractElementInst *LastExtract =
nullptr;
2128 for (User *U : Ext->users()) {
2131 AllExtractsTriggerUB =
false;
2135 if (!LastExtract || LastExtract->
comesBefore(Extract))
2136 LastExtract = Extract;
2138 if (ExtractedLanes.
size() != DstTy->getNumElements() ||
2139 !AllExtractsTriggerUB ||
2147 uint64_t SrcEltSizeInBits =
DL->getTypeSizeInBits(SrcTy->getElementType());
2148 uint64_t EltBitMask = (1ull << SrcEltSizeInBits) - 1;
2149 uint64_t TotalBits =
DL->getTypeSizeInBits(SrcTy);
2151 Value *
Mask = ConstantInt::get(PackedTy, EltBitMask);
2152 for (User *U : Ext->users()) {
2158 ? (TotalBits - SrcEltSizeInBits - Idx * SrcEltSizeInBits)
2159 : (Idx * SrcEltSizeInBits);
2162 U->replaceAllUsesWith(
And);
2170bool VectorCombine::foldConcatOfBoolMasks(Instruction &
I) {
2171 Type *Ty =
I.getType();
2176 if (
DL->isBigEndian())
2187 uint64_t ShAmtX = 0;
2195 uint64_t ShAmtY = 0;
2203 if (ShAmtX > ShAmtY) {
2211 uint64_t ShAmtDiff = ShAmtY - ShAmtX;
2212 unsigned NumSHL = (ShAmtX > 0) + (ShAmtY > 0);
2217 MaskTy->getNumElements() != ShAmtDiff ||
2218 MaskTy->getNumElements() > (
BitWidth / 2))
2223 Type::getIntNTy(Ty->
getContext(), ConcatTy->getNumElements());
2224 auto *MaskIntTy = Type::getIntNTy(Ty->
getContext(), ShAmtDiff);
2227 std::iota(ConcatMask.begin(), ConcatMask.end(), 0);
2244 if (Ty != ConcatIntTy)
2250 LLVM_DEBUG(
dbgs() <<
"Found a concatenation of bitcasted bool masks: " <<
I
2251 <<
"\n OldCost: " << OldCost <<
" vs NewCost: " << NewCost
2254 if (NewCost > OldCost)
2264 if (Ty != ConcatIntTy) {
2274 replaceValue(
I, *Result);
2280bool VectorCombine::foldPermuteOfBinops(Instruction &
I) {
2281 BinaryOperator *BinOp;
2282 ArrayRef<int> OuterMask;
2291 Value *Op00, *Op01, *Op10, *Op11;
2292 ArrayRef<int> Mask0, Mask1;
2299 if (!Match0 && !Match1)
2312 if (!ShuffleDstTy || !BinOpTy || !Op0Ty || !Op1Ty)
2315 unsigned NumSrcElts = BinOpTy->getNumElements();
2320 any_of(OuterMask, [NumSrcElts](
int M) {
return M >= (int)NumSrcElts; }))
2324 SmallVector<int> NewMask0, NewMask1;
2325 for (
int M : OuterMask) {
2326 if (M < 0 || M >= (
int)NumSrcElts) {
2330 NewMask0.
push_back(Match0 ? Mask0[M] : M);
2331 NewMask1.
push_back(Match1 ? Mask1[M] : M);
2335 unsigned NumOpElts = Op0Ty->getNumElements();
2336 bool IsIdentity0 = ShuffleDstTy == Op0Ty &&
2337 all_of(NewMask0, [NumOpElts](
int M) {
return M < (int)NumOpElts; }) &&
2339 bool IsIdentity1 = ShuffleDstTy == Op1Ty &&
2340 all_of(NewMask1, [NumOpElts](
int M) {
return M < (int)NumOpElts; }) &&
2347 BinOpTy, OuterMask,
CostKind, 0,
nullptr, {BinOp}, &
I);
2363 Op0Ty, NewMask0,
CostKind, 0,
nullptr, {Op00, Op01});
2367 Op1Ty, NewMask1,
CostKind, 0,
nullptr, {Op10, Op11});
2369 LLVM_DEBUG(
dbgs() <<
"Found a shuffle feeding a shuffled binop: " <<
I
2370 <<
"\n OldCost: " << OldCost <<
" vs NewCost: " << NewCost
2374 if (NewCost > OldCost)
2385 NewInst->copyIRFlags(BinOp);
2389 replaceValue(
I, *NewBO);
2395bool VectorCombine::foldShuffleOfBinops(Instruction &
I) {
2396 ArrayRef<int> OldMask;
2403 if (
LHS->getOpcode() !=
RHS->getOpcode())
2407 bool IsCommutative =
false;
2416 IsCommutative = BinaryOperator::isCommutative(BO->getOpcode());
2427 if (!ShuffleDstTy || !BinResTy || !BinOpTy ||
X->getType() !=
Z->getType())
2430 unsigned NumSrcElts = BinOpTy->getNumElements();
2433 if (IsCommutative &&
X != Z &&
Y != W && (
X == W ||
Y == Z))
2436 auto ConvertToUnary = [NumSrcElts](
int &
M) {
2437 if (M >= (
int)NumSrcElts)
2441 SmallVector<int> NewMask0(OldMask);
2449 SmallVector<int> NewMask1(OldMask);
2472 ArrayRef<int> InnerMask;
2474 m_Mask(InnerMask)))) &&
2477 [NumSrcElts](
int M) {
return M < (int)NumSrcElts; })) {
2489 bool ReducedInstCount =
false;
2490 ReducedInstCount |= MergeInner(
X, 0, NewMask0,
CostKind);
2491 ReducedInstCount |= MergeInner(
Y, 0, NewMask1,
CostKind);
2492 ReducedInstCount |= MergeInner(Z, NumSrcElts, NewMask0,
CostKind);
2493 ReducedInstCount |= MergeInner(W, NumSrcElts, NewMask1,
CostKind);
2495 auto *ShuffleCmpTy =
2512 <<
"\n OldCost: " << OldCost <<
" vs NewCost: " << NewCost
2519 if (ReducedInstCount ? (NewCost > OldCost) : (NewCost >= OldCost))
2527 : Builder.
CreateCmp(PredLHS, Shuf0, Shuf1);
2531 NewInst->copyIRFlags(
LHS);
2532 NewInst->andIRFlags(
RHS);
2537 replaceValue(
I, *NewBO);
2544bool VectorCombine::foldShuffleOfSelects(Instruction &
I) {
2546 Value *C1, *
T1, *F1, *C2, *T2, *F2;
2555 if (!C1VecTy || !C2VecTy || C1VecTy != C2VecTy)
2561 if (((SI0FOp ==
nullptr) != (SI1FOp ==
nullptr)) ||
2562 ((SI0FOp !=
nullptr) &&
2563 (SI0FOp->getFastMathFlags() != SI1FOp->getFastMathFlags())))
2569 auto SelOp = Instruction::Select;
2576 {
I.getOperand(0),
I.getOperand(1)}, &
I);
2580 Mask,
CostKind, 0,
nullptr, {C1, C2});
2586 toVectorTy(Type::getInt1Ty(
I.getContext()), DstVecTy->getNumElements()));
2591 <<
"\n OldCost: " << OldCost <<
" vs NewCost: " << NewCost
2593 if (NewCost > OldCost)
2602 NewSel = Builder.
CreateSelectFMF(ShuffleCmp, ShuffleTrue, ShuffleFalse,
2603 SI0FOp->getFastMathFlags());
2605 NewSel = Builder.
CreateSelect(ShuffleCmp, ShuffleTrue, ShuffleFalse);
2610 replaceValue(
I, *NewSel);
2616bool VectorCombine::foldShuffleOfCastops(Instruction &
I) {
2618 ArrayRef<int> OldMask;
2627 if (!C0 || (IsBinaryShuffle && !C1))
2634 if (!IsBinaryShuffle && Opcode == Instruction::BitCast)
2637 if (IsBinaryShuffle) {
2638 if (C0->getSrcTy() != C1->getSrcTy())
2641 if (Opcode != C1->getOpcode()) {
2643 Opcode = Instruction::SExt;
2652 if (!ShuffleDstTy || !CastDstTy || !CastSrcTy)
2655 unsigned NumSrcElts = CastSrcTy->getNumElements();
2656 unsigned NumDstElts = CastDstTy->getNumElements();
2657 assert((NumDstElts == NumSrcElts || Opcode == Instruction::BitCast) &&
2658 "Only bitcasts expected to alter src/dst element counts");
2662 if (NumDstElts != NumSrcElts && (NumSrcElts % NumDstElts) != 0 &&
2663 (NumDstElts % NumSrcElts) != 0)
2666 SmallVector<int, 16> NewMask;
2667 if (NumSrcElts >= NumDstElts) {
2670 assert(NumSrcElts % NumDstElts == 0 &&
"Unexpected shuffle mask");
2671 unsigned ScaleFactor = NumSrcElts / NumDstElts;
2676 assert(NumDstElts % NumSrcElts == 0 &&
"Unexpected shuffle mask");
2677 unsigned ScaleFactor = NumDstElts / NumSrcElts;
2682 auto *NewShuffleDstTy =
2691 if (IsBinaryShuffle)
2706 if (IsBinaryShuffle) {
2716 <<
"\n OldCost: " << OldCost <<
" vs NewCost: " << NewCost
2718 if (NewCost > OldCost)
2722 if (IsBinaryShuffle)
2732 NewInst->copyIRFlags(C0);
2733 if (IsBinaryShuffle)
2734 NewInst->andIRFlags(C1);
2738 replaceValue(
I, *Cast);
2748bool VectorCombine::foldShuffleOfShuffles(Instruction &
I) {
2749 ArrayRef<int> OuterMask;
2750 Value *OuterV0, *OuterV1;
2755 ArrayRef<int> InnerMask0, InnerMask1;
2756 Value *X0, *X1, *Y0, *Y1;
2761 if (!Match0 && !Match1)
2766 SmallVector<int, 16> PoisonMask1;
2771 InnerMask1 = PoisonMask1;
2775 X0 = Match0 ? X0 : OuterV0;
2776 Y0 = Match0 ? Y0 : OuterV0;
2777 X1 = Match1 ? X1 : OuterV1;
2778 Y1 = Match1 ? Y1 : OuterV1;
2782 if (!ShuffleDstTy || !ShuffleSrcTy || !ShuffleImmTy ||
2786 unsigned NumSrcElts = ShuffleSrcTy->getNumElements();
2787 unsigned NumImmElts = ShuffleImmTy->getNumElements();
2792 SmallVector<int, 16> NewMask(OuterMask);
2793 Value *NewX =
nullptr, *NewY =
nullptr;
2794 for (
int &M : NewMask) {
2795 Value *Src =
nullptr;
2796 if (0 <= M && M < (
int)NumImmElts) {
2800 Src =
M >= (int)NumSrcElts ? Y0 : X0;
2801 M =
M >= (int)NumSrcElts ? (M - NumSrcElts) :
M;
2803 }
else if (M >= (
int)NumImmElts) {
2808 Src =
M >= (int)NumSrcElts ? Y1 : X1;
2809 M =
M >= (int)NumSrcElts ? (M - NumSrcElts) :
M;
2813 assert(0 <= M && M < (
int)NumSrcElts &&
"Unexpected shuffle mask index");
2822 if (!NewX || NewX == Src) {
2826 if (!NewY || NewY == Src) {
2842 replaceValue(
I, *NewX);
2859 bool IsUnary =
all_of(NewMask, [&](
int M) {
return M < (int)NumSrcElts; });
2865 nullptr, {NewX, NewY});
2867 NewCost += InnerCost0;
2869 NewCost += InnerCost1;
2872 <<
"\n OldCost: " << OldCost <<
" vs NewCost: " << NewCost
2874 if (NewCost > OldCost)
2878 replaceValue(
I, *Shuf);
2894bool VectorCombine::foldShufflesOfLengthChangingShuffles(Instruction &
I) {
2899 unsigned ChainLength = 0;
2900 SmallVector<int>
Mask;
2901 SmallVector<int> YMask;
2911 ArrayRef<int> OuterMask;
2912 Value *OuterV0, *OuterV1;
2913 if (ChainLength != 0 && !Trunk->
hasOneUse())
2916 m_Mask(OuterMask))))
2918 if (OuterV0->
getType() != TrunkType) {
2924 ArrayRef<int> InnerMask0, InnerMask1;
2925 Value *A0, *A1, *B0, *B1;
2930 bool Match0Leaf = Match0 && A0->
getType() !=
I.getType();
2931 bool Match1Leaf = Match1 && A1->
getType() !=
I.getType();
2932 if (Match0Leaf == Match1Leaf) {
2938 SmallVector<int> CommutedOuterMask;
2945 for (
int &M : CommutedOuterMask) {
2948 if (M < (
int)NumTrunkElts)
2953 OuterMask = CommutedOuterMask;
2972 int NumLeafElts = YType->getNumElements();
2973 SmallVector<int> LocalYMask(InnerMask1);
2974 for (
int &M : LocalYMask) {
2975 if (M >= NumLeafElts)
