58#define DEBUG_TYPE "legalizedag"
64struct FloatSignAsInt {
87class SelectionDAGLegalize {
99 EVT getSetCCResultType(
EVT VT)
const {
110 LegalizedNodes(LegalizedNodes), UpdatedNodes(UpdatedNodes) {}
131 std::pair<SDValue, SDValue> ExpandLibCall(RTLIB::Libcall LC,
SDNode *
Node,
133 bool IsSigned,
EVT RetVT);
134 std::pair<SDValue, SDValue> ExpandLibCall(RTLIB::Libcall LC,
SDNode *
Node,
bool isSigned);
136 void ExpandFPLibCall(
SDNode *
Node, RTLIB::Libcall LC,
138 void ExpandFPLibCall(
SDNode *
Node, RTLIB::Libcall Call_F32,
139 RTLIB::Libcall Call_F64, RTLIB::Libcall Call_F80,
140 RTLIB::Libcall Call_F128,
141 RTLIB::Libcall Call_PPCF128,
145 ExpandFastFPLibCall(
SDNode *
Node,
bool IsFast,
146 std::pair<RTLIB::Libcall, RTLIB::Libcall> Call_F32,
147 std::pair<RTLIB::Libcall, RTLIB::Libcall> Call_F64,
148 std::pair<RTLIB::Libcall, RTLIB::Libcall> Call_F80,
149 std::pair<RTLIB::Libcall, RTLIB::Libcall> Call_F128,
150 std::pair<RTLIB::Libcall, RTLIB::Libcall> Call_PPCF128,
154 RTLIB::Libcall Call_I16, RTLIB::Libcall Call_I32,
155 RTLIB::Libcall Call_I64, RTLIB::Libcall Call_I128);
157 RTLIB::Libcall Call_F32, RTLIB::Libcall Call_F64,
158 RTLIB::Libcall Call_F80, RTLIB::Libcall Call_F128,
159 RTLIB::Libcall Call_PPCF128,
162 RTLIB::Libcall CallI64,
163 RTLIB::Libcall CallI128);
177 void getSignAsIntValue(FloatSignAsInt &State,
const SDLoc &
DL,
179 SDValue modifySignAsInt(
const FloatSignAsInt &State,
const SDLoc &
DL,
227 dbgs() <<
" with: "; New->dump(&DAG));
230 "Replacing one node with another that produces a different number "
234 UpdatedNodes->
insert(New);
240 dbgs() <<
" with: "; New->dump(&DAG));
244 UpdatedNodes->
insert(New.getNode());
245 ReplacedNode(Old.getNode());
252 for (
unsigned i = 0, e = Old->
getNumValues(); i != e; ++i) {
263 dbgs() <<
" with: "; New->dump(&DAG));
267 UpdatedNodes->
insert(New.getNode());
268 ReplacedNode(Old.getNode());
278 bool isObjectScalable) {
286 ObjectSize, MFI.getObjectAlign(FI));
293SDValue SelectionDAGLegalize::ShuffleWithNarrowerEltType(
298 unsigned NumEltsGrowth = NumDestElts / NumMaskElts;
300 assert(NumEltsGrowth &&
"Cannot promote to vector type with fewer elts!");
302 if (NumEltsGrowth == 1)
305 SmallVector<int, 8> NewMask;
306 for (
unsigned i = 0; i != NumMaskElts; ++i) {
308 for (
unsigned j = 0;
j != NumEltsGrowth; ++
j) {
312 NewMask.
push_back(Idx * NumEltsGrowth + j);
315 assert(NewMask.
size() == NumDestElts &&
"Non-integer NumEltsGrowth?");
323SelectionDAGLegalize::ExpandConstantFP(ConstantFPSDNode *CFP,
bool UseCP) {
336 assert((VT == MVT::f64 || VT == MVT::f32) &&
"Invalid type expansion");
338 (VT == MVT::f64) ? MVT::i64 : MVT::i32);
348 while (SVT != MVT::f32 && SVT != MVT::f16 && SVT != MVT::bf16) {
381SDValue SelectionDAGLegalize::ExpandConstant(ConstantSDNode *CP) {
383 EVT VT =
CP->getValueType(0);
413 SmallVector<int, 8> ShufOps;
414 for (
unsigned i = 0; i != NumElts; ++i)
415 ShufOps.
push_back(i != InsertPos->getZExtValue() ? i : NumElts);
420 return ExpandInsertToVectorThroughStack(
Op);
423SDValue SelectionDAGLegalize::OptimizeFloatStore(StoreSDNode* ST) {
438 AAMDNodes AAInfo =
ST->getAAInfo();
449 bitcastToAPInt().zextOrTrunc(32),
450 SDLoc(CFP), MVT::i32);
451 return DAG.
getStore(Chain, dl, Con, Ptr,
ST->getPointerInfo(),
452 ST->getBaseAlign(), MMOFlags, AAInfo);
460 zextOrTrunc(64), SDLoc(CFP), MVT::i64);
461 return DAG.
getStore(Chain, dl, Con, Ptr,
ST->getPointerInfo(),
462 ST->getBaseAlign(), MMOFlags, AAInfo);
476 ST->getBaseAlign(), MMOFlags, AAInfo);
479 ST->getPointerInfo().getWithOffset(4),
480 ST->getBaseAlign(), MMOFlags, AAInfo);
489void SelectionDAGLegalize::LegalizeStoreOps(SDNode *Node) {
496 AAMDNodes AAInfo =
ST->getAAInfo();
498 if (!
ST->isTruncatingStore()) {
500 if (SDNode *OptStore = OptimizeFloatStore(ST).
getNode()) {
501 ReplaceNode(ST, OptStore);
506 MVT VT =
Value.getSimpleValueType();
509 case TargetLowering::Legal: {
512 EVT MemVT =
ST->getMemoryVT();
515 *
ST->getMemOperand())) {
518 ReplaceNode(
SDValue(ST, 0), Result);
523 case TargetLowering::Custom: {
526 if (Res && Res !=
SDValue(Node, 0))
527 ReplaceNode(
SDValue(Node, 0), Res);
530 case TargetLowering::Promote: {
533 "Can only promote stores to same size type");
536 ST->getBaseAlign(), MMOFlags, AAInfo);
537 ReplaceNode(
SDValue(Node, 0), Result);
546 EVT StVT =
ST->getMemoryVT();
551 if (StWidth != StSize) {
559 ST->getBaseAlign(), MMOFlags, AAInfo);
560 ReplaceNode(
SDValue(Node, 0), Result);
565 unsigned LogStWidth =
Log2_32(StWidthBits);
567 unsigned RoundWidth = 1 << LogStWidth;
568 assert(RoundWidth < StWidthBits);
569 unsigned ExtraWidth = StWidthBits - RoundWidth;
570 assert(ExtraWidth < RoundWidth);
571 assert(!(RoundWidth % 8) && !(ExtraWidth % 8) &&
572 "Store size not an integral number of bytes!");
576 unsigned IncrementSize;
578 if (
DL.isLittleEndian()) {
582 RoundVT,
ST->getBaseAlign(), MMOFlags, AAInfo);
585 IncrementSize = RoundWidth / 8;
592 ST->getPointerInfo().getWithOffset(IncrementSize),
593 ExtraVT,
ST->getBaseAlign(), MMOFlags, AAInfo);
602 ST->getBaseAlign(), MMOFlags, AAInfo);
605 IncrementSize = RoundWidth / 8;
610 ST->getPointerInfo().getWithOffset(IncrementSize),
611 ExtraVT,
ST->getBaseAlign(), MMOFlags, AAInfo);
616 ReplaceNode(
SDValue(Node, 0), Result);
620 case TargetLowering::Legal: {
621 EVT MemVT =
ST->getMemoryVT();
625 *
ST->getMemOperand())) {
627 ReplaceNode(
SDValue(ST, 0), Result);
631 case TargetLowering::Custom: {
633 if (Res && Res !=
SDValue(Node, 0))
634 ReplaceNode(
SDValue(Node, 0), Res);
637 case TargetLowering::Expand:
639 "Vector Stores are handled in LegalizeVectorOps");
647 ST->getBaseAlign(), MMOFlags, AAInfo);
655 StVT,
ST->getBaseAlign(), MMOFlags, AAInfo);
658 ReplaceNode(
SDValue(Node, 0), Result);
664void SelectionDAGLegalize::LegalizeLoadOps(SDNode *Node) {
673 LLVM_DEBUG(
dbgs() <<
"Legalizing non-extending load operation\n");
674 MVT VT =
Node->getSimpleValueType(0);
680 case TargetLowering::Legal: {
681 EVT MemVT =
LD->getMemoryVT();
686 *
LD->getMemOperand())) {
691 case TargetLowering::Custom:
698 case TargetLowering::Promote: {
701 "Can only promote loads to same size type");
705 if (
const MDNode *MD =
LD->getRanges()) {
709 LD->getMemOperand()->clearRanges();
717 if (RChain.
getNode() != Node) {
718 assert(RVal.
getNode() != Node &&
"Load must be completely replaced");
722 UpdatedNodes->insert(RVal.
getNode());
723 UpdatedNodes->insert(RChain.
getNode());
731 EVT SrcVT =
LD->getMemoryVT();
734 AAMDNodes AAInfo =
LD->getAAInfo();
746 TargetLowering::Promote)) {
760 Chain, Ptr,
LD->getPointerInfo(), NVT,
761 LD->getBaseAlign(), MMOFlags, AAInfo);
773 Result.getValueType(), Result,
782 unsigned LogSrcWidth =
Log2_32(SrcWidthBits);
784 unsigned RoundWidth = 1 << LogSrcWidth;
785 assert(RoundWidth < SrcWidthBits);
786 unsigned ExtraWidth = SrcWidthBits - RoundWidth;
787 assert(ExtraWidth < RoundWidth);
788 assert(!(RoundWidth % 8) && !(ExtraWidth % 8) &&
789 "Load size not an integral number of bytes!");
793 unsigned IncrementSize;
796 if (
DL.isLittleEndian()) {
800 LD->getPointerInfo(), RoundVT,
LD->getBaseAlign(),
804 IncrementSize = RoundWidth / 8;
808 LD->getPointerInfo().getWithOffset(IncrementSize),
809 ExtraVT,
LD->getBaseAlign(), MMOFlags, AAInfo);
828 LD->getPointerInfo(), RoundVT,
LD->getBaseAlign(),
832 IncrementSize = RoundWidth / 8;
836 LD->getPointerInfo().getWithOffset(IncrementSize),
837 ExtraVT,
LD->getBaseAlign(), MMOFlags, AAInfo);
855 bool isCustom =
false;
859 case TargetLowering::Custom:
862 case TargetLowering::Legal:
874 EVT MemVT =
LD->getMemoryVT();
877 *
LD->getMemOperand())) {
883 case TargetLowering::Expand: {
884 EVT DestVT =
Node->getValueType(0);
898 SrcVT,
LD->getMemOperand());
902 Chain =
Load.getValue(1);
911 if (SVT == MVT::f16 || SVT == MVT::bf16) {
917 Ptr, ISrcVT,
LD->getMemOperand());
921 Chain =
Result.getValue(1);
927 "Vector Loads are handled in LegalizeVectorOps");
934 "EXTLOAD should always be supported!");
938 Node->getValueType(0),
940 LD->getMemOperand());
949 Chain =
Result.getValue(1);
958 assert(
Value.getNode() != Node &&
"Load must be completely replaced");
962 UpdatedNodes->insert(
Value.getNode());
963 UpdatedNodes->insert(Chain.
getNode());
970void SelectionDAGLegalize::LegalizeOp(SDNode *Node) {
979 for (
unsigned i = 0, e =
Node->getNumValues(); i != e; ++i)
981 TargetLowering::TypeLegal &&
982 "Unexpected illegal type!");
986 TargetLowering::TypeLegal ||
989 "Unexpected illegal type!");
993 TargetLowering::LegalizeAction Action = TargetLowering::Legal;
994 bool SimpleFinishLegalizing =
true;
995 switch (
Node->getOpcode()) {
1006 ReplaceNode(Node, UndefNode.
getNode());
1017 Node->getValueType(0));
1021 Node->getValueType(0));
1022 if (Action != TargetLowering::Promote)
1028 Node->getOperand(1).getValueType());
1040 Node->getOperand(0).getValueType());
1054 Node->getOperand(1).getValueType());
1063 Node->getOperand(1).getValueType());
1072 unsigned Opc =
Node->getOpcode();
1083 MVT OpVT =
Node->getOperand(CompareOperand).getSimpleValueType();
1087 if (Action == TargetLowering::Legal) {
1090 Node->getValueType(0));
1100 SimpleFinishLegalizing =
false;
1107 SimpleFinishLegalizing =
false;
1121 if (Action == TargetLowering::Legal)
1122 Action = TargetLowering::Expand;
1133 if (Action == TargetLowering::Legal)
1134 Action = TargetLowering::Custom;
1152 Action = TargetLowering::Legal;
1156 if (Action == TargetLowering::Expand) {
1160 Node->getOperand(0));
1161 ReplaceNode(Node, NewVal.
getNode());
1168 if (Action == TargetLowering::Expand) {
1172 Node->getOperand(0));
1173 ReplaceNode(Node, NewVal.
getNode());
1198 unsigned Scale =
Node->getConstantOperandVal(2);
1200 Node->getValueType(0), Scale);
1211 case ISD::VP_SCATTER:
1221 case ISD::EXPERIMENTAL_VP_STRIDED_STORE:
1243 Node->getOpcode(),
Node->getOperand(0).getValueType());
1247 case ISD::VP_REDUCE_FADD:
1248 case ISD::VP_REDUCE_FMUL:
1249 case ISD::VP_REDUCE_ADD:
1250 case ISD::VP_REDUCE_MUL:
1251 case ISD::VP_REDUCE_AND:
1252 case ISD::VP_REDUCE_OR:
1253 case ISD::VP_REDUCE_XOR:
1254 case ISD::VP_REDUCE_SMAX:
1255 case ISD::VP_REDUCE_SMIN:
1256 case ISD::VP_REDUCE_UMAX:
1257 case ISD::VP_REDUCE_UMIN:
1258 case ISD::VP_REDUCE_FMAX:
1259 case ISD::VP_REDUCE_FMIN:
1260 case ISD::VP_REDUCE_FMAXIMUM:
1261 case ISD::VP_REDUCE_FMINIMUM:
1262 case ISD::VP_REDUCE_SEQ_FADD:
1263 case ISD::VP_REDUCE_SEQ_FMUL:
1265 Node->getOpcode(),
Node->getOperand(1).getValueType());
1267 case ISD::VP_CTTZ_ELTS:
1268 case ISD::VP_CTTZ_ELTS_ZERO_UNDEF:
1270 Node->getOperand(0).getValueType());
1286 if (SimpleFinishLegalizing) {
1287 SDNode *NewNode =
Node;
1288 switch (
Node->getOpcode()) {
1333 if (NewNode != Node) {
1334 ReplaceNode(Node, NewNode);
1338 case TargetLowering::Legal:
1341 case TargetLowering::Custom:
1349 if (
Node->getNumValues() == 1) {
1353 Node->getValueType(0) == MVT::Glue) &&
1354 "Type mismatch for custom legalized operation");
1357 ReplaceNode(
SDValue(Node, 0), Res);
1362 for (
unsigned i = 0, e =
Node->getNumValues(); i != e; ++i) {
1366 Node->getValueType(i) == MVT::Glue) &&
1367 "Type mismatch for custom legalized operation");
1371 ReplaceNode(Node, ResultVals.
data());
1376 case TargetLowering::Expand:
1377 if (ExpandNode(Node))
1380 case TargetLowering::LibCall:
1381 ConvertNodeToLibcall(Node);
1383 case TargetLowering::Promote:
1389 switch (
Node->getOpcode()) {
1402 return LegalizeLoadOps(Node);
1404 return LegalizeStoreOps(Node);
1408SDValue SelectionDAGLegalize::ExpandExtractFromVectorThroughStack(
SDValue Op) {
1421 SmallPtrSet<const SDNode *, 32> Visited;
1428 if (
ST->isIndexed() ||
ST->isTruncatingStore() ||
1429 ST->getValue() != Vec)
1434 if (!
