43#define DEBUG_TYPE "vector-combine"
49STATISTIC(NumVecLoad,
"Number of vector loads formed");
50STATISTIC(NumVecCmp,
"Number of vector compares formed");
51STATISTIC(NumVecBO,
"Number of vector binops formed");
52STATISTIC(NumVecCmpBO,
"Number of vector compare + binop formed");
53STATISTIC(NumShufOfBitcast,
"Number of shuffles moved after bitcast");
54STATISTIC(NumScalarOps,
"Number of scalar unary + binary ops formed");
55STATISTIC(NumScalarCmp,
"Number of scalar compares formed");
56STATISTIC(NumScalarIntrinsic,
"Number of scalar intrinsic calls formed");
60 cl::desc(
"Disable all vector combine transforms"));
64 cl::desc(
"Disable binop extract to shuffle transforms"));
68 cl::desc(
"Max number of instructions to scan for vector combining."));
70static const unsigned InvalidIndex = std::numeric_limits<unsigned>::max();
78 bool TryEarlyFoldsOnly)
81 TryEarlyFoldsOnly(TryEarlyFoldsOnly) {}
88 const TargetTransformInfo &TTI;
89 const DominatorTree &DT;
94 const SimplifyQuery SQ;
98 bool TryEarlyFoldsOnly;
100 InstructionWorklist Worklist;
109 bool vectorizeLoadInsert(Instruction &
I);
110 bool widenSubvectorLoad(Instruction &
I);
111 ExtractElementInst *getShuffleExtract(ExtractElementInst *Ext0,
112 ExtractElementInst *Ext1,
113 unsigned PreferredExtractIndex)
const;
114 bool isExtractExtractCheap(ExtractElementInst *Ext0, ExtractElementInst *Ext1,
115 const Instruction &
I,
116 ExtractElementInst *&ConvertToShuffle,
117 unsigned PreferredExtractIndex);
120 bool foldExtractExtract(Instruction &
I);
121 bool foldInsExtFNeg(Instruction &
I);
122 bool foldInsExtBinop(Instruction &
I);
123 bool foldInsExtVectorToShuffle(Instruction &
I);
124 bool foldBitOpOfCastops(Instruction &
I);
125 bool foldBitOpOfCastConstant(Instruction &
I);
126 bool foldBitcastShuffle(Instruction &
I);
127 bool scalarizeOpOrCmp(Instruction &
I);
128 bool scalarizeVPIntrinsic(Instruction &
I);
129 bool foldExtractedCmps(Instruction &
I);
130 bool foldBinopOfReductions(Instruction &
I);
131 bool foldSingleElementStore(Instruction &
I);
132 bool scalarizeLoad(Instruction &
I);
133 bool scalarizeLoadExtract(LoadInst *LI, VectorType *VecTy,
Value *Ptr);
134 bool scalarizeLoadBitcast(LoadInst *LI, VectorType *VecTy,
Value *Ptr);
135 bool scalarizeExtExtract(Instruction &
I);
136 bool foldConcatOfBoolMasks(Instruction &
I);
137 bool foldPermuteOfBinops(Instruction &
I);
138 bool foldShuffleOfBinops(Instruction &
I);
139 bool foldShuffleOfSelects(Instruction &
I);
140 bool foldShuffleOfCastops(Instruction &
I);
141 bool foldShuffleOfShuffles(Instruction &
I);
142 bool foldPermuteOfIntrinsic(Instruction &
I);
143 bool foldShufflesOfLengthChangingShuffles(Instruction &
I);
144 bool foldShuffleOfIntrinsics(Instruction &
I);
145 bool foldShuffleToIdentity(Instruction &
I);
146 bool foldShuffleFromReductions(Instruction &
I);
147 bool foldShuffleChainsToReduce(Instruction &
I);
148 bool foldCastFromReductions(Instruction &
I);
149 bool foldSelectShuffle(Instruction &
I,
bool FromReduction =
false);
150 bool foldInterleaveIntrinsics(Instruction &
I);
151 bool shrinkType(Instruction &
I);
152 bool shrinkLoadForShuffles(Instruction &
I);
153 bool shrinkPhiOfShuffles(Instruction &
I);
155 void replaceValue(Instruction &Old,
Value &New,
bool Erase =
true) {
161 Worklist.pushUsersToWorkList(*NewI);
162 Worklist.pushValue(NewI);
179 SmallPtrSet<Value *, 4> Visited;
184 OpI,
nullptr,
nullptr, [&](
Value *V) {
189 NextInst = NextInst->getNextNode();
194 Worklist.pushUsersToWorkList(*OpI);
195 Worklist.pushValue(OpI);
215 if (!Load || !Load->isSimple() || !Load->hasOneUse() ||
216 Load->getFunction()->hasFnAttribute(Attribute::SanitizeMemTag) ||
222 Type *ScalarTy = Load->getType()->getScalarType();
224 unsigned MinVectorSize =
TTI.getMinVectorRegisterBitWidth();
225 if (!ScalarSize || !MinVectorSize || MinVectorSize % ScalarSize != 0 ||
232bool VectorCombine::vectorizeLoadInsert(
Instruction &
I) {
258 Value *SrcPtr =
Load->getPointerOperand()->stripPointerCasts();
261 unsigned MinVecNumElts = MinVectorSize / ScalarSize;
262 auto *MinVecTy = VectorType::get(ScalarTy, MinVecNumElts,
false);
263 unsigned OffsetEltIndex = 0;
271 unsigned OffsetBitWidth =
DL->getIndexTypeSizeInBits(SrcPtr->
getType());
272 APInt
Offset(OffsetBitWidth, 0);
282 uint64_t ScalarSizeInBytes = ScalarSize / 8;
283 if (
Offset.urem(ScalarSizeInBytes) != 0)
287 OffsetEltIndex =
Offset.udiv(ScalarSizeInBytes).getZExtValue();
288 if (OffsetEltIndex >= MinVecNumElts)
305 unsigned AS =
Load->getPointerAddressSpace();
324 unsigned OutputNumElts = Ty->getNumElements();
326 assert(OffsetEltIndex < MinVecNumElts &&
"Address offset too big");
327 Mask[0] = OffsetEltIndex;
334 if (OldCost < NewCost || !NewCost.
isValid())
345 replaceValue(
I, *VecLd);
353bool VectorCombine::widenSubvectorLoad(Instruction &
I) {
356 if (!Shuf->isIdentityWithPadding())
362 unsigned OpIndex =
any_of(Shuf->getShuffleMask(), [&NumOpElts](
int M) {
363 return M >= (int)(NumOpElts);
374 Value *SrcPtr =
Load->getPointerOperand()->stripPointerCasts();
382 unsigned AS =
Load->getPointerAddressSpace();
397 if (OldCost < NewCost || !NewCost.
isValid())
404 replaceValue(
I, *VecLd);
411ExtractElementInst *VectorCombine::getShuffleExtract(
412 ExtractElementInst *Ext0, ExtractElementInst *Ext1,
416 assert(Index0C && Index1C &&
"Expected constant extract indexes");
418 unsigned Index0 = Index0C->getZExtValue();
419 unsigned Index1 = Index1C->getZExtValue();
422 if (Index0 == Index1)
446 if (PreferredExtractIndex == Index0)
448 if (PreferredExtractIndex == Index1)
452 return Index0 > Index1 ? Ext0 : Ext1;
460bool VectorCombine::isExtractExtractCheap(ExtractElementInst *Ext0,
461 ExtractElementInst *Ext1,
462 const Instruction &
I,
463 ExtractElementInst *&ConvertToShuffle,
464 unsigned PreferredExtractIndex) {
467 assert(Ext0IndexC && Ext1IndexC &&
"Expected constant extract indexes");
469 unsigned Opcode =
I.getOpcode();
482 assert((Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) &&
483 "Expected a compare");
493 unsigned Ext0Index = Ext0IndexC->getZExtValue();
494 unsigned Ext1Index = Ext1IndexC->getZExtValue();
508 unsigned BestExtIndex = Extract0Cost > Extract1Cost ? Ext0Index : Ext1Index;
509 unsigned BestInsIndex = Extract0Cost > Extract1Cost ? Ext1Index : Ext0Index;
510 InstructionCost CheapExtractCost = std::min(Extract0Cost, Extract1Cost);
515 if (Ext0Src == Ext1Src && Ext0Index == Ext1Index) {
520 bool HasUseTax = Ext0 == Ext1 ? !Ext0->
hasNUses(2)
522 OldCost = CheapExtractCost + ScalarOpCost;
523 NewCost = VectorOpCost + CheapExtractCost + HasUseTax * CheapExtractCost;
527 OldCost = Extract0Cost + Extract1Cost + ScalarOpCost;
528 NewCost = VectorOpCost + CheapExtractCost +
533 ConvertToShuffle = getShuffleExtract(Ext0, Ext1, PreferredExtractIndex);
534 if (ConvertToShuffle) {
546 SmallVector<int> ShuffleMask(FixedVecTy->getNumElements(),
548 ShuffleMask[BestInsIndex] = BestExtIndex;
550 VecTy, VecTy, ShuffleMask,
CostKind, 0,
551 nullptr, {ConvertToShuffle});
554 VecTy, VecTy, {},
CostKind, 0,
nullptr,
562 return OldCost < NewCost;
574 ShufMask[NewIndex] = OldIndex;
575 return Builder.CreateShuffleVector(Vec, ShufMask,
"shift");
627 V1,
"foldExtExtBinop");
632 VecBOInst->copyIRFlags(&
I);
638bool VectorCombine::foldExtractExtract(Instruction &
I) {
669 ExtractElementInst *ExtractToChange;
670 if (isExtractExtractCheap(Ext0, Ext1,
I, ExtractToChange, InsertIndex))
676 if (ExtractToChange) {
677 unsigned CheapExtractIdx = ExtractToChange == Ext0 ? C1 : C0;
682 if (ExtractToChange == Ext0)
691 ? foldExtExtCmp(ExtOp0, ExtOp1, ExtIndex,
I)
692 : foldExtExtBinop(ExtOp0, ExtOp1, ExtIndex,
I);
695 replaceValue(
I, *NewExt);
701bool VectorCombine::foldInsExtFNeg(Instruction &
I) {
704 uint64_t ExtIdx, InsIdx;
719 auto *DstVecScalarTy = DstVecTy->getScalarType();
721 if (!SrcVecTy || DstVecScalarTy != SrcVecTy->getScalarType())
726 unsigned NumDstElts = DstVecTy->getNumElements();
727 unsigned NumSrcElts = SrcVecTy->getNumElements();
728 if (ExtIdx > NumSrcElts || InsIdx >= NumDstElts || NumDstElts == 1)
734 SmallVector<int>
Mask(NumDstElts);
735 std::iota(
Mask.begin(),
Mask.end(), 0);
736 Mask[InsIdx] = (ExtIdx % NumDstElts) + NumDstElts;
752 bool NeedLenChg = SrcVecTy->getNumElements() != NumDstElts;
755 SmallVector<int> SrcMask;
758 SrcMask[ExtIdx % NumDstElts] = ExtIdx;
760 DstVecTy, SrcVecTy, SrcMask,
CostKind);
764 <<
"\n OldCost: " << OldCost <<
" vs NewCost: " << NewCost
766 if (NewCost > OldCost)
769 Value *NewShuf, *LenChgShuf =
nullptr;
783 replaceValue(
I, *NewShuf);
789bool VectorCombine::foldInsExtBinop(Instruction &
I) {
790 BinaryOperator *VecBinOp, *SclBinOp;
822 <<
"\n OldCost: " << OldCost <<
" vs NewCost: " << NewCost
824 if (NewCost > OldCost)
835 NewInst->copyIRFlags(VecBinOp);
836 NewInst->andIRFlags(SclBinOp);
841 replaceValue(
I, *NewBO);
847bool VectorCombine::foldBitOpOfCastops(Instruction &
I) {
850 if (!BinOp || !BinOp->isBitwiseLogicOp())
856 if (!LHSCast || !RHSCast) {
857 LLVM_DEBUG(
dbgs() <<
" One or both operands are not cast instructions\n");
863 if (CastOpcode != RHSCast->getOpcode())
867 switch (CastOpcode) {
868 case Instruction::BitCast:
869 case Instruction::Trunc:
870 case Instruction::SExt:
871 case Instruction::ZExt:
877 Value *LHSSrc = LHSCast->getOperand(0);
878 Value *RHSSrc = RHSCast->getOperand(0);
884 auto *SrcTy = LHSSrc->
getType();
885 auto *DstTy =
I.getType();
888 if (CastOpcode != Instruction::BitCast &&
893 if (!SrcTy->getScalarType()->isIntegerTy() ||
894 !DstTy->getScalarType()->isIntegerTy())
909 LHSCastCost + RHSCastCost;
920 if (!LHSCast->hasOneUse())
921 NewCost += LHSCastCost;
922 if (!RHSCast->hasOneUse())
923 NewCost += RHSCastCost;
926 <<
" NewCost=" << NewCost <<
"\n");
928 if (NewCost > OldCost)
933 BinOp->getName() +
".inner");
935 NewBinOp->copyIRFlags(BinOp);
949 replaceValue(
I, *Result);
958bool VectorCombine::foldBitOpOfCastConstant(Instruction &
I) {
974 switch (CastOpcode) {
975 case Instruction::BitCast:
976 case Instruction::ZExt:
977 case Instruction::SExt:
978 case Instruction::Trunc:
984 Value *LHSSrc = LHSCast->getOperand(0);
986 auto *SrcTy = LHSSrc->
getType();
987 auto *DstTy =
I.getType();
990 if (CastOpcode != Instruction::BitCast &&
995 if (!SrcTy->getScalarType()->isIntegerTy() ||
996 !DstTy->getScalarType()->isIntegerTy())
1000 PreservedCastFlags RHSFlags;
1025 if (!LHSCast->hasOneUse())
1026 NewCost += LHSCastCost;
1028 LLVM_DEBUG(
dbgs() <<
"foldBitOpOfCastConstant: OldCost=" << OldCost
1029 <<
" NewCost=" << NewCost <<
"\n");
1031 if (NewCost > OldCost)
1036 LHSSrc, InvC,
I.getName() +
".inner");
1038 NewBinOp->copyIRFlags(&
I);
1058 replaceValue(
I, *Result);
1065bool VectorCombine::foldBitcastShuffle(Instruction &
I) {
1079 if (!DestTy || !SrcTy)
1082 unsigned DestEltSize = DestTy->getScalarSizeInBits();
1083 unsigned SrcEltSize = SrcTy->getScalarSizeInBits();
1084 if (SrcTy->getPrimitiveSizeInBits() % DestEltSize != 0)
1094 if (!(BCTy0 && BCTy0->getElementType() == DestTy->getElementType()) &&
1095 !(BCTy1 && BCTy1->getElementType() == DestTy->getElementType()))
1099 SmallVector<int, 16> NewMask;
1100 if (DestEltSize <= SrcEltSize) {
1103 assert(SrcEltSize % DestEltSize == 0 &&
"Unexpected shuffle mask");
1104 unsigned ScaleFactor = SrcEltSize / DestEltSize;
1109 assert(DestEltSize % SrcEltSize == 0 &&
"Unexpected shuffle mask");
1110 unsigned ScaleFactor = DestEltSize / SrcEltSize;
1117 unsigned NumSrcElts = SrcTy->getPrimitiveSizeInBits() / DestEltSize;
1118 auto *NewShuffleTy =
1120 auto *OldShuffleTy =
1122 unsigned NumOps = IsUnary ? 1 : 2;
1132 TargetTransformInfo::CastContextHint::None,
1137 TargetTransformInfo::CastContextHint::None,
1140 LLVM_DEBUG(
dbgs() <<
"Found a bitcasted shuffle: " <<
I <<
"\n OldCost: "
1141 << OldCost <<
" vs NewCost: " << NewCost <<
"\n");
1143 if (NewCost > OldCost || !NewCost.