2985 Mask.assign(OuterMask);
2986 YMask.
assign(LocalYMask);
2987 OldCost = NewCost = LocalOldCost;
2994 SmallVector<int> NewYMask(YMask);
2996 for (
auto [CombinedM, LeafM] :
llvm::zip(NewYMask, LocalYMask)) {
2997 if (LeafM == -1 || CombinedM == LeafM)
2999 if (CombinedM == -1) {
3009 SmallVector<int> NewMask;
3010 NewMask.
reserve(NumTrunkElts);
3011 for (
int M : Mask) {
3012 if (M < 0 || M >=
static_cast<int>(NumTrunkElts))
3027 if (LocalNewCost >= NewCost && LocalOldCost < LocalNewCost - NewCost)
3031 if (ChainLength == 1) {
3032 dbgs() <<
"Found chain of shuffles fed by length-changing shuffles: "
3035 dbgs() <<
" next chain link: " << *Trunk <<
'\n'
3036 <<
" old cost: " << (OldCost + LocalOldCost)
3037 <<
" new cost: " << LocalNewCost <<
'\n';
3042 OldCost += LocalOldCost;
3043 NewCost = LocalNewCost;
3047 if (ChainLength <= 1)
3051 return M < 0 || M >=
static_cast<int>(NumTrunkElts);
3054 for (
int &M : Mask) {
3055 if (M >=
static_cast<int>(NumTrunkElts))
3056 M = YMask[
M - NumTrunkElts];
3060 replaceValue(
I, *Root);
3067 replaceValue(
I, *Root);
3073bool VectorCombine::foldShuffleOfIntrinsics(Instruction &
I) {
3075 ArrayRef<int> OldMask;
3086 if (IID != II1->getIntrinsicID())
3091 if (!ShuffleDstTy || !II0Ty)
3097 for (
unsigned I = 0,
E = II0->arg_size();
I !=
E; ++
I)
3099 II0->getArgOperand(
I) != II1->getArgOperand(
I))
3106 II0Ty, OldMask,
CostKind, 0,
nullptr, {II0, II1}, &
I);
3110 SmallDenseSet<std::pair<Value *, Value *>> SeenOperandPairs;
3111 for (
unsigned I = 0,
E = II0->arg_size();
I !=
E; ++
I) {
3113 NewArgsTy.
push_back(II0->getArgOperand(
I)->getType());
3117 ShuffleDstTy->getNumElements());
3119 std::pair<Value *, Value *> OperandPair =
3120 std::make_pair(II0->getArgOperand(
I), II1->getArgOperand(
I));
3121 if (!SeenOperandPairs.
insert(OperandPair).second) {
3127 CostKind, 0,
nullptr, {II0->getArgOperand(
I), II1->getArgOperand(
I)});
3130 IntrinsicCostAttributes NewAttr(IID, ShuffleDstTy, NewArgsTy);
3134 <<
"\n OldCost: " << OldCost <<
" vs NewCost: " << NewCost
3137 if (NewCost > OldCost)
3141 SmallDenseMap<std::pair<Value *, Value *>,
Value *> ShuffleCache;
3142 for (
unsigned I = 0,
E = II0->arg_size();
I !=
E; ++
I)
3146 std::pair<Value *, Value *> OperandPair =
3147 std::make_pair(II0->getArgOperand(
I), II1->getArgOperand(
I));
3148 auto It = ShuffleCache.
find(OperandPair);
3149 if (It != ShuffleCache.
end()) {
3155 II1->getArgOperand(
I), OldMask);
3156 ShuffleCache[OperandPair] = Shuf;
3164 NewInst->copyIRFlags(II0);
3165 NewInst->andIRFlags(II1);
3168 replaceValue(
I, *NewIntrinsic);
3174bool VectorCombine::foldPermuteOfIntrinsic(Instruction &
I) {
3186 if (!ShuffleDstTy || !IntrinsicSrcTy)
3190 unsigned NumSrcElts = IntrinsicSrcTy->getNumElements();
3191 if (
any_of(Mask, [NumSrcElts](
int M) {
return M >= (int)NumSrcElts; }))
3202 IntrinsicSrcTy, Mask,
CostKind, 0,
nullptr, {V0}, &
I);
3206 for (
unsigned I = 0,
E = II0->arg_size();
I !=
E; ++
I) {
3208 NewArgsTy.
push_back(II0->getArgOperand(
I)->getType());
3212 ShuffleDstTy->getNumElements());
3215 ArgTy, VecTy, Mask,
CostKind, 0,
nullptr,
3216 {II0->getArgOperand(
I)});
3219 IntrinsicCostAttributes NewAttr(IID, ShuffleDstTy, NewArgsTy);
3222 LLVM_DEBUG(
dbgs() <<
"Found a permute of intrinsic: " <<
I <<
"\n OldCost: "
3223 << OldCost <<
" vs NewCost: " << NewCost <<
"\n");
3225 if (NewCost > OldCost)
3230 for (
unsigned I = 0,
E = II0->arg_size();
I !=
E; ++
I) {
3245 replaceValue(
I, *NewIntrinsic);
3255 int M = SV->getMaskValue(Lane);
3258 if (
static_cast<unsigned>(M) < NumElts) {
3259 U = &SV->getOperandUse(0);
3262 U = &SV->getOperandUse(1);
3273 auto [U, Lane] = IL;
3287 unsigned NumElts = Ty->getNumElements();
3288 if (Item.
size() == NumElts || NumElts == 1 || Item.
size() % NumElts != 0)
3294 std::iota(ConcatMask.
begin(), ConcatMask.
end(), 0);
3300 unsigned NumSlices = Item.
size() / NumElts;
3305 for (
unsigned Slice = 0; Slice < NumSlices; ++Slice) {
3306 Use *SliceV = Item[Slice * NumElts].first;
3307 if (!SliceV || SliceV->get()->
getType() != Ty)
3309 for (
unsigned Elt = 0; Elt < NumElts; ++Elt) {
3310 auto [V, Lane] = Item[Slice * NumElts + Elt];
3311 if (Lane !=
static_cast<int>(Elt) || SliceV->get() != V->get())
3324 auto [FrontU, FrontLane] = Item.
front();
3326 if (IdentityLeafs.
contains(FrontU)) {
3327 return FrontU->get();
3331 return Builder.CreateShuffleVector(FrontU->get(), Mask);
3333 if (ConcatLeafs.
contains(FrontU)) {
3337 for (
unsigned S = 0; S < Values.
size(); ++S)
3338 Values[S] = Item[S * NumElts].first->get();
3340 while (Values.
size() > 1) {
3343 std::iota(Mask.begin(), Mask.end(), 0);
3345 for (
unsigned S = 0; S < NewValues.
size(); ++S)
3347 Builder.CreateShuffleVector(Values[S * 2], Values[S * 2 + 1], Mask);
3355 unsigned NumOps =
I->getNumOperands() - (
II ? 1 : 0);
3357 for (
unsigned Idx = 0; Idx <
NumOps; Idx++) {
3360 Ops[Idx] =
II->getOperand(Idx);
3364 Ty, IdentityLeafs, SplatLeafs, ConcatLeafs,
3369 for (
const auto &Lane : Item)
3382 auto *
Value = Builder.CreateCmp(CI->getPredicate(),
Ops[0],
Ops[1]);
3392 auto *
Value = Builder.CreateCast(CI->getOpcode(),
Ops[0], DstTy);
3397 auto *
Value = Builder.CreateIntrinsic(DstTy,
II->getIntrinsicID(),
Ops);
3411bool VectorCombine::foldShuffleToIdentity(Instruction &
I) {
3413 if (!Ty ||
I.use_empty())
3417 for (
unsigned M = 0,
E = Ty->getNumElements(); M <
E; ++M)
3422 SmallPtrSet<Use *, 4> IdentityLeafs, SplatLeafs, ConcatLeafs;
3423 unsigned NumVisited = 0;
3425 while (!Worklist.
empty()) {
3430 auto [FrontU, FrontLane] = Item.
front();
3438 return X->getType() ==
Y->getType() &&
3443 if (FrontLane == 0 &&
3445 Ty->getNumElements() &&
3448 return !
