LLVM 23.0.0git
SelectionDAGBuilder.cpp
Go to the documentation of this file.
1//===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This implements routines for translating from LLVM IR into SelectionDAG IR.
10//
11//===----------------------------------------------------------------------===//
12
13#include "SelectionDAGBuilder.h"
14#include "SDNodeDbgValue.h"
15#include "llvm/ADT/APFloat.h"
16#include "llvm/ADT/APInt.h"
17#include "llvm/ADT/BitVector.h"
18#include "llvm/ADT/STLExtras.h"
21#include "llvm/ADT/StringRef.h"
22#include "llvm/ADT/Twine.h"
26#include "llvm/Analysis/Loads.h"
58#include "llvm/IR/Argument.h"
59#include "llvm/IR/Attributes.h"
60#include "llvm/IR/BasicBlock.h"
61#include "llvm/IR/CFG.h"
62#include "llvm/IR/CallingConv.h"
63#include "llvm/IR/Constant.h"
65#include "llvm/IR/Constants.h"
66#include "llvm/IR/DataLayout.h"
67#include "llvm/IR/DebugInfo.h"
72#include "llvm/IR/Function.h"
74#include "llvm/IR/InlineAsm.h"
75#include "llvm/IR/InstrTypes.h"
78#include "llvm/IR/Intrinsics.h"
79#include "llvm/IR/IntrinsicsAArch64.h"
80#include "llvm/IR/IntrinsicsAMDGPU.h"
81#include "llvm/IR/IntrinsicsWebAssembly.h"
82#include "llvm/IR/LLVMContext.h"
84#include "llvm/IR/Metadata.h"
85#include "llvm/IR/Module.h"
86#include "llvm/IR/Operator.h"
88#include "llvm/IR/Statepoint.h"
89#include "llvm/IR/Type.h"
90#include "llvm/IR/User.h"
91#include "llvm/IR/Value.h"
92#include "llvm/MC/MCContext.h"
97#include "llvm/Support/Debug.h"
105#include <cstddef>
106#include <limits>
107#include <optional>
108#include <tuple>
109
110using namespace llvm;
111using namespace PatternMatch;
112using namespace SwitchCG;
113
114#define DEBUG_TYPE "isel"
115
116/// LimitFloatPrecision - Generate low-precision inline sequences for
117/// some float libcalls (6, 8 or 12 bits).
118static unsigned LimitFloatPrecision;
119
120static cl::opt<bool>
121 InsertAssertAlign("insert-assert-align", cl::init(true),
122 cl::desc("Insert the experimental `assertalign` node."),
124
126 LimitFPPrecision("limit-float-precision",
127 cl::desc("Generate low-precision inline sequences "
128 "for some float libcalls"),
130 cl::init(0));
131
133 "switch-peel-threshold", cl::Hidden, cl::init(66),
134 cl::desc("Set the case probability threshold for peeling the case from a "
135 "switch statement. A value greater than 100 will void this "
136 "optimization"));
137
138// Limit the width of DAG chains. This is important in general to prevent
139// DAG-based analysis from blowing up. For example, alias analysis and
140// load clustering may not complete in reasonable time. It is difficult to
141// recognize and avoid this situation within each individual analysis, and
142// future analyses are likely to have the same behavior. Limiting DAG width is
143// the safe approach and will be especially important with global DAGs.
144//
145// MaxParallelChains default is arbitrarily high to avoid affecting
146// optimization, but could be lowered to improve compile time. Any ld-ld-st-st
147// sequence over this should have been converted to llvm.memcpy by the
148// frontend. It is easy to induce this behavior with .ll code such as:
149// %buffer = alloca [4096 x i8]
150// %data = load [4096 x i8]* %argPtr
151// store [4096 x i8] %data, [4096 x i8]* %buffer
152static const unsigned MaxParallelChains = 64;
153
155 const SDValue *Parts, unsigned NumParts,
156 MVT PartVT, EVT ValueVT, const Value *V,
157 SDValue InChain,
158 std::optional<CallingConv::ID> CC);
159
160/// getCopyFromParts - Create a value that contains the specified legal parts
161/// combined into the value they represent. If the parts combine to a type
162/// larger than ValueVT then AssertOp can be used to specify whether the extra
163/// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
164/// (ISD::AssertSext).
165static SDValue
166getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts,
167 unsigned NumParts, MVT PartVT, EVT ValueVT, const Value *V,
168 SDValue InChain,
169 std::optional<CallingConv::ID> CC = std::nullopt,
170 std::optional<ISD::NodeType> AssertOp = std::nullopt) {
171 // Let the target assemble the parts if it wants to
172 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
173 if (SDValue Val = TLI.joinRegisterPartsIntoValue(DAG, DL, Parts, NumParts,
174 PartVT, ValueVT, CC))
175 return Val;
176
177 if (ValueVT.isVector())
178 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT, V,
179 InChain, CC);
180
181 assert(NumParts > 0 && "No parts to assemble!");
182 SDValue Val = Parts[0];
183
184 if (NumParts > 1) {
185 // Assemble the value from multiple parts.
186 if (ValueVT.isInteger()) {
187 unsigned PartBits = PartVT.getSizeInBits();
188 unsigned ValueBits = ValueVT.getSizeInBits();
189
190 // Assemble the power of 2 part.
191 unsigned RoundParts = llvm::bit_floor(NumParts);
192 unsigned RoundBits = PartBits * RoundParts;
193 EVT RoundVT = RoundBits == ValueBits ?
194 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
195 SDValue Lo, Hi;
196
197 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
198
199 if (RoundParts > 2) {
200 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, PartVT, HalfVT, V,
201 InChain);
202 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, RoundParts / 2,
203 PartVT, HalfVT, V, InChain);
204 } else {
205 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
206 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
207 }
208
209 if (DAG.getDataLayout().isBigEndian())
210 std::swap(Lo, Hi);
211
212 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
213
214 if (RoundParts < NumParts) {
215 // Assemble the trailing non-power-of-2 part.
216 unsigned OddParts = NumParts - RoundParts;
217 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
218 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts, OddParts, PartVT,
219 OddVT, V, InChain, CC);
220
221 // Combine the round and odd parts.
222 Lo = Val;
223 if (DAG.getDataLayout().isBigEndian())
224 std::swap(Lo, Hi);
225 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
226 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
227 Hi = DAG.getNode(
228 ISD::SHL, DL, TotalVT, Hi,
229 DAG.getShiftAmountConstant(Lo.getValueSizeInBits(), TotalVT, DL));
230 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
231 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
232 }
233 } else if (PartVT.isFloatingPoint()) {
234 // FP split into multiple FP parts (for ppcf128)
235 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 &&
236 "Unexpected split");
237 SDValue Lo, Hi;
238 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
239 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
240 if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout()))
241 std::swap(Lo, Hi);
242 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
243 } else {
244 // FP split into integer parts (soft fp)
245 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
246 !PartVT.isVector() && "Unexpected split");
247 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
248 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V,
249 InChain, CC);
250 }
251 }
252
253 // There is now one part, held in Val. Correct it to match ValueVT.
254 // PartEVT is the type of the register class that holds the value.
255 // ValueVT is the type of the inline asm operation.
256 EVT PartEVT = Val.getValueType();
257
258 if (PartEVT == ValueVT)
259 return Val;
260
261 if (PartEVT.isInteger() && ValueVT.isFloatingPoint() &&
262 ValueVT.bitsLT(PartEVT)) {
263 // For an FP value in an integer part, we need to truncate to the right
264 // width first.
265 PartEVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
266 Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val);
267 }
268
269 // Handle types that have the same size.
270 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits())
271 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
272
273 // Handle types with different sizes.
274 if (PartEVT.isInteger() && ValueVT.isInteger()) {
275 if (ValueVT.bitsLT(PartEVT)) {
276 // For a truncate, see if we have any information to
277 // indicate whether the truncated bits will always be
278 // zero or sign-extension.
279 if (AssertOp)
280 Val = DAG.getNode(*AssertOp, DL, PartEVT, Val,
281 DAG.getValueType(ValueVT));
282 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
283 }
284 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
285 }
286
287 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
288 // FP_ROUND's are always exact here.
289 if (ValueVT.bitsLT(Val.getValueType())) {
290
291 SDValue NoChange =
293
294 if (DAG.getMachineFunction().getFunction().getAttributes().hasFnAttr(
295 llvm::Attribute::StrictFP)) {
296 return DAG.getNode(ISD::STRICT_FP_ROUND, DL,
297 DAG.getVTList(ValueVT, MVT::Other), InChain, Val,
298 NoChange);
299 }
300
301 return DAG.getNode(ISD::FP_ROUND, DL, ValueVT, Val, NoChange);
302 }
303
304 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
305 }
306
307 // Handle MMX to a narrower integer type by bitcasting MMX to integer and
308 // then truncating.
309 if (PartEVT == MVT::x86mmx && ValueVT.isInteger() &&
310 ValueVT.bitsLT(PartEVT)) {
311 Val = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Val);
312 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
313 }
314
315 report_fatal_error("Unknown mismatch in getCopyFromParts!");
316}
317
319 const Twine &ErrMsg) {
321 if (!I)
322 return Ctx.emitError(ErrMsg);
323
324 if (const CallInst *CI = dyn_cast<CallInst>(I))
325 if (CI->isInlineAsm()) {
326 return Ctx.diagnose(DiagnosticInfoInlineAsm(
327 *CI, ErrMsg + ", possible invalid constraint for vector type"));
328 }
329
330 return Ctx.emitError(I, ErrMsg);
331}
332
333/// getCopyFromPartsVector - Create a value that contains the specified legal
334/// parts combined into the value they represent. If the parts combine to a
335/// type larger than ValueVT then AssertOp can be used to specify whether the
336/// extra bits are known to be zero (ISD::AssertZext) or sign extended from
337/// ValueVT (ISD::AssertSext).
339 const SDValue *Parts, unsigned NumParts,
340 MVT PartVT, EVT ValueVT, const Value *V,
341 SDValue InChain,
342 std::optional<CallingConv::ID> CallConv) {
343 assert(ValueVT.isVector() && "Not a vector value");
344 assert(NumParts > 0 && "No parts to assemble!");
345 const bool IsABIRegCopy = CallConv.has_value();
346
347 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
348 SDValue Val = Parts[0];
349
350 // Handle a multi-element vector.
351 if (NumParts > 1) {
352 EVT IntermediateVT;
353 MVT RegisterVT;
354 unsigned NumIntermediates;
355 unsigned NumRegs;
356
357 if (IsABIRegCopy) {
359 *DAG.getContext(), *CallConv, ValueVT, IntermediateVT,
360 NumIntermediates, RegisterVT);
361 } else {
362 NumRegs =
363 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
364 NumIntermediates, RegisterVT);
365 }
366
367 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
368 NumParts = NumRegs; // Silence a compiler warning.
369 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
370 assert(RegisterVT.getSizeInBits() ==
371 Parts[0].getSimpleValueType().getSizeInBits() &&
372 "Part type sizes don't match!");
373
374 // Assemble the parts into intermediate operands.
375 SmallVector<SDValue, 8> Ops(NumIntermediates);
376 if (NumIntermediates == NumParts) {
377 // If the register was not expanded, truncate or copy the value,
378 // as appropriate.
379 for (unsigned i = 0; i != NumParts; ++i)
380 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, PartVT, IntermediateVT,
381 V, InChain, CallConv);
382 } else if (NumParts > 0) {
383 // If the intermediate type was expanded, build the intermediate
384 // operands from the parts.
385 assert(NumParts % NumIntermediates == 0 &&
386 "Must expand into a divisible number of parts!");
387 unsigned Factor = NumParts / NumIntermediates;
388 for (unsigned i = 0; i != NumIntermediates; ++i)
389 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, PartVT,
390 IntermediateVT, V, InChain, CallConv);
391 }
392
393 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
394 // intermediate operands.
395 EVT BuiltVectorTy =
396 IntermediateVT.isVector()
398 *DAG.getContext(), IntermediateVT.getScalarType(),
399 IntermediateVT.getVectorElementCount() * NumParts)
401 IntermediateVT.getScalarType(),
402 NumIntermediates);
403 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS
405 DL, BuiltVectorTy, Ops);
406 }
407
408 // There is now one part, held in Val. Correct it to match ValueVT.
409 EVT PartEVT = Val.getValueType();
410
411 if (PartEVT == ValueVT)
412 return Val;
413
414 if (PartEVT.isVector()) {
415 // Vector/Vector bitcast.
416 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits())
417 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
418
419 // If the parts vector has more elements than the value vector, then we
420 // have a vector widening case (e.g. <2 x float> -> <4 x float>).
421 // Extract the elements we want.
422 if (PartEVT.getVectorElementCount() != ValueVT.getVectorElementCount()) {
425 (PartEVT.getVectorElementCount().isScalable() ==
426 ValueVT.getVectorElementCount().isScalable()) &&
427 "Cannot narrow, it would be a lossy transformation");
428 PartEVT =
430 ValueVT.getVectorElementCount());
431 Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, PartEVT, Val,
432 DAG.getVectorIdxConstant(0, DL));
433 if (PartEVT == ValueVT)
434 return Val;
435 if (PartEVT.isInteger() && ValueVT.isFloatingPoint())
436 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
437
438 // Vector/Vector bitcast (e.g. <2 x bfloat> -> <2 x half>).
439 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits())
440 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
441 }
442
443 // Promoted vector extract
444 return DAG.getAnyExtOrTrunc(Val, DL, ValueVT);
445 }
446
447 // Trivial bitcast if the types are the same size and the destination
448 // vector type is legal.
449 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() &&
450 TLI.isTypeLegal(ValueVT))
451 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
452
453 if (ValueVT.getVectorNumElements() != 1) {
454 // Certain ABIs require that vectors are passed as integers. For vectors
455 // are the same size, this is an obvious bitcast.
456 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) {
457 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
458 } else if (ValueVT.bitsLT(PartEVT)) {
459 const uint64_t ValueSize = ValueVT.getFixedSizeInBits();
460 EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize);
461 // Drop the extra bits.
462 Val = DAG.getNode(ISD::TRUNCATE, DL, IntermediateType, Val);
463 return DAG.getBitcast(ValueVT, Val);
464 }
465
467 *DAG.getContext(), V, "non-trivial scalar-to-vector conversion");
468 return DAG.getUNDEF(ValueVT);
469 }
470
471 // Handle cases such as i8 -> <1 x i1>
472 EVT ValueSVT = ValueVT.getVectorElementType();
473 if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT) {
474 unsigned ValueSize = ValueSVT.getSizeInBits();
475 if (ValueSize == PartEVT.getSizeInBits()) {
476 Val = DAG.getNode(ISD::BITCAST, DL, ValueSVT, Val);
477 } else if (ValueSVT.isFloatingPoint() && PartEVT.isInteger()) {
478 // It's possible a scalar floating point type gets softened to integer and
479 // then promoted to a larger integer. If PartEVT is the larger integer
480 // we need to truncate it and then bitcast to the FP type.
481 assert(ValueSVT.bitsLT(PartEVT) && "Unexpected types");
482 EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize);
483 Val = DAG.getNode(ISD::TRUNCATE, DL, IntermediateType, Val);
484 Val = DAG.getBitcast(ValueSVT, Val);
485 } else {
486 Val = ValueVT.isFloatingPoint()
487 ? DAG.getFPExtendOrRound(Val, DL, ValueSVT)
488 : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT);
489 }
490 }
491
492 return DAG.getBuildVector(ValueVT, DL, Val);
493}
494
495static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl,
496 SDValue Val, SDValue *Parts, unsigned NumParts,
497 MVT PartVT, const Value *V,
498 std::optional<CallingConv::ID> CallConv);
499
500/// getCopyToParts - Create a series of nodes that contain the specified value
501/// split into legal parts. If the parts contain more bits than Val, then, for
502/// integers, ExtendKind can be used to specify how to generate the extra bits.
503static void
505 unsigned NumParts, MVT PartVT, const Value *V,
506 std::optional<CallingConv::ID> CallConv = std::nullopt,
507 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
508 // Let the target split the parts if it wants to
509 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
510 if (TLI.splitValueIntoRegisterParts(DAG, DL, Val, Parts, NumParts, PartVT,
511 CallConv))
512 return;
513 EVT ValueVT = Val.getValueType();
514
515 // Handle the vector case separately.
516 if (ValueVT.isVector())
517 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V,
518 CallConv);
519
520 unsigned OrigNumParts = NumParts;
522 "Copying to an illegal type!");
523
524 if (NumParts == 0)
525 return;
526
527 assert(!ValueVT.isVector() && "Vector case handled elsewhere");
528 EVT PartEVT = PartVT;
529 if (PartEVT == ValueVT) {
530 assert(NumParts == 1 && "No-op copy with multiple parts!");
531 Parts[0] = Val;
532 return;
533 }
534
535 unsigned PartBits = PartVT.getSizeInBits();
536 if (NumParts * PartBits > ValueVT.getSizeInBits()) {
537 // If the parts cover more bits than the value has, promote the value.
538 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
539 assert(NumParts == 1 && "Do not know what to promote to!");
540 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
541 } else {
542 if (ValueVT.isFloatingPoint()) {
543 // FP values need to be bitcast, then extended if they are being put
544 // into a larger container.
545 ValueVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
546 Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
547 }
548 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
549 ValueVT.isInteger() &&
550 "Unknown mismatch!");
551 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
552 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
553 if (PartVT == MVT::x86mmx)
554 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
555 }
556 } else if (PartBits == ValueVT.getSizeInBits()) {
557 // Different types of the same size.
558 assert(NumParts == 1 && PartEVT != ValueVT);
559 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
560 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
561 // If the parts cover less bits than value has, truncate the value.
562 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
563 ValueVT.isInteger() &&
564 "Unknown mismatch!");
565 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
566 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
567 if (PartVT == MVT::x86mmx)
568 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
569 }
570
571 // The value may have changed - recompute ValueVT.
572 ValueVT = Val.getValueType();
573 assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
574 "Failed to tile the value with PartVT!");
575
576 if (NumParts == 1) {
577 if (PartEVT != ValueVT) {
579 "scalar-to-vector conversion failed");
580 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
581 }
582
583 Parts[0] = Val;
584 return;
585 }
586
587 // Expand the value into multiple parts.
588 if (NumParts & (NumParts - 1)) {
589 // The number of parts is not a power of 2. Split off and copy the tail.
590 assert(PartVT.isInteger() && ValueVT.isInteger() &&
591 "Do not know what to expand to!");
592 unsigned RoundParts = llvm::bit_floor(NumParts);
593 unsigned RoundBits = RoundParts * PartBits;
594 unsigned OddParts = NumParts - RoundParts;
595 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
596 DAG.getShiftAmountConstant(RoundBits, ValueVT, DL));
597
598 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V,
599 CallConv);
600
601 if (DAG.getDataLayout().isBigEndian())
602 // The odd parts were reversed by getCopyToParts - unreverse them.
603 std::reverse(Parts + RoundParts, Parts + NumParts);
604
605 NumParts = RoundParts;
606 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
607 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
608 }
609
610 // The number of parts is a power of 2. Repeatedly bisect the value using
611 // EXTRACT_ELEMENT.
612 Parts[0] = DAG.getNode(ISD::BITCAST, DL,
614 ValueVT.getSizeInBits()),
615 Val);
616
617 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
618 for (unsigned i = 0; i < NumParts; i += StepSize) {
619 unsigned ThisBits = StepSize * PartBits / 2;
620 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
621 SDValue &Part0 = Parts[i];
622 SDValue &Part1 = Parts[i+StepSize/2];
623
624 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
625 ThisVT, Part0, DAG.getIntPtrConstant(1, DL));
626 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
627 ThisVT, Part0, DAG.getIntPtrConstant(0, DL));
628
629 if (ThisBits == PartBits && ThisVT != PartVT) {
630 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
631 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
632 }
633 }
634 }
635
636 if (DAG.getDataLayout().isBigEndian())
637 std::reverse(Parts, Parts + OrigNumParts);
638}
639
641 const SDLoc &DL, EVT PartVT) {
642 if (!PartVT.isVector())
643 return SDValue();
644
645 EVT ValueVT = Val.getValueType();
646 EVT PartEVT = PartVT.getVectorElementType();
647 EVT ValueEVT = ValueVT.getVectorElementType();
648 ElementCount PartNumElts = PartVT.getVectorElementCount();
649 ElementCount ValueNumElts = ValueVT.getVectorElementCount();
650
651 // We only support widening vectors with equivalent element types and
652 // fixed/scalable properties. If a target needs to widen a fixed-length type
653 // to a scalable one, it should be possible to use INSERT_SUBVECTOR below.
654 if (ElementCount::isKnownLE(PartNumElts, ValueNumElts) ||
655 PartNumElts.isScalable() != ValueNumElts.isScalable())
656 return SDValue();
657
658 // Have a try for bf16 because some targets share its ABI with fp16.
659 if (ValueEVT == MVT::bf16 && PartEVT == MVT::f16) {
661 "Cannot widen to illegal type");
662 Val = DAG.getNode(
664 ValueVT.changeVectorElementType(*DAG.getContext(), MVT::f16), Val);
665 } else if (PartEVT != ValueEVT) {
666 return SDValue();
667 }
668
669 // Widening a scalable vector to another scalable vector is done by inserting
670 // the vector into a larger undef one.
671 if (PartNumElts.isScalable())
672 return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, PartVT, DAG.getUNDEF(PartVT),
673 Val, DAG.getVectorIdxConstant(0, DL));
674
675 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in
676 // undef elements.
678 DAG.ExtractVectorElements(Val, Ops);
679 SDValue EltUndef = DAG.getUNDEF(PartEVT);
680 Ops.append((PartNumElts - ValueNumElts).getFixedValue(), EltUndef);
681
682 // FIXME: Use CONCAT for 2x -> 4x.
683 return DAG.getBuildVector(PartVT, DL, Ops);
684}
685
686/// getCopyToPartsVector - Create a series of nodes that contain the specified
687/// value split into legal parts.
688static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL,
689 SDValue Val, SDValue *Parts, unsigned NumParts,
690 MVT PartVT, const Value *V,
691 std::optional<CallingConv::ID> CallConv) {
692 EVT ValueVT = Val.getValueType();
693 assert(ValueVT.isVector() && "Not a vector");
694 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
695 const bool IsABIRegCopy = CallConv.has_value();
696
697 if (NumParts == 1) {
698 EVT PartEVT = PartVT;
699 if (PartEVT == ValueVT) {
700 // Nothing to do.
701 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
702 // Bitconvert vector->vector case.
703 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
704 } else if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, PartVT)) {
705 Val = Widened;
706 } else if (PartVT.isVector() &&
708 ValueVT.getVectorElementType()) &&
709 PartEVT.getVectorElementCount() ==
710 ValueVT.getVectorElementCount()) {
711
712 // Promoted vector extract
713 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
714 } else if (PartEVT.isVector() &&
715 PartEVT.getVectorElementType() !=
716 ValueVT.getVectorElementType() &&
717 TLI.getTypeAction(*DAG.getContext(), ValueVT) ==
719 // Combination of widening and promotion.
720 EVT WidenVT =
722 PartVT.getVectorElementCount());
723 SDValue Widened = widenVectorToPartType(DAG, Val, DL, WidenVT);
724 Val = DAG.getAnyExtOrTrunc(Widened, DL, PartVT);
725 } else {
726 // Don't extract an integer from a float vector. This can happen if the
727 // FP type gets softened to integer and then promoted. The promotion
728 // prevents it from being picked up by the earlier bitcast case.
729 if (ValueVT.getVectorElementCount().isScalar() &&
730 (!ValueVT.isFloatingPoint() || !PartVT.isInteger())) {
731 // If we reach this condition and PartVT is FP, this means that
732 // ValueVT is also FP and both have a different size, otherwise we
733 // would have bitcasted them. Producing an EXTRACT_VECTOR_ELT here
734 // would be invalid since that would mean the smaller FP type has to
735 // be extended to the larger one.
736 if (PartVT.isFloatingPoint()) {
737 Val = DAG.getBitcast(ValueVT.getScalarType(), Val);
738 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
739 } else
740 Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val,
741 DAG.getVectorIdxConstant(0, DL));
742 } else {
743 uint64_t ValueSize = ValueVT.getFixedSizeInBits();
744 assert(PartVT.getFixedSizeInBits() > ValueSize &&
745 "lossy conversion of vector to scalar type");
746 EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize);
747 Val = DAG.getBitcast(IntermediateType, Val);
748 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
749 }
750 }
751
752 assert(Val.getValueType() == PartVT && "Unexpected vector part value type");
753 Parts[0] = Val;
754 return;
755 }
756
757 // Handle a multi-element vector.
758 EVT IntermediateVT;
759 MVT RegisterVT;
760 unsigned NumIntermediates;
761 unsigned NumRegs;
762 if (IsABIRegCopy) {
764 *DAG.getContext(), *CallConv, ValueVT, IntermediateVT, NumIntermediates,
765 RegisterVT);
766 } else {
767 NumRegs =
768 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
769 NumIntermediates, RegisterVT);
770 }
771
772 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
773 NumParts = NumRegs; // Silence a compiler warning.
774 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
775
776 assert(IntermediateVT.isScalableVector() == ValueVT.isScalableVector() &&
777 "Mixing scalable and fixed vectors when copying in parts");
778
779 std::optional<ElementCount> DestEltCnt;
780
781 if (IntermediateVT.isVector())
782 DestEltCnt = IntermediateVT.getVectorElementCount() * NumIntermediates;
783 else
784 DestEltCnt = ElementCount::getFixed(NumIntermediates);
785
786 EVT BuiltVectorTy = EVT::getVectorVT(
787 *DAG.getContext(), IntermediateVT.getScalarType(), *DestEltCnt);
788
789 if (ValueVT == BuiltVectorTy) {
790 // Nothing to do.
791 } else if (ValueVT.getSizeInBits() == BuiltVectorTy.getSizeInBits()) {
792 // Bitconvert vector->vector case.
793 Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val);
794 } else {
795 if (BuiltVectorTy.getVectorElementType().bitsGT(
796 ValueVT.getVectorElementType())) {
797 // Integer promotion.
798 ValueVT = EVT::getVectorVT(*DAG.getContext(),
799 BuiltVectorTy.getVectorElementType(),
800 ValueVT.getVectorElementCount());
801 Val = DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
802 }
803
804 if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, BuiltVectorTy)) {
805 Val = Widened;
806 }
807 }
808
809 assert(Val.getValueType() == BuiltVectorTy && "Unexpected vector value type");
810
811 // Split the vector into intermediate operands.
812 SmallVector<SDValue, 8> Ops(NumIntermediates);
813 for (unsigned i = 0; i != NumIntermediates; ++i) {
814 if (IntermediateVT.isVector()) {
815 // This does something sensible for scalable vectors - see the
816 // definition of EXTRACT_SUBVECTOR for further details.
817 unsigned IntermediateNumElts = IntermediateVT.getVectorMinNumElements();
818 Ops[i] =
819 DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val,
820 DAG.getVectorIdxConstant(i * IntermediateNumElts, DL));
821 } else {
822 Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val,
823 DAG.getVectorIdxConstant(i, DL));
824 }
825 }
826
827 // Split the intermediate operands into legal parts.
828 if (NumParts == NumIntermediates) {
829 // If the register was not expanded, promote or copy the value,
830 // as appropriate.
831 for (unsigned i = 0; i != NumParts; ++i)
832 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V, CallConv);
833 } else if (NumParts > 0) {
834 // If the intermediate type was expanded, split each the value into
835 // legal parts.
836 assert(NumIntermediates != 0 && "division by zero");
837 assert(NumParts % NumIntermediates == 0 &&
838 "Must expand into a divisible number of parts!");
839 unsigned Factor = NumParts / NumIntermediates;
840 for (unsigned i = 0; i != NumIntermediates; ++i)
841 getCopyToParts(DAG, DL, Ops[i], &Parts[i * Factor], Factor, PartVT, V,
842 CallConv);
843 }
844}
845
846static void failForInvalidBundles(const CallBase &I, StringRef Name,
847 ArrayRef<uint32_t> AllowedBundles) {
848 if (I.hasOperandBundlesOtherThan(AllowedBundles)) {
849 ListSeparator LS;
850 std::string Error;
852 for (unsigned i = 0, e = I.getNumOperandBundles(); i != e; ++i) {
853 OperandBundleUse U = I.getOperandBundleAt(i);
854 if (!is_contained(AllowedBundles, U.getTagID()))
855 OS << LS << U.getTagName();
856 }
858 Twine("cannot lower ", Name)
859 .concat(Twine(" with arbitrary operand bundles: ", Error)));
860 }
861}
862
864 EVT valuevt, std::optional<CallingConv::ID> CC)
865 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs),
866 RegCount(1, regs.size()), CallConv(CC) {}
867
869 const DataLayout &DL, Register Reg, Type *Ty,
870 std::optional<CallingConv::ID> CC) {
871 ComputeValueVTs(TLI, DL, Ty, ValueVTs);
872
873 CallConv = CC;
874
875 for (EVT ValueVT : ValueVTs) {
876 unsigned NumRegs =
878 ? TLI.getNumRegistersForCallingConv(Context, *CC, ValueVT)
879 : TLI.getNumRegisters(Context, ValueVT);
880 MVT RegisterVT =
882 ? TLI.getRegisterTypeForCallingConv(Context, *CC, ValueVT)
883 : TLI.getRegisterType(Context, ValueVT);
884 for (unsigned i = 0; i != NumRegs; ++i)
885 Regs.push_back(Reg + i);
886 RegVTs.push_back(RegisterVT);
887 RegCount.push_back(NumRegs);
888 Reg = Reg.id() + NumRegs;
889 }
890}
891
893 FunctionLoweringInfo &FuncInfo,
894 const SDLoc &dl, SDValue &Chain,
895 SDValue *Glue, const Value *V) const {
896 // A Value with type {} or [0 x %t] needs no registers.