ST->getChain().reachesChainWithoutSideEffects(DAG.
getEntryNode()))
1443 ST->hasPredecessor(
Op.getNode()))
1463 Align ElementAlignment =
1468 if (
Op.getValueType().isVector()) {
1470 Op.getValueType(), Idx);
1471 NewLoad = DAG.
getLoad(
Op.getValueType(), dl, Ch, StackPtr,
1472 MachinePointerInfo(), ElementAlignment);
1486 NewLoadOperands[0] = Ch;
1492SDValue SelectionDAGLegalize::ExpandInsertToVectorThroughStack(
SDValue Op) {
1493 assert(
Op.getValueType().isVector() &&
"Non-vector insert subvector!");
1505 MachinePointerInfo PtrInfo =
1509 Align BaseVecAlignment =
1527 Ch, dl, Part, SubStackPtr,
1536 Ch, dl, Part, SubStackPtr,
1542 "ElementAlignment does not match!");
1545 return DAG.
getLoad(
Op.getValueType(), dl, Ch, StackPtr, PtrInfo,
1549SDValue SelectionDAGLegalize::ExpandConcatVectors(SDNode *Node) {
1553 unsigned NumOperands =
Node->getNumOperands();
1555 EVT VectorValueType =
Node->getOperand(0).getValueType();
1559 for (
unsigned I = 0;
I < NumOperands; ++
I) {
1561 for (
unsigned Idx = 0; Idx < NumSubElem; ++Idx) {
1570SDValue SelectionDAGLegalize::ExpandVectorBuildThroughStack(SDNode* Node) {
1573 "Unexpected opcode!");
1579 EVT VT =
Node->getValueType(0);
1581 :
Node->getOperand(0).getValueType();
1585 MachinePointerInfo PtrInfo =
1591 assert(TypeByteSize > 0 &&
"Vector element type too small for stack store!");
1596 MemVT.
bitsLT(
Node->getOperand(0).getValueType());
1599 for (
unsigned i = 0, e =
Node->getNumOperands(); i != e; ++i) {
1601 if (
Node->getOperand(i).isUndef())
continue;
1603 unsigned Offset = TypeByteSize*i;
1610 Node->getOperand(i), Idx,
1618 if (!Stores.
empty())
1624 return DAG.
getLoad(VT, dl, StoreChain, FIPtr, PtrInfo);
1630void SelectionDAGLegalize::getSignAsIntValue(FloatSignAsInt &State,
1633 EVT FloatVT =
Value.getValueType();
1635 State.FloatVT = FloatVT;
1641 State.SignBit = NumBits - 1;
1656 State.FloatPointerInfo);
1659 if (DataLayout.isBigEndian()) {
1663 State.IntPointerInfo = State.FloatPointerInfo;
1666 unsigned ByteOffset = (NumBits / 8) - 1;
1673 State.IntPtr = IntPtr;
1675 State.IntPointerInfo, MVT::i8);
1682SDValue SelectionDAGLegalize::modifySignAsInt(
const FloatSignAsInt &State,
1690 State.IntPointerInfo, MVT::i8);
1691 return DAG.
getLoad(State.FloatVT,
DL, Chain, State.FloatPtr,
1692 State.FloatPointerInfo);
1695SDValue SelectionDAGLegalize::ExpandFCOPYSIGN(SDNode *Node)
const {
1701 FloatSignAsInt SignAsInt;
1702 getSignAsIntValue(SignAsInt,
DL, Sign);
1722 FloatSignAsInt MagAsInt;
1723 getSignAsIntValue(MagAsInt,
DL, Mag);
1730 int ShiftAmount = SignAsInt.SignBit - MagAsInt.SignBit;
1731 EVT ShiftVT = IntVT;
1737 if (ShiftAmount > 0) {
1740 }
else if (ShiftAmount < 0) {
1753 return modifySignAsInt(MagAsInt,
DL, CopiedSign);
1756SDValue SelectionDAGLegalize::ExpandFNEG(SDNode *Node)
const {
1759 FloatSignAsInt SignAsInt;
1760 getSignAsIntValue(SignAsInt,
DL,
Node->getOperand(0));
1769 return modifySignAsInt(SignAsInt,
DL, SignFlip);
1772SDValue SelectionDAGLegalize::ExpandFABS(SDNode *Node)
const {
1777 EVT FloatVT =
Value.getValueType();
1784 FloatSignAsInt ValueAsInt;
1785 getSignAsIntValue(ValueAsInt,
DL,
Value);
1790 return modifySignAsInt(ValueAsInt,
DL, ClearedSign);
1793void SelectionDAGLegalize::ExpandDYNAMIC_STACKALLOC(SDNode* Node,
1794 SmallVectorImpl<SDValue> &
Results) {
1796 assert(
SPReg &&
"Target cannot require DYNAMIC_STACKALLOC expansion and"
1797 " not tell us which reg is the stack pointer!");
1799 EVT VT =
Node->getValueType(0);
1811 Chain =
SP.getValue(1);
1820 if (Alignment > StackAlign)
1835SDValue SelectionDAGLegalize::EmitStackConvert(
SDValue SrcOp, EVT SlotVT,
1836 EVT DestVT,
const SDLoc &dl) {
1837 return EmitStackConvert(SrcOp, SlotVT, DestVT, dl, DAG.
getEntryNode());
1840SDValue SelectionDAGLegalize::EmitStackConvert(
SDValue SrcOp, EVT SlotVT,
1841 EVT DestVT,
const SDLoc &dl,
1848 if ((SrcVT.
bitsGT(SlotVT) &&
1850 (SlotVT.
bitsLT(DestVT) &&
1861 MachinePointerInfo PtrInfo =
1868 if (SrcVT.
bitsGT(SlotVT))
1873 Store = DAG.
getStore(Chain, dl, SrcOp, FIPtr, PtrInfo, SrcAlign);
1877 if (SlotVT.
bitsEq(DestVT))
1878 return DAG.
getLoad(DestVT, dl, Store, FIPtr, PtrInfo, DestAlign);
1885SDValue SelectionDAGLegalize::ExpandSCALAR_TO_VECTOR(SDNode *Node) {
1897 Node->getValueType(0).getVectorElementType());
1899 Node->getValueType(0), dl, Ch, StackPtr,
1906 unsigned NumElems =
Node->getNumOperands();
1908 EVT VT =
Node->getValueType(0);
1920 for (
unsigned i = 0; i < NumElems; ++i) {
1931 while (IntermedVals.
size() > 2) {
1932 NewIntermedVals.
clear();
1933 for (
unsigned i = 0, e = (IntermedVals.
size() & ~1u); i < e; i += 2) {
1939 FinalIndices.
reserve(IntermedVals[i].second.
size() +
1940 IntermedVals[i+1].second.
size());
1943 for (
unsigned j = 0, f = IntermedVals[i].second.
size(); j != f;
1946 FinalIndices.
push_back(IntermedVals[i].second[j]);
1948 for (
unsigned j = 0, f = IntermedVals[i+1].second.
size(); j != f;
1950 ShuffleVec[k] = NumElems + j;
1951 FinalIndices.
push_back(IntermedVals[i+1].second[j]);
1957 IntermedVals[i+1].first,
1962 std::make_pair(Shuffle, std::move(FinalIndices)));
1967 if ((IntermedVals.
size() & 1) != 0)
1970 IntermedVals.
swap(NewIntermedVals);
1974 "Invalid number of intermediate vectors");
1975 SDValue Vec1 = IntermedVals[0].first;
1977 if (IntermedVals.
size() > 1)
1978 Vec2 = IntermedVals[1].first;
1983 for (
unsigned i = 0, e = IntermedVals[0].second.
size(); i != e; ++i)
1984 ShuffleVec[IntermedVals[0].second[i]] = i;
1985 for (
unsigned i = 0, e = IntermedVals[1].second.
size(); i != e; ++i)
1986 ShuffleVec[IntermedVals[1].second[i]] = NumElems + i;
1999SDValue SelectionDAGLegalize::ExpandBUILD_VECTOR(SDNode *Node) {
2000 unsigned NumElems =
Node->getNumOperands();
2003 EVT VT =
Node->getValueType(0);
2004 EVT OpVT =
Node->getOperand(0).getValueType();
2009 bool isOnlyLowElement =
true;
2010 bool MoreThanTwoValues =
false;
2012 for (
unsigned i = 0; i < NumElems; ++i) {
2017 isOnlyLowElement =
false;
2023 }
else if (!Value2.
getNode()) {
2026 }
else if (V != Value1 && V != Value2) {
2027 MoreThanTwoValues =
true;
2034 if (isOnlyLowElement)
2040 for (
unsigned i = 0, e = NumElems; i !=
e; ++i) {
2041 if (ConstantFPSDNode *V =
2044 }
else if (ConstantSDNode *V =
2047 CV.
push_back(
const_cast<ConstantInt *
>(
V->getConstantIntValue()));
2052 const ConstantInt *CI =
V->getConstantIntValue();
2073 SmallSet<SDValue, 16> DefinedValues;
2074 for (
unsigned i = 0; i < NumElems; ++i) {
2075 if (
Node->getOperand(i).isUndef())
2081 if (!MoreThanTwoValues) {
2082 SmallVector<int, 8> ShuffleVec(NumElems, -1);
2083 for (
unsigned i = 0; i < NumElems; ++i) {
2087 ShuffleVec[i] =
V == Value1 ? 0 : NumElems;
2109 return ExpandVectorBuildThroughStack(Node);
2112SDValue SelectionDAGLegalize::ExpandSPLAT_VECTOR(SDNode *Node) {
2114 EVT VT =
Node->getValueType(0);
2125std::pair<SDValue, SDValue>
2126SelectionDAGLegalize::ExpandLibCall(RTLIB::Libcall LC, SDNode *Node,
2127 TargetLowering::ArgListTy &&Args,
2128 bool IsSigned, EVT RetVT) {
2132 if (LCImpl != RTLIB::Unsupported)
2137 Node->getOperationName(&DAG));
2154 (RetTy ==
F.getReturnType() ||
F.getReturnType()->
isVoidTy());
2158 TargetLowering::CallLoweringInfo CLI(DAG);
2160 CLI.setDebugLoc(SDLoc(Node))
2164 .setTailCall(isTailCall)
2165 .setSExtResult(signExtend)
2166 .setZExtResult(!signExtend)
2167 .setIsPostTypeLegalization(
true);
2169 std::pair<SDValue, SDValue> CallInfo = TLI.
LowerCallTo(CLI);
2171 if (!CallInfo.second.getNode()) {
2177 LLVM_DEBUG(
dbgs() <<
"Created libcall: "; CallInfo.first.dump(&DAG));
2181std::pair<SDValue, SDValue> SelectionDAGLegalize::ExpandLibCall(RTLIB::Libcall LC, SDNode *Node,
2183 TargetLowering::ArgListTy
Args;
2185 EVT ArgVT =
Op.getValueType();
2187 TargetLowering::ArgListEntry
Entry(
Op, ArgTy);
2190 Args.push_back(Entry);
2193 return ExpandLibCall(LC, Node, std::move(Args),
isSigned,
2194 Node->getValueType(0));
2197void SelectionDAGLegalize::ExpandFPLibCall(SDNode* Node,
2199 SmallVectorImpl<SDValue> &
Results) {
2200 if (LC == RTLIB::UNKNOWN_LIBCALL)
2203 if (
Node->isStrictFPOpcode()) {
2204 EVT RetVT =
Node->getValueType(0);
2206 TargetLowering::MakeLibCallOptions CallOptions;
2209 std::pair<SDValue, SDValue> Tmp = TLI.
makeLibCall(DAG, LC, RetVT,
2212 Node->getOperand(0));
2214 Results.push_back(Tmp.second);
2217 SDValue Tmp = ExpandLibCall(LC, Node, IsSignedArgument).first;
2223void SelectionDAGLegalize::ExpandFPLibCall(SDNode* Node,
2224 RTLIB::Libcall Call_F32,
2225 RTLIB::Libcall Call_F64,
2226 RTLIB::Libcall Call_F80,
2227 RTLIB::Libcall Call_F128,
2228 RTLIB::Libcall Call_PPCF128,
2229 SmallVectorImpl<SDValue> &
Results) {
2231 Call_F32, Call_F64, Call_F80,
2232 Call_F128, Call_PPCF128);
2233 ExpandFPLibCall(Node, LC,
Results);
2236void SelectionDAGLegalize::ExpandFastFPLibCall(
2237 SDNode *Node,
bool IsFast,
2238 std::pair<RTLIB::Libcall, RTLIB::Libcall> Call_F32,
2239 std::pair<RTLIB::Libcall, RTLIB::Libcall> Call_F64,
2240 std::pair<RTLIB::Libcall, RTLIB::Libcall> Call_F80,
2241 std::pair<RTLIB::Libcall, RTLIB::Libcall> Call_F128,
2242 std::pair<RTLIB::Libcall, RTLIB::Libcall> Call_PPCF128,
2243 SmallVectorImpl<SDValue> &
Results) {
2245 EVT VT =
Node->getSimpleValueType(0);
2254 Call_F128.first, Call_PPCF128.first);
2260 Call_F80.second, Call_F128.second,
2261 Call_PPCF128.second);
2264 ExpandFPLibCall(Node, LC,
Results);
2267SDValue SelectionDAGLegalize::ExpandIntLibCall(SDNode* Node,
bool isSigned,
2268 RTLIB::Libcall Call_I8,
2269 RTLIB::Libcall Call_I16,
2270 RTLIB::Libcall Call_I32,
2271 RTLIB::Libcall Call_I64,
2272 RTLIB::Libcall Call_I128) {
2274 switch (
Node->getSimpleValueType(0).SimpleTy) {
2276 case MVT::i8: LC = Call_I8;
break;
2277 case MVT::i16: LC = Call_I16;
break;
2278 case MVT::i32: LC = Call_I32;
break;
2279 case MVT::i64: LC = Call_I64;
break;
2280 case MVT::i128: LC = Call_I128;
break;
2282 return ExpandLibCall(LC, Node,
isSigned).first;
2287void SelectionDAGLegalize::ExpandArgFPLibCall(SDNode* Node,
2288 RTLIB::Libcall Call_F32,
2289 RTLIB::Libcall Call_F64,
2290 RTLIB::Libcall Call_F80,
2291 RTLIB::Libcall Call_F128,
2292 RTLIB::Libcall Call_PPCF128,
2293 SmallVectorImpl<SDValue> &
Results) {
2294 EVT InVT =
Node->getOperand(
Node->isStrictFPOpcode() ? 1 : 0).getValueType();
2296 Call_F32, Call_F64, Call_F80,
2297 Call_F128, Call_PPCF128);
2298 ExpandFPLibCall(Node, LC,
Results);
2301SDValue SelectionDAGLegalize::ExpandBitCountingLibCall(
2302 SDNode *Node, RTLIB::Libcall CallI32, RTLIB::Libcall CallI64,
2303 RTLIB::Libcall CallI128) {
2305 switch (
Node->getSimpleValueType(0).SimpleTy) {
2326 EVT ArgVT =
Op.getValueType();
2328 TargetLowering::ArgListEntry Arg(
Op, ArgTy);
2330 Arg.IsZExt = !Arg.IsSExt;
2332 SDValue Res = ExpandLibCall(LC, Node, TargetLowering::ArgListTy{Arg},
2345SelectionDAGLegalize::ExpandDivRemLibCall(SDNode *Node,
2346 SmallVectorImpl<SDValue> &
Results) {
2347 unsigned Opcode =
Node->getOpcode();
2351 switch (
Node->getSimpleValueType(0).SimpleTy) {
2353 case MVT::i8: LC=
isSigned ? RTLIB::SDIVREM_I8 : RTLIB::UDIVREM_I8;
break;
2354 case MVT::i16: LC=
isSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16;
break;
2355 case MVT::i32: LC=
isSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32;
break;
2356 case MVT::i64: LC=
isSigned ? RTLIB::SDIVREM_I64 : RTLIB::UDIVREM_I64;
break;
2357 case MVT::i128: LC=
isSigned ? RTLIB::SDIVREM_I128:RTLIB::UDIVREM_I128;
break;
2365 EVT RetVT =
Node->getValueType(0);
2368 TargetLowering::ArgListTy
Args;
2370 EVT ArgVT =
Op.getValueType();
2372 TargetLowering::ArgListEntry
Entry(
Op, ArgTy);
2375 Args.push_back(Entry);
2380 TargetLowering::ArgListEntry
Entry(
2381 FIPtr, PointerType::getUnqual(RetTy->
getContext()));
2384 Args.push_back(Entry);
2387 if (LibcallImpl == RTLIB::Unsupported) {
2389 Node->getOperationName(&DAG));
2400 TargetLowering::CallLoweringInfo CLI(DAG);
2408 std::pair<SDValue, SDValue> CallInfo = TLI.
LowerCallTo(CLI);
2412 MachinePointerInfo PtrInfo =
2415 SDValue Rem = DAG.
getLoad(RetVT, dl, CallInfo.second, FIPtr, PtrInfo);
2416 Results.push_back(CallInfo.first);
2443SDValue SelectionDAGLegalize::ExpandSincosStretLibCall(SDNode *Node)
const {
2451 if (SincosStret == RTLIB::Unsupported)
2466 Type *SincosStretRetTy = FuncTy->getReturnType();
2472 TargetLowering::ArgListTy
Args;
2476 if (FuncTy->getParamType(0)->isPointerTy()) {
2480 AttributeSet PtrAttrs = FuncAttrs.getParamAttrs(0);
2482 const uint64_t ByteSize =
DL.getTypeAllocSize(StructTy);
2483 const Align StackAlign =
DL.getPrefTypeAlign(StructTy);
2488 TargetLowering::ArgListEntry
Entry(SRet, FuncTy->getParamType(0));
2489 Entry.IsSRet =
true;
2490 Entry.IndirectType = StructTy;
2491 Entry.Alignment = StackAlign;
2493 Args.push_back(Entry);
2494 Args.emplace_back(Arg, FuncTy->getParamType(1));
2496 Args.emplace_back(Arg, FuncTy->getParamType(0));
2499 TargetLowering::CallLoweringInfo CLI(DAG);
2502 .setLibCallee(CallConv, SincosStretRetTy, Callee, std::move(Args))
2503 .setIsPostTypeLegalization();
2505 std::pair<SDValue, SDValue> CallResult = TLI.