E.value().first || (IsEquiv(
E.value().first->get(), FrontV) &&
3449 E.value().second == (int)
E.index());
3451 IdentityLeafs.
insert(FrontU);
3456 C &&
C->getSplatValue() &&
3464 SplatLeafs.
insert(FrontU);
3469 auto [FrontU, FrontLane] = Item.
front();
3470 auto [
U, Lane] = IL;
3471 return !
U || (
U->get() == FrontU->get() && Lane == FrontLane);
3473 SplatLeafs.
insert(FrontU);
3479 auto CheckLaneIsEquivalentToFirst = [Item](
InstLane IL) {
3483 Value *
V = IL.first->get();
3489 if (CI->getPredicate() !=
cast<CmpInst>(FrontV)->getPredicate())
3492 if (CI->getSrcTy()->getScalarType() !=
3497 SI->getOperand(0)->getType() !=
3504 II->getIntrinsicID() ==
3506 !
II->hasOperandBundles());
3513 BO && BO->isIntDivRem())
3518 }
else if (
isa<UnaryOperator, TruncInst, ZExtInst, SExtInst, FPToSIInst,
3519 FPToUIInst, SIToFPInst, UIToFPInst>(FrontU)) {
3526 if (DstTy && SrcTy &&
3527 SrcTy->getNumElements() == DstTy->getNumElements()) {
3538 !
II->hasOperandBundles()) {
3539 for (
unsigned Op = 0,
E =
II->getNumOperands() - 1;
Op <
E;
Op++) {
3558 ConcatLeafs.
insert(FrontU);
3565 if (NumVisited <= 1)
3568 LLVM_DEBUG(
dbgs() <<
"Found a superfluous identity shuffle: " <<
I <<
"\n");
3574 ConcatLeafs, Builder, &
TTI);
3575 replaceValue(
I, *V);
3582bool VectorCombine::foldShuffleFromReductions(Instruction &
I) {
3586 switch (
II->getIntrinsicID()) {
3587 case Intrinsic::vector_reduce_add:
3588 case Intrinsic::vector_reduce_mul:
3589 case Intrinsic::vector_reduce_and:
3590 case Intrinsic::vector_reduce_or:
3591 case Intrinsic::vector_reduce_xor:
3592 case Intrinsic::vector_reduce_smin:
3593 case Intrinsic::vector_reduce_smax:
3594 case Intrinsic::vector_reduce_umin:
3595 case Intrinsic::vector_reduce_umax:
3604 std::queue<Value *> Worklist;
3605 SmallPtrSet<Value *, 4> Visited;
3606 ShuffleVectorInst *Shuffle =
nullptr;
3610 while (!Worklist.empty()) {
3611 Value *CV = Worklist.front();
3623 if (CI->isBinaryOp()) {
3624 for (
auto *
Op : CI->operand_values())
3628 if (Shuffle && Shuffle != SV)
3645 for (
auto *V : Visited)
3646 for (
auto *U :
V->users())
3647 if (!Visited.contains(U) && U != &
I)
3650 FixedVectorType *VecType =
3654 FixedVectorType *ShuffleInputType =
3656 if (!ShuffleInputType)
3662 SmallVector<int> ConcatMask;
3664 sort(ConcatMask, [](
int X,
int Y) {
return (
unsigned)
X < (unsigned)
Y; });
3665 bool UsesSecondVec =
3666 any_of(ConcatMask, [&](
int M) {
return M >= (int)NumInputElts; });
3673 ShuffleInputType, ConcatMask,
CostKind);
3675 LLVM_DEBUG(
dbgs() <<
"Found a reduction feeding from a shuffle: " << *Shuffle
3677 LLVM_DEBUG(
dbgs() <<
" OldCost: " << OldCost <<
" vs NewCost: " << NewCost
3679 bool MadeChanges =
false;
3680 if (NewCost < OldCost) {
3684 LLVM_DEBUG(
dbgs() <<
"Created new shuffle: " << *NewShuffle <<
"\n");
3685 replaceValue(*Shuffle, *NewShuffle);
3691 MadeChanges |= foldSelectShuffle(*Shuffle,
true);
3737bool VectorCombine::foldShuffleChainsToReduce(Instruction &
I) {
3739 std::queue<Value *> InstWorklist;
3743 std::optional<unsigned int> CommonCallOp = std::nullopt;
3744 std::optional<Instruction::BinaryOps> CommonBinOp = std::nullopt;
3746 bool IsFirstCallOrBinInst =
true;
3747 bool ShouldBeCallOrBinInst =
true;
3753 SmallVector<Value *, 2> PrevVecV(2,
nullptr);
3763 int64_t
VecSize = FVT->getNumElements();
3769 unsigned int NumLevels =
Log2_64_Ceil(VecSize), VisitedCnt = 0;
3770 int64_t ShuffleMaskHalf = 1, ExpectedParityMask = 0;
3780 for (
int Cur = VecSize, Mask = NumLevels - 1; Cur > 1;
3781 Cur = (Cur + 1) / 2, --
Mask) {
3783 ExpectedParityMask |= (1ll <<
Mask);
3786 InstWorklist.push(VecOpEE);
3788 while (!InstWorklist.empty()) {
3789 Value *CI = InstWorklist.front();
3793 if (!ShouldBeCallOrBinInst)
3796 if (!IsFirstCallOrBinInst &&
3797 any_of(PrevVecV, [](
Value *VecV) {
return VecV ==
nullptr; }))
3802 if (
II != (IsFirstCallOrBinInst ? VecOpEE : PrevVecV[0]))
3804 IsFirstCallOrBinInst =
false;
3807 CommonCallOp =
II->getIntrinsicID();
3808 if (
II->getIntrinsicID() != *CommonCallOp)
3811 switch (
II->getIntrinsicID()) {
3812 case Intrinsic::umin:
3813 case Intrinsic::umax:
3814 case Intrinsic::smin:
3815 case Intrinsic::smax: {
3816 auto *Op0 =
II->getOperand(0);
3817 auto *Op1 =
II->getOperand(1);
3825 ShouldBeCallOrBinInst ^= 1;
3827 IntrinsicCostAttributes ICA(
3828 *CommonCallOp,
II->getType(),
3829 {PrevVecV[0]->getType(), PrevVecV[1]->getType()});
3836 InstWorklist.push(PrevVecV[1]);
3837 InstWorklist.push(PrevVecV[0]);
3841 if (!ShouldBeCallOrBinInst)
3844 if (!IsFirstCallOrBinInst &&
3845 any_of(PrevVecV, [](
Value *VecV) {
return VecV ==
nullptr; }))
3848 if (BinOp != (IsFirstCallOrBinInst ? VecOpEE : PrevVecV[0]))
3850 IsFirstCallOrBinInst =
false;
3858 switch (*CommonBinOp) {
3859 case BinaryOperator::Add:
3860 case BinaryOperator::Mul:
3861 case BinaryOperator::Or:
3862 case BinaryOperator::And:
3863 case BinaryOperator::Xor: {
3873 ShouldBeCallOrBinInst ^= 1;
3880 InstWorklist.push(PrevVecV[1]);
3881 InstWorklist.push(PrevVecV[0]);
3885 if (ShouldBeCallOrBinInst ||
3886 any_of(PrevVecV, [](
Value *VecV) {
return VecV ==
nullptr; }))
3889 if (SVInst != PrevVecV[1])
3892 ArrayRef<int> CurMask;
3898 for (
int Mask = 0, MaskSize = CurMask.
size(); Mask != MaskSize; ++Mask) {
3899 if (Mask < ShuffleMaskHalf &&
3900 CurMask[Mask] != ShuffleMaskHalf + Mask - (ExpectedParityMask & 1))
3902 if (Mask >= ShuffleMaskHalf && CurMask[Mask] != -1)
3907 ShuffleMaskHalf *= 2;
3908 ShuffleMaskHalf -= (ExpectedParityMask & 1);
3909 ExpectedParityMask >>= 1;
3912 SVInst->getType(), SVInst->getType(),
3916 if (!ExpectedParityMask && VisitedCnt == NumLevels)
3919 ShouldBeCallOrBinInst ^= 1;
3926 if (ShouldBeCallOrBinInst)
3929 assert(VecSize != -1 &&
"Expected Match for Vector Size");
3931 Value *FinalVecV = PrevVecV[0];
3943 IntrinsicCostAttributes ICA(ReducedOp, FinalVecVTy, {FinalVecV});
3946 if (NewCost >= OrigCost)
3949 auto *ReducedResult =
3951 replaceValue(
I, *ReducedResult);
3960bool VectorCombine::foldCastFromReductions(Instruction &
I) {
3965 bool TruncOnly =
false;
3968 case Intrinsic::vector_reduce_add:
3969 case Intrinsic::vector_reduce_mul:
3972 case Intrinsic::vector_reduce_and:
3973 case Intrinsic::vector_reduce_or:
3974 case Intrinsic::vector_reduce_xor:
3981 Value *ReductionSrc =
I.getOperand(0);
3993 Type *ResultTy =
I.getType();
3996 ReductionOpc, ReductionSrcTy, std::nullopt,
CostKind);
4006 if (OldCost <= NewCost || !NewCost.
isValid())
4010 II->getIntrinsicID(), {Src});
4012 replaceValue(
I, *NewCast);
4021 constexpr unsigned MaxVisited = 32;
4024 bool FoundReduction =
false;
4027 while (!WorkList.
empty()) {
4029 for (
User *U :
I->users()) {
4031 if (!UI || !Visited.
insert(UI).second)
4033 if (Visited.
size() > MaxVisited)
4039 switch (
II->getIntrinsicID()) {
4040 case Intrinsic::vector_reduce_add:
4041 case Intrinsic::vector_reduce_mul:
4042 case Intrinsic::vector_reduce_and:
4043 case Intrinsic::vector_reduce_or:
4044 case Intrinsic::vector_reduce_xor:
4045 case Intrinsic::vector_reduce_smin:
4046 case Intrinsic::vector_reduce_smax:
4047 case Intrinsic::vector_reduce_umin:
4048 case Intrinsic::vector_reduce_umax:
4049 FoundReduction =
true;
4062 return FoundReduction;
4075bool VectorCombine::foldSelectShuffle(Instruction &
I,
bool FromReduction) {
4080 if (!Op0 || !Op1 || Op0 == Op1 || !Op0->isBinaryOp() || !Op1->isBinaryOp() ||
4088 SmallPtrSet<Instruction *, 4> InputShuffles({SVI0A, SVI0B, SVI1A, SVI1B});
4090 if (!