897 if (ValueVTs.empty())
898 return SDValue();
899
900 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
901
902 // Assemble the legal parts into the final values.
903 SmallVector<SDValue, 4> Values(ValueVTs.size());
905 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
906 // Copy the legal parts from the registers.
907 EVT ValueVT = ValueVTs[Value];
908 unsigned NumRegs = RegCount[Value];
909 MVT RegisterVT = isABIMangled()
911 *DAG.getContext(), *CallConv, RegVTs[Value])
912 : RegVTs[Value];
913
914 Parts.resize(NumRegs);
915 for (unsigned i = 0; i != NumRegs; ++i) {
916 SDValue P;
917 if (!Glue) {
918 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
919 } else {
920 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Glue);
921 *Glue = P.getValue(2);
922 }
923
924 Chain = P.getValue(1);
925 Parts[i] = P;
926
927 // If the source register was virtual and if we know something about it,
928 // add an assert node.
929 if (!Regs[Part + i].isVirtual() || !RegisterVT.isInteger())
930 continue;
931
933 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
934 if (!LOI)
935 continue;
936
937 unsigned RegSize = RegisterVT.getScalarSizeInBits();
938 unsigned NumSignBits = LOI->NumSignBits;
939 unsigned NumZeroBits = LOI->Known.countMinLeadingZeros();
940
941 if (NumZeroBits == RegSize) {
942 // The current value is a zero.
943 // Explicitly express that as it would be easier for
944 // optimizations to kick in.
945 Parts[i] = DAG.getConstant(0, dl, RegisterVT);
946 continue;
947 }
948
949 // FIXME: We capture more information than the dag can represent. For
950 // now, just use the tightest assertzext/assertsext possible.
951 bool isSExt;
952 EVT FromVT(MVT::Other);
953 if (NumZeroBits) {
954 FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits);
955 isSExt = false;
956 } else if (NumSignBits > 1) {
957 FromVT =
958 EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1);
959 isSExt = true;
960 } else {
961 continue;
962 }
963 // Add an assertion node.
964 assert(FromVT != MVT::Other);
965 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
966 RegisterVT, P, DAG.getValueType(FromVT));
967 }
968
969 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), NumRegs,
970 RegisterVT, ValueVT, V, Chain, CallConv);
971 Part += NumRegs;
972 Parts.clear();
973 }
974
975 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values);
976}
977
979 const SDLoc &dl, SDValue &Chain, SDValue *Glue,
980 const Value *V,
981 ISD::NodeType PreferredExtendType) const {
982 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
983 ISD::NodeType ExtendKind = PreferredExtendType;
984
985 // Get the list of the values's legal parts.
986 unsigned NumRegs = Regs.size();
987 SmallVector<SDValue, 8> Parts(NumRegs);
988 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
989 unsigned NumParts = RegCount[Value];
990
991 MVT RegisterVT = isABIMangled()
993 *DAG.getContext(), *CallConv, RegVTs[Value])
994 : RegVTs[Value];
995
996 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT))
997 ExtendKind = ISD::ZERO_EXTEND;
998
999 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), &Parts[Part],
1000 NumParts, RegisterVT, V, CallConv, ExtendKind);
1001 Part += NumParts;
1002 }
1003
1004 // Copy the parts into the registers.
1005 SmallVector<SDValue, 8> Chains(NumRegs);
1006 for (unsigned i = 0; i != NumRegs; ++i) {
1007 SDValue Part;
1008 if (!Glue) {
1009 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
1010 } else {
1011 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Glue);
1012 *Glue = Part.getValue(1);
1013 }
1014
1015 Chains[i] = Part.getValue(0);
1016 }
1017
1018 if (NumRegs == 1 || Glue)
1019 // If NumRegs > 1 && Glue is used then the use of the last CopyToReg is
1020 // flagged to it. That is the CopyToReg nodes and the user are considered
1021 // a single scheduling unit. If we create a TokenFactor and return it as
1022 // chain, then the TokenFactor is both a predecessor (operand) of the
1023 // user as well as a successor (the TF operands are flagged to the user).
1024 // c1, f1 = CopyToReg
1025 // c2, f2 = CopyToReg
1026 // c3 = TokenFactor c1, c2
1027 // ...
1028 // = op c3, ..., f2
1029 Chain = Chains[NumRegs-1];
1030 else
1031 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
1032}
1033
1035 unsigned MatchingIdx, const SDLoc &dl,
1036 SelectionDAG &DAG,
1037 std::vector<SDValue> &Ops) const {
1038 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1039
1040 InlineAsm::Flag Flag(Code, Regs.size());
1041 if (HasMatching)
1042 Flag.setMatchingOp(MatchingIdx);
1043 else if (!Regs.empty() && Regs.front().isVirtual()) {
1044 // Put the register class of the virtual registers in the flag word. That
1045 // way, later passes can recompute register class constraints for inline
1046 // assembly as well as normal instructions.
1047 // Don't do this for tied operands that can use the regclass information
1048 // from the def.
1050 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front());
1051 Flag.setRegClass(RC->getID());
1052 }
1053
1054 SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32);
1055 Ops.push_back(Res);
1056
1057 if (Code == InlineAsm::Kind::Clobber) {
1058 // Clobbers should always have a 1:1 mapping with registers, and may
1059 // reference registers that have illegal (e.g. vector) types. Hence, we
1060 // shouldn't try to apply any sort of splitting logic to them.
1061 assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() &&
1062 "No 1:1 mapping from clobbers to regs?");
1064 (void)SP;
1065 for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) {
1066 Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I]));
1067 assert(
1068 (Regs[I] != SP ||
1070 "If we clobbered the stack pointer, MFI should know about it.");
1071 }
1072 return;
1073 }
1074
1075 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
1076 MVT RegisterVT = RegVTs[Value];
1077 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value],
1078 RegisterVT);
1079 for (unsigned i = 0; i != NumRegs; ++i) {
1080 assert(Reg < Regs.size() && "Mismatch in # registers expected");
1081 Register TheReg = Regs[Reg++];
1082 Ops.push_back(DAG.getRegister(TheReg, RegisterVT));
1083 }
1084 }
1085}
1086
1090 unsigned I = 0;
1091 for (auto CountAndVT : zip_first(RegCount, RegVTs)) {
1092 unsigned RegCount = std::get<0>(CountAndVT);
1093 MVT RegisterVT = std::get<1>(CountAndVT);
1094 TypeSize RegisterSize = RegisterVT.getSizeInBits();
1095 for (unsigned E = I + RegCount; I != E; ++I)
1096 OutVec.push_back(std::make_pair(Regs[I], RegisterSize));
1097 }
1098 return OutVec;
1099}
1100
1102 AssumptionCache *ac, const TargetLibraryInfo *li,
1103 const TargetTransformInfo &TTI) {
1104 BatchAA = aa;
1105 AC = ac;
1106 GFI = gfi;
1107 LibInfo = li;
1108 Context = DAG.getContext();
1109 LPadToCallSiteMap.clear();
1110 this->TTI = &TTI;
1111 SL->init(DAG.getTargetLoweringInfo(), TM, DAG.getDataLayout());
1112 AssignmentTrackingEnabled = isAssignmentTrackingEnabled(
1113 *DAG.getMachineFunction().getFunction().getParent());
1114}
1115
1117 NodeMap.clear();
1118 UnusedArgNodeMap.clear();
1119 PendingLoads.clear();
1120 PendingExports.clear();
1121 PendingConstrainedFP.clear();
1122 PendingConstrainedFPStrict.clear();
1123 CurInst = nullptr;
1124 HasTailCall = false;
1125 SDNodeOrder = LowestSDNodeOrder;
1126 StatepointLowering.clear();
1127}
1128
1130 DanglingDebugInfoMap.clear();
1131}
1132
1133// Update DAG root to include dependencies on Pending chains.
1134SDValue SelectionDAGBuilder::updateRoot(SmallVectorImpl<SDValue> &Pending) {
1135 SDValue Root = DAG.getRoot();
1136
1137 if (Pending.empty())
1138 return Root;
1139
1140 // Add current root to PendingChains, unless we already indirectly
1141 // depend on it.
1142 if (Root.getOpcode() != ISD::EntryToken) {
1143 unsigned i = 0, e = Pending.size();
1144 for (; i != e; ++i) {
1145 assert(Pending[i].getNode()->getNumOperands() > 1);
1146 if (Pending[i].getNode()->getOperand(0) == Root)
1147 break; // Don't add the root if we already indirectly depend on it.
1148 }
1149
1150 if (i == e)
1151 Pending.push_back(Root);
1152 }
1153
1154 if (Pending.size() == 1)
1155 Root = Pending[0];
1156 else
1157 Root = DAG.getTokenFactor(getCurSDLoc(), Pending);
1158
1159 DAG.setRoot(Root);
1160 Pending.clear();
1161 return Root;
1162}
1163
1167
1169 // If the new exception behavior differs from that of the pending
1170 // ones, chain up them and update the root.
1171 switch (EB) {
1174 // Floating-point exceptions produced by such operations are not intended
1175 // to be observed, so the sequence of these operations does not need to be
1176 // preserved.
1177 //
1178 // They however must not be mixed with the instructions that have strict
1179 // exception behavior. Placing an operation with 'ebIgnore' behavior between
1180 // 'ebStrict' operations could distort the observed exception behavior.
1181 if (!PendingConstrainedFPStrict.empty()) {
1182 assert(PendingConstrainedFP.empty());
1183 updateRoot(PendingConstrainedFPStrict);
1184 }
1185 break;
1187 // Floating-point exception produced by these operations may be observed, so
1188 // they must be correctly chained. If trapping on FP exceptions is
1189 // disabled, the exceptions can be observed only by functions that read
1190 // exception flags, like 'llvm.get_fpenv' or 'fetestexcept'. It means that
1191 // the order of operations is not significant between barriers.
1192 //
1193 // If trapping is enabled, each operation becomes an implicit observation
1194 // point, so the operations must be sequenced according their original
1195 // source order.
1196 if (!PendingConstrainedFP.empty()) {
1197 assert(PendingConstrainedFPStrict.empty());
1198 updateRoot(PendingConstrainedFP);
1199 }
1200 // TODO: Add support for trapping-enabled scenarios.
1201 }
1202 return DAG.getRoot();
1203}
1204
1206 // Chain up all pending constrained intrinsics together with all
1207 // pending loads, by simply appending them to PendingLoads and
1208 // then calling getMemoryRoot().
1209 PendingLoads.reserve(PendingLoads.size() +
1210 PendingConstrainedFP.size() +
1211 PendingConstrainedFPStrict.size());
1212 PendingLoads.append(PendingConstrainedFP.begin(),
1213 PendingConstrainedFP.end());
1214 PendingLoads.append(PendingConstrainedFPStrict.begin(),
1215 PendingConstrainedFPStrict.end());
1216 PendingConstrainedFP.clear();
1217 PendingConstrainedFPStrict.clear();
1218 return getMemoryRoot();
1219}
1220
1222 // We need to emit pending fpexcept.strict constrained intrinsics,
1223 // so append them to the PendingExports list.
1224 PendingExports.append(PendingConstrainedFPStrict.begin(),
1225 PendingConstrainedFPStrict.end());
1226 PendingConstrainedFPStrict.clear();
1227 return updateRoot(PendingExports);
1228}
1229
1231 DILocalVariable *Variable,
1233 DebugLoc DL) {
1234 assert(Variable && "Missing variable");
1235
1236 // Check if address has undef value.
1237 if (!Address || isa<UndefValue>(Address) ||
1238 (Address->use_empty() && !isa<Argument>(Address))) {
1239 LLVM_DEBUG(
1240 dbgs()
1241 << "dbg_declare: Dropping debug info (bad/undef/unused-arg address)\n");
1242 return;
1243 }
1244
1245 bool IsParameter = Variable->isParameter() || isa<Argument>(Address);
1246
1247 SDValue &N = NodeMap[Address];
1248 if (!N.getNode() && isa<Argument>(Address))
1249 // Check unused arguments map.
1250 N = UnusedArgNodeMap[Address];
1251 SDDbgValue *SDV;
1252 if (N.getNode()) {
1253 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
1254 Address = BCI->getOperand(0);
1255 // Parameters are handled specially.
1256 auto *FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
1257 if (IsParameter && FINode) {
1258 // Byval parameter. We have a frame index at this point.
1259 SDV = DAG.getFrameIndexDbgValue(Variable, Expression, FINode->getIndex(),
1260 /*IsIndirect*/ true, DL, SDNodeOrder);
1261 } else if (isa<Argument>(Address)) {
1262 // Address is an argument, so try to emit its dbg value using
1263 // virtual register info from the FuncInfo.ValueMap.
1264 EmitFuncArgumentDbgValue(Address, Variable, Expression, DL,
1265 FuncArgumentDbgValueKind::Declare, N);
1266 return;
1267 } else {
1268 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(),
1269 true, DL, SDNodeOrder);
1270 }
1271 DAG.AddDbgValue(SDV, IsParameter);
1272 } else {
1273 // If Address is an argument then try to emit its dbg value using
1274 // virtual register info from the FuncInfo.ValueMap.
1275 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, DL,
1276 FuncArgumentDbgValueKind::Declare, N)) {
1277 LLVM_DEBUG(dbgs() << "dbg_declare: Dropping debug info"
1278 << " (could not emit func-arg dbg_value)\n");
1279 }
1280 }
1281}
1282
1284 // Add SDDbgValue nodes for any var locs here. Do so before updating
1285 // SDNodeOrder, as this mapping is {Inst -> Locs BEFORE Inst}.
1286 if (FunctionVarLocs const *FnVarLocs = DAG.getFunctionVarLocs()) {
1287 // Add SDDbgValue nodes for any var locs here. Do so before updating
1288 // SDNodeOrder, as this mapping is {Inst -> Locs BEFORE Inst}.
1289 for (auto It = FnVarLocs->locs_begin(&I), End = FnVarLocs->locs_end(&I);
1290 It != End; ++It) {
1291 auto *Var = FnVarLocs->getDILocalVariable(It->VariableID);
1292 dropDanglingDebugInfo(Var, It->Expr);
1293 if (It->Values.isKillLocation(It->Expr)) {
1294 handleKillDebugValue(Var, It->Expr, It->DL, SDNodeOrder);
1295 continue;
1296 }
1297 SmallVector<Value *> Values(It->Values.location_ops());
1298 if (!handleDebugValue(Values, Var, It->Expr, It->DL, SDNodeOrder,
1299 It->Values.hasArgList())) {
1300 SmallVector<Value *, 4> Vals(It->Values.location_ops());
1302 FnVarLocs->getDILocalVariable(It->VariableID),
1303 It->Expr, Vals.size() > 1, It->DL, SDNodeOrder);
1304 }
1305 }
1306 }
1307
1308 // We must skip DbgVariableRecords if they've already been processed above as
1309 // we have just emitted the debug values resulting from assignment tracking
1310 // analysis, making any existing DbgVariableRecords redundant (and probably
1311 // less correct). We still need to process DbgLabelRecords. This does sink
1312 // DbgLabelRecords to the bottom of the group of debug records. That sholdn't
1313 // be important as it does so deterministcally and ordering between
1314 // DbgLabelRecords and DbgVariableRecords is immaterial (other than for MIR/IR
1315 // printing).
1316 bool SkipDbgVariableRecords = DAG.getFunctionVarLocs();
1317 // Is there is any debug-info attached to this instruction, in the form of
1318 // DbgRecord non-instruction debug-info records.
1319 for (DbgRecord &DR : I.getDbgRecordRange()) {
1320 if (DbgLabelRecord *DLR = dyn_cast<DbgLabelRecord>(&DR)) {
1321 assert(DLR->getLabel() && "Missing label");
1322 SDDbgLabel *SDV =
1323 DAG.getDbgLabel(DLR->getLabel(), DLR->getDebugLoc(), SDNodeOrder);
1324 DAG.AddDbgLabel(SDV);
1325 continue;
1326 }
1327
1328 if (SkipDbgVariableRecords)
1329 continue;
1331 DILocalVariable *Variable = DVR.getVariable();
1334
1336 if (FuncInfo.PreprocessedDVRDeclares.contains(&DVR))
1337 continue;
1338 LLVM_DEBUG(dbgs() << "SelectionDAG visiting dbg_declare: " << DVR
1339 << "\n");
1341 DVR.getDebugLoc());
1342 continue;
1343 }
1344
1345 // A DbgVariableRecord with no locations is a kill location.
1347 if (Values.empty()) {
1349 SDNodeOrder);
1350 continue;
1351 }
1352
1353 // A DbgVariableRecord with an undef or absent location is also a kill
1354 // location.
1355 if (llvm::any_of(Values,
1356 [](Value *V) { return !V || isa<UndefValue>(V); })) {
1358 SDNodeOrder);
1359 continue;
1360 }
1361
1362 bool IsVariadic = DVR.hasArgList();
1363 if (!handleDebugValue(Values, Variable, Expression, DVR.getDebugLoc(),
1364 SDNodeOrder, IsVariadic)) {
1365 addDanglingDebugInfo(Values, Variable, Expression, IsVariadic,
1366 DVR.getDebugLoc(), SDNodeOrder);
1367 }
1368 }
1369}
1370
1372 visitDbgInfo(I);
1373
1374 // Set up outgoing PHI node register values before emitting the terminator.
1375 if (I.isTerminator()) {
1376 HandlePHINodesInSuccessorBlocks(I.getParent());
1377 }
1378
1379 ++SDNodeOrder;
1380 CurInst = &I;
1381
1382 // Set inserted listener only if required.
1383 bool NodeInserted = false;
1384 std::unique_ptr<SelectionDAG::DAGNodeInsertedListener> InsertedListener;
1385 MDNode *PCSectionsMD = I.getMetadata(LLVMContext::MD_pcsections);
1386 MDNode *MMRA = I.getMetadata(LLVMContext::MD_mmra);
1387 if (PCSectionsMD || MMRA) {
1388 InsertedListener = std::make_unique<SelectionDAG::DAGNodeInsertedListener>(
1389 DAG, [&](SDNode *) { NodeInserted = true; });
1390 }
1391
1392 visit(I.getOpcode(), I);
1393
1394 if (!I.isTerminator() && !HasTailCall &&
1395 !isa<GCStatepointInst>(I)) // statepoints handle their exports internally
1397
1398 // Handle metadata.
1399 if (PCSectionsMD || MMRA) {
1400 auto It = NodeMap.find(&I);
1401 if (It != NodeMap.end()) {
1402 if (PCSectionsMD)
1403 DAG.addPCSections(It->second.getNode(), PCSectionsMD);
1404 if (MMRA)
1405 DAG.addMMRAMetadata(It->second.getNode(), MMRA);
1406 } else if (NodeInserted) {
1407 // This should not happen; if it does, don't let it go unnoticed so we can
1408 // fix it. Relevant visit*() function is probably missing a setValue().
1409 errs() << "warning: loosing !pcsections and/or !mmra metadata ["
1410 << I.getModule()->getName() << "]\n";
1411 LLVM_DEBUG(I.dump());
1412 assert(false);
1413 }
1414 }
1415
1416 CurInst = nullptr;
1417}
1418
1419void SelectionDAGBuilder::visitPHI(const PHINode &) {
1420 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
1421}
1422
1423void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
1424 // Note: this doesn't use InstVisitor, because it has to work with
1425 // ConstantExpr's in addition to instructions.
1426 switch (Opcode) {
1427 default: llvm_unreachable("Unknown instruction type encountered!");
1428 // Build the switch statement using the Instruction.def file.
1429#define HANDLE_INST(NUM, OPCODE, CLASS) \
1430 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break;
1431#include "llvm/IR/Instruction.def"
1432 }
1433}
1434
1436 DILocalVariable *Variable,
1437 DebugLoc DL, unsigned Order,
1440 // For variadic dbg_values we will now insert poison.
1441 // FIXME: We can potentially recover these!
1443 for (const Value *V : Values) {
1444 auto *Poison = PoisonValue::get(V->getType());
1446 }
1447 SDDbgValue *SDV = DAG.getDbgValueList(Variable, Expression, Locs, {},
1448 /*IsIndirect=*/false, DL, Order,
1449 /*IsVariadic=*/true);
1450 DAG.AddDbgValue(SDV, /*isParameter=*/false);
1451 return true;
1452}
1453
1455 DILocalVariable *Var,
1456 DIExpression *Expr,
1457 bool IsVariadic, DebugLoc DL,
1458 unsigned Order) {
1459 if (IsVariadic) {
1460 handleDanglingVariadicDebugInfo(DAG, Var, DL, Order, Values, Expr);
1461 return;
1462 }
1463 // TODO: Dangling debug info will eventually either be resolved or produce
1464 // a poison DBG_VALUE. However in the resolution case, a gap may appear
1465 // between the original dbg.value location and its resolved DBG_VALUE,
1466 // which we should ideally fill with an extra poison DBG_VALUE.
1467 assert(Values.size() == 1);
1468 DanglingDebugInfoMap[Values[0]].emplace_back(Var, Expr, DL, Order);
1469}
1470
1472 const DIExpression *Expr) {
1473 auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) {
1474 DIVariable *DanglingVariable = DDI.getVariable();
1475 DIExpression *DanglingExpr = DDI.getExpression();
1476 if (DanglingVariable == Variable && Expr->fragmentsOverlap(DanglingExpr)) {
1477 LLVM_DEBUG(dbgs() << "Dropping dangling debug info for "
1478 << printDDI(nullptr, DDI) << "\n");
1479 return true;
1480 }
1481 return false;
1482 };
1483
1484 for (auto &DDIMI : DanglingDebugInfoMap) {
1485 DanglingDebugInfoVector &DDIV = DDIMI.second;
1486
1487 // If debug info is to be dropped, run it through final checks to see
1488 // whether it can be salvaged.
1489 for (auto &DDI : DDIV)
1490 if (isMatchingDbgValue(DDI))
1491 salvageUnresolvedDbgValue(DDIMI.first, DDI);
1492
1493 erase_if(DDIV, isMatchingDbgValue);
1494 }
1495}
1496
1497// resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
1498// generate the debug data structures now that we've seen its definition.
1500 SDValue Val) {
1501 auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V);
1502 if (DanglingDbgInfoIt == DanglingDebugInfoMap.end())
1503 return;
1504
1505 DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second;
1506 for (auto &DDI : DDIV) {
1507 DebugLoc DL = DDI.getDebugLoc();
1508 unsigned ValSDNodeOrder = Val.getNode()->getIROrder();
1509 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
1510 DILocalVariable *Variable = DDI.getVariable();
1511 DIExpression *Expr = DDI.getExpression();
1512 assert(Variable->isValidLocationForIntrinsic(DL) &&
1513 "Expected inlined-at fields to agree");
1514 SDDbgValue *SDV;
1515 if (Val.getNode()) {
1516 // FIXME: I doubt that it is correct to resolve a dangling DbgValue as a
1517 // FuncArgumentDbgValue (it would be hoisted to the function entry, and if
1518 // we couldn't resolve it directly when examining the DbgValue intrinsic
1519 // in the first place we should not be more successful here). Unless we
1520 // have some test case that prove this to be correct we should avoid
1521 // calling EmitFuncArgumentDbgValue here.
1522 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, DL,
1523 FuncArgumentDbgValueKind::Value, Val)) {
1524 LLVM_DEBUG(dbgs() << "Resolve dangling debug info for "
1525 << printDDI(V, DDI) << "\n");
1526 LLVM_DEBUG(dbgs() << " By mapping to:\n "; Val.dump());
1527 // Increase the SDNodeOrder for the DbgValue here to make sure it is
1528 // inserted after the definition of Val when emitting the instructions
1529 // after ISel. An alternative could be to teach
1530 // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly.
1531 LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs()
1532 << "changing SDNodeOrder from " << DbgSDNodeOrder << " to "
1533 << ValSDNodeOrder << "\n");
1534 SDV = getDbgValue(Val, Variable, Expr, DL,
1535 std::max(DbgSDNodeOrder, ValSDNodeOrder));
1536 DAG.AddDbgValue(SDV, false);
1537 } else
1538 LLVM_DEBUG(dbgs() << "Resolved dangling debug info for "
1539 << printDDI(V, DDI)
1540 << " in EmitFuncArgumentDbgValue\n");
1541 } else {
1542 LLVM_DEBUG(dbgs() << "Dropping debug info for " << printDDI(V, DDI)
1543 << "\n");
1544 auto Poison = PoisonValue::get(V->getType());
1545 auto SDV =
1546 DAG.getConstantDbgValue(Variable, Expr, Poison, DL, DbgSDNodeOrder);
1547 DAG.AddDbgValue(SDV, false);
1548 }
1549 }
1550 DDIV.clear();
1551}
1552
1554 DanglingDebugInfo &DDI) {
1555 // TODO: For the variadic implementation, instead of only checking the fail
1556 // state of `handleDebugValue`, we need know specifically which values were
1557 // invalid, so that we attempt to salvage only those values when processing
1558 // a DIArgList.
1559 const Value *OrigV = V;
1560 DILocalVariable *Var = DDI.getVariable();
1561 DIExpression *Expr = DDI.getExpression();
1562 DebugLoc DL = DDI.getDebugLoc();
1563 unsigned SDOrder = DDI.getSDNodeOrder();
1564
1565 // Currently we consider only dbg.value intrinsics -- we tell the salvager
1566 // that DW_OP_stack_value is desired.
1567 bool StackValue = true;
1568
1569 // Can this Value can be encoded without any further work?
1570 if (handleDebugValue(V, Var, Expr, DL, SDOrder, /*IsVariadic=*/false))
1571 return;
1572
1573 // Attempt to salvage back through as many instructions as possible. Bail if
1574 // a non-instruction is seen, such as a constant expression or global
1575 // variable. FIXME: Further work could recover those too.
1576 while (isa<Instruction>(V)) {
1577 const Instruction &VAsInst = *cast<const Instruction>(V);
1578 // Temporary "0", awaiting real implementation.
1580 SmallVector<Value *, 4> AdditionalValues;
1581 V = salvageDebugInfoImpl(const_cast<Instruction &>(VAsInst),
1582 Expr->getNumLocationOperands(), Ops,
1583 AdditionalValues);
1584 // If we cannot salvage any further, and haven't yet found a suitable debug
1585 // expression, bail out.
1586 if (!V)
1587 break;
1588
1589 // TODO: If AdditionalValues isn't empty, then the salvage can only be
1590 // represented with a DBG_VALUE_LIST, so we give up. When we have support
1591 // here for variadic dbg_values, remove that condition.
1592 if (!AdditionalValues.empty())
1593 break;
1594
1595 // New value and expr now represent this debuginfo.
1596 Expr = DIExpression::appendOpsToArg(Expr, Ops, 0, StackValue);
1597
1598 // Some kind of simplification occurred: check whether the operand of the
1599 // salvaged debug expression can be encoded in this DAG.
1600 if (handleDebugValue(V, Var, Expr, DL, SDOrder, /*IsVariadic=*/false)) {
1601 LLVM_DEBUG(
1602 dbgs() << "Salvaged debug location info for:\n " << *Var << "\n"
1603 << *OrigV << "\nBy stripping back to:\n " << *V << "\n");
1604 return;
1605 }
1606 }
1607
1608 // This was the final opportunity to salvage this debug information, and it
1609 // couldn't be done. Place a poison DBG_VALUE at this location to terminate
1610 // any earlier variable location.
1611 assert(OrigV && "V shouldn't be null");
1612 auto *Poison = PoisonValue::get(OrigV->getType());
1613 auto *SDV = DAG.getConstantDbgValue(Var, Expr, Poison, DL, SDNodeOrder);
1614 DAG.AddDbgValue(SDV, false);
1615 LLVM_DEBUG(dbgs() << "Dropping debug value info for:\n "
1616 << printDDI(OrigV, DDI) << "\n");
1617}
1618
1620 DIExpression *Expr,
1621 DebugLoc DbgLoc,
1622 unsigned Order) {
1626 handleDebugValue(Poison, Var, NewExpr, DbgLoc, Order,
1627 /*IsVariadic*/ false);
1628}
1629
1631 DILocalVariable *Var,
1632 DIExpression *Expr, DebugLoc DbgLoc,
1633 unsigned Order, bool IsVariadic) {
1634 if (Values.empty())
1635 return true;
1636
1637 // Filter EntryValue locations out early.
1638 if (visitEntryValueDbgValue(Values, Var, Expr, DbgLoc))
1639 return true;
1640
1641 SmallVector<SDDbgOperand> LocationOps;
1642 SmallVector<SDNode *> Dependencies;
1643 for (const Value *V : Values) {
1644 // Constant value.
1647 LocationOps.emplace_back(SDDbgOperand::fromConst(V));
1648 continue;
1649 }
1650
1651 // Look through IntToPtr constants.
1652 if (auto *CE = dyn_cast<ConstantExpr>(V))
1653 if (CE->getOpcode() == Instruction::IntToPtr) {
1654 LocationOps.emplace_back(SDDbgOperand::fromConst(CE->getOperand(0)));
1655 continue;
1656 }
1657
1658 // If the Value is a frame index, we can create a FrameIndex debug value
1659 // without relying on the DAG at all.
1660 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1661 auto SI = FuncInfo.StaticAllocaMap.find(AI);
1662 if (SI != FuncInfo.StaticAllocaMap.end()) {
1663 LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(SI->second));
1664 continue;
1665 }
1666 }
1667
1668 // Do not use getValue() in here; we don't want to generate code at
1669 // this point if it hasn't been done yet.
