78#include "llvm/IR/IntrinsicsAArch64.h"
79#include "llvm/IR/IntrinsicsAMDGPU.h"
80#include "llvm/IR/IntrinsicsWebAssembly.h"
113#define DEBUG_TYPE "isel"
121 cl::desc(
"Insert the experimental `assertalign` node."),
126 cl::desc(
"Generate low-precision inline sequences "
127 "for some float libcalls"),
133 cl::desc(
"Set the case probability threshold for peeling the case from a "
134 "switch statement. A value greater than 100 will void this "
154 const SDValue *Parts,
unsigned NumParts,
157 std::optional<CallingConv::ID> CC);
166 unsigned NumParts,
MVT PartVT,
EVT ValueVT,
const Value *V,
168 std::optional<CallingConv::ID> CC = std::nullopt,
169 std::optional<ISD::NodeType> AssertOp = std::nullopt) {
173 PartVT, ValueVT, CC))
180 assert(NumParts > 0 &&
"No parts to assemble!");
191 unsigned RoundBits = PartBits * RoundParts;
192 EVT RoundVT = RoundBits == ValueBits ?
198 if (RoundParts > 2) {
202 PartVT, HalfVT, V, InChain);
204 Lo = DAG.
getNode(ISD::BITCAST,
DL, HalfVT, Parts[0]);
205 Hi = DAG.
getNode(ISD::BITCAST,
DL, HalfVT, Parts[1]);
213 if (RoundParts < NumParts) {
215 unsigned OddParts = NumParts - RoundParts;
218 OddVT, V, InChain, CC);
234 assert(ValueVT ==
EVT(MVT::ppcf128) && PartVT == MVT::f64 &&
245 !PartVT.
isVector() &&
"Unexpected split");
257 if (PartEVT == ValueVT)
261 ValueVT.
bitsLT(PartEVT)) {
270 return DAG.
getNode(ISD::BITCAST,
DL, ValueVT, Val);
274 if (ValueVT.
bitsLT(PartEVT)) {
279 Val = DAG.
getNode(*AssertOp,
DL, PartEVT, Val,
294 llvm::Attribute::StrictFP)) {
296 DAG.
getVTList(ValueVT, MVT::Other), InChain, Val,
303 return DAG.
getNode(ISD::FP_EXTEND,
DL, ValueVT, Val);
308 if (PartEVT == MVT::x86mmx && ValueVT.
isInteger() &&
309 ValueVT.
bitsLT(PartEVT)) {
310 Val = DAG.
getNode(ISD::BITCAST,
DL, MVT::i64, Val);
318 const Twine &ErrMsg) {
321 return Ctx.emitError(ErrMsg);
324 if (CI->isInlineAsm()) {
326 *CI, ErrMsg +
", possible invalid constraint for vector type"));
329 return Ctx.emitError(
I, ErrMsg);
338 const SDValue *Parts,
unsigned NumParts,
341 std::optional<CallingConv::ID> CallConv) {
343 assert(NumParts > 0 &&
"No parts to assemble!");
344 const bool IsABIRegCopy = CallConv.has_value();
353 unsigned NumIntermediates;
358 *DAG.
getContext(), *CallConv, ValueVT, IntermediateVT,
359 NumIntermediates, RegisterVT);
363 NumIntermediates, RegisterVT);
366 assert(NumRegs == NumParts &&
"Part count doesn't match vector breakdown!");
368 assert(RegisterVT == PartVT &&
"Part type doesn't match vector breakdown!");
371 "Part type sizes don't match!");
375 if (NumIntermediates == NumParts) {
378 for (
unsigned i = 0; i != NumParts; ++i)
380 V, InChain, CallConv);
381 }
else if (NumParts > 0) {
384 assert(NumParts % NumIntermediates == 0 &&
385 "Must expand into a divisible number of parts!");
386 unsigned Factor = NumParts / NumIntermediates;
387 for (
unsigned i = 0; i != NumIntermediates; ++i)
389 IntermediateVT, V, InChain, CallConv);
404 DL, BuiltVectorTy,
Ops);
410 if (PartEVT == ValueVT)
416 return DAG.
getNode(ISD::BITCAST,
DL, ValueVT, Val);
426 "Cannot narrow, it would be a lossy transformation");
432 if (PartEVT == ValueVT)
435 return DAG.
getNode(ISD::BITCAST,
DL, ValueVT, Val);
439 return DAG.
getNode(ISD::BITCAST,
DL, ValueVT, Val);
450 return DAG.
getNode(ISD::BITCAST,
DL, ValueVT, Val);
456 return DAG.
getNode(ISD::BITCAST,
DL, ValueVT, Val);
457 }
else if (ValueVT.
bitsLT(PartEVT)) {
466 *DAG.
getContext(), V,
"non-trivial scalar-to-vector conversion");
475 Val = DAG.
getNode(ISD::BITCAST,
DL, ValueSVT, Val);
497 std::optional<CallingConv::ID> CallConv);
504 unsigned NumParts,
MVT PartVT,
const Value *V,
505 std::optional<CallingConv::ID> CallConv = std::nullopt,
519 unsigned OrigNumParts = NumParts;
521 "Copying to an illegal type!");
527 EVT PartEVT = PartVT;
528 if (PartEVT == ValueVT) {
529 assert(NumParts == 1 &&
"No-op copy with multiple parts!");
538 assert(NumParts == 1 &&
"Do not know what to promote to!");
539 Val = DAG.
getNode(ISD::FP_EXTEND,
DL, PartVT, Val);
545 Val = DAG.
getNode(ISD::BITCAST,
DL, ValueVT, Val);
549 "Unknown mismatch!");
551 Val = DAG.
getNode(ExtendKind,
DL, ValueVT, Val);
552 if (PartVT == MVT::x86mmx)
553 Val = DAG.
getNode(ISD::BITCAST,
DL, PartVT, Val);
557 assert(NumParts == 1 && PartEVT != ValueVT);
558 Val = DAG.
getNode(ISD::BITCAST,
DL, PartVT, Val);
563 "Unknown mismatch!");
566 if (PartVT == MVT::x86mmx)
567 Val = DAG.
getNode(ISD::BITCAST,
DL, PartVT, Val);
573 "Failed to tile the value with PartVT!");
576 if (PartEVT != ValueVT) {
578 "scalar-to-vector conversion failed");
579 Val = DAG.
getNode(ISD::BITCAST,
DL, PartVT, Val);
587 if (NumParts & (NumParts - 1)) {
590 "Do not know what to expand to!");
592 unsigned RoundBits = RoundParts * PartBits;
593 unsigned OddParts = NumParts - RoundParts;
602 std::reverse(Parts + RoundParts, Parts + NumParts);
604 NumParts = RoundParts;
616 for (
unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
617 for (
unsigned i = 0; i < NumParts; i += StepSize) {
618 unsigned ThisBits = StepSize * PartBits / 2;
621 SDValue &Part1 = Parts[i+StepSize/2];
628 if (ThisBits == PartBits && ThisVT != PartVT) {
629 Part0 = DAG.
getNode(ISD::BITCAST,
DL, PartVT, Part0);
630 Part1 = DAG.
getNode(ISD::BITCAST,
DL, PartVT, Part1);
636 std::reverse(Parts, Parts + OrigNumParts);
658 if (ValueEVT == MVT::bf16 && PartEVT == MVT::f16) {
660 "Cannot widen to illegal type");
663 }
else if (PartEVT != ValueEVT) {
678 Ops.append((PartNumElts - ValueNumElts).getFixedValue(), EltUndef);
689 std::optional<CallingConv::ID> CallConv) {
693 const bool IsABIRegCopy = CallConv.has_value();
696 EVT PartEVT = PartVT;
697 if (PartEVT == ValueVT) {
701 Val = DAG.
getNode(ISD::BITCAST,
DL, PartVT, Val);
736 Val = DAG.
getNode(ISD::FP_EXTEND,
DL, PartVT, Val);
743 "lossy conversion of vector to scalar type");
758 unsigned NumIntermediates;
762 *DAG.
getContext(), *CallConv, ValueVT, IntermediateVT, NumIntermediates,
767 NumIntermediates, RegisterVT);
770 assert(NumRegs == NumParts &&
"Part count doesn't match vector breakdown!");
772 assert(RegisterVT == PartVT &&
"Part type doesn't match vector breakdown!");
775 "Mixing scalable and fixed vectors when copying in parts");
777 std::optional<ElementCount> DestEltCnt;
787 if (ValueVT == BuiltVectorTy) {
791 Val = DAG.
getNode(ISD::BITCAST,
DL, BuiltVectorTy, Val);
811 for (
unsigned i = 0; i != NumIntermediates; ++i) {
826 if (NumParts == NumIntermediates) {
829 for (
unsigned i = 0; i != NumParts; ++i)
831 }
else if (NumParts > 0) {
834 assert(NumIntermediates != 0 &&
"division by zero");
835 assert(NumParts % NumIntermediates == 0 &&
836 "Must expand into a divisible number of parts!");
837 unsigned Factor = NumParts / NumIntermediates;
838 for (
unsigned i = 0; i != NumIntermediates; ++i)
846 if (
I.hasOperandBundlesOtherThan(AllowedBundles)) {
850 for (
unsigned i = 0, e =
I.getNumOperandBundles(); i != e; ++i) {
853 OS << LS << U.getTagName();
856 Twine(
"cannot lower ", Name)
862 EVT valuevt, std::optional<CallingConv::ID> CC)
868 std::optional<CallingConv::ID> CC) {
882 for (
unsigned i = 0; i != NumRegs; ++i)
883 Regs.push_back(Reg + i);
884 RegVTs.push_back(RegisterVT);
886 Reg = Reg.id() + NumRegs;
913 for (
unsigned i = 0; i != NumRegs; ++i) {
919 *Glue =
P.getValue(2);
922 Chain =
P.getValue(1);
950 EVT FromVT(MVT::Other);
954 }
else if (NumSignBits > 1) {
962 assert(FromVT != MVT::Other);
968 RegisterVT, ValueVT, V, Chain,
CallConv);
984 unsigned NumRegs =
Regs.size();
998 NumParts, RegisterVT, V,
CallConv, ExtendKind);
1004 for (
unsigned i = 0; i != NumRegs; ++i) {
1016 if (NumRegs == 1 || Glue)
1027 Chain = Chains[NumRegs-1];
1033 unsigned MatchingIdx,
const SDLoc &dl,
1035 std::vector<SDValue> &
Ops)
const {
1040 Flag.setMatchingOp(MatchingIdx);
1041 else if (!
Regs.empty() &&
Regs.front().isVirtual()) {
1049 Flag.setRegClass(RC->
getID());
1060 "No 1:1 mapping from clobbers to regs?");
1063 for (
unsigned I = 0, E =
ValueVTs.size();
I != E; ++
I) {
1068 "If we clobbered the stack pointer, MFI should know about it.");
1077 for (
unsigned i = 0; i != NumRegs; ++i) {
1078 assert(Reg <
Regs.size() &&
"Mismatch in # registers expected");
1090 unsigned RegCount = std::get<0>(CountAndVT);
1091 MVT RegisterVT = std::get<1>(CountAndVT);
1108 SL->init(
DAG.getTargetLoweringInfo(), TM,
DAG.getDataLayout());
1110 *
DAG.getMachineFunction().getFunction().getParent());
1115 UnusedArgNodeMap.clear();
1117 PendingExports.clear();
1118 PendingConstrainedFP.clear();
1119 PendingConstrainedFPStrict.clear();
1127 DanglingDebugInfoMap.clear();
1134 if (Pending.
empty())
1140 unsigned i = 0, e = Pending.
size();
1141 for (; i != e; ++i) {
1143 if (Pending[i].
getNode()->getOperand(0) == Root)
1151 if (Pending.
size() == 1)
1178 if (!PendingConstrainedFPStrict.empty()) {
1179 assert(PendingConstrainedFP.empty());
1180 updateRoot(PendingConstrainedFPStrict);
1193 if (!PendingConstrainedFP.empty()) {
1194 assert(PendingConstrainedFPStrict.empty());
1195 updateRoot(PendingConstrainedFP);
1199 return DAG.getRoot();
1207 PendingConstrainedFP.size() +
1208 PendingConstrainedFPStrict.size());
1210 PendingConstrainedFP.end());
1211 PendingLoads.append(PendingConstrainedFPStrict.begin(),
1212 PendingConstrainedFPStrict.end());
1213 PendingConstrainedFP.clear();
1214 PendingConstrainedFPStrict.clear();
1221 PendingExports.append(PendingConstrainedFPStrict.begin(),
1222 PendingConstrainedFPStrict.end());
1223 PendingConstrainedFPStrict.clear();
1224 return updateRoot(PendingExports);
1231 assert(Variable &&
"Missing variable");
1238 <<
"dbg_declare: Dropping debug info (bad/undef/unused-arg address)\n");
1254 if (IsParameter && FINode) {
1256 SDV =
DAG.getFrameIndexDbgValue(Variable,
Expression, FINode->getIndex(),
1257 true,
DL, SDNodeOrder);
1262 FuncArgumentDbgValueKind::Declare,
N);
1265 SDV =
DAG.getDbgValue(Variable,
Expression,
N.getNode(),
N.getResNo(),
1266 true,
DL, SDNodeOrder);
1268 DAG.AddDbgValue(SDV, IsParameter);
1273 FuncArgumentDbgValueKind::Declare,
N)) {
1275 <<
" (could not emit func-arg dbg_value)\n");
1286 for (
auto It = FnVarLocs->locs_begin(&
I), End = FnVarLocs->locs_end(&
I);
1288 auto *Var = FnVarLocs->getDILocalVariable(It->VariableID);
1290 if (It->Values.isKillLocation(It->Expr)) {
1296 It->Values.hasArgList())) {
1299 FnVarLocs->getDILocalVariable(It->VariableID),
1300 It->Expr, Vals.
size() > 1, It->DL, SDNodeOrder);
1313 bool SkipDbgVariableRecords =
DAG.getFunctionVarLocs();
1316 for (
DbgRecord &DR :
I.getDbgRecordRange()) {
1318 assert(DLR->getLabel() &&
"Missing label");
1320 DAG.getDbgLabel(DLR->getLabel(), DLR->getDebugLoc(), SDNodeOrder);
1321 DAG.AddDbgLabel(SDV);
1325 if (SkipDbgVariableRecords)
1333 if (
FuncInfo.PreprocessedDVRDeclares.contains(&DVR))
1335 LLVM_DEBUG(
dbgs() <<
"SelectionDAG visiting dbg_declare: " << DVR
1344 if (Values.
empty()) {
1361 SDNodeOrder, IsVariadic)) {
1372 if (
I.isTerminator()) {
1373 HandlePHINodesInSuccessorBlocks(
I.getParent());
1380 bool NodeInserted =
false;
1381 std::unique_ptr<SelectionDAG::DAGNodeInsertedListener> InsertedListener;
1382 MDNode *PCSectionsMD =
I.getMetadata(LLVMContext::MD_pcsections);
1383 MDNode *MMRA =
I.getMetadata(LLVMContext::MD_mmra);
1384 if (PCSectionsMD || MMRA) {
1385 InsertedListener = std::make_unique<SelectionDAG::DAGNodeInsertedListener>(
1386 DAG, [&](
SDNode *) { NodeInserted =
true; });
1396 if (PCSectionsMD || MMRA) {
1397 auto It = NodeMap.find(&
I);
1398 if (It != NodeMap.end()) {
1400 DAG.addPCSections(It->second.getNode(), PCSectionsMD);
1402 DAG.addMMRAMetadata(It->second.getNode(), MMRA);
1403 }
else if (NodeInserted) {
1406 errs() <<
"warning: loosing !pcsections and/or !mmra metadata ["
1407 <<
I.getModule()->getName() <<
"]\n";
1416void SelectionDAGBuilder::visitPHI(
const PHINode &) {
1426#define HANDLE_INST(NUM, OPCODE, CLASS) \
1427 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break;
1428#include "llvm/IR/Instruction.def"
1440 for (
const Value *V : Values) {
1465 DanglingDebugInfoMap[Values[0]].emplace_back(Var, Expr,
DL, Order);
1470 auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) {
1471 DIVariable *DanglingVariable = DDI.getVariable();
1473 if (DanglingVariable == Variable && Expr->
fragmentsOverlap(DanglingExpr)) {
1475 << printDDI(
nullptr, DDI) <<
"\n");
1481 for (
auto &DDIMI : DanglingDebugInfoMap) {
1482 DanglingDebugInfoVector &DDIV = DDIMI.second;
1486 for (
auto &DDI : DDIV)
1487 if (isMatchingDbgValue(DDI))
1490 erase_if(DDIV, isMatchingDbgValue);
1498 auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V);
1499 if (DanglingDbgInfoIt == DanglingDebugInfoMap.end())
1502 DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second;
1503 for (
auto &DDI : DDIV) {
1506 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
1509 assert(Variable->isValidLocationForIntrinsic(
DL) &&
1510 "Expected inlined-at fields to agree");
1519 if (!EmitFuncArgumentDbgValue(V, Variable, Expr,
DL,
1520 FuncArgumentDbgValueKind::Value, Val)) {
1522 << printDDI(V, DDI) <<
"\n");
1529 <<
"changing SDNodeOrder from " << DbgSDNodeOrder <<
" to "
1530 << ValSDNodeOrder <<
"\n");
1531 SDV = getDbgValue(Val, Variable, Expr,
DL,
1532 std::max(DbgSDNodeOrder, ValSDNodeOrder));
1533 DAG.AddDbgValue(SDV,
false);
1537 <<
" in EmitFuncArgumentDbgValue\n");
1539 LLVM_DEBUG(
dbgs() <<
"Dropping debug info for " << printDDI(V, DDI)
1543 DAG.getConstantDbgValue(Variable, Expr,
Poison,
DL, DbgSDNodeOrder);
1544 DAG.AddDbgValue(SDV,
false);
1551 DanglingDebugInfo &DDI) {
1556 const Value *OrigV = V;
1560 unsigned SDOrder = DDI.getSDNodeOrder();
1564 bool StackValue =
true;
1589 if (!AdditionalValues.
empty())
1599 dbgs() <<
"Salvaged debug location info for:\n " << *Var <<
"\n"
1600 << *OrigV <<
"\nBy stripping back to:\n " << *V <<
"\n");
1608 assert(OrigV &&
"V shouldn't be null");
1610 auto *SDV =
DAG.getConstantDbgValue(Var, Expr,
Poison,
DL, SDNodeOrder);
1611 DAG.AddDbgValue(SDV,
false);
1613 << printDDI(OrigV, DDI) <<
"\n");
1630 unsigned Order,
bool IsVariadic) {
1635 if (visitEntryValueDbgValue(Values, Var, Expr, DbgLoc))
1640 for (
const Value *V : Values) {
1650 if (CE->getOpcode() == Instruction::IntToPtr) {
1669 N = UnusedArgNodeMap[V];
1674 EmitFuncArgumentDbgValue(V, Var, Expr, DbgLoc,
1675 FuncArgumentDbgValueKind::Value,
N))
1702 bool IsParamOfFunc =
1710 auto VMI =
FuncInfo.ValueMap.find(V);
1711 if (VMI !=
FuncInfo.ValueMap.end()) {
1716 V->getType(), std::nullopt);
1722 unsigned BitsToDescribe = 0;
1724 BitsToDescribe = *VarSize;
1726 BitsToDescribe = Fragment->SizeInBits;
1729 if (
Offset >= BitsToDescribe)
1732 unsigned RegisterSize = RegAndSize.second;
1733 unsigned FragmentSize = (
Offset + RegisterSize > BitsToDescribe)
1734 ? BitsToDescribe -
Offset
1737 Expr,
Offset, FragmentSize);
1741 Var, *FragmentExpr, RegAndSize.first,
false, DbgLoc, Order);
1742 DAG.AddDbgValue(SDV,
false);
1758 DAG.getDbgValueList(Var, Expr, LocationOps, Dependencies,
1759 false, DbgLoc, Order, IsVariadic);
1760 DAG.AddDbgValue(SDV,
false);
1766 for (
auto &Pair : DanglingDebugInfoMap)
1767 for (
auto &DDI : Pair.second)
1778 if (It !=
FuncInfo.ValueMap.end()) {
1782 DAG.getDataLayout(), InReg, Ty,
1799 if (
N.getNode())
return N;
1859 return DAG.getSplatBuildVector(
1862 return DAG.getConstant(*CI,
DL, VT);
1871 getValue(CPA->getAddrDiscriminator()),
1872 getValue(CPA->getDiscriminator()));
1888 visit(CE->getOpcode(), *CE);
1890 assert(N1.
getNode() &&
"visit didn't populate the NodeMap!");
1896 for (
const Use &U :
C->operands()) {
1902 for (
unsigned i = 0, e = Val->
getNumValues(); i != e; ++i)
1903 Constants.push_back(
SDValue(Val, i));
1912 for (
uint64_t i = 0, e = CDS->getNumElements(); i != e; ++i) {
1916 for (
unsigned i = 0, e = Val->
getNumValues(); i != e; ++i)
1925 if (
C->getType()->isStructTy() ||
C->getType()->isArrayTy()) {
1927 "Unknown struct or array constant!");
1931 unsigned NumElts = ValueVTs.
size();
1935 for (
unsigned i = 0; i != NumElts; ++i) {
1936 EVT EltVT = ValueVTs[i];
1938 Constants[i] =
DAG.getUNDEF(EltVT);
1949 return DAG.getBlockAddress(BA, VT);
1952 return getValue(Equiv->getGlobalValue());
1957 if (VT == MVT::aarch64svcount) {
1958 assert(
C->isNullValue() &&
"Can only zero this target type!");
1964 assert(
C->isNullValue() &&
"Can only zero this target type!");
1981 for (
unsigned i = 0; i != NumElements; ++i)
2009 return DAG.getFrameIndex(
2017 std::optional<CallingConv::ID> CallConv;
2019 if (CB && !CB->isInlineAsm())
2020 CallConv = CB->getCallingConv();
2023 Inst->getType(), CallConv);
2037void SelectionDAGBuilder::visitCatchPad(
const CatchPadInst &
I) {
2050 if (IsMSVCCXX || IsCoreCLR)
2056 MachineBasicBlock *TargetMBB =
FuncInfo.getMBB(
I.getSuccessor());
2057 FuncInfo.MBB->addSuccessor(TargetMBB);
2064 if (TargetMBB != NextBlock(
FuncInfo.MBB) ||
2073 DAG.getMachineFunction().setHasEHContTarget(
true);
2079 Value *ParentPad =
I.getCatchSwitchParentPad();
2082 SuccessorColor = &
FuncInfo.Fn->getEntryBlock();
2085 assert(SuccessorColor &&
"No parent funclet for catchret!");
2086 MachineBasicBlock *SuccessorColorMBB =
FuncInfo.getMBB(SuccessorColor);
2087 assert(SuccessorColorMBB &&
"No MBB for SuccessorColor!");
2092 DAG.getBasicBlock(SuccessorColorMBB));
2096void SelectionDAGBuilder::visitCleanupPad(
const CleanupPadInst &CPI) {
2102 FuncInfo.MBB->setIsEHFuncletEntry();
2103 FuncInfo.MBB->setIsCleanupFuncletEntry();
2132 UnwindDests.emplace_back(FuncInfo.
getMBB(EHPadBB), Prob);
2138 UnwindDests.emplace_back(FuncInfo.
getMBB(EHPadBB), Prob);
2139 UnwindDests.back().first->setIsEHScopeEntry();
2142 UnwindDests.back().first->setIsEHFuncletEntry();
2146 for (
const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
2147 UnwindDests.emplace_back(FuncInfo.
getMBB(CatchPadBB), Prob);
2149 if (IsMSVCCXX || IsCoreCLR)
2150 UnwindDests.back().first->setIsEHFuncletEntry();
2152 UnwindDests.back().first->setIsEHScopeEntry();
2154 NewEHPadBB = CatchSwitch->getUnwindDest();
2160 if (BPI && NewEHPadBB)
2162 EHPadBB = NewEHPadBB;
2169 auto UnwindDest =
I.getUnwindDest();
2170 BranchProbabilityInfo *BPI =
FuncInfo.BPI;
2171 BranchProbability UnwindDestProb =
2176 for (
auto &UnwindDest : UnwindDests) {
2177 UnwindDest.first->setIsEHPad();
2178 addSuccessorWithProb(
FuncInfo.MBB, UnwindDest.first, UnwindDest.second);
2180 FuncInfo.MBB->normalizeSuccProbs();
2183 MachineBasicBlock *CleanupPadMBB =
2184 FuncInfo.getMBB(
I.getCleanupPad()->getParent());
2190void SelectionDAGBuilder::visitCatchSwitch(
const CatchSwitchInst &CSI) {
2194void SelectionDAGBuilder::visitRet(
const ReturnInst &
I) {
2195 const TargetLowering &TLI =
DAG.getTargetLoweringInfo();
2196 auto &
DL =
DAG.getDataLayout();
2208 if (
I.getParent()->getTerminatingDeoptimizeCall()) {
2225 SmallVector<uint64_t, 4>
Offsets;
2228 unsigned NumValues = ValueVTs.
size();
2231 Align BaseAlign =
DL.getPrefTypeAlign(
I.getOperand(0)->getType());
2232 for (
unsigned i = 0; i != NumValues; ++i) {
2239 if (MemVTs[i] != ValueVTs[i])
2241 Chains[i] =
DAG.getStore(
2249 MVT::Other, Chains);
2250 }
else if (
I.getNumOperands() != 0) {
2253 unsigned NumValues =
Types.size();
2257 const Function *
F =
I.getParent()->getParent();
2260 I.getOperand(0)->getType(),
F->getCallingConv(),
2264 if (
F->getAttributes().hasRetAttr(Attribute::SExt))
2266 else if (
F->getAttributes().hasRetAttr(Attribute::ZExt))
2269 LLVMContext &
Context =
F->getContext();
2270 bool RetInReg =
F->getAttributes().hasRetAttr(Attribute::InReg);
2272 for (
unsigned j = 0;
j != NumValues; ++
j) {
2285 &Parts[0], NumParts, PartVT, &
I, CC, ExtendKind);
2288 ISD::ArgFlagsTy
Flags = ISD::ArgFlagsTy();
2292 if (
I.getOperand(0)->getType()->isPointerTy()) {
2294 Flags.setPointerAddrSpace(
2298 if (NeedsRegBlock) {
2299 Flags.setInConsecutiveRegs();
2300 if (j == NumValues - 1)
2301 Flags.setInConsecutiveRegsLast();
2309 else if (
F->getAttributes().hasRetAttr(Attribute::NoExt))
2312 for (
unsigned i = 0; i < NumParts; ++i) {
2315 VT, Types[j], 0, 0));
2325 const Function *
F =
I.getParent()->getParent();
2327 F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) {
2329 ISD::ArgFlagsTy
Flags = ISD::ArgFlagsTy();
2330 Flags.setSwiftError();
2342 bool isVarArg =
DAG.getMachineFunction().getFunction().isVarArg();
2344 DAG.getMachineFunction().getFunction().getCallingConv();
2345 Chain =
DAG.getTargetLoweringInfo().LowerReturn(
2350 "LowerReturn didn't return a valid chain!");
2361 if (V->getType()->isEmptyTy())
2365 if (VMI !=
FuncInfo.ValueMap.end()) {
2367 "Unused value assigned virtual registers!");
2380 if (
FuncInfo.isExportedInst(V))
return;
2392 if (VI->getParent() == FromBB)
2418 const BasicBlock *SrcBB = Src->getBasicBlock();
2419 const BasicBlock *DstBB = Dst->getBasicBlock();
2423 auto SuccSize = std::max<uint32_t>(
succ_size(SrcBB), 1);
2433 Src->addSuccessorWithoutProb(Dst);
2436 Prob = getEdgeProbability(Src, Dst);
2437 Src->addSuccessor(Dst, Prob);
2443 return I->getParent() == BB;
2467 if (CurBB == SwitchBB ||
2473 InvertCond ? IC->getInversePredicate() : IC->getPredicate();
2478 InvertCond ? FC->getInversePredicate() : FC->getPredicate();
2480 if (TM.Options.NoNaNsFPMath)
2484 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1),
nullptr,
2486 SL->SwitchCases.push_back(CB);
2495 SL->SwitchCases.push_back(CB);
2503 unsigned Depth = 0) {
2512 if (Necessary !=
nullptr) {
2515 if (Necessary->contains(
I))
2534 if (
I.getNumSuccessors() != 2)
2537 if (!
I.isConditional())
2549 if (BPI !=
nullptr) {
2555 std::optional<bool> Likely;
2558 else if (BPI->
isEdgeHot(
I.getParent(), IfFalse))
2562 if (
Opc == (*Likely ? Instruction::And : Instruction::Or))
2574 if (CostThresh <= 0)
2592 const auto &TLI =
DAG.getTargetLoweringInfo();
2599 Value *BrCond =
I.getCondition();
2600 auto ShouldCountInsn = [&RhsDeps, &BrCond](
const Instruction *Ins) {
2601 for (
const auto *U : Ins->users()) {
2604 if (UIns != BrCond && !RhsDeps.
contains(UIns))
2617 for (
unsigned PruneIters = 0; PruneIters < MaxPruneIters; ++PruneIters) {
2619 for (
const auto &InsPair : RhsDeps) {
2620 if (!ShouldCountInsn(InsPair.first)) {
2621 ToDrop = InsPair.first;
2625 if (ToDrop ==
nullptr)
2627 RhsDeps.erase(ToDrop);
2630 for (
const auto &InsPair : RhsDeps) {
2638 if (CostOfIncluding > CostThresh)
2664 const Value *BOpOp0, *BOpOp1;
2678 if (BOpc == Instruction::And)
2679 BOpc = Instruction::Or;
2680 else if (BOpc == Instruction::Or)
2681 BOpc = Instruction::And;
2687 bool BOpIsInOrAndTree = BOpc && BOpc ==
Opc && BOp->
hasOneUse();
2692 TProb, FProb, InvertCond);
2702 if (
Opc == Instruction::Or) {
2723 auto NewTrueProb = TProb / 2;
2724 auto NewFalseProb = TProb / 2 + FProb;
2727 NewFalseProb, InvertCond);
2734 Probs[1], InvertCond);
2736 assert(
Opc == Instruction::And &&
"Unknown merge op!");
2756 auto NewTrueProb = TProb + FProb / 2;
2757 auto NewFalseProb = FProb / 2;
2760 NewFalseProb, InvertCond);
2767 Probs[1], InvertCond);
2776 if (Cases.size() != 2)
return true;
2780 if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
2781 Cases[0].CmpRHS == Cases[1].CmpRHS) ||
2782 (Cases[0].CmpRHS == Cases[1].CmpLHS &&
2783 Cases[0].CmpLHS == Cases[1].CmpRHS)) {
2789 if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
2790 Cases[0].CC == Cases[1].CC &&
2793 if (Cases[0].CC ==
ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
2795 if (Cases[0].CC ==
ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
2802void SelectionDAGBuilder::visitBr(
const BranchInst &
I) {
2808 if (
I.isUnconditional()) {
2814 if (Succ0MBB != NextBlock(BrMBB) ||
2827 const Value *CondVal =
I.getCondition();
2828 MachineBasicBlock *Succ1MBB =
FuncInfo.getMBB(
I.getSuccessor(1));
2847 bool IsUnpredictable =
I.hasMetadata(LLVMContext::MD_unpredictable);
2849 if (!
DAG.getTargetLoweringInfo().isJumpExpensive() && BOp &&
2852 const Value *BOp0, *BOp1;
2855 Opcode = Instruction::And;
2857 Opcode = Instruction::Or;
2864 DAG.getTargetLoweringInfo().getJumpConditionMergingParams(
2865 Opcode, BOp0, BOp1))) {
2867 getEdgeProbability(BrMBB, Succ0MBB),
2868 getEdgeProbability(BrMBB, Succ1MBB),
2873 assert(
SL->SwitchCases[0].ThisBB == BrMBB &&
"Unexpected lowering!");
2877 for (
unsigned i = 1, e =
SL->SwitchCases.size(); i != e; ++i) {
2884 SL->SwitchCases.erase(
SL->SwitchCases.begin());
2890 for (
unsigned i = 1, e =
SL->SwitchCases.size(); i != e; ++i)
2891 FuncInfo.MF->erase(
SL->SwitchCases[i].ThisBB);
2893 SL->SwitchCases.clear();
2899 nullptr, Succ0MBB, Succ1MBB, BrMBB,
getCurSDLoc(),
2920 if (CB.
TrueBB != NextBlock(SwitchBB)) {
2927 auto &TLI =
DAG.getTargetLoweringInfo();
2951 Cond =
DAG.getSetCC(dl, MVT::i1, CondLHS, CondRHS, CB.
CC);
2963 Cond =
DAG.getSetCC(dl, MVT::i1, CmpOp,
DAG.getConstant(
High, dl, VT),
2967 VT, CmpOp,
DAG.getConstant(
Low, dl, VT));
2968 Cond =
DAG.getSetCC(dl, MVT::i1, SUB,
2983 if (CB.
TrueBB == NextBlock(SwitchBB)) {
2999 BrCond =
DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
3002 DAG.setRoot(BrCond);
3008 assert(JT.SL &&
"Should set SDLoc for SelectionDAG!");
3009 assert(JT.Reg &&
"Should lower JT Header first!");
3010 EVT PTy =
DAG.getTargetLoweringInfo().getJumpTableRegTy(
DAG.getDataLayout());
3012 SDValue Table =
DAG.getJumpTable(JT.JTI, PTy);
3013 SDValue BrJumpTable =
DAG.getNode(ISD::BR_JT, *JT.SL, MVT::Other,
3014 Index.getValue(1), Table, Index);
3015 DAG.setRoot(BrJumpTable);
3023 assert(JT.SL &&
"Should set SDLoc for SelectionDAG!");
3024 const SDLoc &dl = *JT.SL;
3030 DAG.getConstant(JTH.
First, dl, VT));
3045 JT.Reg = JumpTableReg;
3053 Sub.getValueType()),
3056 SDValue BrCond =
DAG.getNode(ISD::BRCOND, dl,
3057 MVT::Other, CopyTo, CMP,
3058 DAG.getBasicBlock(JT.Default));
3061 if (JT.MBB != NextBlock(SwitchBB))
3062 BrCond =
DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
3063 DAG.getBasicBlock(JT.MBB));
3065 DAG.setRoot(BrCond);
3068 if (JT.MBB != NextBlock(SwitchBB))
3069 DAG.setRoot(
DAG.getNode(ISD::BR, dl, MVT::Other, CopyTo,
3070 DAG.getBasicBlock(JT.MBB)));
3072 DAG.setRoot(CopyTo);
3095 if (PtrTy != PtrMemTy)
3111 auto &
DL =
DAG.getDataLayout();
3120 SDValue StackSlotPtr =
DAG.getFrameIndex(FI, PtrTy);
3127 PtrMemTy, dl,
DAG.getEntryNode(), StackSlotPtr,
3140 assert(GuardCheckFn &&
"Guard check function is null");
3151 Entry.IsInReg =
true;
3152 Args.push_back(Entry);
3158 getValue(GuardCheckFn), std::move(Args));
3160 std::pair<SDValue, SDValue> Result = TLI.
LowerCallTo(CLI);
3161 DAG.setRoot(Result.second);
3173 Guard =
DAG.getLoad(PtrMemTy, dl, Chain, GuardPtr,
3179 Guard =
DAG.getPOISON(PtrMemTy);
3189 SDValue BrCond =
DAG.getNode(ISD::BRCOND, dl,
3222 auto &
DL =
DAG.getDataLayout();
3230 SDValue StackSlotPtr =
DAG.getFrameIndex(FI, PtrTy);
3236 PtrMemTy, dl,
DAG.getEntryNode(), StackSlotPtr,
3251 if (GuardCheckFn->hasParamAttribute(0, Attribute::AttrKind::InReg))
3252 Entry.IsInReg =
true;
3253 Args.push_back(Entry);
3259 getValue(GuardCheckFn), std::move(Args));
3265 Chain = TLI.
makeLibCall(
DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid,
3273 Chain =
DAG.getNode(ISD::TRAP,
getCurSDLoc(), MVT::Other, Chain);
3288 DAG.getNode(
ISD::SUB, dl, VT, SwitchOp,
DAG.getConstant(
B.First, dl, VT));
3292 bool UsePtrType =
false;
3316 if (!