I ||
I->getOperand(0)->getType() != VT)
4092 return any_of(
I->users(), [&](User *U) {
4093 return U != Op0 && U != Op1 &&
4094 !(isa<ShuffleVectorInst>(U) &&
4095 (InputShuffles.contains(cast<Instruction>(U)) ||
4096 isInstructionTriviallyDead(cast<Instruction>(U))));
4099 if (checkSVNonOpUses(SVI0A) || checkSVNonOpUses(SVI0B) ||
4100 checkSVNonOpUses(SVI1A) || checkSVNonOpUses(SVI1B))
4108 for (
auto *U :
I->users()) {
4110 if (!SV || SV->getType() != VT)
4112 if ((SV->getOperand(0) != Op0 && SV->getOperand(0) != Op1) ||
4113 (SV->getOperand(1) != Op0 && SV->getOperand(1) != Op1))
4120 if (!collectShuffles(Op0) || !collectShuffles(Op1))
4124 if (FromReduction && Shuffles.
size() > 1)
4129 if (!FromReduction) {
4130 for (ShuffleVectorInst *SV : Shuffles) {
4131 for (
auto *U : SV->users()) {
4134 Shuffles.push_back(SSV);
4146 int MaxV1Elt = 0, MaxV2Elt = 0;
4147 unsigned NumElts = VT->getNumElements();
4148 for (ShuffleVectorInst *SVN : Shuffles) {
4149 SmallVector<int>
Mask;
4150 SVN->getShuffleMask(Mask);
4154 Value *SVOp0 = SVN->getOperand(0);
4155 Value *SVOp1 = SVN->getOperand(1);
4160 for (
int &Elem : Mask) {
4166 if (SVOp0 == Op1 && SVOp1 == Op0) {
4170 if (SVOp0 != Op0 || SVOp1 != Op1)
4176 SmallVector<int> ReconstructMask;
4177 for (
unsigned I = 0;
I <
Mask.size();
I++) {
4180 }
else if (Mask[
I] <
static_cast<int>(NumElts)) {
4181 MaxV1Elt = std::max(MaxV1Elt, Mask[
I]);
4182 auto It =
find_if(V1, [&](
const std::pair<int, int> &
A) {
4183 return Mask[
I] ==
A.first;
4192 MaxV2Elt = std::max<int>(MaxV2Elt, Mask[
I] - NumElts);
4193 auto It =
find_if(V2, [&](
const std::pair<int, int> &
A) {
4194 return Mask[
I] -
static_cast<int>(NumElts) ==
A.first;
4208 sort(ReconstructMask);
4209 OrigReconstructMasks.
push_back(std::move(ReconstructMask));
4217 (MaxV1Elt ==
static_cast<int>(V1.
size()) - 1 &&
4218 MaxV2Elt ==
static_cast<int>(V2.
size()) - 1))
4230 if (InputShuffles.contains(SSV))
4232 return SV->getMaskValue(M);
4240 std::pair<int, int>
Y) {
4241 int MXA = GetBaseMaskValue(
A,
X.first);
4242 int MYA = GetBaseMaskValue(
A,
Y.first);
4245 stable_sort(V1, [&](std::pair<int, int>
A, std::pair<int, int>
B) {
4246 return SortBase(SVI0A,
A,
B);
4248 stable_sort(V2, [&](std::pair<int, int>
A, std::pair<int, int>
B) {
4249 return SortBase(SVI1A,
A,
B);
4254 for (
const auto &Mask : OrigReconstructMasks) {
4255 SmallVector<int> ReconstructMask;
4256 for (
int M : Mask) {
4258 auto It =
find_if(V, [M](
auto A) {
return A.second ==
M; });
4259 assert(It !=
V.end() &&
"Expected all entries in Mask");
4260 return std::distance(
V.begin(), It);
4264 else if (M <
static_cast<int>(NumElts)) {
4265 ReconstructMask.
push_back(FindIndex(V1, M));
4267 ReconstructMask.
push_back(NumElts + FindIndex(V2, M));
4270 ReconstructMasks.
push_back(std::move(ReconstructMask));
4275 SmallVector<int> V1A, V1B, V2A, V2B;
4276 for (
unsigned I = 0;
I < V1.
size();
I++) {
4277 V1A.
push_back(GetBaseMaskValue(SVI0A, V1[
I].first));
4278 V1B.
push_back(GetBaseMaskValue(SVI0B, V1[
I].first));
4280 for (
unsigned I = 0;
I < V2.
size();
I++) {
4281 V2A.
push_back(GetBaseMaskValue(SVI1A, V2[
I].first));
4282 V2B.
push_back(GetBaseMaskValue(SVI1B, V2[
I].first));
4284 while (V1A.
size() < NumElts) {
4288 while (V2A.
size() < NumElts) {
4300 VT, VT, SV->getShuffleMask(),
CostKind);
4307 unsigned ElementSize = VT->getElementType()->getPrimitiveSizeInBits();
4308 unsigned MaxVectorSize =
4310 unsigned MaxElementsInVector = MaxVectorSize / ElementSize;
4311 if (MaxElementsInVector == 0)
4320 std::set<SmallVector<int, 4>> UniqueShuffles;
4325 unsigned NumFullVectors =
Mask.size() / MaxElementsInVector;
4326 if (NumFullVectors < 2)
4327 return C + ShuffleCost;
4328 SmallVector<int, 4> SubShuffle(MaxElementsInVector);
4329 unsigned NumUniqueGroups = 0;
4330 unsigned NumGroups =
Mask.size() / MaxElementsInVector;
4333 for (
unsigned I = 0;
I < NumFullVectors; ++
I) {
4334 for (
unsigned J = 0; J < MaxElementsInVector; ++J)
4335 SubShuffle[J] = Mask[MaxElementsInVector *
I + J];
4336 if (UniqueShuffles.insert(SubShuffle).second)
4337 NumUniqueGroups += 1;
4339 return C + ShuffleCost * NumUniqueGroups / NumGroups;
4345 SmallVector<int, 16>
Mask;
4346 SV->getShuffleMask(Mask);
4347 return AddShuffleMaskAdjustedCost(
C, Mask);
4350 auto AllShufflesHaveSameOperands =
4351 [](SmallPtrSetImpl<Instruction *> &InputShuffles) {
4352 if (InputShuffles.size() < 2)
4354 ShuffleVectorInst *FirstSV =
4361 std::next(InputShuffles.begin()), InputShuffles.end(),
4362 [&](Instruction *
I) {
4363 ShuffleVectorInst *SV = dyn_cast<ShuffleVectorInst>(I);
4364 return SV && SV->getOperand(0) == In0 && SV->getOperand(1) == In1;
4373 CostBefore += std::accumulate(Shuffles.begin(), Shuffles.end(),
4375 if (AllShufflesHaveSameOperands(InputShuffles)) {
4376 UniqueShuffles.clear();
4377 CostBefore += std::accumulate(InputShuffles.begin(), InputShuffles.end(),
4380 CostBefore += std::accumulate(InputShuffles.begin(), InputShuffles.end(),
4386 FixedVectorType *Op0SmallVT =
4388 FixedVectorType *Op1SmallVT =
4393 UniqueShuffles.clear();
4394 CostAfter += std::accumulate(ReconstructMasks.begin(), ReconstructMasks.end(),
4396 std::set<SmallVector<int>> OutputShuffleMasks({V1A, V1B, V2A, V2B});
4398 std::accumulate(OutputShuffleMasks.begin(), OutputShuffleMasks.end(),
4401 LLVM_DEBUG(
dbgs() <<
"Found a binop select shuffle pattern: " <<
I <<
"\n");
4403 <<
" vs CostAfter: " << CostAfter <<
"\n");
4404 if (CostBefore < CostAfter ||
4415 if (InputShuffles.contains(SSV))
4417 return SV->getOperand(
Op);
4421 GetShuffleOperand(SVI0A, 1), V1A);
4424 GetShuffleOperand(SVI0B, 1), V1B);
4427 GetShuffleOperand(SVI1A, 1), V2A);
4430 GetShuffleOperand(SVI1B, 1), V2B);
4435 I->copyIRFlags(Op0,
true);
4440 I->copyIRFlags(Op1,
true);
4442 for (
int S = 0,
E = ReconstructMasks.size(); S !=
E; S++) {
4445 replaceValue(*Shuffles[S], *NSV,
false);
4448 Worklist.pushValue(NSV0A);
4449 Worklist.pushValue(NSV0B);
4450 Worklist.pushValue(NSV1A);
4451 Worklist.pushValue(NSV1B);
4461bool VectorCombine::shrinkType(Instruction &
I) {
4462 Value *ZExted, *OtherOperand;
4468 Value *ZExtOperand =
I.getOperand(
I.getOperand(0) == OtherOperand ? 1 : 0);
4472 unsigned BW = SmallTy->getElementType()->getPrimitiveSizeInBits();
4474 if (
I.getOpcode() == Instruction::LShr) {
4491 Instruction::ZExt, BigTy, SmallTy,
4492 TargetTransformInfo::CastContextHint::None,
CostKind);
4497 for (User *U : ZExtOperand->
users()) {
4504 ShrinkCost += ZExtCost;
4519 ShrinkCost += ZExtCost;
4526 Instruction::Trunc, SmallTy, BigTy,
4527 TargetTransformInfo::CastContextHint::None,
CostKind);
4532 if (ShrinkCost > CurrentCost)
4536 Value *Op0 = ZExted;
4539 if (
I.getOperand(0) == OtherOperand)
4546 replaceValue(
I, *NewZExtr);
4552bool VectorCombine::foldInsExtVectorToShuffle(Instruction &
I) {
4553 Value *DstVec, *SrcVec;
4554 uint64_t ExtIdx, InsIdx;
4564 if (!DstVecTy || !SrcVecTy ||
4565 SrcVecTy->getElementType() != DstVecTy->getElementType())
4568 unsigned NumDstElts = DstVecTy->getNumElements();
4569 unsigned NumSrcElts = SrcVecTy->getNumElements();
4570 if (InsIdx >= NumDstElts || ExtIdx >= NumSrcElts || NumDstElts == 1)
4577 bool NeedExpOrNarrow = NumSrcElts != NumDstElts;
4579 if (NeedDstSrcSwap) {
4581 Mask[InsIdx] = ExtIdx % NumDstElts;
4585 std::iota(
Mask.begin(),
Mask.end(), 0);
4586 Mask[InsIdx] = (ExtIdx % NumDstElts) + NumDstElts;