LowerCallTo(CLI);
2508 MachinePointerInfo PtrInfo =
2510 SDValue LoadSin = DAG.
getLoad(ArgVT, dl, CallResult.second, SRet, PtrInfo);
2519 SDVTList Tys = DAG.
getVTList(ArgVT, ArgVT);
2524 if (!CallResult.first.getValueType().isVector())
2525 return CallResult.first;
2533 SDVTList Tys = DAG.
getVTList(ArgVT, ArgVT);
2537SDValue SelectionDAGLegalize::expandLdexp(SDNode *Node)
const {
2539 EVT VT =
Node->getValueType(0);
2542 EVT ExpVT =
N.getValueType();
2544 if (AsIntVT == EVT())
2552 SDNodeFlags NUW_NSW;
2560 const APFloat::ExponentType MaxExpVal = APFloat::semanticsMaxExponent(FltSem);
2561 const APFloat::ExponentType MinExpVal = APFloat::semanticsMinExponent(FltSem);
2562 const int Precision = APFloat::semanticsPrecision(FltSem);
2569 const APFloat One(FltSem,
"1.0");
2570 APFloat ScaleUpK =
scalbn(One, MaxExpVal, APFloat::rmNearestTiesToEven);
2574 scalbn(One, MinExpVal + Precision, APFloat::rmNearestTiesToEven);
2644 ExponentShiftAmt, NUW_NSW);
2649SDValue SelectionDAGLegalize::expandFrexp(SDNode *Node)
const {
2653 EVT ExpVT =
Node->getValueType(1);
2655 if (AsIntVT == EVT())
2659 const APFloat::ExponentType MinExpVal = APFloat::semanticsMinExponent(FltSem);
2660 const unsigned Precision = APFloat::semanticsPrecision(FltSem);
2693 FractSignMaskVal.
setBit(BitSize - 1);
2700 const APFloat One(FltSem,
"1.0");
2704 scalbn(One, Precision + 1, APFloat::rmNearestTiesToEven);
2716 SDValue AddNegSmallestNormal =
2718 SDValue DenormOrZero = DAG.
getSetCC(dl, SetCCVT, AddNegSmallestNormal,
2751 const APFloat Half(FltSem,
"0.5");
2772SDValue SelectionDAGLegalize::ExpandLegalINT_TO_FP(SDNode *Node,
2776 EVT DestVT =
Node->getValueType(0);
2778 unsigned OpNo =
Node->isStrictFPOpcode() ? 1 : 0;
2784 if (SrcVT == MVT::i32 && TLI.
isTypeLegal(MVT::f64) &&
2785 (DestVT.
bitsLE(MVT::f64) ||
2789 LLVM_DEBUG(
dbgs() <<
"32-bit [signed|unsigned] integer to float/double "
2813 MachinePointerInfo());
2818 DAG.
getStore(MemChain, dl,
Hi, HiPtr, MachinePointerInfo());
2823 DAG.
getLoad(MVT::f64, dl, MemChain, StackSlot, MachinePointerInfo());
2832 if (
Node->isStrictFPOpcode()) {
2834 {
Node->getOperand(0),
Load, Bias});
2836 if (DestVT !=
Sub.getValueType()) {
2837 std::pair<SDValue, SDValue> ResultPair;
2840 Result = ResultPair.first;
2841 Chain = ResultPair.second;
2856 if (((SrcVT == MVT::i32 || SrcVT == MVT::i64) && DestVT == MVT::f32) ||
2857 (SrcVT == MVT::i64 && DestVT == MVT::f64)) {
2858 LLVM_DEBUG(
dbgs() <<
"Converting unsigned i32/i64 to f32/f64\n");
2873 EVT SetCCVT = getSetCCResultType(SrcVT);
2885 if (
Node->isStrictFPOpcode()) {
2893 Flags.setNoFPExcept(
Node->getFlags().hasNoFPExcept());
2896 Flags.setNoFPExcept(
true);
2919 "Cannot perform lossless SINT_TO_FP!");
2922 if (
Node->isStrictFPOpcode()) {
2924 {
Node->getOperand(0), Op0 });
2933 SignSet, Four, Zero);
2942 case MVT::i8 : FF = 0x43800000ULL;
break;
2943 case MVT::i16: FF = 0x47800000ULL;
break;
2944 case MVT::i32: FF = 0x4F800000ULL;
break;
2945 case MVT::i64: FF = 0x5F800000ULL;
break;
2949 Constant *FudgeFactor = ConstantInt::get(
2958 if (DestVT == MVT::f32)
2968 HandleSDNode Handle(Load);
2969 LegalizeOp(
Load.getNode());
2973 if (
Node->isStrictFPOpcode()) {
2975 { Tmp1.
getValue(1), Tmp1, FudgeInReg });
2976 Chain =
Result.getValue(1);
2988void SelectionDAGLegalize::PromoteLegalINT_TO_FP(
2989 SDNode *
N,
const SDLoc &dl, SmallVectorImpl<SDValue> &
Results) {
2993 EVT DestVT =
N->getValueType(0);
2994 SDValue LegalOp =
N->getOperand(IsStrict ? 1 : 0);
3001 unsigned OpToUse = 0;
3029 DAG.
getNode(OpToUse, dl, {DestVT, MVT::Other},
3032 dl, NewInTy, LegalOp)});
3039 DAG.
getNode(OpToUse, dl, DestVT,
3041 dl, NewInTy, LegalOp)));
3049void SelectionDAGLegalize::PromoteLegalFP_TO_INT(SDNode *
N,
const SDLoc &dl,
3050 SmallVectorImpl<SDValue> &
Results) {
3051 bool IsStrict =
N->isStrictFPOpcode();
3054 EVT DestVT =
N->getValueType(0);
3057 EVT NewOutTy = DestVT;
3059 unsigned OpToUse = 0;
3083 SDVTList VTs = DAG.
getVTList(NewOutTy, MVT::Other);
3099SDValue SelectionDAGLegalize::PromoteLegalFP_TO_INT_SAT(SDNode *Node,
3101 unsigned Opcode =
Node->getOpcode();
3104 EVT NewOutTy =
Node->getValueType(0);
3116 Node->getOperand(1));
3122 EVT VT =
Op.getValueType();
3142SDValue SelectionDAGLegalize::PromoteReduction(SDNode *Node) {
3144 MVT VecVT = IsVPOpcode ?
Node->getOperand(1).getSimpleValueType()
3145 :
Node->getOperand(0).getSimpleValueType();
3147 MVT ScalarVT =
Node->getSimpleValueType(0);
3154 assert(
Node->getOperand(0).getValueType().isFloatingPoint() &&
3155 "Only FP promotion is supported");
3157 for (
unsigned j = 0;
j !=
Node->getNumOperands(); ++
j)
3158 if (
Node->getOperand(j).getValueType().isVector() &&
3163 assert(
Node->getOperand(j).getValueType().isFloatingPoint() &&
3164 "Only FP promotion is supported");
3167 }
else if (
Node->getOperand(j).getValueType().isFloatingPoint()) {
3172 Operands[
j] =
Node->getOperand(j);
3183bool SelectionDAGLegalize::ExpandNode(SDNode *Node) {
3187 SDValue Tmp1, Tmp2, Tmp3, Tmp4;
3189 switch (
Node->getOpcode()) {
3229 Results.push_back(ExpandPARITY(
Node->getOperand(0), dl));
3281 SDVTList VTs = DAG.
getVTList(
Node->getValueType(0), MVT::Other);
3284 Node->getOperand(0),
Node->getOperand(1), Zero, Zero,
3294 Node->getOperand(0),
Node->getOperand(2),
Node->getOperand(1),
3303 SDVTList VTs = DAG.
getVTList(
Node->getValueType(0), MVT::Other);
3306 Node->getOperand(0),
Node->getOperand(1),
Node->getOperand(2),
3314 EVT OuterType =
Node->getValueType(0);
3347 EVT VT =
Node->getValueType(0);
3352 RHS =
RHS->getOperand(0);
3356 Node->getOperand(0),
Node->getOperand(1),
3363 ExpandDYNAMIC_STACKALLOC(Node,
Results);
3366 for (
unsigned i = 0; i <
Node->getNumValues(); i++)
3371 EVT VT =
Node->getValueType(0);
3388 Node->getValueType(0))
3389 == TargetLowering::Legal)
3393 if ((Tmp1 = EmitStackConvert(
Node->getOperand(1),
Node->getValueType(0),
3394 Node->getValueType(0), dl,
3395 Node->getOperand(0)))) {
3396 ReplaceNode(Node, Tmp1.
getNode());
3397 LLVM_DEBUG(
dbgs() <<
"Successfully expanded STRICT_FP_ROUND node\n");
3410 if ((Tmp1 = EmitStackConvert(
Node->getOperand(0),
Node->getValueType(0),
3411 Node->getValueType(0), dl)))
3422 Node->getValueType(0))
3423 == TargetLowering::Legal)
3427 if ((Tmp1 = EmitStackConvert(
3428 Node->getOperand(1),
Node->getOperand(1).getValueType(),
3429 Node->getValueType(0), dl,
Node->getOperand(0)))) {
3430 ReplaceNode(Node, Tmp1.
getNode());
3431 LLVM_DEBUG(
dbgs() <<
"Successfully expanded STRICT_FP_EXTEND node\n");
3437 EVT SrcVT =
Op.getValueType();
3438 EVT DstVT =
Node->getValueType(0);
3444 if ((Tmp1 = EmitStackConvert(
Op, SrcVT, DstVT, dl)))
3454 if (
Op.getValueType() == MVT::bf16) {
3464 if (
Node->getValueType(0) != MVT::f32)
3471 if (
Op.getValueType() != MVT::f32)
3483 if (
Node->getValueType(0) == MVT::bf16) {
3508 SDNodeFlags CanonicalizeFlags =
Node->getFlags();
3511 {Chain, Operand, One}, CanonicalizeFlags);
3518 EVT VT =
Node->getValueType(0);
3550 if (
Node->isStrictFPOpcode())
3557 if ((Tmp1 = ExpandLegalINT_TO_FP(Node, Tmp2))) {
3559 if (
Node->isStrictFPOpcode())
3569 ReplaceNode(Node, Tmp1.
getNode());
3570 LLVM_DEBUG(
dbgs() <<
"Successfully expanded STRICT_FP_TO_SINT node\n");
3583 ReplaceNodeWithValue(
SDValue(Node, 0), Tmp1);
3584 LLVM_DEBUG(
dbgs() <<
"Successfully expanded STRICT_FP_TO_UINT node\n");
3596 EVT ResVT =
Node->getValueType(0);
3610 if (
Node->getOperand(0).getValueType().getVectorElementCount().isScalar())
3613 Node->getOperand(0));
3615 Tmp1 = ExpandExtractFromVectorThroughStack(
SDValue(Node, 0));
3619 Results.push_back(ExpandExtractFromVectorThroughStack(
SDValue(Node, 0)));
3622 Results.push_back(ExpandInsertToVectorThroughStack(
SDValue(Node, 0)));
3625 if (EVT VectorValueType =
Node->getOperand(0).getValueType();
3628 Results.push_back(ExpandVectorBuildThroughStack(Node));
3630 Results.push_back(ExpandConcatVectors(Node));
3633 Results.push_back(ExpandSCALAR_TO_VECTOR(Node));
3642 EVT VT =
Node->getValueType(0);
3652 if (NewEltVT.
bitsLT(EltVT)) {
3668 unsigned int factor =
3676 for (
unsigned fi = 0; fi < factor; ++fi)
3680 for (
unsigned fi = 0; fi < factor; ++fi)
3691 for (
unsigned i = 0; i != NumElems; ++i) {
3696 unsigned Idx =
Mask[i];
3717 unsigned Factor =
Node->getNumOperands();
3721 EVT VecVT =
Node->getValueType(0);
3732 for (
unsigned I = 0;
I < Factor / 2;
I++) {
3735 {
L.getValue(
I),
R.getValue(
I)});
3742 unsigned Factor =
Node->getNumOperands();
3745 EVT VecVT =
Node->getValueType(0);
3750 for (
unsigned I = 0;
I < Factor / 2;
I++) {
3753 {
Node->getOperand(
I),
Node->getOperand(
I + Factor / 2)});
3761 for (
unsigned I = 0;
I < Factor / 2;
I++)
3763 for (
unsigned I = 0;
I < Factor / 2;
I++)
3768 EVT OpTy =
Node->getOperand(0).getValueType();
3769 if (
Node->getConstantOperandVal(1)) {
3778 Node->getOperand(0));
3788 Node->getValueType(0)));
3800 Node->getOperand(1)));
3810 Results.push_back(ExpandFCOPYSIGN(Node));
3813 Results.push_back(ExpandFNEG(Node));
3816 Results.push_back(ExpandFABS(Node));
3822 Test,
Node->getFlags(), SDLoc(Node), DAG))
3832 switch (
Node->getOpcode()) {
3839 Tmp1 =
Node->getOperand(0);
3840 Tmp2 =
Node->getOperand(1);
3841 Tmp1 = DAG.
getSelectCC(dl, Tmp1, Tmp2, Tmp1, Tmp2, Pred);
3864 EVT VT =
Node->getValueType(0);
3880 EVT VT =
Node->getValueType(0);
3887 if (
SDValue Expanded = expandLdexp(Node)) {
3890 Results.push_back(Expanded.getValue(1));
3902 if (
SDValue Expanded = expandFrexp(Node)) {
3904 Results.push_back(Expanded.getValue(1));
3911 EVT VT =
Node->getValueType(0);
3923 if (
Node->getValueType(0) != MVT::f32) {
3935 if (
Node->getValueType(0) != MVT::f32) {
3940 {Node->getOperand(0), Node->getOperand(1)});
3942 {
Node->getValueType(0), MVT::Other},
3952 MVT SVT =
Op.getSimpleValueType();
3953 if ((SVT == MVT::f64 || SVT == MVT::f80) &&
3971 Results.push_back(ExpandConstantFP(CFP,
true));
3976 Results.push_back(ExpandConstant(CP));
3980 EVT VT =
Node->getValueType(0);
3983 const SDNodeFlags
Flags =
Node->getFlags();
3991 EVT VT =
Node->getValueType(0);
3994 "Don't know how to expand this subtraction!");
3995 Tmp1 = DAG.
getNOT(dl,
Node->getOperand(1), VT);
4009 EVT VT =
Node->getValueType(0);
4012 Tmp1 = DAG.
getNode(DivRemOpc, dl, VTs,
Node->getOperand(0),
4013 Node->getOperand(1));
4020 unsigned ExpandOpcode =
4022 EVT VT =
Node->getValueType(0);
4025 Tmp1 = DAG.
getNode(ExpandOpcode, dl, VTs,
Node->getOperand(0),
4026 Node->getOperand(1));
4034 MVT VT =
LHS.getSimpleValueType();
4035 unsigned MULHOpcode =
4045 EVT HalfType = EVT(VT).getHalfSizedIntegerVT(*DAG.
getContext());
4049 TargetLowering::MulExpansionKind::Always)) {
4050 for (
unsigned i = 0; i < 2; ++i) {
4063 EVT VT =
Node->getValueType(0);
4074 unsigned OpToUse = 0;
4075 if (HasSMUL_LOHI && !HasMULHS) {
4077 }
else if (HasUMUL_LOHI && !HasMULHU) {
4079 }
else if (HasSMUL_LOHI) {
4081 }
else if (HasUMUL_LOHI) {
4086 Node->getOperand(1)));
4097 TargetLowering::MulExpansionKind::OnlyLegalOrCustom)) {
4142 Node->getOperand(0),
4143 Node->getOperand(1),
4144 Node->getConstantOperandVal(2),
4167 EVT VT =
LHS.getValueType();
4171 EVT CarryType =
Node->getValueType(1);
4172 EVT SetCCType = getSetCCResultType(
Node->getValueType(0));
4219 if (TLI.
expandMULO(Node, Result, Overflow, DAG)) {
4236 Tmp1 =
Node->getOperand(0);
4237 Tmp2 =
Node->getOperand(1);
4238 Tmp3 =
Node->getOperand(2);
4259 unsigned EntrySize =
4295 Tmp1 =
Node->getOperand(0);
4296 Tmp2 =
Node->getOperand(1);
4302 Node->getOperand(2));
4314 Node->getOperand(2));
4322 bool IsVP =
Node->getOpcode() == ISD::VP_SETCC;
4327 unsigned Offset = IsStrict ? 1 : 0;
4337 DAG,
Node->getValueType(0), Tmp1, Tmp2, Tmp3, Mask, EVL, NeedInvert, dl,
4338 Chain, IsSignaling);
4346 {Chain, Tmp1, Tmp2, Tmp3},
Node->getFlags());
4350 {Tmp1, Tmp2, Tmp3, Mask, EVL},
Node->getFlags());
4352 Tmp1 = DAG.
getNode(
Node->getOpcode(), dl,
Node->getValueType(0), Tmp1,
4353 Tmp2, Tmp3,
Node->getFlags());
4376 assert(!IsStrict &&
"Don't know how to expand for strict nodes.");
4381 EVT VT =
Node->getValueType(0);
4392 Tmp1 =
Node->getOperand(0);
4393 Tmp2 =
Node->getOperand(1);
4394 Tmp3 =
Node->getOperand(2);
4395 Tmp4 =
Node->getOperand(3);
4396 EVT VT =
Node->getValueType(0);
4406 "Cannot expand ISD::SELECT_CC when ISD::SELECT also needs to be "
4408 EVT CCVT = getSetCCResultType(CmpVT);
4416 bool Legalized =
false;
4434 Tmp1 = DAG.
getSelectCC(dl, Tmp2, Tmp1, Tmp4, Tmp3, SwapInvCC,
4441 DAG, getSetCCResultType(Tmp1.
getValueType()), Tmp1, Tmp2, CC,
4444 assert(Legalized &&
"Can't legalize SELECT_CC with legal condition!");
4455 Tmp2, Tmp3, Tmp4, CC,
Node->getFlags());
4460 Tmp2, Tmp3, Tmp4, CC,
Node->getFlags());
4469 Tmp1 =
Node->getOperand(0);
4470 Tmp2 =
Node->getOperand(2);
4471 Tmp3 =
Node->getOperand(3);
4472 Tmp4 =
Node->getOperand(1);
4475 DAG, getSetCCResultType(Tmp2.
getValueType()), Tmp2, Tmp3, Tmp4,
4478 assert(Legalized &&
"Can't legalize BR_CC with legal condition!");
4483 assert(!NeedInvert &&
"Don't know how to invert BR_CC!");
4486 Tmp4, Tmp2, Tmp3,
Node->getOperand(4));
4491 Tmp2, Tmp3,
Node->getOperand(4));
4497 Results.push_back(ExpandBUILD_VECTOR(Node));
4500 Results.push_back(ExpandSPLAT_VECTOR(Node));
4506 EVT VT =
Node->getValueType(0);
4512 for (
unsigned Idx = 0; Idx < NumElem; Idx++) {
4544 case ISD::VP_CTTZ_ELTS:
4545 case ISD::VP_CTTZ_ELTS_ZERO_UNDEF:
4557 EVT ResVT =
Node->getValueType(0);
4587 switch (
Node->getOpcode()) {
4590 Node->getValueType(0))
4591 == TargetLowering::Legal)
4602 EVT VT =
Node->getValueType(0);
4603 const SDNodeFlags
Flags =
Node->getFlags();
4606 {Node->getOperand(0), Node->getOperand(1), Neg},
4622 Node->getOperand(1).getValueType())
4623 == TargetLowering::Legal)
4636 ReplaceNode(Node,
Results.data());
4648 return Flags.hasApproximateFuncs() && Flags.hasNoNaNs() &&
4649 Flags.hasNoInfs() && Flags.hasNoSignedZeros();
4652void SelectionDAGLegalize::ConvertNodeToLibcall(SDNode *Node) {
4656 TargetLowering::MakeLibCallOptions CallOptions;
4659 unsigned Opc =
Node->getOpcode();
4664 TargetLowering::ArgListTy
Args;
4666 TargetLowering::CallLoweringInfo CLI(DAG);
4668 .setChain(
Node->getOperand(0))
4670 CallingConv::C, Type::getVoidTy(*DAG.
getContext()),
4675 std::pair<SDValue, SDValue> CallResult = TLI.