B.FallthroughUnreachable)
3317 addSuccessorWithProb(SwitchBB,
B.Default,
B.DefaultProb);
3318 addSuccessorWithProb(SwitchBB,
MBB,
B.Prob);
3322 if (!
B.FallthroughUnreachable) {
3330 Root =
DAG.getNode(ISD::BRCOND, dl, MVT::Other, Root, RangeCmp,
3331 DAG.getBasicBlock(
B.Default));
3335 if (
MBB != NextBlock(SwitchBB))
3336 Root =
DAG.getNode(ISD::BR, dl, MVT::Other, Root,
DAG.getBasicBlock(
MBB));
3353 if (PopCount == 1) {
3360 }
else if (PopCount == BB.
Range) {
3368 DAG.getConstant(1, dl, VT), ShiftOp);
3372 VT, SwitchVal,
DAG.getConstant(
B.Mask, dl, VT));
3379 addSuccessorWithProb(SwitchBB,
B.TargetBB,
B.ExtraProb);
3381 addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext);
3389 Cmp,
DAG.getBasicBlock(
B.TargetBB));
3392 if (NextMBB != NextBlock(SwitchBB))
3393 BrAnd =
DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd,
3394 DAG.getBasicBlock(NextMBB));
3399void SelectionDAGBuilder::visitInvoke(
const InvokeInst &
I) {
3417 const Value *Callee(
I.getCalledOperand());
3420 visitInlineAsm(
I, EHPadBB);
3425 case Intrinsic::donothing:
3427 case Intrinsic::seh_try_begin:
3428 case Intrinsic::seh_scope_begin:
3429 case Intrinsic::seh_try_end:
3430 case Intrinsic::seh_scope_end:
3436 case Intrinsic::experimental_patchpoint_void:
3437 case Intrinsic::experimental_patchpoint:
3438 visitPatchpoint(
I, EHPadBB);
3440 case Intrinsic::experimental_gc_statepoint:
3446 case Intrinsic::wasm_throw: {
3448 std::array<SDValue, 4>
Ops = {
3459 case Intrinsic::wasm_rethrow: {
3460 const TargetLowering &TLI =
DAG.getTargetLoweringInfo();
3461 std::array<SDValue, 2>
Ops = {
3470 }
else if (
I.hasDeoptState()) {
3491 BranchProbabilityInfo *BPI =
FuncInfo.BPI;
3492 BranchProbability EHPadBBProb =
3498 addSuccessorWithProb(InvokeMBB, Return);
3499 for (
auto &UnwindDest : UnwindDests) {
3500 UnwindDest.first->setIsEHPad();
3501 addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second);
3507 DAG.getBasicBlock(Return)));
3510void SelectionDAGBuilder::visitCallBr(
const CallBrInst &
I) {
3511 MachineBasicBlock *CallBrMBB =
FuncInfo.MBB;
3518 assert(
I.isInlineAsm() &&
"Only know how to handle inlineasm callbr");
3523 SmallPtrSet<BasicBlock *, 8> Dests;
3524 Dests.
insert(
I.getDefaultDest());
3529 for (
unsigned i = 0, e =
I.getNumIndirectDests(); i < e; ++i) {
3532 Target->setIsInlineAsmBrIndirectTarget();
3538 Target->setLabelMustBeEmitted();
3540 if (Dests.
insert(Dest).second)
3548 DAG.getBasicBlock(Return)));
3551void SelectionDAGBuilder::visitResume(
const ResumeInst &RI) {
3552 llvm_unreachable(
"SelectionDAGBuilder shouldn't visit resume instructions!");
3555void SelectionDAGBuilder::visitLandingPad(
const LandingPadInst &LP) {
3557 "Call to landingpad not in landing pad!");
3561 const TargetLowering &TLI =
DAG.getTargetLoweringInfo();
3577 assert(ValueVTs.
size() == 2 &&
"Only two-valued landingpads are supported");
3582 if (
FuncInfo.ExceptionPointerVirtReg) {
3583 Ops[0] =
DAG.getZExtOrTrunc(
3584 DAG.getCopyFromReg(
DAG.getEntryNode(), dl,
3591 Ops[1] =
DAG.getZExtOrTrunc(
3592 DAG.getCopyFromReg(
DAG.getEntryNode(), dl,
3599 DAG.getVTList(ValueVTs),
Ops);
3607 if (JTB.first.HeaderBB ==
First)
3608 JTB.first.HeaderBB =
Last;
3621 for (
unsigned i = 0, e =
I.getNumSuccessors(); i != e; ++i) {
3623 bool Inserted =
Done.insert(BB).second;
3628 addSuccessorWithProb(IndirectBrMBB, Succ);
3638 if (!
I.shouldLowerToTrap(
DAG.getTarget().Options.TrapUnreachable,
3639 DAG.getTarget().Options.NoTrapAfterNoreturn))
3645void SelectionDAGBuilder::visitUnary(
const User &
I,
unsigned Opcode) {
3648 Flags.copyFMF(*FPOp);
3656void SelectionDAGBuilder::visitBinary(
const User &
I,
unsigned Opcode) {
3659 Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap());
3660 Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap());
3663 Flags.setExact(ExactOp->isExact());
3665 Flags.setDisjoint(DisjointOp->isDisjoint());
3667 Flags.copyFMF(*FPOp);
3676void SelectionDAGBuilder::visitShift(
const User &
I,
unsigned Opcode) {
3680 EVT ShiftTy =
DAG.getTargetLoweringInfo().getShiftAmountTy(
3685 if (!
I.getType()->isVectorTy() && Op2.
getValueType() != ShiftTy) {
3687 "Unexpected shift type");
3697 if (
const OverflowingBinaryOperator *OFBinOp =
3699 nuw = OFBinOp->hasNoUnsignedWrap();
3700 nsw = OFBinOp->hasNoSignedWrap();
3702 if (
const PossiblyExactOperator *ExactOp =
3704 exact = ExactOp->isExact();
3707 Flags.setExact(exact);
3708 Flags.setNoSignedWrap(nsw);
3709 Flags.setNoUnsignedWrap(nuw);
3715void SelectionDAGBuilder::visitSDiv(
const User &
I) {
3726void SelectionDAGBuilder::visitICmp(
const ICmpInst &
I) {
3732 auto &TLI =
DAG.getTargetLoweringInfo();
3745 Flags.setSameSign(
I.hasSameSign());
3746 SelectionDAG::FlagInserter FlagsInserter(
DAG, Flags);
3748 EVT DestVT =
DAG.getTargetLoweringInfo().getValueType(
DAG.getDataLayout(),
3753void SelectionDAGBuilder::visitFCmp(
const FCmpInst &
I) {
3760 if (FPMO->hasNoNaNs() || TM.Options.NoNaNsFPMath)
3764 Flags.copyFMF(*FPMO);
3765 SelectionDAG::FlagInserter FlagsInserter(
DAG, Flags);
3767 EVT DestVT =
DAG.getTargetLoweringInfo().getValueType(
DAG.getDataLayout(),
3776 return isa<SelectInst>(V);
3780void SelectionDAGBuilder::visitSelect(
const User &
I) {
3784 unsigned NumValues = ValueVTs.
size();
3785 if (NumValues == 0)
return;
3795 bool IsUnaryAbs =
false;
3796 bool Negate =
false;
3800 Flags.copyFMF(*FPOp);
3802 Flags.setUnpredictable(
3807 EVT VT = ValueVTs[0];
3808 LLVMContext &Ctx = *
DAG.getContext();
3809 auto &TLI =
DAG.getTargetLoweringInfo();
3819 bool UseScalarMinMax = VT.
isVector() &&
3828 switch (SPR.Flavor) {
3834 switch (SPR.NaNBehavior) {
3847 switch (SPR.NaNBehavior) {
3891 for (
unsigned i = 0; i != NumValues; ++i) {
3897 Values[i] =
DAG.getNegative(Values[i], dl, VT);
3900 for (
unsigned i = 0; i != NumValues; ++i) {
3904 Values[i] =
DAG.getNode(
3911 DAG.getVTList(ValueVTs), Values));
3914void SelectionDAGBuilder::visitTrunc(
const User &
I) {
3917 EVT DestVT =
DAG.getTargetLoweringInfo().getValueType(
DAG.getDataLayout(),
3921 Flags.setNoSignedWrap(Trunc->hasNoSignedWrap());
3922 Flags.setNoUnsignedWrap(Trunc->hasNoUnsignedWrap());
3928void SelectionDAGBuilder::visitZExt(
const User &
I) {
3932 auto &TLI =
DAG.getTargetLoweringInfo();
3937 Flags.setNonNeg(PNI->hasNonNeg());
3942 if (
Flags.hasNonNeg() &&
3951void SelectionDAGBuilder::visitSExt(
const User &
I) {
3955 EVT DestVT =
DAG.getTargetLoweringInfo().getValueType(
DAG.getDataLayout(),
3960void SelectionDAGBuilder::visitFPTrunc(
const User &
I) {
3966 Flags.copyFMF(*TruncInst);
3967 const TargetLowering &TLI =
DAG.getTargetLoweringInfo();
3970 DAG.getTargetConstant(
3975void SelectionDAGBuilder::visitFPExt(
const User &
I) {
3978 EVT DestVT =
DAG.getTargetLoweringInfo().getValueType(
DAG.getDataLayout(),
3983void SelectionDAGBuilder::visitFPToUI(
const User &
I) {
3986 EVT DestVT =
DAG.getTargetLoweringInfo().getValueType(
DAG.getDataLayout(),
3991void SelectionDAGBuilder::visitFPToSI(
const User &
I) {
3994 EVT DestVT =
DAG.getTargetLoweringInfo().getValueType(
DAG.getDataLayout(),
3999void SelectionDAGBuilder::visitUIToFP(
const User &
I) {
4002 EVT DestVT =
DAG.getTargetLoweringInfo().getValueType(
DAG.getDataLayout(),
4006 Flags.setNonNeg(PNI->hasNonNeg());
4011void SelectionDAGBuilder::visitSIToFP(
const User &
I) {
4014 EVT DestVT =
DAG.getTargetLoweringInfo().getValueType(
DAG.getDataLayout(),
4019void SelectionDAGBuilder::visitPtrToAddr(
const User &
I) {
4022 const auto &TLI =
DAG.getTargetLoweringInfo();
4030void SelectionDAGBuilder::visitPtrToInt(
const User &
I) {
4034 auto &TLI =
DAG.getTargetLoweringInfo();
4035 EVT DestVT =
DAG.getTargetLoweringInfo().getValueType(
DAG.getDataLayout(),
4044void SelectionDAGBuilder::visitIntToPtr(
const User &
I) {
4048 auto &TLI =
DAG.getTargetLoweringInfo();
4056void SelectionDAGBuilder::visitBitCast(
const User &
I) {
4059 EVT DestVT =
DAG.getTargetLoweringInfo().getValueType(
DAG.getDataLayout(),
4064 if (DestVT !=
N.getValueType())
4072 setValue(&
I,
DAG.getConstant(
C->getValue(), dl, DestVT,
false,
4078void SelectionDAGBuilder::visitAddrSpaceCast(
const User &
I) {
4079 const TargetLowering &TLI =
DAG.getTargetLoweringInfo();
4080 const Value *SV =
I.getOperand(0);
4085 unsigned DestAS =
I.getType()->getPointerAddressSpace();
4087 if (!TM.isNoopAddrSpaceCast(SrcAS, DestAS))
4093void SelectionDAGBuilder::visitInsertElement(
const User &
I) {
4094 const TargetLowering &TLI =
DAG.getTargetLoweringInfo();
4101 InVec, InVal, InIdx));
4104void SelectionDAGBuilder::visitExtractElement(
const User &
I) {
4105 const TargetLowering &TLI =
DAG.getTargetLoweringInfo();
4114void SelectionDAGBuilder::visitShuffleVector(
const User &
I) {
4119 Mask = SVI->getShuffleMask();
4123 const TargetLowering &TLI =
DAG.getTargetLoweringInfo();
4127 if (
all_of(Mask, [](
int Elem) {
return Elem == 0; }) &&
4132 DAG.getVectorIdxConstant(0,
DL));
4143 unsigned MaskNumElts =
Mask.size();
4145 if (SrcNumElts == MaskNumElts) {
4151 if (SrcNumElts < MaskNumElts) {
4155 if (MaskNumElts % SrcNumElts == 0) {
4159 unsigned NumConcat = MaskNumElts / SrcNumElts;
4160 bool IsConcat =
true;
4161 SmallVector<int, 8> ConcatSrcs(NumConcat, -1);
4162 for (
unsigned i = 0; i != MaskNumElts; ++i) {
4168 if ((Idx % SrcNumElts != (i % SrcNumElts)) ||
4169 (ConcatSrcs[i / SrcNumElts] >= 0 &&
4170 ConcatSrcs[i / SrcNumElts] != (
int)(Idx / SrcNumElts))) {
4175 ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts;
4182 for (
auto Src : ConcatSrcs) {
4195 unsigned PaddedMaskNumElts =
alignTo(MaskNumElts, SrcNumElts);
4196 unsigned NumConcat = PaddedMaskNumElts / SrcNumElts;
4212 SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1);
4213 for (
unsigned i = 0; i != MaskNumElts; ++i) {
4215 if (Idx >= (
int)SrcNumElts)
4216 Idx -= SrcNumElts - PaddedMaskNumElts;
4224 if (MaskNumElts != PaddedMaskNumElts)
4226 DAG.getVectorIdxConstant(0,
DL));
4232 assert(SrcNumElts > MaskNumElts);
4236 int StartIdx[2] = {-1, -1};
4237 bool CanExtract =
true;
4238 for (
int Idx : Mask) {
4243 if (Idx >= (
int)SrcNumElts) {
4251 int NewStartIdx =
alignDown(Idx, MaskNumElts);
4252 if (NewStartIdx + MaskNumElts > SrcNumElts ||
4253 (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx))
4257 StartIdx[Input] = NewStartIdx;
4260 if (StartIdx[0] < 0 && StartIdx[1] < 0) {
4266 for (
unsigned Input = 0; Input < 2; ++Input) {
4267 SDValue &Src = Input == 0 ? Src1 : Src2;
4268 if (StartIdx[Input] < 0)
4269 Src =
DAG.getUNDEF(VT);
4272 DAG.getVectorIdxConstant(StartIdx[Input],
DL));
4277 SmallVector<int, 8> MappedOps(Mask);
4278 for (
int &Idx : MappedOps) {
4279 if (Idx >= (
int)SrcNumElts)
4280 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts;
4285 setValue(&
I,
DAG.getVectorShuffle(VT,
DL, Src1, Src2, MappedOps));
4294 for (
int Idx : Mask) {
4298 Res =
DAG.getUNDEF(EltVT);
4300 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2;
4301 if (Idx >= (
int)SrcNumElts) Idx -= SrcNumElts;
4304 DAG.getVectorIdxConstant(Idx,
DL));
4314 ArrayRef<unsigned> Indices =
I.getIndices();
4315 const Value *Op0 =
I.getOperand(0);
4317 Type *AggTy =
I.getType();
4324 const TargetLowering &TLI =
DAG.getTargetLoweringInfo();
4330 unsigned NumAggValues = AggValueVTs.
size();
4331 unsigned NumValValues = ValValueVTs.
size();
4335 if (!NumAggValues) {
4343 for (; i != LinearIndex; ++i)
4344 Values[i] = IntoUndef ?
DAG.getUNDEF(AggValueVTs[i]) :
4349 for (; i != LinearIndex + NumValValues; ++i)
4350 Values[i] = FromUndef ?
DAG.getUNDEF(AggValueVTs[i]) :
4354 for (; i != NumAggValues; ++i)
4355 Values[i] = IntoUndef ?
DAG.getUNDEF(AggValueVTs[i]) :
4359 DAG.getVTList(AggValueVTs), Values));
4363 ArrayRef<unsigned> Indices =
I.getIndices();
4364 const Value *Op0 =
I.getOperand(0);
4366 Type *ValTy =
I.getType();
4371 const TargetLowering &TLI =
DAG.getTargetLoweringInfo();
4375 unsigned NumValValues = ValValueVTs.
size();
4378 if (!NumValValues) {
4387 for (
unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
4388 Values[i - LinearIndex] =
4394 DAG.getVTList(ValValueVTs), Values));
4397void SelectionDAGBuilder::visitGetElementPtr(
const User &
I) {
4398 Value *Op0 =
I.getOperand(0);
4404 auto &TLI =
DAG.getTargetLoweringInfo();
4409 bool IsVectorGEP =
I.getType()->isVectorTy();
4410 ElementCount VectorElementCount =
4416 const Value *Idx = GTI.getOperand();
4417 if (StructType *StTy = GTI.getStructTypeOrNull()) {
4422 DAG.getDataLayout().getStructLayout(StTy)->getElementOffset(
Field);
4432 N =
DAG.getMemBasePlusOffset(
4433 N,
DAG.getConstant(
Offset, dl,
N.getValueType()), dl, Flags);
4439 unsigned IdxSize =
DAG.getDataLayout().getIndexSizeInBits(AS);
4441 TypeSize ElementSize =
4442 GTI.getSequentialElementStride(
DAG.getDataLayout());
4447 bool ElementScalable = ElementSize.
isScalable();
4453 C =
C->getSplatValue();
4456 if (CI && CI->isZero())
4458 if (CI && !ElementScalable) {
4459 APInt Offs = ElementMul * CI->getValue().sextOrTrunc(IdxSize);
4462 if (
N.getValueType().isVector())
4463 OffsVal =
DAG.getConstant(
4466 OffsVal =
DAG.getConstant(Offs, dl, IdxTy);
4473 Flags.setNoUnsignedWrap(
true);
4476 OffsVal =
DAG.getSExtOrTrunc(OffsVal, dl,
N.getValueType());
4478 N =
DAG.getMemBasePlusOffset(
N, OffsVal, dl, Flags);
4486 if (
N.getValueType().isVector()) {
4488 VectorElementCount);
4489 IdxN =
DAG.getSplat(VT, dl, IdxN);
4493 N =
DAG.getSplat(VT, dl,
N);
4499 IdxN =
DAG.getSExtOrTrunc(IdxN, dl,
N.getValueType());
4501 SDNodeFlags ScaleFlags;
4510 if (ElementScalable) {
4511 EVT VScaleTy =
N.getValueType().getScalarType();
4513 ISD::VSCALE, dl, VScaleTy,
4514 DAG.getConstant(ElementMul.getZExtValue(), dl, VScaleTy));
4515 if (
N.getValueType().isVector())
4516 VScale =
DAG.getSplatVector(
N.getValueType(), dl, VScale);
4517 IdxN =
DAG.getNode(
ISD::MUL, dl,
N.getValueType(), IdxN, VScale,
4522 if (ElementMul != 1) {
4523 if (ElementMul.isPowerOf2()) {
4524 unsigned Amt = ElementMul.logBase2();
4527 DAG.getShiftAmountConstant(Amt,
N.getValueType(), dl),
4530 SDValue Scale =
DAG.getConstant(ElementMul.getZExtValue(), dl,
4532 IdxN =
DAG.getNode(
ISD::MUL, dl,
N.getValueType(), IdxN, Scale,
4542 SDNodeFlags AddFlags;
4546 N =
DAG.getMemBasePlusOffset(
N, IdxN, dl, AddFlags);
4550 if (IsVectorGEP && !
N.getValueType().isVector()) {
4552 N =
DAG.getSplat(VT, dl,
N);
4563 N =
DAG.getPtrExtendInReg(
N, dl, PtrMemTy);
4568void SelectionDAGBuilder::visitAlloca(
const AllocaInst &
I) {
4575 Type *Ty =
I.getAllocatedType();
4576 const TargetLowering &TLI =
DAG.getTargetLoweringInfo();
4577 auto &
DL =
DAG.getDataLayout();
4578 TypeSize TySize =
DL.getTypeAllocSize(Ty);
4579 MaybeAlign Alignment = std::max(
DL.getPrefTypeAlign(Ty),
I.getAlign());
4585 AllocSize =
DAG.getZExtOrTrunc(AllocSize, dl, IntPtr);
4588 AllocSize =
DAG.getNode(
ISD::MUL, dl, IntPtr, AllocSize,
4589 DAG.getVScale(dl, IntPtr,
4595 AllocSize =
DAG.getNode(
ISD::MUL, dl, IntPtr, AllocSize,
4596 DAG.getZExtOrTrunc(TySizeValue, dl, IntPtr));
4602 Align StackAlign =
DAG.getSubtarget().getFrameLowering()->getStackAlign();
4603 if (*Alignment <= StackAlign)
4604 Alignment = std::nullopt;
4606 const uint64_t StackAlignMask = StackAlign.
value() - 1U;
4611 DAG.getConstant(StackAlignMask, dl, IntPtr),
4616 DAG.getSignedConstant(~StackAlignMask, dl, IntPtr));
4620 DAG.getConstant(Alignment ? Alignment->value() : 0, dl, IntPtr)};
4622 SDValue DSA =
DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs,
Ops);
4630 return I.getMetadata(LLVMContext::MD_range);
4635 if (std::optional<ConstantRange> CR = CB->getRange())
4639 return std::nullopt;
4642void SelectionDAGBuilder::visitLoad(
const LoadInst &
I) {
4644 return visitAtomicLoad(
I);
4646 const TargetLowering &TLI =
DAG.getTargetLoweringInfo();
4647 const Value *SV =
I.getOperand(0);
4652 if (Arg->hasSwiftErrorAttr())
4653 return visitLoadFromSwiftError(
I);
4657 if (Alloca->isSwiftError())
4658 return visitLoadFromSwiftError(
I);
4664 Type *Ty =
I.getType();
4668 unsigned NumValues = ValueVTs.
size();
4672 Align Alignment =
I.getAlign();
4673 AAMDNodes AAInfo =
I.getAAMetadata();
4675 bool isVolatile =
I.isVolatile();
4680 bool ConstantMemory =
false;
4687 BatchAA->pointsToConstantMemory(MemoryLocation(
4692 Root =
DAG.getEntryNode();
4693 ConstantMemory =
true;
4697 Root =
DAG.getRoot();
4708 unsigned ChainI = 0;
4709 for (
unsigned i = 0; i != NumValues; ++i, ++ChainI) {
4725 MachinePointerInfo PtrInfo =
4727 ? MachinePointerInfo(SV, Offsets[i].getKnownMinValue())
4728 : MachinePointerInfo();
4731 SDValue L =
DAG.getLoad(MemVTs[i], dl, Root,
A, PtrInfo, Alignment,
4732 MMOFlags, AAInfo, Ranges);
4733 Chains[ChainI] =
L.getValue(1);
4735 if (MemVTs[i] != ValueVTs[i])
4736 L =
DAG.getPtrExtOrTrunc(L, dl, ValueVTs[i]);
4741 if (!ConstantMemory) {
4751 DAG.getVTList(ValueVTs), Values));
4754void SelectionDAGBuilder::visitStoreToSwiftError(
const StoreInst &
I) {
4755 assert(
DAG.getTargetLoweringInfo().supportSwiftError() &&
4756 "call visitStoreToSwiftError when backend supports swifterror");
4759 SmallVector<uint64_t, 4>
Offsets;
4760 const Value *SrcV =
I.getOperand(0);
4762 SrcV->
getType(), ValueVTs, &Offsets, 0);
4763 assert(ValueVTs.
size() == 1 && Offsets[0] == 0 &&
4764 "expect a single EVT for swifterror");
4773 SDValue(Src.getNode(), Src.getResNo()));
4774 DAG.setRoot(CopyNode);
4777void SelectionDAGBuilder::visitLoadFromSwiftError(
const LoadInst &
I) {
4778 assert(
DAG.getTargetLoweringInfo().supportSwiftError() &&
4779 "call visitLoadFromSwiftError when backend supports swifterror");
4782 !
I.hasMetadata(LLVMContext::MD_nontemporal) &&
4783 !
I.hasMetadata(LLVMContext::MD_invariant_load) &&
4784 "Support volatile, non temporal, invariant for load_from_swift_error");
4786 const Value *SV =
I.getOperand(0);
4787 Type *Ty =
I.getType();
4790 !
BatchAA->pointsToConstantMemory(MemoryLocation(
4792 I.getAAMetadata()))) &&
4793 "load_from_swift_error should not be constant memory");
4796 SmallVector<uint64_t, 4>
Offsets;
4798 ValueVTs, &Offsets, 0);
4799 assert(ValueVTs.
size() == 1 && Offsets[0] == 0 &&
4800 "expect a single EVT for swifterror");
4810void SelectionDAGBuilder::visitStore(
const StoreInst &
I) {
4812 return visitAtomicStore(
I);
4814 const Value *SrcV =
I.getOperand(0);
4815 const Value *PtrV =
I.getOperand(1);
4817 const TargetLowering &TLI =
DAG.getTargetLoweringInfo();
4822 if (Arg->hasSwiftErrorAttr())
4823 return visitStoreToSwiftError(
I);
4827 if (Alloca->isSwiftError())
4828 return visitStoreToSwiftError(
I);
4835 SrcV->
getType(), ValueVTs, &MemVTs, &Offsets);
4836 unsigned NumValues = ValueVTs.
size();
4849 Align Alignment =
I.getAlign();
4850 AAMDNodes AAInfo =
I.getAAMetadata();
4854 unsigned ChainI = 0;
4855 for (
unsigned i = 0; i != NumValues; ++i, ++ChainI) {
4865 MachinePointerInfo PtrInfo =
4867 ? MachinePointerInfo(PtrV, Offsets[i].getKnownMinValue())
4868 : MachinePointerInfo();
4872 if (MemVTs[i] != ValueVTs[i])
4873 Val =
DAG.getPtrExtOrTrunc(Val, dl, MemVTs[i]);
4875 DAG.getStore(Root, dl, Val,
Add, PtrInfo, Alignment, MMOFlags, AAInfo);
4876 Chains[ChainI] = St;
4882 DAG.setRoot(StoreNode);
4885void SelectionDAGBuilder::visitMaskedStore(
const CallInst &
I,
4886 bool IsCompressing) {
4889 Value *Src0Operand =
I.getArgOperand(0);
4890 Value *PtrOperand =
I.getArgOperand(1);
4891 Value *MaskOperand =
I.getArgOperand(2);
4892 Align Alignment =
I.getParamAlign(1).valueOrOne();
4902 if (
I.hasMetadata(LLVMContext::MD_nontemporal))
4905 MachineMemOperand *MMO =
DAG.getMachineFunction().getMachineMemOperand(
4906 MachinePointerInfo(PtrOperand), MMOFlags,
4909 const auto &TLI =
DAG.getTargetLoweringInfo();
4914 I.getArgOperand(0)->getType(),
true)
4920 DAG.setRoot(StoreNode);
4946 assert(
Ptr->getType()->isVectorTy() &&
"Unexpected pointer type");
4950 C =
C->getSplatValue();
4964 if (!
GEP ||
GEP->getParent() != CurBB)
4967 if (
GEP->getNumOperands() != 2)
4970 const Value *BasePtr =
GEP->getPointerOperand();
4971 const Value *IndexVal =
GEP->getOperand(
GEP->getNumOperands() - 1);
4977 TypeSize ScaleVal =
DL.getTypeAllocSize(
GEP->getResultElementType());
4982 if (ScaleVal != 1 &&
4994void SelectionDAGBuilder::visitMaskedScatter(
const CallInst &
I) {
4998 const Value *
Ptr =
I.getArgOperand(1);
5002 Align Alignment =
I.getParamAlign(1).valueOrOne();
5003 const TargetLowering &TLI =
DAG.getTargetLoweringInfo();
5011 unsigned AS =
Ptr->getType()->getScalarType()->getPointerAddressSpace();
5012 MachineMemOperand *MMO =
DAG.getMachineFunction().getMachineMemOperand(
5022 EVT IdxVT =
Index.getValueType();
5030 SDValue Scatter =
DAG.getMaskedScatter(
DAG.getVTList(MVT::Other), VT, sdl,
5032 DAG.setRoot(Scatter);
5036void SelectionDAGBuilder::visitMaskedLoad(
const CallInst &
I,
bool IsExpanding) {
5039 Value *PtrOperand =
I.getArgOperand(0);
5040 Value *MaskOperand =
I.getArgOperand(1);
5041 Value *Src0Operand =
I.getArgOperand(2);
5042 Align Alignment =
I.getParamAlign(0).valueOrOne();
5050 AAMDNodes AAInfo =
I.getAAMetadata();
5057 SDValue InChain = AddToChain ?
DAG.getRoot() :
DAG.getEntryNode();
5060 if (
I.hasMetadata(LLVMContext::MD_nontemporal))
5063 MachineMemOperand *MMO =
DAG.getMachineFunction().getMachineMemOperand(
5064 MachinePointerInfo(PtrOperand), MMOFlags,
5067 const auto &TLI =
DAG.getTargetLoweringInfo();
5079 DAG.getMaskedLoad(VT, sdl, InChain,
Ptr,
Offset, Mask, Src0, VT, MMO,
5086void SelectionDAGBuilder::visitMaskedGather(
const CallInst &
I) {
5090 const Value *
Ptr =
I.getArgOperand(0);
5094 const TargetLowering &TLI =
DAG.getTargetLoweringInfo();
5096 Align Alignment =
I.getParamAlign(0).valueOrOne();
5106 unsigned AS =
Ptr->getType()->getScalarType()->getPointerAddressSpace();
5107 MachineMemOperand *MMO =
DAG.getMachineFunction().getMachineMemOperand(
5119 EVT IdxVT =
Index.getValueType();
5128 DAG.getMaskedGather(
DAG.getVTList(VT, MVT::Other), VT, sdl,
Ops, MMO,
5144 SDVTList VTs =
DAG.getVTList(MemVT, MVT::i1, MVT::Other);
5146 const TargetLowering &TLI =
DAG.getTargetLoweringInfo();
5149 MachineFunction &MF =
DAG.getMachineFunction();
5151 MachinePointerInfo(
I.getPointerOperand()), Flags, MemVT.
getStoreSize(),
5152 DAG.getEVTAlign(MemVT), AAMDNodes(),
nullptr, SSID, SuccessOrdering,
5155 SDValue L =
DAG.getAtomicCmpSwap(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS,
5156 dl, MemVT, VTs, InChain,
5164 DAG.setRoot(OutChain);
5167void SelectionDAGBuilder::visitAtomicRMW(
const AtomicRMWInst &
I) {
5170 switch (
I.getOperation()) {
5188 NT = ISD::ATOMIC_LOAD_FMAXIMUM;
5191 NT = ISD::ATOMIC_LOAD_FMINIMUM;
5194 NT = ISD::ATOMIC_LOAD_UINC_WRAP;
5197 NT = ISD::ATOMIC_LOAD_UDEC_WRAP;
5200 NT = ISD::ATOMIC_LOAD_USUB_COND;
5203 NT = ISD::ATOMIC_LOAD_USUB_SAT;
5212 const TargetLowering &TLI =
DAG.getTargetLoweringInfo();
5215 MachineFunction &MF =
DAG.getMachineFunction();
5217 MachinePointerInfo(
I.getPointerOperand()), Flags, MemVT.
getStoreSize(),
5218 DAG.getEVTAlign(MemVT), AAMDNodes(),
nullptr, SSID, Ordering);
5221 DAG.getAtomic(NT, dl, MemVT, InChain,
5228 DAG.setRoot(OutChain);
5231void SelectionDAGBuilder::visitFence(
const FenceInst &
I) {
5233 const TargetLowering &TLI =
DAG.getTargetLoweringInfo();
5236 Ops[1] =
DAG.getTargetConstant((
unsigned)
I.getOrdering(), dl,
5238 Ops[2] =
DAG.getTargetConstant(
I.getSyncScopeID(), dl,
5245void SelectionDAGBuilder::visitAtomicLoad(
const LoadInst &
I) {
5252 const TargetLowering &TLI =
DAG.getTargetLoweringInfo();
5263 MachineMemOperand *MMO =
DAG.getMachineFunction().getMachineMemOperand(
5264 MachinePointerInfo(
I.getPointerOperand()), Flags, MemVT.
getStoreSize(),
5265 I.getAlign(), AAMDNodes(), Ranges, SSID, Order);
5275 L =
DAG.getPtrExtOrTrunc(L, dl, VT);
5278 DAG.setRoot(OutChain);
5281void SelectionDAGBuilder::visitAtomicStore(
const StoreInst &
I) {
5289 const TargetLowering &TLI =
DAG.getTargetLoweringInfo();
5299 MachineFunction &MF =
DAG.getMachineFunction();
5301 MachinePointerInfo(
I.getPointerOperand()), Flags, MemVT.
getStoreSize(),
5302 I.getAlign(), AAMDNodes(),
nullptr, SSID, Ordering);
5306 Val =
DAG.getPtrExtOrTrunc(Val, dl, MemVT);
5310 DAG.getAtomic(ISD::ATOMIC_STORE, dl, MemVT, InChain, Val,
Ptr, MMO);
5313 DAG.setRoot(OutChain);
5318void SelectionDAGBuilder::visitTargetIntrinsic(
const CallInst &
I,
5324 bool HasChain = !
F->doesNotAccessMemory();
5326 HasChain &&
F->onlyReadsMemory() &&
F->willReturn() &&
F->doesNotThrow();
5333 Ops.push_back(
DAG.getRoot());
5340 TargetLowering::IntrinsicInfo
Info;
5341 const TargetLowering &TLI =
DAG.getTargetLoweringInfo();
5343 DAG.getMachineFunction(),
5353 for (
unsigned i = 0, e =
I.arg_size(); i != e; ++i) {
5354 const Value *Arg =
I.getArgOperand(i);
5355 if (!
I.paramHasAttr(i, Attribute::ImmArg)) {
5363 assert(CI->getBitWidth() <= 64 &&
5364 "large intrinsic immediates not handled");
5365 Ops.push_back(
DAG.getTargetConstant(*CI, SDLoc(), VT));
5378 SDVTList VTs =
DAG.getVTList(ValueVTs);
5383 Flags.copyFMF(*FPMO);
5384 SelectionDAG::FlagInserter FlagsInserter(
DAG, Flags);
5390 auto *Token = Bundle->Inputs[0].get();
5392 assert(
Ops.back().getValueType() != MVT::Glue &&
5393 "Did not expected another glue node here.");
5395 DAG.getNode(ISD::CONVERGENCECTRL_GLUE, {}, MVT::Glue, ConvControlToken);
5396 Ops.push_back(ConvControlToken);
5401 if (IsTgtIntrinsic) {
5406 MachinePointerInfo MPI;
5408 MPI = MachinePointerInfo(
Info.ptrVal,
Info.offset);
5409 else if (
Info.fallbackAddressSpace)
5410 MPI = MachinePointerInfo(*
Info.fallbackAddressSpace);
5411 EVT MemVT =
Info.memVT;
5413 if (
Size.hasValue() && !
Size.getValue())
5415 Align Alignment =
Info.align.value_or(
DAG.getEVTAlign(MemVT));
5416 MachineMemOperand *MMO =
DAG.getMachineFunction().getMachineMemOperand(
5417 MPI,
Info.flags,
Size, Alignment,
I.getAAMetadata(),
nullptr,
5421 }
else if (!HasChain) {
5423 }
else if (!
I.getType()->isVoidTy()) {
5437 if (!