1670 SDValue N = NodeMap[V];
1671 if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map.
1672 N = UnusedArgNodeMap[V];
1673
1674 if (N.getNode()) {
1675 // Only emit func arg dbg value for non-variadic dbg.values for now.
1676 if (!IsVariadic &&
1677 EmitFuncArgumentDbgValue(V, Var, Expr, DbgLoc,
1678 FuncArgumentDbgValueKind::Value, N))
1679 return true;
1680 if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) {
1681 // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can
1682 // describe stack slot locations.
1683 //
1684 // Consider "int x = 0; int *px = &x;". There are two kinds of
1685 // interesting debug values here after optimization:
1686 //
1687 // dbg.value(i32* %px, !"int *px", !DIExpression()), and
1688 // dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref))
1689 //
1690 // Both describe the direct values of their associated variables.
1691 Dependencies.push_back(N.getNode());
1692 LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(FISDN->getIndex()));
1693 continue;
1694 }
1695 LocationOps.emplace_back(
1696 SDDbgOperand::fromNode(N.getNode(), N.getResNo()));
1697 continue;
1698 }
1699
1700 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1701 // Special rules apply for the first dbg.values of parameter variables in a
1702 // function. Identify them by the fact they reference Argument Values, that
1703 // they're parameters, and they are parameters of the current function. We
1704 // need to let them dangle until they get an SDNode.
1705 bool IsParamOfFunc =
1706 isa<Argument>(V) && Var->isParameter() && !DbgLoc.getInlinedAt();
1707 if (IsParamOfFunc)
1708 return false;
1709
1710 // The value is not used in this block yet (or it would have an SDNode).
1711 // We still want the value to appear for the user if possible -- if it has
1712 // an associated VReg, we can refer to that instead.
1713 auto VMI = FuncInfo.ValueMap.find(V);
1714 if (VMI != FuncInfo.ValueMap.end()) {
1715 Register Reg = VMI->second;
1716 // If this is a PHI node, it may be split up into several MI PHI nodes
1717 // (in FunctionLoweringInfo::set).
1718 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg,
1719 V->getType(), std::nullopt);
1720 if (RFV.occupiesMultipleRegs()) {
1721 // FIXME: We could potentially support variadic dbg_values here.
1722 if (IsVariadic)
1723 return false;
1724 unsigned Offset = 0;
1725 unsigned BitsToDescribe = 0;
1726 if (auto VarSize = Var->getSizeInBits())
1727 BitsToDescribe = *VarSize;
1728 if (auto Fragment = Expr->getFragmentInfo())
1729 BitsToDescribe = Fragment->SizeInBits;
1730 for (const auto &RegAndSize : RFV.getRegsAndSizes()) {
1731 // Bail out if all bits are described already.
1732 if (Offset >= BitsToDescribe)
1733 break;
1734 // TODO: handle scalable vectors.
1735 unsigned RegisterSize = RegAndSize.second;
1736 unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe)
1737 ? BitsToDescribe - Offset
1738 : RegisterSize;
1739 auto FragmentExpr = DIExpression::createFragmentExpression(
1740 Expr, Offset, FragmentSize);
1741 if (!FragmentExpr)
1742 continue;
1743 SDDbgValue *SDV = DAG.getVRegDbgValue(
1744 Var, *FragmentExpr, RegAndSize.first, false, DbgLoc, Order);
1745 DAG.AddDbgValue(SDV, false);
1746 Offset += RegisterSize;
1747 }
1748 return true;
1749 }
1750 // We can use simple vreg locations for variadic dbg_values as well.
1751 LocationOps.emplace_back(SDDbgOperand::fromVReg(Reg));
1752 continue;
1753 }
1754 // We failed to create a SDDbgOperand for V.
1755 return false;
1756 }
1757
1758 // We have created a SDDbgOperand for each Value in Values.
1759 assert(!LocationOps.empty());
1760 SDDbgValue *SDV =
1761 DAG.getDbgValueList(Var, Expr, LocationOps, Dependencies,
1762 /*IsIndirect=*/false, DbgLoc, Order, IsVariadic);
1763 DAG.AddDbgValue(SDV, /*isParameter=*/false);
1764 return true;
1765}
1766
1768 // Try to fixup any remaining dangling debug info -- and drop it if we can't.
1769 for (auto &Pair : DanglingDebugInfoMap)
1770 for (auto &DDI : Pair.second)
1771 salvageUnresolvedDbgValue(const_cast<Value *>(Pair.first), DDI);
1773}
1774
1775/// getCopyFromRegs - If there was virtual register allocated for the value V
1776/// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise.
1779 SDValue Result;
1780
1781 if (It != FuncInfo.ValueMap.end()) {
1782 Register InReg = It->second;
1783
1784 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(),
1785 DAG.getDataLayout(), InReg, Ty,
1786 std::nullopt); // This is not an ABI copy.
1787 SDValue Chain = DAG.getEntryNode();
1788 Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr,
1789 V);
1790 resolveDanglingDebugInfo(V, Result);
1791 }
1792
1793 return Result;
1794}
1795
1796/// getValue - Return an SDValue for the given Value.
1798 // If we already have an SDValue for this value, use it. It's important
1799 // to do this first, so that we don't create a CopyFromReg if we already
1800 // have a regular SDValue.
1801 SDValue &N = NodeMap[V];
1802 if (N.getNode()) return N;
1803
1804 // If there's a virtual register allocated and initialized for this
1805 // value, use it.
1806 if (SDValue copyFromReg = getCopyFromRegs(V, V->getType()))
1807 return copyFromReg;
1808
1809 // Otherwise create a new SDValue and remember it.
1810 SDValue Val = getValueImpl(V);
1811 NodeMap[V] = Val;
1813 return Val;
1814}
1815
1816/// getNonRegisterValue - Return an SDValue for the given Value, but
1817/// don't look in FuncInfo.ValueMap for a virtual register.
1819 // If we already have an SDValue for this value, use it.
1820 SDValue &N = NodeMap[V];
1821 if (N.getNode()) {
1822 if (isIntOrFPConstant(N)) {
1823 // Remove the debug location from the node as the node is about to be used
1824 // in a location which may differ from the original debug location. This
1825 // is relevant to Constant and ConstantFP nodes because they can appear
1826 // as constant expressions inside PHI nodes.
1827 N->setDebugLoc(DebugLoc());
1828 }
1829 return N;
1830 }
1831
1832 // Otherwise create a new SDValue and remember it.
1833 SDValue Val = getValueImpl(V);
1834 NodeMap[V] = Val;
1836 return Val;
1837}
1838
1839/// getValueImpl - Helper function for getValue and getNonRegisterValue.
1840/// Create an SDValue for the given value.
1842 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1843
1844 if (const Constant *C = dyn_cast<Constant>(V)) {
1845 EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true);
1846
1847 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) {
1848 SDLoc DL = getCurSDLoc();
1849
1850 // DAG.getConstant() may attempt to legalise the vector constant which can
1851 // significantly change the combines applied to the DAG. To reduce the
1852 // divergence when enabling ConstantInt based vectors we try to construct
1853 // the DAG in the same way as shufflevector based splats. TODO: The
1854 // divergence sometimes leads to better optimisations. Ideally we should
1855 // prevent DAG.getConstant() from legalising too early but there are some
1856 // degradations preventing this.
1857 if (VT.isScalableVector())
1858 return DAG.getNode(
1859 ISD::SPLAT_VECTOR, DL, VT,
1860 DAG.getConstant(CI->getValue(), DL, VT.getVectorElementType()));
1861 if (VT.isFixedLengthVector())
1862 return DAG.getSplatBuildVector(
1863 VT, DL,
1864 DAG.getConstant(CI->getValue(), DL, VT.getVectorElementType()));
1865 return DAG.getConstant(*CI, DL, VT);
1866 }
1867
1868 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
1869 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT);
1870
1871 if (const ConstantPtrAuth *CPA = dyn_cast<ConstantPtrAuth>(C)) {
1872 return DAG.getNode(ISD::PtrAuthGlobalAddress, getCurSDLoc(), VT,
1873 getValue(CPA->getPointer()), getValue(CPA->getKey()),
1874 getValue(CPA->getAddrDiscriminator()),
1875 getValue(CPA->getDiscriminator()));
1876 }
1877
1879 return DAG.getConstant(0, getCurSDLoc(), VT);
1880
1881 if (match(C, m_VScale()))
1882 return DAG.getVScale(getCurSDLoc(), VT, APInt(VT.getSizeInBits(), 1));
1883
1884 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
1885 return DAG.getConstantFP(*CFP, getCurSDLoc(), VT);
1886
1887 if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
1888 return isa<PoisonValue>(C) ? DAG.getPOISON(VT) : DAG.getUNDEF(VT);
1889
1890 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1891 visit(CE->getOpcode(), *CE);
1892 SDValue N1 = NodeMap[V];
1893 assert(N1.getNode() && "visit didn't populate the NodeMap!");
1894 return N1;
1895 }
1896
1898 SmallVector<SDValue, 4> Constants;
1899 for (const Use &U : C->operands()) {
1900 SDNode *Val = getValue(U).getNode();
1901 // If the operand is an empty aggregate, there are no values.
1902 if (!Val) continue;
1903 // Add each leaf value from the operand to the Constants list
1904 // to form a flattened list of all the values.
1905 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1906 Constants.push_back(SDValue(Val, i));
1907 }
1908
1909 return DAG.getMergeValues(Constants, getCurSDLoc());
1910 }
1911
1912 if (const ConstantDataSequential *CDS =
1915 for (uint64_t i = 0, e = CDS->getNumElements(); i != e; ++i) {
1916 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode();
1917 // Add each leaf value from the operand to the Constants list
1918 // to form a flattened list of all the values.
1919 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1920 Ops.push_back(SDValue(Val, i));
1921 }
1922
1923 if (isa<ArrayType>(CDS->getType()))
1924 return DAG.getMergeValues(Ops, getCurSDLoc());
1925 return DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1926 }
1927
1928 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
1930 "Unknown struct or array constant!");
1931
1932 SmallVector<EVT, 4> ValueVTs;
1933 ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs);
1934 unsigned NumElts = ValueVTs.size();
1935 if (NumElts == 0)
1936 return SDValue(); // empty struct
1937 SmallVector<SDValue, 4> Constants(NumElts);
1938 for (unsigned i = 0; i != NumElts; ++i) {
1939 EVT EltVT = ValueVTs[i];
1940 if (isa<UndefValue>(C))
1941 Constants[i] = DAG.getUNDEF(EltVT);
1942 else if (EltVT.isFloatingPoint())
1943 Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1944 else
1945 Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT);
1946 }
1947
1948 return DAG.getMergeValues(Constants, getCurSDLoc());
1949 }
1950
1951 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1952 return DAG.getBlockAddress(BA, VT);
1953
1954 if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(C))
1955 return getValue(Equiv->getGlobalValue());
1956
1957 if (const auto *NC = dyn_cast<NoCFIValue>(C))
1958 return getValue(NC->getGlobalValue());
1959
1960 if (VT == MVT::aarch64svcount) {
1961 assert(C->isNullValue() && "Can only zero this target type!");
1962 return DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT,
1963 DAG.getConstant(0, getCurSDLoc(), MVT::nxv16i1));
1964 }
1965
1966 if (VT.isRISCVVectorTuple()) {
1967 assert(C->isNullValue() && "Can only zero this target type!");
1968 return DAG.getNode(
1970 DAG.getNode(
1972 EVT::getVectorVT(*DAG.getContext(), MVT::i8,
1973 VT.getSizeInBits().getKnownMinValue() / 8, true),
1974 DAG.getConstant(0, getCurSDLoc(), MVT::getIntegerVT(8))));
1975 }
1976
1977 VectorType *VecTy = cast<VectorType>(V->getType());
1978
1979 // Now that we know the number and type of the elements, get that number of
1980 // elements into the Ops array based on what kind of constant it is.
1981 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
1983 unsigned NumElements = cast<FixedVectorType>(VecTy)->getNumElements();
1984 for (unsigned i = 0; i != NumElements; ++i)
1985 Ops.push_back(getValue(CV->getOperand(i)));
1986
1987 return DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1988 }
1989
1991 EVT EltVT =
1992 TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType());
1993
1994 SDValue Op;
1995 if (EltVT.isFloatingPoint())
1996 Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1997 else
1998 Op = DAG.getConstant(0, getCurSDLoc(), EltVT);
1999
2000 return DAG.getSplat(VT, getCurSDLoc(), Op);
2001 }
2002
2003 llvm_unreachable("Unknown vector constant");
2004 }
2005
2006 // If this is a static alloca, generate it as the frameindex instead of
2007 // computation.
2008 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
2010 FuncInfo.StaticAllocaMap.find(AI);
2011 if (SI != FuncInfo.StaticAllocaMap.end())
2012 return DAG.getFrameIndex(
2013 SI->second, TLI.getValueType(DAG.getDataLayout(), AI->getType()));
2014 }
2015
2016 // If this is an instruction which fast-isel has deferred, select it now.
2017 if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
2018 Register InReg = FuncInfo.InitializeRegForValue(Inst);
2019
2020 std::optional<CallingConv::ID> CallConv;
2021 auto *CB = dyn_cast<CallBase>(Inst);
2022 if (CB && !CB->isInlineAsm())
2023 CallConv = CB->getCallingConv();
2024
2025 RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg,
2026 Inst->getType(), CallConv);
2027 SDValue Chain = DAG.getEntryNode();
2028 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V);
2029 }
2030
2031 if (const MetadataAsValue *MD = dyn_cast<MetadataAsValue>(V))
2032 return DAG.getMDNode(cast<MDNode>(MD->getMetadata()));
2033
2034 if (const auto *BB = dyn_cast<BasicBlock>(V))
2035 return DAG.getBasicBlock(FuncInfo.getMBB(BB));
2036
2037 llvm_unreachable("Can't get register for value!");
2038}
2039
2040void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) {
2042 bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX;
2043 bool IsCoreCLR = Pers == EHPersonality::CoreCLR;
2044 bool IsSEH = isAsynchronousEHPersonality(Pers);
2045 MachineBasicBlock *CatchPadMBB = FuncInfo.MBB;
2046 if (IsSEH) {
2047 // For SEH, EHCont Guard needs to know that this catchpad is a target.
2048 CatchPadMBB->setIsEHContTarget(true);
2050 } else
2051 CatchPadMBB->setIsEHScopeEntry();
2052 // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues.
2053 if (IsMSVCCXX || IsCoreCLR)
2054 CatchPadMBB->setIsEHFuncletEntry();
2055}
2056
2057void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) {
2058 // Update machine-CFG edge.
2059 MachineBasicBlock *TargetMBB = FuncInfo.getMBB(I.getSuccessor());
2060 FuncInfo.MBB->addSuccessor(TargetMBB);
2061
2062 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
2063 bool IsSEH = isAsynchronousEHPersonality(Pers);
2064 if (IsSEH) {
2065 // If this is not a fall-through branch or optimizations are switched off,
2066 // emit the branch.
2067 if (TargetMBB != NextBlock(FuncInfo.MBB) ||
2068 TM.getOptLevel() == CodeGenOptLevel::None)
2069 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
2070 getControlRoot(), DAG.getBasicBlock(TargetMBB)));
2071 return;
2072 }
2073
2074 // For non-SEH, EHCont Guard needs to know that this catchret is a target.
2075 TargetMBB->setIsEHContTarget(true);
2076 DAG.getMachineFunction().setHasEHContTarget(true);
2077
2078 // Figure out the funclet membership for the catchret's successor.
2079 // This will be used by the FuncletLayout pass to determine how to order the
2080 // BB's.
2081 // A 'catchret' returns to the outer scope's color.
2082 Value *ParentPad = I.getCatchSwitchParentPad();
2083 const BasicBlock *SuccessorColor;
2084 if (isa<ConstantTokenNone>(ParentPad))
2085 SuccessorColor = &FuncInfo.Fn->getEntryBlock();
2086 else
2087 SuccessorColor = cast<Instruction>(ParentPad)->getParent();
2088 assert(SuccessorColor && "No parent funclet for catchret!");
2089 MachineBasicBlock *SuccessorColorMBB = FuncInfo.getMBB(SuccessorColor);
2090 assert(SuccessorColorMBB && "No MBB for SuccessorColor!");
2091
2092 // Create the terminator node.
2093 SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other,
2094 getControlRoot(), DAG.getBasicBlock(TargetMBB),
2095 DAG.getBasicBlock(SuccessorColorMBB));
2096 DAG.setRoot(Ret);
2097}
2098
2099void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) {
2100 // Don't emit any special code for the cleanuppad instruction. It just marks
2101 // the start of an EH scope/funclet.
2102 FuncInfo.MBB->setIsEHScopeEntry();
2103 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
2104 if (Pers != EHPersonality::Wasm_CXX) {
2105 FuncInfo.MBB->setIsEHFuncletEntry();
2106 FuncInfo.MBB->setIsCleanupFuncletEntry();
2107 }
2108}
2109
2110/// When an invoke or a cleanupret unwinds to the next EH pad, there are
2111/// many places it could ultimately go. In the IR, we have a single unwind
2112/// destination, but in the machine CFG, we enumerate all the possible blocks.
2113/// This function skips over imaginary basic blocks that hold catchswitch
2114/// instructions, and finds all the "real" machine
2115/// basic block destinations. As those destinations may not be successors of
2116/// EHPadBB, here we also calculate the edge probability to those destinations.
2117/// The passed-in Prob is the edge probability to EHPadBB.
2119 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
2120 BranchProbability Prob,
2121 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
2122 &UnwindDests) {
2123 EHPersonality Personality =
2125 bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX;
2126 bool IsCoreCLR = Personality == EHPersonality::CoreCLR;
2127 bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX;
2128 bool IsSEH = isAsynchronousEHPersonality(Personality);
2129
2130 while (EHPadBB) {
2132 BasicBlock *NewEHPadBB = nullptr;
2133 if (isa<LandingPadInst>(Pad)) {
2134 // Stop on landingpads. They are not funclets.
2135 UnwindDests.emplace_back(FuncInfo.getMBB(EHPadBB), Prob);
2136 break;
2137 } else if (isa<CleanupPadInst>(Pad)) {
2138 // Stop on cleanup pads. Cleanups are always funclet entries for all known
2139 // personalities except Wasm. And in Wasm this becomes a catch_all(_ref),
2140 // which always catches an exception.
2141 UnwindDests.emplace_back(FuncInfo.getMBB(EHPadBB), Prob);
2142 UnwindDests.back().first->setIsEHScopeEntry();
2143 // In Wasm, EH scopes are not funclets
2144 if (!IsWasmCXX)
2145 UnwindDests.back().first->setIsEHFuncletEntry();
2146 break;
2147 } else if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
2148 // Add the catchpad handlers to the possible destinations.
2149 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
2150 UnwindDests.emplace_back(FuncInfo.getMBB(CatchPadBB), Prob);
2151 // For MSVC++ and the CLR, catchblocks are funclets and need prologues.
2152 if (IsMSVCCXX || IsCoreCLR)
2153 UnwindDests.back().first->setIsEHFuncletEntry();
2154 if (!IsSEH)
2155 UnwindDests.back().first->setIsEHScopeEntry();
2156 }
2157 NewEHPadBB = CatchSwitch->getUnwindDest();
2158 } else {
2159 continue;
2160 }
2161
2162 BranchProbabilityInfo *BPI = FuncInfo.BPI;
2163 if (BPI && NewEHPadBB)
2164 Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB);
2165 EHPadBB = NewEHPadBB;
2166 }
2167}
2168
2169void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) {
2170 // Update successor info.
2172 auto UnwindDest = I.getUnwindDest();
2173 BranchProbabilityInfo *BPI = FuncInfo.BPI;
2174 BranchProbability UnwindDestProb =
2175 (BPI && UnwindDest)
2176 ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest)
2178 findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests);
2179 for (auto &UnwindDest : UnwindDests) {
2180 UnwindDest.first->setIsEHPad();
2181 addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second);
2182 }
2183 FuncInfo.MBB->normalizeSuccProbs();
2184
2185 // Create the terminator node.
2186 MachineBasicBlock *CleanupPadMBB =
2187 FuncInfo.getMBB(I.getCleanupPad()->getParent());
2188 SDValue Ret = DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other,
2189 getControlRoot(), DAG.getBasicBlock(CleanupPadMBB));
2190 DAG.setRoot(Ret);
2191}
2192
2193void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) {
2194 report_fatal_error("visitCatchSwitch not yet implemented!");
2195}
2196
2197void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
2198 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2199 auto &DL = DAG.getDataLayout();
2200 SDValue Chain = getControlRoot();
2203
2204 // Calls to @llvm.experimental.deoptimize don't generate a return value, so
2205 // lower
2206 //
2207 // %val = call <ty> @llvm.experimental.deoptimize()
2208 // ret <ty> %val
2209 //
2210 // differently.
2211 if (I.getParent()->getTerminatingDeoptimizeCall()) {
2213 return;
2214 }
2215
2216 if (!FuncInfo.CanLowerReturn) {
2217 Register DemoteReg = FuncInfo.DemoteRegister;
2218
2219 // Emit a store of the return value through the virtual register.
2220 // Leave Outs empty so that LowerReturn won't try to load return
2221 // registers the usual way.
2222 MVT PtrValueVT = TLI.getPointerTy(DL, DL.getAllocaAddrSpace());
2223 SDValue RetPtr =
2224 DAG.getCopyFromReg(Chain, getCurSDLoc(), DemoteReg, PtrValueVT);
2225 SDValue RetOp = getValue(I.getOperand(0));
2226
2227 SmallVector<EVT, 4> ValueVTs, MemVTs;
2228 SmallVector<uint64_t, 4> Offsets;
2229 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &MemVTs,
2230 &Offsets, 0);
2231 unsigned NumValues = ValueVTs.size();
2232
2233 SmallVector<SDValue, 4> Chains(NumValues);
2234 Align BaseAlign = DL.getPrefTypeAlign(I.getOperand(0)->getType());
2235 for (unsigned i = 0; i != NumValues; ++i) {
2236 // An aggregate return value cannot wrap around the address space, so
2237 // offsets to its parts don't wrap either.
2238 SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr,
2239 TypeSize::getFixed(Offsets[i]));
2240
2241 SDValue Val = RetOp.getValue(RetOp.getResNo() + i);
2242 if (MemVTs[i] != ValueVTs[i])
2243 Val = DAG.getPtrExtOrTrunc(Val, getCurSDLoc(), MemVTs[i]);
2244 Chains[i] = DAG.getStore(
2245 Chain, getCurSDLoc(), Val,
2246 // FIXME: better loc info would be nice.
2247 Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()),
2248 commonAlignment(BaseAlign, Offsets[i]));
2249 }
2250
2251 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
2252 MVT::Other, Chains);
2253 } else if (I.getNumOperands() != 0) {
2255 ComputeValueTypes(DL, I.getOperand(0)->getType(), Types);
2256 unsigned NumValues = Types.size();
2257 if (NumValues) {
2258 SDValue RetOp = getValue(I.getOperand(0));
2259
2260 const Function *F = I.getParent()->getParent();
2261
2262 bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters(
2263 I.getOperand(0)->getType(), F->getCallingConv(),
2264 /*IsVarArg*/ false, DL);
2265
2266 ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
2267 if (F->getAttributes().hasRetAttr(Attribute::SExt))
2268 ExtendKind = ISD::SIGN_EXTEND;
2269 else if (F->getAttributes().hasRetAttr(Attribute::ZExt))
2270 ExtendKind = ISD::ZERO_EXTEND;
2271
2272 LLVMContext &Context = F->getContext();
2273 bool RetInReg = F->getAttributes().hasRetAttr(Attribute::InReg);
2274
2275 for (unsigned j = 0; j != NumValues; ++j) {
2276 EVT VT = TLI.getValueType(DL, Types[j]);
2277
2278 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
2279 VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind);
2280
2281 CallingConv::ID CC = F->getCallingConv();
2282
2283 unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, CC, VT);
2284 MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, CC, VT);
2285 SmallVector<SDValue, 4> Parts(NumParts);
2287 SDValue(RetOp.getNode(), RetOp.getResNo() + j),
2288 &Parts[0], NumParts, PartVT, &I, CC, ExtendKind);
2289
2290 // 'inreg' on function refers to return value
2291 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
2292 if (RetInReg)
2293 Flags.setInReg();
2294
2295 if (I.getOperand(0)->getType()->isPointerTy()) {
2296 Flags.setPointer();
2297 Flags.setPointerAddrSpace(
2298 cast<PointerType>(I.getOperand(0)->getType())->getAddressSpace());
2299 }
2300
2301 if (NeedsRegBlock) {
2302 Flags.setInConsecutiveRegs();
2303 if (j == NumValues - 1)
2304 Flags.setInConsecutiveRegsLast();
2305 }
2306
2307 // Propagate extension type if any
2308 if (ExtendKind == ISD::SIGN_EXTEND)
2309 Flags.setSExt();
2310 else if (ExtendKind == ISD::ZERO_EXTEND)
2311 Flags.setZExt();
2312 else if (F->getAttributes().hasRetAttr(Attribute::NoExt))
2313 Flags.setNoExt();
2314
2315 for (unsigned i = 0; i < NumParts; ++i) {
2316 Outs.push_back(ISD::OutputArg(Flags,
2317 Parts[i].getValueType().getSimpleVT(),
2318 VT, Types[j], 0, 0));
2319 OutVals.push_back(Parts[i]);
2320 }
2321 }
2322 }
2323 }
2324
2325 // Push in swifterror virtual register as the last element of Outs. This makes
2326 // sure swifterror virtual register will be returned in the swifterror
2327 // physical register.
2328 const Function *F = I.getParent()->getParent();
2329 if (TLI.supportSwiftError() &&
2330 F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) {
2331 assert(SwiftError.getFunctionArg() && "Need a swift error argument");
2332 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
2333 Flags.setSwiftError();
2334 Outs.push_back(ISD::OutputArg(Flags, /*vt=*/TLI.getPointerTy(DL),
2335 /*argvt=*/EVT(TLI.getPointerTy(DL)),
2336 PointerType::getUnqual(*DAG.getContext()),
2337 /*origidx=*/1, /*partOffs=*/0));
2338 // Create SDNode for the swifterror virtual register.
2339 OutVals.push_back(
2340 DAG.getRegister(SwiftError.getOrCreateVRegUseAt(
2341 &I, FuncInfo.MBB, SwiftError.getFunctionArg()),
2342 EVT(TLI.getPointerTy(DL))));
2343 }
2344
2345 bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg();
2346 CallingConv::ID CallConv =
2347 DAG.getMachineFunction().getFunction().getCallingConv();
2348 Chain = DAG.getTargetLoweringInfo().LowerReturn(
2349 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG);
2350
2351 // Verify that the target's LowerReturn behaved as expected.
2352 assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
2353 "LowerReturn didn't return a valid chain!");
2354
2355 // Update the DAG with the new chain value resulting from return lowering.
2356 DAG.setRoot(Chain);
2357}
2358
2359/// CopyToExportRegsIfNeeded - If the given value has virtual registers
2360/// created for it, emit nodes to copy the value into the virtual
2361/// registers.
2363 // Skip empty types
2364 if (V->getType()->isEmptyTy())
2365 return;
2366
2368 if (VMI != FuncInfo.ValueMap.end()) {
2369 assert((!V->use_empty() || isa<CallBrInst>(V)) &&
2370 "Unused value assigned virtual registers!");
2371 CopyValueToVirtualRegister(V, VMI->second);
2372 }
2373}
2374
2375/// ExportFromCurrentBlock - If this condition isn't known to be exported from
2376/// the current basic block, add it to ValueMap now so that we'll get a
2377/// CopyTo/FromReg.
2379 // No need to export constants.
2380 if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
2381
2382 // Already exported?
2383 if (FuncInfo.isExportedInst(V)) return;
2384
2385 Register Reg = FuncInfo.InitializeRegForValue(V);
2387}
2388
2390 const BasicBlock *FromBB) {
2391 // The operands of the setcc have to be in this block. We don't know
2392 // how to export them from some other block.
2393 if (const Instruction *VI = dyn_cast<Instruction>(V)) {
2394 // Can export from current BB.
2395 if (VI->getParent() == FromBB)
2396 return true;
2397
2398 // Is already exported, noop.
2399 return FuncInfo.isExportedInst(V);
2400 }
2401
2402 // If this is an argument, we can export it if the BB is the entry block or
2403 // if it is already exported.
2404 if (isa<Argument>(V)) {
2405 if (FromBB->isEntryBlock())
2406 return true;
2407
2408 // Otherwise, can only export this if it is already exported.
2409 return FuncInfo.isExportedInst(V);
2410 }
2411
2412 // Otherwise, constants can always be exported.
2413 return true;
2414}
2415
2416/// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
2418SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src,
2419 const MachineBasicBlock *Dst) const {
2421 const BasicBlock *SrcBB = Src->getBasicBlock();
2422 const BasicBlock *DstBB = Dst->getBasicBlock();
2423 if (!BPI) {
2424 // If BPI is not available, set the default probability as 1 / N, where N is
2425 // the number of successors.
2426 auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1);
2427 return BranchProbability(1, SuccSize);
2428 }
2429 return BPI->getEdgeProbability(SrcBB, DstBB);
2430}
2431
2432void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src,
2433 MachineBasicBlock *Dst,
2434 BranchProbability Prob) {
2435 if (!FuncInfo.BPI)
2436 Src->addSuccessorWithoutProb(Dst);
2437 else {
2438 if (Prob.isUnknown())
2439 Prob = getEdgeProbability(Src, Dst);
2440 Src->addSuccessor(Dst, Prob);
2441 }
2442}
2443
2444static bool InBlock(const Value *V, const BasicBlock *BB) {
2445 if (const Instruction *I = dyn_cast<Instruction>(V))
2446 return I->getParent() == BB;
2447 return true;
2448}
2449
2450/// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
2451/// This function emits a branch and is used at the leaves of an OR or an
2452/// AND operator tree.