LowerCallTo(CLI);
4677 Results.push_back(CallResult.second);
4699 EVT RetVT =
Node->getValueType(0);
4704 Ops.push_back(
Node->getOperand(1));
4708 assert(LC != RTLIB::UNKNOWN_LIBCALL &&
4709 "Unexpected atomic op or value type!");
4713 std::pair<SDValue, SDValue> Tmp = TLI.
makeLibCall(DAG, LC, RetVT,
4716 Node->getOperand(0));
4718 Results.push_back(Tmp.second);
4723 TargetLowering::ArgListTy
Args;
4724 TargetLowering::CallLoweringInfo CLI(DAG);
4726 .setChain(
Node->getOperand(0))
4727 .setLibCallee(CallingConv::C, Type::getVoidTy(*DAG.
getContext()),
4731 std::pair<SDValue, SDValue> CallResult = TLI.
LowerCallTo(CLI);
4733 Results.push_back(CallResult.second);
4740 std::pair<SDValue, SDValue> Tmp = TLI.
makeLibCall(
4741 DAG, RTLIB::CLEAR_CACHE, MVT::isVoid, {StartVal, EndVal}, CallOptions,
4742 SDLoc(Node), InputChain);
4743 Results.push_back(Tmp.second);
4748 ExpandFPLibCall(Node, RTLIB::FMIN_F32, RTLIB::FMIN_F64,
4749 RTLIB::FMIN_F80, RTLIB::FMIN_F128,
4750 RTLIB::FMIN_PPCF128,
Results);
4757 ExpandFPLibCall(Node, RTLIB::FMAX_F32, RTLIB::FMAX_F64,
4758 RTLIB::FMAX_F80, RTLIB::FMAX_F128,
4759 RTLIB::FMAX_PPCF128,
Results);
4762 ExpandFPLibCall(Node, RTLIB::FMINIMUM_NUM_F32, RTLIB::FMINIMUM_NUM_F64,
4763 RTLIB::FMINIMUM_NUM_F80, RTLIB::FMINIMUM_NUM_F128,
4764 RTLIB::FMINIMUM_NUM_PPCF128,
Results);
4767 ExpandFPLibCall(Node, RTLIB::FMAXIMUM_NUM_F32, RTLIB::FMAXIMUM_NUM_F64,
4768 RTLIB::FMAXIMUM_NUM_F80, RTLIB::FMAXIMUM_NUM_F128,
4769 RTLIB::FMAXIMUM_NUM_PPCF128,
Results);
4776 {RTLIB::FAST_SQRT_F32, RTLIB::SQRT_F32},
4777 {RTLIB::FAST_SQRT_F64, RTLIB::SQRT_F64},
4778 {RTLIB::FAST_SQRT_F80, RTLIB::SQRT_F80},
4779 {RTLIB::FAST_SQRT_F128, RTLIB::SQRT_F128},
4780 {RTLIB::FAST_SQRT_PPCF128, RTLIB::SQRT_PPCF128},
4785 ExpandFPLibCall(Node, RTLIB::CBRT_F32, RTLIB::CBRT_F64,
4786 RTLIB::CBRT_F80, RTLIB::CBRT_F128,
4787 RTLIB::CBRT_PPCF128,
Results);
4791 ExpandFPLibCall(Node, RTLIB::SIN_F32, RTLIB::SIN_F64,
4792 RTLIB::SIN_F80, RTLIB::SIN_F128,
4797 ExpandFPLibCall(Node, RTLIB::COS_F32, RTLIB::COS_F64,
4798 RTLIB::COS_F80, RTLIB::COS_F128,
4803 ExpandFPLibCall(Node, RTLIB::TAN_F32, RTLIB::TAN_F64, RTLIB::TAN_F80,
4804 RTLIB::TAN_F128, RTLIB::TAN_PPCF128,
Results);
4808 ExpandFPLibCall(Node, RTLIB::ASIN_F32, RTLIB::ASIN_F64, RTLIB::ASIN_F80,
4809 RTLIB::ASIN_F128, RTLIB::ASIN_PPCF128,
Results);
4813 ExpandFPLibCall(Node, RTLIB::ACOS_F32, RTLIB::ACOS_F64, RTLIB::ACOS_F80,
4814 RTLIB::ACOS_F128, RTLIB::ACOS_PPCF128,
Results);
4818 ExpandFPLibCall(Node, RTLIB::ATAN_F32, RTLIB::ATAN_F64, RTLIB::ATAN_F80,
4819 RTLIB::ATAN_F128, RTLIB::ATAN_PPCF128,
Results);
4823 ExpandFPLibCall(Node, RTLIB::ATAN2_F32, RTLIB::ATAN2_F64, RTLIB::ATAN2_F80,
4824 RTLIB::ATAN2_F128, RTLIB::ATAN2_PPCF128,
Results);
4828 ExpandFPLibCall(Node, RTLIB::SINH_F32, RTLIB::SINH_F64, RTLIB::SINH_F80,
4829 RTLIB::SINH_F128, RTLIB::SINH_PPCF128,
Results);
4833 ExpandFPLibCall(Node, RTLIB::COSH_F32, RTLIB::COSH_F64, RTLIB::COSH_F80,
4834 RTLIB::COSH_F128, RTLIB::COSH_PPCF128,
Results);
4838 ExpandFPLibCall(Node, RTLIB::TANH_F32, RTLIB::TANH_F64, RTLIB::TANH_F80,
4839 RTLIB::TANH_F128, RTLIB::TANH_PPCF128,
Results);
4843 EVT VT =
Node->getValueType(0);
4847 if (SincosStret != RTLIB::UNKNOWN_LIBCALL) {
4848 if (
SDValue Expanded = ExpandSincosStretLibCall(Node)) {
4850 Results.push_back(Expanded.getValue(1));
4862 Node->getOperationName(&DAG));
4872 ExpandFPLibCall(Node, RTLIB::LOG_F32, RTLIB::LOG_F64, RTLIB::LOG_F80,
4873 RTLIB::LOG_F128, RTLIB::LOG_PPCF128,
Results);
4877 ExpandFPLibCall(Node, RTLIB::LOG2_F32, RTLIB::LOG2_F64, RTLIB::LOG2_F80,
4878 RTLIB::LOG2_F128, RTLIB::LOG2_PPCF128,
Results);
4882 ExpandFPLibCall(Node, RTLIB::LOG10_F32, RTLIB::LOG10_F64, RTLIB::LOG10_F80,
4883 RTLIB::LOG10_F128, RTLIB::LOG10_PPCF128,
Results);
4887 ExpandFPLibCall(Node, RTLIB::EXP_F32, RTLIB::EXP_F64, RTLIB::EXP_F80,
4888 RTLIB::EXP_F128, RTLIB::EXP_PPCF128,
Results);
4892 ExpandFPLibCall(Node, RTLIB::EXP2_F32, RTLIB::EXP2_F64, RTLIB::EXP2_F80,
4893 RTLIB::EXP2_F128, RTLIB::EXP2_PPCF128,
Results);
4896 ExpandFPLibCall(Node, RTLIB::EXP10_F32, RTLIB::EXP10_F64, RTLIB::EXP10_F80,
4897 RTLIB::EXP10_F128, RTLIB::EXP10_PPCF128,
Results);
4901 ExpandFPLibCall(Node, RTLIB::TRUNC_F32, RTLIB::TRUNC_F64,
4902 RTLIB::TRUNC_F80, RTLIB::TRUNC_F128,
4903 RTLIB::TRUNC_PPCF128,
Results);
4907 ExpandFPLibCall(Node, RTLIB::FLOOR_F32, RTLIB::FLOOR_F64,
4908 RTLIB::FLOOR_F80, RTLIB::FLOOR_F128,
4909 RTLIB::FLOOR_PPCF128,
Results);
4913 ExpandFPLibCall(Node, RTLIB::CEIL_F32, RTLIB::CEIL_F64,
4914 RTLIB::CEIL_F80, RTLIB::CEIL_F128,
4915 RTLIB::CEIL_PPCF128,
Results);
4919 ExpandFPLibCall(Node, RTLIB::RINT_F32, RTLIB::RINT_F64,
4920 RTLIB::RINT_F80, RTLIB::RINT_F128,
4921 RTLIB::RINT_PPCF128,
Results);
4925 ExpandFPLibCall(Node, RTLIB::NEARBYINT_F32,
4926 RTLIB::NEARBYINT_F64,
4927 RTLIB::NEARBYINT_F80,
4928 RTLIB::NEARBYINT_F128,
4929 RTLIB::NEARBYINT_PPCF128,
Results);
4933 ExpandFPLibCall(Node, RTLIB::ROUND_F32,
4937 RTLIB::ROUND_PPCF128,
Results);
4941 ExpandFPLibCall(Node, RTLIB::ROUNDEVEN_F32,
4942 RTLIB::ROUNDEVEN_F64,
4943 RTLIB::ROUNDEVEN_F80,
4944 RTLIB::ROUNDEVEN_F128,
4945 RTLIB::ROUNDEVEN_PPCF128,
Results);
4949 ExpandFPLibCall(Node, RTLIB::LDEXP_F32, RTLIB::LDEXP_F64, RTLIB::LDEXP_F80,
4950 RTLIB::LDEXP_F128, RTLIB::LDEXP_PPCF128,
Results);
4954 EVT VT =
Node->getValueType(0);
4966 assert(LC != RTLIB::UNKNOWN_LIBCALL &&
"Unexpected fpowi.");
4969 if (
Node->isStrictFPOpcode()) {
4972 {
Node->getValueType(0),
Node->getValueType(1)},
4973 {
Node->getOperand(0),
Node->getOperand(2)});
4976 {
Node->getValueType(0),
Node->getValueType(1)},
4983 Node->getOperand(1));
4985 Node->getValueType(0),
4990 unsigned Offset =
Node->isStrictFPOpcode() ? 1 : 0;
4991 bool ExponentHasSizeOfInt =
4993 Node->getOperand(1 +
Offset).getValueType().getSizeInBits();
4994 if (!ExponentHasSizeOfInt) {
5001 ExpandFPLibCall(Node, LC,
Results);
5006 ExpandFPLibCall(Node, RTLIB::POW_F32, RTLIB::POW_F64, RTLIB::POW_F80,
5007 RTLIB::POW_F128, RTLIB::POW_PPCF128,
Results);
5011 ExpandArgFPLibCall(Node, RTLIB::LROUND_F32,
5012 RTLIB::LROUND_F64, RTLIB::LROUND_F80,
5014 RTLIB::LROUND_PPCF128,
Results);
5018 ExpandArgFPLibCall(Node, RTLIB::LLROUND_F32,
5019 RTLIB::LLROUND_F64, RTLIB::LLROUND_F80,
5020 RTLIB::LLROUND_F128,
5021 RTLIB::LLROUND_PPCF128,
Results);
5025 ExpandArgFPLibCall(Node, RTLIB::LRINT_F32,
5026 RTLIB::LRINT_F64, RTLIB::LRINT_F80,
5028 RTLIB::LRINT_PPCF128,
Results);
5032 ExpandArgFPLibCall(Node, RTLIB::LLRINT_F32,
5033 RTLIB::LLRINT_F64, RTLIB::LLRINT_F80,
5035 RTLIB::LLRINT_PPCF128,
Results);
5040 {RTLIB::FAST_DIV_F32, RTLIB::DIV_F32},
5041 {RTLIB::FAST_DIV_F64, RTLIB::DIV_F64},
5042 {RTLIB::FAST_DIV_F80, RTLIB::DIV_F80},
5043 {RTLIB::FAST_DIV_F128, RTLIB::DIV_F128},
5044 {RTLIB::FAST_DIV_PPCF128, RTLIB::DIV_PPCF128},
Results);
5049 ExpandFPLibCall(Node, RTLIB::REM_F32, RTLIB::REM_F64,
5050 RTLIB::REM_F80, RTLIB::REM_F128,
5055 ExpandFPLibCall(Node, RTLIB::FMA_F32, RTLIB::FMA_F64,
5056 RTLIB::FMA_F80, RTLIB::FMA_F128,
5062 {RTLIB::FAST_ADD_F32, RTLIB::ADD_F32},
5063 {RTLIB::FAST_ADD_F64, RTLIB::ADD_F64},
5064 {RTLIB::FAST_ADD_F80, RTLIB::ADD_F80},
5065 {RTLIB::FAST_ADD_F128, RTLIB::ADD_F128},
5066 {RTLIB::FAST_ADD_PPCF128, RTLIB::ADD_PPCF128},
Results);
5072 {RTLIB::FAST_MUL_F32, RTLIB::MUL_F32},
5073 {RTLIB::FAST_MUL_F64, RTLIB::MUL_F64},
5074 {RTLIB::FAST_MUL_F80, RTLIB::MUL_F80},
5075 {RTLIB::FAST_MUL_F128, RTLIB::MUL_F128},
5076 {RTLIB::FAST_MUL_PPCF128, RTLIB::MUL_PPCF128},
Results);
5080 if (
Node->getValueType(0) == MVT::f32) {
5081 Results.push_back(ExpandLibCall(RTLIB::FPEXT_F16_F32, Node,
false).first);
5085 if (
Node->getValueType(0) == MVT::f32) {
5086 std::pair<SDValue, SDValue> Tmp = TLI.
makeLibCall(
5087 DAG, RTLIB::FPEXT_BF16_F32, MVT::f32,
Node->getOperand(1),
5088 CallOptions, SDLoc(Node),
Node->getOperand(0));
5090 Results.push_back(Tmp.second);
5094 if (
Node->getValueType(0) == MVT::f32) {
5095 std::pair<SDValue, SDValue> Tmp = TLI.
makeLibCall(
5096 DAG, RTLIB::FPEXT_F16_F32, MVT::f32,
Node->getOperand(1), CallOptions,
5097 SDLoc(Node),
Node->getOperand(0));
5099 Results.push_back(Tmp.second);
5106 assert(LC != RTLIB::UNKNOWN_LIBCALL &&
"Unable to expand fp_to_fp16");
5107 Results.push_back(ExpandLibCall(LC, Node,
false).first);
5113 assert(LC != RTLIB::UNKNOWN_LIBCALL &&
"Unable to expand fp_to_bf16");
5114 Results.push_back(ExpandLibCall(LC, Node,
false).first);
5122 bool IsStrict =
Node->isStrictFPOpcode();
5125 EVT SVT =
Node->getOperand(IsStrict ? 1 : 0).getValueType();
5126 EVT RVT =
Node->getValueType(0);
5133 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
5134 for (
unsigned t = MVT::FIRST_INTEGER_VALUETYPE;
5135 t <= MVT::LAST_INTEGER_VALUETYPE && LC == RTLIB::UNKNOWN_LIBCALL;
5143 assert(LC != RTLIB::UNKNOWN_LIBCALL &&
"Unable to legalize as libcall");
5148 NVT,
Node->getOperand(IsStrict ? 1 : 0));
5150 std::pair<SDValue, SDValue> Tmp =
5154 Results.push_back(Tmp.second);
5162 bool IsStrict =
Node->isStrictFPOpcode();
5167 EVT SVT =
Op.getValueType();
5168 EVT RVT =
Node->getValueType(0);
5175 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
5176 for (
unsigned IntVT = MVT::FIRST_INTEGER_VALUETYPE;
5177 IntVT <= MVT::LAST_INTEGER_VALUETYPE && LC == RTLIB::UNKNOWN_LIBCALL;
5185 assert(LC != RTLIB::UNKNOWN_LIBCALL &&
"Unable to legalize as libcall");
5188 std::pair<SDValue, SDValue> Tmp =
5194 Results.push_back(Tmp.second);
5205 bool IsStrict =
Node->isStrictFPOpcode();
5208 EVT VT =
Node->getValueType(0);
5210 "Unable to expand as libcall if it is not normal rounding");
5213 assert(LC != RTLIB::UNKNOWN_LIBCALL &&
"Unable to legalize as libcall");