I.getType()->isVoidTy()) {
5441 MaybeAlign Alignment =
I.getRetAlign();
5464 return DAG.
getNode(ISD::BITCAST, dl, MVT::f32, t2);
5505 SDValue TwoToFractionalPartOfX;
5573 SDValue t13 = DAG.
getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX);
5574 return DAG.
getNode(ISD::BITCAST, dl, MVT::f32,
5582 if (
Op.getValueType() == MVT::f32 &&
5597 return DAG.
getNode(ISD::FEXP, dl,
Op.getValueType(),
Op, Flags);
5606 if (
Op.getValueType() == MVT::f32 &&
5696 return DAG.
getNode(ISD::FLOG, dl,
Op.getValueType(),
Op, Flags);
5705 if (
Op.getValueType() == MVT::f32 &&
5789 return DAG.
getNode(
ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa);
5793 return DAG.
getNode(ISD::FLOG2, dl,
Op.getValueType(),
Op, Flags);
5802 if (
Op.getValueType() == MVT::f32 &&
5879 return DAG.
getNode(
ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa);
5883 return DAG.
getNode(ISD::FLOG10, dl,
Op.getValueType(),
Op, Flags);
5890 if (
Op.getValueType() == MVT::f32 &&
5895 return DAG.
getNode(ISD::FEXP2, dl,
Op.getValueType(),
Op, Flags);
5903 bool IsExp10 =
false;
5904 if (
LHS.getValueType() == MVT::f32 &&
RHS.getValueType() == MVT::f32 &&
5908 IsExp10 = LHSC->isExactlyValue(Ten);
5935 unsigned Val = RHSC->getSExtValue();
5964 CurSquare, CurSquare);
5969 if (RHSC->getSExtValue() < 0)
5983 EVT VT =
LHS.getValueType();
6006 if ((ScaleInt > 0 || (Saturating &&
Signed)) &&
6010 Opcode, VT, ScaleInt);
6045 switch (
N.getOpcode()) {
6049 Op.getValueType().getSizeInBits());
6074bool SelectionDAGBuilder::EmitFuncArgumentDbgValue(
6081 MachineFunction &MF =
DAG.getMachineFunction();
6082 const TargetInstrInfo *
TII =
DAG.getSubtarget().getInstrInfo();
6086 auto MakeVRegDbgValue = [&](
Register Reg, DIExpression *FragExpr,
6091 auto &Inst =
TII->get(TargetOpcode::DBG_INSTR_REF);
6098 auto *NewDIExpr = FragExpr;
6105 return BuildMI(MF,
DL, Inst,
false, MOs, Variable, NewDIExpr);
6108 auto &Inst =
TII->get(TargetOpcode::DBG_VALUE);
6109 return BuildMI(MF,
DL, Inst, Indirect,
Reg, Variable, FragExpr);
6113 if (Kind == FuncArgumentDbgValueKind::Value) {
6118 if (!IsInEntryBlock)
6134 bool VariableIsFunctionInputArg =
Variable->isParameter() &&
6135 !
DL->getInlinedAt();
6137 if (!IsInPrologue && !VariableIsFunctionInputArg)
6171 if (VariableIsFunctionInputArg) {
6173 if (ArgNo >=
FuncInfo.DescribedArgs.size())
6174 FuncInfo.DescribedArgs.resize(ArgNo + 1,
false);
6175 else if (!IsInPrologue &&
FuncInfo.DescribedArgs.test(ArgNo))
6176 return !NodeMap[
V].getNode();
6181 bool IsIndirect =
false;
6182 std::optional<MachineOperand>
Op;
6184 int FI =
FuncInfo.getArgumentFrameIndex(Arg);
6185 if (FI != std::numeric_limits<int>::max())
6189 if (!
Op &&
N.getNode()) {
6192 if (ArgRegsAndSizes.
size() == 1)
6193 Reg = ArgRegsAndSizes.
front().first;
6196 MachineRegisterInfo &RegInfo = MF.
getRegInfo();
6203 IsIndirect =
Kind != FuncArgumentDbgValueKind::Value;
6207 if (!
Op &&
N.getNode()) {
6211 if (FrameIndexSDNode *FINode =
6221 for (
const auto &RegAndSize : SplitRegs) {
6225 int RegFragmentSizeInBits = RegAndSize.second;
6227 uint64_t ExprFragmentSizeInBits = ExprFragmentInfo->SizeInBits;
6230 if (
Offset >= ExprFragmentSizeInBits)
6234 if (
Offset + RegFragmentSizeInBits > ExprFragmentSizeInBits) {
6235 RegFragmentSizeInBits = ExprFragmentSizeInBits -
Offset;
6240 Expr,
Offset, RegFragmentSizeInBits);
6241 Offset += RegAndSize.second;
6244 if (!FragmentExpr) {
6245 SDDbgValue *SDV =
DAG.getConstantDbgValue(
6247 DAG.AddDbgValue(SDV,
false);
6250 MachineInstr *NewMI =
6251 MakeVRegDbgValue(RegAndSize.first, *FragmentExpr,
6252 Kind != FuncArgumentDbgValueKind::Value);
6253 FuncInfo.ArgDbgValues.push_back(NewMI);
6260 if (VMI !=
FuncInfo.ValueMap.end()) {
6261 const auto &TLI =
DAG.getTargetLoweringInfo();
6262 RegsForValue RFV(
V->getContext(), TLI,
DAG.getDataLayout(), VMI->second,
6263 V->getType(), std::nullopt);
6264 if (RFV.occupiesMultipleRegs()) {
6265 splitMultiRegDbgValue(RFV.getRegsAndSizes());
6270 IsIndirect =
Kind != FuncArgumentDbgValueKind::Value;
6271 }
else if (ArgRegsAndSizes.
size() > 1) {
6274 splitMultiRegDbgValue(ArgRegsAndSizes);
6283 "Expected inlined-at fields to agree");
6284 MachineInstr *NewMI =
nullptr;
6287 NewMI = MakeVRegDbgValue(
Op->getReg(), Expr, IsIndirect);
6289 NewMI =
BuildMI(MF,
DL,
TII->get(TargetOpcode::DBG_VALUE),
true, *
Op,
6293 FuncInfo.ArgDbgValues.push_back(NewMI);
6302 unsigned DbgSDNodeOrder) {
6314 return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(),
6315 false, dl, DbgSDNodeOrder);
6317 return DAG.getDbgValue(Variable, Expr,
N.getNode(),
N.getResNo(),
6318 false, dl, DbgSDNodeOrder);
6323 case Intrinsic::smul_fix:
6325 case Intrinsic::umul_fix:
6327 case Intrinsic::smul_fix_sat:
6329 case Intrinsic::umul_fix_sat:
6331 case Intrinsic::sdiv_fix:
6333 case Intrinsic::udiv_fix:
6335 case Intrinsic::sdiv_fix_sat:
6337 case Intrinsic::udiv_fix_sat:
6350 "expected call_preallocated_setup Value");
6351 for (
const auto *U : PreallocatedSetup->
users()) {
6353 const Function *Fn = UseCall->getCalledFunction();
6354 if (!Fn || Fn->
getIntrinsicID() != Intrinsic::call_preallocated_arg) {
6364bool SelectionDAGBuilder::visitEntryValueDbgValue(
6374 auto ArgIt =
FuncInfo.ValueMap.find(Arg);
6375 if (ArgIt ==
FuncInfo.ValueMap.end()) {
6377 dbgs() <<
"Dropping dbg.value: expression is entry_value but "
6378 "couldn't find an associated register for the Argument\n");
6381 Register ArgVReg = ArgIt->getSecond();
6383 for (
auto [PhysReg, VirtReg] :
FuncInfo.RegInfo->liveins())
6384 if (ArgVReg == VirtReg || ArgVReg == PhysReg) {
6385 SDDbgValue *SDV =
DAG.getVRegDbgValue(
6386 Variable, Expr, PhysReg,
false , DbgLoc, SDNodeOrder);
6387 DAG.AddDbgValue(SDV,
false );
6390 LLVM_DEBUG(
dbgs() <<
"Dropping dbg.value: expression is entry_value but "
6391 "couldn't find a physical register\n");
6396void SelectionDAGBuilder::visitConvergenceControl(
const CallInst &
I,
6399 switch (Intrinsic) {
6400 case Intrinsic::experimental_convergence_anchor:
6401 setValue(&
I,
DAG.getNode(ISD::CONVERGENCECTRL_ANCHOR, sdl, MVT::Untyped));
6403 case Intrinsic::experimental_convergence_entry:
6404 setValue(&
I,
DAG.getNode(ISD::CONVERGENCECTRL_ENTRY, sdl, MVT::Untyped));
6406 case Intrinsic::experimental_convergence_loop: {
6408 auto *Token = Bundle->Inputs[0].get();
6409 setValue(&
I,
DAG.getNode(ISD::CONVERGENCECTRL_LOOP, sdl, MVT::Untyped,
6416void SelectionDAGBuilder::visitVectorHistogram(
const CallInst &
I,
6417 unsigned IntrinsicID) {
6420 assert(IntrinsicID == Intrinsic::experimental_vector_histogram_add &&
6421 "Tried to lower unsupported histogram type");
6423 Value *
Ptr =
I.getOperand(0);
6427 const TargetLowering &TLI =
DAG.getTargetLoweringInfo();
6428 DataLayout TargetDL =
DAG.getDataLayout();
6430 Align Alignment =
DAG.getEVTAlign(VT);
6441 unsigned AS =
Ptr->getType()->getScalarType()->getPointerAddressSpace();
6443 MachineMemOperand *MMO =
DAG.getMachineFunction().getMachineMemOperand(
6444 MachinePointerInfo(AS),
6455 EVT IdxVT =
Index.getValueType();
6462 SDValue ID =
DAG.getTargetConstant(IntrinsicID, sdl, MVT::i32);
6465 SDValue Histogram =
DAG.getMaskedHistogram(
DAG.getVTList(MVT::Other), VT, sdl,
6469 DAG.setRoot(Histogram);
6472void SelectionDAGBuilder::visitVectorExtractLastActive(
const CallInst &
I,
6474 assert(Intrinsic == Intrinsic::experimental_vector_extract_last_active &&
6475 "Tried lowering invalid vector extract last");
6477 const DataLayout &Layout =
DAG.getDataLayout();
6481 const TargetLowering &TLI =
DAG.getTargetLoweringInfo();
6485 SDValue Idx =
DAG.getNode(ISD::VECTOR_FIND_LAST_ACTIVE, sdl, ExtVT, Mask);
6491 EVT BoolVT =
Mask.getValueType().getScalarType();
6492 SDValue AnyActive =
DAG.getNode(ISD::VECREDUCE_OR, sdl, BoolVT, Mask);
6493 Result =
DAG.getSelect(sdl, ResVT, AnyActive, Result, PassThru);
6500void SelectionDAGBuilder::visitIntrinsicCall(
const CallInst &
I,
6502 const TargetLowering &TLI =
DAG.getTargetLoweringInfo();
6509 Flags.copyFMF(*FPOp);
6511 switch (Intrinsic) {
6514 visitTargetIntrinsic(
I, Intrinsic);
6516 case Intrinsic::vscale: {
6521 case Intrinsic::vastart: visitVAStart(
I);
return;
6522 case Intrinsic::vaend: visitVAEnd(
I);
return;
6523 case Intrinsic::vacopy: visitVACopy(
I);
return;
6524 case Intrinsic::returnaddress:
6529 case Intrinsic::addressofreturnaddress:
6534 case Intrinsic::sponentry:
6539 case Intrinsic::frameaddress:
6544 case Intrinsic::read_volatile_register:
6545 case Intrinsic::read_register: {
6546 Value *
Reg =
I.getArgOperand(0);
6552 DAG.getVTList(VT, MVT::Other), Chain,
RegName);
6557 case Intrinsic::write_register: {
6558 Value *
Reg =
I.getArgOperand(0);
6559 Value *RegValue =
I.getArgOperand(1);
6567 case Intrinsic::memcpy:
6568 case Intrinsic::memcpy_inline: {
6574 "memcpy_inline needs constant size");
6576 Align DstAlign = MCI.getDestAlign().valueOrOne();
6577 Align SrcAlign = MCI.getSourceAlign().valueOrOne();
6578 Align Alignment = std::min(DstAlign, SrcAlign);
6579 bool isVol = MCI.isVolatile();
6583 SDValue MC =
DAG.getMemcpy(Root, sdl, Dst, Src,
Size, Alignment, isVol,
6584 MCI.isForceInlined(), &
I, std::nullopt,
6585 MachinePointerInfo(
I.getArgOperand(0)),
6586 MachinePointerInfo(
I.getArgOperand(1)),
6588 updateDAGForMaybeTailCall(MC);
6591 case Intrinsic::memset:
6592 case Intrinsic::memset_inline: {
6598 "memset_inline needs constant size");
6600 Align DstAlign = MSII.getDestAlign().valueOrOne();
6601 bool isVol = MSII.isVolatile();
6604 Root, sdl, Dst, Value,
Size, DstAlign, isVol, MSII.isForceInlined(),
6605 &
I, MachinePointerInfo(
I.getArgOperand(0)),
I.getAAMetadata());
6606 updateDAGForMaybeTailCall(MC);
6609 case Intrinsic::memmove: {
6615 Align DstAlign = MMI.getDestAlign().valueOrOne();
6616 Align SrcAlign = MMI.getSourceAlign().valueOrOne();
6617 Align Alignment = std::min(DstAlign, SrcAlign);
6618 bool isVol = MMI.isVolatile();
6622 SDValue MM =
DAG.getMemmove(Root, sdl, Op1, Op2, Op3, Alignment, isVol, &
I,
6624 MachinePointerInfo(
I.getArgOperand(0)),
6625 MachinePointerInfo(
I.getArgOperand(1)),
6627 updateDAGForMaybeTailCall(MM);
6630 case Intrinsic::memcpy_element_unordered_atomic: {
6636 Type *LengthTy =
MI.getLength()->getType();
6637 unsigned ElemSz =
MI.getElementSizeInBytes();
6641 isTC, MachinePointerInfo(
MI.getRawDest()),
6642 MachinePointerInfo(
MI.getRawSource()));
6643 updateDAGForMaybeTailCall(MC);
6646 case Intrinsic::memmove_element_unordered_atomic: {
6652 Type *LengthTy =
MI.getLength()->getType();
6653 unsigned ElemSz =
MI.getElementSizeInBytes();
6657 isTC, MachinePointerInfo(
MI.getRawDest()),
6658 MachinePointerInfo(
MI.getRawSource()));
6659 updateDAGForMaybeTailCall(MC);
6662 case Intrinsic::memset_element_unordered_atomic: {
6668 Type *LengthTy =
MI.getLength()->getType();
6669 unsigned ElemSz =
MI.getElementSizeInBytes();
6673 isTC, MachinePointerInfo(
MI.getRawDest()));
6674 updateDAGForMaybeTailCall(MC);
6677 case Intrinsic::call_preallocated_setup: {
6679 SDValue SrcValue =
DAG.getSrcValue(PreallocatedCall);
6680 SDValue Res =
DAG.getNode(ISD::PREALLOCATED_SETUP, sdl, MVT::Other,
6686 case Intrinsic::call_preallocated_arg: {
6688 SDValue SrcValue =
DAG.getSrcValue(PreallocatedCall);
6695 ISD::PREALLOCATED_ARG, sdl,
6702 case Intrinsic::eh_typeid_for: {
6705 unsigned TypeID =
DAG.getMachineFunction().getTypeIDFor(GV);
6706 Res =
DAG.getConstant(
TypeID, sdl, MVT::i32);
6711 case Intrinsic::eh_return_i32:
6712 case Intrinsic::eh_return_i64:
6713 DAG.getMachineFunction().setCallsEHReturn(
true);
6720 case Intrinsic::eh_unwind_init:
6721 DAG.getMachineFunction().setCallsUnwindInit(
true);
6723 case Intrinsic::eh_dwarf_cfa:
6728 case Intrinsic::eh_sjlj_callsite: {
6730 assert(
FuncInfo.getCurrentCallSite() == 0 &&
"Overlapping call sites!");
6735 case Intrinsic::eh_sjlj_functioncontext: {
6737 MachineFrameInfo &MFI =
DAG.getMachineFunction().getFrameInfo();
6740 int FI =
FuncInfo.StaticAllocaMap[FnCtx];
6744 case Intrinsic::eh_sjlj_setjmp: {
6749 DAG.getVTList(MVT::i32, MVT::Other),
Ops);
6751 DAG.setRoot(
Op.getValue(1));
6754 case Intrinsic::eh_sjlj_longjmp:
6758 case Intrinsic::eh_sjlj_setup_dispatch:
6762 case Intrinsic::masked_gather:
6763 visitMaskedGather(
I);
6765 case Intrinsic::masked_load:
6768 case Intrinsic::masked_scatter:
6769 visitMaskedScatter(
I);
6771 case Intrinsic::masked_store:
6772 visitMaskedStore(
I);
6774 case Intrinsic::masked_expandload:
6775 visitMaskedLoad(
I,
true );
6777 case Intrinsic::masked_compressstore:
6778 visitMaskedStore(
I,
true );
6780 case Intrinsic::powi:
6784 case Intrinsic::log:
6787 case Intrinsic::log2:
6791 case Intrinsic::log10:
6795 case Intrinsic::exp:
6798 case Intrinsic::exp2:
6802 case Intrinsic::pow:
6806 case Intrinsic::sqrt:
6807 case Intrinsic::fabs:
6808 case Intrinsic::sin:
6809 case Intrinsic::cos:
6810 case Intrinsic::tan:
6811 case Intrinsic::asin:
6812 case Intrinsic::acos:
6813 case Intrinsic::atan:
6814 case Intrinsic::sinh:
6815 case Intrinsic::cosh:
6816 case Intrinsic::tanh:
6817 case Intrinsic::exp10:
6818 case Intrinsic::floor:
6819 case Intrinsic::ceil:
6820 case Intrinsic::trunc:
6821 case Intrinsic::rint:
6822 case Intrinsic::nearbyint:
6823 case Intrinsic::round:
6824 case Intrinsic::roundeven:
6825 case Intrinsic::canonicalize: {
6828 switch (Intrinsic) {
6830 case Intrinsic::sqrt: Opcode = ISD::FSQRT;
break;
6831 case Intrinsic::fabs: Opcode = ISD::FABS;
break;
6832 case Intrinsic::sin: Opcode = ISD::FSIN;
break;
6833 case Intrinsic::cos: Opcode = ISD::FCOS;
break;
6834 case Intrinsic::tan: Opcode = ISD::FTAN;
break;
6835 case Intrinsic::asin: Opcode = ISD::FASIN;
break;
6836 case Intrinsic::acos: Opcode = ISD::FACOS;
break;
6837 case Intrinsic::atan: Opcode = ISD::FATAN;
break;
6838 case Intrinsic::sinh: Opcode = ISD::FSINH;
break;
6839 case Intrinsic::cosh: Opcode = ISD::FCOSH;
break;
6840 case Intrinsic::tanh: Opcode = ISD::FTANH;
break;
6841 case Intrinsic::exp10: Opcode = ISD::FEXP10;
break;
6842 case Intrinsic::floor: Opcode = ISD::FFLOOR;
break;
6843 case Intrinsic::ceil: Opcode = ISD::FCEIL;
break;
6844 case Intrinsic::trunc: Opcode = ISD::FTRUNC;
break;
6845 case Intrinsic::rint: Opcode = ISD::FRINT;
break;
6846 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT;
break;
6847 case Intrinsic::round: Opcode = ISD::FROUND;
break;
6848 case Intrinsic::roundeven: Opcode = ISD::FROUNDEVEN;
break;
6854 getValue(
I.getArgOperand(0)).getValueType(),
6858 case Intrinsic::atan2:
6860 getValue(
I.getArgOperand(0)).getValueType(),
6864 case Intrinsic::lround:
6865 case Intrinsic::llround:
6866 case Intrinsic::lrint:
6867 case Intrinsic::llrint: {
6870 switch (Intrinsic) {
6872 case Intrinsic::lround: Opcode = ISD::LROUND;
break;
6873 case Intrinsic::llround: Opcode = ISD::LLROUND;
break;
6874 case Intrinsic::lrint: Opcode = ISD::LRINT;
break;
6875 case Intrinsic::llrint: Opcode = ISD::LLRINT;
break;
6884 case Intrinsic::minnum:
6886 getValue(
I.getArgOperand(0)).getValueType(),
6890 case Intrinsic::maxnum:
6892 getValue(
I.getArgOperand(0)).getValueType(),
6896 case Intrinsic::minimum:
6898 getValue(
I.getArgOperand(0)).getValueType(),
6902 case Intrinsic::maximum:
6904 getValue(
I.getArgOperand(0)).getValueType(),
6908 case Intrinsic::minimumnum:
6910 getValue(
I.getArgOperand(0)).getValueType(),
6914 case Intrinsic::maximumnum:
6916 getValue(
I.getArgOperand(0)).getValueType(),
6920 case Intrinsic::copysign:
6922 getValue(
I.getArgOperand(0)).getValueType(),
6926 case Intrinsic::ldexp:
6928 getValue(
I.getArgOperand(0)).getValueType(),
6932 case Intrinsic::modf:
6933 case Intrinsic::sincos:
6934 case Intrinsic::sincospi:
6935 case Intrinsic::frexp: {
6937 switch (Intrinsic) {
6940 case Intrinsic::sincos:
6941 Opcode = ISD::FSINCOS;
6943 case Intrinsic::sincospi:
6944 Opcode = ISD::FSINCOSPI;
6946 case Intrinsic::modf:
6947 Opcode = ISD::FMODF;
6949 case Intrinsic::frexp:
6950 Opcode = ISD::FFREXP;
6955 SDVTList VTs =
DAG.getVTList(ValueVTs);
6957 &
I,
DAG.getNode(Opcode, sdl, VTs,
getValue(
I.getArgOperand(0)), Flags));
6960 case Intrinsic::arithmetic_fence: {
6962 getValue(
I.getArgOperand(0)).getValueType(),
6966 case Intrinsic::fma:
6972#define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC) \
6973 case Intrinsic::INTRINSIC:
6974#include "llvm/IR/ConstrainedOps.def"
6977#define BEGIN_REGISTER_VP_INTRINSIC(VPID, ...) case Intrinsic::VPID:
6978#include "llvm/IR/VPIntrinsics.def"
6981 case Intrinsic::fptrunc_round: {
6985 std::optional<RoundingMode> RoundMode =
6993 SelectionDAG::FlagInserter FlagsInserter(
DAG, Flags);
6998 DAG.getTargetConstant((
int)*RoundMode, sdl, MVT::i32));
7003 case Intrinsic::fmuladd: {
7008 getValue(
I.getArgOperand(0)).getValueType(),
7015 getValue(
I.getArgOperand(0)).getValueType(),
7031 case Intrinsic::convert_to_fp16:
7035 DAG.getTargetConstant(0, sdl,
7038 case Intrinsic::convert_from_fp16:
7041 DAG.getNode(ISD::BITCAST, sdl, MVT::f16,
7044 case Intrinsic::fptosi_sat: {
7051 case Intrinsic::fptoui_sat: {
7058 case Intrinsic::set_rounding:
7059 Res =
DAG.getNode(ISD::SET_ROUNDING, sdl, MVT::Other,
7064 case Intrinsic::is_fpclass: {
7065 const DataLayout DLayout =
DAG.getDataLayout();
7067 EVT ArgVT = TLI.
getValueType(DLayout,
I.getArgOperand(0)->getType());
7070 MachineFunction &MF =
DAG.getMachineFunction();
7074 Flags.setNoFPExcept(
7075 !
F.getAttributes().hasFnAttr(llvm::Attribute::StrictFP));
7091 case Intrinsic::get_fpenv: {
7092 const DataLayout DLayout =
DAG.getDataLayout();
7094 Align TempAlign =
DAG.getEVTAlign(EnvVT);
7100 ISD::GET_FPENV, sdl,
7109 MachineMemOperand *MMO =
DAG.getMachineFunction().getMachineMemOperand(
7112 Chain =
DAG.getGetFPEnv(Chain, sdl, Temp, EnvVT, MMO);
7113 Res =
DAG.getLoad(EnvVT, sdl, Chain, Temp, MPI);
7119 case Intrinsic::set_fpenv: {
7120 const DataLayout DLayout =
DAG.getDataLayout();
7123 Align TempAlign =
DAG.getEVTAlign(EnvVT);
7128 Chain =
DAG.getNode(ISD::SET_FPENV, sdl, MVT::Other, Chain, Env);
7136 Chain =
DAG.getStore(Chain, sdl, Env, Temp, MPI, TempAlign,
7138 MachineMemOperand *MMO =
DAG.getMachineFunction().getMachineMemOperand(
7141 Chain =
DAG.getSetFPEnv(Chain, sdl, Temp, EnvVT, MMO);
7146 case Intrinsic::reset_fpenv:
7147 DAG.setRoot(
DAG.getNode(ISD::RESET_FPENV, sdl, MVT::Other,
getRoot()));
7149 case Intrinsic::get_fpmode:
7151 ISD::GET_FPMODE, sdl,
7158 case Intrinsic::set_fpmode:
7159 Res =
DAG.getNode(ISD::SET_FPMODE, sdl, MVT::Other, {
DAG.getRoot()},
7163 case Intrinsic::reset_fpmode: {
7164 Res =
DAG.getNode(ISD::RESET_FPMODE, sdl, MVT::Other,
getRoot());
7168 case Intrinsic::pcmarker: {
7170 DAG.setRoot(
DAG.getNode(ISD::PCMARKER, sdl, MVT::Other,
getRoot(), Tmp));
7173 case Intrinsic::readcyclecounter: {
7175 Res =
DAG.getNode(ISD::READCYCLECOUNTER, sdl,
7176 DAG.getVTList(MVT::i64, MVT::Other),
Op);
7181 case Intrinsic::readsteadycounter: {
7183 Res =
DAG.getNode(ISD::READSTEADYCOUNTER, sdl,
7184 DAG.getVTList(MVT::i64, MVT::Other),
Op);
7189 case Intrinsic::bitreverse:
7191 getValue(
I.getArgOperand(0)).getValueType(),
7194 case Intrinsic::bswap:
7196 getValue(
I.getArgOperand(0)).getValueType(),
7199 case Intrinsic::cttz: {
7207 case Intrinsic::ctlz: {
7215 case Intrinsic::ctpop: {
7221 case Intrinsic::fshl:
7222 case Intrinsic::fshr: {
7223 bool IsFSHL =
Intrinsic == Intrinsic::fshl;
7227 EVT VT =
X.getValueType();
7238 case Intrinsic::sadd_sat: {
7244 case Intrinsic::uadd_sat: {
7250 case Intrinsic::ssub_sat: {
7256 case Intrinsic::usub_sat: {
7262 case Intrinsic::sshl_sat: {
7268 case Intrinsic::ushl_sat: {
7274 case Intrinsic::smul_fix:
7275 case Intrinsic::umul_fix:
7276 case Intrinsic::smul_fix_sat:
7277 case Intrinsic::umul_fix_sat: {
7285 case Intrinsic::sdiv_fix:
7286 case Intrinsic::udiv_fix:
7287 case Intrinsic::sdiv_fix_sat:
7288 case Intrinsic::udiv_fix_sat: {
7293 Op1, Op2, Op3,
DAG, TLI));
7296 case Intrinsic::smax: {
7302 case Intrinsic::smin: {
7308 case Intrinsic::umax: {
7314 case Intrinsic::umin: {
7320 case Intrinsic::abs: {
7326 case Intrinsic::scmp: {
7333 case Intrinsic::ucmp: {
7340 case Intrinsic::stacksave: {
7343 Res =
DAG.getNode(ISD::STACKSAVE, sdl,
DAG.getVTList(VT, MVT::Other),
Op);
7348 case Intrinsic::stackrestore:
7350 DAG.setRoot(
DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other,
getRoot(), Res));
7352 case Intrinsic::get_dynamic_area_offset: {
7355 Res =
DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl,
DAG.getVTList(ResTy),
7361 case Intrinsic::stackguard: {
7362 MachineFunction &MF =
DAG.getMachineFunction();
7368 Res =
DAG.getPtrExtOrTrunc(Res, sdl, PtrTy);
7372 LLVMContext &Ctx = *
DAG.getContext();
7373 Ctx.
diagnose(DiagnosticInfoGeneric(
"unable to lower stackguard"));
7380 MachinePointerInfo(
Global, 0), Align,
7389 case Intrinsic::stackprotector: {
7391 MachineFunction &MF =
DAG.getMachineFunction();
7411 Chain, sdl, Src, FIN,
7418 case Intrinsic::objectsize:
7421 case Intrinsic::is_constant:
7424 case Intrinsic::annotation:
7425 case Intrinsic::ptr_annotation:
7426 case Intrinsic::launder_invariant_group:
7427 case Intrinsic::strip_invariant_group:
7432 case Intrinsic::type_test:
7433 case Intrinsic::public_type_test:
7437 case Intrinsic::assume:
7438 case Intrinsic::experimental_noalias_scope_decl:
7439 case Intrinsic::var_annotation:
7440 case Intrinsic::sideeffect:
7445 case Intrinsic::codeview_annotation: {
7447 MachineFunction &MF =
DAG.getMachineFunction();
7451 Res =
DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl,
getRoot(), Label);
7456 case Intrinsic::init_trampoline: {
7464 Ops[4] =
DAG.getSrcValue(
I.getArgOperand(0));
7467 Res =
DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other,
Ops);
7472 case Intrinsic::adjust_trampoline:
7477 case Intrinsic::gcroot: {
7478 assert(
DAG.getMachineFunction().getFunction().hasGC() &&
7479 "only valid in functions with gc specified, enforced by Verifier");
7481 const Value *Alloca =
I.getArgOperand(0)->stripPointerCasts();
7488 case Intrinsic::gcread:
7489 case Intrinsic::gcwrite:
7491 case Intrinsic::get_rounding:
7497 case Intrinsic::expect:
7498 case Intrinsic::expect_with_probability:
7504 case Intrinsic::ubsantrap:
7505 case Intrinsic::debugtrap:
7506 case Intrinsic::trap: {
7507 StringRef TrapFuncName =
7508 I.getAttributes().getFnAttr(
"trap-func-name").getValueAsString();
7509 if (TrapFuncName.
empty()) {
7510 switch (Intrinsic) {
7511 case Intrinsic::trap:
7512 DAG.setRoot(
DAG.getNode(ISD::TRAP, sdl, MVT::Other,
getRoot()));
7514 case Intrinsic::debugtrap:
7515 DAG.setRoot(
DAG.getNode(ISD::DEBUGTRAP, sdl, MVT::Other,
getRoot()));
7517 case Intrinsic::ubsantrap:
7519 ISD::UBSANTRAP, sdl, MVT::Other,
getRoot(),
7520 DAG.getTargetConstant(
7526 DAG.addNoMergeSiteInfo(
DAG.getRoot().getNode(),
7527 I.hasFnAttr(Attribute::NoMerge));
7531 if (Intrinsic == Intrinsic::ubsantrap) {
7532 Value *Arg =
I.getArgOperand(0);
7536 TargetLowering::CallLoweringInfo CLI(
DAG);