2453void
2456 MachineBasicBlock *FBB,
2457 MachineBasicBlock *CurBB,
2458 MachineBasicBlock *SwitchBB,
2459 BranchProbability TProb,
2460 BranchProbability FProb,
2461 bool InvertCond) {
2462 const BasicBlock *BB = CurBB->getBasicBlock();
2463
2464 // If the leaf of the tree is a comparison, merge the condition into
2465 // the caseblock.
2466 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
2467 // The operands of the cmp have to be in this block. We don't know
2468 // how to export them from some other block. If this is the first block
2469 // of the sequence, no exporting is needed.
2470 if (CurBB == SwitchBB ||
2471 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
2472 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
2473 ISD::CondCode Condition;
2474 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
2475 ICmpInst::Predicate Pred =
2476 InvertCond ? IC->getInversePredicate() : IC->getPredicate();
2477 Condition = getICmpCondCode(Pred);
2478 } else {
2479 const FCmpInst *FC = cast<FCmpInst>(Cond);
2480 FCmpInst::Predicate Pred =
2481 InvertCond ? FC->getInversePredicate() : FC->getPredicate();
2482 Condition = getFCmpCondCode(Pred);
2483 if (TM.Options.NoNaNsFPMath)
2484 Condition = getFCmpCodeWithoutNaN(Condition);
2485 }
2486
2487 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr,
2488 TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
2489 SL->SwitchCases.push_back(CB);
2490 return;
2491 }
2492 }
2493
2494 // Create a CaseBlock record representing this branch.
2495 ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ;
2496 CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()),
2497 nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
2498 SL->SwitchCases.push_back(CB);
2499}
2500
2501// Collect dependencies on V recursively. This is used for the cost analysis in
2502// `shouldKeepJumpConditionsTogether`.
2506 unsigned Depth = 0) {
2507 // Return false if we have an incomplete count.
2509 return false;
2510
2511 auto *I = dyn_cast<Instruction>(V);
2512 if (I == nullptr)
2513 return true;
2514
2515 if (Necessary != nullptr) {
2516 // This instruction is necessary for the other side of the condition so
2517 // don't count it.
2518 if (Necessary->contains(I))
2519 return true;
2520 }
2521
2522 // Already added this dep.
2523 if (!Deps->try_emplace(I, false).second)
2524 return true;
2525
2526 for (unsigned OpIdx = 0, E = I->getNumOperands(); OpIdx < E; ++OpIdx)
2527 if (!collectInstructionDeps(Deps, I->getOperand(OpIdx), Necessary,
2528 Depth + 1))
2529 return false;
2530 return true;
2531}
2532
2535 Instruction::BinaryOps Opc, const Value *Lhs, const Value *Rhs,
2537 if (I.getNumSuccessors() != 2)
2538 return false;
2539
2540 if (!I.isConditional())
2541 return false;
2542
2543 if (Params.BaseCost < 0)
2544 return false;
2545
2546 // Baseline cost.
2547 InstructionCost CostThresh = Params.BaseCost;
2548
2549 BranchProbabilityInfo *BPI = nullptr;
2550 if (Params.LikelyBias || Params.UnlikelyBias)
2551 BPI = FuncInfo.BPI;
2552 if (BPI != nullptr) {
2553 // See if we are either likely to get an early out or compute both lhs/rhs
2554 // of the condition.
2555 BasicBlock *IfFalse = I.getSuccessor(0);
2556 BasicBlock *IfTrue = I.getSuccessor(1);
2557
2558 std::optional<bool> Likely;
2559 if (BPI->isEdgeHot(I.getParent(), IfTrue))
2560 Likely = true;
2561 else if (BPI->isEdgeHot(I.getParent(), IfFalse))
2562 Likely = false;
2563
2564 if (Likely) {
2565 if (Opc == (*Likely ? Instruction::And : Instruction::Or))
2566 // Its likely we will have to compute both lhs and rhs of condition
2567 CostThresh += Params.LikelyBias;
2568 else {
2569 if (Params.UnlikelyBias < 0)
2570 return false;
2571 // Its likely we will get an early out.
2572 CostThresh -= Params.UnlikelyBias;
2573 }
2574 }
2575 }
2576
2577 if (CostThresh <= 0)
2578 return false;
2579
2580 // Collect "all" instructions that lhs condition is dependent on.
2581 // Use map for stable iteration (to avoid non-determanism of iteration of
2582 // SmallPtrSet). The `bool` value is just a dummy.
2584 collectInstructionDeps(&LhsDeps, Lhs);
2585 // Collect "all" instructions that rhs condition is dependent on AND are
2586 // dependencies of lhs. This gives us an estimate on which instructions we
2587 // stand to save by splitting the condition.
2588 if (!collectInstructionDeps(&RhsDeps, Rhs, &LhsDeps))
2589 return false;
2590 // Add the compare instruction itself unless its a dependency on the LHS.
2591 if (const auto *RhsI = dyn_cast<Instruction>(Rhs))
2592 if (!LhsDeps.contains(RhsI))
2593 RhsDeps.try_emplace(RhsI, false);
2594
2595 InstructionCost CostOfIncluding = 0;
2596 // See if this instruction will need to computed independently of whether RHS
2597 // is.
2598 Value *BrCond = I.getCondition();
2599 auto ShouldCountInsn = [&RhsDeps, &BrCond](const Instruction *Ins) {
2600 for (const auto *U : Ins->users()) {
2601 // If user is independent of RHS calculation we don't need to count it.
2602 if (auto *UIns = dyn_cast<Instruction>(U))
2603 if (UIns != BrCond && !RhsDeps.contains(UIns))
2604 return false;
2605 }
2606 return true;
2607 };
2608
2609 // Prune instructions from RHS Deps that are dependencies of unrelated
2610 // instructions. The value (SelectionDAG::MaxRecursionDepth) is fairly
2611 // arbitrary and just meant to cap the how much time we spend in the pruning
2612 // loop. Its highly unlikely to come into affect.
2613 const unsigned MaxPruneIters = SelectionDAG::MaxRecursionDepth;
2614 // Stop after a certain point. No incorrectness from including too many
2615 // instructions.
2616 for (unsigned PruneIters = 0; PruneIters < MaxPruneIters; ++PruneIters) {
2617 const Instruction *ToDrop = nullptr;
2618 for (const auto &InsPair : RhsDeps) {
2619 if (!ShouldCountInsn(InsPair.first)) {
2620 ToDrop = InsPair.first;
2621 break;
2622 }
2623 }
2624 if (ToDrop == nullptr)
2625 break;
2626 RhsDeps.erase(ToDrop);
2627 }
2628
2629 for (const auto &InsPair : RhsDeps) {
2630 // Finally accumulate latency that we can only attribute to computing the
2631 // RHS condition. Use latency because we are essentially trying to calculate
2632 // the cost of the dependency chain.
2633 // Possible TODO: We could try to estimate ILP and make this more precise.
2634 CostOfIncluding += TTI->getInstructionCost(
2635 InsPair.first, TargetTransformInfo::TCK_Latency);
2636
2637 if (CostOfIncluding > CostThresh)
2638 return false;
2639 }
2640 return true;
2641}
2642
2645 MachineBasicBlock *FBB,
2646 MachineBasicBlock *CurBB,
2647 MachineBasicBlock *SwitchBB,
2649 BranchProbability TProb,
2650 BranchProbability FProb,
2651 bool InvertCond) {
2652 // Skip over not part of the tree and remember to invert op and operands at
2653 // next level.
2654 Value *NotCond;
2655 if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) &&
2656 InBlock(NotCond, CurBB->getBasicBlock())) {
2657 FindMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb,
2658 !InvertCond);
2659 return;
2660 }
2661
2663 const Value *BOpOp0, *BOpOp1;
2664 // Compute the effective opcode for Cond, taking into account whether it needs
2665 // to be inverted, e.g.
2666 // and (not (or A, B)), C
2667 // gets lowered as
2668 // and (and (not A, not B), C)
2670 if (BOp) {
2671 BOpc = match(BOp, m_LogicalAnd(m_Value(BOpOp0), m_Value(BOpOp1)))
2672 ? Instruction::And
2673 : (match(BOp, m_LogicalOr(m_Value(BOpOp0), m_Value(BOpOp1)))
2674 ? Instruction::Or
2676 if (InvertCond) {
2677 if (BOpc == Instruction::And)
2678 BOpc = Instruction::Or;
2679 else if (BOpc == Instruction::Or)
2680 BOpc = Instruction::And;
2681 }
2682 }
2683
2684 // If this node is not part of the or/and tree, emit it as a branch.
2685 // Note that all nodes in the tree should have same opcode.
2686 bool BOpIsInOrAndTree = BOpc && BOpc == Opc && BOp->hasOneUse();
2687 if (!BOpIsInOrAndTree || BOp->getParent() != CurBB->getBasicBlock() ||
2688 !InBlock(BOpOp0, CurBB->getBasicBlock()) ||
2689 !InBlock(BOpOp1, CurBB->getBasicBlock())) {
2690 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB,
2691 TProb, FProb, InvertCond);
2692 return;
2693 }
2694
2695 // Create TmpBB after CurBB.
2696 MachineFunction::iterator BBI(CurBB);
2697 MachineFunction &MF = DAG.getMachineFunction();
2699 CurBB->getParent()->insert(++BBI, TmpBB);
2700
2701 if (Opc == Instruction::Or) {
2702 // Codegen X | Y as:
2703 // BB1:
2704 // jmp_if_X TBB
2705 // jmp TmpBB
2706 // TmpBB:
2707 // jmp_if_Y TBB
2708 // jmp FBB
2709 //
2710
2711 // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
2712 // The requirement is that
2713 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
2714 // = TrueProb for original BB.
2715 // Assuming the original probabilities are A and B, one choice is to set
2716 // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to
2717 // A/(1+B) and 2B/(1+B). This choice assumes that
2718 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
2719 // Another choice is to assume TrueProb for BB1 equals to TrueProb for
2720 // TmpBB, but the math is more complicated.
2721
2722 auto NewTrueProb = TProb / 2;
2723 auto NewFalseProb = TProb / 2 + FProb;
2724 // Emit the LHS condition.
2725 FindMergedConditions(BOpOp0, TBB, TmpBB, CurBB, SwitchBB, Opc, NewTrueProb,
2726 NewFalseProb, InvertCond);
2727
2728 // Normalize A/2 and B to get A/(1+B) and 2B/(1+B).
2729 SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb};
2731 // Emit the RHS condition into TmpBB.
2732 FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0],
2733 Probs[1], InvertCond);
2734 } else {
2735 assert(Opc == Instruction::And && "Unknown merge op!");
2736 // Codegen X & Y as:
2737 // BB1:
2738 // jmp_if_X TmpBB
2739 // jmp FBB
2740 // TmpBB:
2741 // jmp_if_Y TBB
2742 // jmp FBB
2743 //
2744 // This requires creation of TmpBB after CurBB.
2745
2746 // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
2747 // The requirement is that
2748 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
2749 // = FalseProb for original BB.
2750 // Assuming the original probabilities are A and B, one choice is to set
2751 // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to
2752 // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 ==
2753 // TrueProb for BB1 * FalseProb for TmpBB.
2754
2755 auto NewTrueProb = TProb + FProb / 2;
2756 auto NewFalseProb = FProb / 2;
2757 // Emit the LHS condition.
2758 FindMergedConditions(BOpOp0, TmpBB, FBB, CurBB, SwitchBB, Opc, NewTrueProb,
2759 NewFalseProb, InvertCond);
2760
2761 // Normalize A and B/2 to get 2A/(1+A) and B/(1+A).
2762 SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2};
2764 // Emit the RHS condition into TmpBB.
2765 FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0],
2766 Probs[1], InvertCond);
2767 }
2768}
2769
2770/// If the set of cases should be emitted as a series of branches, return true.
2771/// If we should emit this as a bunch of and/or'd together conditions, return
2772/// false.
2773bool
2774SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) {
2775 if (Cases.size() != 2) return true;
2776
2777 // If this is two comparisons of the same values or'd or and'd together, they
2778 // will get folded into a single comparison, so don't emit two blocks.
2779 if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
2780 Cases[0].CmpRHS == Cases[1].CmpRHS) ||
2781 (Cases[0].CmpRHS == Cases[1].CmpLHS &&
2782 Cases[0].CmpLHS == Cases[1].CmpRHS)) {
2783 return false;
2784 }
2785
2786 // Handle: (X != null) | (Y != null) --> (X|Y) != 0
2787 // Handle: (X == null) & (Y == null) --> (X|Y) == 0
2788 if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
2789 Cases[0].CC == Cases[1].CC &&
2790 isa<Constant>(Cases[0].CmpRHS) &&
2791 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
2792 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
2793 return false;
2794 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
2795 return false;
2796 }
2797
2798 return true;
2799}
2800
2801void SelectionDAGBuilder::visitBr(const BranchInst &I) {
2803
2804 // Update machine-CFG edges.
2805 MachineBasicBlock *Succ0MBB = FuncInfo.getMBB(I.getSuccessor(0));
2806
2807 if (I.isUnconditional()) {
2808 // Update machine-CFG edges.
2809 BrMBB->addSuccessor(Succ0MBB);
2810
2811 // If this is not a fall-through branch or optimizations are switched off,
2812 // emit the branch.
2813 if (Succ0MBB != NextBlock(BrMBB) ||
2815 auto Br = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
2816 getControlRoot(), DAG.getBasicBlock(Succ0MBB));
2817 setValue(&I, Br);
2818 DAG.setRoot(Br);
2819 }
2820
2821 return;
2822 }
2823
2824 // If this condition is one of the special cases we handle, do special stuff
2825 // now.
2826 const Value *CondVal = I.getCondition();
2827 MachineBasicBlock *Succ1MBB = FuncInfo.getMBB(I.getSuccessor(1));
2828
2829 // If this is a series of conditions that are or'd or and'd together, emit
2830 // this as a sequence of branches instead of setcc's with and/or operations.
2831 // As long as jumps are not expensive (exceptions for multi-use logic ops,
2832 // unpredictable branches, and vector extracts because those jumps are likely
2833 // expensive for any target), this should improve performance.
2834 // For example, instead of something like:
2835 // cmp A, B
2836 // C = seteq
2837 // cmp D, E
2838 // F = setle
2839 // or C, F
2840 // jnz foo
2841 // Emit:
2842 // cmp A, B
2843 // je foo
2844 // cmp D, E
2845 // jle foo
2846 bool IsUnpredictable = I.hasMetadata(LLVMContext::MD_unpredictable);
2847 const Instruction *BOp = dyn_cast<Instruction>(CondVal);
2848 if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp &&
2849 BOp->hasOneUse() && !IsUnpredictable) {
2850 Value *Vec;
2851 const Value *BOp0, *BOp1;
2853 if (match(BOp, m_LogicalAnd(m_Value(BOp0), m_Value(BOp1))))
2854 Opcode = Instruction::And;
2855 else if (match(BOp, m_LogicalOr(m_Value(BOp0), m_Value(BOp1))))
2856 Opcode = Instruction::Or;
2857
2858 if (Opcode &&
2859 !(match(BOp0, m_ExtractElt(m_Value(Vec), m_Value())) &&
2860 match(BOp1, m_ExtractElt(m_Specific(Vec), m_Value()))) &&
2862 FuncInfo, I, Opcode, BOp0, BOp1,
2863 DAG.getTargetLoweringInfo().getJumpConditionMergingParams(
2864 Opcode, BOp0, BOp1))) {
2865 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, Opcode,
2866 getEdgeProbability(BrMBB, Succ0MBB),
2867 getEdgeProbability(BrMBB, Succ1MBB),
2868 /*InvertCond=*/false);
2869 // If the compares in later blocks need to use values not currently
2870 // exported from this block, export them now. This block should always
2871 // be the first entry.
2872 assert(SL->SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
2873
2874 // Allow some cases to be rejected.
2875 if (ShouldEmitAsBranches(SL->SwitchCases)) {
2876 for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) {
2877 ExportFromCurrentBlock(SL->SwitchCases[i].CmpLHS);
2878 ExportFromCurrentBlock(SL->SwitchCases[i].CmpRHS);
2879 }
2880
2881 // Emit the branch for this block.
2882 visitSwitchCase(SL->SwitchCases[0], BrMBB);
2883 SL->SwitchCases.erase(SL->SwitchCases.begin());
2884 return;
2885 }
2886
2887 // Okay, we decided not to do this, remove any inserted MBB's and clear
2888 // SwitchCases.
2889 for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i)
2890 FuncInfo.MF->erase(SL->SwitchCases[i].ThisBB);
2891
2892 SL->SwitchCases.clear();
2893 }
2894 }
2895
2896 // Create a CaseBlock record representing this branch.
2897 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
2898 nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc(),
2900 IsUnpredictable);
2901
2902 // Use visitSwitchCase to actually insert the fast branch sequence for this
2903 // cond branch.
2904 visitSwitchCase(CB, BrMBB);
2905}
2906
2907/// visitSwitchCase - Emits the necessary code to represent a single node in
2908/// the binary search tree resulting from lowering a switch instruction.
2910 MachineBasicBlock *SwitchBB) {
2911 SDValue Cond;
2912 SDValue CondLHS = getValue(CB.CmpLHS);
2913 SDLoc dl = CB.DL;
2914
2915 if (CB.CC == ISD::SETTRUE) {
2916 // Branch or fall through to TrueBB.
2917 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
2918 SwitchBB->normalizeSuccProbs();
2919 if (CB.TrueBB != NextBlock(SwitchBB)) {
2920 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, getControlRoot(),
2921 DAG.getBasicBlock(CB.TrueBB)));
2922 }
2923 return;
2924 }
2925
2926 auto &TLI = DAG.getTargetLoweringInfo();
2927 EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), CB.CmpLHS->getType());
2928
2929 // Build the setcc now.
2930 if (!CB.CmpMHS) {
2931 // Fold "(X == true)" to X and "(X == false)" to !X to
2932 // handle common cases produced by branch lowering.
2933 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
2934 CB.CC == ISD::SETEQ)
2935 Cond = CondLHS;
2936 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
2937 CB.CC == ISD::SETEQ) {
2938 SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType());
2939 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
2940 } else {
2941 SDValue CondRHS = getValue(CB.CmpRHS);
2942
2943 // If a pointer's DAG type is larger than its memory type then the DAG
2944 // values are zero-extended. This breaks signed comparisons so truncate
2945 // back to the underlying type before doing the compare.
2946 if (CondLHS.getValueType() != MemVT) {
2947 CondLHS = DAG.getPtrExtOrTrunc(CondLHS, getCurSDLoc(), MemVT);
2948 CondRHS = DAG.getPtrExtOrTrunc(CondRHS, getCurSDLoc(), MemVT);
2949 }
2950 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, CondRHS, CB.CC);
2951 }
2952 } else {
2953 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
2954
2955 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
2956 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue();
2957
2958 SDValue CmpOp = getValue(CB.CmpMHS);
2959 EVT VT = CmpOp.getValueType();
2960
2961 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
2962 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT),
2963 ISD::SETLE);
2964 } else {
2965 SDValue SUB = DAG.getNode(ISD::SUB, dl,
2966 VT, CmpOp, DAG.getConstant(Low, dl, VT));
2967 Cond = DAG.getSetCC(dl, MVT::i1, SUB,
2968 DAG.getConstant(High-Low, dl, VT), ISD::SETULE);
2969 }
2970 }
2971
2972 // Update successor info
2973 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
2974 // TrueBB and FalseBB are always different unless the incoming IR is
2975 // degenerate. This only happens when running llc on weird IR.
2976 if (CB.TrueBB != CB.FalseBB)
2977 addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb);
2978 SwitchBB->normalizeSuccProbs();
2979
2980 // If the lhs block is the next block, invert the condition so that we can
2981 // fall through to the lhs instead of the rhs block.
2982 if (CB.TrueBB == NextBlock(SwitchBB)) {
2983 std::swap(CB.TrueBB, CB.FalseBB);
2984 SDValue True = DAG.getConstant(1, dl, Cond.getValueType());
2985 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
2986 }
2987
2988 SDNodeFlags Flags;
2990 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, MVT::Other, getControlRoot(),
2991 Cond, DAG.getBasicBlock(CB.TrueBB), Flags);
2992
2993 setValue(CurInst, BrCond);
2994
2995 // Insert the false branch. Do this even if it's a fall through branch,
2996 // this makes it easier to do DAG optimizations which require inverting
2997 // the branch condition.
2998 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
2999 DAG.getBasicBlock(CB.FalseBB));
3000
3001 DAG.setRoot(BrCond);
3002}
3003
3004/// visitJumpTable - Emit JumpTable node in the current MBB
3006 // Emit the code for the jump table
3007 assert(JT.SL && "Should set SDLoc for SelectionDAG!");
3008 assert(JT.Reg && "Should lower JT Header first!");
3009 EVT PTy = DAG.getTargetLoweringInfo().getJumpTableRegTy(DAG.getDataLayout());
3010 SDValue Index = DAG.getCopyFromReg(getControlRoot(), *JT.SL, JT.Reg, PTy);
3011 SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
3012 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, *JT.SL, MVT::Other,
3013 Index.getValue(1), Table, Index);
3014 DAG.setRoot(BrJumpTable);
3015}
3016
3017/// visitJumpTableHeader - This function emits necessary code to produce index
3018/// in the JumpTable from switch case.
3020 JumpTableHeader &JTH,
3021 MachineBasicBlock *SwitchBB) {
3022 assert(JT.SL && "Should set SDLoc for SelectionDAG!");
3023 const SDLoc &dl = *JT.SL;
3024
3025 // Subtract the lowest switch case value from the value being switched on.
3026 SDValue SwitchOp = getValue(JTH.SValue);
3027 EVT VT = SwitchOp.getValueType();
3028 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp,
3029 DAG.getConstant(JTH.First, dl, VT));
3030
3031 // The SDNode we just created, which holds the value being switched on minus
3032 // the smallest case value, needs to be copied to a virtual register so it
3033 // can be used as an index into the jump table in a subsequent basic block.
3034 // This value may be smaller or larger than the target's pointer type, and
3035 // therefore require extension or truncating.
3036 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3037 SwitchOp =
3038 DAG.getZExtOrTrunc(Sub, dl, TLI.getJumpTableRegTy(DAG.getDataLayout()));
3039
3040 Register JumpTableReg =
3041 FuncInfo.CreateReg(TLI.getJumpTableRegTy(DAG.getDataLayout()));
3042 SDValue CopyTo =
3043 DAG.getCopyToReg(getControlRoot(), dl, JumpTableReg, SwitchOp);
3044 JT.Reg = JumpTableReg;
3045
3046 if (!JTH.FallthroughUnreachable) {
3047 // Emit the range check for the jump table, and branch to the default block
3048 // for the switch statement if the value being switched on exceeds the
3049 // largest case in the switch.
3050 SDValue CMP = DAG.getSetCC(
3051 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
3052 Sub.getValueType()),
3053 Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT);
3054
3055 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
3056 MVT::Other, CopyTo, CMP,
3057 DAG.getBasicBlock(JT.Default));
3058
3059 // Avoid emitting unnecessary branches to the next block.
3060 if (JT.MBB != NextBlock(SwitchBB))
3061 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
3062 DAG.getBasicBlock(JT.MBB));
3063
3064 DAG.setRoot(BrCond);
3065 } else {
3066 // Avoid emitting unnecessary branches to the next block.
3067 if (JT.MBB != NextBlock(SwitchBB))
3068 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, CopyTo,
3069 DAG.getBasicBlock(JT.MBB)));
3070 else
3071 DAG.setRoot(CopyTo);
3072 }
3073}
3074
3075/// Create a LOAD_STACK_GUARD node, and let it carry the target specific global
3076/// variable if there exists one.
3078 SDValue &Chain) {
3079 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3080 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
3081 EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout());
3083 Value *Global =
3086 DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain);
3087 if (Global) {
3088 MachinePointerInfo MPInfo(Global);
3092 MPInfo, Flags, PtrTy.getSizeInBits() / 8, DAG.getEVTAlign(PtrTy));
3093 DAG.setNodeMemRefs(Node, {MemRef});
3094 }
3095 if (PtrTy != PtrMemTy)
3096 return DAG.getPtrExtOrTrunc(SDValue(Node, 0), DL, PtrMemTy);
3097 return SDValue(Node, 0);
3098}
3099
3100/// Codegen a new tail for a stack protector check ParentMBB which has had its
3101/// tail spliced into a stack protector check success bb.
3102///
3103/// For a high level explanation of how this fits into the stack protector
3104/// generation see the comment on the declaration of class
3105/// StackProtectorDescriptor.
3107 MachineBasicBlock *ParentBB) {
3108
3109 // First create the loads to the guard/stack slot for the comparison.
3110 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3111 auto &DL = DAG.getDataLayout();
3112 EVT PtrTy = TLI.getFrameIndexTy(DL);
3113 EVT PtrMemTy = TLI.getPointerMemTy(DL, DL.getAllocaAddrSpace());
3114
3115 MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo();
3116 int FI = MFI.getStackProtectorIndex();
3117
3118 SDValue Guard;
3119 SDLoc dl = getCurSDLoc();
3120 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy);
3121 const Module &M = *ParentBB->getParent()->getFunction().getParent();
3122 Align Align = DL.getPrefTypeAlign(
3123 PointerType::get(M.getContext(), DL.getAllocaAddrSpace()));
3124
3125 // Generate code to load the content of the guard slot.
3126 SDValue GuardVal = DAG.getLoad(
3127 PtrMemTy, dl, DAG.getEntryNode(), StackSlotPtr,
3128 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align,
3130
3131 if (TLI.useStackGuardXorFP())
3132 GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl);
3133
3134 // If we're using function-based instrumentation, call the guard check
3135 // function
3137 // Get the guard check function from the target and verify it exists since
3138 // we're using function-based instrumentation
3139 const Function *GuardCheckFn =
3140 TLI.getSSPStackGuardCheck(M, DAG.getLibcalls());
3141 assert(GuardCheckFn && "Guard check function is null");
3142
3143 // The target provides a guard check function to validate the guard value.
3144 // Generate a call to that function with the content of the guard slot as
3145 // argument.
3146 FunctionType *FnTy = GuardCheckFn->getFunctionType();
3147 assert(FnTy->getNumParams() == 1 && "Invalid function signature");
3148
3150 TargetLowering::ArgListEntry Entry(GuardVal, FnTy->getParamType(0));
3151 if (GuardCheckFn->hasParamAttribute(0, Attribute::AttrKind::InReg))
3152 Entry.IsInReg = true;
3153 Args.push_back(Entry);
3154
3157 .setChain(DAG.getEntryNode())
3158 .setCallee(GuardCheckFn->getCallingConv(), FnTy->getReturnType(),
3159 getValue(GuardCheckFn), std::move(Args));
3160
3161 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
3162 DAG.setRoot(Result.second);
3163 return;
3164 }
3165
3166 // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD.
3167 // Otherwise, emit a volatile load to retrieve the stack guard value.
3168 SDValue Chain = DAG.getEntryNode();
3169 if (TLI.useLoadStackGuardNode(M)) {
3170 Guard = getLoadStackGuard(DAG, dl, Chain);
3171 } else {
3172 if (const Value *IRGuard = TLI.getSDagStackGuard(M, DAG.getLibcalls())) {
3173 SDValue GuardPtr = getValue(IRGuard);
3174 Guard = DAG.getLoad(PtrMemTy, dl, Chain, GuardPtr,
3175 MachinePointerInfo(IRGuard, 0), Align,
3177 } else {
3178 LLVMContext &Ctx = *DAG.getContext();
3179 Ctx.diagnose(DiagnosticInfoGeneric("unable to lower stackguard"));
3180 Guard = DAG.getPOISON(PtrMemTy);
3181 }
3182 }
3183
3184 // Perform the comparison via a getsetcc.
3185 SDValue Cmp = DAG.getSetCC(
3186 dl, TLI.getSetCCResultType(DL, *DAG.getContext(), Guard.getValueType()),
3187 Guard, GuardVal, ISD::SETNE);
3188
3189 // If the guard/stackslot do not equal, branch to failure MBB.
3190 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, MVT::Other, getControlRoot(),
3191 Cmp, DAG.getBasicBlock(SPD.getFailureMBB()));
3192 // Otherwise branch to success MBB.
3193 SDValue Br = DAG.getNode(ISD::BR, dl,
3194 MVT::Other, BrCond,
3195 DAG.getBasicBlock(SPD.getSuccessMBB()));
3196
3197 DAG.setRoot(Br);
3198}
3199
3200/// Codegen the failure basic block for a stack protector check.
3201///
3202/// A failure stack protector machine basic block consists simply of a call to
3203/// __stack_chk_fail().
3204///
3205/// For a high level explanation of how this fits into the stack protector
3206/// generation see the comment on the declaration of class
3207/// StackProtectorDescriptor.
3210
3211 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3212 MachineBasicBlock *ParentBB = SPD.getParentMBB();
3213 const Module &M = *ParentBB->getParent()->getFunction().getParent();
3214 SDValue Chain;
3215
3216 // For -Oz builds with a guard check function, we use function-based
3217 // instrumentation. Otherwise, if we have a guard check function, we call it
3218 // in the failure block.
3219 auto *GuardCheckFn = TLI.getSSPStackGuardCheck(M, DAG.getLibcalls());
3220 if (GuardCheckFn && !SPD.shouldEmitFunctionBasedCheckStackProtector()) {
3221 // First create the loads to the guard/stack slot for the comparison.