isValid())
1151 replaceValue(
I, *Shuf);
1158bool VectorCombine::scalarizeVPIntrinsic(Instruction &
I) {
1172 if (!ScalarOp0 || !ScalarOp1)
1180 auto IsAllTrueMask = [](
Value *MaskVal) {
1183 return ConstValue->isAllOnesValue();
1197 SmallVector<int>
Mask;
1199 Mask.resize(FVTy->getNumElements(), 0);
1208 Args.push_back(
V->getType());
1209 IntrinsicCostAttributes
Attrs(IntrID, VecTy, Args);
1214 std::optional<unsigned> FunctionalOpcode =
1216 std::optional<Intrinsic::ID> ScalarIntrID = std::nullopt;
1217 if (!FunctionalOpcode) {
1226 IntrinsicCostAttributes
Attrs(*ScalarIntrID, VecTy->getScalarType(), Args);
1236 InstructionCost NewCost = ScalarOpCost + SplatCost + CostToKeepSplats;
1238 LLVM_DEBUG(
dbgs() <<
"Found a VP Intrinsic to scalarize: " << VPI
1241 <<
", Cost of scalarizing:" << NewCost <<
"\n");
1244 if (OldCost < NewCost || !NewCost.
isValid())
1255 bool SafeToSpeculate;
1261 *FunctionalOpcode, &VPI,
nullptr, &AC, &DT);
1262 if (!SafeToSpeculate &&
1269 {ScalarOp0, ScalarOp1})
1271 ScalarOp0, ScalarOp1);
1280bool VectorCombine::scalarizeOpOrCmp(Instruction &
I) {
1285 if (!UO && !BO && !CI && !
II)
1293 if (Arg->getType() !=
II->getType() &&
1303 for (User *U :
I.users())
1310 std::optional<uint64_t>
Index;
1312 auto Ops =
II ?
II->args() :
I.operands();
1316 uint64_t InsIdx = 0;
1321 if (OpTy->getElementCount().getKnownMinValue() <= InsIdx)
1327 else if (InsIdx != *Index)
1344 if (!
Index.has_value())
1348 Type *ScalarTy = VecTy->getScalarType();
1349 assert(VecTy->isVectorTy() &&
1352 "Unexpected types for insert element into binop or cmp");
1354 unsigned Opcode =
I.getOpcode();
1362 }
else if (UO || BO) {
1366 IntrinsicCostAttributes ScalarICA(
1367 II->getIntrinsicID(), ScalarTy,
1370 IntrinsicCostAttributes VectorICA(
1371 II->getIntrinsicID(), VecTy,
1378 Value *NewVecC =
nullptr;
1380 NewVecC =
simplifyCmpInst(CI->getPredicate(), VecCs[0], VecCs[1], SQ);
1383 simplifyUnOp(UO->getOpcode(), VecCs[0], UO->getFastMathFlags(), SQ);
1385 NewVecC =
simplifyBinOp(BO->getOpcode(), VecCs[0], VecCs[1], SQ);
1399 for (
auto [Idx,
Op, VecC, Scalar] :
enumerate(
Ops, VecCs, ScalarOps)) {
1401 II->getIntrinsicID(), Idx, &
TTI)))
1404 Instruction::InsertElement, VecTy,
CostKind, *Index, VecC, Scalar);
1405 OldCost += InsertCost;
1406 NewCost += !
Op->hasOneUse() * InsertCost;
1410 if (OldCost < NewCost || !NewCost.
isValid())
1420 ++NumScalarIntrinsic;
1430 Scalar = Builder.
CreateCmp(CI->getPredicate(), ScalarOps[0], ScalarOps[1]);
1436 Scalar->setName(
I.getName() +
".scalar");
1441 ScalarInst->copyIRFlags(&
I);
1444 replaceValue(
I, *Insert);
1451bool VectorCombine::foldExtractedCmps(Instruction &
I) {
1456 if (!BI || !
I.getType()->isIntegerTy(1))
1461 Value *B0 =
I.getOperand(0), *B1 =
I.getOperand(1);
1464 CmpPredicate
P0,
P1;
1476 uint64_t Index0, Index1;
1483 ExtractElementInst *ConvertToShuf = getShuffleExtract(Ext0, Ext1,
CostKind);
1486 assert((ConvertToShuf == Ext0 || ConvertToShuf == Ext1) &&
1487 "Unknown ExtractElementInst");
1492 unsigned CmpOpcode =
1507 Ext0Cost + Ext1Cost + CmpCost * 2 +
1513 int CheapIndex = ConvertToShuf == Ext0 ? Index1 : Index0;
1514 int ExpensiveIndex = ConvertToShuf == Ext0 ? Index0 : Index1;
1519 ShufMask[CheapIndex] = ExpensiveIndex;
1524 NewCost += Ext0->
hasOneUse() ? 0 : Ext0Cost;
1525 NewCost += Ext1->
hasOneUse() ? 0 : Ext1Cost;
1530 if (OldCost < NewCost || !NewCost.
isValid())
1540 Value *
LHS = ConvertToShuf == Ext0 ? Shuf : VCmp;
1541 Value *
RHS = ConvertToShuf == Ext0 ? VCmp : Shuf;
1544 replaceValue(
I, *NewExt);
1557 unsigned ReductionOpc =
1563 CostBeforeReduction =
1564 TTI.getCastInstrCost(RedOp->getOpcode(), VecRedTy, ExtType,
1566 CostAfterReduction =
1567 TTI.getExtendedReductionCost(ReductionOpc, IsUnsigned,
II.getType(),
1571 if (RedOp &&
II.getIntrinsicID() == Intrinsic::vector_reduce_add &&
1577 (Op0->
getOpcode() == RedOp->getOpcode() || Op0 == Op1)) {
1584 TTI.getCastInstrCost(Op0->
getOpcode(), MulType, ExtType,
1587 TTI.getArithmeticInstrCost(Instruction::Mul, MulType,
CostKind);
1589 TTI.getCastInstrCost(RedOp->getOpcode(), VecRedTy, MulType,
1592 CostBeforeReduction = ExtCost * 2 + MulCost + Ext2Cost;
1593 CostAfterReduction =
TTI.getMulAccReductionCost(
1594 IsUnsigned, ReductionOpc,
II.getType(), ExtType,
CostKind);
1597 CostAfterReduction =
TTI.getArithmeticReductionCost(ReductionOpc, VecRedTy,
1601bool VectorCombine::foldBinopOfReductions(Instruction &
I) {
1604 if (BinOpOpc == Instruction::Sub)
1605 ReductionIID = Intrinsic::vector_reduce_add;
1609 auto checkIntrinsicAndGetItsArgument = [](
Value *
V,
1614 if (
II->getIntrinsicID() == IID &&
II->hasOneUse())
1615 return II->getArgOperand(0);
1619 Value *V0 = checkIntrinsicAndGetItsArgument(
I.getOperand(0), ReductionIID);
1622 Value *V1 = checkIntrinsicAndGetItsArgument(
I.getOperand(1), ReductionIID);
1631 unsigned ReductionOpc =
1644 CostOfRedOperand0 + CostOfRedOperand1 +
1647 if (NewCost >= OldCost || !NewCost.
isValid())
1651 <<
"\n OldCost: " << OldCost <<
" vs NewCost: " << NewCost
1654 if (BinOpOpc == Instruction::Or)
1655 VectorBO = Builder.
CreateOr(V0, V1,
"",
1661 replaceValue(
I, *Rdx);
1669 unsigned NumScanned = 0;
1670 return std::any_of(Begin, End, [&](
const Instruction &Instr) {
1679class ScalarizationResult {
1680 enum class StatusTy { Unsafe, Safe, SafeWithFreeze };
1685 ScalarizationResult(StatusTy Status,
Value *ToFreeze =
nullptr)
1686 : Status(Status), ToFreeze(ToFreeze) {}
1689 ScalarizationResult(
const ScalarizationResult &
Other) =
default;
1690 ~ScalarizationResult() {
1691 assert(!ToFreeze &&
"freeze() not called with ToFreeze being set");
1694 static ScalarizationResult unsafe() {
return {StatusTy::Unsafe}; }
1695 static ScalarizationResult safe() {
return {StatusTy::Safe}; }
1696 static ScalarizationResult safeWithFreeze(
Value *ToFreeze) {
1697 return {StatusTy::SafeWithFreeze, ToFreeze};
1701 bool isSafe()
const {
return Status == StatusTy::Safe; }
1703 bool isUnsafe()
const {
return Status == StatusTy::Unsafe; }
1706 bool isSafeWithFreeze()
const {
return Status == StatusTy::SafeWithFreeze; }
1711 Status = StatusTy::Unsafe;
1715 void freeze(IRBuilderBase &Builder, Instruction &UserI) {
1716 assert(isSafeWithFreeze() &&
1717 "should only be used when freezing is required");
1719 "UserI must be a user of ToFreeze");
1720 IRBuilder<>::InsertPointGuard Guard(Builder);
1725 if (
U.get() == ToFreeze)
1742 uint64_t NumElements = VecTy->getElementCount().getKnownMinValue();
1746 if (
C->getValue().ult(NumElements))
1747 return ScalarizationResult::safe();
1748 return ScalarizationResult::unsafe();
1753 return ScalarizationResult::unsafe();
1755 APInt Zero(IntWidth, 0);
1756 APInt MaxElts(IntWidth, NumElements);
1762 true, &AC, CtxI, &DT)))
1763 return ScalarizationResult::safe();
1764 return ScalarizationResult::unsafe();
1777 if (ValidIndices.
contains(IdxRange))
1778 return ScalarizationResult::safeWithFreeze(IdxBase);
1779 return ScalarizationResult::unsafe();
1791 C->getZExtValue() *
DL.getTypeStoreSize(ScalarType));
1803bool VectorCombine::foldSingleElementStore(Instruction &
I) {
1815 if (!
match(
SI->getValueOperand(),
1822 Value *SrcAddr =
Load->getPointerOperand()->stripPointerCasts();
1825 if (!
Load->isSimple() ||
Load->getParent() !=
SI->getParent() ||
1826 !
DL->typeSizeEqualsStoreSize(
Load->getType()->getScalarType()) ||
1827 SrcAddr !=
SI->getPointerOperand()->stripPointerCasts())
1831 if (ScalarizableIdx.isUnsafe() ||
1838 Worklist.
push(Load);
1840 if (ScalarizableIdx.isSafeWithFreeze())
1843 SI->getValueOperand()->getType(),
SI->getPointerOperand(),
1844 {ConstantInt::get(Idx->getType(), 0), Idx});
1848 std::max(
SI->getAlign(),
Load->getAlign()), NewElement->
getType(), Idx,
1851 replaceValue(
I, *NSI);
1861bool VectorCombine::scalarizeLoad(Instruction &
I) {
1868 if (LI->isVolatile() || !