7537 CLI.setDebugLoc(sdl).setChain(
getRoot()).setLibCallee(
7539 DAG.getExternalSymbol(TrapFuncName.
data(),
7542 CLI.NoMerge =
I.hasFnAttr(Attribute::NoMerge);
7548 case Intrinsic::allow_runtime_check:
7549 case Intrinsic::allow_ubsan_check:
7553 case Intrinsic::uadd_with_overflow:
7554 case Intrinsic::sadd_with_overflow:
7555 case Intrinsic::usub_with_overflow:
7556 case Intrinsic::ssub_with_overflow:
7557 case Intrinsic::umul_with_overflow:
7558 case Intrinsic::smul_with_overflow: {
7560 switch (Intrinsic) {
7562 case Intrinsic::uadd_with_overflow:
Op =
ISD::UADDO;
break;
7563 case Intrinsic::sadd_with_overflow:
Op =
ISD::SADDO;
break;
7564 case Intrinsic::usub_with_overflow:
Op =
ISD::USUBO;
break;
7565 case Intrinsic::ssub_with_overflow:
Op =
ISD::SSUBO;
break;
7566 case Intrinsic::umul_with_overflow:
Op =
ISD::UMULO;
break;
7567 case Intrinsic::smul_with_overflow:
Op =
ISD::SMULO;
break;
7573 EVT OverflowVT = MVT::i1;
7578 SDVTList VTs =
DAG.getVTList(ResultVT, OverflowVT);
7582 case Intrinsic::prefetch: {
7595 ISD::PREFETCH, sdl,
DAG.getVTList(MVT::Other),
Ops,
7597 std::nullopt, Flags);
7603 DAG.setRoot(Result);
7606 case Intrinsic::lifetime_start:
7607 case Intrinsic::lifetime_end: {
7608 bool IsStart = (
Intrinsic == Intrinsic::lifetime_start);
7614 if (!LifetimeObject)
7619 auto SI =
FuncInfo.StaticAllocaMap.find(LifetimeObject);
7620 if (SI ==
FuncInfo.StaticAllocaMap.end())
7624 Res =
DAG.getLifetimeNode(IsStart, sdl,
getRoot(), FrameIndex);
7628 case Intrinsic::pseudoprobe: {
7636 case Intrinsic::invariant_start:
7641 case Intrinsic::invariant_end:
7644 case Intrinsic::clear_cache: {
7649 {InputChain, StartVal, EndVal});
7654 case Intrinsic::donothing:
7655 case Intrinsic::seh_try_begin:
7656 case Intrinsic::seh_scope_begin:
7657 case Intrinsic::seh_try_end:
7658 case Intrinsic::seh_scope_end:
7661 case Intrinsic::experimental_stackmap:
7664 case Intrinsic::experimental_patchpoint_void:
7665 case Intrinsic::experimental_patchpoint:
7668 case Intrinsic::experimental_gc_statepoint:
7671 case Intrinsic::experimental_gc_result:
7674 case Intrinsic::experimental_gc_relocate:
7677 case Intrinsic::instrprof_cover:
7679 case Intrinsic::instrprof_increment:
7681 case Intrinsic::instrprof_timestamp:
7683 case Intrinsic::instrprof_value_profile:
7685 case Intrinsic::instrprof_mcdc_parameters:
7687 case Intrinsic::instrprof_mcdc_tvbitmap_update:
7689 case Intrinsic::localescape: {
7690 MachineFunction &MF =
DAG.getMachineFunction();
7691 const TargetInstrInfo *
TII =
DAG.getSubtarget().getInstrInfo();
7695 for (
unsigned Idx = 0,
E =
I.arg_size(); Idx <
E; ++Idx) {
7701 "can only escape static allocas");
7706 TII->get(TargetOpcode::LOCAL_ESCAPE))
7714 case Intrinsic::localrecover: {
7716 MachineFunction &MF =
DAG.getMachineFunction();
7722 unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max()));
7726 Value *
FP =
I.getArgOperand(1);
7732 SDValue OffsetSym =
DAG.getMCSymbol(FrameAllocSym, PtrVT);
7737 SDValue Add =
DAG.getMemBasePlusOffset(FPVal, OffsetVal, sdl);
7743 case Intrinsic::fake_use: {
7744 Value *
V =
I.getArgOperand(0);
7749 auto FakeUseValue = [&]() ->
SDValue {
7763 if (!FakeUseValue || FakeUseValue.isUndef())
7766 Ops[1] = FakeUseValue;
7771 DAG.setRoot(
DAG.getNode(ISD::FAKE_USE, sdl, MVT::Other,
Ops));
7775 case Intrinsic::eh_exceptionpointer:
7776 case Intrinsic::eh_exceptioncode: {
7782 SDValue N =
DAG.getCopyFromReg(
DAG.getEntryNode(), sdl, VReg, PtrVT);
7783 if (Intrinsic == Intrinsic::eh_exceptioncode)
7784 N =
DAG.getZExtOrTrunc(
N, sdl, MVT::i32);
7788 case Intrinsic::xray_customevent: {
7791 const auto &Triple =
DAG.getTarget().getTargetTriple();
7800 SDVTList NodeTys =
DAG.getVTList(MVT::Other, MVT::Glue);
7802 Ops.push_back(LogEntryVal);
7803 Ops.push_back(StrSizeVal);
7804 Ops.push_back(Chain);
7810 MachineSDNode *MN =
DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL,
7813 DAG.setRoot(patchableNode);
7817 case Intrinsic::xray_typedevent: {
7820 const auto &Triple =
DAG.getTarget().getTargetTriple();
7832 SDVTList NodeTys =
DAG.getVTList(MVT::Other, MVT::Glue);
7834 Ops.push_back(LogTypeId);
7835 Ops.push_back(LogEntryVal);
7836 Ops.push_back(StrSizeVal);
7837 Ops.push_back(Chain);
7843 MachineSDNode *MN =
DAG.getMachineNode(
7844 TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, sdl, NodeTys,
Ops);
7846 DAG.setRoot(patchableNode);
7850 case Intrinsic::experimental_deoptimize:
7853 case Intrinsic::stepvector:
7856 case Intrinsic::vector_reduce_fadd:
7857 case Intrinsic::vector_reduce_fmul:
7858 case Intrinsic::vector_reduce_add:
7859 case Intrinsic::vector_reduce_mul:
7860 case Intrinsic::vector_reduce_and:
7861 case Intrinsic::vector_reduce_or:
7862 case Intrinsic::vector_reduce_xor:
7863 case Intrinsic::vector_reduce_smax:
7864 case Intrinsic::vector_reduce_smin:
7865 case Intrinsic::vector_reduce_umax:
7866 case Intrinsic::vector_reduce_umin:
7867 case Intrinsic::vector_reduce_fmax:
7868 case Intrinsic::vector_reduce_fmin:
7869 case Intrinsic::vector_reduce_fmaximum:
7870 case Intrinsic::vector_reduce_fminimum:
7871 visitVectorReduce(
I, Intrinsic);
7874 case Intrinsic::icall_branch_funnel: {
7880 I.getArgOperand(1),
Offset,
DAG.getDataLayout()));
7883 "llvm.icall.branch.funnel operand must be a GlobalValue");
7884 Ops.push_back(
DAG.getTargetGlobalAddress(
Base, sdl, MVT::i64, 0));
7886 struct BranchFunnelTarget {
7892 for (
unsigned Op = 1,
N =
I.arg_size();
Op !=
N;
Op += 2) {
7895 if (ElemBase !=
Base)
7897 "to the same GlobalValue");
7903 "llvm.icall.branch.funnel operand must be a GlobalValue");
7909 [](
const BranchFunnelTarget &
T1,
const BranchFunnelTarget &T2) {
7910 return T1.Offset < T2.Offset;
7913 for (
auto &
T : Targets) {
7914 Ops.push_back(
DAG.getTargetConstant(
T.Offset, sdl, MVT::i32));
7915 Ops.push_back(
T.Target);
7918 Ops.push_back(
DAG.getRoot());
7919 SDValue N(
DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL, sdl,
7928 case Intrinsic::wasm_landingpad_index:
7934 case Intrinsic::aarch64_settag:
7935 case Intrinsic::aarch64_settag_zero: {
7936 const SelectionDAGTargetInfo &TSI =
DAG.getSelectionDAGInfo();
7937 bool ZeroMemory =
Intrinsic == Intrinsic::aarch64_settag_zero;
7940 getValue(
I.getArgOperand(1)), MachinePointerInfo(
I.getArgOperand(0)),
7946 case Intrinsic::amdgcn_cs_chain: {
7951 Type *RetTy =
I.getType();
7961 for (
unsigned Idx : {2, 3, 1}) {
7962 TargetLowering::ArgListEntry Arg(
getValue(
I.getOperand(Idx)),
7964 Arg.setAttributes(&
I, Idx);
7965 Args.push_back(Arg);
7968 assert(Args[0].IsInReg &&
"SGPR args should be marked inreg");
7969 assert(!Args[1].IsInReg &&
"VGPR args should not be marked inreg");
7970 Args[2].IsInReg =
true;
7973 for (
unsigned Idx = 4; Idx <
I.arg_size(); ++Idx) {
7974 TargetLowering::ArgListEntry Arg(
getValue(
I.getOperand(Idx)),
7976 Arg.setAttributes(&
I, Idx);
7977 Args.push_back(Arg);
7980 TargetLowering::CallLoweringInfo CLI(
DAG);
7983 .setCallee(CC, RetTy, Callee, std::move(Args))
7986 .setConvergent(
I.isConvergent());
7988 std::pair<SDValue, SDValue>
Result =
7992 "Should've lowered as tail call");
7997 case Intrinsic::amdgcn_call_whole_wave: {
7999 bool isTailCall =
I.isTailCall();
8002 for (
unsigned Idx = 1; Idx <
I.arg_size(); ++Idx) {
8003 TargetLowering::ArgListEntry Arg(
getValue(
I.getArgOperand(Idx)),
8004 I.getArgOperand(Idx)->getType());
8005 Arg.setAttributes(&
I, Idx);
8012 Args.push_back(Arg);
8017 auto *Token = Bundle->Inputs[0].get();
8018 ConvControlToken =
getValue(Token);
8021 TargetLowering::CallLoweringInfo CLI(
DAG);
8025 getValue(
I.getArgOperand(0)), std::move(Args))
8029 .setConvergent(
I.isConvergent())
8030 .setConvergenceControlToken(ConvControlToken);
8033 std::pair<SDValue, SDValue>
Result =
8036 if (
Result.first.getNode())
8040 case Intrinsic::ptrmask: {
8056 auto HighOnes =
DAG.getNode(
8057 ISD::SHL, sdl, PtrVT,
DAG.getAllOnesConstant(sdl, PtrVT),
8058 DAG.getShiftAmountConstant(
Mask.getValueType().getFixedSizeInBits(),
8061 DAG.getZExtOrTrunc(Mask, sdl, PtrVT), HighOnes);
8062 }
else if (
Mask.getValueType() != PtrVT)
8063 Mask =
DAG.getPtrExtOrTrunc(Mask, sdl, PtrVT);
8069 case Intrinsic::threadlocal_address: {
8073 case Intrinsic::get_active_lane_mask: {
8077 EVT ElementVT =
Index.getValueType();
8080 setValue(&
I,
DAG.getNode(ISD::GET_ACTIVE_LANE_MASK, sdl, CCVT, Index,
8088 SDValue VectorIndex =
DAG.getSplat(VecTy, sdl, Index);
8089 SDValue VectorTripCount =
DAG.getSplat(VecTy, sdl, TripCount);
8090 SDValue VectorStep =
DAG.getStepVector(sdl, VecTy);
8093 SDValue SetCC =
DAG.getSetCC(sdl, CCVT, VectorInduction,
8098 case Intrinsic::experimental_get_vector_length: {
8100 "Expected positive VF");
8105 EVT CountVT =
Count.getValueType();
8108 visitTargetIntrinsic(
I, Intrinsic);
8117 if (CountVT.
bitsLT(VT)) {
8122 SDValue MaxEVL =
DAG.getElementCount(sdl, CountVT,
8132 case Intrinsic::vector_partial_reduce_add: {
8140 case Intrinsic::experimental_cttz_elts: {
8143 EVT OpVT =
Op.getValueType();
8146 visitTargetIntrinsic(
I, Intrinsic);
8162 ConstantRange VScaleRange(1,
true);
8191 case Intrinsic::vector_insert: {
8199 if (
Index.getValueType() != VectorIdxTy)
8200 Index =
DAG.getVectorIdxConstant(
Index->getAsZExtVal(), sdl);
8207 case Intrinsic::vector_extract: {
8215 if (
Index.getValueType() != VectorIdxTy)
8216 Index =
DAG.getVectorIdxConstant(
Index->getAsZExtVal(), sdl);
8222 case Intrinsic::experimental_vector_match: {
8228 EVT ResVT =
Mask.getValueType();
8234 visitTargetIntrinsic(
I, Intrinsic);
8240 for (
unsigned i = 0; i < SearchSize; ++i) {
8243 DAG.getVectorIdxConstant(i, sdl));
8252 case Intrinsic::vector_reverse:
8253 visitVectorReverse(
I);
8255 case Intrinsic::vector_splice:
8256 visitVectorSplice(
I);
8258 case Intrinsic::callbr_landingpad:
8259 visitCallBrLandingPad(
I);
8261 case Intrinsic::vector_interleave2:
8262 visitVectorInterleave(
I, 2);
8264 case Intrinsic::vector_interleave3:
8265 visitVectorInterleave(
I, 3);
8267 case Intrinsic::vector_interleave4:
8268 visitVectorInterleave(
I, 4);
8270 case Intrinsic::vector_interleave5:
8271 visitVectorInterleave(
I, 5);
8273 case Intrinsic::vector_interleave6:
8274 visitVectorInterleave(
I, 6);
8276 case Intrinsic::vector_interleave7:
8277 visitVectorInterleave(
I, 7);
8279 case Intrinsic::vector_interleave8:
8280 visitVectorInterleave(
I, 8);
8282 case Intrinsic::vector_deinterleave2:
8283 visitVectorDeinterleave(
I, 2);
8285 case Intrinsic::vector_deinterleave3:
8286 visitVectorDeinterleave(
I, 3);
8288 case Intrinsic::vector_deinterleave4:
8289 visitVectorDeinterleave(
I, 4);
8291 case Intrinsic::vector_deinterleave5:
8292 visitVectorDeinterleave(
I, 5);
8294 case Intrinsic::vector_deinterleave6:
8295 visitVectorDeinterleave(
I, 6);
8297 case Intrinsic::vector_deinterleave7:
8298 visitVectorDeinterleave(
I, 7);
8300 case Intrinsic::vector_deinterleave8:
8301 visitVectorDeinterleave(
I, 8);
8303 case Intrinsic::experimental_vector_compress:
8305 getValue(
I.getArgOperand(0)).getValueType(),
8310 case Intrinsic::experimental_convergence_anchor:
8311 case Intrinsic::experimental_convergence_entry:
8312 case Intrinsic::experimental_convergence_loop:
8313 visitConvergenceControl(
I, Intrinsic);
8315 case Intrinsic::experimental_vector_histogram_add: {
8316 visitVectorHistogram(
I, Intrinsic);
8319 case Intrinsic::experimental_vector_extract_last_active: {
8320 visitVectorExtractLastActive(
I, Intrinsic);
8323 case Intrinsic::loop_dependence_war_mask:
8329 case Intrinsic::loop_dependence_raw_mask:
8338void SelectionDAGBuilder::pushFPOpOutChain(
SDValue Result,
8354 PendingConstrainedFP.push_back(OutChain);
8357 PendingConstrainedFPStrict.push_back(OutChain);
8362void SelectionDAGBuilder::visitConstrainedFPIntrinsic(
8376 const TargetLowering &TLI =
DAG.getTargetLoweringInfo();
8378 SDVTList VTs =
DAG.getVTList(VT, MVT::Other);
8382 Flags.setNoFPExcept(
true);
8385 Flags.copyFMF(*FPOp);
8390#define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \
8391 case Intrinsic::INTRINSIC: \
8392 Opcode = ISD::STRICT_##DAGN; \
8394#include "llvm/IR/ConstrainedOps.def"
8395 case Intrinsic::experimental_constrained_fmuladd: {
8402 pushFPOpOutChain(
Mul, EB);
8425 if (TM.Options.NoNaNsFPMath)
8433 pushFPOpOutChain(Result, EB);
8440 std::optional<unsigned> ResOPC;
8442 case Intrinsic::vp_ctlz: {
8444 ResOPC = IsZeroUndef ? ISD::VP_CTLZ_ZERO_UNDEF : ISD::VP_CTLZ;
8447 case Intrinsic::vp_cttz: {
8449 ResOPC = IsZeroUndef ? ISD::VP_CTTZ_ZERO_UNDEF : ISD::VP_CTTZ;
8452 case Intrinsic::vp_cttz_elts: {
8454 ResOPC = IsZeroPoison ? ISD::VP_CTTZ_ELTS_ZERO_UNDEF : ISD::VP_CTTZ_ELTS;
8457#define HELPER_MAP_VPID_TO_VPSD(VPID, VPSD) \
8458 case Intrinsic::VPID: \
8459 ResOPC = ISD::VPSD; \
8461#include "llvm/IR/VPIntrinsics.def"
8466 "Inconsistency: no SDNode available for this VPIntrinsic!");
8468 if (*ResOPC == ISD::VP_REDUCE_SEQ_FADD ||
8469 *ResOPC == ISD::VP_REDUCE_SEQ_FMUL) {
8471 return *ResOPC == ISD::VP_REDUCE_SEQ_FADD ? ISD::VP_REDUCE_FADD
8472 : ISD::VP_REDUCE_FMUL;
8478void SelectionDAGBuilder::visitVPLoad(
8490 Alignment =
DAG.getEVTAlign(VT);
8493 SDValue InChain = AddToChain ?
DAG.getRoot() :
DAG.getEntryNode();
8494 const TargetLowering &TLI =
DAG.getTargetLoweringInfo();
8497 MachineMemOperand *MMO =
DAG.getMachineFunction().getMachineMemOperand(
8498 MachinePointerInfo(PtrOperand), MMOFlags,
8500 LD =
DAG.getLoadVP(VT,
DL, InChain, OpValues[0], OpValues[1], OpValues[2],
8507void SelectionDAGBuilder::visitVPLoadFF(
8510 assert(OpValues.
size() == 3 &&
"Unexpected number of operands");
8520 Alignment =
DAG.getEVTAlign(VT);
8523 SDValue InChain = AddToChain ?
DAG.getRoot() :
DAG.getEntryNode();
8524 MachineMemOperand *MMO =
DAG.getMachineFunction().getMachineMemOperand(
8527 LD =
DAG.getLoadFFVP(VT,
DL, InChain, OpValues[0], OpValues[1], OpValues[2],
8532 setValue(&VPIntrin,
DAG.getMergeValues({LD.getValue(0), Trunc},
DL));
8535void SelectionDAGBuilder::visitVPGather(
8539 const TargetLowering &TLI =
DAG.getTargetLoweringInfo();
8551 MachineMemOperand *MMO =
DAG.getMachineFunction().getMachineMemOperand(
8553 *Alignment, AAInfo, Ranges);
8563 EVT IdxVT =
Index.getValueType();
8569 LD =
DAG.getGatherVP(
8570 DAG.getVTList(VT, MVT::Other), VT,
DL,
8571 {DAG.getRoot(), Base, Index, Scale, OpValues[1], OpValues[2]}, MMO,
8577void SelectionDAGBuilder::visitVPStore(
8581 EVT VT = OpValues[0].getValueType();
8586 Alignment =
DAG.getEVTAlign(VT);
8589 const TargetLowering &TLI =
DAG.getTargetLoweringInfo();
8592 MachineMemOperand *MMO =
DAG.getMachineFunction().getMachineMemOperand(
8593 MachinePointerInfo(PtrOperand), MMOFlags,
8602void SelectionDAGBuilder::visitVPScatter(
8605 const TargetLowering &TLI =
DAG.getTargetLoweringInfo();
8607 EVT VT = OpValues[0].getValueType();
8617 MachineMemOperand *MMO =
DAG.getMachineFunction().getMachineMemOperand(
8619 *Alignment, AAInfo);
8629 EVT IdxVT =
Index.getValueType();
8635 ST =
DAG.getScatterVP(
DAG.getVTList(MVT::Other), VT,
DL,
8636 {getMemoryRoot(), OpValues[0], Base, Index, Scale,
8637 OpValues[2], OpValues[3]},
8643void SelectionDAGBuilder::visitVPStridedLoad(
8655 SDValue InChain = AddToChain ?
DAG.getRoot() :
DAG.getEntryNode();
8657 const TargetLowering &TLI =
DAG.getTargetLoweringInfo();
8660 MachineMemOperand *MMO =
DAG.getMachineFunction().getMachineMemOperand(
8662 *Alignment, AAInfo, Ranges);
8664 SDValue LD =
DAG.getStridedLoadVP(VT,
DL, InChain, OpValues[0], OpValues[1],
8665 OpValues[2], OpValues[3], MMO,
8673void SelectionDAGBuilder::visitVPStridedStore(
8677 EVT VT = OpValues[0].getValueType();
8683 const TargetLowering &TLI =
DAG.getTargetLoweringInfo();
8686 MachineMemOperand *MMO =
DAG.getMachineFunction().getMachineMemOperand(
8688 *Alignment, AAInfo);
8692 DAG.getUNDEF(OpValues[1].getValueType()), OpValues[2], OpValues[3],
8700void SelectionDAGBuilder::visitVPCmp(
const VPCmpIntrinsic &VPIntrin) {
8701 const TargetLowering &TLI =
DAG.getTargetLoweringInfo();
8712 if (TM.Options.NoNaNsFPMath)
8725 "Unexpected target EVL type");
8728 EVT DestVT =
DAG.getTargetLoweringInfo().getValueType(
DAG.getDataLayout(),
8731 DAG.getSetCCVP(
DL, DestVT, Op1, Op2, Condition, MaskOp, EVL));
8734void SelectionDAGBuilder::visitVectorPredicationIntrinsic(
8742 return visitVPCmp(*CmpI);
8745 const TargetLowering &TLI =
DAG.getTargetLoweringInfo();
8747 SDVTList VTs =
DAG.getVTList(ValueVTs);
8753 "Unexpected target EVL type");
8757 for (
unsigned I = 0;
I < VPIntrin.
arg_size(); ++
I) {
8759 if (
I == EVLParamPos)
8766 SDNodeFlags SDFlags;
8774 visitVPLoad(VPIntrin, ValueVTs[0], OpValues);
8776 case ISD::VP_LOAD_FF:
8777 visitVPLoadFF(VPIntrin, ValueVTs[0], ValueVTs[1], OpValues);
8779 case ISD::VP_GATHER:
8780 visitVPGather(VPIntrin, ValueVTs[0], OpValues);
8782 case ISD::EXPERIMENTAL_VP_STRIDED_LOAD:
8783 visitVPStridedLoad(VPIntrin, ValueVTs[0], OpValues);
8786 visitVPStore(VPIntrin, OpValues);
8788 case ISD::VP_SCATTER:
8789 visitVPScatter(VPIntrin, OpValues);
8791 case ISD::EXPERIMENTAL_VP_STRIDED_STORE:
8792 visitVPStridedStore(VPIntrin, OpValues);
8794 case ISD::VP_FMULADD: {
8795 assert(OpValues.
size() == 5 &&
"Unexpected number of operands");
8796 SDNodeFlags SDFlags;
8801 setValue(&VPIntrin,
DAG.getNode(ISD::VP_FMA,
DL, VTs, OpValues, SDFlags));
8804 ISD::VP_FMUL,
DL, VTs,
8805 {OpValues[0], OpValues[1], OpValues[3], OpValues[4]}, SDFlags);
8807 DAG.getNode(ISD::VP_FADD,
DL, VTs,
8808 {
Mul, OpValues[2], OpValues[3], OpValues[4]}, SDFlags);
8813 case ISD::VP_IS_FPCLASS: {
8814 const DataLayout DLayout =
DAG.getDataLayout();
8816 auto Constant = OpValues[1]->getAsZExtVal();
8819 {OpValues[0],
Check, OpValues[2], OpValues[3]});
8823 case ISD::VP_INTTOPTR: {
8834 case ISD::VP_PTRTOINT: {
8836 EVT DestVT =
DAG.getTargetLoweringInfo().getValueType(
DAG.getDataLayout(),
8849 case ISD::VP_CTLZ_ZERO_UNDEF:
8851 case ISD::VP_CTTZ_ZERO_UNDEF:
8852 case ISD::VP_CTTZ_ELTS_ZERO_UNDEF:
8853 case ISD::VP_CTTZ_ELTS: {
8855 DAG.getNode(Opcode,
DL, VTs, {OpValues[0], OpValues[2], OpValues[3]});
8865 MachineFunction &MF =
DAG.getMachineFunction();
8873 unsigned CallSiteIndex =
FuncInfo.getCurrentCallSite();
8874 if (CallSiteIndex) {
8888 assert(BeginLabel &&
"BeginLabel should've been set");
8890 MachineFunction &MF =
DAG.getMachineFunction();
8902 assert(
II &&
"II should've been set");
8913std::pair<SDValue, SDValue>
8927 std::pair<SDValue, SDValue> Result = TLI.
LowerCallTo(CLI);
8930 "Non-null chain expected with non-tail call!");
8931 assert((Result.second.getNode() || !Result.first.getNode()) &&
8932 "Null value expected with tail call!");
8934 if (!Result.second.getNode()) {
8941 PendingExports.clear();
8943 DAG.setRoot(Result.second);
8961 if (Caller->getFnAttribute(
"disable-tail-calls").getValueAsString() ==
8969 if (
DAG.getTargetLoweringInfo().supportSwiftError() &&
8970 Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError))
8979 bool isTailCall,
bool isMustTailCall,
8982 auto &
DL =
DAG.getDataLayout();
8989 const Value *SwiftErrorVal =
nullptr;
8996 const Value *V = *
I;
8999 if (V->getType()->isEmptyTy())
9004 Entry.setAttributes(&CB,
I - CB.
arg_begin());
9016 Args.push_back(Entry);
9027 Value *V = Bundle->Inputs[0];
9029 Entry.IsCFGuardTarget =
true;
9030 Args.push_back(Entry);
9043 "Target doesn't support calls with kcfi operand bundles.");
9051 auto *Token = Bundle->Inputs[0].get();
9052 ConvControlToken =
getValue(Token);
9058 .
setCallee(RetTy, FTy, Callee, std::move(Args), CB)
9070 "This target doesn't support calls with ptrauth operand bundles.");
9074 std::pair<SDValue, SDValue> Result =
lowerInvokable(CLI, EHPadBB);
9076 if (Result.first.getNode()) {
9090 DAG.setRoot(CopyNode);
9106 LoadTy, Builder.DAG.getDataLayout()))
9107 return Builder.getValue(LoadCst);
9113 bool ConstantMemory =
false;
9116 if (Builder.BatchAA && Builder.BatchAA->pointsToConstantMemory(PtrVal)) {
9117 Root = Builder.DAG.getEntryNode();
9118 ConstantMemory =
true;
9121 Root = Builder.DAG.getRoot();
9126 Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root,
Ptr,
9129 if (!ConstantMemory)
9130 Builder.PendingLoads.push_back(LoadVal.
getValue(1));
9136void SelectionDAGBuilder::processIntegerCallValue(
const Instruction &
I,
9139 EVT VT =
DAG.getTargetLoweringInfo().getValueType(
DAG.getDataLayout(),
9150bool SelectionDAGBuilder::visitMemCmpBCmpCall(
const CallInst &
I) {
9151 const Value *
LHS =
I.getArgOperand(0), *
RHS =
I.getArgOperand(1);
9152 const Value *
Size =
I.getArgOperand(2);
9155 EVT CallVT =
DAG.getTargetLoweringInfo().getValueType(
DAG.getDataLayout(),
9161 const SelectionDAGTargetInfo &TSI =
DAG.getSelectionDAGInfo();
9165 if (Res.first.getNode()) {
9166 processIntegerCallValue(
I, Res.first,
true);
9180 auto hasFastLoadsAndCompare = [&](
unsigned NumBits) {
9181 const TargetLowering &TLI =
DAG.getTargetLoweringInfo();
9203 switch (NumBitsToCompare) {
9215 LoadVT = hasFastLoadsAndCompare(NumBitsToCompare);
9228 LoadL =
DAG.getBitcast(CmpVT, LoadL);
9229 LoadR =
DAG.getBitcast(CmpVT, LoadR);
9233 processIntegerCallValue(
I, Cmp,
false);
9242bool SelectionDAGBuilder::visitMemChrCall(
const CallInst &
I) {
9243 const Value *Src =
I.getArgOperand(0);
9244 const Value *
Char =
I.getArgOperand(1);
9245 const Value *
Length =
I.getArgOperand(2);
9247 const SelectionDAGTargetInfo &TSI =
DAG.getSelectionDAGInfo();
9248 std::pair<SDValue, SDValue> Res =
9251 MachinePointerInfo(Src));
9252 if (Res.first.getNode()) {
9266bool SelectionDAGBuilder::visitMemPCpyCall(
const CallInst &
I) {
9271 Align DstAlign =
DAG.InferPtrAlign(Dst).valueOrOne();
9272 Align SrcAlign =
DAG.InferPtrAlign(Src).valueOrOne();
9274 Align Alignment = std::min(DstAlign, SrcAlign);
9283 Root, sdl, Dst, Src,
Size, Alignment,
false,
false,
nullptr,
9284 std::nullopt, MachinePointerInfo(
I.getArgOperand(0)),
9285 MachinePointerInfo(
I.getArgOperand(1)),
I.getAAMetadata());
9287 "** memcpy should not be lowered as TailCall in mempcpy context **");
9291 Size =
DAG.getSExtOrTrunc(
Size, sdl, Dst.getValueType());
9304bool SelectionDAGBuilder::visitStrCpyCall(
const CallInst &
I,
bool isStpcpy) {
9305 const Value *Arg0 =
I.getArgOperand(0), *Arg1 =
I.getArgOperand(1);
9307 const SelectionDAGTargetInfo &TSI =
DAG.getSelectionDAGInfo();
9308 std::pair<SDValue, SDValue> Res =
9311 MachinePointerInfo(Arg0),
9312 MachinePointerInfo(Arg1), isStpcpy);
9313 if (Res.first.getNode()) {
9315 DAG.setRoot(Res.second);
9327bool SelectionDAGBuilder::visitStrCmpCall(
const CallInst &
I) {
9328 const Value *Arg0 =
I.getArgOperand(0), *Arg1 =
I.getArgOperand(1);
9330 const SelectionDAGTargetInfo &TSI =
DAG.getSelectionDAGInfo();
9331 std::pair<SDValue, SDValue> Res =
9334 MachinePointerInfo(Arg0),
9335 MachinePointerInfo(Arg1));
9336 if (Res.first.getNode()) {
9337 processIntegerCallValue(
I, Res.first,
true);
9350bool SelectionDAGBuilder::visitStrLenCall(
const CallInst &
I) {
9351 const Value *Arg0 =
I.getArgOperand(0);
9353 const SelectionDAGTargetInfo &TSI =
DAG.getSelectionDAGInfo();
9356 if (Res.first.getNode()) {
9357 processIntegerCallValue(
I, Res.first,
false);
9370bool SelectionDAGBuilder::visitStrNLenCall(
const CallInst &
I) {
9371 const Value *Arg0 =
I.getArgOperand(0), *Arg1 =
I.getArgOperand(1);
9373 const SelectionDAGTargetInfo &TSI =
DAG.getSelectionDAGInfo();
9374 std::pair<SDValue, SDValue> Res =
9377 MachinePointerInfo(Arg0));
9378 if (Res.first.getNode()) {
9379 processIntegerCallValue(
I, Res.first,
false);
9392bool SelectionDAGBuilder::visitUnaryFloatCall(
const CallInst &
I,
9395 if (!
I.onlyReadsMemory())
9412bool SelectionDAGBuilder::visitBinaryFloatCall(
const CallInst &
I,
9415 if (!
I.onlyReadsMemory())
9428void SelectionDAGBuilder::visitCall(
const CallInst &
I) {
9430 if (
I.isInlineAsm()) {
9437 if (Function *
F =
I.getCalledFunction()) {
9438 if (
F->isDeclaration()) {
9440 if (
unsigned IID =
F->getIntrinsicID()) {
9441 visitIntrinsicCall(
I, IID);
9450 if (!
I.isNoBuiltin() && !
I.isStrictFP() && !
F->hasLocalLinkage() &&
9451 F->hasName() &&
LibInfo->getLibFunc(*
F, Func) &&
9452 LibInfo->hasOptimizedCodeGen(Func)) {
9456 if (visitMemCmpBCmpCall(
I))
9459 case LibFunc_copysign:
9460 case LibFunc_copysignf:
9461 case LibFunc_copysignl:
9464 if (
I.onlyReadsMemory()) {
9475 if (visitUnaryFloatCall(
I, ISD::FABS))
9481 if (visitBinaryFloatCall(
I, ISD::FMINNUM))
9487 if (visitBinaryFloatCall(
I, ISD::FMAXNUM))
9490 case LibFunc_fminimum_num:
9491 case LibFunc_fminimum_numf:
9492 case LibFunc_fminimum_numl:
9493 if (visitBinaryFloatCall(
I, ISD::FMINIMUMNUM))
9496 case LibFunc_fmaximum_num:
9497 case LibFunc_fmaximum_numf:
9498 case LibFunc_fmaximum_numl:
9499 if (visitBinaryFloatCall(
I, ISD::FMAXIMUMNUM))
9505 if (visitUnaryFloatCall(
I, ISD::FSIN))
9511 if (visitUnaryFloatCall(
I, ISD::FCOS))
9517 if (visitUnaryFloatCall(
I, ISD::FTAN))
9523 if (visitUnaryFloatCall(
I, ISD::FASIN))
9529 if (visitUnaryFloatCall(
I, ISD::FACOS))
9535 if (visitUnaryFloatCall(
I, ISD::FATAN))
9539 case LibFunc_atan2f:
9540 case LibFunc_atan2l:
9541 if (visitBinaryFloatCall(
I, ISD::FATAN2))
9547 if (visitUnaryFloatCall(
I, ISD::FSINH))
9553 if (visitUnaryFloatCall(
I, ISD::FCOSH))
9559 if (visitUnaryFloatCall(
I, ISD::FTANH))
9565 case LibFunc_sqrt_finite:
9566 case LibFunc_sqrtf_finite:
9567 case LibFunc_sqrtl_finite:
9568 if (visitUnaryFloatCall(
I, ISD::FSQRT))
9572 case LibFunc_floorf:
9573 case LibFunc_floorl:
9574 if (visitUnaryFloatCall(
I, ISD::FFLOOR))
9577 case LibFunc_nearbyint:
9578 case LibFunc_nearbyintf:
9579 case LibFunc_nearbyintl:
9580 if (visitUnaryFloatCall(
I, ISD::FNEARBYINT))
9586 if (visitUnaryFloatCall(
I, ISD::FCEIL))
9592 if (visitUnaryFloatCall(
I, ISD::FRINT))
9596 case LibFunc_roundf:
9597 case LibFunc_roundl:
9598 if (visitUnaryFloatCall(
I, ISD::FROUND))
9602 case LibFunc_truncf:
9603 case LibFunc_truncl:
9604 if (visitUnaryFloatCall(
I, ISD::FTRUNC))
9610 if (visitUnaryFloatCall(
I, ISD::FLOG2))
9616 if (visitUnaryFloatCall(
I, ISD::FEXP2))
9620 case LibFunc_exp10f:
9621 case LibFunc_exp10l:
9622 if (visitUnaryFloatCall(
I, ISD::FEXP10))
9626 case LibFunc_ldexpf:
9627 case LibFunc_ldexpl:
9628 if (visitBinaryFloatCall(
I, ISD::FLDEXP))
9631 case LibFunc_memcmp:
9632 if (visitMemCmpBCmpCall(
I))
9635 case LibFunc_mempcpy:
9636 if (visitMemPCpyCall(
I))
9639 case LibFunc_memchr:
9640 if (visitMemChrCall(
I))
9643 case LibFunc_strcpy:
9644 if (visitStrCpyCall(
I,
false))
9647 case LibFunc_stpcpy:
9648 if (visitStrCpyCall(
I,
true))
9651 case LibFunc_strcmp:
9652 if (visitStrCmpCall(
I))
9655 case LibFunc_strlen:
9656 if (visitStrLenCall(
I))
9659 case LibFunc_strnlen:
9660 if (visitStrNLenCall(
I))
9684 if (
I.hasDeoptState())
9701 const Value *Discriminator = PAB->Inputs[1];
9703 assert(
Key->getType()->isIntegerTy(32) &&
"Invalid ptrauth key");
9704 assert(Discriminator->getType()->isIntegerTy(64) &&
9705 "Invalid ptrauth discriminator");
9710 if (CalleeCPA->isKnownCompatibleWith(
Key, Discriminator,
9711 DAG.getDataLayout()))
9751 for (
const auto &Code : Codes)
9766 SDISelAsmOperandInfo &MatchingOpInfo,
9768 if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT)
9774 std::pair<unsigned, const TargetRegisterClass *> MatchRC =
9776 OpInfo.ConstraintVT);
9777 std::pair<unsigned, const TargetRegisterClass *> InputRC =
9779 MatchingOpInfo.ConstraintVT);
9780 const bool OutOpIsIntOrFP =
9781 OpInfo.ConstraintVT.isInteger() || OpInfo.ConstraintVT.isFloatingPoint();
9782 const bool InOpIsIntOrFP = MatchingOpInfo.ConstraintVT.isInteger() ||
9783 MatchingOpInfo.ConstraintVT.isFloatingPoint();
9784 if ((OutOpIsIntOrFP != InOpIsIntOrFP) || (MatchRC.second != InputRC.second)) {
9787 " with a matching output constraint of"
9788 " incompatible type!");
9790 MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT;
9797 SDISelAsmOperandInfo &OpInfo,
9810 const Value *OpVal = OpInfo.CallOperandVal;
9828 DL.getPrefTypeAlign(Ty),
false,
9831 Chain = DAG.
getTruncStore(Chain, Location, OpInfo.CallOperand, StackSlot,
9834 OpInfo.CallOperand = StackSlot;
9847static std::optional<unsigned>
9849 SDISelAsmOperandInfo &OpInfo,
9850 SDISelAsmOperandInfo &RefOpInfo) {
9861 return std::nullopt;
9865 unsigned AssignedReg;
9868 &
TRI, RefOpInfo.ConstraintCode, RefOpInfo.ConstraintVT);
9871 return std::nullopt;
9876 const MVT RegVT = *
TRI.legalclasstypes_begin(*RC);
9878 if (OpInfo.ConstraintVT != MVT::Other && RegVT != MVT::Untyped) {
9887 !
TRI.isTypeLegalForClass(*RC, OpInfo.ConstraintVT)) {
9892 if (RegVT.
getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) {
9897 OpInfo.CallOperand =
9898 DAG.
getNode(ISD::BITCAST,
DL, RegVT, OpInfo.CallOperand);
9899 OpInfo.ConstraintVT = RegVT;
9903 }
else if (RegVT.
isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
9906 OpInfo.CallOperand =
9907 DAG.
getNode(ISD::BITCAST,
DL, VT, OpInfo.CallOperand);
9908 OpInfo.ConstraintVT = VT;
9915 if (OpInfo.isMatchingInputConstraint())
9916 return std::nullopt;
9918 EVT ValueVT = OpInfo.ConstraintVT;
9919 if (OpInfo.ConstraintVT == MVT::Other)
9923 unsigned NumRegs = 1;
9924 if (OpInfo.ConstraintVT != MVT::Other)
9939 I = std::find(
I, RC->
end(), AssignedReg);
9940 if (
I == RC->
end()) {
9943 return {AssignedReg};
9947 for (; NumRegs; --NumRegs, ++
I) {
9948 assert(
I != RC->
end() &&
"Ran out of registers to allocate!");
9953 OpInfo.AssignedRegs =
RegsForValue(Regs, RegVT, ValueVT);
9954 return std::nullopt;
9959 const std::vector<SDValue> &AsmNodeOperands) {
9962 for (; OperandNo; --OperandNo) {
9964 unsigned OpFlag = AsmNodeOperands[CurOp]->getAsZExtVal();
9967 (
F.isRegDefKind() ||
F.isRegDefEarlyClobberKind() ||
F.isMemKind()) &&
9968 "Skipped past definitions?");
9969 CurOp +=
F.getNumOperandRegisters() + 1;
9980 explicit ExtraFlags(
const CallBase &
Call) {
9982 if (
IA->hasSideEffects())
9984 if (
IA->isAlignStack())
9991 void update(
const TargetLowering::AsmOperandInfo &OpInfo) {
10007 unsigned get()
const {
return Flags; }
10030void SelectionDAGBuilder::visitInlineAsm(
const CallBase &
Call,
10037 const TargetLowering &TLI =
DAG.getTargetLoweringInfo();
10039 DAG.getDataLayout(),
DAG.getSubtarget().getRegisterInfo(),
Call);
10043 bool HasSideEffect =
IA->hasSideEffects();
10044 ExtraFlags ExtraInfo(
Call);
10046 for (
auto &
T : TargetConstraints) {
10047 ConstraintOperands.
push_back(SDISelAsmOperandInfo(
T));
10048 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.
back();
10050 if (OpInfo.CallOperandVal)
10051 OpInfo.CallOperand =
getValue(OpInfo.CallOperandVal);
10053 if (!HasSideEffect)
10054 HasSideEffect = OpInfo.hasMemory(TLI);
10066 return emitInlineAsmError(
Call,
"constraint '" + Twine(
T.ConstraintCode) +
10067 "' expects an integer constant "
10070 ExtraInfo.update(
T);
10078 if (EmitEHLabels) {
10079 assert(EHPadBB &&
"InvokeInst must have an EHPadBB");
10083 if (IsCallBr || EmitEHLabels) {
10091 if (EmitEHLabels) {
10092 Chain = lowerStartEH(Chain, EHPadBB, BeginLabel);
10097 IA->collectAsmStrs(AsmStrs);
10100 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
10108 if (OpInfo.hasMatchingInput()) {
10109 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
10140 if (OpInfo.isIndirect &&
isFunction(OpInfo.CallOperand) &&
10143 OpInfo.isIndirect =
false;
10150 !OpInfo.isIndirect) {
10151 assert((OpInfo.isMultipleAlternative ||
10153 "Can only indirectify direct input operands!");
10159 OpInfo.CallOperandVal =
nullptr;
10162 OpInfo.isIndirect =
true;
10168 std::vector<SDValue> AsmNodeOperands;
10169 AsmNodeOperands.push_back(
SDValue());
10170 AsmNodeOperands.push_back(
DAG.getTargetExternalSymbol(
10177 AsmNodeOperands.push_back(
DAG.getMDNode(SrcLoc));
10181 AsmNodeOperands.push_back(
DAG.getTargetConstant(
10186 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
10188 SDISelAsmOperandInfo &RefOpInfo =
10189 OpInfo.isMatchingInputConstraint()
10190 ? ConstraintOperands[OpInfo.getMatchedOperand()]
10192 const auto RegError =
10195 const MachineFunction &MF =
DAG.getMachineFunction();
10197 const char *
RegName =
TRI.getName(*RegError);
10198 emitInlineAsmError(
Call,
"register '" + Twine(
RegName) +
10199 "' allocated for constraint '" +
10200 Twine(OpInfo.ConstraintCode) +
10201 "' does not match required type");
10205 auto DetectWriteToReservedRegister = [&]() {
10206 const MachineFunction &MF =
DAG.getMachineFunction();
10211 emitInlineAsmError(
Call,
"write to reserved register '" +
10220 !OpInfo.isMatchingInputConstraint())) &&
10221 "Only address as input operand is allowed.");
10223 switch (OpInfo.Type) {
10229 "Failed to convert memory constraint code to constraint id.");
10233 OpFlags.setMemConstraint(ConstraintID);
10234 AsmNodeOperands.push_back(
DAG.getTargetConstant(OpFlags,
getCurSDLoc(),
10236 AsmNodeOperands.push_back(OpInfo.CallOperand);
10241 if (OpInfo.AssignedRegs.