4599 SmallVector<int> ExtToVecMask;
4600 if (!NeedExpOrNarrow) {
4605 nullptr, {DstVec, SrcVec});
4611 ExtToVecMask[ExtIdx % NumDstElts] = ExtIdx;
4614 DstVecTy, SrcVecTy, ExtToVecMask,
CostKind);
4618 if (!Ext->hasOneUse())
4621 LLVM_DEBUG(
dbgs() <<
"Found a insert/extract shuffle-like pair: " <<
I
4622 <<
"\n OldCost: " << OldCost <<
" vs NewCost: " << NewCost
4625 if (OldCost < NewCost)
4628 if (NeedExpOrNarrow) {
4629 if (!NeedDstSrcSwap)
4642 replaceValue(
I, *Shuf);
4651bool VectorCombine::foldInterleaveIntrinsics(Instruction &
I) {
4652 const APInt *SplatVal0, *SplatVal1;
4662 auto *ExtVTy = VectorType::getExtendedElementVectorType(VTy);
4663 unsigned Width = VTy->getElementType()->getIntegerBitWidth();
4672 LLVM_DEBUG(
dbgs() <<
"VC: The cost to cast from " << *ExtVTy <<
" to "
4673 << *
I.getType() <<
" is too high.\n");
4677 APInt NewSplatVal = SplatVal1->
zext(Width * 2);
4678 NewSplatVal <<= Width;
4679 NewSplatVal |= SplatVal0->
zext(Width * 2);
4681 ExtVTy->getElementCount(), ConstantInt::get(
F.getContext(), NewSplatVal));
4689bool VectorCombine::shrinkLoadForShuffles(Instruction &
I) {
4691 if (!OldLoad || !OldLoad->isSimple())
4698 unsigned const OldNumElements = OldLoadTy->getNumElements();
4704 using IndexRange = std::pair<int, int>;
4705 auto GetIndexRangeInShuffles = [&]() -> std::optional<IndexRange> {
4706 IndexRange OutputRange = IndexRange(OldNumElements, -1);
4707 for (llvm::Use &Use :
I.uses()) {
4709 User *Shuffle =
Use.getUser();
4714 return std::nullopt;
4721 for (
int Index : Mask) {
4722 if (Index >= 0 && Index <
static_cast<int>(OldNumElements)) {
4723 OutputRange.first = std::min(Index, OutputRange.first);
4724 OutputRange.second = std::max(Index, OutputRange.second);
4729 if (OutputRange.second < OutputRange.first)
4730 return std::nullopt;
4736 if (std::optional<IndexRange> Indices = GetIndexRangeInShuffles()) {
4737 unsigned const NewNumElements = Indices->second + 1u;
4741 if (NewNumElements < OldNumElements) {
4746 Type *ElemTy = OldLoadTy->getElementType();
4748 Value *PtrOp = OldLoad->getPointerOperand();
4751 Instruction::Load, OldLoad->getType(), OldLoad->getAlign(),
4752 OldLoad->getPointerAddressSpace(),
CostKind);
4755 OldLoad->getPointerAddressSpace(),
CostKind);
4757 using UseEntry = std::pair<ShuffleVectorInst *, std::vector<int>>;
4759 unsigned const MaxIndex = NewNumElements * 2u;
4761 for (llvm::Use &Use :
I.uses()) {
4763 ArrayRef<int> OldMask = Shuffle->getShuffleMask();
4769 for (
int Index : OldMask) {
4770 if (Index >=
static_cast<int>(MaxIndex))
4784 dbgs() <<
"Found a load used only by shufflevector instructions: "
4785 <<
I <<
"\n OldCost: " << OldCost
4786 <<
" vs NewCost: " << NewCost <<
"\n");
4788 if (OldCost < NewCost || !NewCost.
isValid())
4794 NewLoad->copyMetadata(
I);
4797 for (UseEntry &Use : NewUses) {
4798 ShuffleVectorInst *Shuffle =
Use.first;
4799 std::vector<int> &NewMask =
Use.second;
4806 replaceValue(*Shuffle, *NewShuffle,
false);
4819bool VectorCombine::shrinkPhiOfShuffles(Instruction &
I) {
4821 if (!Phi ||
Phi->getNumIncomingValues() != 2u)
4825 ArrayRef<int> Mask0;
4826 ArrayRef<int> Mask1;
4839 auto const InputNumElements = InputVT->getNumElements();
4841 if (InputNumElements >= ResultVT->getNumElements())
4846 SmallVector<int, 16> NewMask;
4849 for (
auto [
M0,
M1] :
zip(Mask0, Mask1)) {
4850 if (
M0 >= 0 &&
M1 >= 0)
4852 else if (
M0 == -1 &&
M1 == -1)
4865 int MaskOffset = NewMask[0
u];
4866 unsigned Index = (InputNumElements + MaskOffset) % InputNumElements;
4869 for (
unsigned I = 0u;
I < InputNumElements; ++
I) {
4883 <<
"\n OldCost: " << OldCost <<
" vs NewCost: " << NewCost
4886 if (NewCost > OldCost)
4898 auto *NewPhi = Builder.
CreatePHI(NewShuf0->getType(), 2u);
4900 NewPhi->addIncoming(
Op,
Phi->getIncomingBlock(1u));
4906 replaceValue(*Phi, *NewShuf1);
4912bool VectorCombine::run() {
4926 auto Opcode =
I.getOpcode();
4934 if (IsFixedVectorType) {
4936 case Instruction::InsertElement:
4937 if (vectorizeLoadInsert(
I))
4940 case Instruction::ShuffleVector:
4941 if (widenSubvectorLoad(
I))
4952 if (scalarizeOpOrCmp(
I))
4954 if (scalarizeLoad(
I))
4956 if (scalarizeExtExtract(
I))
4958 if (scalarizeVPIntrinsic(
I))
4960 if (foldInterleaveIntrinsics(
I))
4964 if (Opcode == Instruction::Store)
4965 if (foldSingleElementStore(
I))
4969 if (TryEarlyFoldsOnly)
4976 if (IsFixedVectorType) {
4978 case Instruction::InsertElement:
4979 if (foldInsExtFNeg(
I))
4981 if (foldInsExtBinop(
I))
4983 if (foldInsExtVectorToShuffle(
I))
4986 case Instruction::ShuffleVector:
4987 if (foldPermuteOfBinops(
I))
4989 if (foldShuffleOfBinops(
I))
4991 if (foldShuffleOfSelects(
I))
4993 if (foldShuffleOfCastops(
I))
4995 if (foldShuffleOfShuffles(
I))
4997 if (foldPermuteOfIntrinsic(
I))
4999 if (foldShufflesOfLengthChangingShuffles(
I))
5001 if (foldShuffleOfIntrinsics(
I))
5003 if (foldSelectShuffle(
I))
5005 if (foldShuffleToIdentity(
I))
5008 case Instruction::Load:
5009 if (shrinkLoadForShuffles(
I))
5012 case Instruction::BitCast:
5013 if (foldBitcastShuffle(
I))
5016 case Instruction::And:
5017 case Instruction::Or:
5018 case Instruction::Xor:
5019 if (foldBitOpOfCastops(
I))
5021 if (foldBitOpOfCastConstant(
I))
5024 case Instruction::PHI:
5025 if (shrinkPhiOfShuffles(
I))
5035 case Instruction::Call:
5036 if (foldShuffleFromReductions(
I))
5038 if (foldCastFromReductions(
I))
5041 case Instruction::ExtractElement:
5042 if (foldShuffleChainsToReduce(
I))
5045 case Instruction::ICmp:
5046 case Instruction::FCmp:
5047 if (foldExtractExtract(
I))
5050 case Instruction::Or:
5051 if (foldConcatOfBoolMasks(
I))
5056 if (foldExtractExtract(
I))
5058 if (foldExtractedCmps(
I))
5060 if (foldBinopOfReductions(
I))
5069 bool MadeChange =
false;
5070 for (BasicBlock &BB :
F) {
5082 if (!
I->isDebugOrPseudoInst())
5083 MadeChange |= FoldInst(*
I);
5090 while (!Worklist.isEmpty()) {
5100 MadeChange |= FoldInst(*
I);
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
static cl::opt< unsigned > MaxInstrsToScan("aggressive-instcombine-max-scan-instrs", cl::init(64), cl::Hidden, cl::desc("Max number of instructions to scan for aggressive instcombine."))
This is the interface for LLVM's primary stateless and local alias analysis.
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
static cl::opt< OutputCostKind > CostKind("cost-kind", cl::desc("Target cost kind"), cl::init(OutputCostKind::RecipThroughput), cl::values(clEnumValN(OutputCostKind::RecipThroughput, "throughput", "Reciprocal throughput"), clEnumValN(OutputCostKind::Latency, "latency", "Instruction latency"), clEnumValN(OutputCostKind::CodeSize, "code-size", "Code size"), clEnumValN(OutputCostKind::SizeAndLatency, "size-latency", "Code size and latency"), clEnumValN(OutputCostKind::All, "all", "Print all cost kinds")))
This file defines the DenseMap class.
This is the interface for a simple mod/ref and alias analysis over globals.
const size_t AbstractManglingParser< Derived, Alloc >::NumOps
const AbstractManglingParser< Derived, Alloc >::OperatorInfo AbstractManglingParser< Derived, Alloc >::Ops[]
static void eraseInstruction(Instruction &I, ICFLoopSafetyInfo &SafetyInfo, MemorySSAUpdater &MSSAU)
MachineInstr unsigned OpIdx
uint64_t IntrinsicInst * II
FunctionAnalysisManager FAM
This file defines the make_scope_exit function, which executes user-defined cleanup logic at scope ex...
This file defines the SmallVector class.