DL->typeSizeEqualsStoreSize(VecTy->getScalarType()))
1871 bool AllExtracts =
true;
1872 bool AllBitcasts =
true;
1874 unsigned NumInstChecked = 0;
1879 for (User *U : LI->users()) {
1881 if (!UI || UI->getParent() != LI->getParent())
1886 if (UI->use_empty())
1890 AllExtracts =
false;
1892 AllBitcasts =
false;
1896 for (Instruction &
I :
1897 make_range(std::next(LI->getIterator()), UI->getIterator())) {
1904 LastCheckedInst = UI;
1909 return scalarizeLoadExtract(LI, VecTy, Ptr);
1911 return scalarizeLoadBitcast(LI, VecTy, Ptr);
1916bool VectorCombine::scalarizeLoadExtract(LoadInst *LI, VectorType *VecTy,
1921 DenseMap<ExtractElementInst *, ScalarizationResult> NeedFreeze;
1924 for (
auto &Pair : NeedFreeze)
1925 Pair.second.discard();
1933 for (User *U : LI->
users()) {
1938 if (ScalarIdx.isUnsafe())
1940 if (ScalarIdx.isSafeWithFreeze()) {
1941 NeedFreeze.try_emplace(UI, ScalarIdx);
1942 ScalarIdx.discard();
1948 Index ?
Index->getZExtValue() : -1);
1956 LLVM_DEBUG(
dbgs() <<
"Found all extractions of a vector load: " << *LI
1957 <<
"\n LoadExtractCost: " << OriginalCost
1958 <<
" vs ScalarizedCost: " << ScalarizedCost <<
"\n");
1960 if (ScalarizedCost >= OriginalCost)
1967 Type *ElemType = VecTy->getElementType();
1970 for (User *U : LI->
users()) {
1972 Value *Idx = EI->getIndexOperand();
1975 auto It = NeedFreeze.find(EI);
1976 if (It != NeedFreeze.end())
1983 Builder.
CreateLoad(ElemType,
GEP, EI->getName() +
".scalar"));
1985 Align ScalarOpAlignment =
1987 NewLoad->setAlignment(ScalarOpAlignment);
1990 size_t Offset = ConstIdx->getZExtValue() *
DL->getTypeStoreSize(ElemType);
1995 replaceValue(*EI, *NewLoad,
false);
1998 FailureGuard.release();
2003bool VectorCombine::scalarizeLoadBitcast(LoadInst *LI, VectorType *VecTy,
2009 Type *TargetScalarType =
nullptr;
2010 unsigned VecBitWidth =
DL->getTypeSizeInBits(VecTy);
2012 for (User *U : LI->
users()) {
2015 Type *DestTy = BC->getDestTy();
2019 unsigned DestBitWidth =
DL->getTypeSizeInBits(DestTy);
2020 if (DestBitWidth != VecBitWidth)
2024 if (!TargetScalarType)
2025 TargetScalarType = DestTy;
2026 else if (TargetScalarType != DestTy)
2034 if (!TargetScalarType)
2042 LLVM_DEBUG(
dbgs() <<
"Found vector load feeding only bitcasts: " << *LI
2043 <<
"\n OriginalCost: " << OriginalCost
2044 <<
" vs ScalarizedCost: " << ScalarizedCost <<
"\n");
2046 if (ScalarizedCost >= OriginalCost)
2057 ScalarLoad->copyMetadata(*LI);
2060 for (User *U : LI->
users()) {
2062 replaceValue(*BC, *ScalarLoad,
false);
2068bool VectorCombine::scalarizeExtExtract(Instruction &
I) {
2083 Type *ScalarDstTy = DstTy->getElementType();
2084 if (
DL->getTypeSizeInBits(SrcTy) !=
DL->getTypeSizeInBits(ScalarDstTy))
2090 unsigned ExtCnt = 0;
2091 bool ExtLane0 =
false;
2092 for (User *U : Ext->users()) {
2106 Instruction::And, ScalarDstTy,
CostKind,
2109 (ExtCnt - ExtLane0) *
2111 Instruction::LShr, ScalarDstTy,
CostKind,
2114 if (ScalarCost > VectorCost)
2117 Value *ScalarV = Ext->getOperand(0);
2124 SmallDenseSet<ConstantInt *, 8> ExtractedLanes;
2125 bool AllExtractsTriggerUB =
true;
2126 ExtractElementInst *LastExtract =
nullptr;
2128 for (User *U : Ext->users()) {
2131 AllExtractsTriggerUB =
false;
2135 if (!LastExtract || LastExtract->
comesBefore(Extract))
2136 LastExtract = Extract;
2138 if (ExtractedLanes.
size() != DstTy->getNumElements() ||
2139 !AllExtractsTriggerUB ||
2147 uint64_t SrcEltSizeInBits =
DL->getTypeSizeInBits(SrcTy->getElementType());
2148 uint64_t EltBitMask = (1ull << SrcEltSizeInBits) - 1;
2149 uint64_t TotalBits =
DL->getTypeSizeInBits(SrcTy);
2151 Value *
Mask = ConstantInt::get(PackedTy, EltBitMask);
2152 for (User *U : Ext->users()) {
2158 ? (TotalBits - SrcEltSizeInBits - Idx * SrcEltSizeInBits)
2159 : (Idx * SrcEltSizeInBits);
2162 U->replaceAllUsesWith(
And);
2170bool VectorCombine::foldConcatOfBoolMasks(Instruction &
I) {
2171 Type *Ty =
I.getType();
2176 if (
DL->isBigEndian())
2187 uint64_t ShAmtX = 0;
2195 uint64_t ShAmtY = 0;
2203 if (ShAmtX > ShAmtY) {
2211 uint64_t ShAmtDiff = ShAmtY - ShAmtX;
2212 unsigned NumSHL = (ShAmtX > 0) + (ShAmtY > 0);
2217 MaskTy->getNumElements() != ShAmtDiff ||
2218 MaskTy->getNumElements() > (
BitWidth / 2))
2223 Type::getIntNTy(Ty->
getContext(), ConcatTy->getNumElements());
2224 auto *MaskIntTy = Type::getIntNTy(Ty->
getContext(), ShAmtDiff);
2227 std::iota(ConcatMask.begin(), ConcatMask.end(), 0);
2244 if (Ty != ConcatIntTy)
2250 LLVM_DEBUG(
dbgs() <<
"Found a concatenation of bitcasted bool masks: " <<
I
2251 <<
"\n OldCost: " << OldCost <<
" vs NewCost: " << NewCost
2254 if (NewCost > OldCost)
2264 if (Ty != ConcatIntTy) {
2274 replaceValue(
I, *Result);
2280bool VectorCombine::foldPermuteOfBinops(Instruction &
I) {
2281 BinaryOperator *BinOp;
2282 ArrayRef<int> OuterMask;
2291 Value *Op00, *Op01, *Op10, *Op11;
2292 ArrayRef<int> Mask0, Mask1;
2299 if (!Match0 && !Match1)
2312 if (!ShuffleDstTy || !BinOpTy || !Op0Ty || !Op1Ty)
2315 unsigned NumSrcElts = BinOpTy->getNumElements();
2320 any_of(OuterMask, [NumSrcElts](
int M) {
return M >= (int)NumSrcElts; }))
2324 SmallVector<int> NewMask0, NewMask1;
2325 for (
int M : OuterMask) {
2326 if (M < 0 || M >= (
int)NumSrcElts) {
2330 NewMask0.
push_back(Match0 ? Mask0[M] : M);
2331 NewMask1.
push_back(Match1 ? Mask1[M] : M);
2335 unsigned NumOpElts = Op0Ty->getNumElements();
2336 bool IsIdentity0 = ShuffleDstTy == Op0Ty &&
2337 all_of(NewMask0, [NumOpElts](
int M) {
return M < (int)NumOpElts; }) &&
2339 bool IsIdentity1 = ShuffleDstTy == Op1Ty &&
2340 all_of(NewMask1, [NumOpElts](
int M) {
return M < (int)NumOpElts; }) &&
2347 BinOpTy, OuterMask,
CostKind, 0,
nullptr, {BinOp}, &
I);
2363 Op0Ty, NewMask0,
CostKind, 0,
nullptr, {Op00, Op01});
2367 Op1Ty, NewMask1,
CostKind, 0,
nullptr, {Op10, Op11});
2369 LLVM_DEBUG(
dbgs() <<
"Found a shuffle feeding a shuffled binop: " <<
I
2370 <<
"\n OldCost: " << OldCost <<
" vs NewCost: " << NewCost
2374 if (NewCost > OldCost)
2385 NewInst->copyIRFlags(BinOp);
2389 replaceValue(
I, *NewBO);
2395bool VectorCombine::foldShuffleOfBinops(Instruction &
I) {
2396 ArrayRef<int> OldMask;
2403 if (
LHS->getOpcode() !=
RHS->getOpcode())
2407 bool IsCommutative =
false;
2416 IsCommutative = BinaryOperator::isCommutative(BO->getOpcode());
2427 if (!ShuffleDstTy || !BinResTy || !BinOpTy ||
X->getType() !=
Z->getType())
2430 unsigned NumSrcElts = BinOpTy->getNumElements();
2433 if (IsCommutative &&
X != Z &&
Y != W && (
X == W ||
Y == Z))
2436 auto ConvertToUnary = [NumSrcElts](
int &
M) {
2437 if (M >= (
int)NumSrcElts)
2441 SmallVector<int> NewMask0(OldMask);
2449 SmallVector<int> NewMask1(OldMask);
2472 ArrayRef<int> InnerMask;
2474 m_Mask(InnerMask)))) &&
2477 [NumSrcElts](
int M) {
return M < (int)NumSrcElts; })) {
2489 bool ReducedInstCount =
false;
2490 ReducedInstCount |= MergeInner(
X, 0, NewMask0,
CostKind);
2491 ReducedInstCount |= MergeInner(
Y, 0, NewMask1,
CostKind);
2492 ReducedInstCount |= MergeInner(Z, NumSrcElts, NewMask0,
CostKind);
2493 ReducedInstCount |= MergeInner(W, NumSrcElts, NewMask1,
CostKind);
2495 auto *ShuffleCmpTy =
2512 <<
"\n OldCost: " << OldCost <<
" vs NewCost: " << NewCost
2519 if (ReducedInstCount ? (NewCost > OldCost) : (NewCost >= OldCost))
2527 : Builder.
CreateCmp(PredLHS, Shuf0, Shuf1);
2531 NewInst->copyIRFlags(
LHS);
2532 NewInst->andIRFlags(
RHS);
2537 replaceValue(
I, *NewBO);
2544bool VectorCombine::foldShuffleOfSelects(Instruction &
I) {
2546 Value *C1, *
T1, *F1, *C2, *T2, *F2;
2555 if (!C1VecTy || !C2VecTy || C1VecTy != C2VecTy)
2561 if (((SI0FOp ==
nullptr) != (SI1FOp ==
nullptr)) ||
2562 ((SI0FOp !=
nullptr) &&
2563 (SI0FOp->getFastMathFlags() != SI1FOp->getFastMathFlags())))
2569 auto SelOp = Instruction::Select;
2576 {
I.getOperand(0),
I.getOperand(1)}, &
I);
2580 Mask,
CostKind, 0,
nullptr, {C1, C2});
2586 toVectorTy(Type::getInt1Ty(
I.getContext()), DstVecTy->getNumElements()));
2591 <<
"\n OldCost: " << OldCost <<
" vs NewCost: " << NewCost
2593 if (NewCost > OldCost)
2602 NewSel = Builder.
CreateSelectFMF(ShuffleCmp, ShuffleTrue, ShuffleFalse,
2603 SI0FOp->getFastMathFlags());
2605 NewSel = Builder.
CreateSelect(ShuffleCmp, ShuffleTrue, ShuffleFalse);
2610 replaceValue(
I, *NewSel);
2616bool VectorCombine::foldShuffleOfCastops(Instruction &
I) {
2618 ArrayRef<int> OldMask;
2627 if (!C0 || (IsBinaryShuffle && !C1))
2634 if (!IsBinaryShuffle && Opcode == Instruction::BitCast)
2637 if (IsBinaryShuffle) {
2638 if (C0->getSrcTy() != C1->getSrcTy())
2641 if (Opcode != C1->getOpcode()) {
2643 Opcode = Instruction::SExt;
2652 if (!ShuffleDstTy || !CastDstTy || !CastSrcTy)
2655 unsigned NumSrcElts = CastSrcTy->getNumElements();
2656 unsigned NumDstElts = CastDstTy->getNumElements();
2657 assert((NumDstElts == NumSrcElts || Opcode == Instruction::BitCast) &&
2658 "Only bitcasts expected to alter src/dst element counts");
2662 if (NumDstElts != NumSrcElts && (NumSrcElts % NumDstElts) != 0 &&
2663 (NumDstElts % NumSrcElts) != 0)
2666 SmallVector<int, 16> NewMask;
2667 if (NumSrcElts >= NumDstElts) {
2670 assert(NumSrcElts % NumDstElts == 0 &&
"Unexpected shuffle mask");
2671 unsigned ScaleFactor = NumSrcElts / NumDstElts;
2676 assert(NumDstElts % NumSrcElts == 0 &&
"Unexpected shuffle mask");
2677 unsigned ScaleFactor = NumDstElts / NumSrcElts;
2682 auto *NewShuffleDstTy =
2691 if (IsBinaryShuffle)
2706 if (IsBinaryShuffle) {
2716 <<
"\n OldCost: " << OldCost <<
" vs NewCost: " << NewCost
2718 if (NewCost > OldCost)
2722 if (IsBinaryShuffle)
2732 NewInst->copyIRFlags(C0);
2733 if (IsBinaryShuffle)
2734 NewInst->andIRFlags(C1);
2738 replaceValue(
I, *Cast);
2748bool VectorCombine::foldShuffleOfShuffles(Instruction &
I) {
2749 ArrayRef<int> OuterMask;
2750 Value *OuterV0, *OuterV1;
2755 ArrayRef<int> InnerMask0, InnerMask1;
2756 Value *X0, *X1, *Y0, *Y1;
2761 if (!Match0 && !Match1)
2766 SmallVector<int, 16> PoisonMask1;
2771 InnerMask1 = PoisonMask1;
2775 X0 = Match0 ? X0 : OuterV0;
2776 Y0 = Match0 ? Y0 : OuterV0;
2777 X1 = Match1 ? X1 : OuterV1;
2778 Y1 = Match1 ? Y1 : OuterV1;
2782 if (!ShuffleDstTy || !ShuffleSrcTy || !ShuffleImmTy ||
2786 unsigned NumSrcElts = ShuffleSrcTy->getNumElements();
2787 unsigned NumImmElts = ShuffleImmTy->getNumElements();
2792 SmallVector<int, 16> NewMask(OuterMask);
2793 Value *NewX =
nullptr, *NewY =
nullptr;
2794 for (
int &M : NewMask) {
2795 Value *Src =
nullptr;
2796 if (0 <= M && M < (
int)NumImmElts) {
2800 Src =
M >= (int)NumSrcElts ? Y0 : X0;
2801 M =
M >= (int)NumSrcElts ? (M - NumSrcElts) :
M;
2803 }
else if (M >= (
int)NumImmElts) {
2808 Src =
M >= (int)NumSrcElts ? Y1 : X1;
2809 M =
M >= (int)NumSrcElts ? (M - NumSrcElts) :
M;
2813 assert(0 <= M && M < (
int)NumSrcElts &&
"Unexpected shuffle mask index");
2822 if (!NewX || NewX == Src) {
2826 if (!NewY || NewY == Src) {
2842 replaceValue(
I, *NewX);
2859 bool IsUnary =
all_of(NewMask, [&](
int M) {
return M < (int)NumSrcElts; });
2865 nullptr, {NewX, NewY});
2867 NewCost += InnerCost0;
2869 NewCost += InnerCost1;
2872 <<
"\n OldCost: " << OldCost <<
" vs NewCost: " << NewCost
2874 if (NewCost > OldCost)
2878 replaceValue(
I, *Shuf);
2894bool VectorCombine::foldShufflesOfLengthChangingShuffles(Instruction &
I) {
2899 unsigned ChainLength = 0;
2900 SmallVector<int>
Mask;
2901 SmallVector<int> YMask;
2911 ArrayRef<int> OuterMask;
2912 Value *OuterV0, *OuterV1;
2913 if (ChainLength != 0 && !Trunk->
hasOneUse())
2916 m_Mask(OuterMask))))
2918 if (OuterV0->
getType() != TrunkType) {
2924 ArrayRef<int> InnerMask0, InnerMask1;
2925 Value *A0, *A1, *B0, *B1;
2930 bool Match0Leaf = Match0 && A0->
getType() !=
I.getType();
2931 bool Match1Leaf = Match1 && A1->
getType() !=
I.getType();
2932 if (Match0Leaf == Match1Leaf) {
2938 SmallVector<int> CommutedOuterMask;
2945 for (
int &M : CommutedOuterMask) {
2948 if (M < (
int)NumTrunkElts)
2953 OuterMask = CommutedOuterMask;
2972 int NumLeafElts = YType->getNumElements();
2973 SmallVector<int> LocalYMask(InnerMask1);
2974 for (
int &M : LocalYMask) {
2975 if (M >= NumLeafElts)