3222 auto &DL = DAG.getDataLayout();
3223 EVT PtrTy = TLI.getFrameIndexTy(DL);
3224 EVT PtrMemTy = TLI.getPointerMemTy(DL, DL.getAllocaAddrSpace());
3225
3226 MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo();
3227 int FI = MFI.getStackProtectorIndex();
3228
3229 SDLoc dl = getCurSDLoc();
3230 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy);
3231 Align Align = DL.getPrefTypeAlign(
3232 PointerType::get(M.getContext(), DL.getAllocaAddrSpace()));
3233
3234 // Generate code to load the content of the guard slot.
3235 SDValue GuardVal = DAG.getLoad(
3236 PtrMemTy, dl, DAG.getEntryNode(), StackSlotPtr,
3237 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align,
3239
3240 if (TLI.useStackGuardXorFP())
3241 GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl);
3242
3243 // The target provides a guard check function to validate the guard value.
3244 // Generate a call to that function with the content of the guard slot as
3245 // argument.
3246 FunctionType *FnTy = GuardCheckFn->getFunctionType();
3247 assert(FnTy->getNumParams() == 1 && "Invalid function signature");
3248
3250 TargetLowering::ArgListEntry Entry(GuardVal, FnTy->getParamType(0));
3251 if (GuardCheckFn->hasParamAttribute(0, Attribute::AttrKind::InReg))
3252 Entry.IsInReg = true;
3253 Args.push_back(Entry);
3254
3257 .setChain(DAG.getEntryNode())
3258 .setCallee(GuardCheckFn->getCallingConv(), FnTy->getReturnType(),
3259 getValue(GuardCheckFn), std::move(Args));
3260
3261 Chain = TLI.LowerCallTo(CLI).second;
3262 } else {
3264 CallOptions.setDiscardResult(true);
3265 Chain = TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid,
3266 {}, CallOptions, getCurSDLoc())
3267 .second;
3268 }
3269
3270 // Emit a trap instruction if we are required to do so.
3271 const TargetOptions &TargetOpts = DAG.getTarget().Options;
3272 if (TargetOpts.TrapUnreachable && !TargetOpts.NoTrapAfterNoreturn)
3273 Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain);
3274
3275 DAG.setRoot(Chain);
3276}
3277
3278/// visitBitTestHeader - This function emits necessary code to produce value
3279/// suitable for "bit tests"
3281 MachineBasicBlock *SwitchBB) {
3282 SDLoc dl = getCurSDLoc();
3283
3284 // Subtract the minimum value.
3285 SDValue SwitchOp = getValue(B.SValue);
3286 EVT VT = SwitchOp.getValueType();
3287 SDValue RangeSub =
3288 DAG.getNode(ISD::SUB, dl, VT, SwitchOp, DAG.getConstant(B.First, dl, VT));
3289
3290 // Determine the type of the test operands.
3291 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3292 bool UsePtrType = false;
3293 if (!TLI.isTypeLegal(VT)) {
3294 UsePtrType = true;
3295 } else {
3296 for (const BitTestCase &Case : B.Cases)
3297 if (!isUIntN(VT.getSizeInBits(), Case.Mask)) {
3298 // Switch table case range are encoded into series of masks.
3299 // Just use pointer type, it's guaranteed to fit.
3300 UsePtrType = true;
3301 break;
3302 }
3303 }
3304 SDValue Sub = RangeSub;
3305 if (UsePtrType) {
3306 VT = TLI.getPointerTy(DAG.getDataLayout());
3307 Sub = DAG.getZExtOrTrunc(Sub, dl, VT);
3308 }
3309
3310 B.RegVT = VT.getSimpleVT();
3311 B.Reg = FuncInfo.CreateReg(B.RegVT);
3312 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub);
3313
3314 MachineBasicBlock* MBB = B.Cases[0].ThisBB;
3315
3316 if (!B.FallthroughUnreachable)
3317 addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb);
3318 addSuccessorWithProb(SwitchBB, MBB, B.Prob);
3319 SwitchBB->normalizeSuccProbs();
3320
3321 SDValue Root = CopyTo;
3322 if (!B.FallthroughUnreachable) {
3323 // Conditional branch to the default block.
3324 SDValue RangeCmp = DAG.getSetCC(dl,
3325 TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
3326 RangeSub.getValueType()),
3327 RangeSub, DAG.getConstant(B.Range, dl, RangeSub.getValueType()),
3328 ISD::SETUGT);
3329
3330 Root = DAG.getNode(ISD::BRCOND, dl, MVT::Other, Root, RangeCmp,
3331 DAG.getBasicBlock(B.Default));
3332 }
3333
3334 // Avoid emitting unnecessary branches to the next block.
3335 if (MBB != NextBlock(SwitchBB))
3336 Root = DAG.getNode(ISD::BR, dl, MVT::Other, Root, DAG.getBasicBlock(MBB));
3337
3338 DAG.setRoot(Root);
3339}
3340
3341/// visitBitTestCase - this function produces one "bit test"
3343 MachineBasicBlock *NextMBB,
3344 BranchProbability BranchProbToNext,
3345 Register Reg, BitTestCase &B,
3346 MachineBasicBlock *SwitchBB) {
3347 SDLoc dl = getCurSDLoc();
3348 MVT VT = BB.RegVT;
3349 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT);
3350 SDValue Cmp;
3351 unsigned PopCount = llvm::popcount(B.Mask);
3352 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3353 if (PopCount == 1) {
3354 // Testing for a single bit; just compare the shift count with what it
3355 // would need to be to shift a 1 bit in that position.
3356 Cmp = DAG.getSetCC(
3357 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
3358 ShiftOp, DAG.getConstant(llvm::countr_zero(B.Mask), dl, VT),
3359 ISD::SETEQ);
3360 } else if (PopCount == BB.Range) {
3361 // There is only one zero bit in the range, test for it directly.
3362 Cmp = DAG.getSetCC(
3363 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
3364 ShiftOp, DAG.getConstant(llvm::countr_one(B.Mask), dl, VT), ISD::SETNE);
3365 } else {
3366 // Make desired shift
3367 SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT,
3368 DAG.getConstant(1, dl, VT), ShiftOp);
3369
3370 // Emit bit tests and jumps
3371 SDValue AndOp = DAG.getNode(ISD::AND, dl,
3372 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT));
3373 Cmp = DAG.getSetCC(
3374 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
3375 AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE);
3376 }
3377
3378 // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb.
3379 addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb);
3380 // The branch probability from SwitchBB to NextMBB is BranchProbToNext.
3381 addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext);
3382 // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is
3383 // one as they are relative probabilities (and thus work more like weights),
3384 // and hence we need to normalize them to let the sum of them become one.
3385 SwitchBB->normalizeSuccProbs();
3386
3387 SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl,
3388 MVT::Other, getControlRoot(),
3389 Cmp, DAG.getBasicBlock(B.TargetBB));
3390
3391 // Avoid emitting unnecessary branches to the next block.
3392 if (NextMBB != NextBlock(SwitchBB))
3393 BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd,
3394 DAG.getBasicBlock(NextMBB));
3395
3396 DAG.setRoot(BrAnd);
3397}
3398
3399void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
3400 MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
3401
3402 // Retrieve successors. Look through artificial IR level blocks like
3403 // catchswitch for successors.
3404 MachineBasicBlock *Return = FuncInfo.getMBB(I.getSuccessor(0));
3405 const BasicBlock *EHPadBB = I.getSuccessor(1);
3406 MachineBasicBlock *EHPadMBB = FuncInfo.getMBB(EHPadBB);
3407
3408 // Deopt and ptrauth bundles are lowered in helper functions, and we don't
3409 // have to do anything here to lower funclet bundles.
3410 failForInvalidBundles(I, "invokes",
3416
3417 const Value *Callee(I.getCalledOperand());
3418 const Function *Fn = dyn_cast<Function>(Callee);
3419 if (isa<InlineAsm>(Callee))
3420 visitInlineAsm(I, EHPadBB);
3421 else if (Fn && Fn->isIntrinsic()) {
3422 switch (Fn->getIntrinsicID()) {
3423 default:
3424 llvm_unreachable("Cannot invoke this intrinsic");
3425 case Intrinsic::donothing:
3426 // Ignore invokes to @llvm.donothing: jump directly to the next BB.
3427 case Intrinsic::seh_try_begin:
3428 case Intrinsic::seh_scope_begin:
3429 case Intrinsic::seh_try_end:
3430 case Intrinsic::seh_scope_end:
3431 if (EHPadMBB)
3432 // a block referenced by EH table
3433 // so dtor-funclet not removed by opts
3434 EHPadMBB->setMachineBlockAddressTaken();
3435 break;
3436 case Intrinsic::experimental_patchpoint_void:
3437 case Intrinsic::experimental_patchpoint:
3438 visitPatchpoint(I, EHPadBB);
3439 break;
3440 case Intrinsic::experimental_gc_statepoint:
3442 break;
3443 // wasm_throw, wasm_rethrow: This is usually done in visitTargetIntrinsic,
3444 // but these intrinsics are special because they can be invoked, so we
3445 // manually lower it to a DAG node here.
3446 case Intrinsic::wasm_throw: {
3448 std::array<SDValue, 4> Ops = {
3449 getControlRoot(), // inchain for the terminator node
3450 DAG.getTargetConstant(Intrinsic::wasm_throw, getCurSDLoc(),
3452 getValue(I.getArgOperand(0)), // tag
3453 getValue(I.getArgOperand(1)) // thrown value
3454 };
3455 SDVTList VTs = DAG.getVTList(ArrayRef<EVT>({MVT::Other})); // outchain
3456 DAG.setRoot(DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops));
3457 break;
3458 }
3459 case Intrinsic::wasm_rethrow: {
3460 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3461 std::array<SDValue, 2> Ops = {
3462 getControlRoot(), // inchain for the terminator node
3463 DAG.getTargetConstant(Intrinsic::wasm_rethrow, getCurSDLoc(),
3464 TLI.getPointerTy(DAG.getDataLayout()))};
3465 SDVTList VTs = DAG.getVTList(ArrayRef<EVT>({MVT::Other})); // outchain
3466 DAG.setRoot(DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops));
3467 break;
3468 }
3469 }
3470 } else if (I.hasDeoptState()) {
3471 // Currently we do not lower any intrinsic calls with deopt operand bundles.
3472 // Eventually we will support lowering the @llvm.experimental.deoptimize
3473 // intrinsic, and right now there are no plans to support other intrinsics
3474 // with deopt state.
3475 LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB);
3476 } else if (I.countOperandBundlesOfType(LLVMContext::OB_ptrauth)) {
3478 } else {
3479 LowerCallTo(I, getValue(Callee), false, false, EHPadBB);
3480 }
3481
3482 // If the value of the invoke is used outside of its defining block, make it
3483 // available as a virtual register.
3484 // We already took care of the exported value for the statepoint instruction
3485 // during call to the LowerStatepoint.
3486 if (!isa<GCStatepointInst>(I)) {
3488 }
3489
3491 BranchProbabilityInfo *BPI = FuncInfo.BPI;
3492 BranchProbability EHPadBBProb =
3493 BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB)
3495 findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests);
3496
3497 // Update successor info.
3498 addSuccessorWithProb(InvokeMBB, Return);
3499 for (auto &UnwindDest : UnwindDests) {
3500 UnwindDest.first->setIsEHPad();
3501 addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second);
3502 }
3503 InvokeMBB->normalizeSuccProbs();
3504
3505 // Drop into normal successor.
3506 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, getControlRoot(),
3507 DAG.getBasicBlock(Return)));
3508}
3509
3510/// The intrinsics currently supported by callbr are implicit control flow
3511/// intrinsics such as amdgcn.kill.
3512/// - they should be called (no "dontcall-" attributes)
3513/// - they do not touch memory on the target (= !TLI.getTgtMemIntrinsic())
3514/// - they do not need custom argument handling (no
3515/// TLI.CollectTargetIntrinsicOperands())
3516void SelectionDAGBuilder::visitCallBrIntrinsic(const CallBrInst &I) {
3517 TargetLowering::IntrinsicInfo Info;
3518 assert(!DAG.getTargetLoweringInfo().getTgtMemIntrinsic(
3519 Info, I, DAG.getMachineFunction(), I.getIntrinsicID()) &&
3520 "Intrinsic touches memory");
3521
3522 auto [HasChain, OnlyLoad] = getTargetIntrinsicCallProperties(I);
3523
3525 getTargetIntrinsicOperands(I, HasChain, OnlyLoad);
3526 SDVTList VTs = getTargetIntrinsicVTList(I, HasChain);
3527
3528 // Create the node.
3529 SDValue Result =
3530 getTargetNonMemIntrinsicNode(*I.getType(), HasChain, Ops, VTs);
3531 Result = handleTargetIntrinsicRet(I, HasChain, OnlyLoad, Result);
3532
3533 setValue(&I, Result);
3534}
3535
3536void SelectionDAGBuilder::visitCallBr(const CallBrInst &I) {
3537 MachineBasicBlock *CallBrMBB = FuncInfo.MBB;
3538
3539 if (I.isInlineAsm()) {
3540 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
3541 // have to do anything here to lower funclet bundles.
3542 failForInvalidBundles(I, "callbrs",
3544 visitInlineAsm(I);
3545 } else {
3546 assert(!I.hasOperandBundles() &&
3547 "Can't have operand bundles for intrinsics");
3548 visitCallBrIntrinsic(I);
3549 }
3551
3552 // Retrieve successors.
3553 SmallPtrSet<BasicBlock *, 8> Dests;
3554 Dests.insert(I.getDefaultDest());
3555 MachineBasicBlock *Return = FuncInfo.getMBB(I.getDefaultDest());
3556
3557 // Update successor info.
3558 addSuccessorWithProb(CallBrMBB, Return, BranchProbability::getOne());
3559 // TODO: For most of the cases where there is an intrinsic callbr, we're
3560 // having exactly one indirect target, which will be unreachable. As soon as
3561 // this changes, we might need to enhance
3562 // Target->setIsInlineAsmBrIndirectTarget or add something similar for
3563 // intrinsic indirect branches.
3564 if (I.isInlineAsm()) {
3565 for (BasicBlock *Dest : I.getIndirectDests()) {
3566 MachineBasicBlock *Target = FuncInfo.getMBB(Dest);
3567 Target->setIsInlineAsmBrIndirectTarget();
3568 // If we introduce a type of asm goto statement that is permitted to use
3569 // an indirect call instruction to jump to its labels, then we should add
3570 // a call to Target->setMachineBlockAddressTaken() here, to mark the
3571 // target block as requiring a BTI.
3572
3573 Target->setLabelMustBeEmitted();
3574 // Don't add duplicate machine successors.
3575 if (Dests.insert(Dest).second)
3576 addSuccessorWithProb(CallBrMBB, Target, BranchProbability::getZero());
3577 }
3578 }
3579 CallBrMBB->normalizeSuccProbs();
3580
3581 // Drop into default successor.
3582 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
3583 MVT::Other, getControlRoot(),
3584 DAG.getBasicBlock(Return)));
3585}
3586
3587void SelectionDAGBuilder::visitResume(const ResumeInst &RI) {
3588 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!");
3589}
3590
3591void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) {
3592 assert(FuncInfo.MBB->isEHPad() &&
3593 "Call to landingpad not in landing pad!");
3594
3595 // If there aren't registers to copy the values into (e.g., during SjLj
3596 // exceptions), then don't bother to create these DAG nodes.
3597 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3598 const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn();
3599 if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 &&
3600 TLI.getExceptionSelectorRegister(PersonalityFn) == 0)
3601 return;
3602
3603 // If landingpad's return type is token type, we don't create DAG nodes
3604 // for its exception pointer and selector value. The extraction of exception
3605 // pointer or selector value from token type landingpads is not currently
3606 // supported.
3607 if (LP.getType()->isTokenTy())
3608 return;
3609
3610 SmallVector<EVT, 2> ValueVTs;
3611 SDLoc dl = getCurSDLoc();
3612 ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs);
3613 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported");
3614
3615 // Get the two live-in registers as SDValues. The physregs have already been
3616 // copied into virtual registers.
3617 SDValue Ops[2];
3618 if (FuncInfo.ExceptionPointerVirtReg) {
3619 Ops[0] = DAG.getZExtOrTrunc(
3620 DAG.getCopyFromReg(DAG.getEntryNode(), dl,
3621 FuncInfo.ExceptionPointerVirtReg,
3622 TLI.getPointerTy(DAG.getDataLayout())),
3623 dl, ValueVTs[0]);
3624 } else {
3625 Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout()));
3626 }
3627 Ops[1] = DAG.getZExtOrTrunc(
3628 DAG.getCopyFromReg(DAG.getEntryNode(), dl,
3629 FuncInfo.ExceptionSelectorVirtReg,
3630 TLI.getPointerTy(DAG.getDataLayout())),
3631 dl, ValueVTs[1]);
3632
3633 // Merge into one.
3634 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
3635 DAG.getVTList(ValueVTs), Ops);
3636 setValue(&LP, Res);
3637}
3638
3641 // Update JTCases.
3642 for (JumpTableBlock &JTB : SL->JTCases)
3643 if (JTB.first.HeaderBB == First)
3644 JTB.first.HeaderBB = Last;
3645
3646 // Update BitTestCases.
3647 for (BitTestBlock &BTB : SL->BitTestCases)
3648 if (BTB.Parent == First)
3649 BTB.Parent = Last;
3650}
3651
3652void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
3653 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
3654
3655 // Update machine-CFG edges with unique successors.
3657 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) {
3658 BasicBlock *BB = I.getSuccessor(i);
3659 bool Inserted = Done.insert(BB).second;
3660 if (!Inserted)
3661 continue;
3662
3663 MachineBasicBlock *Succ = FuncInfo.getMBB(BB);
3664 addSuccessorWithProb(IndirectBrMBB, Succ);
3665 }
3666 IndirectBrMBB->normalizeSuccProbs();
3667
3669 MVT::Other, getControlRoot(),
3670 getValue(I.getAddress())));
3671}
3672
3673void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) {
3674 if (!I.shouldLowerToTrap(DAG.getTarget().Options.TrapUnreachable,
3675 DAG.getTarget().Options.NoTrapAfterNoreturn))
3676 return;
3677
3678 DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot()));
3679}
3680
3681void SelectionDAGBuilder::visitUnary(const User &I, unsigned Opcode) {
3682 SDNodeFlags Flags;
3683 if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
3684 Flags.copyFMF(*FPOp);
3685
3686 SDValue Op = getValue(I.getOperand(0));
3687 SDValue UnNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op.getValueType(),
3688 Op, Flags);
3689 setValue(&I, UnNodeValue);
3690}
3691
3692void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) {
3693 SDNodeFlags Flags;
3694 if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) {
3695 Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap());
3696 Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap());
3697 }
3698 if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I))
3699 Flags.setExact(ExactOp->isExact());
3700 if (auto *DisjointOp = dyn_cast<PossiblyDisjointInst>(&I))
3701 Flags.setDisjoint(DisjointOp->isDisjoint());
3702 if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
3703 Flags.copyFMF(*FPOp);
3704
3705 SDValue Op1 = getValue(I.getOperand(0));
3706 SDValue Op2 = getValue(I.getOperand(1));
3707 SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(),
3708 Op1, Op2, Flags);
3709 setValue(&I, BinNodeValue);
3710}
3711
3712void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
3713 SDValue Op1 = getValue(I.getOperand(0));
3714 SDValue Op2 = getValue(I.getOperand(1));
3715
3716 EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy(
3717 Op1.getValueType(), DAG.getDataLayout());
3718
3719 // Coerce the shift amount to the right type if we can. This exposes the
3720 // truncate or zext to optimization early.
3721 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
3723 "Unexpected shift type");
3724 Op2 = DAG.getZExtOrTrunc(Op2, getCurSDLoc(), ShiftTy);
3725 }
3726
3727 bool nuw = false;
3728 bool nsw = false;
3729 bool exact = false;
3730
3731 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) {
3732
3733 if (const OverflowingBinaryOperator *OFBinOp =
3735 nuw = OFBinOp->hasNoUnsignedWrap();
3736 nsw = OFBinOp->hasNoSignedWrap();
3737 }
3738 if (const PossiblyExactOperator *ExactOp =
3740 exact = ExactOp->isExact();
3741 }
3742 SDNodeFlags Flags;
3743 Flags.setExact(exact);
3744 Flags.setNoSignedWrap(nsw);
3745 Flags.setNoUnsignedWrap(nuw);
3746 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2,
3747 Flags);
3748 setValue(&I, Res);
3749}
3750
3751void SelectionDAGBuilder::visitSDiv(const User &I) {
3752 SDValue Op1 = getValue(I.getOperand(0));
3753 SDValue Op2 = getValue(I.getOperand(1));
3754
3755 SDNodeFlags Flags;
3756 Flags.setExact(isa<PossiblyExactOperator>(&I) &&
3757 cast<PossiblyExactOperator>(&I)->isExact());
3758 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1,
3759 Op2, Flags));
3760}
3761
3762void SelectionDAGBuilder::visitICmp(const ICmpInst &I) {
3763 ICmpInst::Predicate predicate = I.getPredicate();
3764 SDValue Op1 = getValue(I.getOperand(0));
3765 SDValue Op2 = getValue(I.getOperand(1));
3766 ISD::CondCode Opcode = getICmpCondCode(predicate);
3767
3768 auto &TLI = DAG.getTargetLoweringInfo();
3769 EVT MemVT =
3770 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType());
3771
3772 // If a pointer's DAG type is larger than its memory type then the DAG values
3773 // are zero-extended. This breaks signed comparisons so truncate back to the
3774 // underlying type before doing the compare.
3775 if (Op1.getValueType() != MemVT) {
3776 Op1 = DAG.getPtrExtOrTrunc(Op1, getCurSDLoc(), MemVT);
3777 Op2 = DAG.getPtrExtOrTrunc(Op2, getCurSDLoc(), MemVT);
3778 }
3779
3780 SDNodeFlags Flags;
3781 Flags.setSameSign(I.hasSameSign());
3782 SelectionDAG::FlagInserter FlagsInserter(DAG, Flags);
3783
3784 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3785 I.getType());
3786 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode));
3787}
3788
3789void SelectionDAGBuilder::visitFCmp(const FCmpInst &I) {
3790 FCmpInst::Predicate predicate = I.getPredicate();
3791 SDValue Op1 = getValue(I.getOperand(0));
3792 SDValue Op2 = getValue(I.getOperand(1));
3793
3794 ISD::CondCode Condition = getFCmpCondCode(predicate);
3795 auto *FPMO = cast<FPMathOperator>(&I);
3796 if (FPMO->hasNoNaNs() || TM.Options.NoNaNsFPMath)
3797 Condition = getFCmpCodeWithoutNaN(Condition);
3798
3799 SDNodeFlags Flags;
3800 Flags.copyFMF(*FPMO);
3801 SelectionDAG::FlagInserter FlagsInserter(DAG, Flags);
3802
3803 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3804 I.getType());
3805 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition));
3806}
3807
3808// Check if the condition of the select has one use or two users that are both
3809// selects with the same condition.
3810static bool hasOnlySelectUsers(const Value *Cond) {
3811 return llvm::all_of(Cond->users(), [](const Value *V) {
3812 return isa<SelectInst>(V);
3813 });
3814}
3815
3816void SelectionDAGBuilder::visitSelect(const User &I) {
3817 SmallVector<EVT, 4> ValueVTs;
3818 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
3819 ValueVTs);
3820 unsigned NumValues = ValueVTs.size();
3821 if (NumValues == 0) return;
3822
3823 SmallVector<SDValue, 4> Values(NumValues);
3824 SDValue Cond = getValue(I.getOperand(0));
3825 SDValue LHSVal = getValue(I.getOperand(1));
3826 SDValue RHSVal = getValue(I.getOperand(2));
3827 SmallVector<SDValue, 1> BaseOps(1, Cond);
3829 Cond.getValueType().isVector() ? ISD::VSELECT : ISD::SELECT;
3830
3831 bool IsUnaryAbs = false;
3832 bool Negate = false;
3833
3834 SDNodeFlags Flags;
3835 if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
3836 Flags.copyFMF(*FPOp);
3837
3838 Flags.setUnpredictable(
3839 cast<SelectInst>(I).getMetadata(LLVMContext::MD_unpredictable));
3840
3841 // Min/max matching is only viable if all output VTs are the same.
3842 if (all_equal(ValueVTs)) {
3843 EVT VT = ValueVTs[0];
3844 LLVMContext &Ctx = *DAG.getContext();
3845 auto &TLI = DAG.getTargetLoweringInfo();
3846
3847 // We care about the legality of the operation after it has been type
3848 // legalized.
3849 while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal)
3850 VT = TLI.getTypeToTransformTo(Ctx, VT);
3851
3852 // If the vselect is legal, assume we want to leave this as a vector setcc +
3853 // vselect. Otherwise, if this is going to be scalarized, we want to see if
3854 // min/max is legal on the scalar type.
3855 bool UseScalarMinMax = VT.isVector() &&
3857
3858 // ValueTracking's select pattern matching does not account for -0.0,
3859 // so we can't lower to FMINIMUM/FMAXIMUM because those nodes specify that
3860 // -0.0 is less than +0.0.
3861 const Value *LHS, *RHS;
3862 auto SPR = matchSelectPattern(&I, LHS, RHS);
3864 switch (SPR.Flavor) {
3865 case SPF_UMAX: Opc = ISD::UMAX; break;
3866 case SPF_UMIN: Opc = ISD::UMIN; break;
3867 case SPF_SMAX: Opc = ISD::SMAX; break;
3868 case SPF_SMIN: Opc = ISD::SMIN; break;
3869 case SPF_FMINNUM:
3870 switch (SPR.NaNBehavior) {
3871 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
3872 case SPNB_RETURNS_NAN: break;
3873 case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break;
3874 case SPNB_RETURNS_ANY:
3876 (UseScalarMinMax &&
3878 Opc = ISD::FMINNUM;
3879 break;
3880 }
3881 break;
3882 case SPF_FMAXNUM:
3883 switch (SPR.NaNBehavior) {
3884 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
3885 case SPNB_RETURNS_NAN: break;
3886 case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break;
3887 case SPNB_RETURNS_ANY:
3889 (UseScalarMinMax &&
3891 Opc = ISD::FMAXNUM;
3892 break;
3893 }
3894 break;
3895 case SPF_NABS:
3896 Negate = true;
3897 [[fallthrough]];
3898 case SPF_ABS:
3899 IsUnaryAbs = true;
3900 Opc = ISD::ABS;
3901 break;
3902 default: break;
3903 }
3904
3905 if (!IsUnaryAbs && Opc != ISD::DELETED_NODE &&
3906 (TLI.isOperationLegalOrCustom(Opc, VT) ||
3907 (UseScalarMinMax &&
3909 // If the underlying comparison instruction is used by any other
3910 // instruction, the consumed instructions won't be destroyed, so it is
3911 // not profitable to convert to a min/max.
3913 OpCode = Opc;
3914 LHSVal = getValue(LHS);
3915 RHSVal = getValue(RHS);
3916 BaseOps.clear();
3917 }
3918
3919 if (IsUnaryAbs) {
3920 OpCode = Opc;
3921 LHSVal = getValue(LHS);
3922 BaseOps.clear();
3923 }
3924 }
3925
3926 if (IsUnaryAbs) {
3927 for (unsigned i = 0; i != NumValues; ++i) {
3928 SDLoc dl = getCurSDLoc();
3929 EVT VT = LHSVal.getNode()->getValueType(LHSVal.getResNo() + i);
3930 Values[i] =
3931 DAG.getNode(OpCode, dl, VT, LHSVal.getValue(LHSVal.getResNo() + i));
3932 if (Negate)
3933 Values[i] = DAG.getNegative(Values[i], dl, VT);
3934 }
3935 } else {
3936 for (unsigned i = 0; i != NumValues; ++i) {
3937 SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end());
3938 Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i));
3939 Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i));
3940 Values[i] = DAG.getNode(
3941 OpCode, getCurSDLoc(),
3942 LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), Ops, Flags);
3943 }
3944 }
3945
3947 DAG.getVTList(ValueVTs), Values));
3948}
3949
3950void SelectionDAGBuilder::visitTrunc(const User &I) {
3951 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
3952 SDValue N = getValue(I.getOperand(0));
3953 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3954 I.getType());
3955 SDNodeFlags Flags;
3956 if (auto *Trunc = dyn_cast<TruncInst>(&I)) {
3957 Flags.setNoSignedWrap(Trunc->hasNoSignedWrap());
3958 Flags.setNoUnsignedWrap(Trunc->hasNoUnsignedWrap());
3959 }
3960
3961 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N, Flags));
3962}
3963
3964void SelectionDAGBuilder::visitZExt(const User &I) {
3965 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3966 // ZExt also can't be a cast to bool for same reason. So, nothing much to do
3967 SDValue N = getValue(I.getOperand(0));
3968 auto &TLI = DAG.getTargetLoweringInfo();
3969 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3970
3971 SDNodeFlags Flags;
3972 if (auto *PNI = dyn_cast<PossiblyNonNegInst>(&I))
3973 Flags.setNonNeg(PNI->hasNonNeg());
3974
3975 // Eagerly use nonneg information to canonicalize towards sign_extend if
3976 // that is the target's preference.
3977 // TODO: Let the target do this later.