Regs.empty()) {
10242 emitInlineAsmError(
10243 Call,
"couldn't allocate output register for constraint '" +
10244 Twine(OpInfo.ConstraintCode) +
"'");
10248 if (DetectWriteToReservedRegister())
10262 SDValue InOperandVal = OpInfo.CallOperand;
10264 if (OpInfo.isMatchingInputConstraint()) {
10269 InlineAsm::Flag
Flag(AsmNodeOperands[CurOp]->getAsZExtVal());
10270 if (
Flag.isRegDefKind() ||
Flag.isRegDefEarlyClobberKind()) {
10271 if (OpInfo.isIndirect) {
10273 emitInlineAsmError(
Call,
"inline asm not supported yet: "
10274 "don't know how to handle tied "
10275 "indirect register inputs");
10280 MachineFunction &MF =
DAG.getMachineFunction();
10285 MVT RegVT =
R->getSimpleValueType(0);
10286 const TargetRegisterClass *RC =
10289 :
TRI.getMinimalPhysRegClass(TiedReg);
10290 for (
unsigned i = 0, e =
Flag.getNumOperandRegisters(); i != e; ++i)
10293 RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.
getValueType());
10297 MatchedRegs.getCopyToRegs(InOperandVal,
DAG, dl, Chain, &Glue, &
Call);
10299 OpInfo.getMatchedOperand(), dl,
DAG,
10304 assert(
Flag.isMemKind() &&
"Unknown matching constraint!");
10305 assert(
Flag.getNumOperandRegisters() == 1 &&
10306 "Unexpected number of operands");
10309 Flag.clearMemConstraint();
10310 Flag.setMatchingOp(OpInfo.getMatchedOperand());
10311 AsmNodeOperands.push_back(
DAG.getTargetConstant(
10313 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
10324 std::vector<SDValue>
Ops;
10330 emitInlineAsmError(
Call,
"value out of range for constraint '" +
10331 Twine(OpInfo.ConstraintCode) +
"'");
10335 emitInlineAsmError(
Call,
10336 "invalid operand for inline asm constraint '" +
10337 Twine(OpInfo.ConstraintCode) +
"'");
10343 AsmNodeOperands.push_back(
DAG.getTargetConstant(
10350 assert((OpInfo.isIndirect ||
10352 "Operand must be indirect to be a mem!");
10355 "Memory operands expect pointer values");
10360 "Failed to convert memory constraint code to constraint id.");
10364 ResOpType.setMemConstraint(ConstraintID);
10365 AsmNodeOperands.push_back(
DAG.getTargetConstant(ResOpType,
10368 AsmNodeOperands.push_back(InOperandVal);
10376 "Failed to convert memory constraint code to constraint id.");
10380 SDValue AsmOp = InOperandVal;
10384 AsmOp =
DAG.getTargetGlobalAddress(GA->getGlobal(),
getCurSDLoc(),
10390 ResOpType.setMemConstraint(ConstraintID);
10392 AsmNodeOperands.push_back(
10395 AsmNodeOperands.push_back(AsmOp);
10401 emitInlineAsmError(
Call,
"unknown asm constraint '" +
10402 Twine(OpInfo.ConstraintCode) +
"'");
10407 if (OpInfo.isIndirect) {
10408 emitInlineAsmError(
10409 Call,
"Don't know how to handle indirect register inputs yet "
10410 "for constraint '" +
10411 Twine(OpInfo.ConstraintCode) +
"'");
10416 if (OpInfo.AssignedRegs.
Regs.empty()) {
10417 emitInlineAsmError(
Call,
10418 "couldn't allocate input reg for constraint '" +
10419 Twine(OpInfo.ConstraintCode) +
"'");
10423 if (DetectWriteToReservedRegister())
10432 0, dl,
DAG, AsmNodeOperands);
10438 if (!OpInfo.AssignedRegs.
Regs.empty())
10448 if (Glue.
getNode()) AsmNodeOperands.push_back(Glue);
10450 unsigned ISDOpc = IsCallBr ? ISD::INLINEASM_BR : ISD::INLINEASM;
10452 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands);
10464 ResultTypes = StructResult->elements();
10465 else if (!CallResultType->
isVoidTy())
10466 ResultTypes =
ArrayRef(CallResultType);
10468 auto CurResultType = ResultTypes.
begin();
10469 auto handleRegAssign = [&](
SDValue V) {
10470 assert(CurResultType != ResultTypes.
end() &&
"Unexpected value");
10471 assert((*CurResultType)->isSized() &&
"Unexpected unsized type");
10472 EVT ResultVT = TLI.
getValueType(
DAG.getDataLayout(), *CurResultType);
10484 if (ResultVT !=
V.getValueType() &&
10487 else if (ResultVT !=
V.getValueType() && ResultVT.
isInteger() &&
10488 V.getValueType().isInteger()) {
10494 assert(ResultVT ==
V.getValueType() &&
"Asm result value mismatch!");
10500 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
10504 if (OpInfo.AssignedRegs.
Regs.empty())
10507 switch (OpInfo.ConstraintType) {
10511 Chain, &Glue, &
Call);
10523 assert(
false &&
"Unexpected unknown constraint");
10527 if (OpInfo.isIndirect) {
10528 const Value *
Ptr = OpInfo.CallOperandVal;
10529 assert(
Ptr &&
"Expected value CallOperandVal for indirect asm operand");
10531 MachinePointerInfo(
Ptr));
10538 handleRegAssign(V);
10540 handleRegAssign(Val);
10546 if (!ResultValues.
empty()) {
10547 assert(CurResultType == ResultTypes.
end() &&
10548 "Mismatch in number of ResultTypes");
10550 "Mismatch in number of output operands in asm result");
10553 DAG.getVTList(ResultVTs), ResultValues);
10558 if (!OutChains.
empty())
10561 if (EmitEHLabels) {
10566 if (ResultValues.
empty() || HasSideEffect || !OutChains.
empty() || IsCallBr ||
10568 DAG.setRoot(Chain);
10571void SelectionDAGBuilder::emitInlineAsmError(
const CallBase &
Call,
10572 const Twine &Message) {
10573 LLVMContext &Ctx = *
DAG.getContext();
10577 const TargetLowering &TLI =
DAG.getTargetLoweringInfo();
10581 if (ValueVTs.
empty())
10585 for (
const EVT &VT : ValueVTs)
10586 Ops.push_back(
DAG.getUNDEF(VT));
10591void SelectionDAGBuilder::visitVAStart(
const CallInst &
I) {
10595 DAG.getSrcValue(
I.getArgOperand(0))));
10598void SelectionDAGBuilder::visitVAArg(
const VAArgInst &
I) {
10599 const TargetLowering &TLI =
DAG.getTargetLoweringInfo();
10600 const DataLayout &
DL =
DAG.getDataLayout();
10604 DL.getABITypeAlign(
I.getType()).value());
10605 DAG.setRoot(
V.getValue(1));
10607 if (
I.getType()->isPointerTy())
10608 V =
DAG.getPtrExtOrTrunc(
10613void SelectionDAGBuilder::visitVAEnd(
const CallInst &
I) {
10617 DAG.getSrcValue(
I.getArgOperand(0))));
10620void SelectionDAGBuilder::visitVACopy(
const CallInst &
I) {
10625 DAG.getSrcValue(
I.getArgOperand(0)),
10626 DAG.getSrcValue(
I.getArgOperand(1))));
10632 std::optional<ConstantRange> CR =
getRange(
I);
10634 if (!CR || CR->isFullSet() || CR->isEmptySet() || CR->isUpperWrapped())
10637 APInt Lo = CR->getUnsignedMin();
10638 if (!
Lo.isMinValue())
10641 APInt Hi = CR->getUnsignedMax();
10642 unsigned Bits = std::max(
Hi.getActiveBits(),
10650 DAG.getValueType(SmallVT));
10651 unsigned NumVals =
Op.getNode()->getNumValues();
10657 Ops.push_back(ZExt);
10658 for (
unsigned I = 1;
I != NumVals; ++
I)
10659 Ops.push_back(
Op.getValue(
I));
10661 return DAG.getMergeValues(
Ops,
SL);
10672 unsigned ArgIdx,
unsigned NumArgs,
SDValue Callee,
Type *ReturnTy,
10675 Args.reserve(NumArgs);
10679 for (
unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs;
10680 ArgI != ArgE; ++ArgI) {
10681 const Value *V =
Call->getOperand(ArgI);
10683 assert(!V->getType()->isEmptyTy() &&
"Empty type passed to intrinsic.");
10686 Entry.setAttributes(
Call, ArgI);
10687 Args.push_back(Entry);
10692 .
setCallee(
Call->getCallingConv(), ReturnTy, Callee, std::move(Args),
10721 for (
unsigned I = StartIdx;
I <
Call.arg_size();
I++) {
10730 Ops.push_back(Builder.getValue(
Call.getArgOperand(
I)));
10736void SelectionDAGBuilder::visitStackmap(
const CallInst &CI) {
10762 Ops.push_back(Chain);
10763 Ops.push_back(InGlue);
10770 assert(
ID.getValueType() == MVT::i64);
10772 DAG.getTargetConstant(
ID->getAsZExtVal(),
DL,
ID.getValueType());
10773 Ops.push_back(IDConst);
10779 Ops.push_back(ShadConst);
10785 SDVTList NodeTys =
DAG.getVTList(MVT::Other, MVT::Glue);
10786 Chain =
DAG.getNode(ISD::STACKMAP,
DL, NodeTys,
Ops);
10789 Chain =
DAG.getCALLSEQ_END(Chain, 0, 0, InGlue,
DL);
10794 DAG.setRoot(Chain);
10797 FuncInfo.MF->getFrameInfo().setHasStackMap();
10801void SelectionDAGBuilder::visitPatchpoint(
const CallBase &CB,
10818 Callee =
DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl,
10821 Callee =
DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(),
10822 SDLoc(SymbolicCallee),
10823 SymbolicCallee->getValueType(0));
10833 "Not enough arguments provided to the patchpoint intrinsic");
10836 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs;
10840 TargetLowering::CallLoweringInfo CLI(
DAG);
10845 SDNode *CallEnd =
Result.second.getNode();
10846 if (CallEnd->
getOpcode() == ISD::EH_LABEL)
10854 "Expected a callseq node.");
10856 bool HasGlue =
Call->getGluedNode();
10881 Ops.push_back(Callee);
10887 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs;
10888 Ops.push_back(
DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32));
10891 Ops.push_back(
DAG.getTargetConstant((
unsigned)CC, dl, MVT::i32));
10896 for (
unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i !=
e; ++i)
10907 if (IsAnyRegCC && HasDef) {
10909 const TargetLowering &TLI =
DAG.getTargetLoweringInfo();
10912 assert(ValueVTs.
size() == 1 &&
"Expected only one return value type.");
10917 NodeTys =
DAG.getVTList(ValueVTs);
10919 NodeTys =
DAG.getVTList(MVT::Other, MVT::Glue);
10922 SDValue PPV =
DAG.getNode(ISD::PATCHPOINT, dl, NodeTys,
Ops);
10936 if (IsAnyRegCC && HasDef) {
10939 DAG.ReplaceAllUsesOfValuesWith(From, To, 2);
10945 FuncInfo.MF->getFrameInfo().setHasPatchPoint();
10948void SelectionDAGBuilder::visitVectorReduce(
const CallInst &
I,
10950 const TargetLowering &TLI =
DAG.getTargetLoweringInfo();
10953 if (
I.arg_size() > 1)
10958 SDNodeFlags SDFlags;
10962 switch (Intrinsic) {
10963 case Intrinsic::vector_reduce_fadd:
10966 DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2, SDFlags),
10969 Res =
DAG.getNode(ISD::VECREDUCE_SEQ_FADD, dl, VT, Op1, Op2, SDFlags);
10971 case Intrinsic::vector_reduce_fmul:
10974 DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2, SDFlags),
10977 Res =
DAG.getNode(ISD::VECREDUCE_SEQ_FMUL, dl, VT, Op1, Op2, SDFlags);
10979 case Intrinsic::vector_reduce_add:
10980 Res =
DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1);
10982 case Intrinsic::vector_reduce_mul:
10983 Res =
DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1);
10985 case Intrinsic::vector_reduce_and:
10986 Res =
DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1);
10988 case Intrinsic::vector_reduce_or:
10989 Res =
DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1);
10991 case Intrinsic::vector_reduce_xor:
10992 Res =
DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1);
10994 case Intrinsic::vector_reduce_smax:
10995 Res =
DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1);
10997 case Intrinsic::vector_reduce_smin:
10998 Res =
DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1);
11000 case Intrinsic::vector_reduce_umax:
11001 Res =
DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1);
11003 case Intrinsic::vector_reduce_umin:
11004 Res =
DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1);
11006 case Intrinsic::vector_reduce_fmax:
11007 Res =
DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1, SDFlags);
11009 case Intrinsic::vector_reduce_fmin:
11010 Res =
DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1, SDFlags);
11012 case Intrinsic::vector_reduce_fmaximum:
11013 Res =
DAG.getNode(ISD::VECREDUCE_FMAXIMUM, dl, VT, Op1, SDFlags);
11015 case Intrinsic::vector_reduce_fminimum:
11016 Res =
DAG.getNode(ISD::VECREDUCE_FMINIMUM, dl, VT, Op1, SDFlags);
11029 Attrs.push_back(Attribute::SExt);
11031 Attrs.push_back(Attribute::ZExt);
11033 Attrs.push_back(Attribute::InReg);
11035 return AttributeList::get(CLI.
RetTy->
getContext(), AttributeList::ReturnIndex,
11043std::pair<SDValue, SDValue>
11057 "Only supported for non-aggregate returns");
11060 for (
Type *Ty : RetOrigTys)
11069 RetOrigTys.
swap(OldRetOrigTys);
11070 RetVTs.
swap(OldRetVTs);
11071 Offsets.swap(OldOffsets);
11073 for (
size_t i = 0, e = OldRetVTs.
size(); i != e; ++i) {
11074 EVT RetVT = OldRetVTs[i];
11078 unsigned RegisterVTByteSZ = RegisterVT.
getSizeInBits() / 8;
11079 RetOrigTys.
append(NumRegs, OldRetOrigTys[i]);
11080 RetVTs.
append(NumRegs, RegisterVT);
11081 for (
unsigned j = 0; j != NumRegs; ++j)
11094 int DemoteStackIdx = -100;
11107 ArgListEntry Entry(DemoteStackSlot, StackSlotPtrType);
11108 Entry.IsSRet =
true;
11109 Entry.Alignment = Alignment;
11121 for (
unsigned I = 0, E = RetVTs.
size();
I != E; ++
I) {
11123 if (NeedsRegBlock) {
11124 Flags.setInConsecutiveRegs();
11125 if (
I == RetVTs.
size() - 1)
11126 Flags.setInConsecutiveRegsLast();
11128 EVT VT = RetVTs[
I];
11132 for (
unsigned i = 0; i != NumRegs; ++i) {
11136 Ret.Flags.setPointer();
11137 Ret.Flags.setPointerAddrSpace(
11141 Ret.Flags.setSExt();
11143 Ret.Flags.setZExt();
11145 Ret.Flags.setInReg();
11146 CLI.
Ins.push_back(Ret);
11155 if (Arg.IsSwiftError) {
11161 CLI.
Ins.push_back(Ret);
11169 for (
unsigned i = 0, e = Args.size(); i != e; ++i) {
11173 Type *FinalType = Args[i].Ty;
11174 if (Args[i].IsByVal)
11175 FinalType = Args[i].IndirectType;
11178 for (
unsigned Value = 0, NumValues = OrigArgTys.
size();
Value != NumValues;
11181 Type *ArgTy = OrigArgTy;
11182 if (Args[i].Ty != Args[i].OrigTy) {
11183 assert(
Value == 0 &&
"Only supported for non-aggregate arguments");
11184 ArgTy = Args[i].Ty;
11189 Args[i].Node.getResNo() +
Value);
11196 Flags.setOrigAlign(OriginalAlignment);
11201 Flags.setPointer();
11204 if (Args[i].IsZExt)
11206 if (Args[i].IsSExt)
11208 if (Args[i].IsNoExt)
11210 if (Args[i].IsInReg) {
11217 Flags.setHvaStart();
11223 if (Args[i].IsSRet)
11225 if (Args[i].IsSwiftSelf)
11226 Flags.setSwiftSelf();
11227 if (Args[i].IsSwiftAsync)
11228 Flags.setSwiftAsync();
11229 if (Args[i].IsSwiftError)
11230 Flags.setSwiftError();
11231 if (Args[i].IsCFGuardTarget)
11232 Flags.setCFGuardTarget();
11233 if (Args[i].IsByVal)
11235 if (Args[i].IsByRef)
11237 if (Args[i].IsPreallocated) {
11238 Flags.setPreallocated();
11246 if (Args[i].IsInAlloca) {
11247 Flags.setInAlloca();
11256 if (Args[i].IsByVal || Args[i].IsInAlloca || Args[i].IsPreallocated) {
11257 unsigned FrameSize =
DL.getTypeAllocSize(Args[i].IndirectType);
11258 Flags.setByValSize(FrameSize);
11261 if (
auto MA = Args[i].Alignment)
11265 }
else if (
auto MA = Args[i].Alignment) {
11268 MemAlign = OriginalAlignment;
11270 Flags.setMemAlign(MemAlign);
11271 if (Args[i].IsNest)
11274 Flags.setInConsecutiveRegs();
11277 unsigned NumParts =
11282 if (Args[i].IsSExt)
11284 else if (Args[i].IsZExt)
11289 if (Args[i].IsReturned && !
Op.getValueType().isVector() &&
11294 Args[i].Ty->getPointerAddressSpace())) &&
11295 RetVTs.
size() == NumValues &&
"unexpected use of 'returned'");
11308 CLI.
RetZExt == Args[i].IsZExt))
11309 Flags.setReturned();
11315 for (
unsigned j = 0; j != NumParts; ++j) {
11321 j * Parts[j].
getValueType().getStoreSize().getKnownMinValue());
11322 if (NumParts > 1 && j == 0)
11326 if (j == NumParts - 1)
11330 CLI.
Outs.push_back(MyFlags);
11331 CLI.
OutVals.push_back(Parts[j]);
11334 if (NeedsRegBlock &&
Value == NumValues - 1)
11335 CLI.
Outs[CLI.
Outs.size() - 1].Flags.setInConsecutiveRegsLast();
11347 "LowerCall didn't return a valid chain!");
11349 "LowerCall emitted a return value for a tail call!");
11351 "LowerCall didn't emit the correct number of values!");
11363 for (
unsigned i = 0, e = CLI.
Ins.size(); i != e; ++i) {
11364 assert(InVals[i].
getNode() &&
"LowerCall emitted a null value!");
11365 assert(
EVT(CLI.
Ins[i].VT) == InVals[i].getValueType() &&
11366 "LowerCall emitted a value with the wrong type!");
11376 unsigned NumValues = RetVTs.
size();
11377 ReturnValues.
resize(NumValues);
11384 for (
unsigned i = 0; i < NumValues; ++i) {
11391 DemoteStackIdx, Offsets[i]),
11393 ReturnValues[i] = L;
11394 Chains[i] = L.getValue(1);
11401 std::optional<ISD::NodeType> AssertOp;
11406 unsigned CurReg = 0;
11407 for (
EVT VT : RetVTs) {
11413 CLI.
DAG, CLI.
DL, &InVals[CurReg], NumRegs, RegisterVT, VT,
nullptr,
11421 if (ReturnValues.
empty())
11427 return std::make_pair(Res, CLI.
Chain);
11444 if (
N->getNumValues() == 1) {
11452 "Lowering returned the wrong number of results!");
11455 for (
unsigned I = 0, E =
N->getNumValues();
I != E; ++
I)
11469 "Copy from a reg to the same reg!");
11470 assert(!Reg.isPhysical() &&
"Is a physreg");
11476 RegsForValue RFV(V->getContext(), TLI,
DAG.getDataLayout(), Reg, V->getType(),
11481 auto PreferredExtendIt =
FuncInfo.PreferredExtendType.find(V);
11482 if (PreferredExtendIt !=
FuncInfo.PreferredExtendType.end())
11483 ExtendType = PreferredExtendIt->second;
11486 PendingExports.push_back(Chain);
11498 return A->use_empty();
11500 const BasicBlock &Entry =
A->getParent()->front();
11501 for (
const User *U :
A->users())
11510 std::pair<const AllocaInst *, const StoreInst *>>;
11522 enum StaticAllocaInfo {
Unknown, Clobbered, Elidable };
11524 unsigned NumArgs = FuncInfo->
Fn->
arg_size();
11525 StaticAllocas.
reserve(NumArgs * 2);
11527 auto GetInfoIfStaticAlloca = [&](
const Value *V) -> StaticAllocaInfo * {
11530 V = V->stripPointerCasts();
11532 if (!AI || !AI->isStaticAlloca() || !FuncInfo->
StaticAllocaMap.count(AI))
11535 return &Iter.first->second;
11552 if (
I.isDebugOrPseudoInst())
11556 for (
const Use &U :
I.operands()) {
11557 if (StaticAllocaInfo *
Info = GetInfoIfStaticAlloca(U))
11558 *
Info = StaticAllocaInfo::Clobbered;
11564 if (StaticAllocaInfo *
Info = GetInfoIfStaticAlloca(
SI->getValueOperand()))
11565 *
Info = StaticAllocaInfo::Clobbered;
11568 const Value *Dst =
SI->getPointerOperand()->stripPointerCasts();
11569 StaticAllocaInfo *
Info = GetInfoIfStaticAlloca(Dst);
11575 if (*
Info != StaticAllocaInfo::Unknown)
11583 const Value *Val =
SI->getValueOperand()->stripPointerCasts();
11585 if (!Arg || Arg->hasPassPointeeByValueCopyAttr() ||
11589 !
DL.typeSizeEqualsStoreSize(Arg->
getType()) ||
11590 ArgCopyElisionCandidates.count(Arg)) {
11591 *
Info = StaticAllocaInfo::Clobbered;
11595 LLVM_DEBUG(
dbgs() <<
"Found argument copy elision candidate: " << *AI
11599 *
Info = StaticAllocaInfo::Elidable;
11600 ArgCopyElisionCandidates.insert({Arg, {AI,
SI}});
11605 if (ArgCopyElisionCandidates.size() == NumArgs)
11629 auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg);
11630 assert(ArgCopyIter != ArgCopyElisionCandidates.end());
11631 const AllocaInst *AI = ArgCopyIter->second.first;
11632 int FixedIndex = FINode->getIndex();
11634 int OldIndex = AllocaIndex;
11638 dbgs() <<
" argument copy elision failed due to bad fixed stack "
11644 LLVM_DEBUG(
dbgs() <<
" argument copy elision failed: alignment of alloca "
11645 "greater than stack argument alignment ("
11646 <<
DebugStr(RequiredAlignment) <<
" vs "
11654 dbgs() <<
"Eliding argument copy from " << Arg <<
" to " << *AI <<
'\n'
11655 <<
" Replacing frame index " << OldIndex <<
" with " << FixedIndex
11661 AllocaIndex = FixedIndex;
11662 ArgCopyElisionFrameIndexMap.
insert({OldIndex, FixedIndex});
11663 for (
SDValue ArgVal : ArgVals)
11667 const StoreInst *
SI = ArgCopyIter->second.second;
11680void SelectionDAGISel::LowerArguments(
const Function &
F) {
11681 SelectionDAG &DAG =
SDB->DAG;
11682 SDLoc dl =
SDB->getCurSDLoc();
11687 if (
F.hasFnAttribute(Attribute::Naked))
11692 MVT ValueVT =
TLI->getPointerTy(
DL,
DL.getAllocaAddrSpace());
11694 ISD::ArgFlagsTy
Flags;
11696 MVT RegisterVT =
TLI->getRegisterType(*DAG.
getContext(), ValueVT);
11697 ISD::InputArg RetArg(Flags, RegisterVT, ValueVT,
F.getReturnType(),
true,
11699 Ins.push_back(RetArg);
11707 ArgCopyElisionCandidates);
11710 for (
const Argument &Arg :
F.args()) {
11711 unsigned ArgNo = Arg.getArgNo();
11714 bool isArgValueUsed = !Arg.
use_empty();
11715 unsigned PartBase = 0;
11717 if (Arg.hasAttribute(Attribute::ByVal))
11718 FinalType = Arg.getParamByValType();
11719 bool NeedsRegBlock =
TLI->functionArgumentNeedsConsecutiveRegisters(
11720 FinalType,
F.getCallingConv(),
F.isVarArg(),
DL);
11721 for (
unsigned Value = 0, NumValues =
Types.size();
Value != NumValues;
11724 EVT VT =
TLI->getValueType(
DL, ArgTy);
11725 ISD::ArgFlagsTy
Flags;
11728 Flags.setPointer();
11731 if (Arg.hasAttribute(Attribute::ZExt))
11733 if (Arg.hasAttribute(Attribute::SExt))
11735 if (Arg.hasAttribute(Attribute::InReg)) {
11742 Flags.setHvaStart();
11748 if (Arg.hasAttribute(Attribute::StructRet))
11750 if (Arg.hasAttribute(Attribute::SwiftSelf))
11751 Flags.setSwiftSelf();
11752 if (Arg.hasAttribute(Attribute::SwiftAsync))
11753 Flags.setSwiftAsync();
11754 if (Arg.hasAttribute(Attribute::SwiftError))
11755 Flags.setSwiftError();
11756 if (Arg.hasAttribute(Attribute::ByVal))
11758 if (Arg.hasAttribute(Attribute::ByRef))
11760 if (Arg.hasAttribute(Attribute::InAlloca)) {
11761 Flags.setInAlloca();
11769 if (Arg.hasAttribute(Attribute::Preallocated)) {
11770 Flags.setPreallocated();
11782 const Align OriginalAlignment(
11783 TLI->getABIAlignmentForCallingConv(ArgTy,
DL));
11784 Flags.setOrigAlign(OriginalAlignment);
11787 Type *ArgMemTy =
nullptr;
11788 if (
Flags.isByVal() ||
Flags.isInAlloca() ||
Flags.isPreallocated() ||
11791 ArgMemTy = Arg.getPointeeInMemoryValueType();
11793 uint64_t MemSize =
DL.getTypeAllocSize(ArgMemTy);
11798 if (
auto ParamAlign = Arg.getParamStackAlign())
11799 MemAlign = *ParamAlign;
11800 else if ((ParamAlign = Arg.getParamAlign()))
11801 MemAlign = *ParamAlign;
11803 MemAlign =
TLI->getByValTypeAlignment(ArgMemTy,
DL);
11804 if (
Flags.isByRef())
11805 Flags.setByRefSize(MemSize);
11807 Flags.setByValSize(MemSize);
11808 }
else if (
auto ParamAlign = Arg.getParamStackAlign()) {
11809 MemAlign = *ParamAlign;
11811 MemAlign = OriginalAlignment;
11813 Flags.setMemAlign(MemAlign);
11815 if (Arg.hasAttribute(Attribute::Nest))
11818 Flags.setInConsecutiveRegs();
11819 if (ArgCopyElisionCandidates.count(&Arg))
11820 Flags.setCopyElisionCandidate();
11821 if (Arg.hasAttribute(Attribute::Returned))
11822 Flags.setReturned();
11824 MVT RegisterVT =
TLI->getRegisterTypeForCallingConv(
11825 *
CurDAG->getContext(),
F.getCallingConv(), VT);
11826 unsigned NumRegs =
TLI->getNumRegistersForCallingConv(
11827 *
CurDAG->getContext(),
F.getCallingConv(), VT);
11828 for (
unsigned i = 0; i != NumRegs; ++i) {
11832 ISD::InputArg MyFlags(
11833 Flags, RegisterVT, VT, ArgTy, isArgValueUsed, ArgNo,
11835 if (NumRegs > 1 && i == 0)
11836 MyFlags.Flags.setSplit();
11839 MyFlags.Flags.setOrigAlign(
Align(1));
11840 if (i == NumRegs - 1)
11841 MyFlags.Flags.setSplitEnd();
11843 Ins.push_back(MyFlags);
11845 if (NeedsRegBlock &&
Value == NumValues - 1)
11846 Ins[
Ins.size() - 1].Flags.setInConsecutiveRegsLast();
11853 SDValue NewRoot =
TLI->LowerFormalArguments(
11854 DAG.
getRoot(),
F.getCallingConv(),
F.isVarArg(), Ins, dl, DAG, InVals);
11858 "LowerFormalArguments didn't return a valid chain!");
11860 "LowerFormalArguments didn't emit the correct number of values!");
11862 for (
unsigned i = 0, e =
Ins.size(); i != e; ++i) {
11864 "LowerFormalArguments emitted a null value!");
11866 "LowerFormalArguments emitted a value with the wrong type!");
11878 MVT VT =
TLI->getPointerTy(
DL,
DL.getAllocaAddrSpace());
11879 MVT RegVT =
TLI->getRegisterType(*
CurDAG->getContext(), VT);
11880 std::optional<ISD::NodeType> AssertOp;
11883 F.getCallingConv(), AssertOp);
11885 MachineFunction&
MF =
SDB->DAG.getMachineFunction();
11886 MachineRegisterInfo&
RegInfo =
MF.getRegInfo();
11888 RegInfo.createVirtualRegister(
TLI->getRegClassFor(RegVT));
11889 FuncInfo->DemoteRegister = SRetReg;
11891 SDB->DAG.getCopyToReg(NewRoot,
SDB->getCurSDLoc(), SRetReg, ArgValue);
11899 DenseMap<int, int> ArgCopyElisionFrameIndexMap;
11900 for (
const Argument &Arg :
F.args()) {
11904 unsigned NumValues = ValueVTs.
size();
11905 if (NumValues == 0)
11912 if (Ins[i].
Flags.isCopyElisionCandidate()) {
11913 unsigned NumParts = 0;
11914 for (EVT VT : ValueVTs)
11915 NumParts +=
TLI->getNumRegistersForCallingConv(*
CurDAG->getContext(),
11916 F.getCallingConv(), VT);
11920 ArrayRef(&InVals[i], NumParts), ArgHasUses);
11925 bool isSwiftErrorArg =
11926 TLI->supportSwiftError() &&
11927 Arg.hasAttribute(Attribute::SwiftError);
11928 if (!ArgHasUses && !isSwiftErrorArg) {
11929 SDB->setUnusedArgValue(&Arg, InVals[i]);
11932 if (FrameIndexSDNode *FI =
11934 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
11937 for (
unsigned Val = 0; Val != NumValues; ++Val) {
11938 EVT VT = ValueVTs[Val];
11939 MVT PartVT =
TLI->getRegisterTypeForCallingConv(*
CurDAG->getContext(),
11940 F.getCallingConv(), VT);
11941 unsigned NumParts =
TLI->getNumRegistersForCallingConv(
11942 *
CurDAG->getContext(),
F.getCallingConv(), VT);
11947 if (ArgHasUses || isSwiftErrorArg) {
11948 std::optional<ISD::NodeType> AssertOp;
11949 if (Arg.hasAttribute(Attribute::SExt))
11951 else if (Arg.hasAttribute(Attribute::ZExt))
11956 NewRoot,
F.getCallingConv(), AssertOp);
11959 if (NoFPClass !=
fcNone) {
11961 static_cast<uint64_t
>(NoFPClass), dl, MVT::i32);
11963 OutVal, SDNoFPClass);
11972 if (ArgValues.
empty())
11976 if (FrameIndexSDNode *FI =
11978 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
11981 SDB->getCurSDLoc());
11983 SDB->setValue(&Arg, Res);
11993 if (LoadSDNode *LNode =
11995 if (FrameIndexSDNode *FI =
11997 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
12025 FuncInfo->InitializeRegForValue(&Arg);
12026 SDB->CopyToExportRegsIfNeeded(&Arg);
12030 if (!Chains.
empty()) {
12037 assert(i == InVals.
size() &&
"Argument register count mismatch!");
12041 if (!ArgCopyElisionFrameIndexMap.
empty()) {
12042 for (MachineFunction::VariableDbgInfo &VI :
12043 MF->getInStackSlotVariableDbgInfo()) {
12044 auto I = ArgCopyElisionFrameIndexMap.
find(
VI.getStackSlot());
12045 if (
I != ArgCopyElisionFrameIndexMap.
end())
12046 VI.updateStackSlot(
I->second);
12061SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(
const BasicBlock *LLVMBB) {
12062 const TargetLowering &TLI =
DAG.getTargetLoweringInfo();
12064 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
12070 MachineBasicBlock *SuccMBB =
FuncInfo.getMBB(SuccBB);
12074 if (!SuccsHandled.
insert(SuccMBB).second)
12082 for (
const PHINode &PN : SuccBB->phis()) {
12084 if (PN.use_empty())
12088 if (PN.getType()->isEmptyTy())
12092 const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB);
12097 RegOut =
FuncInfo.CreateRegs(&PN);
12115 "Didn't codegen value into a register!??");
12125 for (EVT VT : ValueVTs) {
12127 for (
unsigned i = 0; i != NumRegisters; ++i)
12129 Reg += NumRegisters;
12149void SelectionDAGBuilder::updateDAGForMaybeTailCall(
SDValue MaybeTC) {
12151 if (MaybeTC.
getNode() !=
nullptr)
12152 DAG.setRoot(MaybeTC);
12157void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W,
Value *
Cond,
12160 MachineFunction *CurMF =
FuncInfo.MF;
12161 MachineBasicBlock *NextMBB =
nullptr;
12166 unsigned Size =
W.LastCluster -
W.FirstCluster + 1;
12168 BranchProbabilityInfo *BPI =
FuncInfo.BPI;
12170 if (
Size == 2 &&
W.MBB == SwitchMBB) {
12178 CaseCluster &
Small = *
W.FirstCluster;
12179 CaseCluster &
Big = *
W.LastCluster;
12183 const APInt &SmallValue =
Small.Low->getValue();
12184 const APInt &BigValue =
Big.Low->getValue();
12187 APInt CommonBit = BigValue ^ SmallValue;
12194 DAG.getConstant(CommonBit,
DL, VT));
12196 DL, MVT::i1,
Or,
DAG.getConstant(BigValue | SmallValue,
DL, VT),
12202 addSuccessorWithProb(SwitchMBB,
Small.MBB,
Small.Prob +
Big.Prob);
12204 addSuccessorWithProb(
12205 SwitchMBB, DefaultMBB,
12209 addSuccessorWithProb(SwitchMBB, DefaultMBB);
12216 BrCond =
DAG.getNode(ISD::BR,
DL, MVT::Other, BrCond,
12217 DAG.getBasicBlock(DefaultMBB));
12219 DAG.setRoot(BrCond);
12231 [](
const CaseCluster &a,
const CaseCluster &b) {
12232 return a.Prob != b.Prob ?