2985 Mask.assign(OuterMask);
2986 YMask.
assign(LocalYMask);
2987 OldCost = NewCost = LocalOldCost;
2994 SmallVector<int> NewYMask(YMask);
2996 for (
auto [CombinedM, LeafM] :
llvm::zip(NewYMask, LocalYMask)) {
2997 if (LeafM == -1 || CombinedM == LeafM)
2999 if (CombinedM == -1) {
3009 SmallVector<int> NewMask;
3010 NewMask.
reserve(NumTrunkElts);
3011 for (
int M : Mask) {
3012 if (M < 0 || M >=
static_cast<int>(NumTrunkElts))
3027 if (LocalNewCost >= NewCost && LocalOldCost < LocalNewCost - NewCost)
3031 if (ChainLength == 1) {
3032 dbgs() <<
"Found chain of shuffles fed by length-changing shuffles: "
3035 dbgs() <<
" next chain link: " << *Trunk <<
'\n'
3036 <<
" old cost: " << (OldCost + LocalOldCost)
3037 <<
" new cost: " << LocalNewCost <<
'\n';
3042 OldCost += LocalOldCost;
3043 NewCost = LocalNewCost;
3047 if (ChainLength <= 1)
3051 return M < 0 || M >=
static_cast<int>(NumTrunkElts);
3054 for (
int &M : Mask) {
3055 if (M >=
static_cast<int>(NumTrunkElts))
3056 M = YMask[
M - NumTrunkElts];
3060 replaceValue(
I, *Root);
3067 replaceValue(
I, *Root);
3073bool VectorCombine::foldShuffleOfIntrinsics(Instruction &
I) {
3075 ArrayRef<int> OldMask;
3086 if (IID != II1->getIntrinsicID())
3091 if (!ShuffleDstTy || !II0Ty)
3097 for (
unsigned I = 0,
E = II0->arg_size();
I !=
E; ++
I)
3099 II0->getArgOperand(
I) != II1->getArgOperand(
I))
3106 II0Ty, OldMask,
CostKind, 0,
nullptr, {II0, II1}, &
I);
3110 for (
unsigned I = 0,
E = II0->arg_size();
I !=
E; ++
I) {
3112 NewArgsTy.
push_back(II0->getArgOperand(
I)->getType());
3116 ShuffleDstTy->getNumElements());
3120 CostKind, 0,
nullptr, {II0->getArgOperand(
I), II1->getArgOperand(
I)});
3123 IntrinsicCostAttributes NewAttr(IID, ShuffleDstTy, NewArgsTy);
3127 <<
"\n OldCost: " << OldCost <<
" vs NewCost: " << NewCost
3130 if (NewCost > OldCost)
3134 for (
unsigned I = 0,
E = II0->arg_size();
I !=
E; ++
I)
3139 II1->getArgOperand(
I), OldMask);
3147 NewInst->copyIRFlags(II0);
3148 NewInst->andIRFlags(II1);
3151 replaceValue(
I, *NewIntrinsic);
3157bool VectorCombine::foldPermuteOfIntrinsic(Instruction &
I) {
3169 if (!ShuffleDstTy || !IntrinsicSrcTy)
3173 unsigned NumSrcElts = IntrinsicSrcTy->getNumElements();
3174 if (
any_of(Mask, [NumSrcElts](
int M) {
return M >= (int)NumSrcElts; }))
3185 IntrinsicSrcTy, Mask,
CostKind, 0,
nullptr, {V0}, &
I);
3189 for (
unsigned I = 0,
E = II0->arg_size();
I !=
E; ++
I) {
3191 NewArgsTy.
push_back(II0->getArgOperand(
I)->getType());
3195 ShuffleDstTy->getNumElements());
3198 ArgTy, VecTy, Mask,
CostKind, 0,
nullptr,
3199 {II0->getArgOperand(
I)});
3202 IntrinsicCostAttributes NewAttr(IID, ShuffleDstTy, NewArgsTy);
3205 LLVM_DEBUG(
dbgs() <<
"Found a permute of intrinsic: " <<
I <<
"\n OldCost: "
3206 << OldCost <<
" vs NewCost: " << NewCost <<
"\n");
3208 if (NewCost > OldCost)
3213 for (
unsigned I = 0,
E = II0->arg_size();
I !=
E; ++
I) {
3228 replaceValue(
I, *NewIntrinsic);
3238 int M = SV->getMaskValue(Lane);
3241 if (
static_cast<unsigned>(M) < NumElts) {
3242 U = &SV->getOperandUse(0);
3245 U = &SV->getOperandUse(1);
3256 auto [U, Lane] = IL;
3270 unsigned NumElts = Ty->getNumElements();
3271 if (Item.
size() == NumElts || NumElts == 1 || Item.
size() % NumElts != 0)
3277 std::iota(ConcatMask.
begin(), ConcatMask.
end(), 0);
3283 unsigned NumSlices = Item.
size() / NumElts;
3288 for (
unsigned Slice = 0; Slice < NumSlices; ++Slice) {
3289 Use *SliceV = Item[Slice * NumElts].first;
3290 if (!SliceV || SliceV->get()->
getType() != Ty)
3292 for (
unsigned Elt = 0; Elt < NumElts; ++Elt) {
3293 auto [V, Lane] = Item[Slice * NumElts + Elt];
3294 if (Lane !=
static_cast<int>(Elt) || SliceV->get() != V->get())
3307 auto [FrontU, FrontLane] = Item.
front();
3309 if (IdentityLeafs.
contains(FrontU)) {
3310 return FrontU->get();
3314 return Builder.CreateShuffleVector(FrontU->get(), Mask);
3316 if (ConcatLeafs.
contains(FrontU)) {
3320 for (
unsigned S = 0; S < Values.
size(); ++S)
3321 Values[S] = Item[S * NumElts].first->get();
3323 while (Values.
size() > 1) {
3326 std::iota(Mask.begin(), Mask.end(), 0);
3328 for (
unsigned S = 0; S < NewValues.
size(); ++S)
3330 Builder.CreateShuffleVector(Values[S * 2], Values[S * 2 + 1], Mask);
3338 unsigned NumOps =
I->getNumOperands() - (
II ? 1 : 0);
3340 for (
unsigned Idx = 0; Idx <
NumOps; Idx++) {
3343 Ops[Idx] =
II->getOperand(Idx);
3347 Ty, IdentityLeafs, SplatLeafs, ConcatLeafs,
3352 for (
const auto &Lane : Item)
3365 auto *
Value = Builder.CreateCmp(CI->getPredicate(),
Ops[0],
Ops[1]);
3375 auto *
Value = Builder.CreateCast(CI->getOpcode(),
Ops[0], DstTy);
3380 auto *
Value = Builder.CreateIntrinsic(DstTy,
II->getIntrinsicID(),
Ops);
3394bool VectorCombine::foldShuffleToIdentity(Instruction &
I) {
3396 if (!Ty ||
I.use_empty())
3400 for (
unsigned M = 0,
E = Ty->getNumElements(); M <
E; ++M)
3405 SmallPtrSet<Use *, 4> IdentityLeafs, SplatLeafs, ConcatLeafs;
3406 unsigned NumVisited = 0;
3408 while (!Worklist.
empty()) {
3413 auto [FrontU, FrontLane] = Item.
front();
3421 return X->getType() ==
Y->getType() &&
3426 if (FrontLane == 0 &&
3428 Ty->getNumElements() &&
3431 return !
E.value().first || (IsEquiv(
E.value().first->get(), FrontV) &&
3432 E.value().second == (int)
E.index());
3434 IdentityLeafs.
insert(FrontU);
3439 C &&
C->getSplatValue() &&
3447 SplatLeafs.
insert(FrontU);
3452 auto [FrontU, FrontLane] = Item.
front();
3453 auto [
U, Lane] = IL;
3454 return !
U || (
U->get() == FrontU->get() && Lane == FrontLane);
3456 SplatLeafs.
insert(FrontU);
3462 auto CheckLaneIsEquivalentToFirst = [Item](
InstLane IL) {
3466 Value *
V = IL.first->get();
3472 if (CI->getPredicate() !=
cast<CmpInst>(FrontV)->getPredicate())
3475 if (CI->getSrcTy()->getScalarType() !=
3480 SI->getOperand(0)->getType() !=
3487 II->getIntrinsicID() ==
3489 !
II->hasOperandBundles());
3496 BO && BO->isIntDivRem())
3501 }
else if (
isa<UnaryOperator, TruncInst, ZExtInst, SExtInst, FPToSIInst,
3502 FPToUIInst, SIToFPInst, UIToFPInst>(FrontU)) {
3509 if (DstTy && SrcTy &&
3510 SrcTy->getNumElements() == DstTy->getNumElements()) {
3521 !
II->hasOperandBundles()) {
3522 for (
unsigned Op = 0,
E =
II->getNumOperands() - 1;
Op <
E;
Op++) {
3541 ConcatLeafs.
insert(FrontU);
3548 if (NumVisited <= 1)
3551 LLVM_DEBUG(
dbgs() <<
"Found a superfluous identity shuffle: " <<
I <<
"\n");
3557 ConcatLeafs, Builder, &
TTI);
3558 replaceValue(
I, *V);
3565bool VectorCombine::foldShuffleFromReductions(Instruction &
I) {
3569 switch (
II->getIntrinsicID()) {
3570 case Intrinsic::vector_reduce_add:
3571 case Intrinsic::vector_reduce_mul:
3572 case Intrinsic::vector_reduce_and:
3573 case Intrinsic::vector_reduce_or:
3574 case Intrinsic::vector_reduce_xor:
3575 case Intrinsic::vector_reduce_smin:
3576 case Intrinsic::vector_reduce_smax:
3577 case Intrinsic::vector_reduce_umin:
3578 case Intrinsic::vector_reduce_umax:
3587 std::queue<Value *> Worklist;
3588 SmallPtrSet<Value *, 4> Visited;
3589 ShuffleVectorInst *Shuffle =
nullptr;
3593 while (!Worklist.empty()) {
3594 Value *CV = Worklist.front();
3606 if (CI->isBinaryOp()) {
3607 for (
auto *
Op : CI->operand_values())
3611 if (Shuffle && Shuffle != SV)
3628 for (
auto *V : Visited)
3629 for (
auto *U :
V->users())
3630 if (!Visited.contains(U) && U != &
I)
3633 FixedVectorType *VecType =
3637 FixedVectorType *ShuffleInputType =
3639 if (!ShuffleInputType)
3645 SmallVector<int> ConcatMask;
3647 sort(ConcatMask, [](
int X,
int Y) {
return (
unsigned)
X < (unsigned)
Y; });
3648 bool UsesSecondVec =
3649 any_of(ConcatMask, [&](
int M) {
return M >= (int)NumInputElts; });
3656 ShuffleInputType, ConcatMask,
CostKind);
3658 LLVM_DEBUG(
dbgs() <<
"Found a reduction feeding from a shuffle: " << *Shuffle
3660 LLVM_DEBUG(
dbgs() <<
" OldCost: " << OldCost <<
" vs NewCost: " << NewCost
3662 bool MadeChanges =
false;
3663 if (NewCost < OldCost) {
3667 LLVM_DEBUG(
dbgs() <<
"Created new shuffle: " << *NewShuffle <<
"\n");
3668 replaceValue(*Shuffle, *NewShuffle);
3674 MadeChanges |= foldSelectShuffle(*Shuffle,
true);
3720bool VectorCombine::foldShuffleChainsToReduce(Instruction &
I) {
3722 std::queue<Value *> InstWorklist;
3726 std::optional<unsigned int> CommonCallOp = std::nullopt;
3727 std::optional<Instruction::BinaryOps> CommonBinOp = std::nullopt;
3729 bool IsFirstCallOrBinInst =
true;
3730 bool ShouldBeCallOrBinInst =
true;
3736 SmallVector<Value *, 2> PrevVecV(2,
nullptr);
3746 int64_t
VecSize = FVT->getNumElements();
3752 unsigned int NumLevels =
Log2_64_Ceil(VecSize), VisitedCnt = 0;
3753 int64_t ShuffleMaskHalf = 1, ExpectedParityMask = 0;
3763 for (
int Cur = VecSize, Mask = NumLevels - 1; Cur > 1;
3764 Cur = (Cur + 1) / 2, --
Mask) {
3766 ExpectedParityMask |= (1ll <<
Mask);
3769 InstWorklist.push(VecOpEE);
3771 while (!InstWorklist.empty()) {
3772 Value *CI = InstWorklist.front();
3776 if (!ShouldBeCallOrBinInst)
3779 if (!IsFirstCallOrBinInst &&
3780 any_of(PrevVecV, [](
Value *VecV) {
return VecV ==
nullptr; }))
3785 if (
II != (IsFirstCallOrBinInst ? VecOpEE : PrevVecV[0]))
3787 IsFirstCallOrBinInst =
false;
3790 CommonCallOp =
II->getIntrinsicID();
3791 if (
II->getIntrinsicID() != *CommonCallOp)
3794 switch (
II->getIntrinsicID()) {
3795 case Intrinsic::umin:
3796 case Intrinsic::umax:
3797 case Intrinsic::smin:
3798 case Intrinsic::smax: {
3799 auto *Op0 =
II->getOperand(0);
3800 auto *Op1 =
II->getOperand(1);
3808 ShouldBeCallOrBinInst ^= 1;
3810 IntrinsicCostAttributes ICA(
3811 *CommonCallOp,
II->getType(),
3812 {PrevVecV[0]->getType(), PrevVecV[1]->getType()});
3819 InstWorklist.push(PrevVecV[1]);
3820 InstWorklist.push(PrevVecV[0]);
3824 if (!ShouldBeCallOrBinInst)
3827 if (!IsFirstCallOrBinInst &&
3828 any_of(PrevVecV, [](
Value *VecV) {
return VecV ==
nullptr; }))
3831 if (BinOp != (IsFirstCallOrBinInst ? VecOpEE : PrevVecV[0]))
3833 IsFirstCallOrBinInst =
false;
3841 switch (*CommonBinOp) {
3842 case BinaryOperator::Add:
3843 case BinaryOperator::Mul:
3844 case BinaryOperator::Or:
3845 case BinaryOperator::And:
3846 case BinaryOperator::Xor: {
3856 ShouldBeCallOrBinInst ^= 1;
3863 InstWorklist.push(PrevVecV[1]);
3864 InstWorklist.push(PrevVecV[0]);
3868 if (ShouldBeCallOrBinInst ||
3869 any_of(PrevVecV, [](
Value *VecV) {
return VecV ==
nullptr; }))
3872 if (SVInst != PrevVecV[1])
3875 ArrayRef<int> CurMask;
3881 for (
int Mask = 0, MaskSize = CurMask.