3978 if (Flags.hasNonNeg() &&
3979 TLI.isSExtCheaperThanZExt(N.getValueType(), DestVT)) {
3980 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N));
3981 return;
3982 }
3983
3984 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N, Flags));
3985}
3986
3987void SelectionDAGBuilder::visitSExt(const User &I) {
3988 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3989 // SExt also can't be a cast to bool for same reason. So, nothing much to do
3990 SDValue N = getValue(I.getOperand(0));
3991 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3992 I.getType());
3993 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N));
3994}
3995
3996void SelectionDAGBuilder::visitFPTrunc(const User &I) {
3997 // FPTrunc is never a no-op cast, no need to check
3998 SDValue N = getValue(I.getOperand(0));
3999 SDLoc dl = getCurSDLoc();
4000 SDNodeFlags Flags;
4001 if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
4002 Flags.copyFMF(*FPOp);
4003 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4004 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4005 setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N,
4006 DAG.getTargetConstant(
4007 0, dl, TLI.getPointerTy(DAG.getDataLayout())),
4008 Flags));
4009}
4010
4011void SelectionDAGBuilder::visitFPExt(const User &I) {
4012 // FPExt is never a no-op cast, no need to check
4013 SDValue N = getValue(I.getOperand(0));
4014 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
4015 I.getType());
4016 SDNodeFlags Flags;
4017 if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
4018 Flags.copyFMF(*FPOp);
4019 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N, Flags));
4020}
4021
4022void SelectionDAGBuilder::visitFPToUI(const User &I) {
4023 // FPToUI is never a no-op cast, no need to check
4024 SDValue N = getValue(I.getOperand(0));
4025 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
4026 I.getType());
4027 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N));
4028}
4029
4030void SelectionDAGBuilder::visitFPToSI(const User &I) {
4031 // FPToSI is never a no-op cast, no need to check
4032 SDValue N = getValue(I.getOperand(0));
4033 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
4034 I.getType());
4035 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N));
4036}
4037
4038void SelectionDAGBuilder::visitUIToFP(const User &I) {
4039 // UIToFP is never a no-op cast, no need to check
4040 SDValue N = getValue(I.getOperand(0));
4041 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
4042 I.getType());
4043 SDNodeFlags Flags;
4044 if (auto *PNI = dyn_cast<PossiblyNonNegInst>(&I))
4045 Flags.setNonNeg(PNI->hasNonNeg());
4046
4047 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N, Flags));
4048}
4049
4050void SelectionDAGBuilder::visitSIToFP(const User &I) {
4051 // SIToFP is never a no-op cast, no need to check
4052 SDValue N = getValue(I.getOperand(0));
4053 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
4054 I.getType());
4055 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N));
4056}
4057
4058void SelectionDAGBuilder::visitPtrToAddr(const User &I) {
4059 SDValue N = getValue(I.getOperand(0));
4060 // By definition the type of the ptrtoaddr must be equal to the address type.
4061 const auto &TLI = DAG.getTargetLoweringInfo();
4062 EVT AddrVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4063 // The address width must be smaller or equal to the pointer representation
4064 // width, so we lower ptrtoaddr as a truncate (possibly folded to a no-op).
4065 N = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), AddrVT, N);
4066 setValue(&I, N);
4067}
4068
4069void SelectionDAGBuilder::visitPtrToInt(const User &I) {
4070 // What to do depends on the size of the integer and the size of the pointer.
4071 // We can either truncate, zero extend, or no-op, accordingly.
4072 SDValue N = getValue(I.getOperand(0));
4073 auto &TLI = DAG.getTargetLoweringInfo();
4074 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
4075 I.getType());
4076 EVT PtrMemVT =
4077 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType());
4078 N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), PtrMemVT);
4079 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT);
4080 setValue(&I, N);
4081}
4082
4083void SelectionDAGBuilder::visitIntToPtr(const User &I) {
4084 // What to do depends on the size of the integer and the size of the pointer.
4085 // We can either truncate, zero extend, or no-op, accordingly.
4086 SDValue N = getValue(I.getOperand(0));
4087 auto &TLI = DAG.getTargetLoweringInfo();
4088 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4089 EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType());
4090 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), PtrMemVT);
4091 N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), DestVT);
4092 setValue(&I, N);
4093}
4094
4095void SelectionDAGBuilder::visitBitCast(const User &I) {
4096 SDValue N = getValue(I.getOperand(0));
4097 SDLoc dl = getCurSDLoc();
4098 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
4099 I.getType());
4100
4101 // BitCast assures us that source and destination are the same size so this is
4102 // either a BITCAST or a no-op.
4103 if (DestVT != N.getValueType())
4104 setValue(&I, DAG.getNode(ISD::BITCAST, dl,
4105 DestVT, N)); // convert types.
4106 // Check if the original LLVM IR Operand was a ConstantInt, because getValue()
4107 // might fold any kind of constant expression to an integer constant and that
4108 // is not what we are looking for. Only recognize a bitcast of a genuine
4109 // constant integer as an opaque constant.
4110 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0)))
4111 setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false,
4112 /*isOpaque*/true));
4113 else
4114 setValue(&I, N); // noop cast.
4115}
4116
4117void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) {
4118 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4119 const Value *SV = I.getOperand(0);
4120 SDValue N = getValue(SV);
4121 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4122
4123 unsigned SrcAS = SV->getType()->getPointerAddressSpace();
4124 unsigned DestAS = I.getType()->getPointerAddressSpace();
4125
4126 if (!TM.isNoopAddrSpaceCast(SrcAS, DestAS))
4127 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS);
4128
4129 setValue(&I, N);
4130}
4131
4132void SelectionDAGBuilder::visitInsertElement(const User &I) {
4133 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4134 SDValue InVec = getValue(I.getOperand(0));
4135 SDValue InVal = getValue(I.getOperand(1));
4136 SDValue InIdx = DAG.getZExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(),
4137 TLI.getVectorIdxTy(DAG.getDataLayout()));
4139 TLI.getValueType(DAG.getDataLayout(), I.getType()),
4140 InVec, InVal, InIdx));
4141}
4142
4143void SelectionDAGBuilder::visitExtractElement(const User &I) {
4144 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4145 SDValue InVec = getValue(I.getOperand(0));
4146 SDValue InIdx = DAG.getZExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(),
4147 TLI.getVectorIdxTy(DAG.getDataLayout()));
4149 TLI.getValueType(DAG.getDataLayout(), I.getType()),
4150 InVec, InIdx));
4151}
4152
4153void SelectionDAGBuilder::visitShuffleVector(const User &I) {
4154 SDValue Src1 = getValue(I.getOperand(0));
4155 SDValue Src2 = getValue(I.getOperand(1));
4156 ArrayRef<int> Mask;
4157 if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I))
4158 Mask = SVI->getShuffleMask();
4159 else
4160 Mask = cast<ConstantExpr>(I).getShuffleMask();
4161 SDLoc DL = getCurSDLoc();
4162 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4163 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4164 EVT SrcVT = Src1.getValueType();
4165
4166 if (all_of(Mask, equal_to(0)) && VT.isScalableVector()) {
4167 // Canonical splat form of first element of first input vector.
4168 SDValue FirstElt =
4169 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, SrcVT.getScalarType(), Src1,
4170 DAG.getVectorIdxConstant(0, DL));
4171 setValue(&I, DAG.getNode(ISD::SPLAT_VECTOR, DL, VT, FirstElt));
4172 return;
4173 }
4174
4175 // For now, we only handle splats for scalable vectors.
4176 // The DAGCombiner will perform a BUILD_VECTOR -> SPLAT_VECTOR transformation
4177 // for targets that support a SPLAT_VECTOR for non-scalable vector types.
4178 assert(!VT.isScalableVector() && "Unsupported scalable vector shuffle");
4179
4180 unsigned SrcNumElts = SrcVT.getVectorNumElements();
4181 unsigned MaskNumElts = Mask.size();
4182
4183 if (SrcNumElts == MaskNumElts) {
4184 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask));
4185 return;
4186 }
4187
4188 // Normalize the shuffle vector since mask and vector length don't match.
4189 if (SrcNumElts < MaskNumElts) {
4190 // Mask is longer than the source vectors. We can use concatenate vector to
4191 // make the mask and vectors lengths match.
4192
4193 if (MaskNumElts % SrcNumElts == 0) {
4194 // Mask length is a multiple of the source vector length.
4195 // Check if the shuffle is some kind of concatenation of the input
4196 // vectors.
4197 unsigned NumConcat = MaskNumElts / SrcNumElts;
4198 bool IsConcat = true;
4199 SmallVector<int, 8> ConcatSrcs(NumConcat, -1);
4200 for (unsigned i = 0; i != MaskNumElts; ++i) {
4201 int Idx = Mask[i];
4202 if (Idx < 0)
4203 continue;
4204 // Ensure the indices in each SrcVT sized piece are sequential and that
4205 // the same source is used for the whole piece.
4206 if ((Idx % SrcNumElts != (i % SrcNumElts)) ||
4207 (ConcatSrcs[i / SrcNumElts] >= 0 &&
4208 ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) {
4209 IsConcat = false;
4210 break;
4211 }
4212 // Remember which source this index came from.
4213 ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts;
4214 }
4215
4216 // The shuffle is concatenating multiple vectors together. Just emit
4217 // a CONCAT_VECTORS operation.
4218 if (IsConcat) {
4219 SmallVector<SDValue, 8> ConcatOps;
4220 for (auto Src : ConcatSrcs) {
4221 if (Src < 0)
4222 ConcatOps.push_back(DAG.getUNDEF(SrcVT));
4223 else if (Src == 0)
4224 ConcatOps.push_back(Src1);
4225 else
4226 ConcatOps.push_back(Src2);
4227 }
4228 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps));
4229 return;
4230 }
4231 }
4232
4233 unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts);
4234 unsigned NumConcat = PaddedMaskNumElts / SrcNumElts;
4235 EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(),
4236 PaddedMaskNumElts);
4237
4238 // Pad both vectors with undefs to make them the same length as the mask.
4239 SDValue UndefVal = DAG.getUNDEF(SrcVT);
4240
4241 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
4242 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
4243 MOps1[0] = Src1;
4244 MOps2[0] = Src2;
4245
4246 Src1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1);
4247 Src2 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2);
4248
4249 // Readjust mask for new input vector length.
4250 SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1);
4251 for (unsigned i = 0; i != MaskNumElts; ++i) {
4252 int Idx = Mask[i];
4253 if (Idx >= (int)SrcNumElts)
4254 Idx -= SrcNumElts - PaddedMaskNumElts;
4255 MappedOps[i] = Idx;
4256 }
4257
4258 SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps);
4259
4260 // If the concatenated vector was padded, extract a subvector with the
4261 // correct number of elements.
4262 if (MaskNumElts != PaddedMaskNumElts)
4263 Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Result,
4264 DAG.getVectorIdxConstant(0, DL));
4265
4266 setValue(&I, Result);
4267 return;
4268 }
4269
4270 assert(SrcNumElts > MaskNumElts);
4271
4272 // Analyze the access pattern of the vector to see if we can extract
4273 // two subvectors and do the shuffle.
4274 int StartIdx[2] = {-1, -1}; // StartIdx to extract from
4275 bool CanExtract = true;
4276 for (int Idx : Mask) {
4277 unsigned Input = 0;
4278 if (Idx < 0)
4279 continue;
4280
4281 if (Idx >= (int)SrcNumElts) {
4282 Input = 1;
4283 Idx -= SrcNumElts;
4284 }
4285
4286 // If all the indices come from the same MaskNumElts sized portion of
4287 // the sources we can use extract. Also make sure the extract wouldn't
4288 // extract past the end of the source.
4289 int NewStartIdx = alignDown(Idx, MaskNumElts);
4290 if (NewStartIdx + MaskNumElts > SrcNumElts ||
4291 (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx))
4292 CanExtract = false;
4293 // Make sure we always update StartIdx as we use it to track if all
4294 // elements are undef.
4295 StartIdx[Input] = NewStartIdx;
4296 }
4297
4298 if (StartIdx[0] < 0 && StartIdx[1] < 0) {
4299 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
4300 return;
4301 }
4302 if (CanExtract) {
4303 // Extract appropriate subvector and generate a vector shuffle
4304 for (unsigned Input = 0; Input < 2; ++Input) {
4305 SDValue &Src = Input == 0 ? Src1 : Src2;
4306 if (StartIdx[Input] < 0)
4307 Src = DAG.getUNDEF(VT);
4308 else {
4309 Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Src,
4310 DAG.getVectorIdxConstant(StartIdx[Input], DL));
4311 }
4312 }
4313
4314 // Calculate new mask.
4315 SmallVector<int, 8> MappedOps(Mask);
4316 for (int &Idx : MappedOps) {
4317 if (Idx >= (int)SrcNumElts)
4318 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts;
4319 else if (Idx >= 0)
4320 Idx -= StartIdx[0];
4321 }
4322
4323 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps));
4324 return;
4325 }
4326
4327 // We can't use either concat vectors or extract subvectors so fall back to
4328 // replacing the shuffle with extract and build vector.
4329 // to insert and build vector.
4330 EVT EltVT = VT.getVectorElementType();
4332 for (int Idx : Mask) {
4333 SDValue Res;
4334
4335 if (Idx < 0) {
4336 Res = DAG.getUNDEF(EltVT);
4337 } else {
4338 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2;
4339 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts;
4340
4341 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Src,
4342 DAG.getVectorIdxConstant(Idx, DL));
4343 }
4344
4345 Ops.push_back(Res);
4346 }
4347
4348 setValue(&I, DAG.getBuildVector(VT, DL, Ops));
4349}
4350
4351void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) {
4352 ArrayRef<unsigned> Indices = I.getIndices();
4353 const Value *Op0 = I.getOperand(0);
4354 const Value *Op1 = I.getOperand(1);
4355 Type *AggTy = I.getType();
4356 Type *ValTy = Op1->getType();
4357 bool IntoUndef = isa<UndefValue>(Op0);
4358 bool FromUndef = isa<UndefValue>(Op1);
4359
4360 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
4361
4362 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4363 SmallVector<EVT, 4> AggValueVTs;
4364 ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs);
4365 SmallVector<EVT, 4> ValValueVTs;
4366 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
4367
4368 unsigned NumAggValues = AggValueVTs.size();
4369 unsigned NumValValues = ValValueVTs.size();
4370 SmallVector<SDValue, 4> Values(NumAggValues);
4371
4372 // Ignore an insertvalue that produces an empty object
4373 if (!NumAggValues) {
4374 setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
4375 return;
4376 }
4377
4378 SDValue Agg = getValue(Op0);
4379 unsigned i = 0;
4380 // Copy the beginning value(s) from the original aggregate.
4381 for (; i != LinearIndex; ++i)
4382 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
4383 SDValue(Agg.getNode(), Agg.getResNo() + i);
4384 // Copy values from the inserted value(s).
4385 if (NumValValues) {
4386 SDValue Val = getValue(Op1);
4387 for (; i != LinearIndex + NumValValues; ++i)
4388 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
4389 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
4390 }
4391 // Copy remaining value(s) from the original aggregate.
4392 for (; i != NumAggValues; ++i)
4393 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
4394 SDValue(Agg.getNode(), Agg.getResNo() + i);
4395
4397 DAG.getVTList(AggValueVTs), Values));
4398}
4399
4400void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) {
4401 ArrayRef<unsigned> Indices = I.getIndices();
4402 const Value *Op0 = I.getOperand(0);
4403 Type *AggTy = Op0->getType();
4404 Type *ValTy = I.getType();
4405 bool OutOfUndef = isa<UndefValue>(Op0);
4406
4407 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
4408
4409 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4410 SmallVector<EVT, 4> ValValueVTs;
4411 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
4412
4413 unsigned NumValValues = ValValueVTs.size();
4414
4415 // Ignore a extractvalue that produces an empty object
4416 if (!NumValValues) {
4417 setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
4418 return;
4419 }
4420
4421 SmallVector<SDValue, 4> Values(NumValValues);
4422
4423 SDValue Agg = getValue(Op0);
4424 // Copy out the selected value(s).
4425 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
4426 Values[i - LinearIndex] =
4427 OutOfUndef ?
4428 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
4429 SDValue(Agg.getNode(), Agg.getResNo() + i);
4430
4432 DAG.getVTList(ValValueVTs), Values));
4433}
4434
4435void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
4436 Value *Op0 = I.getOperand(0);
4437 // Note that the pointer operand may be a vector of pointers. Take the scalar
4438 // element which holds a pointer.
4439 unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace();
4440 SDValue N = getValue(Op0);
4441 SDLoc dl = getCurSDLoc();
4442 auto &TLI = DAG.getTargetLoweringInfo();
4443 GEPNoWrapFlags NW = cast<GEPOperator>(I).getNoWrapFlags();
4444
4445 // For a vector GEP, keep the prefix scalar as long as possible, then
4446 // convert any scalars encountered after the first vector operand to vectors.
4447 bool IsVectorGEP = I.getType()->isVectorTy();
4448 ElementCount VectorElementCount =
4449 IsVectorGEP ? cast<VectorType>(I.getType())->getElementCount()
4451
4453 GTI != E; ++GTI) {
4454 const Value *Idx = GTI.getOperand();
4455 if (StructType *StTy = GTI.getStructTypeOrNull()) {
4456 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue();
4457 if (Field) {
4458 // N = N + Offset
4459 uint64_t Offset =
4460 DAG.getDataLayout().getStructLayout(StTy)->getElementOffset(Field);
4461
4462 // In an inbounds GEP with an offset that is nonnegative even when
4463 // interpreted as signed, assume there is no unsigned overflow.
4464 SDNodeFlags Flags;
4465 if (NW.hasNoUnsignedWrap() ||
4466 (int64_t(Offset) >= 0 && NW.hasNoUnsignedSignedWrap()))
4468 Flags.setInBounds(NW.isInBounds());
4469
4470 N = DAG.getMemBasePlusOffset(
4471 N, DAG.getConstant(Offset, dl, N.getValueType()), dl, Flags);
4472 }
4473 } else {
4474 // IdxSize is the width of the arithmetic according to IR semantics.
4475 // In SelectionDAG, we may prefer to do arithmetic in a wider bitwidth
4476 // (and fix up the result later).
4477 unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS);
4478 MVT IdxTy = MVT::getIntegerVT(IdxSize);
4479 TypeSize ElementSize =
4480 GTI.getSequentialElementStride(DAG.getDataLayout());
4481 // We intentionally mask away the high bits here; ElementSize may not
4482 // fit in IdxTy.
4483 APInt ElementMul(IdxSize, ElementSize.getKnownMinValue(),
4484 /*isSigned=*/false, /*implicitTrunc=*/true);
4485 bool ElementScalable = ElementSize.isScalable();
4486
4487 // If this is a scalar constant or a splat vector of constants,
4488 // handle it quickly.
4489 const auto *C = dyn_cast<Constant>(Idx);
4490 if (C && isa<VectorType>(C->getType()))
4491 C = C->getSplatValue();
4492
4493 const auto *CI = dyn_cast_or_null<ConstantInt>(C);
4494 if (CI && CI->isZero())
4495 continue;
4496 if (CI && !ElementScalable) {
4497 APInt Offs = ElementMul * CI->getValue().sextOrTrunc(IdxSize);
4498 LLVMContext &Context = *DAG.getContext();
4499 SDValue OffsVal;
4500 if (N.getValueType().isVector())
4501 OffsVal = DAG.getConstant(
4502 Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorElementCount));
4503 else
4504 OffsVal = DAG.getConstant(Offs, dl, IdxTy);
4505
4506 // In an inbounds GEP with an offset that is nonnegative even when
4507 // interpreted as signed, assume there is no unsigned overflow.
4508 SDNodeFlags Flags;
4509 if (NW.hasNoUnsignedWrap() ||
4510 (Offs.isNonNegative() && NW.hasNoUnsignedSignedWrap()))
4511 Flags.setNoUnsignedWrap(true);
4512 Flags.setInBounds(NW.isInBounds());
4513
4514 OffsVal = DAG.getSExtOrTrunc(OffsVal, dl, N.getValueType());
4515
4516 N = DAG.getMemBasePlusOffset(N, OffsVal, dl, Flags);
4517 continue;
4518 }
4519
4520 // N = N + Idx * ElementMul;
4521 SDValue IdxN = getValue(Idx);
4522
4523 if (IdxN.getValueType().isVector() != N.getValueType().isVector()) {
4524 if (N.getValueType().isVector()) {
4525 EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(),
4526 VectorElementCount);
4527 IdxN = DAG.getSplat(VT, dl, IdxN);
4528 } else {
4529 EVT VT =
4530 EVT::getVectorVT(*Context, N.getValueType(), VectorElementCount);
4531 N = DAG.getSplat(VT, dl, N);
4532 }
4533 }
4534
4535 // If the index is smaller or larger than intptr_t, truncate or extend
4536 // it.
4537 IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType());
4538
4539 SDNodeFlags ScaleFlags;
4540 // The multiplication of an index by the type size does not wrap the
4541 // pointer index type in a signed sense (mul nsw).
4543
4544 // The multiplication of an index by the type size does not wrap the
4545 // pointer index type in an unsigned sense (mul nuw).
4546 ScaleFlags.setNoUnsignedWrap(NW.hasNoUnsignedWrap());
4547
4548 if (ElementScalable) {
4549 EVT VScaleTy = N.getValueType().getScalarType();
4550 SDValue VScale = DAG.getNode(
4551 ISD::VSCALE, dl, VScaleTy,
4552 DAG.getConstant(ElementMul.getZExtValue(), dl, VScaleTy));
4553 if (N.getValueType().isVector())
4554 VScale = DAG.getSplatVector(N.getValueType(), dl, VScale);
4555 IdxN = DAG.getNode(ISD::MUL, dl, N.getValueType(), IdxN, VScale,
4556 ScaleFlags);
4557 } else {
4558 // If this is a multiply by a power of two, turn it into a shl
4559 // immediately. This is a very common case.
4560 if (ElementMul != 1) {
4561 if (ElementMul.isPowerOf2()) {
4562 unsigned Amt = ElementMul.logBase2();
4563 IdxN = DAG.getNode(
4564 ISD::SHL, dl, N.getValueType(), IdxN,
4565 DAG.getShiftAmountConstant(Amt, N.getValueType(), dl),
4566 ScaleFlags);
4567 } else {
4568 SDValue Scale = DAG.getConstant(ElementMul.getZExtValue(), dl,
4569 IdxN.getValueType());
4570 IdxN = DAG.getNode(ISD::MUL, dl, N.getValueType(), IdxN, Scale,
4571 ScaleFlags);
4572 }
4573 }
4574 }
4575
4576 // The successive addition of the current address, truncated to the
4577 // pointer index type and interpreted as an unsigned number, and each
4578 // offset, also interpreted as an unsigned number, does not wrap the
4579 // pointer index type (add nuw).
4580 SDNodeFlags AddFlags;
4581 AddFlags.setNoUnsignedWrap(NW.hasNoUnsignedWrap());
4582 AddFlags.setInBounds(NW.isInBounds());
4583
4584 N = DAG.getMemBasePlusOffset(N, IdxN, dl, AddFlags);
4585 }
4586 }
4587
4588 if (IsVectorGEP && !N.getValueType().isVector()) {
4589 EVT VT = EVT::getVectorVT(*Context, N.getValueType(), VectorElementCount);
4590 N = DAG.getSplat(VT, dl, N);
4591 }
4592
4593 MVT PtrTy = TLI.getPointerTy(DAG.getDataLayout(), AS);
4594 MVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout(), AS);
4595 if (IsVectorGEP) {
4596 PtrTy = MVT::getVectorVT(PtrTy, VectorElementCount);
4597 PtrMemTy = MVT::getVectorVT(PtrMemTy, VectorElementCount);
4598 }
4599
4600 if (PtrMemTy != PtrTy && !cast<GEPOperator>(I).isInBounds())
4601 N = DAG.getPtrExtendInReg(N, dl, PtrMemTy);
4602
4603 setValue(&I, N);
4604}
4605
4606void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
4607 // If this is a fixed sized alloca in the entry block of the function,
4608 // allocate it statically on the stack.
4609 if (FuncInfo.StaticAllocaMap.count(&I))
4610 return; // getValue will auto-populate this.
4611
4612 SDLoc dl = getCurSDLoc();
4613 Type *Ty = I.getAllocatedType();
4614 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4615 auto &DL = DAG.getDataLayout();
4616 TypeSize TySize = DL.getTypeAllocSize(Ty);
4617 MaybeAlign Alignment = I.getAlign();
4618
4619 SDValue AllocSize = getValue(I.getArraySize());
4620
4621 EVT IntPtr = TLI.getPointerTy(DL, I.getAddressSpace());
4622 if (AllocSize.getValueType() != IntPtr)
4623 AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr);
4624
4625 AllocSize = DAG.getNode(
4626 ISD::MUL, dl, IntPtr, AllocSize,
4627 DAG.getZExtOrTrunc(DAG.getTypeSize(dl, MVT::i64, TySize), dl, IntPtr));
4628
4629 // Handle alignment. If the requested alignment is less than or equal to
4630 // the stack alignment, ignore it. If the size is greater than or equal to
4631 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
4632 Align StackAlign = DAG.getSubtarget().getFrameLowering()->getStackAlign();
4633 if (*Alignment <= StackAlign)
4634 Alignment = std::nullopt;
4635
4636 const uint64_t StackAlignMask = StackAlign.value() - 1U;
4637 // Round the size of the allocation up to the stack alignment size
4638 // by add SA-1 to the size. This doesn't overflow because we're computing
4639 // an address inside an alloca.
4640 AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize,
4641 DAG.getConstant(StackAlignMask, dl, IntPtr),
4643
4644 // Mask out the low bits for alignment purposes.
4645 AllocSize = DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize,
4646 DAG.getSignedConstant(~StackAlignMask, dl, IntPtr));
4647
4648 SDValue Ops[] = {
4649 getRoot(), AllocSize,
4650 DAG.getConstant(Alignment ? Alignment->value() : 0, dl, IntPtr)};
4651 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
4652 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops);
4653 setValue(&I, DSA);
4654 DAG.setRoot(DSA.getValue(1));
4655
4656 assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects());
4657}
4658
4659static const MDNode *getRangeMetadata(const Instruction &I) {
4660 return I.getMetadata(LLVMContext::MD_range);
4661}
4662
4663static std::optional<ConstantRange> getRange(const Instruction &I) {
4664 if (const auto *CB = dyn_cast<CallBase>(&I))
4665 if (std::optional<ConstantRange> CR = CB->getRange())
4666 return CR;
4667 if (const MDNode *Range = getRangeMetadata(I))
4669 return std::nullopt;
4670}
4671
4673 if (const auto *CB = dyn_cast<CallBase>(&I))
4674 return CB->getRetNoFPClass();
4675 return fcNone;
4676}
4677
4678void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
4679 if (I.isAtomic())
4680 return visitAtomicLoad(I);
4681
4682 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4683 const Value *SV = I.getOperand(0);
4684 if (TLI.supportSwiftError()) {
4685 // Swifterror values can come from either a function parameter with
4686 // swifterror attribute or an alloca with swifterror attribute.
4687 if (const Argument *Arg = dyn_cast<Argument>(SV)) {
4688 if (Arg->hasSwiftErrorAttr())
4689 return visitLoadFromSwiftError(I);
4690 }
4691
4692 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) {
4693 if (Alloca->isSwiftError())
4694 return visitLoadFromSwiftError(I);
4695 }
4696 }
4697
4698 SDValue Ptr = getValue(SV);
4699
4700 Type *Ty = I.getType();
4701 SmallVector<EVT, 4> ValueVTs, MemVTs;
4703 ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &MemVTs, &Offsets);
4704 unsigned NumValues = ValueVTs.size();
4705 if (NumValues == 0)
4706 return;
4707
4708 Align Alignment = I.getAlign();
4709 AAMDNodes AAInfo = I.getAAMetadata();
4710 const MDNode *Ranges = getRangeMetadata(I);
4711 bool isVolatile = I.isVolatile();
4712 MachineMemOperand::Flags MMOFlags =
4713 TLI.getLoadMemOperandFlags(I, DAG.getDataLayout(), AC, LibInfo);
4714
4715 SDValue Root;
4716 bool ConstantMemory = false;
4717 if (isVolatile)
4718 // Serialize volatile loads with other side effects.
4719 Root = getRoot();
4720 else if (NumValues > MaxParallelChains)
4721 Root = getMemoryRoot();
4722 else if (BatchAA &&
4723 BatchAA->pointsToConstantMemory(MemoryLocation(
4724 SV,
4725 LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)),
4726 AAInfo))) {
4727 // Do not serialize (non-volatile) loads of constant memory with anything.
4728 Root = DAG.getEntryNode();
4729 ConstantMemory = true;
4731 } else {
4732 // Do not serialize non-volatile loads against each other.
4733 Root = DAG.getRoot();
4734 }
4735
4736 SDLoc dl = getCurSDLoc();
4737
4738 if (isVolatile)
4739 Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG);
4740
4741 SmallVector<SDValue, 4> Values(NumValues);
4742 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
4743
4744 unsigned ChainI = 0;
4745 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
4746 // Serializing loads here may result in excessive register pressure, and
4747 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
4748 // could recover a bit by hoisting nodes upward in the chain by recognizing
4749 // they are side-effect free or do not alias. The optimizer should really
4750 // avoid this case by converting large object/array copies to llvm.memcpy
4751 // (MaxParallelChains should always remain as failsafe).
4752 if (ChainI == MaxParallelChains) {
4753 assert(PendingLoads.empty() && "PendingLoads must be serialized first");
4754 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4755 ArrayRef(Chains.data(), ChainI));
4756 Root = Chain;
4757 ChainI = 0;
4758 }
4759
4760 // TODO: MachinePointerInfo only supports a fixed length offset.