12234 a.Low->getValue().slt(b.Low->getValue());
12241 if (
I->Prob >
W.LastCluster->Prob)
12243 if (
I->Kind ==
CC_Range &&
I->MBB == NextMBB) {
12251 BranchProbability DefaultProb =
W.DefaultProb;
12252 BranchProbability UnhandledProbs = DefaultProb;
12254 UnhandledProbs +=
I->Prob;
12256 MachineBasicBlock *CurMBB =
W.MBB;
12258 bool FallthroughUnreachable =
false;
12259 MachineBasicBlock *Fallthrough;
12260 if (
I ==
W.LastCluster) {
12262 Fallthrough = DefaultMBB;
12267 CurMF->
insert(BBI, Fallthrough);
12271 UnhandledProbs -=
I->Prob;
12276 JumpTableHeader *JTH = &
SL->JTCases[
I->JTCasesIndex].first;
12277 SwitchCG::JumpTable *
JT = &
SL->JTCases[
I->JTCasesIndex].second;
12280 MachineBasicBlock *JumpMBB =
JT->MBB;
12281 CurMF->
insert(BBI, JumpMBB);
12283 auto JumpProb =
I->Prob;
12284 auto FallthroughProb = UnhandledProbs;
12292 if (*SI == DefaultMBB) {
12293 JumpProb += DefaultProb / 2;
12294 FallthroughProb -= DefaultProb / 2;
12312 if (FallthroughUnreachable) {
12319 addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb);
12320 addSuccessorWithProb(CurMBB, JumpMBB, JumpProb);
12326 JT->Default = Fallthrough;
12329 if (CurMBB == SwitchMBB) {
12337 BitTestBlock *BTB = &
SL->BitTestCases[
I->BTCasesIndex];
12340 for (BitTestCase &BTC : BTB->
Cases)
12352 BTB->
Prob += DefaultProb / 2;
12356 if (FallthroughUnreachable)
12360 if (CurMBB == SwitchMBB) {
12367 const Value *
RHS, *
LHS, *MHS;
12369 if (
I->Low ==
I->High) {
12384 if (FallthroughUnreachable)
12388 CaseBlock CB(CC,
LHS,
RHS, MHS,
I->MBB, Fallthrough, CurMBB,
12391 if (CurMBB == SwitchMBB)
12394 SL->SwitchCases.push_back(CB);
12399 CurMBB = Fallthrough;
12403void SelectionDAGBuilder::splitWorkItem(
SwitchWorkList &WorkList,
12404 const SwitchWorkListItem &W,
12407 assert(
W.FirstCluster->Low->getValue().slt(
W.LastCluster->Low->getValue()) &&
12408 "Clusters not sorted?");
12409 assert(
W.LastCluster -
W.FirstCluster + 1 >= 2 &&
"Too small to split!");
12411 auto [LastLeft, FirstRight, LeftProb, RightProb] =
12412 SL->computeSplitWorkItemInfo(W);
12417 assert(PivotCluster >
W.FirstCluster);
12418 assert(PivotCluster <=
W.LastCluster);
12423 const ConstantInt *Pivot = PivotCluster->Low;
12432 MachineBasicBlock *LeftMBB;
12433 if (FirstLeft == LastLeft && FirstLeft->Kind ==
CC_Range &&
12434 FirstLeft->Low ==
W.GE &&
12435 (FirstLeft->High->getValue() + 1LL) == Pivot->
getValue()) {
12436 LeftMBB = FirstLeft->MBB;
12438 LeftMBB =
FuncInfo.MF->CreateMachineBasicBlock(
W.MBB->getBasicBlock());
12439 FuncInfo.MF->insert(BBI, LeftMBB);
12441 {LeftMBB, FirstLeft, LastLeft,
W.GE, Pivot,
W.DefaultProb / 2});
12449 MachineBasicBlock *RightMBB;
12450 if (FirstRight == LastRight && FirstRight->Kind ==
CC_Range &&
12451 W.LT && (FirstRight->High->getValue() + 1ULL) ==
W.LT->getValue()) {
12452 RightMBB = FirstRight->MBB;
12454 RightMBB =
FuncInfo.MF->CreateMachineBasicBlock(
W.MBB->getBasicBlock());
12455 FuncInfo.MF->insert(BBI, RightMBB);
12457 {RightMBB, FirstRight, LastRight, Pivot,
W.LT,
W.DefaultProb / 2});
12463 CaseBlock CB(
ISD::SETLT,
Cond, Pivot,
nullptr, LeftMBB, RightMBB,
W.MBB,
12466 if (
W.MBB == SwitchMBB)
12469 SL->SwitchCases.push_back(CB);
12494 MachineBasicBlock *SwitchMBB =
FuncInfo.MBB;
12502 unsigned PeeledCaseIndex = 0;
12503 bool SwitchPeeled =
false;
12504 for (
unsigned Index = 0;
Index < Clusters.size(); ++
Index) {
12505 CaseCluster &CC = Clusters[
Index];
12506 if (CC.
Prob < TopCaseProb)
12508 TopCaseProb = CC.
Prob;
12509 PeeledCaseIndex =
Index;
12510 SwitchPeeled =
true;
12515 LLVM_DEBUG(
dbgs() <<
"Peeled one top case in switch stmt, prob: "
12516 << TopCaseProb <<
"\n");
12521 MachineBasicBlock *PeeledSwitchMBB =
12523 FuncInfo.MF->insert(BBI, PeeledSwitchMBB);
12526 auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex;
12527 SwitchWorkListItem
W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt,
12528 nullptr,
nullptr, TopCaseProb.
getCompl()};
12529 lowerWorkItem(W,
SI.getCondition(), SwitchMBB, PeeledSwitchMBB);
12531 Clusters.erase(PeeledCaseIt);
12532 for (CaseCluster &CC : Clusters) {
12534 dbgs() <<
"Scale the probablity for one cluster, before scaling: "
12535 << CC.
Prob <<
"\n");
12539 PeeledCaseProb = TopCaseProb;
12540 return PeeledSwitchMBB;
12543void SelectionDAGBuilder::visitSwitch(
const SwitchInst &
SI) {
12545 BranchProbabilityInfo *BPI =
FuncInfo.BPI;
12547 Clusters.reserve(
SI.getNumCases());
12548 for (
auto I :
SI.cases()) {
12549 MachineBasicBlock *Succ =
FuncInfo.getMBB(
I.getCaseSuccessor());
12550 const ConstantInt *CaseVal =
I.getCaseValue();
12551 BranchProbability Prob =
12553 : BranchProbability(1,
SI.getNumCases() + 1);
12557 MachineBasicBlock *DefaultMBB =
FuncInfo.getMBB(
SI.getDefaultDest());
12566 MachineBasicBlock *PeeledSwitchMBB =
12567 peelDominantCaseCluster(SI, Clusters, PeeledCaseProb);
12570 MachineBasicBlock *SwitchMBB =
FuncInfo.MBB;
12571 if (Clusters.empty()) {
12572 assert(PeeledSwitchMBB == SwitchMBB);
12574 if (DefaultMBB != NextBlock(SwitchMBB)) {
12581 SL->findJumpTables(Clusters, &SI,
getCurSDLoc(), DefaultMBB,
DAG.getPSI(),
12583 SL->findBitTestClusters(Clusters, &SI);
12586 dbgs() <<
"Case clusters: ";
12587 for (
const CaseCluster &
C : Clusters) {
12593 C.Low->getValue().print(
dbgs(),
true);
12594 if (
C.Low !=
C.High) {
12596 C.High->getValue().print(
dbgs(),
true);
12603 assert(!Clusters.empty());
12607 auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB);
12611 DefaultMBB ==
FuncInfo.getMBB(
SI.getDefaultDest()))
12614 {PeeledSwitchMBB,
First,
Last,
nullptr,
nullptr, DefaultProb});
12616 while (!WorkList.
empty()) {
12618 unsigned NumClusters =
W.LastCluster -
W.FirstCluster + 1;
12623 splitWorkItem(WorkList, W,
SI.getCondition(), SwitchMBB);
12627 lowerWorkItem(W,
SI.getCondition(), SwitchMBB, DefaultMBB);
12631void SelectionDAGBuilder::visitStepVector(
const CallInst &
I) {
12632 const TargetLowering &TLI =
DAG.getTargetLoweringInfo();
12638void SelectionDAGBuilder::visitVectorReverse(
const CallInst &
I) {
12639 const TargetLowering &TLI =
DAG.getTargetLoweringInfo();
12644 assert(VT ==
V.getValueType() &&
"Malformed vector.reverse!");
12653 SmallVector<int, 8>
Mask;
12655 for (
unsigned i = 0; i != NumElts; ++i)
12656 Mask.push_back(NumElts - 1 - i);
12661void SelectionDAGBuilder::visitVectorDeinterleave(
const CallInst &
I,
12670 EVT OutVT = ValueVTs[0];
12674 for (
unsigned i = 0; i != Factor; ++i) {
12675 assert(ValueVTs[i] == OutVT &&
"Expected VTs to be the same");
12677 DAG.getVectorIdxConstant(OutNumElts * i,
DL));
12683 SDValue Even =
DAG.getVectorShuffle(OutVT,
DL, SubVecs[0], SubVecs[1],
12685 SDValue Odd =
DAG.getVectorShuffle(OutVT,
DL, SubVecs[0], SubVecs[1],
12693 DAG.getVTList(ValueVTs), SubVecs);
12697void SelectionDAGBuilder::visitVectorInterleave(
const CallInst &
I,
12700 const TargetLowering &TLI =
DAG.getTargetLoweringInfo();
12705 for (
unsigned i = 0; i < Factor; ++i) {
12708 "Expected VTs to be the same");
12726 for (
unsigned i = 0; i < Factor; ++i)
12733void SelectionDAGBuilder::visitFreeze(
const FreezeInst &
I) {
12737 unsigned NumValues = ValueVTs.
size();
12738 if (NumValues == 0)
return;
12743 for (
unsigned i = 0; i != NumValues; ++i)
12748 DAG.getVTList(ValueVTs), Values));
12751void SelectionDAGBuilder::visitVectorSplice(
const CallInst &
I) {
12752 const TargetLowering &TLI =
DAG.getTargetLoweringInfo();
12764 DAG.getSignedConstant(
12771 uint64_t Idx = (NumElts +
Imm) % NumElts;
12774 SmallVector<int, 8>
Mask;
12775 for (
unsigned i = 0; i < NumElts; ++i)
12776 Mask.push_back(Idx + i);
12804 assert(
MI->getOpcode() == TargetOpcode::COPY &&
12805 "start of copy chain MUST be COPY");
12806 Reg =
MI->getOperand(1).getReg();
12809 assert(
Reg.isVirtual() &&
"expected COPY of virtual register");
12810 MI =
MRI.def_begin(
Reg)->getParent();
12813 if (
MI->getOpcode() == TargetOpcode::COPY) {
12814 assert(
Reg.isVirtual() &&
"expected COPY of virtual register");
12815 Reg =
MI->getOperand(1).getReg();
12816 assert(
Reg.isPhysical() &&
"expected COPY of physical register");
12819 assert(
MI->getOpcode() == TargetOpcode::INLINEASM_BR &&
12820 "end of copy chain MUST be INLINEASM_BR");
12830void SelectionDAGBuilder::visitCallBrLandingPad(
const CallInst &
I) {
12836 const TargetLowering &TLI =
DAG.getTargetLoweringInfo();
12837 const TargetRegisterInfo *
TRI =
DAG.getSubtarget().getRegisterInfo();
12838 MachineRegisterInfo &
MRI =
DAG.getMachineFunction().getRegInfo();
12846 for (
auto &
T : TargetConstraints) {
12847 SDISelAsmOperandInfo OpInfo(
T);
12855 switch (OpInfo.ConstraintType) {
12866 FuncInfo.MBB->addLiveIn(OriginalDef);
12874 ResultVTs.
push_back(OpInfo.ConstraintVT);
12883 ResultVTs.
push_back(OpInfo.ConstraintVT);
12891 DAG.getVTList(ResultVTs), ResultValues);
unsigned const MachineRegisterInfo * MRI
static unsigned getIntrinsicID(const SDNode *N)
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
static msgpack::DocNode getNode(msgpack::DocNode DN, msgpack::Type Type, MCValue Val)
This file declares a class to represent arbitrary precision floating point values and provide a varie...
This file implements a class to represent arbitrary precision integral constant values and operations...
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
MachineBasicBlock MachineBasicBlock::iterator MBBI
Function Alias Analysis Results
Atomic ordering constants.
This file contains the simple types necessary to represent the attributes associated with functions a...
static const Function * getParent(const Value *V)
This file implements the BitVector class.
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
Analysis containing CSE Info
This file contains the declarations for the subclasses of Constant, which represent the different fla...
static AttributeList getReturnAttrs(FastISel::CallLoweringInfo &CLI)
Returns an AttributeList representing the attributes applied to the return value of the given call.
static Value * getCondition(Instruction *I)
const HexagonInstrInfo * TII
This file provides various utilities for inspecting and working with the control flow graph in LLVM I...
Module.h This file contains the declarations for the Module class.
static void getRegistersForValue(MachineFunction &MF, MachineIRBuilder &MIRBuilder, GISelAsmOperandInfo &OpInfo, GISelAsmOperandInfo &RefOpInfo)
Assign virtual/physical registers for the specified register operand.
This file defines an InstructionCost class that is used when calculating the cost of an instruction,...
const AbstractManglingParser< Derived, Alloc >::OperatorInfo AbstractManglingParser< Derived, Alloc >::Ops[]
Machine Check Debug Module
static bool isUndef(const MachineInstr &MI)
Register const TargetRegisterInfo * TRI
Promote Memory to Register
static const Function * getCalledFunction(const Value *V)
This file provides utility analysis objects describing memory locations.
This file provides utility for Memory Model Relaxation Annotations (MMRAs).
static unsigned getReg(const MCDisassembler *D, unsigned RC, unsigned RegNo)
static unsigned getAddressSpace(const Value *V, unsigned MaxLookup)
MachineInstr unsigned OpIdx
ConstantRange Range(APInt(BitWidth, Low), APInt(BitWidth, High))
uint64_t IntrinsicInst * II
OptimizedStructLayoutField Field
const SmallVectorImpl< MachineOperand > MachineBasicBlock * TBB
const SmallVectorImpl< MachineOperand > & Cond
static Type * getValueType(Value *V)
Returns the type of the given value/instruction V.
static bool hasOnlySelectUsers(const Value *Cond)
static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL, SDValue &Chain)
Create a LOAD_STACK_GUARD node, and let it carry the target specific global variable if there exists ...
static bool getUniformBase(const Value *Ptr, SDValue &Base, SDValue &Index, SDValue &Scale, SelectionDAGBuilder *SDB, const BasicBlock *CurBB, uint64_t ElemSize)
static void failForInvalidBundles(const CallBase &I, StringRef Name, ArrayRef< uint32_t > AllowedBundles)
static void addStackMapLiveVars(const CallBase &Call, unsigned StartIdx, const SDLoc &DL, SmallVectorImpl< SDValue > &Ops, SelectionDAGBuilder &Builder)
Add a stack map intrinsic call's live variable operands to a stackmap or patchpoint target node's ope...
static const unsigned MaxParallelChains
static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS, SelectionDAG &DAG, const TargetLowering &TLI, SDNodeFlags Flags)
visitPow - Lower a pow intrinsic.
static const CallBase * FindPreallocatedCall(const Value *PreallocatedSetup)
Given a @llvm.call.preallocated.setup, return the corresponding preallocated call.
static cl::opt< unsigned > SwitchPeelThreshold("switch-peel-threshold", cl::Hidden, cl::init(66), cl::desc("Set the case probability threshold for peeling the case from a " "switch statement. A value greater than 100 will void this " "optimization"))
static cl::opt< bool > InsertAssertAlign("insert-assert-align", cl::init(true), cl::desc("Insert the experimental `assertalign` node."), cl::ReallyHidden)
static unsigned getISDForVPIntrinsic(const VPIntrinsic &VPIntrin)
static bool handleDanglingVariadicDebugInfo(SelectionDAG &DAG, DILocalVariable *Variable, DebugLoc DL, unsigned Order, SmallVectorImpl< Value * > &Values, DIExpression *Expression)
static unsigned findMatchingInlineAsmOperand(unsigned OperandNo, const std::vector< SDValue > &AsmNodeOperands)
static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo, SDISelAsmOperandInfo &MatchingOpInfo, SelectionDAG &DAG)
Make sure that the output operand OpInfo and its corresponding input operand MatchingOpInfo have comp...
static void findUnwindDestinations(FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, BranchProbability Prob, SmallVectorImpl< std::pair< MachineBasicBlock *, BranchProbability > > &UnwindDests)
When an invoke or a cleanupret unwinds to the next EH pad, there are many places it could ultimately ...
static unsigned FixedPointIntrinsicToOpcode(unsigned Intrinsic)
static BranchProbability scaleCaseProbality(BranchProbability CaseProb, BranchProbability PeeledCaseProb)
static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, const TargetLowering &TLI, SDNodeFlags Flags)
expandExp2 - Lower an exp2 intrinsic.
static SDValue expandDivFix(unsigned Opcode, const SDLoc &DL, SDValue LHS, SDValue RHS, SDValue Scale, SelectionDAG &DAG, const TargetLowering &TLI)
static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt, const SDLoc &dl)
getF32Constant - Get 32-bit floating point constant.
static SDValue widenVectorToPartType(SelectionDAG &DAG, SDValue Val, const SDLoc &DL, EVT PartVT)
static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, const TargetLowering &TLI, SDNodeFlags Flags)
expandLog10 - Lower a log10 intrinsic.
DenseMap< const Argument *, std::pair< const AllocaInst *, const StoreInst * > > ArgCopyElisionMapTy
static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl, SDValue Val, SDValue *Parts, unsigned NumParts, MVT PartVT, const Value *V, std::optional< CallingConv::ID > CallConv)
getCopyToPartsVector - Create a series of nodes that contain the specified value split into legal par...
static void getUnderlyingArgRegs(SmallVectorImpl< std::pair< Register, TypeSize > > &Regs, const SDValue &N)
static void getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts, unsigned NumParts, MVT PartVT, const Value *V, std::optional< CallingConv::ID > CallConv=std::nullopt, ISD::NodeType ExtendKind=ISD::ANY_EXTEND)
getCopyToParts - Create a series of nodes that contain the specified value split into legal parts.
static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, SelectionDAGBuilder &Builder)
static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, const TargetLowering &TLI, SDNodeFlags Flags)
expandLog2 - Lower a log2 intrinsic.
static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location, SDISelAsmOperandInfo &OpInfo, SelectionDAG &DAG)
Get a direct memory input to behave well as an indirect operand.
static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel)
isOnlyUsedInEntryBlock - If the specified argument is only used in the entry block,...
static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, const Twine &ErrMsg)
static bool collectInstructionDeps(SmallMapVector< const Instruction *, bool, 8 > *Deps, const Value *V, SmallMapVector< const Instruction *, bool, 8 > *Necessary=nullptr, unsigned Depth=0)
static void findArgumentCopyElisionCandidates(const DataLayout &DL, FunctionLoweringInfo *FuncInfo, ArgCopyElisionMapTy &ArgCopyElisionCandidates)
Scan the entry block of the function in FuncInfo for arguments that look like copies into a local all...
static bool isFunction(SDValue Op)
static SDValue GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI, const SDLoc &dl)
GetExponent - Get the exponent:
static Register FollowCopyChain(MachineRegisterInfo &MRI, Register Reg)
static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS, SelectionDAG &DAG)
ExpandPowI - Expand a llvm.powi intrinsic.
static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, const TargetLowering &TLI, SDNodeFlags Flags)
expandLog - Lower a log intrinsic.
static SDValue getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts, unsigned NumParts, MVT PartVT, EVT ValueVT, const Value *V, SDValue InChain, std::optional< CallingConv::ID > CC=std::nullopt, std::optional< ISD::NodeType > AssertOp=std::nullopt)
getCopyFromParts - Create a value that contains the specified legal parts combined into the value the...
static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl, SelectionDAG &DAG)
static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl)
GetSignificand - Get the significand and build it into a floating-point number with exponent of 1:
static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, const TargetLowering &TLI, SDNodeFlags Flags)
expandExp - Lower an exp intrinsic.
static const MDNode * getRangeMetadata(const Instruction &I)
static cl::opt< unsigned, true > LimitFPPrecision("limit-float-precision", cl::desc("Generate low-precision inline sequences " "for some float libcalls"), cl::location(LimitFloatPrecision), cl::Hidden, cl::init(0))
static void tryToElideArgumentCopy(FunctionLoweringInfo &FuncInfo, SmallVectorImpl< SDValue > &Chains, DenseMap< int, int > &ArgCopyElisionFrameIndexMap, SmallPtrSetImpl< const Instruction * > &ElidedArgCopyInstrs, ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg, ArrayRef< SDValue > ArgVals, bool &ArgHasUses)
Try to elide argument copies from memory into a local alloca.
static unsigned LimitFloatPrecision
LimitFloatPrecision - Generate low-precision inline sequences for some float libcalls (6,...
static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts, unsigned NumParts, MVT PartVT, EVT ValueVT, const Value *V, SDValue InChain, std::optional< CallingConv::ID > CC)
getCopyFromPartsVector - Create a value that contains the specified legal parts combined into the val...
static bool InBlock(const Value *V, const BasicBlock *BB)
static LLVM_ATTRIBUTE_ALWAYS_INLINE MVT::SimpleValueType getSimpleVT(const unsigned char *MatcherTable, unsigned &MatcherIndex)
getSimpleVT - Decode a value in MatcherTable, if it's a VBR encoded value, use GetVBR to decode it.
This file defines the SmallPtrSet class.
static TableGen::Emitter::Opt Y("gen-skeleton-entry", EmitSkeleton, "Generate example skeleton entry")
static TableGen::Emitter::OptClass< SkeletonEmitter > X("gen-skeleton-class", "Generate example skeleton class")
static SymbolRef::Type getType(const Symbol *Sym)
static const fltSemantics & IEEEsingle()
Class for arbitrary precision integers.
bool isNonNegative() const
Determine if this APInt Value is non-negative (>= 0)
bool isPowerOf2() const
Check if this APInt's value is a power of two greater than zero.
an instruction to allocate memory on the stack
Align getAlign() const
Return the alignment of the memory that is being allocated by the instruction.
Type * getAllocatedType() const
Return the type that is being allocated by the instruction.
This class represents an incoming formal argument to a Function.
LLVM_ABI bool hasAttribute(Attribute::AttrKind Kind) const
Check if an argument has a given attribute.
unsigned getArgNo() const
Return the index of this formal argument in its containing function.
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
size_t size() const
size - Get the array size.
bool empty() const
empty - Check if the array is empty.
A cache of @llvm.assume calls within a function.
An instruction that atomically checks whether a specified value is in a memory location,...
an instruction that atomically reads a memory location, combines it with another value,...
@ USubCond
Subtract only if no unsigned overflow.
@ FMinimum
*p = minimum(old, v) minimum matches the behavior of llvm.minimum.
@ Min
*p = old <signed v ? old : v
@ USubSat
*p = usub.sat(old, v) usub.sat matches the behavior of llvm.usub.sat.
@ FMaximum
*p = maximum(old, v) maximum matches the behavior of llvm.maximum.
@ UIncWrap
Increment one up to a maximum value.
@ Max
*p = old >signed v ? old : v
@ UMin
*p = old <unsigned v ? old : v
@ FMin
*p = minnum(old, v) minnum matches the behavior of llvm.minnum.
@ UMax
*p = old >unsigned v ? old : v
@ FMax
*p = maxnum(old, v) maxnum matches the behavior of llvm.maxnum.
@ UDecWrap
Decrement one until a minimum value or zero.
This class holds the attributes for a particular argument, parameter, function, or return value.
LLVM Basic Block Representation.
const Function * getParent() const
Return the enclosing method, or null if none.
LLVM_ABI InstListType::const_iterator getFirstNonPHIIt() const
Returns an iterator to the first instruction in this block that is not a PHINode instruction.
InstListType::const_iterator const_iterator
LLVM_ABI bool isEntryBlock() const
Return true if this is the entry block of the containing function.
LLVM_ABI InstListType::const_iterator getFirstNonPHIOrDbg(bool SkipPseudoOp=true) const
Returns a pointer to the first instruction in this block that is not a PHINode or a debug intrinsic,...
const Instruction * getTerminator() const LLVM_READONLY
Returns the terminator instruction if the block is well formed or null if the block is not well forme...
This class is a wrapper over an AAResults, and it is intended to be used only when there are no IR ch...
This class represents a no-op cast from one type to another.
The address of a basic block.
Conditional or Unconditional Branch instruction.
Analysis providing branch probability information.
LLVM_ABI BranchProbability getEdgeProbability(const BasicBlock *Src, unsigned IndexInSuccessors) const
Get an edge's probability, relative to other out-edges of the Src.
LLVM_ABI bool isEdgeHot(const BasicBlock *Src, const BasicBlock *Dst) const
Test if an edge is hot relative to other out-edges of the Src.
static uint32_t getDenominator()
static BranchProbability getOne()
static BranchProbability getUnknown()
uint32_t getNumerator() const
LLVM_ABI uint64_t scale(uint64_t Num) const
Scale a large integer.
BranchProbability getCompl() const
static BranchProbability getZero()
static void normalizeProbabilities(ProbabilityIter Begin, ProbabilityIter End)
Base class for all callable instructions (InvokeInst and CallInst) Holds everything related to callin...
std::optional< OperandBundleUse > getOperandBundle(StringRef Name) const
Return an operand bundle by name, if present.
CallingConv::ID getCallingConv() const
User::op_iterator arg_begin()
Return the iterator pointing to the beginning of the argument list.
LLVM_ABI bool isMustTailCall() const
Tests if this call site must be tail call optimized.
LLVM_ABI bool isIndirectCall() const
Return true if the callsite is an indirect call.
unsigned countOperandBundlesOfType(StringRef Name) const
Return the number of operand bundles with the tag Name attached to this instruction.
Value * getCalledOperand() const
Value * getArgOperand(unsigned i) const
User::op_iterator arg_end()
Return the iterator pointing to the end of the argument list.
bool isConvergent() const
Determine if the invoke is convergent.
FunctionType * getFunctionType() const
unsigned arg_size() const
AttributeList getAttributes() const
Return the attributes for this call.
LLVM_ABI bool isTailCall() const
Tests if this call site is marked as a tail call.
CallBr instruction, tracking function calls that may not return control but instead transfer it to a ...
This class represents a function call, abstracting a target machine's calling convention.
This class is the base class for the comparison instructions.
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
ConstantDataSequential - A vector or array constant whose element type is a simple 1/2/4/8-byte integ...
A constant value that is initialized with an expression using other constant values.
ConstantFP - Floating Point Values [float, double].
This is the shared class of boolean and integer constants.
static LLVM_ABI ConstantInt * getTrue(LLVMContext &Context)
bool isZero() const
This is just a convenience method to make client code smaller for a common code.
static LLVM_ABI ConstantInt * getFalse(LLVMContext &Context)
uint64_t getZExtValue() const
Return the constant as a 64-bit unsigned integer value after it has been zero extended as appropriate...
const APInt & getValue() const
Return the constant as an APInt value reference.
A signed pointer, in the ptrauth sense.
uint64_t getZExtValue() const
Constant Vector Declarations.
This is an important base class in LLVM.
This is the common base class for constrained floating point intrinsics.
LLVM_ABI std::optional< fp::ExceptionBehavior > getExceptionBehavior() const
LLVM_ABI unsigned getNonMetadataArgCount() const
LLVM_ABI bool isEntryValue() const
Check if the expression consists of exactly one entry value operand.
static bool fragmentsOverlap(const FragmentInfo &A, const FragmentInfo &B)
Check if fragments overlap between a pair of FragmentInfos.
static LLVM_ABI DIExpression * appendOpsToArg(const DIExpression *Expr, ArrayRef< uint64_t > Ops, unsigned ArgNo, bool StackValue=false)
Create a copy of Expr by appending the given list of Ops to each instance of the operand DW_OP_LLVM_a...
static LLVM_ABI std::optional< FragmentInfo > getFragmentInfo(expr_op_iterator Start, expr_op_iterator End)
Retrieve the details of this fragment expression.
LLVM_ABI uint64_t getNumLocationOperands() const
Return the number of unique location operands referred to (via DW_OP_LLVM_arg) in this expression; th...
static LLVM_ABI std::optional< DIExpression * > createFragmentExpression(const DIExpression *Expr, unsigned OffsetInBits, unsigned SizeInBits)
Create a DIExpression to describe one part of an aggregate variable that is fragmented across multipl...
static LLVM_ABI const DIExpression * convertToUndefExpression(const DIExpression *Expr)
Removes all elements from Expr that do not apply to an undef debug value, which includes every operat...
static LLVM_ABI DIExpression * prepend(const DIExpression *Expr, uint8_t Flags, int64_t Offset=0)
Prepend DIExpr with a deref and offset operation and optionally turn it into a stack value or/and an ...
static LLVM_ABI DIExpression * prependOpcodes(const DIExpression *Expr, SmallVectorImpl< uint64_t > &Ops, bool StackValue=false, bool EntryValue=false)
Prepend DIExpr with the given opcodes and optionally turn it into a stack value.
Base class for variables.
LLVM_ABI std::optional< uint64_t > getSizeInBits() const
Determines the size of the variable's type.
A parsed version of the target data layout string in and methods for querying it.
Records a position in IR for a source label (DILabel).
Base class for non-instruction debug metadata records that have positions within IR.
DebugLoc getDebugLoc() const
Record of a variable value-assignment, aka a non instruction representation of the dbg....
LocationType getType() const
DIExpression * getExpression() const
LLVM_ABI Value * getVariableLocationOp(unsigned OpIdx) const
DILocalVariable * getVariable() const
LLVM_ABI iterator_range< location_op_iterator > location_ops() const
Get the locations corresponding to the variable referenced by the debug info intrinsic.
LLVM_ABI DILocation * getInlinedAt() const
iterator find(const_arg_type_t< KeyT > Val)
DenseMapIterator< KeyT, ValueT, KeyInfoT, BucketT > iterator
DenseMapIterator< KeyT, ValueT, KeyInfoT, BucketT, true > const_iterator
std::pair< iterator, bool > insert(const std::pair< KeyT, ValueT > &KV)
void reserve(size_type NumEntries)
Grow the densemap so that it can contain at least NumEntries items before resizing again.
Diagnostic information for inline asm reporting.
static constexpr ElementCount getFixed(ScalarTy MinVal)
static constexpr ElementCount get(ScalarTy MinVal, bool Scalable)
constexpr bool isScalar() const
Exactly one element.
Lightweight error class with error context and mandatory checking.
Class representing an expression and its matching format.
This instruction compares its operands according to the predicate given to the constructor.
This is a fast-path instruction selection class that generates poor code and doesn't support illegal ...
bool allowReassoc() const
Flag queries.
An instruction for ordering other memory operations.
static LLVM_ABI FixedVectorType * get(Type *ElementType, unsigned NumElts)
This class represents a freeze function that returns random concrete value if an operand is either a ...
FunctionLoweringInfo - This contains information that is global to a function that is used when lower...
BranchProbabilityInfo * BPI
MachineBasicBlock * getMBB(const BasicBlock *BB) const
DenseMap< const AllocaInst *, int > StaticAllocaMap
StaticAllocaMap - Keep track of frame indices for fixed sized allocas in the entry block.
const LiveOutInfo * GetLiveOutRegInfo(Register Reg)
GetLiveOutRegInfo - Gets LiveOutInfo for a register, returning NULL if the register is a PHI destinat...
MachineBasicBlock * MBB
MBB - The current block.
Class to represent function types.
unsigned getNumParams() const
Return the number of fixed parameters this function type requires.
Type * getParamType(unsigned i) const
Parameter type accessors.
Type * getReturnType() const
Data structure describing the variable locations in a function.
const BasicBlock & getEntryBlock() const
FunctionType * getFunctionType() const
Returns the FunctionType for me.
Intrinsic::ID getIntrinsicID() const LLVM_READONLY
getIntrinsicID - This method returns the ID number of the specified function, or Intrinsic::not_intri...
bool hasMinSize() const
Optimize this function for minimum size (-Oz).
bool hasParamAttribute(unsigned ArgNo, Attribute::AttrKind Kind) const
check if an attributes is in the list of attributes.
CallingConv::ID getCallingConv() const
getCallingConv()/setCallingConv(CC) - These method get and set the calling convention of this functio...
Constant * getPersonalityFn() const
Get the personality function associated with this function.
AttributeList getAttributes() const
Return the attribute list for this Function.
bool isIntrinsic() const
isIntrinsic - Returns true if the function's name starts with "llvm.".
bool hasFnAttribute(Attribute::AttrKind Kind) const
Return true if the function has the attribute.
Garbage collection metadata for a single function.
bool hasNoUnsignedSignedWrap() const
bool hasNoUnsignedWrap() const
an instruction for type-safe pointer arithmetic to access elements of arrays and structs
static StringRef dropLLVMManglingEscape(StringRef Name)
If the given string begins with the GlobalValue name mangling escape character '\1',...
bool hasDLLImportStorageClass() const
Module * getParent()
Get the module that this global value is contained inside of...
This instruction compares its operands according to the predicate given to the constructor.
Indirect Branch Instruction.
This instruction inserts a struct field of array element value into an aggregate value.
MDNode * getMetadata(unsigned KindID) const
Get the metadata of given kind attached to this Instruction.
LLVM_ABI FastMathFlags getFastMathFlags() const LLVM_READONLY
Convenience function for getting all the fast-math flags, which must be an operator which supports th...
LLVM_ABI AAMDNodes getAAMetadata() const
Returns the AA metadata for this instruction.
@ MIN_INT_BITS
Minimum number of bits that can be specified.
Intrinsic::ID getIntrinsicID() const
Return the intrinsic ID of this intrinsic.
This is an important class for using LLVM in a threaded context.
@ OB_clang_arc_attachedcall
LLVM_ABI void diagnose(const DiagnosticInfo &DI)
Report a message to the currently installed diagnostic handler.
The landingpad instruction holds all of the information necessary to generate correct exception handl...
A helper class to return the specified delimiter string after the first invocation of operator String...
An instruction for reading from memory.
static LocationSize precise(uint64_t Value)
static constexpr LocationSize beforeOrAfterPointer()
Any location before or after the base pointer (but still within the underlying object).
LLVM_ABI MCSymbol * createTempSymbol()
Create a temporary symbol with a unique name.
LLVM_ABI MCSymbol * getOrCreateFrameAllocSymbol(const Twine &FuncName, unsigned Idx)
Gets a symbol that will be defined to the final stack offset of a local variable after codegen.