size(); Mask != MaskSize; ++Mask) {
3882 if (Mask < ShuffleMaskHalf &&
3883 CurMask[Mask] != ShuffleMaskHalf + Mask - (ExpectedParityMask & 1))
3885 if (Mask >= ShuffleMaskHalf && CurMask[Mask] != -1)
3890 ShuffleMaskHalf *= 2;
3891 ShuffleMaskHalf -= (ExpectedParityMask & 1);
3892 ExpectedParityMask >>= 1;
3895 SVInst->getType(), SVInst->getType(),
3899 if (!ExpectedParityMask && VisitedCnt == NumLevels)
3902 ShouldBeCallOrBinInst ^= 1;
3909 if (ShouldBeCallOrBinInst)
3912 assert(VecSize != -1 &&
"Expected Match for Vector Size");
3914 Value *FinalVecV = PrevVecV[0];
3926 IntrinsicCostAttributes ICA(ReducedOp, FinalVecVTy, {FinalVecV});
3929 if (NewCost >= OrigCost)
3932 auto *ReducedResult =
3934 replaceValue(
I, *ReducedResult);
3943bool VectorCombine::foldCastFromReductions(Instruction &
I) {
3948 bool TruncOnly =
false;
3951 case Intrinsic::vector_reduce_add:
3952 case Intrinsic::vector_reduce_mul:
3955 case Intrinsic::vector_reduce_and:
3956 case Intrinsic::vector_reduce_or:
3957 case Intrinsic::vector_reduce_xor:
3964 Value *ReductionSrc =
I.getOperand(0);
3976 Type *ResultTy =
I.getType();
3979 ReductionOpc, ReductionSrcTy, std::nullopt,
CostKind);
3989 if (OldCost <= NewCost || !NewCost.
isValid())
3993 II->getIntrinsicID(), {Src});
3995 replaceValue(
I, *NewCast);
4004 constexpr unsigned MaxVisited = 32;
4007 bool FoundReduction =
false;
4010 while (!WorkList.
empty()) {
4012 for (
User *U :
I->users()) {
4014 if (!UI || !Visited.
insert(UI).second)
4016 if (Visited.
size() > MaxVisited)
4022 switch (
II->getIntrinsicID()) {
4023 case Intrinsic::vector_reduce_add:
4024 case Intrinsic::vector_reduce_mul:
4025 case Intrinsic::vector_reduce_and:
4026 case Intrinsic::vector_reduce_or:
4027 case Intrinsic::vector_reduce_xor:
4028 case Intrinsic::vector_reduce_smin:
4029 case Intrinsic::vector_reduce_smax:
4030 case Intrinsic::vector_reduce_umin:
4031 case Intrinsic::vector_reduce_umax:
4032 FoundReduction =
true;
4045 return FoundReduction;
4058bool VectorCombine::foldSelectShuffle(Instruction &
I,
bool FromReduction) {
4063 if (!Op0 || !Op1 || Op0 == Op1 || !Op0->isBinaryOp() || !Op1->isBinaryOp() ||
4071 SmallPtrSet<Instruction *, 4> InputShuffles({SVI0A, SVI0B, SVI1A, SVI1B});
4073 if (!
I ||
I->getOperand(0)->getType() != VT)
4075 return any_of(
I->users(), [&](User *U) {
4076 return U != Op0 && U != Op1 &&
4077 !(isa<ShuffleVectorInst>(U) &&
4078 (InputShuffles.contains(cast<Instruction>(U)) ||
4079 isInstructionTriviallyDead(cast<Instruction>(U))));
4082 if (checkSVNonOpUses(SVI0A) || checkSVNonOpUses(SVI0B) ||
4083 checkSVNonOpUses(SVI1A) || checkSVNonOpUses(SVI1B))
4091 for (
auto *U :
I->users()) {
4093 if (!SV || SV->getType() != VT)
4095 if ((SV->getOperand(0) != Op0 && SV->getOperand(0) != Op1) ||
4096 (SV->getOperand(1) != Op0 && SV->getOperand(1) != Op1))
4103 if (!collectShuffles(Op0) || !collectShuffles(Op1))
4107 if (FromReduction && Shuffles.
size() > 1)
4112 if (!FromReduction) {
4113 for (ShuffleVectorInst *SV : Shuffles) {
4114 for (
auto *U : SV->users()) {
4117 Shuffles.push_back(SSV);
4129 int MaxV1Elt = 0, MaxV2Elt = 0;
4130 unsigned NumElts = VT->getNumElements();
4131 for (ShuffleVectorInst *SVN : Shuffles) {
4132 SmallVector<int>
Mask;
4133 SVN->getShuffleMask(Mask);
4137 Value *SVOp0 = SVN->getOperand(0);
4138 Value *SVOp1 = SVN->getOperand(1);
4143 for (
int &Elem : Mask) {
4149 if (SVOp0 == Op1 && SVOp1 == Op0) {
4153 if (SVOp0 != Op0 || SVOp1 != Op1)
4159 SmallVector<int> ReconstructMask;
4160 for (
unsigned I = 0;
I <
Mask.size();
I++) {
4163 }
else if (Mask[
I] <
static_cast<int>(NumElts)) {
4164 MaxV1Elt = std::max(MaxV1Elt, Mask[
I]);
4165 auto It =
find_if(V1, [&](
const std::pair<int, int> &
A) {
4166 return Mask[
I] ==
A.first;
4175 MaxV2Elt = std::max<int>(MaxV2Elt, Mask[
I] - NumElts);
4176 auto It =
find_if(V2, [&](
const std::pair<int, int> &
A) {
4177 return Mask[
I] -
static_cast<int>(NumElts) ==
A.first;
4191 sort(ReconstructMask);
4192 OrigReconstructMasks.
push_back(std::move(ReconstructMask));
4200 (MaxV1Elt ==
static_cast<int>(V1.
size()) - 1 &&
4201 MaxV2Elt ==
static_cast<int>(V2.
size()) - 1))
4213 if (InputShuffles.contains(SSV))
4215 return SV->getMaskValue(M);
4223 std::pair<int, int>
Y) {
4224 int MXA = GetBaseMaskValue(
A,
X.first);
4225 int MYA = GetBaseMaskValue(
A,
Y.first);
4228 stable_sort(V1, [&](std::pair<int, int>
A, std::pair<int, int>
B) {
4229 return SortBase(SVI0A,
A,
B);
4231 stable_sort(V2, [&](std::pair<int, int>
A, std::pair<int, int>
B) {
4232 return SortBase(SVI1A,
A,
B);
4237 for (
const auto &Mask : OrigReconstructMasks) {
4238 SmallVector<int> ReconstructMask;
4239 for (
int M : Mask) {
4241 auto It =
find_if(V, [M](
auto A) {
return A.second ==
M; });
4242 assert(It !=
V.end() &&
"Expected all entries in Mask");
4243 return std::distance(
V.begin(), It);
4247 else if (M <
static_cast<int>(NumElts)) {
4248 ReconstructMask.
push_back(FindIndex(V1, M));
4250 ReconstructMask.
push_back(NumElts + FindIndex(V2, M));
4253 ReconstructMasks.
push_back(std::move(ReconstructMask));
4258 SmallVector<int> V1A, V1B, V2A, V2B;
4259 for (
unsigned I = 0;
I < V1.
size();
I++) {
4260 V1A.
push_back(GetBaseMaskValue(SVI0A, V1[
I].first));
4261 V1B.
push_back(GetBaseMaskValue(SVI0B, V1[
I].first));
4263 for (
unsigned I = 0;
I < V2.
size();
I++) {
4264 V2A.
push_back(GetBaseMaskValue(SVI1A, V2[
I].first));
4265 V2B.
push_back(GetBaseMaskValue(SVI1B, V2[
I].first));
4267 while (V1A.
size() < NumElts) {
4271 while (V2A.