4761 MachinePointerInfo PtrInfo =
4762 !Offsets[i].isScalable() || Offsets[i].isZero()
4763 ? MachinePointerInfo(SV, Offsets[i].getKnownMinValue())
4764 : MachinePointerInfo();
4765
4766 SDValue A = DAG.getObjectPtrOffset(dl, Ptr, Offsets[i]);
4767 SDValue L = DAG.getLoad(MemVTs[i], dl, Root, A, PtrInfo, Alignment,
4768 MMOFlags, AAInfo, Ranges);
4769 Chains[ChainI] = L.getValue(1);
4770
4771 if (MemVTs[i] != ValueVTs[i])
4772 L = DAG.getPtrExtOrTrunc(L, dl, ValueVTs[i]);
4773
4774 Values[i] = L;
4775 }
4776
4777 if (!ConstantMemory) {
4778 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4779 ArrayRef(Chains.data(), ChainI));
4780 if (isVolatile)
4781 DAG.setRoot(Chain);
4782 else
4783 PendingLoads.push_back(Chain);
4784 }
4785
4786 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl,
4787 DAG.getVTList(ValueVTs), Values));
4788}
4789
4790void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) {
4791 assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
4792 "call visitStoreToSwiftError when backend supports swifterror");
4793
4794 SmallVector<EVT, 4> ValueVTs;
4795 SmallVector<uint64_t, 4> Offsets;
4796 const Value *SrcV = I.getOperand(0);
4797 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
4798 SrcV->getType(), ValueVTs, /*MemVTs=*/nullptr, &Offsets, 0);
4799 assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
4800 "expect a single EVT for swifterror");
4801
4802 SDValue Src = getValue(SrcV);
4803 // Create a virtual register, then update the virtual register.
4804 Register VReg =
4805 SwiftError.getOrCreateVRegDefAt(&I, FuncInfo.MBB, I.getPointerOperand());
4806 // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue
4807 // Chain can be getRoot or getControlRoot.
4808 SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg,
4809 SDValue(Src.getNode(), Src.getResNo()));
4810 DAG.setRoot(CopyNode);
4811}
4812
4813void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) {
4814 assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
4815 "call visitLoadFromSwiftError when backend supports swifterror");
4816
4817 assert(!I.isVolatile() &&
4818 !I.hasMetadata(LLVMContext::MD_nontemporal) &&
4819 !I.hasMetadata(LLVMContext::MD_invariant_load) &&
4820 "Support volatile, non temporal, invariant for load_from_swift_error");
4821
4822 const Value *SV = I.getOperand(0);
4823 Type *Ty = I.getType();
4824 assert(
4825 (!BatchAA ||
4826 !BatchAA->pointsToConstantMemory(MemoryLocation(
4827 SV, LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)),
4828 I.getAAMetadata()))) &&
4829 "load_from_swift_error should not be constant memory");
4830
4831 SmallVector<EVT, 4> ValueVTs;
4832 SmallVector<uint64_t, 4> Offsets;
4833 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty,
4834 ValueVTs, /*MemVTs=*/nullptr, &Offsets, 0);
4835 assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
4836 "expect a single EVT for swifterror");
4837
4838 // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT
4839 SDValue L = DAG.getCopyFromReg(
4840 getRoot(), getCurSDLoc(),
4841 SwiftError.getOrCreateVRegUseAt(&I, FuncInfo.MBB, SV), ValueVTs[0]);
4842
4843 setValue(&I, L);
4844}
4845
4846void SelectionDAGBuilder::visitStore(const StoreInst &I) {
4847 if (I.isAtomic())
4848 return visitAtomicStore(I);
4849
4850 const Value *SrcV = I.getOperand(0);
4851 const Value *PtrV = I.getOperand(1);
4852
4853 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4854 if (TLI.supportSwiftError()) {
4855 // Swifterror values can come from either a function parameter with
4856 // swifterror attribute or an alloca with swifterror attribute.
4857 if (const Argument *Arg = dyn_cast<Argument>(PtrV)) {
4858 if (Arg->hasSwiftErrorAttr())
4859 return visitStoreToSwiftError(I);
4860 }
4861
4862 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) {
4863 if (Alloca->isSwiftError())
4864 return visitStoreToSwiftError(I);
4865 }
4866 }
4867
4868 SmallVector<EVT, 4> ValueVTs, MemVTs;
4870 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
4871 SrcV->getType(), ValueVTs, &MemVTs, &Offsets);
4872 unsigned NumValues = ValueVTs.size();
4873 if (NumValues == 0)
4874 return;
4875
4876 // Get the lowered operands. Note that we do this after
4877 // checking if NumResults is zero, because with zero results
4878 // the operands won't have values in the map.
4879 SDValue Src = getValue(SrcV);
4880 SDValue Ptr = getValue(PtrV);
4881
4882 SDValue Root = I.isVolatile() ? getRoot() : getMemoryRoot();
4883 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
4884 SDLoc dl = getCurSDLoc();
4885 Align Alignment = I.getAlign();
4886 AAMDNodes AAInfo = I.getAAMetadata();
4887
4888 auto MMOFlags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout());
4889
4890 unsigned ChainI = 0;
4891 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
4892 // See visitLoad comments.
4893 if (ChainI == MaxParallelChains) {
4894 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4895 ArrayRef(Chains.data(), ChainI));
4896 Root = Chain;
4897 ChainI = 0;
4898 }
4899
4900 // TODO: MachinePointerInfo only supports a fixed length offset.
4901 MachinePointerInfo PtrInfo =
4902 !Offsets[i].isScalable() || Offsets[i].isZero()
4903 ? MachinePointerInfo(PtrV, Offsets[i].getKnownMinValue())
4904 : MachinePointerInfo();
4905
4906 SDValue Add = DAG.getObjectPtrOffset(dl, Ptr, Offsets[i]);
4907 SDValue Val = SDValue(Src.getNode(), Src.getResNo() + i);
4908 if (MemVTs[i] != ValueVTs[i])
4909 Val = DAG.getPtrExtOrTrunc(Val, dl, MemVTs[i]);
4910 SDValue St =
4911 DAG.getStore(Root, dl, Val, Add, PtrInfo, Alignment, MMOFlags, AAInfo);
4912 Chains[ChainI] = St;
4913 }
4914
4915 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4916 ArrayRef(Chains.data(), ChainI));
4917 setValue(&I, StoreNode);
4918 DAG.setRoot(StoreNode);
4919}
4920
4921void SelectionDAGBuilder::visitMaskedStore(const CallInst &I,
4922 bool IsCompressing) {
4923 SDLoc sdl = getCurSDLoc();
4924
4925 Value *Src0Operand = I.getArgOperand(0);
4926 Value *PtrOperand = I.getArgOperand(1);
4927 Value *MaskOperand = I.getArgOperand(2);
4928 Align Alignment = I.getParamAlign(1).valueOrOne();
4929
4930 SDValue Ptr = getValue(PtrOperand);
4931 SDValue Src0 = getValue(Src0Operand);
4932 SDValue Mask = getValue(MaskOperand);
4933 SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
4934
4935 EVT VT = Src0.getValueType();
4936
4937 auto MMOFlags = MachineMemOperand::MOStore;
4938 if (I.hasMetadata(LLVMContext::MD_nontemporal))
4940
4941 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4942 MachinePointerInfo(PtrOperand), MMOFlags,
4943 LocationSize::beforeOrAfterPointer(), Alignment, I.getAAMetadata());
4944
4945 const auto &TLI = DAG.getTargetLoweringInfo();
4946
4947 SDValue StoreNode =
4948 !IsCompressing && TTI->hasConditionalLoadStoreForType(
4949 I.getArgOperand(0)->getType(), /*IsStore=*/true)
4950 ? TLI.visitMaskedStore(DAG, sdl, getMemoryRoot(), MMO, Ptr, Src0,
4951 Mask)
4952 : DAG.getMaskedStore(getMemoryRoot(), sdl, Src0, Ptr, Offset, Mask,
4953 VT, MMO, ISD::UNINDEXED, /*Truncating=*/false,
4954 IsCompressing);
4955 DAG.setRoot(StoreNode);
4956 setValue(&I, StoreNode);
4957}
4958
4959// Get a uniform base for the Gather/Scatter intrinsic.
4960// The first argument of the Gather/Scatter intrinsic is a vector of pointers.
4961// We try to represent it as a base pointer + vector of indices.
4962// Usually, the vector of pointers comes from a 'getelementptr' instruction.
4963// The first operand of the GEP may be a single pointer or a vector of pointers
4964// Example:
4965// %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind
4966// or
4967// %gep.ptr = getelementptr i32, i32* %ptr, <8 x i32> %ind
4968// %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, ..
4969//
4970// When the first GEP operand is a single pointer - it is the uniform base we
4971// are looking for. If first operand of the GEP is a splat vector - we
4972// extract the splat value and use it as a uniform base.
4973// In all other cases the function returns 'false'.
4974static bool getUniformBase(const Value *Ptr, SDValue &Base, SDValue &Index,
4975 SDValue &Scale, SelectionDAGBuilder *SDB,
4976 const BasicBlock *CurBB, uint64_t ElemSize) {
4977 SelectionDAG& DAG = SDB->DAG;
4978 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4979 const DataLayout &DL = DAG.getDataLayout();
4980
4981 assert(Ptr->getType()->isVectorTy() && "Unexpected pointer type");
4982
4983 // Handle splat constant pointer.
4984 if (auto *C = dyn_cast<Constant>(Ptr)) {
4985 C = C->getSplatValue();
4986 if (!C)
4987 return false;
4988
4989 Base = SDB->getValue(C);
4990
4991 ElementCount NumElts = cast<VectorType>(Ptr->getType())->getElementCount();
4992 EVT VT = EVT::getVectorVT(*DAG.getContext(), TLI.getPointerTy(DL), NumElts);
4993 Index = DAG.getConstant(0, SDB->getCurSDLoc(), VT);
4994 Scale = DAG.getTargetConstant(1, SDB->getCurSDLoc(), TLI.getPointerTy(DL));
4995 return true;
4996 }
4997
4999 if (!GEP || GEP->getParent() != CurBB)
5000 return false;
5001
5002 if (GEP->getNumOperands() != 2)
5003 return false;
5004
5005 const Value *BasePtr = GEP->getPointerOperand();
5006 const Value *IndexVal = GEP->getOperand(GEP->getNumOperands() - 1);
5007
5008 // Make sure the base is scalar and the index is a vector.
5009 if (BasePtr->getType()->isVectorTy() || !IndexVal->getType()->isVectorTy())
5010 return false;
5011
5012 TypeSize ScaleVal = DL.getTypeAllocSize(GEP->getResultElementType());
5013 if (ScaleVal.isScalable())
5014 return false;
5015
5016 // Target may not support the required addressing mode.
5017 if (ScaleVal != 1 &&
5018 !TLI.isLegalScaleForGatherScatter(ScaleVal.getFixedValue(), ElemSize))
5019 return false;
5020
5021 Base = SDB->getValue(BasePtr);
5022 Index = SDB->getValue(IndexVal);
5023
5024 Scale =
5025 DAG.getTargetConstant(ScaleVal, SDB->getCurSDLoc(), TLI.getPointerTy(DL));
5026 return true;
5027}
5028
5029void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) {
5030 SDLoc sdl = getCurSDLoc();
5031
5032 // llvm.masked.scatter.*(Src0, Ptrs, Mask)
5033 const Value *Ptr = I.getArgOperand(1);
5034 SDValue Src0 = getValue(I.getArgOperand(0));
5035 SDValue Mask = getValue(I.getArgOperand(2));
5036 EVT VT = Src0.getValueType();
5037 Align Alignment = I.getParamAlign(1).valueOrOne();
5038 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5039
5040 SDValue Base;
5041 SDValue Index;
5042 SDValue Scale;
5043 bool UniformBase = getUniformBase(Ptr, Base, Index, Scale, this,
5044 I.getParent(), VT.getScalarStoreSize());
5045
5046 unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace();
5047 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
5048 MachinePointerInfo(AS), MachineMemOperand::MOStore,
5049 LocationSize::beforeOrAfterPointer(), Alignment, I.getAAMetadata());
5050 if (!UniformBase) {
5051 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
5052 Index = getValue(Ptr);
5053 Scale =
5054 DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
5055 }
5056
5057 EVT IdxVT = Index.getValueType();
5058 EVT EltTy = IdxVT.getVectorElementType();
5059 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
5060 EVT NewIdxVT = IdxVT.changeVectorElementType(*DAG.getContext(), EltTy);
5061 Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index);
5062 }
5063
5064 SDValue Ops[] = { getMemoryRoot(), Src0, Mask, Base, Index, Scale };
5065 SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl,
5066 Ops, MMO, ISD::SIGNED_SCALED, false);
5067 DAG.setRoot(Scatter);
5068 setValue(&I, Scatter);
5069}
5070
5071void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) {
5072 SDLoc sdl = getCurSDLoc();
5073
5074 Value *PtrOperand = I.getArgOperand(0);
5075 Value *MaskOperand = I.getArgOperand(1);
5076 Value *Src0Operand = I.getArgOperand(2);
5077 Align Alignment = I.getParamAlign(0).valueOrOne();
5078
5079 SDValue Ptr = getValue(PtrOperand);
5080 SDValue Src0 = getValue(Src0Operand);
5081 SDValue Mask = getValue(MaskOperand);
5082 SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
5083
5084 EVT VT = Src0.getValueType();
5085 AAMDNodes AAInfo = I.getAAMetadata();
5086 const MDNode *Ranges = getRangeMetadata(I);
5087
5088 // Do not serialize masked loads of constant memory with anything.
5089 MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo);
5090 bool AddToChain = !BatchAA || !BatchAA->pointsToConstantMemory(ML);
5091
5092 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
5093
5094 auto MMOFlags = MachineMemOperand::MOLoad;
5095 if (I.hasMetadata(LLVMContext::MD_nontemporal))
5097 if (I.hasMetadata(LLVMContext::MD_invariant_load))
5099
5100 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
5101 MachinePointerInfo(PtrOperand), MMOFlags,
5102 VT.getStoreSize(), Alignment, AAInfo, Ranges);
5103
5104 const auto &TLI = DAG.getTargetLoweringInfo();
5105
5106 // The Load/Res may point to different values and both of them are output
5107 // variables.
5108 SDValue Load;
5109 SDValue Res;
5110 if (!IsExpanding &&
5111 TTI->hasConditionalLoadStoreForType(Src0Operand->getType(),
5112 /*IsStore=*/false))
5113 Res = TLI.visitMaskedLoad(DAG, sdl, InChain, MMO, Load, Ptr, Src0, Mask);
5114 else
5115 Res = Load =
5116 DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Offset, Mask, Src0, VT, MMO,
5117 ISD::UNINDEXED, ISD::NON_EXTLOAD, IsExpanding);
5118 if (AddToChain)
5119 PendingLoads.push_back(Load.getValue(1));
5120 setValue(&I, Res);
5121}
5122
5123void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) {
5124 SDLoc sdl = getCurSDLoc();
5125
5126 // @llvm.masked.gather.*(Ptrs, Mask, Src0)
5127 const Value *Ptr = I.getArgOperand(0);
5128 SDValue Src0 = getValue(I.getArgOperand(2));
5129 SDValue Mask = getValue(I.getArgOperand(1));
5130
5131 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5132 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5133 Align Alignment = I.getParamAlign(0).valueOrOne();
5134
5135 const MDNode *Ranges = getRangeMetadata(I);
5136
5137 SDValue Root = DAG.getRoot();
5138 SDValue Base;
5139 SDValue Index;
5140 SDValue Scale;
5141 bool UniformBase = getUniformBase(Ptr, Base, Index, Scale, this,
5142 I.getParent(), VT.getScalarStoreSize());
5143 unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace();
5144 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
5145 MachinePointerInfo(AS), MachineMemOperand::MOLoad,
5146 LocationSize::beforeOrAfterPointer(), Alignment, I.getAAMetadata(),
5147 Ranges);
5148
5149 if (!UniformBase) {
5150 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
5151 Index = getValue(Ptr);
5152 Scale =
5153 DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
5154 }
5155
5156 EVT IdxVT = Index.getValueType();
5157 EVT EltTy = IdxVT.getVectorElementType();
5158 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
5159 EVT NewIdxVT = IdxVT.changeVectorElementType(*DAG.getContext(), EltTy);
5160 Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index);
5161 }
5162
5163 SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale };
5164 SDValue Gather =
5165 DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl, Ops, MMO,
5167
5168 PendingLoads.push_back(Gather.getValue(1));
5169 setValue(&I, Gather);
5170}
5171
5172void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) {
5173 SDLoc dl = getCurSDLoc();
5174 AtomicOrdering SuccessOrdering = I.getSuccessOrdering();
5175 AtomicOrdering FailureOrdering = I.getFailureOrdering();
5176 SyncScope::ID SSID = I.getSyncScopeID();
5177
5178 SDValue InChain = getRoot();
5179
5180 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType();
5181 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other);
5182
5183 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5184 auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout());
5185
5186 MachineFunction &MF = DAG.getMachineFunction();
5187 MachineMemOperand *MMO = MF.getMachineMemOperand(
5188 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
5189 DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, SuccessOrdering,
5190 FailureOrdering);
5191
5193 dl, MemVT, VTs, InChain,
5194 getValue(I.getPointerOperand()),
5195 getValue(I.getCompareOperand()),
5196 getValue(I.getNewValOperand()), MMO);
5197
5198 SDValue OutChain = L.getValue(2);
5199
5200 setValue(&I, L);
5201 DAG.setRoot(OutChain);
5202}
5203
5204void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) {
5205 SDLoc dl = getCurSDLoc();
5207 switch (I.getOperation()) {
5208 default: llvm_unreachable("Unknown atomicrmw operation");
5226 break;
5229 break;
5232 break;
5235 break;
5238 break;
5241 break;
5242 }
5243 AtomicOrdering Ordering = I.getOrdering();
5244 SyncScope::ID SSID = I.getSyncScopeID();
5245
5246 SDValue InChain = getRoot();
5247
5248 auto MemVT = getValue(I.getValOperand()).getSimpleValueType();
5249 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5250 auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout());
5251
5252 MachineFunction &MF = DAG.getMachineFunction();
5253 MachineMemOperand *MMO = MF.getMachineMemOperand(
5254 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
5255 DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, Ordering);
5256
5257 SDValue L =
5258 DAG.getAtomic(NT, dl, MemVT, InChain,
5259 getValue(I.getPointerOperand()), getValue(I.getValOperand()),
5260 MMO);
5261
5262 SDValue OutChain = L.getValue(1);
5263
5264 setValue(&I, L);
5265 DAG.setRoot(OutChain);
5266}
5267
5268void SelectionDAGBuilder::visitFence(const FenceInst &I) {
5269 SDLoc dl = getCurSDLoc();
5270 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5271 SDValue Ops[3];
5272 Ops[0] = getRoot();
5273 Ops[1] = DAG.getTargetConstant((unsigned)I.getOrdering(), dl,
5274 TLI.getFenceOperandTy(DAG.getDataLayout()));
5275 Ops[2] = DAG.getTargetConstant(I.getSyncScopeID(), dl,
5276 TLI.getFenceOperandTy(DAG.getDataLayout()));
5277 SDValue N = DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops);
5278 setValue(&I, N);
5279 DAG.setRoot(N);
5280}
5281
5282void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) {
5283 SDLoc dl = getCurSDLoc();
5284 AtomicOrdering Order = I.getOrdering();
5285 SyncScope::ID SSID = I.getSyncScopeID();
5286
5287 SDValue InChain = getRoot();
5288
5289 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5290 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5291 EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType());
5292
5293 if (!TLI.supportsUnalignedAtomics() &&
5294 I.getAlign().value() < MemVT.getSizeInBits() / 8)
5295 report_fatal_error("Cannot generate unaligned atomic load");
5296
5297 auto Flags = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout(), AC, LibInfo);
5298
5299 const MDNode *Ranges = getRangeMetadata(I);
5300 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
5301 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
5302 I.getAlign(), AAMDNodes(), Ranges, SSID, Order);
5303
5304 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG);
5305
5306 SDValue Ptr = getValue(I.getPointerOperand());
5307 SDValue L =
5308 DAG.getAtomicLoad(ISD::NON_EXTLOAD, dl, MemVT, MemVT, InChain, Ptr, MMO);
5309
5310 SDValue OutChain = L.getValue(1);
5311 if (MemVT != VT)
5312 L = DAG.getPtrExtOrTrunc(L, dl, VT);
5313
5314 setValue(&I, L);
5315 DAG.setRoot(OutChain);
5316}
5317
5318void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) {
5319 SDLoc dl = getCurSDLoc();
5320
5321 AtomicOrdering Ordering = I.getOrdering();
5322 SyncScope::ID SSID = I.getSyncScopeID();
5323
5324 SDValue InChain = getRoot();
5325
5326 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5327 EVT MemVT =
5328 TLI.getMemValueType(DAG.getDataLayout(), I.getValueOperand()->getType());
5329
5330 if (!TLI.supportsUnalignedAtomics() &&
5331 I.getAlign().value() < MemVT.getSizeInBits() / 8)
5332 report_fatal_error("Cannot generate unaligned atomic store");
5333
5334 auto Flags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout());
5335
5336 MachineFunction &MF = DAG.getMachineFunction();
5337 MachineMemOperand *MMO = MF.getMachineMemOperand(
5338 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
5339 I.getAlign(), AAMDNodes(), nullptr, SSID, Ordering);
5340
5341 SDValue Val = getValue(I.getValueOperand());
5342 if (Val.getValueType() != MemVT)
5343 Val = DAG.getPtrExtOrTrunc(Val, dl, MemVT);
5344 SDValue Ptr = getValue(I.getPointerOperand());
5345
5346 SDValue OutChain =
5347 DAG.getAtomic(ISD::ATOMIC_STORE, dl, MemVT, InChain, Val, Ptr, MMO);
5348
5349 setValue(&I, OutChain);
5350 DAG.setRoot(OutChain);
5351}
5352
5353/// Check if this intrinsic call depends on the chain (1st return value)
5354/// and if it only *loads* memory.
5355/// Ignore the callsite's attributes. A specific call site may be marked with
5356/// readnone, but the lowering code will expect the chain based on the
5357/// definition.
5358std::pair<bool, bool>
5359SelectionDAGBuilder::getTargetIntrinsicCallProperties(const CallBase &I) {
5360 const Function *F = I.getCalledFunction();
5361 bool HasChain = !F->doesNotAccessMemory();
5362 bool OnlyLoad =
5363 HasChain && F->onlyReadsMemory() && F->willReturn() && F->doesNotThrow();
5364
5365 return {HasChain, OnlyLoad};
5366}
5367
5368SmallVector<SDValue, 8> SelectionDAGBuilder::getTargetIntrinsicOperands(
5369 const CallBase &I, bool HasChain, bool OnlyLoad,
5370 TargetLowering::IntrinsicInfo *TgtMemIntrinsicInfo) {
5371 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5372
5373 // Build the operand list.
5375 if (HasChain) { // If this intrinsic has side-effects, chainify it.
5376 if (OnlyLoad) {
5377 // We don't need to serialize loads against other loads.
5378 Ops.push_back(DAG.getRoot());
5379 } else {
5380 Ops.push_back(getRoot());
5381 }
5382 }
5383
5384 // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
5385 if (!TgtMemIntrinsicInfo || TgtMemIntrinsicInfo->opc == ISD::INTRINSIC_VOID ||
5386 TgtMemIntrinsicInfo->opc == ISD::INTRINSIC_W_CHAIN)
5387 Ops.push_back(DAG.getTargetConstant(I.getIntrinsicID(), getCurSDLoc(),
5388 TLI.getPointerTy(DAG.getDataLayout())));
5389
5390 // Add all operands of the call to the operand list.
5391 for (unsigned i = 0, e = I.arg_size(); i != e; ++i) {
5392 const Value *Arg = I.getArgOperand(i);
5393 if (!I.paramHasAttr(i, Attribute::ImmArg)) {
5394 Ops.push_back(getValue(Arg));
5395 continue;
5396 }
5397
5398 // Use TargetConstant instead of a regular constant for immarg.
5399 EVT VT = TLI.getValueType(DAG.getDataLayout(), Arg->getType(), true);
5400 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Arg)) {
5401 assert(CI->getBitWidth() <= 64 &&
5402 "large intrinsic immediates not handled");
5403 Ops.push_back(DAG.getTargetConstant(*CI, SDLoc(), VT));
5404 } else {
5405 Ops.push_back(
5406 DAG.getTargetConstantFP(*cast<ConstantFP>(Arg), SDLoc(), VT));
5407 }
5408 }
5409
5410 if (std::optional<OperandBundleUse> Bundle =
5411 I.getOperandBundle(LLVMContext::OB_deactivation_symbol)) {
5412 auto *Sym = Bundle->Inputs[0].get();
5413 SDValue SDSym = getValue(Sym);
5414 SDSym = DAG.getDeactivationSymbol(cast<GlobalValue>(Sym));
5415 Ops.push_back(SDSym);
5416 }
5417
5418 if (std::optional<OperandBundleUse> Bundle =
5419 I.getOperandBundle(LLVMContext::OB_convergencectrl)) {
5420 Value *Token = Bundle->Inputs[0].get();
5421 SDValue ConvControlToken = getValue(Token);
5422 assert(Ops.back().getValueType() != MVT::Glue &&
5423 "Did not expect another glue node here.");
5424 ConvControlToken =
5425 DAG.getNode(ISD::CONVERGENCECTRL_GLUE, {}, MVT::Glue, ConvControlToken);
5426 Ops.push_back(ConvControlToken);
5427 }
5428
5429 return Ops;
5430}
5431
5432SDVTList SelectionDAGBuilder::getTargetIntrinsicVTList(const CallBase &I,
5433 bool HasChain) {
5434 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5435
5436 SmallVector<EVT, 4> ValueVTs;
5437 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs);
5438
5439 if (HasChain)
5440 ValueVTs.push_back(MVT::Other);
5441
5442 return DAG.getVTList(ValueVTs);
5443}
5444
5445/// Get an INTRINSIC node for a target intrinsic which does not touch memory.
5446SDValue SelectionDAGBuilder::getTargetNonMemIntrinsicNode(
5447 const Type &IntrinsicVT, bool HasChain, ArrayRef<SDValue> Ops,
5448 const SDVTList &VTs) {
5449 if (!HasChain)
5450 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops);
5451 if (!IntrinsicVT.isVoidTy())
5452 return DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops);
5453 return DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops);
5454}
5455
5456/// Set root, convert return type if necessary and check alignment.
5457SDValue SelectionDAGBuilder::handleTargetIntrinsicRet(const CallBase &I,
5458 bool HasChain,
5459 bool OnlyLoad,
5460 SDValue Result) {
5461 if (HasChain) {
5462 SDValue Chain = Result.getValue(Result.getNode()->getNumValues() - 1);
5463 if (OnlyLoad)
5464 PendingLoads.push_back(Chain);
5465 else
5466 DAG.setRoot(Chain);
5467 }
5468
5469 if (I.getType()->isVoidTy())
5470 return Result;
5471
5472 if (MaybeAlign Alignment = I.getRetAlign(); InsertAssertAlign && Alignment) {
5473 // Insert `assertalign` node if there's an alignment.
5474 Result = DAG.getAssertAlign(getCurSDLoc(), Result, Alignment.valueOrOne());
5475 } else if (!isa<VectorType>(I.getType())) {
5476 Result = lowerRangeToAssertZExt(DAG, I, Result);
5477 }
5478
5479 return Result;
5480}
5481
5482/// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
5483/// node.
5484void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
5485 unsigned Intrinsic) {
5486 auto [HasChain, OnlyLoad] = getTargetIntrinsicCallProperties(I);
5487
5488 // Info is set by getTgtMemIntrinsic
5489 TargetLowering::IntrinsicInfo Info;
5490 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5491 bool IsTgtMemIntrinsic =
5492 TLI.getTgtMemIntrinsic(Info, I, DAG.getMachineFunction(), Intrinsic);
5493
5494 SmallVector<SDValue, 8> Ops = getTargetIntrinsicOperands(
5495 I, HasChain, OnlyLoad, IsTgtMemIntrinsic ? &Info : nullptr);
5496 SDVTList VTs = getTargetIntrinsicVTList(I, HasChain);
5497
5498 // Propagate fast-math-flags from IR to node(s).
5499 SDNodeFlags Flags;
5500 if (auto *FPMO = dyn_cast<FPMathOperator>(&I))
5501 Flags.copyFMF(*FPMO);
5502 SelectionDAG::FlagInserter FlagsInserter(DAG, Flags);
5503
5504 // Create the node.
5506
5507 // In some cases, custom collection of operands from CallInst I may be needed.
5509 if (IsTgtMemIntrinsic) {
5510 // This is target intrinsic that touches memory
5511 //
5512 // TODO: We currently just fallback to address space 0 if getTgtMemIntrinsic
5513 // didn't yield anything useful.
5514 MachinePointerInfo MPI;
5515 if (Info.ptrVal)
5516 MPI = MachinePointerInfo(Info.ptrVal, Info.offset);
5517 else if (Info.fallbackAddressSpace)
5518 MPI = MachinePointerInfo(*Info.fallbackAddressSpace);
5519 EVT MemVT = Info.memVT;
5520 LocationSize Size = LocationSize::precise(Info.size);
5521 if (Size.hasValue() && !Size.getValue())
5523 Align Alignment = Info.align.value_or(DAG.getEVTAlign(MemVT));
5524 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
5525 MPI, Info.flags, Size, Alignment, I.getAAMetadata(), /*Ranges=*/nullptr,
5526 Info.ssid, Info.order, Info.failureOrder);
5527 Result =
5528 DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), VTs, Ops, MemVT, MMO);
5529 } else {
5530 Result = getTargetNonMemIntrinsicNode(*I.getType(), HasChain, Ops, VTs);
5531 }
5532
5533 Result = handleTargetIntrinsicRet(I, HasChain, OnlyLoad, Result);
5534
5535 setValue(&I, Result);
5536}
5537
5538/// GetSignificand - Get the significand and build it into a floating-point
5539/// number with exponent of 1:
5540///
5541/// Op = (Op & 0x007fffff) | 0x3f800000;
5542///
5543/// where Op is the hexadecimal representation of floating point value.