This file defines the 'Statistic' class, which is designed to be an easy way to expose various metric...
#define STATISTIC(VARNAME, DESC)
static TableGen::Emitter::Opt Y("gen-skeleton-entry", EmitSkeleton, "Generate example skeleton entry")
static TableGen::Emitter::OptClass< SkeletonEmitter > X("gen-skeleton-class", "Generate example skeleton class")
static SymbolRef::Type getType(const Symbol *Sym)
static std::optional< unsigned > getOpcode(ArrayRef< VPValue * > Values)
Returns the opcode of Values or ~0 if they do not all agree.
static Value * generateNewInstTree(ArrayRef< InstLane > Item, FixedVectorType *Ty, const SmallPtrSet< Use *, 4 > &IdentityLeafs, const SmallPtrSet< Use *, 4 > &SplatLeafs, const SmallPtrSet< Use *, 4 > &ConcatLeafs, IRBuilderBase &Builder, const TargetTransformInfo *TTI)
static bool isFreeConcat(ArrayRef< InstLane > Item, TTI::TargetCostKind CostKind, const TargetTransformInfo &TTI)
Detect concat of multiple values into a vector.
static void analyzeCostOfVecReduction(const IntrinsicInst &II, TTI::TargetCostKind CostKind, const TargetTransformInfo &TTI, InstructionCost &CostBeforeReduction, InstructionCost &CostAfterReduction)
static SmallVector< InstLane > generateInstLaneVectorFromOperand(ArrayRef< InstLane > Item, int Op)
static Value * createShiftShuffle(Value *Vec, unsigned OldIndex, unsigned NewIndex, IRBuilderBase &Builder)
Create a shuffle that translates (shifts) 1 element from the input vector to a new element location.
static Align computeAlignmentAfterScalarization(Align VectorAlignment, Type *ScalarType, Value *Idx, const DataLayout &DL)
The memory operation on a vector of ScalarType had alignment of VectorAlignment.
static bool feedsIntoVectorReduction(ShuffleVectorInst *SVI)
Returns true if this ShuffleVectorInst eventually feeds into a vector reduction intrinsic (e....
static ScalarizationResult canScalarizeAccess(VectorType *VecTy, Value *Idx, Instruction *CtxI, AssumptionCache &AC, const DominatorTree &DT)
Check if it is legal to scalarize a memory access to VecTy at index Idx.
static cl::opt< bool > DisableVectorCombine("disable-vector-combine", cl::init(false), cl::Hidden, cl::desc("Disable all vector combine transforms"))
static InstLane lookThroughShuffles(Use *U, int Lane)
static bool canWidenLoad(LoadInst *Load, const TargetTransformInfo &TTI)
static const unsigned InvalidIndex
std::pair< Use *, int > InstLane
static Value * translateExtract(ExtractElementInst *ExtElt, unsigned NewIndex, IRBuilderBase &Builder)
Given an extract element instruction with constant index operand, shuffle the source vector (shift th...
static cl::opt< unsigned > MaxInstrsToScan("vector-combine-max-scan-instrs", cl::init(30), cl::Hidden, cl::desc("Max number of instructions to scan for vector combining."))
static cl::opt< bool > DisableBinopExtractShuffle("disable-binop-extract-shuffle", cl::init(false), cl::Hidden, cl::desc("Disable binop extract to shuffle transforms"))
static bool isMemModifiedBetween(BasicBlock::iterator Begin, BasicBlock::iterator End, const MemoryLocation &Loc, AAResults &AA)
static constexpr int Concat[]
A manager for alias analyses.
Class for arbitrary precision integers.
LLVM_ABI APInt zext(unsigned width) const
Zero extend to a new width.
static APInt getOneBitSet(unsigned numBits, unsigned BitNo)
Return an APInt with exactly one bit set in the result.
bool uge(const APInt &RHS) const
Unsigned greater or equal comparison.
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
const T & front() const
front - Get the first element.
size_t size() const
size - Get the array size.
A function analysis which provides an AssumptionCache.
A cache of @llvm.assume calls within a function.
LLVM_ABI bool hasAttribute(Attribute::AttrKind Kind) const
Return true if the attribute exists in this set.
InstListType::iterator iterator
Instruction iterators...
BinaryOps getOpcode() const
Represents analyses that only rely on functions' control flow.
Value * getArgOperand(unsigned i) const
iterator_range< User::op_iterator > args()
Iteration adapter for range-for loops.
static LLVM_ABI CastInst * Create(Instruction::CastOps, Value *S, Type *Ty, const Twine &Name="", InsertPosition InsertBefore=nullptr)
Provides a way to construct any of the CastInst subclasses using an opcode instead of the subclass's ...
static Type * makeCmpResultType(Type *opnd_type)
Create a result type for fcmp/icmp.
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
bool isFPPredicate() const
static LLVM_ABI std::optional< CmpPredicate > getMatching(CmpPredicate A, CmpPredicate B)
Compares two CmpPredicates taking samesign into account and returns the canonicalized CmpPredicate if...
static LLVM_ABI Constant * getExtractElement(Constant *Vec, Constant *Idx, Type *OnlyIfReducedTy=nullptr)
This is the shared class of boolean and integer constants.
const APInt & getValue() const
Return the constant as an APInt value reference.
This class represents a range of values.
LLVM_ABI ConstantRange urem(const ConstantRange &Other) const
Return a new range representing the possible values resulting from an unsigned remainder operation of...
LLVM_ABI ConstantRange binaryAnd(const ConstantRange &Other) const
Return a new range representing the possible values resulting from a binary-and of a value in this ra...
LLVM_ABI bool contains(const APInt &Val) const
Return true if the specified value is in the set.
static LLVM_ABI Constant * getSplat(ElementCount EC, Constant *Elt)
Return a ConstantVector with the specified constant in each element.
static LLVM_ABI Constant * get(ArrayRef< Constant * > V)
A parsed version of the target data layout string in and methods for querying it.
iterator find(const_arg_type_t< KeyT > Val)
Analysis pass which computes a DominatorTree.
Concrete subclass of DominatorTreeBase that is used to compute a normal dominator tree.
LLVM_ABI bool isReachableFromEntry(const Use &U) const
Provide an overload for a Use.
Convenience struct for specifying and reasoning about fast-math flags.
Class to represent fixed width SIMD vectors.
unsigned getNumElements() const
static FixedVectorType * getDoubleElementsVectorType(FixedVectorType *VTy)
static LLVM_ABI FixedVectorType * get(Type *ElementType, unsigned NumElts)
Common base class shared among various IRBuilders.
Value * CreateInsertElement(Type *VecTy, Value *NewElt, Value *Idx, const Twine &Name="")
Value * CreateExtractElement(Value *Vec, Value *Idx, const Twine &Name="")
LoadInst * CreateAlignedLoad(Type *Ty, Value *Ptr, MaybeAlign Align, const char *Name)
LLVM_ABI Value * CreateSelectFMF(Value *C, Value *True, Value *False, FMFSource FMFSource, const Twine &Name="", Instruction *MDFrom=nullptr)
LLVM_ABI Value * CreateVectorSplat(unsigned NumElts, Value *V, const Twine &Name="")
Return a vector value that contains.
LLVM_ABI Value * CreateSelect(Value *C, Value *True, Value *False, const Twine &Name="", Instruction *MDFrom=nullptr)
Value * CreateFreeze(Value *V, const Twine &Name="")
Value * CreateLShr(Value *LHS, Value *RHS, const Twine &Name="", bool isExact=false)
Value * CreateCast(Instruction::CastOps Op, Value *V, Type *DestTy, const Twine &Name="", MDNode *FPMathTag=nullptr, FMFSource FMFSource={})
void SetCurrentDebugLocation(DebugLoc L)
Set location information used by debugging information.
Value * CreateInBoundsGEP(Type *Ty, Value *Ptr, ArrayRef< Value * > IdxList, const Twine &Name="")
Value * CreatePointerBitCastOrAddrSpaceCast(Value *V, Type *DestTy, const Twine &Name="")
ConstantInt * getInt64(uint64_t C)
Get a constant 64-bit value.
LLVM_ABI CallInst * CreateIntrinsic(Intrinsic::ID ID, ArrayRef< Type * > Types, ArrayRef< Value * > Args, FMFSource FMFSource={}, const Twine &Name="")
Create a call to intrinsic ID with Args, mangled using Types.
ConstantInt * getInt32(uint32_t C)
Get a constant 32-bit value.
Value * CreateCmp(CmpInst::Predicate Pred, Value *LHS, Value *RHS, const Twine &Name="", MDNode *FPMathTag=nullptr)
PHINode * CreatePHI(Type *Ty, unsigned NumReservedValues, const Twine &Name="")
InstTy * Insert(InstTy *I, const Twine &Name="") const
Insert and return the specified instruction.
Value * CreateBitCast(Value *V, Type *DestTy, const Twine &Name="")
LoadInst * CreateLoad(Type *Ty, Value *Ptr, const char *Name)
Provided to resolve 'CreateLoad(Ty, Ptr, "...")' correctly, instead of converting the string to 'bool...
Value * CreateShl(Value *LHS, Value *RHS, const Twine &Name="", bool HasNUW=false, bool HasNSW=false)
LLVM_ABI Value * CreateNAryOp(unsigned Opc, ArrayRef< Value * > Ops, const Twine &Name="", MDNode *FPMathTag=nullptr)
Create either a UnaryOperator or BinaryOperator depending on Opc.
Value * CreateZExt(Value *V, Type *DestTy, const Twine &Name="", bool IsNonNeg=false)
Value * CreateShuffleVector(Value *V1, Value *V2, Value *Mask, const Twine &Name="")
Value * CreateAnd(Value *LHS, Value *RHS, const Twine &Name="")
StoreInst * CreateStore(Value *Val, Value *Ptr, bool isVolatile=false)
Value * CreateTrunc(Value *V, Type *DestTy, const Twine &Name="", bool IsNUW=false, bool IsNSW=false)
PointerType * getPtrTy(unsigned AddrSpace=0)
Fetch the type representing a pointer.
Value * CreateBinOp(Instruction::BinaryOps Opc, Value *LHS, Value *RHS, const Twine &Name="", MDNode *FPMathTag=nullptr)
void SetInsertPoint(BasicBlock *TheBB)
This specifies that created instructions should be appended to the end of the specified block.