size() < NumElts) {
4283 VT, VT, SV->getShuffleMask(),
CostKind);
4290 unsigned ElementSize = VT->getElementType()->getPrimitiveSizeInBits();
4291 unsigned MaxVectorSize =
4293 unsigned MaxElementsInVector = MaxVectorSize / ElementSize;
4294 if (MaxElementsInVector == 0)
4303 std::set<SmallVector<int, 4>> UniqueShuffles;
4308 unsigned NumFullVectors =
Mask.size() / MaxElementsInVector;
4309 if (NumFullVectors < 2)
4310 return C + ShuffleCost;
4311 SmallVector<int, 4> SubShuffle(MaxElementsInVector);
4312 unsigned NumUniqueGroups = 0;
4313 unsigned NumGroups =
Mask.size() / MaxElementsInVector;
4316 for (
unsigned I = 0;
I < NumFullVectors; ++
I) {
4317 for (
unsigned J = 0; J < MaxElementsInVector; ++J)
4318 SubShuffle[J] = Mask[MaxElementsInVector *
I + J];
4319 if (UniqueShuffles.insert(SubShuffle).second)
4320 NumUniqueGroups += 1;
4322 return C + ShuffleCost * NumUniqueGroups / NumGroups;
4328 SmallVector<int, 16>
Mask;
4329 SV->getShuffleMask(Mask);
4330 return AddShuffleMaskAdjustedCost(
C, Mask);
4333 auto AllShufflesHaveSameOperands =
4334 [](SmallPtrSetImpl<Instruction *> &InputShuffles) {
4335 if (InputShuffles.size() < 2)
4337 ShuffleVectorInst *FirstSV =
4344 std::next(InputShuffles.begin()), InputShuffles.end(),
4345 [&](Instruction *
I) {
4346 ShuffleVectorInst *SV = dyn_cast<ShuffleVectorInst>(I);
4347 return SV && SV->getOperand(0) == In0 && SV->getOperand(1) == In1;
4356 CostBefore += std::accumulate(Shuffles.begin(), Shuffles.end(),
4358 if (AllShufflesHaveSameOperands(InputShuffles)) {
4359 UniqueShuffles.clear();
4360 CostBefore += std::accumulate(InputShuffles.begin(), InputShuffles.end(),
4363 CostBefore += std::accumulate(InputShuffles.begin(), InputShuffles.end(),
4369 FixedVectorType *Op0SmallVT =
4371 FixedVectorType *Op1SmallVT =
4376 UniqueShuffles.clear();
4377 CostAfter += std::accumulate(ReconstructMasks.begin(), ReconstructMasks.end(),
4379 std::set<SmallVector<int>> OutputShuffleMasks({V1A, V1B, V2A, V2B});
4381 std::accumulate(OutputShuffleMasks.begin(), OutputShuffleMasks.end(),
4384 LLVM_DEBUG(
dbgs() <<
"Found a binop select shuffle pattern: " <<
I <<
"\n");
4386 <<
" vs CostAfter: " << CostAfter <<
"\n");
4387 if (CostBefore < CostAfter ||
4398 if (InputShuffles.contains(SSV))
4400 return SV->getOperand(
Op);
4404 GetShuffleOperand(SVI0A, 1), V1A);
4407 GetShuffleOperand(SVI0B, 1), V1B);
4410 GetShuffleOperand(SVI1A, 1), V2A);
4413 GetShuffleOperand(SVI1B, 1), V2B);
4418 I->copyIRFlags(Op0,
true);
4423 I->copyIRFlags(Op1,
true);
4425 for (
int S = 0,
E = ReconstructMasks.size(); S !=
E; S++) {
4428 replaceValue(*Shuffles[S], *NSV,
false);
4431 Worklist.pushValue(NSV0A);
4432 Worklist.pushValue(NSV0B);
4433 Worklist.pushValue(NSV1A);
4434 Worklist.pushValue(NSV1B);
4444bool VectorCombine::shrinkType(Instruction &
I) {
4445 Value *ZExted, *OtherOperand;
4451 Value *ZExtOperand =
I.getOperand(
I.getOperand(0) == OtherOperand ? 1 : 0);
4455 unsigned BW = SmallTy->getElementType()->getPrimitiveSizeInBits();
4457 if (
I.getOpcode() == Instruction::LShr) {
4474 Instruction::ZExt, BigTy, SmallTy,
4475 TargetTransformInfo::CastContextHint::None,
CostKind);
4480 for (User *U : ZExtOperand->
users()) {
4487 ShrinkCost += ZExtCost;
4502 ShrinkCost += ZExtCost;
4509 Instruction::Trunc, SmallTy, BigTy,
4510 TargetTransformInfo::CastContextHint::None,
CostKind);
4515 if (ShrinkCost > CurrentCost)
4519 Value *Op0 = ZExted;
4522 if (
I.getOperand(0) == OtherOperand)
4529 replaceValue(
I, *NewZExtr);
4535bool VectorCombine::foldInsExtVectorToShuffle(Instruction &
I) {
4536 Value *DstVec, *SrcVec;
4537 uint64_t ExtIdx, InsIdx;
4547 if (!DstVecTy || !SrcVecTy ||
4548 SrcVecTy->getElementType() != DstVecTy->getElementType())
4551 unsigned NumDstElts = DstVecTy->getNumElements();
4552 unsigned NumSrcElts = SrcVecTy->getNumElements();
4553 if (InsIdx >= NumDstElts || ExtIdx >= NumSrcElts || NumDstElts == 1)
4560 bool NeedExpOrNarrow = NumSrcElts != NumDstElts;
4561 bool IsExtIdxInBounds = ExtIdx < NumDstElts;
4563 if (NeedDstSrcSwap) {
4565 if (!IsExtIdxInBounds && NeedExpOrNarrow)
4568 Mask[InsIdx] = ExtIdx;
4572 std::iota(
Mask.begin(),
Mask.end(), 0);
4573 if (!IsExtIdxInBounds && NeedExpOrNarrow)
4574 Mask[InsIdx] = NumDstElts;
4576 Mask[InsIdx] = ExtIdx + NumDstElts;
4589 SmallVector<int> ExtToVecMask;
4590 if (!NeedExpOrNarrow) {
4595 nullptr, {DstVec, SrcVec});
4601 if (IsExtIdxInBounds)
4602 ExtToVecMask[ExtIdx] = ExtIdx;
4604 ExtToVecMask[0] = ExtIdx;
4607 DstVecTy, SrcVecTy, ExtToVecMask,
CostKind);
4611 if (!Ext->hasOneUse())
4614 LLVM_DEBUG(
dbgs() <<
"Found a insert/extract shuffle-like pair: " <<
I
4615 <<
"\n OldCost: " << OldCost <<
" vs NewCost: " << NewCost
4618 if (OldCost < NewCost)
4621 if (NeedExpOrNarrow) {
4622 if (!NeedDstSrcSwap)
4635 replaceValue(
I, *Shuf);
4644bool VectorCombine::foldInterleaveIntrinsics(Instruction &
I) {
4645 const APInt *SplatVal0, *SplatVal1;
4655 auto *ExtVTy = VectorType::getExtendedElementVectorType(VTy);
4656 unsigned Width = VTy->getElementType()->getIntegerBitWidth();
4665 LLVM_DEBUG(
dbgs() <<
"VC: The cost to cast from " << *ExtVTy <<
" to "
4666 << *
I.getType() <<
" is too high.\n");
4670 APInt NewSplatVal = SplatVal1->
zext(Width * 2);
4671 NewSplatVal <<= Width;
4672 NewSplatVal |= SplatVal0->
zext(Width * 2);
4674 ExtVTy->getElementCount(), ConstantInt::get(
F.getContext(), NewSplatVal));
4682bool VectorCombine::shrinkLoadForShuffles(Instruction &
I) {
4684 if (!OldLoad || !OldLoad->isSimple())
4691 unsigned const OldNumElements = OldLoadTy->getNumElements();
4697 using IndexRange = std::pair<int, int>;
4698 auto GetIndexRangeInShuffles = [&]() -> std::optional<IndexRange> {
4699 IndexRange OutputRange = IndexRange(OldNumElements, -1);
4700 for (llvm::Use &Use :
I.uses()) {
4702 User *Shuffle =
Use.getUser();
4707 return std::nullopt;
4714 for (
int Index : Mask) {
4715 if (Index >= 0 && Index <
static_cast<int>(OldNumElements)) {
4716 OutputRange.first = std::min(Index, OutputRange.first);
4717 OutputRange.second = std::max(Index, OutputRange.second);
4722 if (OutputRange.second < OutputRange.first)
4723 return std::nullopt;
4729 if (std::optional<IndexRange> Indices = GetIndexRangeInShuffles()) {
4730 unsigned const NewNumElements = Indices->second + 1u;
4734 if (NewNumElements < OldNumElements) {
4739 Type *ElemTy = OldLoadTy->getElementType();
4741 Value *PtrOp = OldLoad->getPointerOperand();
4744 Instruction::Load, OldLoad->getType(), OldLoad->getAlign(),
4745 OldLoad->getPointerAddressSpace(),
CostKind);
4748 OldLoad->getPointerAddressSpace(),
CostKind);
4750 using UseEntry = std::pair<ShuffleVectorInst *, std::vector<int>>;
4752 unsigned const MaxIndex = NewNumElements * 2u;
4754 for (llvm::Use &Use :
I.uses()) {
4756 ArrayRef<int> OldMask = Shuffle->getShuffleMask();
4762 for (
int Index : OldMask) {
4763 if (Index >=
static_cast<int>(MaxIndex))
4777 dbgs() <<
"Found a load used only by shufflevector instructions: "
4778 <<
I <<
"\n OldCost: " << OldCost
4779 <<
" vs NewCost: " << NewCost <<
"\n");
4781 if (OldCost < NewCost || !NewCost.
isValid())
4787 NewLoad->copyMetadata(
I);
4790 for (UseEntry &Use : NewUses) {
4791 ShuffleVectorInst *Shuffle =
Use.first;
4792 std::vector<int> &NewMask =
Use.second;
4799 replaceValue(*Shuffle, *NewShuffle,
false);
4812bool VectorCombine::shrinkPhiOfShuffles(Instruction &
I) {
4814 if (!Phi ||
Phi->getNumIncomingValues() != 2u)
4818 ArrayRef<int> Mask0;
4819 ArrayRef<int> Mask1;
4832 auto const InputNumElements = InputVT->getNumElements();
4834 if (InputNumElements >= ResultVT->getNumElements())
4839 SmallVector<int, 16> NewMask;
4842 for (
auto [
M0,
M1] :
zip(Mask0, Mask1)) {
4843 if (
M0 >= 0 &&
M1 >= 0)
4845 else if (
M0 == -1 &&
M1 == -1)
4858 int MaskOffset = NewMask[0
u];
4859 unsigned Index = (InputNumElements + MaskOffset) % InputNumElements;
4862 for (
unsigned I = 0u;
I < InputNumElements; ++
I) {
4876 <<
"\n OldCost: " << OldCost <<
" vs NewCost: " << NewCost
4879 if (NewCost > OldCost)
4891 auto *NewPhi = Builder.
CreatePHI(NewShuf0->getType(), 2u);
4893 NewPhi->addIncoming(
Op,
Phi->getIncomingBlock(1u));
4899 replaceValue(*Phi, *NewShuf1);
4905bool VectorCombine::run() {
4919 auto Opcode =
I.getOpcode();
4927 if (IsFixedVectorType) {
4929 case Instruction::InsertElement:
4930 if (vectorizeLoadInsert(
I))
4933 case Instruction::ShuffleVector:
4934 if (widenSubvectorLoad(
I))
4945 if (scalarizeOpOrCmp(
I))
4947 if (scalarizeLoad(
I))
4949 if (scalarizeExtExtract(
I))
4951 if (scalarizeVPIntrinsic(
I))
4953 if (foldInterleaveIntrinsics(
I))
4957 if (Opcode == Instruction::Store)
4958 if (foldSingleElementStore(
I))
4962 if (TryEarlyFoldsOnly)
4969 if (IsFixedVectorType) {
4971 case Instruction::InsertElement:
4972 if (foldInsExtFNeg(
I))
4974 if (foldInsExtBinop(
I))
4976 if (foldInsExtVectorToShuffle(
I))
4979 case Instruction::ShuffleVector:
4980 if (foldPermuteOfBinops(
I))
4982 if (foldShuffleOfBinops(
I))
4984 if (foldShuffleOfSelects(
I))
4986 if (foldShuffleOfCastops(
I))
4988 if (foldShuffleOfShuffles(
I))
4990 if (foldPermuteOfIntrinsic(
I))
4992 if (foldShufflesOfLengthChangingShuffles(
I))
4994 if (foldShuffleOfIntrinsics(
I))
4996 if (foldSelectShuffle(
I))
4998 if (foldShuffleToIdentity(
I))
5001 case Instruction::Load:
5002 if (shrinkLoadForShuffles(
I))
5005 case Instruction::BitCast:
5006 if (foldBitcastShuffle(
I))
5009 case Instruction::And:
5010 case Instruction::Or:
5011 case Instruction::Xor:
5012 if (foldBitOpOfCastops(
I))
5014 if (foldBitOpOfCastConstant(
I))
5017 case Instruction::PHI:
5018 if (shrinkPhiOfShuffles(
I))
5028 case Instruction::Call:
5029 if (foldShuffleFromReductions(
I))
5031 if (foldCastFromReductions(
I))
5034 case Instruction::ExtractElement:
5035 if (foldShuffleChainsToReduce(
I))
5038 case Instruction::ICmp:
5039 case Instruction::FCmp:
5040 if (foldExtractExtract(
I))
5043 case Instruction::Or:
5044 if (foldConcatOfBoolMasks(
I))
5049 if (foldExtractExtract(
I))
5051 if (foldExtractedCmps(
I))
5053 if (foldBinopOfReductions(
I))
5062 bool MadeChange =
false;
5063 for (BasicBlock &BB :
F) {
5075 if (!
I->isDebugOrPseudoInst())
5076 MadeChange |= FoldInst(*
I);
5083 while (!Worklist.isEmpty()) {
5093 MadeChange |= FoldInst(*
I);
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
static cl::opt< unsigned > MaxInstrsToScan("aggressive-instcombine-max-scan-instrs", cl::init(64), cl::Hidden, cl::desc("Max number of instructions to scan for aggressive instcombine."))
This is the interface for LLVM's primary stateless and local alias analysis.
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
static cl::opt< OutputCostKind > CostKind("cost-kind", cl::desc("Target cost kind"), cl::init(OutputCostKind::RecipThroughput), cl::values(clEnumValN(OutputCostKind::RecipThroughput, "throughput", "Reciprocal throughput"), clEnumValN(OutputCostKind::Latency, "latency", "Instruction latency"), clEnumValN(OutputCostKind::CodeSize, "code-size", "Code size"), clEnumValN(OutputCostKind::SizeAndLatency, "size-latency", "Code size and latency"), clEnumValN(OutputCostKind::All, "all", "Print all cost kinds")))
This file defines the DenseMap class.
This is the interface for a simple mod/ref and alias analysis over globals.
const size_t AbstractManglingParser< Derived, Alloc >::NumOps
const AbstractManglingParser< Derived, Alloc >::OperatorInfo AbstractManglingParser< Derived, Alloc >::Ops[]
static void eraseInstruction(Instruction &I, ICFLoopSafetyInfo &SafetyInfo, MemorySSAUpdater &MSSAU)
MachineInstr unsigned OpIdx
uint64_t IntrinsicInst * II
FunctionAnalysisManager FAM
This file defines the make_scope_exit function, which executes user-defined cleanup logic at scope ex...
This file defines the SmallVector class.
This file defines the 'Statistic' class, which is designed to be an easy way to expose various metric...
#define STATISTIC(VARNAME, DESC)
static TableGen::Emitter::Opt Y("gen-skeleton-entry", EmitSkeleton, "Generate example skeleton entry")
static TableGen::Emitter::OptClass< SkeletonEmitter > X("gen-skeleton-class", "Generate example skeleton class")
static SymbolRef::Type getType(const Symbol *Sym)
static std::optional< unsigned > getOpcode(ArrayRef< VPValue * > Values)
Returns the opcode of Values or ~0 if they do not all agree.
static Value * generateNewInstTree(ArrayRef< InstLane > Item, FixedVectorType *Ty, const SmallPtrSet< Use *, 4 > &IdentityLeafs, const SmallPtrSet< Use *, 4 > &SplatLeafs, const SmallPtrSet< Use *, 4 > &ConcatLeafs, IRBuilderBase &Builder, const TargetTransformInfo *TTI)
static bool isFreeConcat(ArrayRef< InstLane > Item, TTI::TargetCostKind CostKind, const TargetTransformInfo &TTI)
Detect concat of multiple values into a vector.
static void analyzeCostOfVecReduction(const IntrinsicInst &II, TTI::TargetCostKind CostKind, const TargetTransformInfo &TTI, InstructionCost &CostBeforeReduction, InstructionCost &CostAfterReduction)
static SmallVector< InstLane > generateInstLaneVectorFromOperand(ArrayRef< InstLane > Item, int Op)
static Value * createShiftShuffle(Value *Vec, unsigned OldIndex, unsigned NewIndex, IRBuilderBase &Builder)
Create a shuffle that translates (shifts) 1 element from the input vector to a new element location.
static Align computeAlignmentAfterScalarization(Align VectorAlignment, Type *ScalarType, Value *Idx, const DataLayout &DL)
The memory operation on a vector of ScalarType had alignment of VectorAlignment.
static bool feedsIntoVectorReduction(ShuffleVectorInst *SVI)
Returns true if this ShuffleVectorInst eventually feeds into a vector reduction intrinsic (e....
static ScalarizationResult canScalarizeAccess(VectorType *VecTy, Value *Idx, Instruction *CtxI, AssumptionCache &AC, const DominatorTree &DT)
Check if it is legal to scalarize a memory access to VecTy at index Idx.
static cl::opt< bool > DisableVectorCombine("disable-vector-combine", cl::init(false), cl::Hidden, cl::desc("Disable all vector combine transforms"))
static InstLane lookThroughShuffles(Use *U, int Lane)
static bool canWidenLoad(LoadInst *Load, const TargetTransformInfo &TTI)
static const unsigned InvalidIndex
std::pair< Use *, int > InstLane
static Value * translateExtract(ExtractElementInst *ExtElt, unsigned NewIndex, IRBuilderBase &Builder)
Given an extract element instruction with constant index operand, shuffle the source vector (shift th...
static cl::opt< unsigned > MaxInstrsToScan("vector-combine-max-scan-instrs", cl::init(30), cl::Hidden, cl::desc("Max number of instructions to scan for vector combining."))
static cl::opt< bool > DisableBinopExtractShuffle("disable-binop-extract-shuffle", cl::init(false), cl::Hidden, cl::desc("Disable binop extract to shuffle transforms"))
static bool isMemModifiedBetween(BasicBlock::iterator Begin, BasicBlock::iterator End, const MemoryLocation &Loc, AAResults &AA)
static constexpr int Concat[]
A manager for alias analyses.