5215 std::pair<SDValue, SDValue> Tmp =
5216 TLI.
makeLibCall(DAG, LC, VT,
Op, CallOptions, SDLoc(Node), Chain);
5219 Results.push_back(Tmp.second);
5225 Node->getValueType(0)),
5226 Node,
false).first);
5232 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
5239 Node->getValueType(0));
5241 assert(LC != RTLIB::UNKNOWN_LIBCALL &&
"Unable to legalize as libcall");
5243 std::pair<SDValue, SDValue> Tmp =
5245 CallOptions, SDLoc(Node),
Node->getOperand(0));
5247 Results.push_back(Tmp.second);
5253 {RTLIB::FAST_SUB_F32, RTLIB::SUB_F32},
5254 {RTLIB::FAST_SUB_F64, RTLIB::SUB_F64},
5255 {RTLIB::FAST_SUB_F80, RTLIB::SUB_F80},
5256 {RTLIB::FAST_SUB_F128, RTLIB::SUB_F128},
5257 {RTLIB::FAST_SUB_PPCF128, RTLIB::SUB_PPCF128},
Results);
5261 Results.push_back(ExpandIntLibCall(Node,
true,
5263 RTLIB::SREM_I16, RTLIB::SREM_I32,
5264 RTLIB::SREM_I64, RTLIB::SREM_I128));
5267 Results.push_back(ExpandIntLibCall(Node,
false,
5269 RTLIB::UREM_I16, RTLIB::UREM_I32,
5270 RTLIB::UREM_I64, RTLIB::UREM_I128));
5273 Results.push_back(ExpandIntLibCall(Node,
true,
5275 RTLIB::SDIV_I16, RTLIB::SDIV_I32,
5276 RTLIB::SDIV_I64, RTLIB::SDIV_I128));
5279 Results.push_back(ExpandIntLibCall(Node,
false,
5281 RTLIB::UDIV_I16, RTLIB::UDIV_I32,
5282 RTLIB::UDIV_I64, RTLIB::UDIV_I128));
5287 ExpandDivRemLibCall(Node,
Results);
5290 Results.push_back(ExpandIntLibCall(Node,
false,
5292 RTLIB::MUL_I16, RTLIB::MUL_I32,
5293 RTLIB::MUL_I64, RTLIB::MUL_I128));
5296 Results.push_back(ExpandBitCountingLibCall(
5297 Node, RTLIB::CTLZ_I32, RTLIB::CTLZ_I64, RTLIB::CTLZ_I128));
5300 Results.push_back(ExpandBitCountingLibCall(
5301 Node, RTLIB::CTPOP_I32, RTLIB::CTPOP_I64, RTLIB::CTPOP_I128));
5330 EVT ModeVT =
Node->getValueType(0);
5334 Node->getOperand(0), dl);
5336 ModeVT, dl, Chain, StackPtr,
5346 EVT ModeVT =
Mode.getValueType();
5350 Node->getOperand(0), dl,
Mode, StackPtr,
5364 Node->getOperand(0), dl));
5371 LLVM_DEBUG(
dbgs() <<
"Successfully converted node to libcall\n");
5372 ReplaceNode(Node,
Results.data());
5380 MVT EltVT,
MVT NewEltVT) {
5382 MVT MidVT = OldEltsPerNewElt == 1
5389void SelectionDAGLegalize::PromoteNode(SDNode *Node) {
5392 MVT OVT =
Node->getSimpleValueType(0);
5402 OVT =
Node->getOperand(0).getSimpleValueType();
5409 Node->getOpcode() == ISD::VP_REDUCE_FADD ||
5410 Node->getOpcode() == ISD::VP_REDUCE_FMUL ||
5411 Node->getOpcode() == ISD::VP_REDUCE_FMAX ||
5412 Node->getOpcode() == ISD::VP_REDUCE_FMIN ||
5413 Node->getOpcode() == ISD::VP_REDUCE_FMAXIMUM ||
5414 Node->getOpcode() == ISD::VP_REDUCE_FMINIMUM ||
5415 Node->getOpcode() == ISD::VP_REDUCE_SEQ_FADD)
5416 OVT =
Node->getOperand(1).getSimpleValueType();
5419 OVT =
Node->getOperand(2).getSimpleValueType();
5422 SelectionDAG::FlagInserter FlagsInserter(DAG, FastMathFlags);
5425 SDValue Tmp1, Tmp2, Tmp3, Tmp4;
5426 switch (
Node->getOpcode()) {
5438 unsigned NewOpc =
Node->getOpcode();
5451 Tmp1 = DAG.
getNode(NewOpc, dl, NVT, Tmp1);
5467 auto AnyExtendedNode =
5473 auto LeftShiftResult =
5477 auto CTLZResult = DAG.
getNode(
Node->getOpcode(), dl, NVT, LeftShiftResult);
5485 Tmp1 = DAG.
getNode(
Node->getOpcode(), dl, NVT, Tmp1);
5496 PromoteLegalFP_TO_INT(Node, dl,
Results);
5500 Results.push_back(PromoteLegalFP_TO_INT_SAT(Node, dl));
5506 PromoteLegalINT_TO_FP(Node, dl,
Results);
5517 &&
"VAARG promotion is supported only for vectors or integer types");
5522 Tmp1 = DAG.
getVAArg(NVT, dl, Chain, Ptr,
Node->getOperand(2),
5523 Node->getConstantOperandVal(3));
5526 Tmp2 = DAG.
getNode(TruncOp, dl, OVT, Tmp1);
5533 UpdatedNodes->insert(Tmp2.
getNode());
5534 UpdatedNodes->insert(Chain.
getNode());
5551 unsigned ExtOp, TruncOp;
5558 switch (
Node->getOpcode()) {
5583 Tmp1 = DAG.
getNode(ExtOp, dl, NVT,
Node->getOperand(0));
5584 Tmp2 = DAG.
getNode(ExtOp, dl, NVT,
Node->getOperand(1));
5586 Tmp1 = DAG.
getNode(
Node->getOpcode(), dl, NVT, Tmp1, Tmp2);
5595 Tmp1 = DAG.
getNode(ExtOp, dl, NVT,
Node->getOperand(0));
5596 Tmp2 = DAG.
getNode(ExtOp, dl, NVT,
Node->getOperand(1));
5607 unsigned ExtOp, TruncOp;
5608 if (
Node->getValueType(0).isVector() ||
5612 }
else if (
Node->getValueType(0).isInteger()) {
5619 Tmp1 =
Node->getOperand(0);
5621 Tmp2 = DAG.
getNode(ExtOp, dl, NVT,
Node->getOperand(1));
5622 Tmp3 = DAG.
getNode(ExtOp, dl, NVT,
Node->getOperand(2));
5624 Tmp1 = DAG.
getSelect(dl, NVT, Tmp1, Tmp2, Tmp3);
5626 Tmp1 = DAG.
getNode(TruncOp, dl,
Node->getValueType(0), Tmp1);
5628 Tmp1 = DAG.
getNode(TruncOp, dl,
Node->getValueType(0), Tmp1,
5641 Tmp1 = ShuffleWithNarrowerEltType(NVT, OVT, dl, Tmp1, Tmp2, Mask);
5650 Node->getOperand(2));
5658 MVT CVT =
Node->getSimpleValueType(0);
5659 assert(CVT == OVT &&
"not handled");
5668 Tmp1 =
Node->getOperand(0);
5669 Tmp2 =
Node->getOperand(1);
5671 Tmp1 = DAG.
getNode(ExtOp, dl, NVT,
Node->getOperand(0));
5672 Tmp2 = DAG.
getNode(ExtOp, dl, NVT,
Node->getOperand(1));
5675 Tmp3 = DAG.
getNode(ExtOp, dl, NVT,
Node->getOperand(2));
5676 Tmp4 = DAG.
getNode(ExtOp, dl, NVT,
Node->getOperand(3));
5703 if (
Node->isStrictFPOpcode()) {
5705 std::tie(Tmp1, std::ignore) =
5707 std::tie(Tmp2, std::ignore) =
5711 SDVTList VTs = DAG.
getVTList(
Node->getValueType(0), MVT::Other);
5713 {OutChain, Tmp1, Tmp2, Node->getOperand(3)},
5718 Tmp1 = DAG.
getNode(ExtOp, dl, NVT,
Node->getOperand(0));
5719 Tmp2 = DAG.
getNode(ExtOp, dl, NVT,
Node->getOperand(1));
5721 Tmp2,
Node->getOperand(2),
Node->getFlags()));
5731 Tmp1 = DAG.
getNode(ExtOp, dl, NVT,
Node->getOperand(2));
5732 Tmp2 = DAG.
getNode(ExtOp, dl, NVT,
Node->getOperand(3));
5734 Node->getOperand(0),
Node->getOperand(1),
5735 Tmp1, Tmp2,
Node->getOperand(4)));
5753 Tmp3 = DAG.
getNode(
Node->getOpcode(), dl, NVT, Tmp1, Tmp2);
5762 SDVTList VTs = DAG.
getVTList(NVT, MVT::Other);
5764 Node->getOperand(1));
5766 Node->getOperand(2));
5787 {
Node->getOperand(0),
Node->getOperand(1)});
5789 {
Node->getOperand(0),
Node->getOperand(2)});
5792 Tmp1 = DAG.
getNode(
Node->getOpcode(), dl, {NVT, MVT::Other},
5793 {Tmp3, Tmp1, Tmp2});
5806 DAG.
getNode(
Node->getOpcode(), dl, NVT, Tmp1, Tmp2, Tmp3),
5811 {
Node->getOperand(0),
Node->getOperand(1)});
5813 {
Node->getOperand(0),
Node->getOperand(2)});
5815 {
Node->getOperand(0),
Node->getOperand(3)});
5818 Tmp4 = DAG.
getNode(
Node->getOpcode(), dl, {NVT, MVT::Other},
5819 {Tmp4, Tmp1, Tmp2, Tmp3});
5830 Tmp2 =
Node->getOperand(1);
5831 Tmp3 = DAG.
getNode(
Node->getOpcode(), dl, NVT, Tmp1, Tmp2);
5846 {
Node->getOperand(0),
Node->getOperand(1)});
5847 Tmp2 =
Node->getOperand(2);
5859 {
Node->getOperand(0),
Node->getOperand(1)});
5860 Tmp2 = DAG.
getNode(
Node->getOpcode(), dl, {NVT, MVT::Other},
5861 {Tmp1.getValue(1), Tmp1, Node->getOperand(2)});
5885 for (
unsigned ResNum = 0; ResNum <
Node->getNumValues(); ResNum++)
5917 Tmp2 = DAG.
getNode(
Node->getOpcode(), dl, NVT, Tmp1);
5945 {
Node->getOperand(0),
Node->getOperand(1)});
5946 Tmp2 = DAG.
getNode(
Node->getOpcode(), dl, {NVT, MVT::Other},
5947 {Tmp1.getValue(1), Tmp1});
5965 "Invalid promote type for build_vector");
5998 "Invalid promote type for extract_vector_elt");
6013 for (
unsigned I = 0;
I < NewEltsPerOldElt; ++
I) {
6044 "Invalid promote type for insert_vector_elt");
6062 for (
unsigned I = 0;
I < NewEltsPerOldElt; ++
I) {
6067 CastVal, IdxOffset);
6070 NewVec, Elt, InEltIdx);
6110 "unexpected promotion type");
6112 "unexpected atomic_swap with illegal type");
6136 "unexpected promotion type");
6138 "unexpected atomic_load with illegal type");
6149 MVT ScalarType =
Scalar.getSimpleValueType();
6153 Tmp2 = DAG.
getNode(
Node->getOpcode(), dl, NVT, Tmp1);
6158 Tmp2 = DAG.
getNode(
Node->getOpcode(), dl, NVT, Tmp1);
6168 case ISD::VP_REDUCE_FMAX:
6169 case ISD::VP_REDUCE_FMIN:
6170 case ISD::VP_REDUCE_FMAXIMUM:
6171 case ISD::VP_REDUCE_FMINIMUM:
6172 Results.push_back(PromoteReduction(Node));
6179 ReplaceNode(Node,
Results.data());
6197 SelectionDAGLegalize
Legalizer(*
this, LegalizedNodes);
6204 bool AnyLegalized =
false;
6215 if (LegalizedNodes.
insert(
N).second) {
6216 AnyLegalized =
true;
6237 SelectionDAGLegalize
Legalizer(*
this, LegalizedNodes, &UpdatedNodes);
6244 return LegalizedNodes.
count(
N);
aarch64 falkor hwpf fix Falkor HW Prefetch Fix Late Phase
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
static msgpack::DocNode getNode(msgpack::DocNode DN, msgpack::Type Type, MCValue Val)
static bool isConstant(const MachineInstr &MI)
This file declares a class to represent arbitrary precision floating point values and provide a varie...
This file implements a class to represent arbitrary precision integral constant values and operations...
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
Function Alias Analysis Results
This file contains the declarations for the subclasses of Constant, which represent the different fla...
static bool isSigned(unsigned int Opcode)
Utilities for dealing with flags related to floating point properties and mode controls.
static MaybeAlign getAlign(Value *Ptr)
const AbstractManglingParser< Derived, Alloc >::OperatorInfo AbstractManglingParser< Derived, Alloc >::Ops[]
static bool ExpandBVWithShuffles(SDNode *Node, SelectionDAG &DAG, const TargetLowering &TLI, SDValue &Res)
static bool isSinCosLibcallAvailable(SDNode *Node, const TargetLowering &TLI)
Return true if sincos or __sincos_stret libcall is available.
static bool useSinCos(SDNode *Node)
Only issue sincos libcall if both sin and cos are needed.
static bool canUseFastMathLibcall(const SDNode *Node)
Return if we can use the FAST_* variant of a math libcall for the node.
static MachineMemOperand * getStackAlignedMMO(SDValue StackPtr, MachineFunction &MF, bool isObjectScalable)
static MVT getPromotedVectorElementType(const TargetLowering &TLI, MVT EltVT, MVT NewEltVT)
std::pair< MCSymbol *, MachineModuleInfoImpl::StubValueTy > PairTy
Promote Memory to Register
PowerPC Reduce CR logical Operation
static constexpr MCPhysReg SPReg
const SmallVectorImpl< MachineOperand > & Cond
static cl::opt< RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode > Mode("regalloc-enable-advisor", cl::Hidden, cl::init(RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode::Default), cl::desc("Enable regalloc advisor mode"), cl::values(clEnumValN(RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode::Default, "default", "Default"), clEnumValN(RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode::Release, "release", "precompiled"), clEnumValN(RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode::Development, "development", "for training")))
This file implements a set that has insertion order iteration characteristics.
This file defines the SmallPtrSet class.
This file defines the SmallSet class.
This file defines the SmallVector class.
static TableGen::Emitter::OptClass< SkeletonEmitter > X("gen-skeleton-class", "Generate example skeleton class")
This file describes how to lower LLVM code to machine code.
static constexpr int Concat[]
static APFloat getSmallestNormalized(const fltSemantics &Sem, bool Negative=false)
Returns the smallest (by magnitude) normalized finite number in the given semantics.
APInt bitcastToAPInt() const
static APFloat getInf(const fltSemantics &Sem, bool Negative=false)
Factory for Positive and Negative Infinity.
Class for arbitrary precision integers.
static APInt getSignMask(unsigned BitWidth)
Get the SignMask for a specific bit width.
void setBit(unsigned BitPosition)
Set the given bit to 1 whose position is given as "bitPosition".
static APInt getBitsSet(unsigned numBits, unsigned loBit, unsigned hiBit)
Get a value with a block of bits set.
static APInt getSignedMaxValue(unsigned numBits)
Gets maximum signed value of APInt for a specific bit width.
static APInt getOneBitSet(unsigned numBits, unsigned BitNo)
Return an APInt with exactly one bit set in the result.
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
const SDValue & getBasePtr() const
const SDValue & getVal() const
LLVM_ABI Type * getStructRetType() const
static LLVM_ABI bool isValueValidForType(EVT VT, const APFloat &Val)
const APFloat & getValueAPF() const
const ConstantFP * getConstantFPValue() const
const APFloat & getValueAPF() const
uint64_t getZExtValue() const
Return the constant as a 64-bit unsigned integer value after it has been zero extended as appropriate...
static LLVM_ABI Constant * get(ArrayRef< Constant * > V)
bool isLittleEndian() const
Layout endianness...
LLVM_ABI Align getPrefTypeAlign(Type *Ty) const
Returns the preferred stack/global alignment for the specified type.
const BasicBlock & back() const
LLVM_ABI void emitError(const Instruction *I, const Twine &ErrorStr)
emitError - Emit an error message to the currently installed error handler with optional location inf...
static LocationSize precise(uint64_t Value)
static constexpr LocationSize beforeOrAfterPointer()
Any location before or after the base pointer (but still within the underlying object).
uint64_t getScalarSizeInBits() const
bool bitsLE(MVT VT) const
Return true if this has no more bits than VT.
unsigned getVectorNumElements() const
bool isVector() const
Return true if this is a vector value type.
bool isInteger() const
Return true if this is an integer or a vector integer type.
bool bitsLT(MVT VT) const
Return true if this has less bits than VT.
TypeSize getSizeInBits() const
Returns the size of the specified MVT in bits.
static MVT getVectorVT(MVT VT, unsigned NumElements)
MVT getVectorElementType() const
bool isFloatingPoint() const
Return true if this is a FP or a vector FP type.
LLVM_ABI int CreateStackObject(uint64_t Size, Align Alignment, bool isSpillSlot, const AllocaInst *Alloca=nullptr, uint8_t ID=0)
Create a new statically sized stack object, returning a nonnegative identifier to represent it.
Align getObjectAlign(int ObjectIdx) const
Return the alignment of the specified stack object.
MachineMemOperand * getMachineMemOperand(MachinePointerInfo PtrInfo, MachineMemOperand::Flags f, LLT MemTy, Align base_alignment, const AAMDNodes &AAInfo=AAMDNodes(), const MDNode *Ranges=nullptr, SyncScope::ID SSID=SyncScope::System, AtomicOrdering Ordering=AtomicOrdering::NotAtomic, AtomicOrdering FailureOrdering=AtomicOrdering::NotAtomic)
getMachineMemOperand - Allocate a new MachineMemOperand.
MachineFrameInfo & getFrameInfo()
getFrameInfo - Return the frame info object for the current function.
Function & getFunction()
Return the LLVM function that this machine code represents.
const MachineJumpTableInfo * getJumpTableInfo() const
getJumpTableInfo - Return the jump table info object for the current function.
LLVM_ABI unsigned getEntrySize(const DataLayout &TD) const
getEntrySize - Return the size of each entry in the jump table.
A description of a memory reference used in the backend.
Flags
Flags values. These may be or'd together.
@ MOStore
The memory access writes data.
MachineMemOperand * getMemOperand() const
Return a MachineMemOperand object describing the memory reference performed by operation.
const SDValue & getChain() const
EVT getMemoryVT() const
Return the type of the in-memory value.
Wrapper class for IR location info (IR ordering and DebugLoc) to be passed into SDNode creation funct...
Represents one node in the SelectionDAG.
bool isStrictFPOpcode()
Test if this node is a strict floating point pseudo-op.
ArrayRef< SDUse > ops() const
LLVM_ABI void dump() const
Dump this node, for debugging.
unsigned getOpcode() const
Return the SelectionDAG opcode value for this node.
static bool hasPredecessorHelper(const SDNode *N, SmallPtrSetImpl< const SDNode * > &Visited, SmallVectorImpl< const SDNode * > &Worklist, unsigned int MaxSteps=0, bool TopologicalPrune=false)
Returns true if N is a predecessor of any node in Worklist.
unsigned getNumValues() const
Return the number of values defined/returned by this operator.
const SDValue & getOperand(unsigned Num) const
EVT getValueType(unsigned ResNo) const
Return the type of a specified result.
iterator_range< user_iterator > users()
Unlike LLVM values, Selection DAG nodes may return multiple values as the result of a computation.