Value * CreateFNegFMF(Value *V, FMFSource FMFSource, const Twine &Name="", MDNode *FPMathTag=nullptr)
Value * CreateOr(Value *LHS, Value *RHS, const Twine &Name="", bool IsDisjoint=false)
InstSimplifyFolder - Use InstructionSimplify to fold operations to existing values.
void push(Instruction *I)
Push the instruction onto the worklist stack.
LLVM_ABI void setHasNoUnsignedWrap(bool b=true)
Set or clear the nuw flag on this instruction, which must be an operator which supports this flag.
LLVM_ABI void copyIRFlags(const Value *V, bool IncludeWrapFlags=true)
Convenience method to copy supported exact, fast-math, and (optionally) wrapping flags from V to this...
LLVM_ABI void setHasNoSignedWrap(bool b=true)
Set or clear the nsw flag on this instruction, which must be an operator which supports this flag.
const DebugLoc & getDebugLoc() const
Return the debug location for this node as a DebugLoc.
LLVM_ABI void andIRFlags(const Value *V)
Logical 'and' of any supported wrapping, exact, and fast-math flags of V and this instruction.
LLVM_ABI void setNonNeg(bool b=true)
Set or clear the nneg flag on this instruction, which must be a zext instruction.
LLVM_ABI bool comesBefore(const Instruction *Other) const
Given an instruction Other in the same basic block as this instruction, return true if this instructi...
LLVM_ABI AAMDNodes getAAMetadata() const
Returns the AA metadata for this instruction.
unsigned getOpcode() const
Returns a member of one of the enums like Instruction::Add.
LLVM_ABI void copyMetadata(const Instruction &SrcInst, ArrayRef< unsigned > WL=ArrayRef< unsigned >())
Copy metadata from SrcInst to this instruction.
static LLVM_ABI IntegerType * get(LLVMContext &C, unsigned NumBits)
This static method is the primary way of constructing an IntegerType.
A wrapper class for inspecting calls to intrinsic functions.
Intrinsic::ID getIntrinsicID() const
Return the intrinsic ID of this intrinsic.
An instruction for reading from memory.
unsigned getPointerAddressSpace() const
Returns the address space of the pointer operand.
void setAlignment(Align Align)
Type * getPointerOperandType() const
Align getAlign() const
Return the alignment of the access that is being performed.
Representation for a specific memory location.
static LLVM_ABI MemoryLocation get(const LoadInst *LI)
Return a location with information about the memory reference by the given instruction.
void addIncoming(Value *V, BasicBlock *BB)
Add an incoming value to the end of the PHI list.
static LLVM_ABI PoisonValue * get(Type *T)
Static factory methods - Return an 'poison' object of the specified type.
A set of analyses that are preserved following a run of a transformation pass.
static PreservedAnalyses all()
Construct a special preserved set that preserves all passes.
PreservedAnalyses & preserveSet()
Mark an analysis set as preserved.
const SDValue & getOperand(unsigned Num) const
This instruction constructs a fixed permutation of two input vectors.
int getMaskValue(unsigned Elt) const
Return the shuffle mask value of this instruction for the given element index.
VectorType * getType() const
Overload to return most specific vector type.
static LLVM_ABI void getShuffleMask(const Constant *Mask, SmallVectorImpl< int > &Result)
Convert the input shuffle mask operand to a vector of integers.
static LLVM_ABI bool isIdentityMask(ArrayRef< int > Mask, int NumSrcElts)
Return true if this shuffle mask chooses elements from exactly one source vector without lane crossin...
static void commuteShuffleMask(MutableArrayRef< int > Mask, unsigned InVecNumElts)
Change values in a shuffle permute mask assuming the two vector operands of length InVecNumElts have ...
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
bool contains(ConstPtrType Ptr) const
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
void assign(size_type NumElts, ValueParamT Elt)
reference emplace_back(ArgTypes &&... Args)
void reserve(size_type N)
void append(ItTy in_start, ItTy in_end)
Add the specified range to the end of the SmallVector.
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
void setAlignment(Align Align)
Analysis pass providing the TargetTransformInfo.
The instances of the Type class are immutable: once they are created, they are never changed.
bool isPointerTy() const
True if this is an instance of PointerType.
LLVM_ABI TypeSize getPrimitiveSizeInBits() const LLVM_READONLY
Return the basic size of this type if it is a primitive type.
LLVMContext & getContext() const
Return the LLVMContext in which this type was uniqued.
LLVM_ABI unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type.
bool isFloatingPointTy() const
Return true if this is one of the floating-point types.
bool isIntegerTy() const
True if this is an instance of IntegerType.
A Use represents the edge between a Value definition and its users.
Value * getOperand(unsigned i) const
static LLVM_ABI bool isVPBinOp(Intrinsic::ID ID)
std::optional< unsigned > getFunctionalIntrinsicID() const
std::optional< unsigned > getFunctionalOpcode() const
LLVM Value Representation.
Type * getType() const
All values are typed, get the type of this value.
const Value * stripAndAccumulateInBoundsConstantOffsets(const DataLayout &DL, APInt &Offset) const
This is a wrapper around stripAndAccumulateConstantOffsets with the in-bounds requirement set to fals...
bool hasOneUse() const
Return true if there is exactly one use of this value.
LLVM_ABI void replaceAllUsesWith(Value *V)
Change all uses of this to point to a new Value.
iterator_range< user_iterator > users()
LLVM_ABI Align getPointerAlignment(const DataLayout &DL) const
Returns an alignment of the pointer value.
unsigned getValueID() const
Return an ID for the concrete type of this object.
LLVM_ABI bool hasNUses(unsigned N) const
Return true if this Value has exactly N uses.
LLVM_ABI StringRef getName() const
Return a constant reference to the value's name.
PreservedAnalyses run(Function &F, FunctionAnalysisManager &)
static LLVM_ABI VectorType * get(Type *ElementType, ElementCount EC)
This static method is the primary way to construct an VectorType.
std::pair< iterator, bool > insert(const ValueT &V)
const ParentTy * getParent() const
self_iterator getIterator()
NodeTy * getNextNode()
Get the next node, or nullptr for the list tail.
Abstract Attribute helper functions.
constexpr char Align[]
Key for Kernel::Arg::Metadata::mAlign.
constexpr char Args[]
Key for Kernel::Metadata::mArgs.
constexpr char Attrs[]
Key for Kernel::Metadata::mAttrs.
constexpr std::underlying_type_t< E > Mask()
Get a bitmask with 1s in all places up to the high-order bit of E's largest value.
@ C
The default llvm calling convention, compatible with C.
@ BasicBlock
Various leaf nodes.
LLVM_ABI AttributeSet getFnAttributes(LLVMContext &C, ID id)
Return the function attributes for an intrinsic.
SpecificConstantMatch m_ZeroInt()
Convenience matchers for specific integer values.
OneUse_match< SubPat > m_OneUse(const SubPat &SP)
class_match< PoisonValue > m_Poison()
Match an arbitrary poison constant.
BinaryOp_match< LHS, RHS, Instruction::And > m_And(const LHS &L, const RHS &R)
class_match< BinaryOperator > m_BinOp()
Match an arbitrary binary operation and ignore it.
BinaryOp_match< LHS, RHS, Instruction::URem > m_URem(const LHS &L, const RHS &R)
class_match< Constant > m_Constant()
Match an arbitrary Constant and ignore it.
ap_match< APInt > m_APInt(const APInt *&Res)
Match a ConstantInt or splatted ConstantVector, binding the specified pointer to the contained APInt.
CastInst_match< OpTy, TruncInst > m_Trunc(const OpTy &Op)
Matches Trunc.
bool match(Val *V, const Pattern &P)
bind_ty< Instruction > m_Instruction(Instruction *&I)
Match an instruction, capturing it if we match.
specificval_ty m_Specific(const Value *V)
Match if we have a specific specified value.
DisjointOr_match< LHS, RHS > m_DisjointOr(const LHS &L, const RHS &R)
TwoOps_match< Val_t, Idx_t, Instruction::ExtractElement > m_ExtractElt(const Val_t &Val, const Idx_t &Idx)
Matches ExtractElementInst.
class_match< ConstantInt > m_ConstantInt()
Match an arbitrary ConstantInt and ignore it.
IntrinsicID_match m_Intrinsic()
Match intrinsic calls like this: m_Intrinsic<Intrinsic::fabs>(m_Value(X))
ThreeOps_match< Cond, LHS, RHS, Instruction::Select > m_Select(const Cond &C, const LHS &L, const RHS &R)
Matches SelectInst.
match_combine_and< LTy, RTy > m_CombineAnd(const LTy &L, const RTy &R)
Combine two pattern matchers matching L && R.
BinaryOp_match< LHS, RHS, Instruction::Mul > m_Mul(const LHS &L, const RHS &R)
TwoOps_match< V1_t, V2_t, Instruction::ShuffleVector > m_Shuffle(const V1_t &v1, const V2_t &v2)
Matches ShuffleVectorInst independently of mask value.
OneOps_match< OpTy, Instruction::Load > m_Load(const OpTy &Op)
Matches LoadInst.
CastInst_match< OpTy, ZExtInst > m_ZExt(const OpTy &Op)
Matches ZExt.
BinOpPred_match< LHS, RHS, is_bitwiselogic_op, true > m_c_BitwiseLogic(const LHS &L, const RHS &R)
Matches bitwise logic operations in either order.
class_match< CmpInst > m_Cmp()
Matches any compare instruction and ignore it.
CastOperator_match< OpTy, Instruction::BitCast > m_BitCast(const OpTy &Op)
Matches BitCast.
match_combine_or< CastInst_match< OpTy, SExtInst >, NNegZExt_match< OpTy > > m_SExtLike(const OpTy &Op)
Match either "sext" or "zext nneg".
class_match< Value > m_Value()
Match an arbitrary value and ignore it.
BinaryOp_match< LHS, RHS, Instruction::LShr > m_LShr(const LHS &L, const RHS &R)
match_combine_or< CastInst_match< OpTy, ZExtInst >, CastInst_match< OpTy, SExtInst > > m_ZExtOrSExt(const OpTy &Op)
FNeg_match< OpTy > m_FNeg(const OpTy &X)
Match 'fneg X' as 'fsub -0.0, X'.
BinaryOp_match< LHS, RHS, Instruction::Shl > m_Shl(const LHS &L, const RHS &R)
auto m_Undef()
Match an arbitrary undef constant.
is_zero m_Zero()
Match any null constant or a vector with all elements equal to 0.