Class for arbitrary precision integers.
LLVM_ABI APInt zext(unsigned width) const
Zero extend to a new width.
static APInt getOneBitSet(unsigned numBits, unsigned BitNo)
Return an APInt with exactly one bit set in the result.
bool uge(const APInt &RHS) const
Unsigned greater or equal comparison.
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
const T & front() const
front - Get the first element.
size_t size() const
size - Get the array size.
A function analysis which provides an AssumptionCache.
A cache of @llvm.assume calls within a function.
LLVM_ABI bool hasAttribute(Attribute::AttrKind Kind) const
Return true if the attribute exists in this set.
InstListType::iterator iterator
Instruction iterators...
BinaryOps getOpcode() const
Represents analyses that only rely on functions' control flow.
Value * getArgOperand(unsigned i) const
iterator_range< User::op_iterator > args()
Iteration adapter for range-for loops.
static LLVM_ABI CastInst * Create(Instruction::CastOps, Value *S, Type *Ty, const Twine &Name="", InsertPosition InsertBefore=nullptr)
Provides a way to construct any of the CastInst subclasses using an opcode instead of the subclass's ...
static Type * makeCmpResultType(Type *opnd_type)
Create a result type for fcmp/icmp.
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
bool isFPPredicate() const
static LLVM_ABI std::optional< CmpPredicate > getMatching(CmpPredicate A, CmpPredicate B)
Compares two CmpPredicates taking samesign into account and returns the canonicalized CmpPredicate if...
static LLVM_ABI Constant * getExtractElement(Constant *Vec, Constant *Idx, Type *OnlyIfReducedTy=nullptr)
This is the shared class of boolean and integer constants.
const APInt & getValue() const
Return the constant as an APInt value reference.
This class represents a range of values.
LLVM_ABI ConstantRange urem(const ConstantRange &Other) const
Return a new range representing the possible values resulting from an unsigned remainder operation of...
LLVM_ABI ConstantRange binaryAnd(const ConstantRange &Other) const
Return a new range representing the possible values resulting from a binary-and of a value in this ra...
LLVM_ABI bool contains(const APInt &Val) const
Return true if the specified value is in the set.
static LLVM_ABI Constant * getSplat(ElementCount EC, Constant *Elt)
Return a ConstantVector with the specified constant in each element.
static LLVM_ABI Constant * get(ArrayRef< Constant * > V)
A parsed version of the target data layout string in and methods for querying it.
Analysis pass which computes a DominatorTree.
Concrete subclass of DominatorTreeBase that is used to compute a normal dominator tree.
LLVM_ABI bool isReachableFromEntry(const Use &U) const
Provide an overload for a Use.
Convenience struct for specifying and reasoning about fast-math flags.
Class to represent fixed width SIMD vectors.
unsigned getNumElements() const
static FixedVectorType * getDoubleElementsVectorType(FixedVectorType *VTy)
static LLVM_ABI FixedVectorType * get(Type *ElementType, unsigned NumElts)
Common base class shared among various IRBuilders.
Value * CreateInsertElement(Type *VecTy, Value *NewElt, Value *Idx, const Twine &Name="")
Value * CreateExtractElement(Value *Vec, Value *Idx, const Twine &Name="")
LoadInst * CreateAlignedLoad(Type *Ty, Value *Ptr, MaybeAlign Align, const char *Name)
LLVM_ABI Value * CreateSelectFMF(Value *C, Value *True, Value *False, FMFSource FMFSource, const Twine &Name="", Instruction *MDFrom=nullptr)
LLVM_ABI Value * CreateVectorSplat(unsigned NumElts, Value *V, const Twine &Name="")
Return a vector value that contains.
LLVM_ABI Value * CreateSelect(Value *C, Value *True, Value *False, const Twine &Name="", Instruction *MDFrom=nullptr)
Value * CreateFreeze(Value *V, const Twine &Name="")
Value * CreateLShr(Value *LHS, Value *RHS, const Twine &Name="", bool isExact=false)
Value * CreateCast(Instruction::CastOps Op, Value *V, Type *DestTy, const Twine &Name="", MDNode *FPMathTag=nullptr, FMFSource FMFSource={})
void SetCurrentDebugLocation(DebugLoc L)
Set location information used by debugging information.
Value * CreateInBoundsGEP(Type *Ty, Value *Ptr, ArrayRef< Value * > IdxList, const Twine &Name="")
Value * CreatePointerBitCastOrAddrSpaceCast(Value *V, Type *DestTy, const Twine &Name="")
ConstantInt * getInt64(uint64_t C)
Get a constant 64-bit value.
LLVM_ABI CallInst * CreateIntrinsic(Intrinsic::ID ID, ArrayRef< Type * > Types, ArrayRef< Value * > Args, FMFSource FMFSource={}, const Twine &Name="")
Create a call to intrinsic ID with Args, mangled using Types.
ConstantInt * getInt32(uint32_t C)
Get a constant 32-bit value.
Value * CreateCmp(CmpInst::Predicate Pred, Value *LHS, Value *RHS, const Twine &Name="", MDNode *FPMathTag=nullptr)
PHINode * CreatePHI(Type *Ty, unsigned NumReservedValues, const Twine &Name="")
InstTy * Insert(InstTy *I, const Twine &Name="") const
Insert and return the specified instruction.
Value * CreateBitCast(Value *V, Type *DestTy, const Twine &Name="")
LoadInst * CreateLoad(Type *Ty, Value *Ptr, const char *Name)
Provided to resolve 'CreateLoad(Ty, Ptr, "...")' correctly, instead of converting the string to 'bool...
Value * CreateShl(Value *LHS, Value *RHS, const Twine &Name="", bool HasNUW=false, bool HasNSW=false)
LLVM_ABI Value * CreateNAryOp(unsigned Opc, ArrayRef< Value * > Ops, const Twine &Name="", MDNode *FPMathTag=nullptr)
Create either a UnaryOperator or BinaryOperator depending on Opc.
Value * CreateZExt(Value *V, Type *DestTy, const Twine &Name="", bool IsNonNeg=false)
Value * CreateShuffleVector(Value *V1, Value *V2, Value *Mask, const Twine &Name="")
Value * CreateAnd(Value *LHS, Value *RHS, const Twine &Name="")
StoreInst * CreateStore(Value *Val, Value *Ptr, bool isVolatile=false)
Value * CreateTrunc(Value *V, Type *DestTy, const Twine &Name="", bool IsNUW=false, bool IsNSW=false)
PointerType * getPtrTy(unsigned AddrSpace=0)
Fetch the type representing a pointer.
Value * CreateBinOp(Instruction::BinaryOps Opc, Value *LHS, Value *RHS, const Twine &Name="", MDNode *FPMathTag=nullptr)
void SetInsertPoint(BasicBlock *TheBB)
This specifies that created instructions should be appended to the end of the specified block.
Value * CreateFNegFMF(Value *V, FMFSource FMFSource, const Twine &Name="", MDNode *FPMathTag=nullptr)
Value * CreateOr(Value *LHS, Value *RHS, const Twine &Name="", bool IsDisjoint=false)
InstSimplifyFolder - Use InstructionSimplify to fold operations to existing values.
void push(Instruction *I)
Push the instruction onto the worklist stack.
LLVM_ABI void setHasNoUnsignedWrap(bool b=true)
Set or clear the nuw flag on this instruction, which must be an operator which supports this flag.
LLVM_ABI void copyIRFlags(const Value *V, bool IncludeWrapFlags=true)
Convenience method to copy supported exact, fast-math, and (optionally) wrapping flags from V to this...
LLVM_ABI void setHasNoSignedWrap(bool b=true)
Set or clear the nsw flag on this instruction, which must be an operator which supports this flag.
const DebugLoc & getDebugLoc() const
Return the debug location for this node as a DebugLoc.
LLVM_ABI void andIRFlags(const Value *V)
Logical 'and' of any supported wrapping, exact, and fast-math flags of V and this instruction.
LLVM_ABI void setNonNeg(bool b=true)
Set or clear the nneg flag on this instruction, which must be a zext instruction.
LLVM_ABI bool comesBefore(const Instruction *Other) const
Given an instruction Other in the same basic block as this instruction, return true if this instructi...
LLVM_ABI AAMDNodes getAAMetadata() const
Returns the AA metadata for this instruction.
unsigned getOpcode() const
Returns a member of one of the enums like Instruction::Add.
LLVM_ABI void copyMetadata(const Instruction &SrcInst, ArrayRef< unsigned > WL=ArrayRef< unsigned >())
Copy metadata from SrcInst to this instruction.
static LLVM_ABI IntegerType * get(LLVMContext &C, unsigned NumBits)
This static method is the primary way of constructing an IntegerType.
A wrapper class for inspecting calls to intrinsic functions.
Intrinsic::ID getIntrinsicID() const
Return the intrinsic ID of this intrinsic.
An instruction for reading from memory.
unsigned getPointerAddressSpace() const
Returns the address space of the pointer operand.
void setAlignment(Align Align)
Type * getPointerOperandType() const
Align getAlign() const
Return the alignment of the access that is being performed.
Representation for a specific memory location.
static LLVM_ABI MemoryLocation get(const LoadInst *LI)
Return a location with information about the memory reference by the given instruction.
void addIncoming(Value *V, BasicBlock *BB)
Add an incoming value to the end of the PHI list.
static LLVM_ABI PoisonValue * get(Type *T)
Static factory methods - Return an 'poison' object of the specified type.
A set of analyses that are preserved following a run of a transformation pass.
static PreservedAnalyses all()
Construct a special preserved set that preserves all passes.
PreservedAnalyses & preserveSet()
Mark an analysis set as preserved.
const SDValue & getOperand(unsigned Num) const
This instruction constructs a fixed permutation of two input vectors.
int getMaskValue(unsigned Elt) const
Return the shuffle mask value of this instruction for the given element index.
VectorType * getType() const
Overload to return most specific vector type.
static LLVM_ABI void getShuffleMask(const Constant *Mask, SmallVectorImpl< int > &Result)
Convert the input shuffle mask operand to a vector of integers.
static LLVM_ABI bool isIdentityMask(ArrayRef< int > Mask, int NumSrcElts)
Return true if this shuffle mask chooses elements from exactly one source vector without lane crossin...
static void commuteShuffleMask(MutableArrayRef< int > Mask, unsigned InVecNumElts)
Change values in a shuffle permute mask assuming the two vector operands of length InVecNumElts have ...
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
bool contains(ConstPtrType Ptr) const
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
void assign(size_type NumElts, ValueParamT Elt)
reference emplace_back(ArgTypes &&... Args)
void reserve(size_type N)
void append(ItTy in_start, ItTy in_end)
Add the specified range to the end of the SmallVector.
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
void setAlignment(Align Align)
Analysis pass providing the TargetTransformInfo.
The instances of the Type class are immutable: once they are created, they are never changed.
bool isPointerTy() const
True if this is an instance of PointerType.
LLVM_ABI TypeSize getPrimitiveSizeInBits() const LLVM_READONLY
Return the basic size of this type if it is a primitive type.
LLVMContext & getContext() const
Return the LLVMContext in which this type was uniqued.
LLVM_ABI unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type.
bool isFloatingPointTy() const
Return true if this is one of the floating-point types.
bool isIntegerTy() const
True if this is an instance of IntegerType.
A Use represents the edge between a Value definition and its users.
Value * getOperand(unsigned i) const
static LLVM_ABI bool isVPBinOp(Intrinsic::ID ID)
std::optional< unsigned > getFunctionalIntrinsicID() const
std::optional< unsigned > getFunctionalOpcode() const
LLVM Value Representation.
Type * getType() const
All values are typed, get the type of this value.
const Value * stripAndAccumulateInBoundsConstantOffsets(const DataLayout &DL, APInt &Offset) const
This is a wrapper around stripAndAccumulateConstantOffsets with the in-bounds requirement set to fals...
bool hasOneUse() const
Return true if there is exactly one use of this value.
LLVM_ABI void replaceAllUsesWith(Value *V)
Change all uses of this to point to a new Value.
iterator_range< user_iterator > users()
LLVM_ABI Align getPointerAlignment(const DataLayout &DL) const
Returns an alignment of the pointer value.
unsigned getValueID() const
Return an ID for the concrete type of this object.
LLVM_ABI bool hasNUses(unsigned N) const
Return true if this Value has exactly N uses.
LLVM_ABI StringRef getName() const
Return a constant reference to the value's name.
PreservedAnalyses run(Function &F, FunctionAnalysisManager &)
static LLVM_ABI VectorType * get(Type *ElementType, ElementCount EC)
This static method is the primary way to construct an VectorType.
std::pair< iterator, bool > insert(const ValueT &V)
const ParentTy * getParent() const
self_iterator getIterator()
NodeTy * getNextNode()
Get the next node, or nullptr for the list tail.
Abstract Attribute helper functions.
constexpr char Align[]
Key for Kernel::Arg::Metadata::mAlign.
constexpr char Args[]
Key for Kernel::Metadata::mArgs.
constexpr char Attrs[]
Key for Kernel::Metadata::mAttrs.
constexpr std::underlying_type_t< E > Mask()
Get a bitmask with 1s in all places up to the high-order bit of E's largest value.
@ C
The default llvm calling convention, compatible with C.
@ BasicBlock
Various leaf nodes.
LLVM_ABI AttributeSet getFnAttributes(LLVMContext &C, ID id)
Return the function attributes for an intrinsic.