SDNode * getNode() const
get the SDNode which holds the desired result
SDValue getValue(unsigned R) const
EVT getValueType() const
Return the ValueType of the referenced return value.
const SDValue & getOperand(unsigned i) const
uint64_t getScalarValueSizeInBits() const
unsigned getResNo() const
get the index which selects a specific result in the SDNode
MVT getSimpleValueType() const
Return the simple ValueType of the referenced return value.
unsigned getOpcode() const
This is used to represent a portion of an LLVM function in a low-level Data Dependence DAG representa...
LLVM_ABI SDValue getShiftAmountOperand(EVT LHSTy, SDValue Op)
Return the specified value casted to the target's desired shift amount type.
LLVM_ABI SDValue getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, EVT VT, SDValue Chain, SDValue Ptr, MachinePointerInfo PtrInfo, EVT MemVT, MaybeAlign Alignment=MaybeAlign(), MachineMemOperand::Flags MMOFlags=MachineMemOperand::MONone, const AAMDNodes &AAInfo=AAMDNodes())
const SDValue & getRoot() const
Return the root tag of the SelectionDAG.
bool isKnownNeverSNaN(SDValue Op, const APInt &DemandedElts, unsigned Depth=0) const
const TargetSubtargetInfo & getSubtarget() const
SDValue getCopyToReg(SDValue Chain, const SDLoc &dl, Register Reg, SDValue N)
LLVM_ABI SDValue getMergeValues(ArrayRef< SDValue > Ops, const SDLoc &dl)
Create a MERGE_VALUES node from the given operands.
LLVM_ABI SDVTList getVTList(EVT VT)
Return an SDVTList that represents the list of values specified.
LLVM_ABI SDValue getShiftAmountConstant(uint64_t Val, EVT VT, const SDLoc &DL)
LLVM_ABI SDValue getAllOnesConstant(const SDLoc &DL, EVT VT, bool IsTarget=false, bool IsOpaque=false)
LLVM_ABI SDValue getFreeze(SDValue V)
Return a freeze using the SDLoc of the value operand.
LLVM_ABI SDValue getConstantPool(const Constant *C, EVT VT, MaybeAlign Align=std::nullopt, int Offs=0, bool isT=false, unsigned TargetFlags=0)
LLVM_ABI SDValue getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl, EVT MemVT, SDVTList VTs, SDValue Chain, SDValue Ptr, SDValue Cmp, SDValue Swp, MachineMemOperand *MMO)
Gets a node for an atomic cmpxchg op.
SDValue getSetCC(const SDLoc &DL, EVT VT, SDValue LHS, SDValue RHS, ISD::CondCode Cond, SDValue Chain=SDValue(), bool IsSignaling=false)
Helper function to make it easier to build SetCC's if you just have an ISD::CondCode instead of an SD...
LLVM_ABI SDValue UnrollVectorOp(SDNode *N, unsigned ResNE=0)
Utility function used by legalize and lowering to "unroll" a vector operation by splitting out the sc...
LLVM_ABI SDValue getConstantFP(double Val, const SDLoc &DL, EVT VT, bool isTarget=false)
Create a ConstantFPSDNode wrapping a constant value.
LLVM_ABI SDValue getLoad(EVT VT, const SDLoc &dl, SDValue Chain, SDValue Ptr, MachinePointerInfo PtrInfo, MaybeAlign Alignment=MaybeAlign(), MachineMemOperand::Flags MMOFlags=MachineMemOperand::MONone, const AAMDNodes &AAInfo=AAMDNodes(), const MDNode *Ranges=nullptr)
Loads are not normal binary operators: their result type is not determined by their operands,...
LLVM_ABI SDValue getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, SDValue Chain, SDValue Ptr, SDValue Val, MachineMemOperand *MMO)
Gets a node for an atomic op, produces result (if relevant) and chain and takes 2 operands.
LLVM_ABI bool shouldOptForSize() const
LLVM_ABI SDValue getNOT(const SDLoc &DL, SDValue Val, EVT VT)
Create a bitwise NOT operation as (XOR Val, -1).
const TargetLowering & getTargetLoweringInfo() const
LLVM_ABI SDValue expandVACopy(SDNode *Node)
Expand the specified ISD::VACOPY node as the Legalize pass would.
allnodes_const_iterator allnodes_begin() const
SDValue getUNDEF(EVT VT)
Return an UNDEF node. UNDEF does not have a useful SDLoc.
SDValue getCALLSEQ_END(SDValue Chain, SDValue Op1, SDValue Op2, SDValue InGlue, const SDLoc &DL)
Return a new CALLSEQ_END node, which always must have a glue result (to ensure it's not CSE'd).
SDValue getBuildVector(EVT VT, const SDLoc &DL, ArrayRef< SDValue > Ops)
Return an ISD::BUILD_VECTOR node.
allnodes_const_iterator allnodes_end() const
LLVM_ABI void DeleteNode(SDNode *N)
Remove the specified node from the system.
SDValue getCopyFromReg(SDValue Chain, const SDLoc &dl, Register Reg, EVT VT)
SDValue getSelect(const SDLoc &DL, EVT VT, SDValue Cond, SDValue LHS, SDValue RHS, SDNodeFlags Flags=SDNodeFlags())
Helper function to make it easier to build Select's if you just have operands and don't want to check...
LLVM_ABI SDValue getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT)
Return the expression required to zero extend the Op value assuming it was the smaller SrcTy value.
const DataLayout & getDataLayout() const
LLVM_ABI SDValue expandVAArg(SDNode *Node)
Expand the specified ISD::VAARG node as the Legalize pass would.
LLVM_ABI void Legalize()
This transforms the SelectionDAG into a SelectionDAG that is compatible with the target instruction s...
LLVM_ABI SDValue getTokenFactor(const SDLoc &DL, SmallVectorImpl< SDValue > &Vals)
Creates a new TokenFactor containing Vals.
LLVM_ABI bool LegalizeOp(SDNode *N, SmallSetVector< SDNode *, 16 > &UpdatedNodes)
Transforms a SelectionDAG node and any operands to it into a node that is compatible with the target ...
LLVM_ABI SDValue getConstant(uint64_t Val, const SDLoc &DL, EVT VT, bool isTarget=false, bool isOpaque=false)
Create a ConstantSDNode wrapping a constant value.
LLVM_ABI SDValue getMemBasePlusOffset(SDValue Base, TypeSize Offset, const SDLoc &DL, const SDNodeFlags Flags=SDNodeFlags())
Returns sum of the base pointer and offset.
LLVM_ABI SDValue getVAArg(EVT VT, const SDLoc &dl, SDValue Chain, SDValue Ptr, SDValue SV, unsigned Align)
VAArg produces a result and token chain, and takes a pointer and a source value as input.
LLVM_ABI SDValue getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr, MachinePointerInfo PtrInfo, EVT SVT, Align Alignment, MachineMemOperand::Flags MMOFlags=MachineMemOperand::MONone, const AAMDNodes &AAInfo=AAMDNodes())
LLVM_ABI void ReplaceAllUsesWith(SDValue From, SDValue To)
Modify anything using 'From' to use 'To' instead.
LLVM_ABI SDValue makeStateFunctionCall(unsigned LibFunc, SDValue Ptr, SDValue InChain, const SDLoc &DLoc)
Helper used to make a call to a library function that has one argument of pointer type.
LLVM_ABI SDValue getStore(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr, MachinePointerInfo PtrInfo, Align Alignment, MachineMemOperand::Flags MMOFlags=MachineMemOperand::MONone, const AAMDNodes &AAInfo=AAMDNodes())
Helper function to build ISD::STORE nodes.
LLVM_ABI SDValue getSignedConstant(int64_t Val, const SDLoc &DL, EVT VT, bool isTarget=false, bool isOpaque=false)
SDValue getCALLSEQ_START(SDValue Chain, uint64_t InSize, uint64_t OutSize, const SDLoc &DL)
Return a new CALLSEQ_START node, that starts new call frame, in which InSize bytes are set up inside ...
LLVM_ABI void RemoveDeadNodes()
This method deletes all unreachable nodes in the SelectionDAG.
SDValue getSelectCC(const SDLoc &DL, SDValue LHS, SDValue RHS, SDValue True, SDValue False, ISD::CondCode Cond, SDNodeFlags Flags=SDNodeFlags())
Helper function to make it easier to build SelectCC's if you just have an ISD::CondCode instead of an...
LLVM_ABI SDValue getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of integer type, to the integer type VT, by either sign-extending or trunca...
LLVM_ABI SDValue getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT, EVT OpVT)
Convert Op, which must be of integer type, to the integer type VT, by using an extension appropriate ...
LLVM_ABI SDValue getExternalSymbol(const char *Sym, EVT VT)
const TargetMachine & getTarget() const
LLVM_ABI std::pair< SDValue, SDValue > getStrictFPExtendOrRound(SDValue Op, SDValue Chain, const SDLoc &DL, EVT VT)
Convert Op, which must be a STRICT operation of float type, to the float type VT, by either extending...
LLVM_ABI SDValue getVPLogicalNOT(const SDLoc &DL, SDValue Val, SDValue Mask, SDValue EVL, EVT VT)
Create a vector-predicated logical NOT operation as (VP_XOR Val, BooleanOne, Mask,...
LLVM_ABI SDValue getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of integer type, to the integer type VT, by either any-extending or truncat...
LLVM_ABI SDValue getIntPtrConstant(uint64_t Val, const SDLoc &DL, bool isTarget=false)
LLVM_ABI SDValue getValueType(EVT)
LLVM_ABI SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, ArrayRef< SDUse > Ops)
Gets or creates the specified node.
LLVM_ABI SDValue getFPExtendOrRound(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of float type, to the float type VT, by either extending or rounding (by tr...
LLVM_ABI unsigned AssignTopologicalOrder()
Topological-sort the AllNodes list and a assign a unique node id for each node in the DAG based on th...
const TargetLibraryInfo & getLibInfo() const
LLVM_ABI SDValue getBoolConstant(bool V, const SDLoc &DL, EVT VT, EVT OpVT)
Create a true or false constant of type VT using the target's BooleanContent for type OpVT.
LLVM_ABI SDValue getVectorIdxConstant(uint64_t Val, const SDLoc &DL, bool isTarget=false)
LLVM_ABI void ReplaceAllUsesOfValueWith(SDValue From, SDValue To)
Replace any uses of From with To, leaving uses of other values produced by From.getNode() alone.
MachineFunction & getMachineFunction() const
SDValue getPOISON(EVT VT)
Return a POISON node. POISON does not have a useful SDLoc.
SDValue getSplatBuildVector(EVT VT, const SDLoc &DL, SDValue Op)
Return a splat ISD::BUILD_VECTOR node, consisting of Op splatted to all elements.
LLVM_ABI SDValue getFrameIndex(int FI, EVT VT, bool isTarget=false)
LLVM_ABI SDValue getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of integer type, to the integer type VT, by either zero-extending or trunca...
LLVM_ABI SDValue getCondCode(ISD::CondCode Cond)
SDValue getObjectPtrOffset(const SDLoc &SL, SDValue Ptr, TypeSize Offset)
Create an add instruction with appropriate flags when used for addressing some offset of an object.
LLVMContext * getContext() const
LLVM_ABI SDValue CreateStackTemporary(TypeSize Bytes, Align Alignment)
Create a stack temporary based on the size in bytes and the alignment.
LLVM_ABI SDNode * UpdateNodeOperands(SDNode *N, SDValue Op)
Mutate the specified node in-place to have the specified operands.
SDValue getEntryNode() const
Return the token chain corresponding to the entry of the function.
LLVM_ABI SDValue getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1, SDValue N2, ArrayRef< int > Mask)
Return an ISD::VECTOR_SHUFFLE node.
LLVM_ABI SDValue getLogicalNOT(const SDLoc &DL, SDValue Val, EVT VT)
Create a logical NOT operation as (XOR Val, BooleanOne).
bool insert(const value_type &X)
Insert a new element into the SetVector.
A templated base class for SmallPtrSet which provides the typesafe interface that is common across al...
bool erase(PtrType Ptr)
Remove pointer from the set.
size_type count(ConstPtrType Ptr) const
count - Return 1 if the specified pointer is in the set, 0 otherwise.
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
A SetVector that performs no allocations if smaller than a certain size.
std::pair< const_iterator, bool > insert(const T &V)
insert - Insert an element into the set if it isn't already there.
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
void reserve(size_type N)
void swap(SmallVectorImpl &RHS)
void push_back(const T &Elt)
pointer data()
Return a pointer to the vector's buffer, even if empty().
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
This class is used to represent ISD::STORE nodes.
Align getStackAlign() const
getStackAlignment - This method returns the number of bytes to which the stack pointer must be aligne...
StackDirection getStackGrowthDirection() const
getStackGrowthDirection - Return the direction the stack grows
unsigned getIntSize() const
Get size of a C-level int or unsigned int, in bits.
bool isOperationExpand(unsigned Op, EVT VT) const
Return true if the specified operation is illegal on this target or unlikely to be made legal with cu...
virtual bool isShuffleMaskLegal(ArrayRef< int >, EVT) const
Targets can use this to indicate that they only support some VECTOR_SHUFFLE operations,...
virtual bool shouldExpandBuildVectorWithShuffles(EVT, unsigned DefinedValues) const
virtual bool isSExtCheaperThanZExt(EVT FromTy, EVT ToTy) const
Return true if sign-extension from FromTy to ToTy is cheaper than zero-extension.
MVT getVectorIdxTy(const DataLayout &DL) const
Returns the type to be used for the index operand of: ISD::INSERT_VECTOR_ELT, ISD::EXTRACT_VECTOR_ELT...
bool isOperationLegalOrPromote(unsigned Op, EVT VT, bool LegalOnly=false) const
Return true if the specified operation is legal on this target or can be made legal using promotion.
LegalizeAction getCondCodeAction(ISD::CondCode CC, MVT VT) const
Return how the condition code should be treated: either it is legal, needs to be expanded to some oth...
CallingConv::ID getLibcallImplCallingConv(RTLIB::LibcallImpl Call) const
Get the CallingConv that should be used for the specified libcall implementation.
virtual bool isFPImmLegal(const APFloat &, EVT, bool ForCodeSize=false) const
Returns true if the target can instruction select the specified FP immediate natively.
Register getStackPointerRegisterToSaveRestore() const
If a physical register, this specifies the register that llvm.savestack/llvm.restorestack should save...
LegalizeAction getFixedPointOperationAction(unsigned Op, EVT VT, unsigned Scale) const
Some fixed point operations may be natively supported by the target but only for specific scales.
virtual ISD::NodeType getExtendForAtomicOps() const
Returns how the platform's atomic operations are extended (ZERO_EXTEND, SIGN_EXTEND,...
EVT getShiftAmountTy(EVT LHSTy, const DataLayout &DL) const
Returns the type for the shift amount of a shift opcode.
bool isStrictFPEnabled() const
Return true if the target support strict float operation.
virtual EVT getSetCCResultType(const DataLayout &DL, LLVMContext &Context, EVT VT) const
Return the ValueType of the result of SETCC operations.
virtual EVT getTypeToTransformTo(LLVMContext &Context, EVT VT) const
For types supported by the target, this is an identity function.
bool isCondCodeLegal(ISD::CondCode CC, MVT VT) const
Return true if the specified condition code is legal for a comparison of the specified types on this ...
bool isTypeLegal(EVT VT) const
Return true if the target has native support for the specified value type.
MVT getProgramPointerTy(const DataLayout &DL) const
Return the type for code pointers, which is determined by the program address space specified through...
virtual bool isJumpTableRelative() const
virtual bool ShouldShrinkFPConstant(EVT) const
If true, then instruction selection should seek to shrink the FP constant of the specified type to a ...
virtual MVT getPointerTy(const DataLayout &DL, uint32_t AS=0) const
Return the pointer type for the given address space, defaults to the pointer type from the data layou...
bool isOperationLegal(unsigned Op, EVT VT) const
Return true if the specified operation is legal on this target.
LegalizeAction getTruncStoreAction(EVT ValVT, EVT MemVT) const
Return how this store with truncation should be treated: either it is legal, needs to be promoted to ...
LegalizeAction getLoadExtAction(unsigned ExtType, EVT ValVT, EVT MemVT) const
Return how this load with extension should be treated: either it is legal, needs to be promoted to a ...
bool isOperationLegalOrCustom(unsigned Op, EVT VT, bool LegalOnly=false) const
Return true if the specified operation is legal on this target or can be made legal with custom lower...
virtual bool allowsMemoryAccess(LLVMContext &Context, const DataLayout &DL, EVT VT, unsigned AddrSpace=0, Align Alignment=Align(1), MachineMemOperand::Flags Flags=MachineMemOperand::MONone, unsigned *Fast=nullptr) const
Return true if the target supports a memory access of this type for the given address space and align...
virtual LegalizeAction getCustomOperationAction(SDNode &Op) const
How to legalize this custom operation?
bool isLoadExtLegalOrCustom(unsigned ExtType, EVT ValVT, EVT MemVT) const
Return true if the specified load with extension is legal or custom on this target.
LegalizeAction getStrictFPOperationAction(unsigned Op, EVT VT) const
bool isLoadExtLegal(unsigned ExtType, EVT ValVT, EVT MemVT) const
Return true if the specified load with extension is legal on this target.
RTLIB::LibcallImpl getLibcallImpl(RTLIB::Libcall Call) const
Get the libcall impl routine name for the specified libcall.
virtual bool useSoftFloat() const
bool isTruncStoreLegalOrCustom(EVT ValVT, EVT MemVT) const
Return true if the specified store with truncation has solution on this target.