ThreeOps_match< Val_t, Elt_t, Idx_t, Instruction::InsertElement > m_InsertElt(const Val_t &Val, const Elt_t &Elt, const Idx_t &Idx)
Matches InsertElementInst.
@ Valid
The data is already valid.
initializer< Ty > init(const Ty &Val)
PointerTypeMap run(const Module &M)
Compute the PointerTypeMap for the module M.
@ User
could "use" a pointer
NodeAddr< PhiNode * > Phi
NodeAddr< UseNode * > Use
friend class Instruction
Iterator for Instructions in a `BasicBlock.
This is an optimization pass for GlobalISel generic memory operations.
auto drop_begin(T &&RangeOrContainer, size_t N=1)
Return a range covering RangeOrContainer with the first N elements excluded.
detail::zippy< detail::zip_shortest, T, U, Args... > zip(T &&t, U &&u, Args &&...args)
zip iterator for two or more iteratable types.
FunctionAddr VTableAddr Value
void stable_sort(R &&Range)
UnaryFunction for_each(R &&Range, UnaryFunction F)
Provide wrappers to std::for_each which take ranges instead of having to pass begin/end explicitly.
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
LLVM_ABI bool RecursivelyDeleteTriviallyDeadInstructions(Value *V, const TargetLibraryInfo *TLI=nullptr, MemorySSAUpdater *MSSAU=nullptr, std::function< void(Value *)> AboutToDeleteCallback=std::function< void(Value *)>())
If the specified value is a trivially dead instruction, delete it.
detail::scope_exit< std::decay_t< Callable > > make_scope_exit(Callable &&F)
LLVM_ABI SDValue peekThroughBitcasts(SDValue V)
Return the non-bitcasted source operand of V if it exists.
auto enumerate(FirstRange &&First, RestRanges &&...Rest)
Given two or more input ranges, returns a new range whose values are tuples (A, B,...
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
unsigned Log2_64_Ceil(uint64_t Value)
Return the ceil log base 2 of the specified value, 64 if the value is zero.
LLVM_ABI Value * simplifyUnOp(unsigned Opcode, Value *Op, const SimplifyQuery &Q)
Given operand for a UnaryOperator, fold the result or return null.
iterator_range< T > make_range(T x, T y)
Convenience function for iterating over sub-ranges.
LLVM_ABI unsigned getArithmeticReductionInstruction(Intrinsic::ID RdxID)
Returns the arithmetic instruction opcode used when expanding a reduction.
void append_range(Container &C, Range &&R)
Wrapper function to append range R to container C.
constexpr bool isUIntN(unsigned N, uint64_t x)
Checks if an unsigned integer fits into the given (dynamic) bit width.
LLVM_ABI Value * simplifyCall(CallBase *Call, Value *Callee, ArrayRef< Value * > Args, const SimplifyQuery &Q)
Given a callsite, callee, and arguments, fold the result or return null.
iterator_range< early_inc_iterator_impl< detail::IterOfRange< RangeT > > > make_early_inc_range(RangeT &&Range)
Make a range that does early increment to allow mutation of the underlying range without disrupting i...
LLVM_ABI bool mustSuppressSpeculation(const LoadInst &LI)
Return true if speculation of the given load must be suppressed to avoid ordering or interfering with...
LLVM_ABI bool widenShuffleMaskElts(int Scale, ArrayRef< int > Mask, SmallVectorImpl< int > &ScaledMask)
Try to transform a shuffle mask by replacing elements with the scaled index for an equivalent mask of...
LLVM_ABI bool isSafeToSpeculativelyExecute(const Instruction *I, const Instruction *CtxI=nullptr, AssumptionCache *AC=nullptr, const DominatorTree *DT=nullptr, const TargetLibraryInfo *TLI=nullptr, bool UseVariableInfo=true, bool IgnoreUBImplyingAttrs=true)
Return true if the instruction does not have any effects besides calculating the result and does not ...
LLVM_ABI Value * getSplatValue(const Value *V)
Get splat value if the input is a splat vector or return nullptr.
LLVM_ABI ConstantRange computeConstantRange(const Value *V, bool ForSigned, bool UseInstrInfo=true, AssumptionCache *AC=nullptr, const Instruction *CtxI=nullptr, const DominatorTree *DT=nullptr, unsigned Depth=0)
Determine the possible constant range of an integer or vector of integer value.
unsigned M1(unsigned Val)
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
LLVM_ABI bool isInstructionTriviallyDead(Instruction *I, const TargetLibraryInfo *TLI=nullptr)
Return true if the result produced by the instruction is not used, and the instruction will return.
LLVM_ABI bool isSplatValue(const Value *V, int Index=-1, unsigned Depth=0)
Return true if each element of the vector value V is poisoned or equal to every other non-poisoned el...
constexpr bool isPowerOf2_32(uint32_t Value)
Return true if the argument is a power of two > 0.
bool isModSet(const ModRefInfo MRI)
void sort(IteratorTy Start, IteratorTy End)
LLVM_ABI void computeKnownBits(const Value *V, KnownBits &Known, const DataLayout &DL, AssumptionCache *AC=nullptr, const Instruction *CxtI=nullptr, const DominatorTree *DT=nullptr, bool UseInstrInfo=true, unsigned Depth=0)
Determine which bits of V are known to be either zero or one and return them in the KnownZero/KnownOn...
LLVM_ABI bool programUndefinedIfPoison(const Instruction *Inst)
LLVM_ABI bool isSafeToLoadUnconditionally(Value *V, Align Alignment, const APInt &Size, const DataLayout &DL, Instruction *ScanFrom, AssumptionCache *AC=nullptr, const DominatorTree *DT=nullptr, const TargetLibraryInfo *TLI=nullptr)
Return true if we know that executing a load from this value cannot trap.
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
class LLVM_GSL_OWNER SmallVector
Forward declaration of SmallVector so that calculateSmallVectorDefaultInlinedElements can reference s...
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
LLVM_ABI void propagateIRFlags(Value *I, ArrayRef< Value * > VL, Value *OpValue=nullptr, bool IncludeWrapFlags=true)
Get the intersection (logical and) of all of the potential IR flags of each scalar operation (VL) tha...
LLVM_ABI bool isKnownNonZero(const Value *V, const SimplifyQuery &Q, unsigned Depth=0)
Return true if the given value is known to be non-zero when defined.
MutableArrayRef(T &OneElt) -> MutableArrayRef< T >
constexpr int PoisonMaskElem
LLVM_ABI bool isSafeToSpeculativelyExecuteWithOpcode(unsigned Opcode, const Instruction *Inst, const Instruction *CtxI=nullptr, AssumptionCache *AC=nullptr, const DominatorTree *DT=nullptr, const TargetLibraryInfo *TLI=nullptr, bool UseVariableInfo=true, bool IgnoreUBImplyingAttrs=true)
This returns the same result as isSafeToSpeculativelyExecute if Opcode is the actual opcode of Inst.
IRBuilder(LLVMContext &, FolderTy, InserterTy, MDNode *, ArrayRef< OperandBundleDef >) -> IRBuilder< FolderTy, InserterTy >
LLVM_ABI Value * simplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, const SimplifyQuery &Q)
Given operands for a BinaryOperator, fold the result or return null.
LLVM_ABI void narrowShuffleMaskElts(int Scale, ArrayRef< int > Mask, SmallVectorImpl< int > &ScaledMask)
Replace each shuffle mask index with the scaled sequential indices for an equivalent mask of narrowed...
LLVM_ABI Intrinsic::ID getReductionForBinop(Instruction::BinaryOps Opc)
Returns the reduction intrinsic id corresponding to the binary operation.
@ And
Bitwise or logical AND of integers.
LLVM_ABI bool isVectorIntrinsicWithScalarOpAtArg(Intrinsic::ID ID, unsigned ScalarOpdIdx, const TargetTransformInfo *TTI)
Identifies if the vector form of the intrinsic has a scalar operand.
DWARFExpression::Operation Op
unsigned M0(unsigned Val)
constexpr unsigned BitWidth
LLVM_ABI bool isGuaranteedToTransferExecutionToSuccessor(const Instruction *I)
Return true if this function can prove that the instruction I will always transfer execution to one o...
LLVM_ABI Constant * getLosslessInvCast(Constant *C, Type *InvCastTo, unsigned CastOp, const DataLayout &DL, PreservedCastFlags *Flags=nullptr)
Try to cast C to InvC losslessly, satisfying CastOp(InvC) equals C, or CastOp(InvC) is a refined valu...
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
auto find_if(R &&Range, UnaryPredicate P)
Provide wrappers to std::find_if which take ranges instead of having to pass begin/end explicitly.
bool is_contained(R &&Range, const E &Element)
Returns true if Element is found in Range.
Align commonAlignment(Align A, uint64_t Offset)
Returns the alignment that satisfies both alignments.
bool all_equal(std::initializer_list< T > Values)
Returns true if all Values in the initializer lists are equal or the list.
LLVM_ABI Value * simplifyCmpInst(CmpPredicate Predicate, Value *LHS, Value *RHS, const SimplifyQuery &Q)
Given operands for a CmpInst, fold the result or return null.
AnalysisManager< Function > FunctionAnalysisManager
Convenience typedef for the Function analysis manager.
LLVM_ABI bool isGuaranteedNotToBePoison(const Value *V, AssumptionCache *AC=nullptr, const Instruction *CtxI=nullptr, const DominatorTree *DT=nullptr, unsigned Depth=0)
Returns true if V cannot be poison, but may be undef.
Type * toVectorTy(Type *Scalar, ElementCount EC)
A helper function for converting Scalar types to vector types.
LLVM_ABI bool isTriviallyVectorizable(Intrinsic::ID ID)
Identify if the intrinsic is trivially vectorizable.
LLVM_ABI Intrinsic::ID getMinMaxReductionIntrinsicID(Intrinsic::ID IID)
Returns the llvm.vector.reduce min/max intrinsic that corresponds to the intrinsic op.
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
LLVM_ABI AAMDNodes adjustForAccess(unsigned AccessSize)
Create a new AAMDNode for accessing AccessSize bytes of this AAMDNode.
This struct is a compact representation of a valid (non-zero power of two) alignment.
unsigned countMaxActiveBits() const
Returns the maximum number of bits needed to represent all possible unsigned values with these known ...
APInt getMaxValue() const
Return the maximal unsigned value possible given these KnownBits.