MCSymbol - Instances of this class represent a symbol name in the MC file, and MCSymbols are created ...
@ INVALID_SIMPLE_VALUE_TYPE
uint64_t getScalarSizeInBits() const
unsigned getVectorNumElements() const
bool isVector() const
Return true if this is a vector value type.
bool isInteger() const
Return true if this is an integer or a vector integer type.
TypeSize getSizeInBits() const
Returns the size of the specified MVT in bits.
uint64_t getFixedSizeInBits() const
Return the size of the specified fixed width value type in bits.
ElementCount getVectorElementCount() const
TypeSize getStoreSize() const
Return the number of bytes overwritten by a store of the specified value type.
bool bitsGE(MVT VT) const
Return true if this has no less bits than VT.
bool isScalarInteger() const
Return true if this is an integer, not including vectors.
static MVT getVectorVT(MVT VT, unsigned NumElements)
bool isFloatingPoint() const
Return true if this is a FP or a vector FP type.
static MVT getIntegerVT(unsigned BitWidth)
void normalizeSuccProbs()
Normalize probabilities of all successors so that the sum of them becomes one.
const BasicBlock * getBasicBlock() const
Return the LLVM basic block that this instance corresponded to originally.
LLVM_ABI void setSuccProbability(succ_iterator I, BranchProbability Prob)
Set successor probability of a given iterator.
succ_iterator succ_begin()
LLVM_ABI void addSuccessor(MachineBasicBlock *Succ, BranchProbability Prob=BranchProbability::getUnknown())
Add Succ as a successor of this MachineBasicBlock.
SmallVectorImpl< MachineBasicBlock * >::iterator succ_iterator
const MachineFunction * getParent() const
Return the MachineFunction containing this basic block.
void setIsEHContTarget(bool V=true)
Indicates if this is a target of Windows EH Continuation Guard.
void setIsEHFuncletEntry(bool V=true)
Indicates if this is the entry block of an EH funclet.
MachineInstrBundleIterator< MachineInstr > iterator
void setIsEHScopeEntry(bool V=true)
Indicates if this is the entry block of an EH scope, i.e., the block that that used to have a catchpa...
void setMachineBlockAddressTaken()
Set this block to indicate that its address is used as something other than the target of a terminato...
The MachineFrameInfo class represents an abstract stack frame until prolog/epilog code is inserted.
void setIsImmutableObjectIndex(int ObjectIdx, bool IsImmutable)
Marks the immutability of an object.
LLVM_ABI int CreateStackObject(uint64_t Size, Align Alignment, bool isSpillSlot, const AllocaInst *Alloca=nullptr, uint8_t ID=0)
Create a new statically sized stack object, returning a nonnegative identifier to represent it.
bool hasOpaqueSPAdjustment() const
Returns true if the function contains opaque dynamic stack adjustments.
int getStackProtectorIndex() const
Return the index for the stack protector object.
void setStackProtectorIndex(int I)
void setIsAliasedObjectIndex(int ObjectIdx, bool IsAliased)
Set "maybe pointed to by an LLVM IR value" for an object.
Align getObjectAlign(int ObjectIdx) const
Return the alignment of the specified stack object.
int64_t getObjectSize(int ObjectIdx) const
Return the size of the specified object.
void RemoveStackObject(int ObjectIdx)
Remove or mark dead a statically sized stack object.
void setFunctionContextIndex(int I)
const WinEHFuncInfo * getWinEHFuncInfo() const
getWinEHFuncInfo - Return information about how the current function uses Windows exception handling.
bool useDebugInstrRef() const
Returns true if the function's variable locations are tracked with instruction referencing.
void setCallSiteBeginLabel(MCSymbol *BeginLabel, unsigned Site)
Map the begin label for a call site.
const TargetSubtargetInfo & getSubtarget() const
getSubtarget - Return the subtarget for which this machine code is being compiled.
StringRef getName() const
getName - Return the name of the corresponding LLVM function.
MachineMemOperand * getMachineMemOperand(MachinePointerInfo PtrInfo, MachineMemOperand::Flags f, LLT MemTy, Align base_alignment, const AAMDNodes &AAInfo=AAMDNodes(), const MDNode *Ranges=nullptr, SyncScope::ID SSID=SyncScope::System, AtomicOrdering Ordering=AtomicOrdering::NotAtomic, AtomicOrdering FailureOrdering=AtomicOrdering::NotAtomic)
getMachineMemOperand - Allocate a new MachineMemOperand.
MachineFrameInfo & getFrameInfo()
getFrameInfo - Return the frame info object for the current function.
MCContext & getContext() const
MachineRegisterInfo & getRegInfo()
getRegInfo - Return information about the registers currently in use.
void addCodeViewAnnotation(MCSymbol *Label, MDNode *MD)
Record annotations associated with a particular label.
Function & getFunction()
Return the LLVM function that this machine code represents.
BasicBlockListType::iterator iterator
bool hasEHFunclets() const
void setHasEHContTarget(bool V)
void addInvoke(MachineBasicBlock *LandingPad, MCSymbol *BeginLabel, MCSymbol *EndLabel)
Provide the begin and end labels of an invoke style call and associate it with a try landing pad bloc...
MachineBasicBlock * CreateMachineBasicBlock(const BasicBlock *BB=nullptr, std::optional< UniqueBBID > BBID=std::nullopt)
CreateMachineInstr - Allocate a new MachineInstr.
void insert(iterator MBBI, MachineBasicBlock *MBB)
const MachineInstrBuilder & addSym(MCSymbol *Sym, unsigned char TargetFlags=0) const
const MachineInstrBuilder & addFrameIndex(int Idx) const
Representation of each machine instruction.
A description of a memory reference used in the backend.
Flags
Flags values. These may be or'd together.
@ MOVolatile
The memory access is volatile.
@ MODereferenceable
The memory access is dereferenceable (i.e., doesn't trap).
@ MOLoad
The memory access reads data.
@ MONonTemporal
The memory access is non-temporal.
@ MOInvariant
The memory access always returns the same value (or traps).
@ MOStore
The memory access writes data.
static MachineOperand CreateReg(Register Reg, bool isDef, bool isImp=false, bool isKill=false, bool isDead=false, bool isUndef=false, bool isEarlyClobber=false, unsigned SubReg=0, bool isDebug=false, bool isInternalRead=false, bool isRenamable=false)
static MachineOperand CreateFI(int Idx)
MachineRegisterInfo - Keep track of information for virtual and physical registers,...
LLVM_ABI MCRegister getLiveInPhysReg(Register VReg) const
getLiveInPhysReg - If VReg is a live-in virtual register, return the corresponding live-in physical r...
An SDNode that represents everything that will be needed to construct a MachineInstr.
bool contains(const KeyT &Key) const
std::pair< iterator, bool > try_emplace(const KeyT &Key, Ts &&...Args)
static MemoryLocation getAfter(const Value *Ptr, const AAMDNodes &AATags=AAMDNodes())
Return a location that may access any location after Ptr, while remaining within the underlying objec...
A Module instance is used to store all the information related to an LLVM module.
static PointerType * getUnqual(Type *ElementType)
This constructs a pointer to an object of the specified type in the default address space (address sp...
static LLVM_ABI PointerType * get(Type *ElementType, unsigned AddressSpace)
This constructs a pointer to an object of the specified type in a numbered address space.
static LLVM_ABI PoisonValue * get(Type *T)
Static factory methods - Return an 'poison' object of the specified type.
Wrapper class representing virtual and physical registers.
constexpr bool isVirtual() const
Return true if the specified register number is in the virtual register namespace.
constexpr bool isPhysical() const
Return true if the specified register number is in the physical register namespace.
Resume the propagation of an exception.
Return a value (possibly void), from a function.
Holds the information from a dbg_label node through SDISel.
static SDDbgOperand fromNode(SDNode *Node, unsigned ResNo)
static SDDbgOperand fromFrameIdx(unsigned FrameIdx)
static SDDbgOperand fromVReg(Register VReg)
static SDDbgOperand fromConst(const Value *Const)
Holds the information from a dbg_value node through SDISel.
Wrapper class for IR location info (IR ordering and DebugLoc) to be passed into SDNode creation funct...
Represents one node in the SelectionDAG.
unsigned getOpcode() const
Return the SelectionDAG opcode value for this node.
iterator_range< value_op_iterator > op_values() const
unsigned getIROrder() const
Return the node ordering.
uint64_t getAsZExtVal() const
Helper method returns the zero-extended integer value of a ConstantSDNode.
unsigned getNumValues() const
Return the number of values defined/returned by this operator.
const SDValue & getOperand(unsigned Num) const
EVT getValueType(unsigned ResNo) const
Return the type of a specified result.
Unlike LLVM values, Selection DAG nodes may return multiple values as the result of a computation.
SDNode * getNode() const
get the SDNode which holds the desired result
SDValue getValue(unsigned R) const
EVT getValueType() const
Return the ValueType of the referenced return value.
TypeSize getValueSizeInBits() const
Returns the size of the value in bits.
const SDValue & getOperand(unsigned i) const
unsigned getResNo() const
get the index which selects a specific result in the SDNode
MVT getSimpleValueType() const
Return the simple ValueType of the referenced return value.
unsigned getOpcode() const
SelectionDAGBuilder - This is the common target-independent lowering implementation that is parameter...
SDValue getValue(const Value *V)
getValue - Return an SDValue for the given Value.
DenseMap< const Constant *, Register > ConstantsOut
void addDanglingDebugInfo(SmallVectorImpl< Value * > &Values, DILocalVariable *Var, DIExpression *Expr, bool IsVariadic, DebugLoc DL, unsigned Order)
Register a dbg_value which relies on a Value which we have not yet seen.
void visitDbgInfo(const Instruction &I)
void clearDanglingDebugInfo()
Clear the dangling debug information map.
void LowerCallTo(const CallBase &CB, SDValue Callee, bool IsTailCall, bool IsMustTailCall, const BasicBlock *EHPadBB=nullptr, const TargetLowering::PtrAuthInfo *PAI=nullptr)
void clear()
Clear out the current SelectionDAG and the associated state and prepare this SelectionDAGBuilder obje...
void visitBitTestHeader(SwitchCG::BitTestBlock &B, MachineBasicBlock *SwitchBB)
visitBitTestHeader - This function emits necessary code to produce value suitable for "bit tests"
void LowerStatepoint(const GCStatepointInst &I, const BasicBlock *EHPadBB=nullptr)
std::unique_ptr< SDAGSwitchLowering > SL
SDValue lowerRangeToAssertZExt(SelectionDAG &DAG, const Instruction &I, SDValue Op)
bool HasTailCall
This is set to true if a call in the current block has been translated as a tail call.
bool ShouldEmitAsBranches(const std::vector< SwitchCG::CaseBlock > &Cases)
If the set of cases should be emitted as a series of branches, return true.
void EmitBranchForMergedCondition(const Value *Cond, MachineBasicBlock *TBB, MachineBasicBlock *FBB, MachineBasicBlock *CurBB, MachineBasicBlock *SwitchBB, BranchProbability TProb, BranchProbability FProb, bool InvertCond)
EmitBranchForMergedCondition - Helper method for FindMergedConditions.
void LowerDeoptimizeCall(const CallInst *CI)
void LowerCallSiteWithDeoptBundle(const CallBase *Call, SDValue Callee, const BasicBlock *EHPadBB)
SwiftErrorValueTracking & SwiftError
Information about the swifterror values used throughout the function.
SDValue getNonRegisterValue(const Value *V)
getNonRegisterValue - Return an SDValue for the given Value, but don't look in FuncInfo....
DenseMap< MachineBasicBlock *, SmallVector< unsigned, 4 > > LPadToCallSiteMap
Map a landing pad to the call site indexes.
void handleDebugDeclare(Value *Address, DILocalVariable *Variable, DIExpression *Expression, DebugLoc DL)
bool shouldKeepJumpConditionsTogether(const FunctionLoweringInfo &FuncInfo, const BranchInst &I, Instruction::BinaryOps Opc, const Value *Lhs, const Value *Rhs, TargetLoweringBase::CondMergingParams Params) const
StatepointLoweringState StatepointLowering
State used while lowering a statepoint sequence (gc_statepoint, gc_relocate, and gc_result).
void visitBitTestCase(SwitchCG::BitTestBlock &BB, MachineBasicBlock *NextMBB, BranchProbability BranchProbToNext, Register Reg, SwitchCG::BitTestCase &B, MachineBasicBlock *SwitchBB)
visitBitTestCase - this function produces one "bit test"
bool canTailCall(const CallBase &CB) const
void populateCallLoweringInfo(TargetLowering::CallLoweringInfo &CLI, const CallBase *Call, unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy, AttributeSet RetAttrs, bool IsPatchPoint)
Populate a CallLowerinInfo (into CLI) based on the properties of the call being lowered.
void CopyValueToVirtualRegister(const Value *V, Register Reg, ISD::NodeType ExtendType=ISD::ANY_EXTEND)
void salvageUnresolvedDbgValue(const Value *V, DanglingDebugInfo &DDI)
For the given dangling debuginfo record, perform last-ditch efforts to resolve the debuginfo to somet...
SmallVector< SDValue, 8 > PendingLoads
Loads are not emitted to the program immediately.
GCFunctionInfo * GFI
Garbage collection metadata for the function.
SDValue getRoot()
Similar to getMemoryRoot, but also flushes PendingConstrainedFP(Strict) items.
void ExportFromCurrentBlock(const Value *V)
ExportFromCurrentBlock - If this condition isn't known to be exported from the current basic block,...
void init(GCFunctionInfo *gfi, BatchAAResults *BatchAA, AssumptionCache *AC, const TargetLibraryInfo *li)
DebugLoc getCurDebugLoc() const
void resolveOrClearDbgInfo()
Evict any dangling debug information, attempting to salvage it first.
std::pair< SDValue, SDValue > lowerInvokable(TargetLowering::CallLoweringInfo &CLI, const BasicBlock *EHPadBB=nullptr)
SDValue getMemoryRoot()
Return the current virtual root of the Selection DAG, flushing any PendingLoad items.
void resolveDanglingDebugInfo(const Value *V, SDValue Val)
If we saw an earlier dbg_value referring to V, generate the debug data structures now that we've seen...
SDLoc getCurSDLoc() const
void visit(const Instruction &I)
void dropDanglingDebugInfo(const DILocalVariable *Variable, const DIExpression *Expr)
If we have dangling debug info that describes Variable, or an overlapping part of variable considerin...
SDValue getCopyFromRegs(const Value *V, Type *Ty)
If there was virtual register allocated for the value V emit CopyFromReg of the specified type Ty.
void CopyToExportRegsIfNeeded(const Value *V)
CopyToExportRegsIfNeeded - If the given value has virtual registers created for it,...
void handleKillDebugValue(DILocalVariable *Var, DIExpression *Expr, DebugLoc DbgLoc, unsigned Order)
Create a record for a kill location debug intrinsic.
void visitJumpTable(SwitchCG::JumpTable &JT)
visitJumpTable - Emit JumpTable node in the current MBB
SDValue getFPOperationRoot(fp::ExceptionBehavior EB)
Return the current virtual root of the Selection DAG, flushing PendingConstrainedFP or PendingConstra...
void visitJumpTableHeader(SwitchCG::JumpTable &JT, SwitchCG::JumpTableHeader &JTH, MachineBasicBlock *SwitchBB)
visitJumpTableHeader - This function emits necessary code to produce index in the JumpTable from swit...
void LowerCallSiteWithPtrAuthBundle(const CallBase &CB, const BasicBlock *EHPadBB)
static const unsigned LowestSDNodeOrder
Lowest valid SDNodeOrder.
void LowerDeoptimizingReturn()
FunctionLoweringInfo & FuncInfo
Information about the function as a whole.
void setValue(const Value *V, SDValue NewN)
void FindMergedConditions(const Value *Cond, MachineBasicBlock *TBB, MachineBasicBlock *FBB, MachineBasicBlock *CurBB, MachineBasicBlock *SwitchBB, Instruction::BinaryOps Opc, BranchProbability TProb, BranchProbability FProb, bool InvertCond)
const TargetLibraryInfo * LibInfo
bool isExportableFromCurrentBlock(const Value *V, const BasicBlock *FromBB)
void visitSPDescriptorParent(StackProtectorDescriptor &SPD, MachineBasicBlock *ParentBB)
Codegen a new tail for a stack protector check ParentMBB which has had its tail spliced into a stack ...
bool handleDebugValue(ArrayRef< const Value * > Values, DILocalVariable *Var, DIExpression *Expr, DebugLoc DbgLoc, unsigned Order, bool IsVariadic)
For a given list of Values, attempt to create and record a SDDbgValue in the SelectionDAG.
SDValue getControlRoot()
Similar to getRoot, but instead of flushing all the PendingLoad items, flush all the PendingExports (...
void UpdateSplitBlock(MachineBasicBlock *First, MachineBasicBlock *Last)
When an MBB was split during scheduling, update the references that need to refer to the last resulti...
SDValue getValueImpl(const Value *V)
getValueImpl - Helper function for getValue and getNonRegisterValue.
void visitSwitchCase(SwitchCG::CaseBlock &CB, MachineBasicBlock *SwitchBB)
visitSwitchCase - Emits the necessary code to represent a single node in the binary search tree resul...
void visitSPDescriptorFailure(StackProtectorDescriptor &SPD)
Codegen the failure basic block for a stack protector check.
std::unique_ptr< FunctionLoweringInfo > FuncInfo
SmallPtrSet< const Instruction *, 4 > ElidedArgCopyInstrs
const TargetLowering * TLI
MachineRegisterInfo * RegInfo
std::unique_ptr< SwiftErrorValueTracking > SwiftError
virtual void emitFunctionEntryCode()
std::unique_ptr< SelectionDAGBuilder > SDB
virtual std::pair< SDValue, SDValue > EmitTargetCodeForStrnlen(SelectionDAG &DAG, const SDLoc &DL, SDValue Chain, SDValue Src, SDValue MaxLength, MachinePointerInfo SrcPtrInfo) const
virtual std::pair< SDValue, SDValue > EmitTargetCodeForStrlen(SelectionDAG &DAG, const SDLoc &DL, SDValue Chain, SDValue Src, const CallInst *CI) const
virtual std::pair< SDValue, SDValue > EmitTargetCodeForStrcpy(SelectionDAG &DAG, const SDLoc &DL, SDValue Chain, SDValue Dest, SDValue Src, MachinePointerInfo DestPtrInfo, MachinePointerInfo SrcPtrInfo, bool isStpcpy) const
Emit target-specific code that performs a strcpy or stpcpy, in cases where that is faster than a libc...
virtual std::pair< SDValue, SDValue > EmitTargetCodeForMemchr(SelectionDAG &DAG, const SDLoc &dl, SDValue Chain, SDValue Src, SDValue Char, SDValue Length, MachinePointerInfo SrcPtrInfo) const
Emit target-specific code that performs a memchr, in cases where that is faster than a libcall.
virtual std::pair< SDValue, SDValue > EmitTargetCodeForMemcmp(SelectionDAG &DAG, const SDLoc &dl, SDValue Chain, SDValue Op1, SDValue Op2, SDValue Op3, const CallInst *CI) const
Emit target-specific code that performs a memcmp/bcmp, in cases where that is faster than a libcall.
virtual std::pair< SDValue, SDValue > EmitTargetCodeForStrcmp(SelectionDAG &DAG, const SDLoc &dl, SDValue Chain, SDValue Op1, SDValue Op2, MachinePointerInfo Op1PtrInfo, MachinePointerInfo Op2PtrInfo) const
Emit target-specific code that performs a strcmp, in cases where that is faster than a libcall.
virtual SDValue EmitTargetCodeForSetTag(SelectionDAG &DAG, const SDLoc &dl, SDValue Chain, SDValue Addr, SDValue Size, MachinePointerInfo DstPtrInfo, bool ZeroData) const
This is used to represent a portion of an LLVM function in a low-level Data Dependence DAG representa...
SDValue getExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT, unsigned Opcode)
Convert Op, which must be of integer type, to the integer type VT, by either any/sign/zero-extending ...
const SDValue & getRoot() const
Return the root tag of the SelectionDAG.
const TargetSubtargetInfo & getSubtarget() const
SDValue getCopyToReg(SDValue Chain, const SDLoc &dl, Register Reg, SDValue N)
LLVM_ABI SDValue getMergeValues(ArrayRef< SDValue > Ops, const SDLoc &dl)
Create a MERGE_VALUES node from the given operands.
LLVM_ABI SDVTList getVTList(EVT VT)
Return an SDVTList that represents the list of values specified.
LLVM_ABI SDValue getShiftAmountConstant(uint64_t Val, EVT VT, const SDLoc &DL)
LLVM_ABI MachineSDNode * getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT)
These are used for target selectors to create a new node with specified return type(s),...
LLVM_ABI void ExtractVectorElements(SDValue Op, SmallVectorImpl< SDValue > &Args, unsigned Start=0, unsigned Count=0, EVT EltVT=EVT())
Append the extracted elements from Start to Count out of the vector Op in Args.
LLVM_ABI SDValue getConstantPool(const Constant *C, EVT VT, MaybeAlign Align=std::nullopt, int Offs=0, bool isT=false, unsigned TargetFlags=0)
LLVM_ABI SDValue getConstantFP(double Val, const SDLoc &DL, EVT VT, bool isTarget=false)
Create a ConstantFPSDNode wrapping a constant value.
LLVM_ABI SDValue getRegister(Register Reg, EVT VT)
LLVM_ABI SDValue getLoad(EVT VT, const SDLoc &dl, SDValue Chain, SDValue Ptr, MachinePointerInfo PtrInfo, MaybeAlign Alignment=MaybeAlign(), MachineMemOperand::Flags MMOFlags=MachineMemOperand::MONone, const AAMDNodes &AAInfo=AAMDNodes(), const MDNode *Ranges=nullptr)
Loads are not normal binary operators: their result type is not determined by their operands,...
LLVM_ABI Align getEVTAlign(EVT MemoryVT) const
Compute the default alignment value for the given type.
LLVM_ABI bool shouldOptForSize() const
const TargetLowering & getTargetLoweringInfo() const
static constexpr unsigned MaxRecursionDepth
LLVM_ABI void AddDbgValue(SDDbgValue *DB, bool isParameter)
Add a dbg_value SDNode.
SDValue getUNDEF(EVT VT)
Return an UNDEF node. UNDEF does not have a useful SDLoc.
SDValue getBuildVector(EVT VT, const SDLoc &DL, ArrayRef< SDValue > Ops)
Return an ISD::BUILD_VECTOR node.
LLVM_ABI SDValue getBitcast(EVT VT, SDValue V)
Return a bitcast using the SDLoc of the value operand, and casting to the provided type.
LLVM_ABI SDDbgValue * getDbgValueList(DIVariable *Var, DIExpression *Expr, ArrayRef< SDDbgOperand > Locs, ArrayRef< SDNode * > Dependencies, bool IsIndirect, const DebugLoc &DL, unsigned O, bool IsVariadic)
Creates a SDDbgValue node from a list of locations.
SDValue getCopyFromReg(SDValue Chain, const SDLoc &dl, Register Reg, EVT VT)
LLVM_ABI void setNodeMemRefs(MachineSDNode *N, ArrayRef< MachineMemOperand * > NewMemRefs)
Mutate the specified machine node's memory references to the provided list.
const DataLayout & getDataLayout() const
SDValue getTargetFrameIndex(int FI, EVT VT)
LLVM_ABI SDValue getConstant(uint64_t Val, const SDLoc &DL, EVT VT, bool isTarget=false, bool isOpaque=false)
Create a ConstantSDNode wrapping a constant value.
LLVM_ABI SDValue getMemBasePlusOffset(SDValue Base, TypeSize Offset, const SDLoc &DL, const SDNodeFlags Flags=SDNodeFlags())
Returns sum of the base pointer and offset.
LLVM_ABI SDValue getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr, MachinePointerInfo PtrInfo, EVT SVT, Align Alignment, MachineMemOperand::Flags MMOFlags=MachineMemOperand::MONone, const AAMDNodes &AAInfo=AAMDNodes())
LLVM_ABI SDValue getBasicBlock(MachineBasicBlock *MBB)
LLVM_ABI SDValue getPtrExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of integer type, to the integer type VT, by either truncating it or perform...
LLVM_ABI SDValue getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of integer type, to the integer type VT, by either any-extending or truncat...
LLVM_ABI SDValue getIntPtrConstant(uint64_t Val, const SDLoc &DL, bool isTarget=false)
LLVM_ABI SDValue getValueType(EVT)
LLVM_ABI SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, ArrayRef< SDUse > Ops)
Gets or creates the specified node.
LLVM_ABI SDValue getFPExtendOrRound(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of float type, to the float type VT, by either extending or rounding (by tr...
SDValue getTargetConstant(uint64_t Val, const SDLoc &DL, EVT VT, bool isOpaque=false)
LLVM_ABI SDValue getVectorIdxConstant(uint64_t Val, const SDLoc &DL, bool isTarget=false)
MachineFunction & getMachineFunction() const
LLVM_ABI SDValue getFrameIndex(int FI, EVT VT, bool isTarget=false)
LLVM_ABI SDValue getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of integer type, to the integer type VT, by either zero-extending or trunca...
LLVMContext * getContext() const
const SDValue & setRoot(SDValue N)
Set the current root tag of the SelectionDAG.
A templated base class for SmallPtrSet which provides the typesafe interface that is common across al...
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
reference emplace_back(ArgTypes &&... Args)
void append(ItTy in_start, ItTy in_end)
Add the specified range to the end of the SmallVector.
void swap(SmallVectorImpl &RHS)
void push_back(const T &Elt)
pointer data()
Return a pointer to the vector's buffer, even if empty().
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
Encapsulates all of the information needed to generate a stack protector check, and signals to isel w...
MachineBasicBlock * getSuccessMBB()
MachineBasicBlock * getFailureMBB()
MachineBasicBlock * getParentMBB()
bool shouldEmitFunctionBasedCheckStackProtector() const
An instruction for storing to memory.
StringRef - Represent a constant reference to a string, i.e.
constexpr bool empty() const
empty - Check if the string is empty.
constexpr const char * data() const
data - Get a pointer to the start of the string (which may not be null terminated).
Information about stack frame layout on the target.
virtual TargetStackID::Value getStackIDForScalableVectors() const
Returns the StackID that scalable vectors should be associated with.
Provides information about what library functions are available for the current target.
virtual Align getByValTypeAlignment(Type *Ty, const DataLayout &DL) const
Returns the desired alignment for ByVal or InAlloca aggregate function arguments in the caller parame...
virtual bool isFMAFasterThanFMulAndFAdd(const MachineFunction &MF, EVT) const
Return true if an FMA operation is faster than a pair of fmul and fadd instructions.
EVT getMemValueType(const DataLayout &DL, Type *Ty, bool AllowUnknown=false) const
EVT getValueType(const DataLayout &DL, Type *Ty, bool AllowUnknown=false) const
Return the EVT corresponding to this LLVM type.
LegalizeAction
This enum indicates whether operations are valid for a target, and if not, what action should be used...
virtual bool useStackGuardXorFP() const
If this function returns true, stack protection checks should XOR the frame pointer (or whichever poi...
virtual const TargetRegisterClass * getRegClassFor(MVT VT, bool isDivergent=false) const
Return the register class that should be used for the specified value type.
virtual bool isLegalScaleForGatherScatter(uint64_t Scale, uint64_t ElemSize) const
virtual bool isSExtCheaperThanZExt(EVT FromTy, EVT ToTy) const
Return true if sign-extension from FromTy to ToTy is cheaper than zero-extension.
MVT getVectorIdxTy(const DataLayout &DL) const
Returns the type to be used for the index operand of: ISD::INSERT_VECTOR_ELT, ISD::EXTRACT_VECTOR_ELT...
const TargetMachine & getTargetMachine() const
virtual unsigned getNumRegistersForCallingConv(LLVMContext &Context, CallingConv::ID CC, EVT VT) const
Certain targets require unusual breakdowns of certain types.
virtual bool isZExtFree(Type *FromTy, Type *ToTy) const
Return true if any actual instruction that defines a value of type FromTy implicitly zero-extends the...
virtual MVT getRegisterTypeForCallingConv(LLVMContext &Context, CallingConv::ID CC, EVT VT) const
Certain combinations of ABIs, Targets and features require that types are legal for some operations a...
virtual Value * getSDagStackGuard(const Module &M) const
Return the variable that's previously inserted by insertSSPDeclarations, if any, otherwise return nul...
virtual unsigned getNumRegisters(LLVMContext &Context, EVT VT, std::optional< MVT > RegisterVT=std::nullopt) const
Return the number of registers that this ValueType will eventually require.
unsigned getBitWidthForCttzElements(Type *RetTy, ElementCount EC, bool ZeroIsPoison, const ConstantRange *VScaleRange) const
Return the minimum number of bits required to hold the maximum possible number of trailing zero vecto...
virtual bool shouldExtendGSIndex(EVT VT, EVT &EltTy) const
Returns true if the index type for a masked gather/scatter requires extending.
virtual unsigned getVectorTypeBreakdownForCallingConv(LLVMContext &Context, CallingConv::ID CC, EVT VT, EVT &IntermediateVT, unsigned &NumIntermediates, MVT &RegisterVT) const
Certain targets such as MIPS require that some types such as vectors are always broken down into scal...
Function * getSSPStackGuardCheck(const Module &M) const
If the target has a standard stack protection check function that performs validation and error handl...
Register getStackPointerRegisterToSaveRestore() const
If a physical register, this specifies the register that llvm.savestack/llvm.restorestack should save...
LegalizeAction getFixedPointOperationAction(unsigned Op, EVT VT, unsigned Scale) const
Some fixed point operations may be natively supported by the target but only for specific scales.
MachineMemOperand::Flags getAtomicMemOperandFlags(const Instruction &AI, const DataLayout &DL) const
virtual bool getTgtMemIntrinsic(IntrinsicInfo &, const CallInst &, MachineFunction &, unsigned) const
Given an intrinsic, checks if on the target the intrinsic will need to map to a MemIntrinsicNode (tou...
virtual bool allowsMisalignedMemoryAccesses(EVT, unsigned AddrSpace=0, Align Alignment=Align(1), MachineMemOperand::Flags Flags=MachineMemOperand::MONone, unsigned *=nullptr) const
Determine if the target supports unaligned memory accesses.
bool isOperationCustom(unsigned Op, EVT VT) const
Return true if the operation uses custom lowering, regardless of whether the type is legal or not.
bool hasBigEndianPartOrdering(EVT VT, const DataLayout &DL) const
When splitting a value of the specified type into parts, does the Lo or Hi part come first?
EVT getShiftAmountTy(EVT LHSTy, const DataLayout &DL) const
Returns the type for the shift amount of a shift opcode.
virtual Align getABIAlignmentForCallingConv(Type *ArgTy, const DataLayout &DL) const
Certain targets have context sensitive alignment requirements, where one type has the alignment requi...
MachineMemOperand::Flags getVPIntrinsicMemOperandFlags(const VPIntrinsic &VPIntrin) const
virtual bool shouldExpandGetActiveLaneMask(EVT VT, EVT OpVT) const
Return true if the @llvm.get.active.lane.mask intrinsic should be expanded using generic code in Sele...
virtual EVT getSetCCResultType(const DataLayout &DL, LLVMContext &Context, EVT VT) const
Return the ValueType of the result of SETCC operations.
MachineMemOperand::Flags getLoadMemOperandFlags(const LoadInst &LI, const DataLayout &DL, AssumptionCache *AC=nullptr, const TargetLibraryInfo *LibInfo=nullptr) const
virtual EVT getTypeToTransformTo(LLVMContext &Context, EVT VT) const
For types supported by the target, this is an identity function.
bool isTypeLegal(EVT VT) const
Return true if the target has native support for the specified value type.
MVT getProgramPointerTy(const DataLayout &DL) const
Return the type for code pointers, which is determined by the program address space specified through...
virtual MVT getPointerTy(const DataLayout &DL, uint32_t AS=0) const
Return the pointer type for the given address space, defaults to the pointer type from the data layou...
bool isOperationLegal(unsigned Op, EVT VT) const
Return true if the specified operation is legal on this target.
virtual bool shouldExpandVectorMatch(EVT VT, unsigned SearchSize) const
Return true if the @llvm.experimental.vector.match intrinsic should be expanded for vector type ‘VT’ ...
virtual MVT getFenceOperandTy(const DataLayout &DL) const
Return the type for operands of fence.
virtual bool shouldExpandGetVectorLength(EVT CountVT, unsigned VF, bool IsScalable) const
bool isOperationLegalOrCustom(unsigned Op, EVT VT, bool LegalOnly=false) const
Return true if the specified operation is legal on this target or can be made legal with custom lower...
virtual MVT hasFastEqualityCompare(unsigned NumBits) const
Return the preferred operand type if the target has a quick way to compare integer values of the give...
MachineMemOperand::Flags getStoreMemOperandFlags(const StoreInst &SI, const DataLayout &DL) const
virtual bool shouldExpandCttzElements(EVT VT) const
Return true if the @llvm.experimental.cttz.elts intrinsic should be expanded using generic code in Se...
virtual bool signExtendConstant(const ConstantInt *C) const
Return true if this constant should be sign extended when promoting to a larger type.
LegalizeTypeAction getTypeAction(LLVMContext &Context, EVT VT) const
Return how we should legalize values of this type, either it is already legal (return 'Legal') or we ...
virtual Register getExceptionPointerRegister(const Constant *PersonalityFn) const
If a physical register, this returns the register that receives the exception address on entry to an ...
bool supportsUnalignedAtomics() const
Whether the target supports unaligned atomic operations.
std::vector< ArgListEntry > ArgListTy
bool isBeneficialToExpandPowI(int64_t Exponent, bool OptForSize) const
Return true if it is beneficial to expand an @llvm.powi.
MVT getFrameIndexTy(const DataLayout &DL) const
Return the type for frame index, which is determined by the alloca address space specified through th...
virtual Register getExceptionSelectorRegister(const Constant *PersonalityFn) const
If a physical register, this returns the register that receives the exception typeid on entry to a la...
virtual MVT getPointerMemTy(const DataLayout &DL, uint32_t AS=0) const
Return the in-memory pointer type for the given address space, defaults to the pointer type from the ...
MVT getRegisterType(MVT VT) const
Return the type of registers that this ValueType will eventually require.
unsigned getVectorTypeBreakdown(LLVMContext &Context, EVT VT, EVT &IntermediateVT, unsigned &NumIntermediates, MVT &RegisterVT) const
Vector types are broken down into some number of legal first class types.
virtual MVT getVPExplicitVectorLengthTy() const
Returns the type to be used for the EVL/AVL operand of VP nodes: ISD::VP_ADD, ISD::VP_SUB,...