LegalizeTypeAction getTypeAction(LLVMContext &Context, EVT VT) const
Return how we should legalize values of this type, either it is already legal (return 'Legal') or we ...
virtual bool shouldSignExtendTypeInLibCall(Type *Ty, bool IsSigned) const
Returns true if arguments should be sign-extended in lib calls.
std::vector< ArgListEntry > ArgListTy
bool allowsMemoryAccessForAlignment(LLVMContext &Context, const DataLayout &DL, EVT VT, unsigned AddrSpace=0, Align Alignment=Align(1), MachineMemOperand::Flags Flags=MachineMemOperand::MONone, unsigned *Fast=nullptr) const
This function returns true if the memory access is aligned or if the target allows this specific unal...
bool isCondCodeLegalOrCustom(ISD::CondCode CC, MVT VT) const
Return true if the specified condition code is legal or custom for a comparison of the specified type...
MVT getFrameIndexTy(const DataLayout &DL) const
Return the type for frame index, which is determined by the alloca address space specified through th...
MVT getRegisterType(MVT VT) const
Return the type of registers that this ValueType will eventually require.
LegalizeAction getOperationAction(unsigned Op, EVT VT) const
Return how this operation should be treated: either it is legal, needs to be promoted to a larger siz...
MVT getTypeToPromoteTo(unsigned Op, MVT VT) const
If the action for this operation is to promote, this method returns the ValueType to promote to.
const RTLIB::RuntimeLibcallsInfo & getRuntimeLibcallsInfo() const
This class defines information used to lower LLVM code to legal SelectionDAG operators that the targe...
SDValue expandAddSubSat(SDNode *Node, SelectionDAG &DAG) const
Method for building the DAG expansion of ISD::[US][ADD|SUB]SAT.
bool expandMultipleResultFPLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, SDNode *Node, SmallVectorImpl< SDValue > &Results, std::optional< unsigned > CallRetResNo={}) const
Expands a node with multiple results to an FP or vector libcall.
bool expandMULO(SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const
Method for building the DAG expansion of ISD::[US]MULO.
bool expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT, SelectionDAG &DAG, MulExpansionKind Kind, SDValue LL=SDValue(), SDValue LH=SDValue(), SDValue RL=SDValue(), SDValue RH=SDValue()) const
Expand a MUL into two nodes.
SDValue expandCTLZ(SDNode *N, SelectionDAG &DAG) const
Expand CTLZ/CTLZ_ZERO_UNDEF nodes.
SDValue expandBITREVERSE(SDNode *N, SelectionDAG &DAG) const
Expand BITREVERSE nodes.
SDValue expandCTTZ(SDNode *N, SelectionDAG &DAG) const
Expand CTTZ/CTTZ_ZERO_UNDEF nodes.
virtual SDValue expandIndirectJTBranch(const SDLoc &dl, SDValue Value, SDValue Addr, int JTI, SelectionDAG &DAG) const
Expands target specific indirect branch for the case of JumpTable expansion.
SDValue expandABD(SDNode *N, SelectionDAG &DAG) const
Expand ABDS/ABDU nodes.
SDValue expandShlSat(SDNode *Node, SelectionDAG &DAG) const
Method for building the DAG expansion of ISD::[US]SHLSAT.
SDValue expandIS_FPCLASS(EVT ResultVT, SDValue Op, FPClassTest Test, SDNodeFlags Flags, const SDLoc &DL, SelectionDAG &DAG) const
Expand check for floating point class.
SDValue expandFP_TO_INT_SAT(SDNode *N, SelectionDAG &DAG) const
Expand FP_TO_[US]INT_SAT into FP_TO_[US]INT and selects or min/max.
SDValue expandUnalignedStore(StoreSDNode *ST, SelectionDAG &DAG) const
Expands an unaligned store to 2 half-size stores for integer values, and possibly more for vectors.
void expandSADDSUBO(SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const
Method for building the DAG expansion of ISD::S(ADD|SUB)O.
SDValue expandABS(SDNode *N, SelectionDAG &DAG, bool IsNegative=false) const
Expand ABS nodes.
SDValue expandVecReduce(SDNode *Node, SelectionDAG &DAG) const
Expand a VECREDUCE_* into an explicit calculation.
SDValue expandVPCTTZElements(SDNode *N, SelectionDAG &DAG) const
Expand VP_CTTZ_ELTS/VP_CTTZ_ELTS_ZERO_UNDEF nodes.
bool expandFP_TO_UINT(SDNode *N, SDValue &Result, SDValue &Chain, SelectionDAG &DAG) const
Expand float to UINT conversion.
bool expandREM(SDNode *Node, SDValue &Result, SelectionDAG &DAG) const
Expand an SREM or UREM using SDIV/UDIV or SDIVREM/UDIVREM, if legal.
std::pair< SDValue, SDValue > expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const
Expands an unaligned load to 2 half-size loads for an integer, and possibly more for vectors.
SDValue expandFMINIMUMNUM_FMAXIMUMNUM(SDNode *N, SelectionDAG &DAG) const
Expand fminimumnum/fmaximumnum into multiple comparison with selects.
SDValue expandVectorSplice(SDNode *Node, SelectionDAG &DAG) const
Method for building the DAG expansion of ISD::VECTOR_SPLICE.
SDValue getVectorSubVecPointer(SelectionDAG &DAG, SDValue VecPtr, EVT VecVT, EVT SubVecVT, SDValue Index, const SDNodeFlags PtrArithFlags=SDNodeFlags()) const
Get a pointer to a sub-vector of type SubVecVT at index Idx located in memory for a vector of type Ve...
SDValue expandCTPOP(SDNode *N, SelectionDAG &DAG) const
Expand CTPOP nodes.
std::pair< SDValue, SDValue > LowerCallTo(CallLoweringInfo &CLI) const
This function lowers an abstract call to a function into an actual call.
SDValue expandBSWAP(SDNode *N, SelectionDAG &DAG) const
Expand BSWAP nodes.
SDValue expandFMINIMUM_FMAXIMUM(SDNode *N, SelectionDAG &DAG) const
Expand fminimum/fmaximum into multiple comparison with selects.
bool expandFP_TO_SINT(SDNode *N, SDValue &Result, SelectionDAG &DAG) const
Expand float(f32) to SINT(i64) conversion.
virtual SDValue getPICJumpTableRelocBase(SDValue Table, SelectionDAG &DAG) const
Returns relocation base for the given PIC jumptable.
bool isInTailCallPosition(SelectionDAG &DAG, SDNode *Node, SDValue &Chain) const
Check whether a given call node is in tail position within its function.
SDValue expandFunnelShift(SDNode *N, SelectionDAG &DAG) const
Expand funnel shift.
bool LegalizeSetCCCondCode(SelectionDAG &DAG, EVT VT, SDValue &LHS, SDValue &RHS, SDValue &CC, SDValue Mask, SDValue EVL, bool &NeedInvert, const SDLoc &dl, SDValue &Chain, bool IsSignaling=false) const
Legalize a SETCC or VP_SETCC with given LHS and RHS and condition code CC on the current target.
virtual SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const
This callback is invoked for operations that are unsupported by the target, which are registered to u...
SDValue expandFixedPointDiv(unsigned Opcode, const SDLoc &dl, SDValue LHS, SDValue RHS, unsigned Scale, SelectionDAG &DAG) const
Method for building the DAG expansion of ISD::[US]DIVFIX[SAT].
SDValue expandFP_ROUND(SDNode *Node, SelectionDAG &DAG) const
Expand round(fp) to fp conversion.
SDValue expandROT(SDNode *N, bool AllowVectorOps, SelectionDAG &DAG) const
Expand rotations.
SDValue getVectorElementPointer(SelectionDAG &DAG, SDValue VecPtr, EVT VecVT, SDValue Index, const SDNodeFlags PtrArithFlags=SDNodeFlags()) const
Get a pointer to vector element Idx located in memory for a vector of type VecVT starting at a base a...
SDValue expandFMINNUM_FMAXNUM(SDNode *N, SelectionDAG &DAG) const
Expand fminnum/fmaxnum into fminnum_ieee/fmaxnum_ieee with quieted inputs.
std::pair< SDValue, SDValue > makeLibCall(SelectionDAG &DAG, RTLIB::LibcallImpl LibcallImpl, EVT RetVT, ArrayRef< SDValue > Ops, MakeLibCallOptions CallOptions, const SDLoc &dl, SDValue Chain=SDValue()) const
Returns a pair of (return value, chain).
SDValue expandCMP(SDNode *Node, SelectionDAG &DAG) const
Method for building the DAG expansion of ISD::[US]CMP.
SDValue expandFixedPointMul(SDNode *Node, SelectionDAG &DAG) const
Method for building the DAG expansion of ISD::[U|S]MULFIX[SAT].
void expandUADDSUBO(SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const
Method for building the DAG expansion of ISD::U(ADD|SUB)O.
bool expandUINT_TO_FP(SDNode *N, SDValue &Result, SDValue &Chain, SelectionDAG &DAG) const
Expand UINT(i64) to double(f64) conversion.
bool expandMUL_LOHI(unsigned Opcode, EVT VT, const SDLoc &dl, SDValue LHS, SDValue RHS, SmallVectorImpl< SDValue > &Result, EVT HiLoVT, SelectionDAG &DAG, MulExpansionKind Kind, SDValue LL=SDValue(), SDValue LH=SDValue(), SDValue RL=SDValue(), SDValue RH=SDValue()) const
Expand a MUL or [US]MUL_LOHI of n-bit values into two or four nodes, respectively,...
SDValue expandAVG(SDNode *N, SelectionDAG &DAG) const
Expand vector/scalar AVGCEILS/AVGCEILU/AVGFLOORS/AVGFLOORU nodes.
Primary interface to the complete machine description for the target machine.
const Triple & getTargetTriple() const
virtual const TargetFrameLowering * getFrameLowering() const
static constexpr TypeSize getFixed(ScalarTy ExactSize)
LLVMContext & getContext() const
Return the LLVMContext in which this type was uniqued.
bool isVoidTy() const
Return true if this is 'void'.
static LLVM_ABI UndefValue * get(Type *T)
Static factory methods - Return an 'undef' object of the specified type.
LLVM Value Representation.
constexpr ScalarTy getFixedValue() const
constexpr ScalarTy getKnownMinValue() const
Returns the minimum value this quantity can represent.
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
constexpr char Align[]
Key for Kernel::Arg::Metadata::mAlign.
constexpr char Args[]
Key for Kernel::Metadata::mArgs.
constexpr std::underlying_type_t< E > Mask()
Get a bitmask with 1s in all places up to the high-order bit of E's largest value.
@ Fast
Attempts to make calls as fast as possible (e.g.
@ SETCC
SetCC operator - This evaluates to a true value iff the condition is true.
@ MERGE_VALUES
MERGE_VALUES - This node takes multiple discrete operands and returns them all as its individual resu...
@ STACKRESTORE
STACKRESTORE has two operands, an input chain and a pointer to restore to it returns an output chain.
@ STACKSAVE
STACKSAVE - STACKSAVE has one operand, an input chain.
@ STRICT_FSETCC
STRICT_FSETCC/STRICT_FSETCCS - Constrained versions of SETCC, used for floating-point operands only.
@ POISON
POISON - A poison node.
@ SET_FPENV
Sets the current floating-point environment.
@ VECREDUCE_SEQ_FADD
Generic reduction nodes.
@ EH_SJLJ_LONGJMP
OUTCHAIN = EH_SJLJ_LONGJMP(INCHAIN, buffer) This corresponds to the eh.sjlj.longjmp intrinsic.
@ SMUL_LOHI
SMUL_LOHI/UMUL_LOHI - Multiply two integers of type iN, producing a signed/unsigned value of type i[2...
@ INSERT_SUBVECTOR
INSERT_SUBVECTOR(VECTOR1, VECTOR2, IDX) - Returns a vector with VECTOR2 inserted into VECTOR1.
@ BSWAP
Byte Swap and Counting operators.
@ SMULFIX
RESULT = [US]MULFIX(LHS, RHS, SCALE) - Perform fixed point multiplication on 2 integers with the same...
@ VAEND
VAEND, VASTART - VAEND and VASTART have three operands: an input chain, pointer, and a SRCVALUE.
@ ATOMIC_STORE
OUTCHAIN = ATOMIC_STORE(INCHAIN, val, ptr) This corresponds to "store atomic" instruction.
@ FRAME_TO_ARGS_OFFSET
FRAME_TO_ARGS_OFFSET - This node represents offset from frame pointer to first (possible) on-stack ar...
@ RESET_FPENV
Set floating-point environment to default state.
@ FMAD
FMAD - Perform a * b + c, while getting the same result as the separately rounded operations.
@ ADD
Simple integer binary arithmetic operators.
@ LOAD
LOAD and STORE have token chains as their first operand, then the same operands as an LLVM load/store...
@ SMULFIXSAT
Same as the corresponding unsaturated fixed point instructions, but the result is clamped between the...
@ SET_FPMODE
Sets the current dynamic floating-point control modes.
@ ANY_EXTEND
ANY_EXTEND - Used for integer types. The high bits are undefined.
@ FMA
FMA - Perform a * b + c with no intermediate rounding step.
@ FMODF
FMODF - Decomposes the operand into integral and fractional parts, each having the same type and sign...
@ FATAN2
FATAN2 - atan2, inspired by libm.
@ FSINCOSPI
FSINCOSPI - Compute both the sine and cosine times pi more accurately than FSINCOS(pi*x),...
@ INTRINSIC_VOID
OUTCHAIN = INTRINSIC_VOID(INCHAIN, INTRINSICID, arg1, arg2, ...) This node represents a target intrin...
@ EH_SJLJ_SETUP_DISPATCH
OUTCHAIN = EH_SJLJ_SETUP_DISPATCH(INCHAIN) The target initializes the dispatch table here.
@ ATOMIC_CMP_SWAP_WITH_SUCCESS
Val, Success, OUTCHAIN = ATOMIC_CMP_SWAP_WITH_SUCCESS(INCHAIN, ptr, cmp, swap) N.b.
@ SINT_TO_FP
[SU]INT_TO_FP - These operators convert integers (whose interpreted sign depends on the first letter)...
@ CONCAT_VECTORS
CONCAT_VECTORS(VECTOR0, VECTOR1, ...) - Given a number of values of vector type with the same length ...
@ VECREDUCE_FMAX
FMIN/FMAX nodes can have flags, for NaN/NoNaN variants.
@ FADD
Simple binary floating point operators.
@ VECREDUCE_FMAXIMUM
FMINIMUM/FMAXIMUM nodes propatate NaNs and signed zeroes using the llvm.minimum and llvm....
@ ABS
ABS - Determine the unsigned absolute value of a signed integer value of the same bitwidth.
@ ATOMIC_FENCE
OUTCHAIN = ATOMIC_FENCE(INCHAIN, ordering, scope) This corresponds to the fence instruction.
@ RESET_FPMODE
Sets default dynamic floating-point control modes.
@ SDIVREM
SDIVREM/UDIVREM - Divide two integers and produce both a quotient and remainder result.
@ FP16_TO_FP
FP16_TO_FP, FP_TO_FP16 - These operators are used to perform promotions and truncation for half-preci...
@ BITCAST
BITCAST - This operator converts between integer, vector and FP values, as if the value was stored to...
@ BUILD_PAIR
BUILD_PAIR - This is the opposite of EXTRACT_ELEMENT in some ways.
@ INIT_TRAMPOLINE
INIT_TRAMPOLINE - This corresponds to the init_trampoline intrinsic.
@ FLDEXP
FLDEXP - ldexp, inspired by libm (op0 * 2**op1).
@ SDIVFIX
RESULT = [US]DIVFIX(LHS, RHS, SCALE) - Perform fixed point division on 2 integers with the same width...
@ STRICT_FSQRT
Constrained versions of libm-equivalent floating point intrinsics.
@ BUILTIN_OP_END
BUILTIN_OP_END - This must be the last enum value in this list.
@ EH_LABEL
EH_LABEL - Represents a label in mid basic block used to track locations needed for debug and excepti...
@ EH_RETURN
OUTCHAIN = EH_RETURN(INCHAIN, OFFSET, HANDLER) - This node represents 'eh_return' gcc dwarf builtin,...
@ SIGN_EXTEND
Conversion operators.
@ AVGCEILS
AVGCEILS/AVGCEILU - Rounding averaging add - Add two integers using an integer of type i[N+2],...
@ SCALAR_TO_VECTOR
SCALAR_TO_VECTOR(VAL) - This represents the operation of loading a scalar value into element 0 of the...
@ READSTEADYCOUNTER
READSTEADYCOUNTER - This corresponds to the readfixedcounter intrinsic.
@ ADDROFRETURNADDR
ADDROFRETURNADDR - Represents the llvm.addressofreturnaddress intrinsic.
@ VECREDUCE_FADD
These reductions have relaxed evaluation order semantics, and have a single vector operand.
@ CTTZ_ZERO_UNDEF
Bit counting operators with an undefined result for zero inputs.
@ PREFETCH
PREFETCH - This corresponds to a prefetch intrinsic.
@ FSINCOS
FSINCOS - Compute both fsin and fcos as a single operation.
@ SETCCCARRY
Like SetCC, ops #0 and #1 are the LHS and RHS operands to compare, but op #2 is a boolean indicating ...
@ FNEG
Perform various unary floating-point operations inspired by libm.
@ BR_CC
BR_CC - Conditional branch.
@ SSUBO
Same for subtraction.
@ BR_JT
BR_JT - Jumptable branch.
@ VECTOR_INTERLEAVE
VECTOR_INTERLEAVE(VEC1, VEC2, ...) - Returns N vectors from N input vectors, where N is the factor to...
@ FCANONICALIZE
Returns platform specific canonical encoding of a floating point number.
@ IS_FPCLASS
Performs a check of floating point class property, defined by IEEE-754.
@ SSUBSAT
RESULT = [US]SUBSAT(LHS, RHS) - Perform saturation subtraction on 2 integers with the same bit width ...
@ SELECT
Select(COND, TRUEVAL, FALSEVAL).