SpecificConstantMatch m_ZeroInt()
Convenience matchers for specific integer values.
OneUse_match< SubPat > m_OneUse(const SubPat &SP)
class_match< PoisonValue > m_Poison()
Match an arbitrary poison constant.
BinaryOp_match< LHS, RHS, Instruction::And > m_And(const LHS &L, const RHS &R)
class_match< BinaryOperator > m_BinOp()
Match an arbitrary binary operation and ignore it.
BinaryOp_match< LHS, RHS, Instruction::URem > m_URem(const LHS &L, const RHS &R)
class_match< Constant > m_Constant()
Match an arbitrary Constant and ignore it.
ap_match< APInt > m_APInt(const APInt *&Res)
Match a ConstantInt or splatted ConstantVector, binding the specified pointer to the contained APInt.
CastInst_match< OpTy, TruncInst > m_Trunc(const OpTy &Op)
Matches Trunc.
bool match(Val *V, const Pattern &P)
bind_ty< Instruction > m_Instruction(Instruction *&I)
Match an instruction, capturing it if we match.
specificval_ty m_Specific(const Value *V)
Match if we have a specific specified value.
DisjointOr_match< LHS, RHS > m_DisjointOr(const LHS &L, const RHS &R)
TwoOps_match< Val_t, Idx_t, Instruction::ExtractElement > m_ExtractElt(const Val_t &Val, const Idx_t &Idx)
Matches ExtractElementInst.
class_match< ConstantInt > m_ConstantInt()
Match an arbitrary ConstantInt and ignore it.
IntrinsicID_match m_Intrinsic()
Match intrinsic calls like this: m_Intrinsic<Intrinsic::fabs>(m_Value(X))
ThreeOps_match< Cond, LHS, RHS, Instruction::Select > m_Select(const Cond &C, const LHS &L, const RHS &R)
Matches SelectInst.
match_combine_and< LTy, RTy > m_CombineAnd(const LTy &L, const RTy &R)
Combine two pattern matchers matching L && R.
BinaryOp_match< LHS, RHS, Instruction::Mul > m_Mul(const LHS &L, const RHS &R)
TwoOps_match< V1_t, V2_t, Instruction::ShuffleVector > m_Shuffle(const V1_t &v1, const V2_t &v2)
Matches ShuffleVectorInst independently of mask value.
OneOps_match< OpTy, Instruction::Load > m_Load(const OpTy &Op)
Matches LoadInst.
CastInst_match< OpTy, ZExtInst > m_ZExt(const OpTy &Op)
Matches ZExt.
BinOpPred_match< LHS, RHS, is_bitwiselogic_op, true > m_c_BitwiseLogic(const LHS &L, const RHS &R)
Matches bitwise logic operations in either order.
class_match< CmpInst > m_Cmp()
Matches any compare instruction and ignore it.
CastOperator_match< OpTy, Instruction::BitCast > m_BitCast(const OpTy &Op)
Matches BitCast.
match_combine_or< CastInst_match< OpTy, SExtInst >, NNegZExt_match< OpTy > > m_SExtLike(const OpTy &Op)
Match either "sext" or "zext nneg".
class_match< Value > m_Value()
Match an arbitrary value and ignore it.
BinaryOp_match< LHS, RHS, Instruction::LShr > m_LShr(const LHS &L, const RHS &R)
match_combine_or< CastInst_match< OpTy, ZExtInst >, CastInst_match< OpTy, SExtInst > > m_ZExtOrSExt(const OpTy &Op)
FNeg_match< OpTy > m_FNeg(const OpTy &X)
Match 'fneg X' as 'fsub -0.0, X'.
BinaryOp_match< LHS, RHS, Instruction::Shl > m_Shl(const LHS &L, const RHS &R)
auto m_Undef()
Match an arbitrary undef constant.
is_zero m_Zero()
Match any null constant or a vector with all elements equal to 0.
ThreeOps_match< Val_t, Elt_t, Idx_t, Instruction::InsertElement > m_InsertElt(const Val_t &Val, const Elt_t &Elt, const Idx_t &Idx)
Matches InsertElementInst.
@ Valid
The data is already valid.
initializer< Ty > init(const Ty &Val)
PointerTypeMap run(const Module &M)
Compute the PointerTypeMap for the module M.
@ User
could "use" a pointer
NodeAddr< PhiNode * > Phi
NodeAddr< UseNode * > Use
friend class Instruction
Iterator for Instructions in a `BasicBlock.
This is an optimization pass for GlobalISel generic memory operations.
auto drop_begin(T &&RangeOrContainer, size_t N=1)
Return a range covering RangeOrContainer with the first N elements excluded.
detail::zippy< detail::zip_shortest, T, U, Args... > zip(T &&t, U &&u, Args &&...args)
zip iterator for two or more iteratable types.
FunctionAddr VTableAddr Value
void stable_sort(R &&Range)
UnaryFunction for_each(R &&Range, UnaryFunction F)
Provide wrappers to std::for_each which take ranges instead of having to pass begin/end explicitly.
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
LLVM_ABI bool RecursivelyDeleteTriviallyDeadInstructions(Value *V, const TargetLibraryInfo *TLI=nullptr, MemorySSAUpdater *MSSAU=nullptr, std::function< void(Value *)> AboutToDeleteCallback=std::function< void(Value *)>())
If the specified value is a trivially dead instruction, delete it.
detail::scope_exit< std::decay_t< Callable > > make_scope_exit(Callable &&F)
LLVM_ABI SDValue peekThroughBitcasts(SDValue V)
Return the non-bitcasted source operand of V if it exists.
auto enumerate(FirstRange &&First, RestRanges &&...Rest)
Given two or more input ranges, returns a new range whose values are tuples (A, B,...
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
unsigned Log2_64_Ceil(uint64_t Value)
Return the ceil log base 2 of the specified value, 64 if the value is zero.
LLVM_ABI Value * simplifyUnOp(unsigned Opcode, Value *Op, const SimplifyQuery &Q)
Given operand for a UnaryOperator, fold the result or return null.
iterator_range< T > make_range(T x, T y)
Convenience function for iterating over sub-ranges.
LLVM_ABI unsigned getArithmeticReductionInstruction(Intrinsic::ID RdxID)
Returns the arithmetic instruction opcode used when expanding a reduction.
void append_range(Container &C, Range &&R)
Wrapper function to append range R to container C.
constexpr bool isUIntN(unsigned N, uint64_t x)
Checks if an unsigned integer fits into the given (dynamic) bit width.
LLVM_ABI Value * simplifyCall(CallBase *Call, Value *Callee, ArrayRef< Value * > Args, const SimplifyQuery &Q)
Given a callsite, callee, and arguments, fold the result or return null.
iterator_range< early_inc_iterator_impl< detail::IterOfRange< RangeT > > > make_early_inc_range(RangeT &&Range)
Make a range that does early increment to allow mutation of the underlying range without disrupting i...
LLVM_ABI bool mustSuppressSpeculation(const LoadInst &LI)
Return true if speculation of the given load must be suppressed to avoid ordering or interfering with...
LLVM_ABI bool widenShuffleMaskElts(int Scale, ArrayRef< int > Mask, SmallVectorImpl< int > &ScaledMask)
Try to transform a shuffle mask by replacing elements with the scaled index for an equivalent mask of...
LLVM_ABI bool isSafeToSpeculativelyExecute(const Instruction *I, const Instruction *CtxI=nullptr, AssumptionCache *AC=nullptr, const DominatorTree *DT=nullptr, const TargetLibraryInfo *TLI=nullptr, bool UseVariableInfo=true, bool IgnoreUBImplyingAttrs=true)
Return true if the instruction does not have any effects besides calculating the result and does not ...
LLVM_ABI Value * getSplatValue(const Value *V)
Get splat value if the input is a splat vector or return nullptr.
LLVM_ABI ConstantRange computeConstantRange(const Value *V, bool ForSigned, bool UseInstrInfo=true, AssumptionCache *AC=nullptr, const Instruction *CtxI=nullptr, const DominatorTree *DT=nullptr, unsigned Depth=0)
Determine the possible constant range of an integer or vector of integer value.
unsigned M1(unsigned Val)
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
LLVM_ABI bool isInstructionTriviallyDead(Instruction *I, const TargetLibraryInfo *TLI=nullptr)
Return true if the result produced by the instruction is not used, and the instruction will return.
LLVM_ABI bool isSplatValue(const Value *V, int Index=-1, unsigned Depth=0)
Return true if each element of the vector value V is poisoned or equal to every other non-poisoned el...
constexpr bool isPowerOf2_32(uint32_t Value)
Return true if the argument is a power of two > 0.
bool isModSet(const ModRefInfo MRI)
void sort(IteratorTy Start, IteratorTy End)
LLVM_ABI void computeKnownBits(const Value *V, KnownBits &Known, const DataLayout &DL, AssumptionCache *AC=nullptr, const Instruction *CxtI=nullptr, const DominatorTree *DT=nullptr, bool UseInstrInfo=true, unsigned Depth=0)
Determine which bits of V are known to be either zero or one and return them in the KnownZero/KnownOn...
LLVM_ABI bool programUndefinedIfPoison(const Instruction *Inst)
LLVM_ABI bool isSafeToLoadUnconditionally(Value *V, Align Alignment, const APInt &Size, const DataLayout &DL, Instruction *ScanFrom, AssumptionCache *AC=nullptr, const DominatorTree *DT=nullptr, const TargetLibraryInfo *TLI=nullptr)
Return true if we know that executing a load from this value cannot trap.
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
class LLVM_GSL_OWNER SmallVector
Forward declaration of SmallVector so that calculateSmallVectorDefaultInlinedElements can reference s...
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
LLVM_ABI void propagateIRFlags(Value *I, ArrayRef< Value * > VL, Value *OpValue=nullptr, bool IncludeWrapFlags=true)
Get the intersection (logical and) of all of the potential IR flags of each scalar operation (VL) tha...
LLVM_ABI bool isKnownNonZero(const Value *V, const SimplifyQuery &Q, unsigned Depth=0)
Return true if the given value is known to be non-zero when defined.
MutableArrayRef(T &OneElt) -> MutableArrayRef< T >
constexpr int PoisonMaskElem
LLVM_ABI bool isSafeToSpeculativelyExecuteWithOpcode(unsigned Opcode, const Instruction *Inst, const Instruction *CtxI=nullptr, AssumptionCache *AC=nullptr, const DominatorTree *DT=nullptr, const TargetLibraryInfo *TLI=nullptr, bool UseVariableInfo=true, bool IgnoreUBImplyingAttrs=true)
This returns the same result as isSafeToSpeculativelyExecute if Opcode is the actual opcode of Inst.
IRBuilder(LLVMContext &, FolderTy, InserterTy, MDNode *, ArrayRef< OperandBundleDef >) -> IRBuilder< FolderTy, InserterTy >
LLVM_ABI Value * simplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, const SimplifyQuery &Q)
Given operands for a BinaryOperator, fold the result or return null.
LLVM_ABI void narrowShuffleMaskElts(int Scale, ArrayRef< int > Mask, SmallVectorImpl< int > &ScaledMask)
Replace each shuffle mask index with the scaled sequential indices for an equivalent mask of narrowed...
LLVM_ABI Intrinsic::ID getReductionForBinop(Instruction::BinaryOps Opc)
Returns the reduction intrinsic id corresponding to the binary operation.
@ And
Bitwise or logical AND of integers.
LLVM_ABI bool isVectorIntrinsicWithScalarOpAtArg(Intrinsic::ID ID, unsigned ScalarOpdIdx, const TargetTransformInfo *TTI)
Identifies if the vector form of the intrinsic has a scalar operand.
DWARFExpression::Operation Op
unsigned M0(unsigned Val)
constexpr unsigned BitWidth
LLVM_ABI bool isGuaranteedToTransferExecutionToSuccessor(const Instruction *I)
Return true if this function can prove that the instruction I will always transfer execution to one o...
LLVM_ABI Constant * getLosslessInvCast(Constant *C, Type *InvCastTo, unsigned CastOp, const DataLayout &DL, PreservedCastFlags *Flags=nullptr)
Try to cast C to InvC losslessly, satisfying CastOp(InvC) equals C, or CastOp(InvC) is a refined valu...
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
auto find_if(R &&Range, UnaryPredicate P)
Provide wrappers to std::find_if which take ranges instead of having to pass begin/end explicitly.
bool is_contained(R &&Range, const E &Element)
Returns true if Element is found in Range.
Align commonAlignment(Align A, uint64_t Offset)
Returns the alignment that satisfies both alignments.
bool all_equal(std::initializer_list< T > Values)
Returns true if all Values in the initializer lists are equal or the list.
LLVM_ABI Value * simplifyCmpInst(CmpPredicate Predicate, Value *LHS, Value *RHS, const SimplifyQuery &Q)
Given operands for a CmpInst, fold the result or return null.
AnalysisManager< Function > FunctionAnalysisManager
Convenience typedef for the Function analysis manager.
LLVM_ABI bool isGuaranteedNotToBePoison(const Value *V, AssumptionCache *AC=nullptr, const Instruction *CtxI=nullptr, const DominatorTree *DT=nullptr, unsigned Depth=0)
Returns true if V cannot be poison, but may be undef.
Type * toVectorTy(Type *Scalar, ElementCount EC)
A helper function for converting Scalar types to vector types.
LLVM_ABI bool isTriviallyVectorizable(Intrinsic::ID ID)
Identify if the intrinsic is trivially vectorizable.
LLVM_ABI Intrinsic::ID getMinMaxReductionIntrinsicID(Intrinsic::ID IID)
Returns the llvm.vector.reduce min/max intrinsic that corresponds to the intrinsic op.
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
LLVM_ABI AAMDNodes adjustForAccess(unsigned AccessSize)
Create a new AAMDNode for accessing AccessSize bytes of this AAMDNode.
This struct is a compact representation of a valid (non-zero power of two) alignment.
unsigned countMaxActiveBits() const
Returns the maximum number of bits needed to represent all possible unsigned values with these known ...
APInt getMaxValue() const
Return the maximal unsigned value possible given these KnownBits.