This class defines information used to lower LLVM code to legal SelectionDAG operators that the targe...
virtual bool supportKCFIBundles() const
Return true if the target supports kcfi operand bundles.
virtual bool supportPtrAuthBundles() const
Return true if the target supports ptrauth operand bundles.
virtual bool supportSwiftError() const
Return true if the target supports swifterror attribute.
virtual SDValue visitMaskedLoad(SelectionDAG &DAG, const SDLoc &DL, SDValue Chain, MachineMemOperand *MMO, SDValue &NewLoad, SDValue Ptr, SDValue PassThru, SDValue Mask) const
virtual SDValue emitStackGuardXorFP(SelectionDAG &DAG, SDValue Val, const SDLoc &DL) const
virtual EVT getTypeForExtReturn(LLVMContext &Context, EVT VT, ISD::NodeType) const
Return the type that should be used to zero or sign extend a zeroext/signext integer return value.
std::pair< SDValue, SDValue > makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT, ArrayRef< SDValue > Ops, MakeLibCallOptions CallOptions, const SDLoc &dl, SDValue Chain=SDValue()) const
Returns a pair of (return value, chain).
virtual InlineAsm::ConstraintCode getInlineAsmMemConstraint(StringRef ConstraintCode) const
std::vector< AsmOperandInfo > AsmOperandInfoVector
SDValue expandIS_FPCLASS(EVT ResultVT, SDValue Op, FPClassTest Test, SDNodeFlags Flags, const SDLoc &DL, SelectionDAG &DAG) const
Expand check for floating point class.
virtual SDValue prepareVolatileOrAtomicLoad(SDValue Chain, const SDLoc &DL, SelectionDAG &DAG) const
This callback is used to prepare for a volatile or atomic load.
virtual ConstraintType getConstraintType(StringRef Constraint) const
Given a constraint, return the type of constraint it is for this target.
virtual bool splitValueIntoRegisterParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts, unsigned NumParts, MVT PartVT, std::optional< CallingConv::ID > CC) const
Target-specific splitting of values into parts that fit a register storing a legal type.
virtual SDValue joinRegisterPartsIntoValue(SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts, unsigned NumParts, MVT PartVT, EVT ValueVT, std::optional< CallingConv::ID > CC) const
Target-specific combining of register parts into its original value.
virtual SDValue LowerCall(CallLoweringInfo &, SmallVectorImpl< SDValue > &) const
This hook must be implemented to lower calls into the specified DAG.
std::pair< SDValue, SDValue > LowerCallTo(CallLoweringInfo &CLI) const
This function lowers an abstract call to a function into an actual call.
virtual SDValue LowerAsmOutputForConstraint(SDValue &Chain, SDValue &Glue, const SDLoc &DL, const AsmOperandInfo &OpInfo, SelectionDAG &DAG) const
virtual std::pair< unsigned, const TargetRegisterClass * > getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const
Given a physical register constraint (e.g.
virtual AsmOperandInfoVector ParseConstraints(const DataLayout &DL, const TargetRegisterInfo *TRI, const CallBase &Call) const
Split up the constraint string from the inline assembly value into the specific constraints and their...
virtual SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const
This callback is invoked for operations that are unsupported by the target, which are registered to u...
virtual bool functionArgumentNeedsConsecutiveRegisters(Type *Ty, CallingConv::ID CallConv, bool isVarArg, const DataLayout &DL) const
For some targets, an LLVM struct type must be broken down into multiple simple types,...
virtual void ComputeConstraintToUse(AsmOperandInfo &OpInfo, SDValue Op, SelectionDAG *DAG=nullptr) const
Determines the constraint code and constraint type to use for the specific AsmOperandInfo,...
virtual void CollectTargetIntrinsicOperands(const CallInst &I, SmallVectorImpl< SDValue > &Ops, SelectionDAG &DAG) const
virtual SDValue visitMaskedStore(SelectionDAG &DAG, const SDLoc &DL, SDValue Chain, MachineMemOperand *MMO, SDValue Ptr, SDValue Val, SDValue Mask) const
virtual bool useLoadStackGuardNode(const Module &M) const
If this function returns true, SelectionDAGBuilder emits a LOAD_STACK_GUARD node when it is lowering ...
virtual void LowerAsmOperandForConstraint(SDValue Op, StringRef Constraint, std::vector< SDValue > &Ops, SelectionDAG &DAG) const
Lower the specified operand into the Ops vector.
virtual void LowerOperationWrapper(SDNode *N, SmallVectorImpl< SDValue > &Results, SelectionDAG &DAG) const
This callback is invoked by the type legalizer to legalize nodes with an illegal operand type but leg...
virtual bool isInlineAsmTargetBranch(const SmallVectorImpl< StringRef > &AsmStrs, unsigned OpNo) const
On x86, return true if the operand with index OpNo is a CALL or JUMP instruction, which can use eithe...
virtual MVT getJumpTableRegTy(const DataLayout &DL) const
virtual bool CanLowerReturn(CallingConv::ID, MachineFunction &, bool, const SmallVectorImpl< ISD::OutputArg > &, LLVMContext &, const Type *RetTy) const
This hook should be implemented to check whether the return values described by the Outs array can fi...
CodeGenOptLevel getOptLevel() const
Returns the optimization level: None, Less, Default, or Aggressive.
virtual TargetTransformInfo getTargetTransformInfo(const Function &F) const
Return a TargetTransformInfo for a given function.
unsigned NoTrapAfterNoreturn
Do not emit a trap instruction for 'unreachable' IR instructions behind noreturn calls,...
unsigned TrapUnreachable
Emit target-specific trap instruction for 'unreachable' IR instructions.
unsigned getID() const
Return the register class ID number.
const MCPhysReg * iterator
iterator begin() const
begin/end - Return all of the registers in this class.
TargetRegisterInfo base class - We assume that the target defines a static array of TargetRegisterDes...
virtual const TargetFrameLowering * getFrameLowering() const
virtual const TargetRegisterInfo * getRegisterInfo() const =0
Return the target's register information.
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
static constexpr TypeSize getFixed(ScalarTy ExactSize)
The instances of the Type class are immutable: once they are created, they are never changed.
LLVM_ABI bool isEmptyTy() const
Return true if this type is empty, that is, it has no elements or all of its elements are empty.
bool isVectorTy() const
True if this is an instance of VectorType.
bool isPointerTy() const
True if this is an instance of PointerType.
LLVM_ABI unsigned getPointerAddressSpace() const
Get the address space of this pointer or pointer vector type.
static LLVM_ABI Type * getVoidTy(LLVMContext &C)
Type * getScalarType() const
If this is a vector type, return the element type, otherwise return 'this'.
LLVMContext & getContext() const
Return the LLVMContext in which this type was uniqued.
static LLVM_ABI IntegerType * getInt1Ty(LLVMContext &C)
bool isIntegerTy() const
True if this is an instance of IntegerType.
bool isTokenTy() const
Return true if this is 'token'.
static LLVM_ABI IntegerType * getIntNTy(LLVMContext &C, unsigned N)
bool isFPOrFPVectorTy() const
Return true if this is a FP type or a vector of FP.
bool isVoidTy() const
Return true if this is 'void'.
This function has undefined behavior.
A Use represents the edge between a Value definition and its users.
Value * getOperand(unsigned i) const
unsigned getNumOperands() const
This class represents the va_arg llvm instruction, which returns an argument of the specified type gi...
LLVM_ABI CmpInst::Predicate getPredicate() const
This is the common base class for vector predication intrinsics.
static LLVM_ABI std::optional< unsigned > getVectorLengthParamPos(Intrinsic::ID IntrinsicID)
LLVM_ABI MaybeAlign getPointerAlignment() const
LLVM Value Representation.
Type * getType() const
All values are typed, get the type of this value.
bool hasOneUse() const
Return true if there is exactly one use of this value.
iterator_range< user_iterator > users()
LLVM_ABI const Value * stripPointerCasts() const
Strip off pointer casts, all-zero GEPs and address space casts.
LLVM_ABI LLVMContext & getContext() const
All values hold a context through their type.
LLVM_ABI StringRef getName() const
Return a constant reference to the value's name.
Base class of all SIMD vector types.
Type * getElementType() const
constexpr ScalarTy getFixedValue() const
static constexpr bool isKnownLE(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
constexpr bool isScalable() const
Returns whether the quantity is scaled by a runtime quantity (vscale).
constexpr ScalarTy getKnownMinValue() const
Returns the minimum value this quantity can represent.
const ParentTy * getParent() const
A raw_ostream that writes to an std::string.
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
constexpr char Align[]
Key for Kernel::Arg::Metadata::mAlign.
constexpr char Args[]
Key for Kernel::Metadata::mArgs.
constexpr std::underlying_type_t< E > Mask()
Get a bitmask with 1s in all places up to the high-order bit of E's largest value.
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
@ AnyReg
OBSOLETED - Used for stack based JavaScript calls.
@ AMDGPU_CS_Chain
Used on AMDGPUs to give the middle-end more control over argument placement.
@ X86_VectorCall
MSVC calling convention that passes vectors and vector aggregates in SSE registers.
@ C
The default llvm calling convention, compatible with C.
NodeType
ISD::NodeType enum - This enum defines the target-independent operators for a SelectionDAG.
@ MERGE_VALUES
MERGE_VALUES - This node takes multiple discrete operands and returns them all as its individual resu...
@ STRICT_FSETCC
STRICT_FSETCC/STRICT_FSETCCS - Constrained versions of SETCC, used for floating-point operands only.
@ DELETED_NODE
DELETED_NODE - This is an illegal value that is used to catch errors.
@ LOOP_DEPENDENCE_RAW_MASK
@ EH_SJLJ_LONGJMP
OUTCHAIN = EH_SJLJ_LONGJMP(INCHAIN, buffer) This corresponds to the eh.sjlj.longjmp intrinsic.
@ INSERT_SUBVECTOR
INSERT_SUBVECTOR(VECTOR1, VECTOR2, IDX) - Returns a vector with VECTOR2 inserted into VECTOR1.
@ BSWAP
Byte Swap and Counting operators.
@ SMULFIX
RESULT = [US]MULFIX(LHS, RHS, SCALE) - Perform fixed point multiplication on 2 integers with the same...
@ ADD
Simple integer binary arithmetic operators.
@ SMULFIXSAT
Same as the corresponding unsaturated fixed point instructions, but the result is clamped between the...
@ ANY_EXTEND
ANY_EXTEND - Used for integer types. The high bits are undefined.
@ FMA
FMA - Perform a * b + c with no intermediate rounding step.
@ INTRINSIC_VOID
OUTCHAIN = INTRINSIC_VOID(INCHAIN, INTRINSICID, arg1, arg2, ...) This node represents a target intrin...
@ EH_SJLJ_SETUP_DISPATCH
OUTCHAIN = EH_SJLJ_SETUP_DISPATCH(INCHAIN) The target initializes the dispatch table here.
@ SINT_TO_FP
[SU]INT_TO_FP - These operators convert integers (whose interpreted sign depends on the first letter)...
@ CONCAT_VECTORS
CONCAT_VECTORS(VECTOR0, VECTOR1, ...) - Given a number of values of vector type with the same length ...
@ FADD
Simple binary floating point operators.
@ ABS
ABS - Determine the unsigned absolute value of a signed integer value of the same bitwidth.
@ FMULADD
FMULADD - Performs a * b + c, with, or without, intermediate rounding.
@ FPTRUNC_ROUND
FPTRUNC_ROUND - This corresponds to the fptrunc_round intrinsic.
@ BUILD_PAIR
BUILD_PAIR - This is the opposite of EXTRACT_ELEMENT in some ways.
@ SDIVFIX
RESULT = [US]DIVFIX(LHS, RHS, SCALE) - Perform fixed point division on 2 integers with the same width...
@ EH_RETURN
OUTCHAIN = EH_RETURN(INCHAIN, OFFSET, HANDLER) - This node represents 'eh_return' gcc dwarf builtin,...
@ SIGN_EXTEND
Conversion operators.
@ ADDROFRETURNADDR
ADDROFRETURNADDR - Represents the llvm.addressofreturnaddress intrinsic.
@ CTTZ_ZERO_UNDEF
Bit counting operators with an undefined result for zero inputs.
@ SSUBO
Same for subtraction.
@ VECTOR_INTERLEAVE
VECTOR_INTERLEAVE(VEC1, VEC2, ...) - Returns N vectors from N input vectors, where N is the factor to...
@ FCANONICALIZE
Returns platform specific canonical encoding of a floating point number.
@ IS_FPCLASS
Performs a check of floating point class property, defined by IEEE-754.
@ SSUBSAT
RESULT = [US]SUBSAT(LHS, RHS) - Perform saturation subtraction on 2 integers with the same bit width ...
@ SELECT
Select(COND, TRUEVAL, FALSEVAL).
@ EXTRACT_ELEMENT
EXTRACT_ELEMENT - This is used to get the lower or upper (determined by a Constant,...
@ SPLAT_VECTOR
SPLAT_VECTOR(VAL) - Returns a vector with the scalar value VAL duplicated in all lanes.
@ BasicBlock
Various leaf nodes.
@ CopyFromReg
CopyFromReg - This node indicates that the input value is a virtual or physical register that is defi...
@ SADDO
RESULT, BOOL = [SU]ADDO(LHS, RHS) - Overflow-aware nodes for addition.
@ GET_ROUNDING
Returns current rounding mode: -1 Undefined 0 Round to 0 1 Round to nearest, ties to even 2 Round to ...
@ SHL
Shift and rotation operations.
@ AssertNoFPClass
AssertNoFPClass - These nodes record if a register contains a float value that is known to be not som...
@ PtrAuthGlobalAddress
A ptrauth constant.
@ EXTRACT_SUBVECTOR
EXTRACT_SUBVECTOR(VECTOR, IDX) - Returns a subvector from VECTOR.
@ EntryToken
EntryToken - This is the marker used to indicate the start of a region.
@ READ_REGISTER
READ_REGISTER, WRITE_REGISTER - This node represents llvm.register on the DAG, which implements the n...
@ EXTRACT_VECTOR_ELT
EXTRACT_VECTOR_ELT(VECTOR, IDX) - Returns a single element from VECTOR identified by the (potentially...
@ ZERO_EXTEND
ZERO_EXTEND - Used for integer types, zeroing the new bits.
@ LOCAL_RECOVER
LOCAL_RECOVER - Represents the llvm.localrecover intrinsic.
@ SSHLSAT
RESULT = [US]SHLSAT(LHS, RHS) - Perform saturation left shift.
@ SMULO
Same for multiplication.
@ SMIN
[US]{MIN/MAX} - Binary minimum or maximum of signed or unsigned integers.
@ VECTOR_REVERSE
VECTOR_REVERSE(VECTOR) - Returns a vector, of the same type as VECTOR, whose elements are shuffled us...
@ SDIVFIXSAT
Same as the corresponding unsaturated fixed point instructions, but the result is clamped between the...
@ VSELECT
Select with a vector condition (op #0) and two vector operands (ops #1 and #2), returning a vector re...
@ EH_DWARF_CFA
EH_DWARF_CFA - This node represents the pointer to the DWARF Canonical Frame Address (CFA),...
@ FRAMEADDR
FRAMEADDR, RETURNADDR - These nodes represent llvm.frameaddress and llvm.returnaddress on the DAG.
@ STRICT_FP_ROUND
X = STRICT_FP_ROUND(Y, TRUNC) - Rounding 'Y' from a larger floating point type down to the precision ...
@ FP_TO_SINT
FP_TO_[US]INT - Convert a floating point value to a signed or unsigned integer.
@ AND
Bitwise operators - logical and, logical or, logical xor.
@ INTRINSIC_WO_CHAIN
RESULT = INTRINSIC_WO_CHAIN(INTRINSICID, arg1, arg2, ...) This node represents a target intrinsic fun...
@ SCMP
[US]CMP - 3-way comparison of signed or unsigned integers.
@ STRICT_FADD
Constrained versions of the binary floating point operators.
@ FREEZE
FREEZE - FREEZE(VAL) returns an arbitrary value if VAL is UNDEF (or is evaluated to UNDEF),...
@ INSERT_VECTOR_ELT
INSERT_VECTOR_ELT(VECTOR, VAL, IDX) - Returns VECTOR with the element at IDX replaced with VAL.
@ TokenFactor
TokenFactor - This node takes multiple tokens as input and produces a single token result.
@ VECTOR_SPLICE
VECTOR_SPLICE(VEC1, VEC2, IMM) - Returns a subvector of the same type as VEC1/VEC2 from CONCAT_VECTOR...
@ FP_ROUND
X = FP_ROUND(Y, TRUNC) - Rounding 'Y' from a larger floating point type down to the precision of the ...
@ VECTOR_COMPRESS
VECTOR_COMPRESS(Vec, Mask, Passthru) consecutively place vector elements based on mask e....
@ SPONENTRY
SPONENTRY - Represents the llvm.sponentry intrinsic.
@ FP_TO_SINT_SAT
FP_TO_[US]INT_SAT - Convert floating point value in operand 0 to a signed or unsigned scalar integer ...
@ EH_SJLJ_SETJMP
RESULT, OUTCHAIN = EH_SJLJ_SETJMP(INCHAIN, buffer) This corresponds to the eh.sjlj....
@ TRUNCATE
TRUNCATE - Completely drop the high bits.
@ AssertSext
AssertSext, AssertZext - These nodes record if a register contains a value that has already been zero...
@ FCOPYSIGN
FCOPYSIGN(X, Y) - Return the value of X with the sign of Y.
@ SADDSAT
RESULT = [US]ADDSAT(LHS, RHS) - Perform saturation addition on 2 integers with the same bit width (W)...
@ VECTOR_DEINTERLEAVE
VECTOR_DEINTERLEAVE(VEC1, VEC2, ...) - Returns N vectors from N input vectors, where N is the factor ...
@ INTRINSIC_W_CHAIN
RESULT,OUTCHAIN = INTRINSIC_W_CHAIN(INCHAIN, INTRINSICID, arg1, ...) This node represents a target in...
@ BUILD_VECTOR
BUILD_VECTOR(ELT0, ELT1, ELT2, ELT3,...) - Return a fixed-width vector with the specified,...
@ LOOP_DEPENDENCE_WAR_MASK
Set rounding mode.
CondCode
ISD::CondCode enum - These are ordered carefully to make the bitfields below work out,...
This namespace contains an enum with a value for every intrinsic/builtin function known by LLVM.
Flag
These should be considered private to the implementation of the MCInstrDesc class.
BinaryOp_match< SrcTy, SpecificConstantMatch, TargetOpcode::G_XOR, true > m_Not(const SrcTy &&Src)
Matches a register not-ed by a G_XOR.
OneUse_match< SubPat > m_OneUse(const SubPat &SP)
bool match(Val *V, const Pattern &P)
specificval_ty m_Specific(const Value *V)
Match if we have a specific specified value.
TwoOps_match< Val_t, Idx_t, Instruction::ExtractElement > m_ExtractElt(const Val_t &Val, const Idx_t &Idx)
Matches ExtractElementInst.
IntrinsicID_match m_VScale()
Matches a call to llvm.vscale().
auto m_LogicalOr()
Matches L || R where L and R are arbitrary values.
class_match< Value > m_Value()
Match an arbitrary value and ignore it.
auto m_LogicalAnd()
Matches L && R where L and R are arbitrary values.
std::pair< JumpTableHeader, JumpTable > JumpTableBlock
void sortAndRangeify(CaseClusterVector &Clusters)
Sort Clusters and merge adjacent cases.
std::vector< CaseCluster > CaseClusterVector
@ CC_Range
A cluster of adjacent case labels with the same destination, or just one case.
@ CC_JumpTable
A cluster of cases suitable for jump table lowering.
@ CC_BitTests
A cluster of cases suitable for bit test lowering.
SmallVector< SwitchWorkListItem, 4 > SwitchWorkList
CaseClusterVector::iterator CaseClusterIt
initializer< Ty > init(const Ty &Val)
LocationClass< Ty > location(Ty &L)
@ DW_OP_LLVM_arg
Only used in LLVM metadata.
ExceptionBehavior
Exception behavior used for floating point operations.
@ ebStrict
This corresponds to "fpexcept.strict".
@ ebMayTrap
This corresponds to "fpexcept.maytrap".
@ ebIgnore
This corresponds to "fpexcept.ignore".
NodeAddr< FuncNode * > Func
friend class Instruction
Iterator for Instructions in a `BasicBlock.
This is an optimization pass for GlobalISel generic memory operations.
@ Low
Lower the current thread's priority such that it does not affect foreground tasks significantly.
unsigned Log2_32_Ceil(uint32_t Value)
Return the ceil log base 2 of the specified value, 32 if the value is zero.
FunctionAddr VTableAddr Value
ISD::CondCode getICmpCondCode(ICmpInst::Predicate Pred)
getICmpCondCode - Return the ISD condition code corresponding to the given LLVM IR integer condition ...
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
auto size(R &&Range, std::enable_if_t< std::is_base_of< std::random_access_iterator_tag, typename std::iterator_traits< decltype(Range.begin())>::iterator_category >::value, void > *=nullptr)
Get the size of a range.
LLVM_ABI void GetReturnInfo(CallingConv::ID CC, Type *ReturnType, AttributeList attr, SmallVectorImpl< ISD::OutputArg > &Outs, const TargetLowering &TLI, const DataLayout &DL)
Given an LLVM IR type and return type attributes, compute the return value EVTs and flags,...
MachineInstrBuilder BuildMI(MachineFunction &MF, const MIMetadata &MIMD, const MCInstrDesc &MCID)
Builder interface. Specify how to create the initial instruction itself.
LLVM_ABI bool isOnlyUsedInZeroEqualityComparison(const Instruction *CxtI)
LLVM_ABI SDValue peekThroughBitcasts(SDValue V)
Return the non-bitcasted source operand of V if it exists.
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
int countr_one(T Value)
Count the number of ones from the least significant bit to the first zero bit.
LLVM_ABI void diagnoseDontCall(const CallInst &CI)
auto successors(const MachineBasicBlock *BB)
bool isIntOrFPConstant(SDValue V)
Return true if V is either a integer or FP constant.
static ConstantRange getRange(Value *Op, SCCPSolver &Solver, const SmallPtrSetImpl< Value * > &InsertedValues)
Helper for getting ranges from Solver.
void append_range(Container &C, Range &&R)
Wrapper function to append range R to container C.
Value * GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset, const DataLayout &DL, bool AllowNonInbounds=true)
Analyze the specified pointer to see if it can be expressed as a base pointer plus a constant offset.
constexpr bool isUIntN(unsigned N, uint64_t x)
Checks if an unsigned integer fits into the given (dynamic) bit width.
auto cast_or_null(const Y &Val)
constexpr T alignDown(U Value, V Align, W Skew=0)
Returns the largest unsigned integer less than or equal to Value and is Skew mod Align.
gep_type_iterator gep_type_end(const User *GEP)
constexpr int popcount(T Value) noexcept
Count the number of set bits in a value.
LLVM_ABI ConstantRange getConstantRangeFromMetadata(const MDNode &RangeMD)
Parse out a conservative ConstantRange from !range metadata.
detail::concat_range< ValueT, RangeTs... > concat(RangeTs &&...Ranges)
Returns a concatenated range across two or more ranges.
bool isScopedEHPersonality(EHPersonality Pers)
Returns true if this personality uses scope-style EH IR instructions: catchswitch,...
int countr_zero(T Val)
Count number of 0's from the least significant bit to the most stopping at the first 1.
void ComputeValueTypes(const DataLayout &DL, Type *Ty, SmallVectorImpl< Type * > &Types, SmallVectorImpl< TypeSize > *Offsets=nullptr, TypeSize StartingOffset=TypeSize::getZero())
Given an LLVM IR type, compute non-aggregate subtypes.
auto dyn_cast_or_null(const Y &Val)
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
LLVM_ABI llvm::SmallVector< int, 16 > createStrideMask(unsigned Start, unsigned Stride, unsigned VF)
Create a stride shuffle mask.
@ SPF_ABS
Floating point maxnum.
@ SPF_NABS
Absolute value.
@ SPF_FMAXNUM
Floating point minnum.
@ SPF_UMIN
Signed minimum.
@ SPF_UMAX
Signed maximum.
@ SPF_SMAX
Unsigned minimum.
@ SPF_FMINNUM
Unsigned maximum.
decltype(auto) get(const PointerIntPair< PointerTy, IntBits, IntType, PtrTraits, Info > &Pair)
detail::zippy< detail::zip_first, T, U, Args... > zip_first(T &&t, U &&u, Args &&...args)
zip iterator that, for the sake of efficiency, assumes the first iteratee to be the shortest.
void sort(IteratorTy Start, IteratorTy End)
FPClassTest
Floating-point class tests, supported by 'is_fpclass' intrinsic.
LLVM_ABI SelectPatternResult matchSelectPattern(Value *V, Value *&LHS, Value *&RHS, Instruction::CastOps *CastOp=nullptr, unsigned Depth=0)
Pattern match integer [SU]MIN, [SU]MAX and ABS idioms, returning the kind and providing the out param...
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
LLVM_ABI void report_fatal_error(Error Err, bool gen_crash_diag=true)
generic_gep_type_iterator<> gep_type_iterator
FunctionAddr VTableAddr Count
auto succ_size(const MachineBasicBlock *BB)
bool hasSingleElement(ContainerTy &&C)
Returns true if the given container only contains a single element.
LLVM_ABI ConstantRange getVScaleRange(const Function *F, unsigned BitWidth)
Determine the possible constant range of vscale with the given bit width, based on the vscale_range f...
ISD::CondCode getFCmpCondCode(FCmpInst::Predicate Pred)
getFCmpCondCode - Return the ISD condition code corresponding to the given LLVM IR floating-point con...
LLVM_ABI EHPersonality classifyEHPersonality(const Value *Pers)
See if the given exception handling personality function is one that we understand.
class LLVM_GSL_OWNER SmallVector
Forward declaration of SmallVector so that calculateSmallVectorDefaultInlinedElements can reference s...
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
LLVM_ATTRIBUTE_VISIBILITY_DEFAULT AnalysisKey InnerAnalysisManagerProxy< AnalysisManagerT, IRUnitT, ExtraArgTs... >::Key
LLVM_ABI Value * salvageDebugInfoImpl(Instruction &I, uint64_t CurrentLocOps, SmallVectorImpl< uint64_t > &Ops, SmallVectorImpl< Value * > &AdditionalValues)
LLVM_ABI raw_fd_ostream & errs()
This returns a reference to a raw_ostream for standard error.
@ Global
Append to llvm.global_dtors.
AtomicOrdering
Atomic ordering for LLVM's memory model.
@ First
Helpers to iterate all locations in the MemoryEffectsBase class.
bool isFuncletEHPersonality(EHPersonality Pers)
Returns true if this is a personality function that invokes handler funclets (which must return to it...
FunctionAddr VTableAddr uintptr_t uintptr_t Data
LLVM_ABI bool isAssignmentTrackingEnabled(const Module &M)
Return true if assignment tracking is enabled for module M.
LLVM_ABI llvm::SmallVector< int, 16 > createInterleaveMask(unsigned VF, unsigned NumVecs)
Create an interleave shuffle mask.
@ UMin
Unsigned integer min implemented in terms of select(cmp()).
@ Or
Bitwise or logical OR of integers.
@ Mul
Product of integers.
@ And
Bitwise or logical AND of integers.
@ Sub
Subtraction of integers.
uint64_t alignTo(uint64_t Size, Align A)
Returns a multiple of A needed to store Size bytes.
@ SPNB_RETURNS_NAN
NaN behavior not applicable.
@ SPNB_RETURNS_OTHER
Given one NaN input, returns the NaN.
@ SPNB_RETURNS_ANY
Given one NaN input, returns the non-NaN.
bool isInTailCallPosition(const CallBase &Call, const TargetMachine &TM, bool ReturnsFirstArg=false)
Test if the given instruction is in a position to be optimized with a tail-call.
DWARFExpression::Operation Op
ISD::CondCode getFCmpCodeWithoutNaN(ISD::CondCode CC)
getFCmpCodeWithoutNaN - Given an ISD condition code comparing floats, return the equivalent code if w...
void ComputeValueVTs(const TargetLowering &TLI, const DataLayout &DL, Type *Ty, SmallVectorImpl< EVT > &ValueVTs, SmallVectorImpl< EVT > *MemVTs, SmallVectorImpl< TypeSize > *Offsets=nullptr, TypeSize StartingOffset=TypeSize::getZero())
ComputeValueVTs - Given an LLVM IR type, compute a sequence of EVTs that represent all the individual...
ArrayRef(const T &OneElt) -> ArrayRef< T >
bool isAsynchronousEHPersonality(EHPersonality Pers)
Returns true if this personality function catches asynchronous exceptions.
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
LLVM_ABI std::optional< RoundingMode > convertStrToRoundingMode(StringRef)
Returns a valid RoundingMode enumerator when given a string that is valid as input in constrained int...
gep_type_iterator gep_type_begin(const User *GEP)
void erase_if(Container &C, UnaryPredicate P)
Provide a container algorithm similar to C++ Library Fundamentals v2's erase_if which is equivalent t...
GlobalValue * ExtractTypeInfo(Value *V)
ExtractTypeInfo - Returns the type info, possibly bitcast, encoded in V.
bool is_contained(R &&Range, const E &Element)
Returns true if Element is found in Range.
Align commonAlignment(Align A, uint64_t Offset)
Returns the alignment that satisfies both alignments.
bool all_equal(std::initializer_list< T > Values)
Returns true if all Values in the initializer lists are equal or the list.
LLVM_ABI Constant * ConstantFoldLoadFromConstPtr(Constant *C, Type *Ty, APInt Offset, const DataLayout &DL)
Return the value that a load from C with offset Offset would produce if it is constant and determinab...
unsigned ComputeLinearIndex(Type *Ty, const unsigned *Indices, const unsigned *IndicesEnd, unsigned CurIndex=0)
Compute the linearized index of a member in a nested aggregate/struct/array.
T bit_floor(T Value)
Returns the largest integral power of two no greater than Value if Value is nonzero.
@ Default
The result values are uniform if and only if all operands are uniform.
LLVM_ABI void reportFatalUsageError(Error Err)
Report a fatal error that does not indicate a bug in LLVM.
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
This struct is a compact representation of a valid (non-zero power of two) alignment.
constexpr uint64_t value() const
This is a hole in the type system and should not be abused.
TypeSize getStoreSize() const
Return the number of bytes overwritten by a store of the specified value type.
static EVT getVectorVT(LLVMContext &Context, EVT VT, unsigned NumElements, bool IsScalable=false)
Returns the EVT that represents a vector NumElements in length, where each element is of type VT.
uint64_t getScalarStoreSize() const
bool bitsGT(EVT VT) const
Return true if this has more bits than VT.
bool bitsLT(EVT VT) const
Return true if this has less bits than VT.
bool isFloatingPoint() const
Return true if this is a FP or a vector FP type.
ElementCount getVectorElementCount() const
TypeSize getSizeInBits() const
Return the size of the specified value type in bits.
unsigned getVectorMinNumElements() const
Given a vector type, return the minimum number of elements it contains.
uint64_t getScalarSizeInBits() const
static LLVM_ABI EVT getEVT(Type *Ty, bool HandleUnknown=false)
Return the value type corresponding to the specified type.
MVT getSimpleVT() const
Return the SimpleValueType held in the specified simple EVT.
static EVT getIntegerVT(LLVMContext &Context, unsigned BitWidth)
Returns the EVT that represents an integer with the given number of bits.
bool isRISCVVectorTuple() const
Return true if this is a vector value type.
uint64_t getFixedSizeInBits() const
Return the size of the specified fixed width value type in bits.
bool isFixedLengthVector() const
bool isVector() const
Return true if this is a vector value type.
EVT getScalarType() const
If this is a vector type, return the element type, otherwise return this.
bool bitsGE(EVT VT) const
Return true if this has no less bits than VT.
bool isScalableVector() const
Return true if this is a vector type where the runtime length is machine dependent.
EVT getVectorElementType() const
Given a vector type, return the type of each element.
bool isScalarInteger() const
Return true if this is an integer, but not a vector.
EVT changeVectorElementType(EVT EltVT) const
Return a VT for a vector type whose attributes match ourselves with the exception of the element type...
unsigned getVectorNumElements() const
Given a vector type, return the number of elements it contains.
bool isInteger() const
Return true if this is an integer or a vector integer type.
void setOrigAlign(Align A)
OutputArg - This struct carries flags and a value for a single outgoing (actual) argument or outgoing...
ConstraintPrefix Type
Type - The basic type of the constraint: input/output/clobber/label.
unsigned countMinLeadingZeros() const
Returns the minimum number of leading zero bits.
This class contains a discriminated union of information about pointers in memory operands,...
static LLVM_ABI MachinePointerInfo getUnknownStack(MachineFunction &MF)
Stack memory without other information.
static LLVM_ABI MachinePointerInfo getFixedStack(MachineFunction &MF, int FI, int64_t Offset=0)
Return a MachinePointerInfo record that refers to the specified FrameIndex.
Align valueOrOne() const
For convenience, returns a valid alignment or 1 if undefined.
A lightweight accessor for an operand bundle meant to be passed around by value.
This struct represents the registers (physical or virtual) that a particular set of values is assigne...
SmallVector< std::pair< Register, TypeSize >, 4 > getRegsAndSizes() const
Return a list of registers and their sizes.
SmallVector< unsigned, 4 > RegCount
This list holds the number of registers for each value.
bool isABIMangled() const
SmallVector< EVT, 4 > ValueVTs
The value types of the values, which may not be legal, and may need be promoted or synthesized from o...
SmallVector< Register, 4 > Regs
This list holds the registers assigned to the values.
void AddInlineAsmOperands(InlineAsm::Kind Code, bool HasMatching, unsigned MatchingIdx, const SDLoc &dl, SelectionDAG &DAG, std::vector< SDValue > &Ops) const
Add this value to the specified inlineasm node operand list.
SDValue getCopyFromRegs(SelectionDAG &DAG, FunctionLoweringInfo &FuncInfo, const SDLoc &dl, SDValue &Chain, SDValue *Glue, const Value *V=nullptr) const
Emit a series of CopyFromReg nodes that copies from this value and returns the result as a ValueVTs v...
SmallVector< MVT, 4 > RegVTs
The value types of the registers.
void getCopyToRegs(SDValue Val, SelectionDAG &DAG, const SDLoc &dl, SDValue &Chain, SDValue *Glue, const Value *V=nullptr, ISD::NodeType PreferredExtendType=ISD::ANY_EXTEND) const
Emit a series of CopyToReg nodes that copies the specified value into the registers specified by this...
std::optional< CallingConv::ID > CallConv
Records if this value needs to be treated in an ABI dependant manner, different to normal type legali...
bool occupiesMultipleRegs() const
Check if the total RegCount is greater than one.
These are IR-level optimization flags that may be propagated to SDNodes.
void copyFMF(const FPMathOperator &FPMO)
Propagate the fast-math-flags from an IR FPMathOperator.
void setUnpredictable(bool b)
bool hasAllowReassociation() const
void setNoUnsignedWrap(bool b)
void setNoSignedWrap(bool b)
A MapVector that performs no allocations if smaller than a certain size.
MachineBasicBlock * Default
BranchProbability DefaultProb
MachineBasicBlock * Parent
bool FallthroughUnreachable
MachineBasicBlock * ThisBB
This structure is used to communicate between SelectionDAGBuilder and SDISel for the code generation ...
BranchProbability TrueProb
BranchProbability FalseProb
MachineBasicBlock * TrueBB
MachineBasicBlock * FalseBB
SDLoc DL
The debug location of the instruction this CaseBlock was produced from.
static CaseCluster range(const ConstantInt *Low, const ConstantInt *High, MachineBasicBlock *MBB, BranchProbability Prob)
This contains information for each constraint that we are lowering.
TargetLowering::ConstraintType ConstraintType
Information about the constraint code, e.g.
This structure contains all information that is necessary for lowering calls.
CallLoweringInfo & setConvergent(bool Value=true)
CallLoweringInfo & setCFIType(const ConstantInt *Type)
SmallVector< ISD::InputArg, 32 > Ins
bool IsPostTypeLegalization
SmallVector< SDValue, 4 > InVals
Type * OrigRetTy
Original unlegalized return type.
CallLoweringInfo & setDiscardResult(bool Value=true)
CallLoweringInfo & setIsPatchPoint(bool Value=true)
CallLoweringInfo & setDebugLoc(const SDLoc &dl)
CallLoweringInfo & setTailCall(bool Value=true)
CallLoweringInfo & setIsPreallocated(bool Value=true)
CallLoweringInfo & setConvergenceControlToken(SDValue Token)
SmallVector< ISD::OutputArg, 32 > Outs
SmallVector< SDValue, 32 > OutVals
Type * RetTy
Same as OrigRetTy, or partially legalized for soft float libcalls.
CallLoweringInfo & setChain(SDValue InChain)
CallLoweringInfo & setPtrAuth(PtrAuthInfo Value)
CallLoweringInfo & setCallee(CallingConv::ID CC, Type *ResultType, SDValue Target, ArgListTy &&ArgsList, AttributeSet ResultAttrs={})
This structure is used to pass arguments to makeLibCall function.
MakeLibCallOptions & setDiscardResult(bool Value=true)
This structure contains the information necessary for lowering pointer-authenticating indirect calls.
void addIPToStateRange(const InvokeInst *II, MCSymbol *InvokeBegin, MCSymbol *InvokeEnd)