@ ATOMIC_LOAD
Val, OUTCHAIN = ATOMIC_LOAD(INCHAIN, ptr) This corresponds to "load atomic" instruction.
@ UNDEF
UNDEF - An undefined node.
@ EXTRACT_ELEMENT
EXTRACT_ELEMENT - This is used to get the lower or upper (determined by a Constant,...
@ SPLAT_VECTOR
SPLAT_VECTOR(VAL) - Returns a vector with the scalar value VAL duplicated in all lanes.
@ VACOPY
VACOPY - VACOPY has 5 operands: an input chain, a destination pointer, a source pointer,...
@ SADDO
RESULT, BOOL = [SU]ADDO(LHS, RHS) - Overflow-aware nodes for addition.
@ VECREDUCE_ADD
Integer reductions may have a result type larger than the vector element type.
@ GET_ROUNDING
Returns current rounding mode: -1 Undefined 0 Round to 0 1 Round to nearest, ties to even 2 Round to ...
@ MULHU
MULHU/MULHS - Multiply high - Multiply two integers of type iN, producing an unsigned/signed value of...
@ GET_FPMODE
Reads the current dynamic floating-point control modes.
@ SHL
Shift and rotation operations.
@ VECTOR_SHUFFLE
VECTOR_SHUFFLE(VEC1, VEC2) - Returns a vector, of the same type as VEC1/VEC2.
@ EXTRACT_SUBVECTOR
EXTRACT_SUBVECTOR(VECTOR, IDX) - Returns a subvector from VECTOR.
@ READ_REGISTER
READ_REGISTER, WRITE_REGISTER - This node represents llvm.register on the DAG, which implements the n...
@ EXTRACT_VECTOR_ELT
EXTRACT_VECTOR_ELT(VECTOR, IDX) - Returns a single element from VECTOR identified by the (potentially...
@ ZERO_EXTEND
ZERO_EXTEND - Used for integer types, zeroing the new bits.
@ DEBUGTRAP
DEBUGTRAP - Trap intended to get the attention of a debugger.
@ SELECT_CC
Select with condition operator - This selects between a true value and a false value (ops #2 and #3) ...
@ ATOMIC_CMP_SWAP
Val, OUTCHAIN = ATOMIC_CMP_SWAP(INCHAIN, ptr, cmp, swap) For double-word atomic operations: ValLo,...
@ FMINNUM
FMINNUM/FMAXNUM - Perform floating-point minimum maximum on two values, following IEEE-754 definition...
@ UBSANTRAP
UBSANTRAP - Trap with an immediate describing the kind of sanitizer failure.
@ SSHLSAT
RESULT = [US]SHLSAT(LHS, RHS) - Perform saturation left shift.
@ SMULO
Same for multiplication.
@ DYNAMIC_STACKALLOC
DYNAMIC_STACKALLOC - Allocate some number of bytes on the stack aligned to a specified boundary.
@ SIGN_EXTEND_INREG
SIGN_EXTEND_INREG - This operator atomically performs a SHL/SRA pair to sign extend a small value in ...
@ SMIN
[US]{MIN/MAX} - Binary minimum or maximum of signed or unsigned integers.
@ SDIVFIXSAT
Same as the corresponding unsaturated fixed point instructions, but the result is clamped between the...
@ FP_EXTEND
X = FP_EXTEND(Y) - Extend a smaller FP type into a larger FP type.
@ GLOBAL_OFFSET_TABLE
The address of the GOT.
@ UADDO_CARRY
Carry-using nodes for multiple precision addition and subtraction.
@ STRICT_SINT_TO_FP
STRICT_[US]INT_TO_FP - Convert a signed or unsigned integer to a floating point value.
@ EH_DWARF_CFA
EH_DWARF_CFA - This node represents the pointer to the DWARF Canonical Frame Address (CFA),...
@ BF16_TO_FP
BF16_TO_FP, FP_TO_BF16 - These operators are used to perform promotions and truncation for bfloat16.
@ FRAMEADDR
FRAMEADDR, RETURNADDR - These nodes represent llvm.frameaddress and llvm.returnaddress on the DAG.
@ STRICT_FP_ROUND
X = STRICT_FP_ROUND(Y, TRUNC) - Rounding 'Y' from a larger floating point type down to the precision ...
@ STRICT_FP_TO_SINT
STRICT_FP_TO_[US]INT - Convert a floating point value to a signed or unsigned integer.
@ FMINIMUM
FMINIMUM/FMAXIMUM - NaN-propagating minimum/maximum that also treat -0.0 as less than 0....
@ FP_TO_SINT
FP_TO_[US]INT - Convert a floating point value to a signed or unsigned integer.
@ READCYCLECOUNTER
READCYCLECOUNTER - This corresponds to the readcyclecounter intrinsic.
@ TargetConstant
TargetConstant* - Like Constant*, but the DAG does not do any folding, simplification,...
@ STRICT_FP_EXTEND
X = STRICT_FP_EXTEND(Y) - Extend a smaller FP type into a larger FP type.
@ AND
Bitwise operators - logical and, logical or, logical xor.
@ TRAP
TRAP - Trapping instruction.
@ INTRINSIC_WO_CHAIN
RESULT = INTRINSIC_WO_CHAIN(INTRINSICID, arg1, arg2, ...) This node represents a target intrinsic fun...
@ GET_FPENV_MEM
Gets the current floating-point environment.
@ SCMP
[US]CMP - 3-way comparison of signed or unsigned integers.
@ AVGFLOORS
AVGFLOORS/AVGFLOORU - Averaging add - Add two integers using an integer of type i[N+1],...
@ STRICT_FADD
Constrained versions of the binary floating point operators.
@ INSERT_VECTOR_ELT
INSERT_VECTOR_ELT(VECTOR, VAL, IDX) - Returns VECTOR with the element at IDX replaced with VAL.
@ TokenFactor
TokenFactor - This node takes multiple tokens as input and produces a single token result.
@ VECTOR_SPLICE
VECTOR_SPLICE(VEC1, VEC2, IMM) - Returns a subvector of the same type as VEC1/VEC2 from CONCAT_VECTOR...
@ ATOMIC_SWAP
Val, OUTCHAIN = ATOMIC_SWAP(INCHAIN, ptr, amt) Val, OUTCHAIN = ATOMIC_LOAD_[OpName](INCHAIN,...
@ FFREXP
FFREXP - frexp, extract fractional and exponent component of a floating-point value.
@ FP_ROUND
X = FP_ROUND(Y, TRUNC) - Rounding 'Y' from a larger floating point type down to the precision of the ...
@ SPONENTRY
SPONENTRY - Represents the llvm.sponentry intrinsic.
@ CLEAR_CACHE
llvm.clear_cache intrinsic Operands: Input Chain, Start Addres, End Address Outputs: Output Chain
@ ADDRSPACECAST
ADDRSPACECAST - This operator converts between pointers of different address spaces.
@ EXPERIMENTAL_VECTOR_HISTOGRAM
Experimental vector histogram intrinsic Operands: Input Chain, Inc, Mask, Base, Index,...
@ FP_TO_SINT_SAT
FP_TO_[US]INT_SAT - Convert floating point value in operand 0 to a signed or unsigned scalar integer ...
@ EH_SJLJ_SETJMP
RESULT, OUTCHAIN = EH_SJLJ_SETJMP(INCHAIN, buffer) This corresponds to the eh.sjlj....
@ TRUNCATE
TRUNCATE - Completely drop the high bits.
@ VAARG
VAARG - VAARG has four operands: an input chain, a pointer, a SRCVALUE, and the alignment.
@ BRCOND
BRCOND - Conditional branch.
@ SHL_PARTS
SHL_PARTS/SRA_PARTS/SRL_PARTS - These operators are used for expanded integer shift operations.
@ AssertSext
AssertSext, AssertZext - These nodes record if a register contains a value that has already been zero...
@ FCOPYSIGN
FCOPYSIGN(X, Y) - Return the value of X with the sign of Y.
@ SADDSAT
RESULT = [US]ADDSAT(LHS, RHS) - Perform saturation addition on 2 integers with the same bit width (W)...
@ CALLSEQ_START
CALLSEQ_START/CALLSEQ_END - These operators mark the beginning and end of a call sequence,...
@ VECTOR_DEINTERLEAVE
VECTOR_DEINTERLEAVE(VEC1, VEC2, ...) - Returns N vectors from N input vectors, where N is the factor ...
@ GET_DYNAMIC_AREA_OFFSET
GET_DYNAMIC_AREA_OFFSET - get offset from native SP to the address of the most recent dynamic alloca.
@ SET_FPENV_MEM
Sets the current floating point environment.
@ FMINIMUMNUM
FMINIMUMNUM/FMAXIMUMNUM - minimumnum/maximumnum that is same with FMINNUM_IEEE and FMAXNUM_IEEE besid...
@ ABDS
ABDS/ABDU - Absolute difference - Return the absolute difference between two numbers interpreted as s...
@ ADJUST_TRAMPOLINE
ADJUST_TRAMPOLINE - This corresponds to the adjust_trampoline intrinsic.
@ INTRINSIC_W_CHAIN
RESULT,OUTCHAIN = INTRINSIC_W_CHAIN(INCHAIN, INTRINSICID, arg1, ...) This node represents a target in...
@ BUILD_VECTOR
BUILD_VECTOR(ELT0, ELT1, ELT2, ELT3,...) - Return a fixed-width vector with the specified,...
LLVM_ABI NodeType getExtForLoadExtType(bool IsFP, LoadExtType)
bool isNormalStore(const SDNode *N)
Returns true if the specified node is a non-truncating and unindexed store.
LLVM_ABI CondCode getSetCCInverse(CondCode Operation, EVT Type)
Return the operation corresponding to !(X op Y), where 'op' is a valid SetCC operation.
LLVM_ABI std::optional< unsigned > getVPMaskIdx(unsigned Opcode)
The operand position of the vector mask.
LLVM_ABI CondCode getSetCCSwappedOperands(CondCode Operation)
Return the operation corresponding to (Y op X) when given the operation for (X op Y).
bool isSignedIntSetCC(CondCode Code)
Return true if this is a setcc instruction that performs a signed comparison when used with integer o...
CondCode
ISD::CondCode enum - These are ordered carefully to make the bitfields below work out,...
LoadExtType
LoadExtType enum - This enum defines the three variants of LOADEXT (load with extension).
LLVM_ABI bool isVPOpcode(unsigned Opcode)
Whether this is a vector-predicated Opcode.
LLVM_ABI Libcall getPOWI(EVT RetVT)
getPOWI - Return the POWI_* value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getSINTTOFP(EVT OpVT, EVT RetVT)
getSINTTOFP - Return the SINTTOFP_*_* value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getSYNC(unsigned Opc, MVT VT)
Return the SYNC_FETCH_AND_* value for the given opcode and type, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getLDEXP(EVT RetVT)
getLDEXP - Return the LDEXP_* value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getUINTTOFP(EVT OpVT, EVT RetVT)
getUINTTOFP - Return the UINTTOFP_*_* value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getFREXP(EVT RetVT)
getFREXP - Return the FREXP_* value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getSINCOSPI(EVT RetVT)
getSINCOSPI - Return the SINCOSPI_* value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getFPLibCall(EVT VT, Libcall Call_F32, Libcall Call_F64, Libcall Call_F80, Libcall Call_F128, Libcall Call_PPCF128)
GetFPLibCall - Helper to return the right libcall for the given floating point type,...
LLVM_ABI Libcall getFPTOUINT(EVT OpVT, EVT RetVT)
getFPTOUINT - Return the FPTOUINT_*_* value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getMODF(EVT VT)
getMODF - Return the MODF_* value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getFPTOSINT(EVT OpVT, EVT RetVT)
getFPTOSINT - Return the FPTOSINT_*_* value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getOUTLINE_ATOMIC(unsigned Opc, AtomicOrdering Order, MVT VT)
Return the outline atomics value for the given opcode, atomic ordering and type, or UNKNOWN_LIBCALL i...
LLVM_ABI Libcall getFPEXT(EVT OpVT, EVT RetVT)
getFPEXT - Return the FPEXT_*_* value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getFPROUND(EVT OpVT, EVT RetVT)
getFPROUND - Return the FPROUND_*_* value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getSINCOS_STRET(EVT RetVT)
Return the SINCOS_STRET_ value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getSINCOS(EVT RetVT)
getSINCOS - Return the SINCOS_* value for the given types, or UNKNOWN_LIBCALL if there is none.
@ Undef
Value of the register doesn't matter.
std::enable_if_t< detail::IsValidPointer< X, Y >::value, X * > extract(Y &&MD)
Extract a Value from Metadata.
NodeAddr< NodeBase * > Node
This is an optimization pass for GlobalISel generic memory operations.
auto drop_begin(T &&RangeOrContainer, size_t N=1)
Return a range covering RangeOrContainer with the first N elements excluded.
void dump(const SparseBitVector< ElementSize > &LHS, raw_ostream &out)
unsigned Log2_32_Ceil(uint32_t Value)
Return the ceil log base 2 of the specified value, 32 if the value is zero.
FunctionAddr VTableAddr Value
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
constexpr bool isPowerOf2_64(uint64_t Value)
Return true if the argument is a power of two > 0 (64 bit edition.)
unsigned Log2_32(uint32_t Value)
Return the floor log base 2 of the specified value, -1 if the value is zero.
constexpr bool isPowerOf2_32(uint32_t Value)
Return true if the argument is a power of two > 0.
FPClassTest
Floating-point class tests, supported by 'is_fpclass' intrinsic.
APFloat scalbn(APFloat X, int Exp, APFloat::roundingMode RM)
Returns: X * 2^Exp for integral exponents.
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
LLVM_ABI Constant * ConstantFoldCastOperand(unsigned Opcode, Constant *C, Type *DestTy, const DataLayout &DL)
Attempt to constant fold a cast with the specified operand.
class LLVM_GSL_OWNER SmallVector
Forward declaration of SmallVector so that calculateSmallVectorDefaultInlinedElements can reference s...
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
AtomicOrdering
Atomic ordering for LLVM's memory model.
To bit_cast(const From &from) noexcept
@ Or
Bitwise or logical OR of integers.
@ And
Bitwise or logical AND of integers.
@ Sub
Subtraction of integers.
DWARFExpression::Operation Op
ArrayRef(const T &OneElt) -> ArrayRef< T >
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
LLVM_ABI bool isOneConstant(SDValue V)
Returns true if V is a constant integer one.
Align commonAlignment(Align A, uint64_t Offset)
Returns the alignment that satisfies both alignments.
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
constexpr uint64_t value() const
This is a hole in the type system and should not be abused.
TypeSize getStoreSize() const
Return the number of bytes overwritten by a store of the specified value type.
static EVT getVectorVT(LLVMContext &Context, EVT VT, unsigned NumElements, bool IsScalable=false)
Returns the EVT that represents a vector NumElements in length, where each element is of type VT.
EVT changeTypeToInteger() const
Return the type converted to an equivalently sized integer or vector with integer element type.
bool bitsGT(EVT VT) const
Return true if this has more bits than VT.
bool bitsLT(EVT VT) const
Return true if this has less bits than VT.
bool isFloatingPoint() const
Return true if this is a FP or a vector FP type.
TypeSize getSizeInBits() const
Return the size of the specified value type in bits.
bool isByteSized() const
Return true if the bit size is a multiple of 8.
uint64_t getScalarSizeInBits() const
EVT getHalfSizedIntegerVT(LLVMContext &Context) const
Finds the smallest simple value type that is greater than or equal to half the width of this EVT.
TypeSize getStoreSizeInBits() const
Return the number of bits overwritten by a store of the specified value type.
MVT getSimpleVT() const
Return the SimpleValueType held in the specified simple EVT.
static EVT getIntegerVT(LLVMContext &Context, unsigned BitWidth)
Returns the EVT that represents an integer with the given number of bits.
bool isVector() const
Return true if this is a vector value type.
EVT getScalarType() const
If this is a vector type, return the element type, otherwise return this.
bool bitsGE(EVT VT) const
Return true if this has no less bits than VT.
bool bitsEq(EVT VT) const
Return true if this has the same number of bits as VT.
LLVM_ABI Type * getTypeForEVT(LLVMContext &Context) const
This method returns an LLVM type corresponding to the specified EVT.
bool isScalableVector() const
Return true if this is a vector type where the runtime length is machine dependent.
EVT getVectorElementType() const
Given a vector type, return the type of each element.
bool isScalarInteger() const
Return true if this is an integer, but not a vector.
LLVM_ABI const fltSemantics & getFltSemantics() const
Returns an APFloat semantics tag appropriate for the value type.
unsigned getVectorNumElements() const
Given a vector type, return the number of elements it contains.
bool bitsLE(EVT VT) const
Return true if this has no more bits than VT.
bool isInteger() const
Return true if this is an integer or a vector integer type.
This class contains a discriminated union of information about pointers in memory operands,...
static LLVM_ABI MachinePointerInfo getJumpTable(MachineFunction &MF)
Return a MachinePointerInfo record that refers to a jump table entry.
static LLVM_ABI MachinePointerInfo getConstantPool(MachineFunction &MF)
Return a MachinePointerInfo record that refers to the constant pool.
MachinePointerInfo getWithOffset(int64_t O) const
static LLVM_ABI MachinePointerInfo getUnknownStack(MachineFunction &MF)
Stack memory without other information.
static LLVM_ABI MachinePointerInfo getFixedStack(MachineFunction &MF, int FI, int64_t Offset=0)
Return a MachinePointerInfo record that refers to the specified FrameIndex.
CallingConv::ID getLibcallImplCallingConv(RTLIB::LibcallImpl Call) const
Get the CallingConv that should be used for the specified libcall.
std::pair< FunctionType *, AttributeList > getFunctionTy(LLVMContext &Ctx, const Triple &TT, const DataLayout &DL, RTLIB::LibcallImpl LibcallImpl) const
These are IR-level optimization flags that may be propagated to SDNodes.
void setNoFPExcept(bool b)
void setNoUnsignedWrap(bool b)
void setNoSignedWrap(bool b)
bool IsPostTypeLegalization
MakeLibCallOptions & setIsSigned(bool Value=true)