5545 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
5546 DAG.getConstant(0x007fffff, dl, MVT::i32));
5547 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
5548 DAG.getConstant(0x3f800000, dl, MVT::i32));
5549 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
5550}
5551
5552/// GetExponent - Get the exponent:
5553///
5554/// (float)(int)(((Op & 0x7f800000) >> 23) - 127);
5555///
5556/// where Op is the hexadecimal representation of floating point value.
5558 const TargetLowering &TLI, const SDLoc &dl) {
5559 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
5560 DAG.getConstant(0x7f800000, dl, MVT::i32));
5561 SDValue t1 = DAG.getNode(ISD::SRL, dl, MVT::i32, t0,
5562 DAG.getShiftAmountConstant(23, MVT::i32, dl));
5563 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
5564 DAG.getConstant(127, dl, MVT::i32));
5565 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
5566}
5567
5568/// getF32Constant - Get 32-bit floating point constant.
5569static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt,
5570 const SDLoc &dl) {
5571 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl,
5572 MVT::f32);
5573}
5574
5576 SelectionDAG &DAG) {
5577 // TODO: What fast-math-flags should be set on the floating-point nodes?
5578
5579 // IntegerPartOfX = ((int32_t)(t0);
5580 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
5581
5582 // FractionalPartOfX = t0 - (float)IntegerPartOfX;
5583 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
5584 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
5585
5586 // IntegerPartOfX <<= 23;
5587 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
5588 DAG.getShiftAmountConstant(23, MVT::i32, dl));
5589
5590 SDValue TwoToFractionalPartOfX;
5591 if (LimitFloatPrecision <= 6) {
5592 // For floating-point precision of 6:
5593 //
5594 // TwoToFractionalPartOfX =
5595 // 0.997535578f +
5596 // (0.735607626f + 0.252464424f * x) * x;
5597 //
5598 // error 0.0144103317, which is 6 bits
5599 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5600 getF32Constant(DAG, 0x3e814304, dl));
5601 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5602 getF32Constant(DAG, 0x3f3c50c8, dl));
5603 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5604 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5605 getF32Constant(DAG, 0x3f7f5e7e, dl));
5606 } else if (LimitFloatPrecision <= 12) {
5607 // For floating-point precision of 12:
5608 //
5609 // TwoToFractionalPartOfX =
5610 // 0.999892986f +
5611 // (0.696457318f +
5612 // (0.224338339f + 0.792043434e-1f * x) * x) * x;
5613 //
5614 // error 0.000107046256, which is 13 to 14 bits
5615 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5616 getF32Constant(DAG, 0x3da235e3, dl));
5617 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5618 getF32Constant(DAG, 0x3e65b8f3, dl));
5619 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5620 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5621 getF32Constant(DAG, 0x3f324b07, dl));
5622 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5623 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
5624 getF32Constant(DAG, 0x3f7ff8fd, dl));
5625 } else { // LimitFloatPrecision <= 18
5626 // For floating-point precision of 18:
5627 //
5628 // TwoToFractionalPartOfX =
5629 // 0.999999982f +
5630 // (0.693148872f +
5631 // (0.240227044f +
5632 // (0.554906021e-1f +
5633 // (0.961591928e-2f +
5634 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
5635 // error 2.47208000*10^(-7), which is better than 18 bits
5636 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5637 getF32Constant(DAG, 0x3924b03e, dl));
5638 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5639 getF32Constant(DAG, 0x3ab24b87, dl));
5640 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5641 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5642 getF32Constant(DAG, 0x3c1d8c17, dl));
5643 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5644 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
5645 getF32Constant(DAG, 0x3d634a1d, dl));
5646 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5647 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
5648 getF32Constant(DAG, 0x3e75fe14, dl));
5649 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
5650 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
5651 getF32Constant(DAG, 0x3f317234, dl));
5652 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
5653 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
5654 getF32Constant(DAG, 0x3f800000, dl));
5655 }
5656
5657 // Add the exponent into the result in integer domain.
5658 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX);
5659 return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
5660 DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX));
5661}
5662
5663/// expandExp - Lower an exp intrinsic. Handles the special sequences for
5664/// limited-precision mode.
5666 const TargetLowering &TLI, SDNodeFlags Flags) {
5667 if (Op.getValueType() == MVT::f32 &&
5669
5670 // Put the exponent in the right bit position for later addition to the
5671 // final result:
5672 //
5673 // t0 = Op * log2(e)
5674
5675 // TODO: What fast-math-flags should be set here?
5676 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
5677 DAG.getConstantFP(numbers::log2ef, dl, MVT::f32));
5678 return getLimitedPrecisionExp2(t0, dl, DAG);
5679 }
5680
5681 // No special expansion.
5682 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op, Flags);
5683}
5684
5685/// expandLog - Lower a log intrinsic. Handles the special sequences for
5686/// limited-precision mode.
5688 const TargetLowering &TLI, SDNodeFlags Flags) {
5689 // TODO: What fast-math-flags should be set on the floating-point nodes?
5690
5691 if (Op.getValueType() == MVT::f32 &&
5693 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5694
5695 // Scale the exponent by log(2).
5696 SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
5697 SDValue LogOfExponent =
5698 DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
5699 DAG.getConstantFP(numbers::ln2f, dl, MVT::f32));
5700
5701 // Get the significand and build it into a floating-point number with
5702 // exponent of 1.
5703 SDValue X = GetSignificand(DAG, Op1, dl);
5704
5705 SDValue LogOfMantissa;
5706 if (LimitFloatPrecision <= 6) {
5707 // For floating-point precision of 6:
5708 //
5709 // LogofMantissa =
5710 // -1.1609546f +
5711 // (1.4034025f - 0.23903021f * x) * x;
5712 //
5713 // error 0.0034276066, which is better than 8 bits
5714 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5715 getF32Constant(DAG, 0xbe74c456, dl));
5716 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5717 getF32Constant(DAG, 0x3fb3a2b1, dl));
5718 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5719 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5720 getF32Constant(DAG, 0x3f949a29, dl));
5721 } else if (LimitFloatPrecision <= 12) {
5722 // For floating-point precision of 12:
5723 //
5724 // LogOfMantissa =
5725 // -1.7417939f +
5726 // (2.8212026f +
5727 // (-1.4699568f +
5728 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
5729 //
5730 // error 0.000061011436, which is 14 bits
5731 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5732 getF32Constant(DAG, 0xbd67b6d6, dl));
5733 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5734 getF32Constant(DAG, 0x3ee4f4b8, dl));
5735 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5736 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5737 getF32Constant(DAG, 0x3fbc278b, dl));
5738 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5739 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5740 getF32Constant(DAG, 0x40348e95, dl));
5741 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5742 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5743 getF32Constant(DAG, 0x3fdef31a, dl));
5744 } else { // LimitFloatPrecision <= 18
5745 // For floating-point precision of 18:
5746 //
5747 // LogOfMantissa =
5748 // -2.1072184f +
5749 // (4.2372794f +
5750 // (-3.7029485f +
5751 // (2.2781945f +
5752 // (-0.87823314f +
5753 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
5754 //
5755 // error 0.0000023660568, which is better than 18 bits
5756 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5757 getF32Constant(DAG, 0xbc91e5ac, dl));
5758 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5759 getF32Constant(DAG, 0x3e4350aa, dl));
5760 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5761 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5762 getF32Constant(DAG, 0x3f60d3e3, dl));
5763 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5764 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5765 getF32Constant(DAG, 0x4011cdf0, dl));
5766 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5767 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5768 getF32Constant(DAG, 0x406cfd1c, dl));
5769 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5770 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
5771 getF32Constant(DAG, 0x408797cb, dl));
5772 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
5773 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
5774 getF32Constant(DAG, 0x4006dcab, dl));
5775 }
5776
5777 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa);
5778 }
5779
5780 // No special expansion.
5781 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op, Flags);
5782}
5783
5784/// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for
5785/// limited-precision mode.
5787 const TargetLowering &TLI, SDNodeFlags Flags) {
5788 // TODO: What fast-math-flags should be set on the floating-point nodes?
5789
5790 if (Op.getValueType() == MVT::f32 &&
5792 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5793
5794 // Get the exponent.
5795 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
5796
5797 // Get the significand and build it into a floating-point number with
5798 // exponent of 1.
5799 SDValue X = GetSignificand(DAG, Op1, dl);
5800
5801 // Different possible minimax approximations of significand in
5802 // floating-point for various degrees of accuracy over [1,2].
5803 SDValue Log2ofMantissa;
5804 if (LimitFloatPrecision <= 6) {
5805 // For floating-point precision of 6:
5806 //
5807 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
5808 //
5809 // error 0.0049451742, which is more than 7 bits
5810 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5811 getF32Constant(DAG, 0xbeb08fe0, dl));
5812 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5813 getF32Constant(DAG, 0x40019463, dl));
5814 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5815 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5816 getF32Constant(DAG, 0x3fd6633d, dl));
5817 } else if (LimitFloatPrecision <= 12) {
5818 // For floating-point precision of 12:
5819 //
5820 // Log2ofMantissa =
5821 // -2.51285454f +
5822 // (4.07009056f +
5823 // (-2.12067489f +
5824 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
5825 //
5826 // error 0.0000876136000, which is better than 13 bits
5827 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5828 getF32Constant(DAG, 0xbda7262e, dl));
5829 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5830 getF32Constant(DAG, 0x3f25280b, dl));
5831 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5832 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5833 getF32Constant(DAG, 0x4007b923, dl));
5834 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5835 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5836 getF32Constant(DAG, 0x40823e2f, dl));
5837 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5838 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5839 getF32Constant(DAG, 0x4020d29c, dl));
5840 } else { // LimitFloatPrecision <= 18
5841 // For floating-point precision of 18:
5842 //
5843 // Log2ofMantissa =
5844 // -3.0400495f +
5845 // (6.1129976f +
5846 // (-5.3420409f +
5847 // (3.2865683f +
5848 // (-1.2669343f +
5849 // (0.27515199f -
5850 // 0.25691327e-1f * x) * x) * x) * x) * x) * x;
5851 //
5852 // error 0.0000018516, which is better than 18 bits
5853 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5854 getF32Constant(DAG, 0xbcd2769e, dl));
5855 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5856 getF32Constant(DAG, 0x3e8ce0b9, dl));
5857 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5858 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5859 getF32Constant(DAG, 0x3fa22ae7, dl));
5860 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5861 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5862 getF32Constant(DAG, 0x40525723, dl));
5863 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5864 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5865 getF32Constant(DAG, 0x40aaf200, dl));
5866 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5867 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
5868 getF32Constant(DAG, 0x40c39dad, dl));
5869 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
5870 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
5871 getF32Constant(DAG, 0x4042902c, dl));
5872 }
5873
5874 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa);
5875 }
5876
5877 // No special expansion.
5878 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op, Flags);
5879}
5880
5881/// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for
5882/// limited-precision mode.
5884 const TargetLowering &TLI, SDNodeFlags Flags) {
5885 // TODO: What fast-math-flags should be set on the floating-point nodes?
5886
5887 if (Op.getValueType() == MVT::f32 &&
5889 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5890
5891 // Scale the exponent by log10(2) [0.30102999f].
5892 SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
5893 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
5894 getF32Constant(DAG, 0x3e9a209a, dl));
5895
5896 // Get the significand and build it into a floating-point number with
5897 // exponent of 1.
5898 SDValue X = GetSignificand(DAG, Op1, dl);
5899
5900 SDValue Log10ofMantissa;
5901 if (LimitFloatPrecision <= 6) {
5902 // For floating-point precision of 6:
5903 //
5904 // Log10ofMantissa =
5905 // -0.50419619f +
5906 // (0.60948995f - 0.10380950f * x) * x;
5907 //
5908 // error 0.0014886165, which is 6 bits
5909 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5910 getF32Constant(DAG, 0xbdd49a13, dl));
5911 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5912 getF32Constant(DAG, 0x3f1c0789, dl));
5913 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5914 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5915 getF32Constant(DAG, 0x3f011300, dl));
5916 } else if (LimitFloatPrecision <= 12) {
5917 // For floating-point precision of 12:
5918 //
5919 // Log10ofMantissa =
5920 // -0.64831180f +
5921 // (0.91751397f +
5922 // (-0.31664806f + 0.47637168e-1f * x) * x) * x;
5923 //
5924 // error 0.00019228036, which is better than 12 bits
5925 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5926 getF32Constant(DAG, 0x3d431f31, dl));
5927 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
5928 getF32Constant(DAG, 0x3ea21fb2, dl));
5929 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5930 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5931 getF32Constant(DAG, 0x3f6ae232, dl));
5932 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5933 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
5934 getF32Constant(DAG, 0x3f25f7c3, dl));
5935 } else { // LimitFloatPrecision <= 18
5936 // For floating-point precision of 18:
5937 //
5938 // Log10ofMantissa =
5939 // -0.84299375f +
5940 // (1.5327582f +
5941 // (-1.0688956f +
5942 // (0.49102474f +
5943 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
5944 //
5945 // error 0.0000037995730, which is better than 18 bits
5946 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5947 getF32Constant(DAG, 0x3c5d51ce, dl));
5948 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
5949 getF32Constant(DAG, 0x3e00685a, dl));
5950 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5951 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5952 getF32Constant(DAG, 0x3efb6798, dl));
5953 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5954 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
5955 getF32Constant(DAG, 0x3f88d192, dl));
5956 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5957 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
5958 getF32Constant(DAG, 0x3fc4316c, dl));
5959 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5960 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
5961 getF32Constant(DAG, 0x3f57ce70, dl));
5962 }
5963
5964 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa);
5965 }
5966
5967 // No special expansion.
5968 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op, Flags);
5969}
5970
5971/// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for
5972/// limited-precision mode.
5974 const TargetLowering &TLI, SDNodeFlags Flags) {
5975 if (Op.getValueType() == MVT::f32 &&
5977 return getLimitedPrecisionExp2(Op, dl, DAG);
5978
5979 // No special expansion.
5980 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op, Flags);
5981}
5982
5983/// visitPow - Lower a pow intrinsic. Handles the special sequences for
5984/// limited-precision mode with x == 10.0f.
5986 SelectionDAG &DAG, const TargetLowering &TLI,
5987 SDNodeFlags Flags) {
5988 bool IsExp10 = false;
5989 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 &&
5992 APFloat Ten(10.0f);
5993 IsExp10 = LHSC->isExactlyValue(Ten);
5994 }
5995 }
5996
5997 // TODO: What fast-math-flags should be set on the FMUL node?
5998 if (IsExp10) {
5999 // Put the exponent in the right bit position for later addition to the
6000 // final result:
6001 //
6002 // #define LOG2OF10 3.3219281f
6003 // t0 = Op * LOG2OF10;
6004 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS,
6005 getF32Constant(DAG, 0x40549a78, dl));
6006 return getLimitedPrecisionExp2(t0, dl, DAG);
6007 }
6008
6009 // No special expansion.
6010 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS, Flags);
6011}
6012
6013/// ExpandPowI - Expand a llvm.powi intrinsic.
6015 SelectionDAG &DAG) {
6016 // If RHS is a constant, we can expand this out to a multiplication tree if
6017 // it's beneficial on the target, otherwise we end up lowering to a call to
6018 // __powidf2 (for example).
6020 unsigned Val = RHSC->getSExtValue();
6021
6022 // powi(x, 0) -> 1.0
6023 if (Val == 0)
6024 return DAG.getConstantFP(1.0, DL, LHS.getValueType());
6025
6027 Val, DAG.shouldOptForSize())) {
6028 // Get the exponent as a positive value.
6029 if ((int)Val < 0)
6030 Val = -Val;
6031 // We use the simple binary decomposition method to generate the multiply
6032 // sequence. There are more optimal ways to do this (for example,
6033 // powi(x,15) generates one more multiply than it should), but this has
6034 // the benefit of being both really simple and much better than a libcall.
6035 SDValue Res; // Logically starts equal to 1.0
6036 SDValue CurSquare = LHS;
6037 // TODO: Intrinsics should have fast-math-flags that propagate to these
6038 // nodes.
6039 while (Val) {
6040 if (Val & 1) {
6041 if (Res.getNode())
6042 Res =
6043 DAG.getNode(ISD::FMUL, DL, Res.getValueType(), Res, CurSquare);
6044 else
6045 Res = CurSquare; // 1.0*CurSquare.
6046 }
6047
6048 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
6049 CurSquare, CurSquare);
6050 Val >>= 1;
6051 }
6052
6053 // If the original was negative, invert the result, producing 1/(x*x*x).
6054 if (RHSC->getSExtValue() < 0)
6055 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
6056 DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res);
6057 return Res;
6058 }
6059 }
6060
6061 // Otherwise, expand to a libcall.
6062 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
6063}
6064
6065static SDValue expandDivFix(unsigned Opcode, const SDLoc &DL,
6066 SDValue LHS, SDValue RHS, SDValue Scale,
6067 SelectionDAG &DAG, const TargetLowering &TLI) {
6068 EVT VT = LHS.getValueType();
6069 bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT;
6070 bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT;
6071 LLVMContext &Ctx = *DAG.getContext();
6072
6073 // If the type is legal but the operation isn't, this node might survive all
6074 // the way to operation legalization. If we end up there and we do not have
6075 // the ability to widen the type (if VT*2 is not legal), we cannot expand the
6076 // node.
6077
6078 // Coax the legalizer into expanding the node during type legalization instead
6079 // by bumping the size by one bit. This will force it to Promote, enabling the
6080 // early expansion and avoiding the need to expand later.
6081
6082 // We don't have to do this if Scale is 0; that can always be expanded, unless
6083 // it's a saturating signed operation. Those can experience true integer
6084 // division overflow, a case which we must avoid.
6085
6086 // FIXME: We wouldn't have to do this (or any of the early
6087 // expansion/promotion) if it was possible to expand a libcall of an
6088 // illegal type during operation legalization. But it's not, so things
6089 // get a bit hacky.
6090 unsigned ScaleInt = Scale->getAsZExtVal();
6091 if ((ScaleInt > 0 || (Saturating && Signed)) &&
6092 (TLI.isTypeLegal(VT) ||
6093 (VT.isVector() && TLI.isTypeLegal(VT.getVectorElementType())))) {
6095 Opcode, VT, ScaleInt);
6096 if (Action != TargetLowering::Legal && Action != TargetLowering::Custom) {
6097 EVT PromVT;
6098 if (VT.isScalarInteger())
6099 PromVT = EVT::getIntegerVT(Ctx, VT.getSizeInBits() + 1);
6100 else if (VT.isVector()) {
6101 PromVT = VT.getVectorElementType();
6102 PromVT = EVT::getIntegerVT(Ctx, PromVT.getSizeInBits() + 1);
6103 PromVT = EVT::getVectorVT(Ctx, PromVT, VT.getVectorElementCount());
6104 } else
6105 llvm_unreachable("Wrong VT for DIVFIX?");
6106 LHS = DAG.getExtOrTrunc(Signed, LHS, DL, PromVT);
6107 RHS = DAG.getExtOrTrunc(Signed, RHS, DL, PromVT);
6108 EVT ShiftTy = TLI.getShiftAmountTy(PromVT, DAG.getDataLayout());
6109 // For saturating operations, we need to shift up the LHS to get the
6110 // proper saturation width, and then shift down again afterwards.
6111 if (Saturating)
6112 LHS = DAG.getNode(ISD::SHL, DL, PromVT, LHS,
6113 DAG.getConstant(1, DL, ShiftTy));
6114 SDValue Res = DAG.getNode(Opcode, DL, PromVT, LHS, RHS, Scale);
6115 if (Saturating)
6116 Res = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, PromVT, Res,
6117 DAG.getConstant(1, DL, ShiftTy));
6118 return DAG.getZExtOrTrunc(Res, DL, VT);
6119 }
6120 }
6121
6122 return DAG.getNode(Opcode, DL, VT, LHS, RHS, Scale);
6123}
6124
6125// getUnderlyingArgRegs - Find underlying registers used for a truncated,
6126// bitcasted, or split argument. Returns a list of <Register, size in bits>
6127static void
6128getUnderlyingArgRegs(SmallVectorImpl<std::pair<Register, TypeSize>> &Regs,
6129 const SDValue &N) {
6130 switch (N.getOpcode()) {
6131 case ISD::CopyFromReg: {
6132 SDValue Op = N.getOperand(1);
6133 Regs.emplace_back(cast<RegisterSDNode>(Op)->getReg(),
6134 Op.getValueType().getSizeInBits());
6135 return;
6136 }
6137 case ISD::BITCAST:
6138 case ISD::AssertZext:
6139 case ISD::AssertSext:
6140 case ISD::TRUNCATE:
6141 getUnderlyingArgRegs(Regs, N.getOperand(0));
6142 return;
6143 case ISD::BUILD_PAIR:
6144 case ISD::BUILD_VECTOR:
6146 for (SDValue Op : N->op_values())
6147 getUnderlyingArgRegs(Regs, Op);
6148 return;
6149 default:
6150 return;
6151 }
6152}
6153
6154/// If the DbgValueInst is a dbg_value of a function argument, create the
6155/// corresponding DBG_VALUE machine instruction for it now. At the end of
6156/// instruction selection, they will be inserted to the entry BB.
6157/// We don't currently support this for variadic dbg_values, as they shouldn't
6158/// appear for function arguments or in the prologue.
6159bool SelectionDAGBuilder::EmitFuncArgumentDbgValue(
6160 const Value *V, DILocalVariable *Variable, DIExpression *Expr,
6161 DILocation *DL, FuncArgumentDbgValueKind Kind, const SDValue &N) {
6162 const Argument *Arg = dyn_cast<Argument>(V);
6163 if (!Arg)
6164 return false;
6165
6166 MachineFunction &MF = DAG.getMachineFunction();
6167 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
6168
6169 // Helper to create DBG_INSTR_REFs or DBG_VALUEs, depending on what kind
6170 // we've been asked to pursue.
6171 auto MakeVRegDbgValue = [&](Register Reg, DIExpression *FragExpr,
6172 bool Indirect) {
6173 if (Reg.isVirtual() && MF.useDebugInstrRef()) {
6174 // For VRegs, in instruction referencing mode, create a DBG_INSTR_REF
6175 // pointing at the VReg, which will be patched up later.
6176 auto &Inst = TII->get(TargetOpcode::DBG_INSTR_REF);
6178 /* Reg */ Reg, /* isDef */ false, /* isImp */ false,
6179 /* isKill */ false, /* isDead */ false,
6180 /* isUndef */ false, /* isEarlyClobber */ false,
6181 /* SubReg */ 0, /* isDebug */ true)});
6182
6183 auto *NewDIExpr = FragExpr;
6184 // We don't have an "Indirect" field in DBG_INSTR_REF, fold that into
6185 // the DIExpression.
6186 if (Indirect)
6187 NewDIExpr = DIExpression::prepend(FragExpr, DIExpression::DerefBefore);
6189 NewDIExpr = DIExpression::prependOpcodes(NewDIExpr, Ops);
6190 return BuildMI(MF, DL, Inst, false, MOs, Variable, NewDIExpr);
6191 } else {
6192 // Create a completely standard DBG_VALUE.
6193 auto &Inst = TII->get(TargetOpcode::DBG_VALUE);
6194 return BuildMI(MF, DL, Inst, Indirect, Reg, Variable, FragExpr);
6195 }
6196 };
6197
6198 if (Kind == FuncArgumentDbgValueKind::Value) {
6199 // ArgDbgValues are hoisted to the beginning of the entry block. So we
6200 // should only emit as ArgDbgValue if the dbg.value intrinsic is found in
6201 // the entry block.
6202 bool IsInEntryBlock = FuncInfo.MBB == &FuncInfo.MF->front();
6203 if (!IsInEntryBlock)
6204 return false;
6205
6206 // ArgDbgValues are hoisted to the beginning of the entry block. So we
6207 // should only emit as ArgDbgValue if the dbg.value intrinsic describes a
6208 // variable that also is a param.
6209 //
6210 // Although, if we are at the top of the entry block already, we can still
6211 // emit using ArgDbgValue. This might catch some situations when the
6212 // dbg.value refers to an argument that isn't used in the entry block, so
6213 // any CopyToReg node would be optimized out and the only way to express
6214 // this DBG_VALUE is by using the physical reg (or FI) as done in this
6215 // method. ArgDbgValues are hoisted to the beginning of the entry block. So
6216 // we should only emit as ArgDbgValue if the Variable is an argument to the
6217 // current function, and the dbg.value intrinsic is found in the entry
6218 // block.
6219 bool VariableIsFunctionInputArg = Variable->isParameter() &&
6220 !DL->getInlinedAt();
6221 bool IsInPrologue = SDNodeOrder == LowestSDNodeOrder;
6222 if (!IsInPrologue && !VariableIsFunctionInputArg)
6223 return false;
6224
6225 // Here we assume that a function argument on IR level only can be used to
6226 // describe one input parameter on source level. If we for example have
6227 // source code like this
6228 //
6229 // struct A { long x, y; };
6230 // void foo(struct A a, long b) {
6231 // ...
6232 // b = a.x;
6233 // ...
6234 // }
6235 //
6236 // and IR like this
6237 //
6238 // define void @foo(i32 %a1, i32 %a2, i32 %b) {
6239 // entry:
6240 // call void @llvm.dbg.value(metadata i32 %a1, "a", DW_OP_LLVM_fragment
6241 // call void @llvm.dbg.value(metadata i32 %a2, "a", DW_OP_LLVM_fragment
6242 // call void @llvm.dbg.value(metadata i32 %b, "b",
6243 // ...
6244 // call void @llvm.dbg.value(metadata i32 %a1, "b"
6245 // ...
6246 //
6247 // then the last dbg.value is describing a parameter "b" using a value that
6248 // is an argument. But since we already has used %a1 to describe a parameter
6249 // we should not handle that last dbg.value here (that would result in an
6250 // incorrect hoisting of the DBG_VALUE to the function entry).
6251 // Notice that we allow one dbg.value per IR level argument, to accommodate
6252 // for the situation with fragments above.
6253 // If there is no node for the value being handled, we return true to skip
6254 // the normal generation of debug info, as it would kill existing debug
6255 // info for the parameter in case of duplicates.
6256 if (VariableIsFunctionInputArg) {
6257 unsigned ArgNo = Arg->getArgNo();
6258 if (ArgNo >= FuncInfo.DescribedArgs.size())
6259 FuncInfo.DescribedArgs.resize(ArgNo + 1, false);
6260 else if (!IsInPrologue && FuncInfo.DescribedArgs.test(ArgNo))
6261 return !NodeMap[V].getNode();
6262 FuncInfo.DescribedArgs.set(ArgNo);
6263 }
6264 }
6265
6266 bool IsIndirect = false;
6267 std::optional<MachineOperand> Op;
6268 // Some arguments' frame index is recorded during argument lowering.
6269 int FI = FuncInfo.getArgumentFrameIndex(Arg);
6270 if (FI != std::numeric_limits<int>::max())
6272
6274 if (!Op && N.getNode()) {
6275 getUnderlyingArgRegs(ArgRegsAndSizes, N);
6276 Register Reg;
6277 if (ArgRegsAndSizes.size() == 1)
6278 Reg = ArgRegsAndSizes.front().first;
6279
6280 if (Reg && Reg.isVirtual()) {
6281 MachineRegisterInfo &RegInfo = MF.getRegInfo();
6282 Register PR = RegInfo.getLiveInPhysReg(Reg);
6283 if (PR)
6284 Reg = PR;
6285 }
6286 if (Reg) {
6288 IsIndirect = Kind != FuncArgumentDbgValueKind::Value;
6289 }
6290 }
6291
6292 if (!Op && N.getNode()) {
6293 // Check if frame index is available.
6294 SDValue LCandidate = peekThroughBitcasts(N);
6295 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(LCandidate.getNode()))
6296 if (FrameIndexSDNode *FINode =
6297 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
6298 Op = MachineOperand::CreateFI(FINode->getIndex());
6299 }
6300
6301 if (!Op) {
6302 // Create a DBG_VALUE for each decomposed value in ArgRegs to cover Reg
6303 auto splitMultiRegDbgValue =
6304 [&](ArrayRef<std::pair<Register, TypeSize>> SplitRegs) -> bool {
6305 unsigned Offset = 0;
6306 for (const auto &[Reg, RegSizeInBits] : SplitRegs) {
6307 // FIXME: Scalable sizes are not supported in fragment expressions.
6308 if (RegSizeInBits.isScalable())
6309 return false;
6310
6311 // If the expression is already a fragment, the current register
6312 // offset+size might extend beyond the fragment. In this case, only
6313 // the register bits that are inside the fragment are relevant.
6314 int RegFragmentSizeInBits = RegSizeInBits.getFixedValue();
6315 if (auto ExprFragmentInfo = Expr->getFragmentInfo()) {
6316 uint64_t ExprFragmentSizeInBits = ExprFragmentInfo->SizeInBits;
6317 // The register is entirely outside the expression fragment,
6318 // so is irrelevant for debug info.
6319 if (Offset >= ExprFragmentSizeInBits)
6320 break;
6321 // The register is partially outside the expression fragment, only
6322 // the low bits within the fragment are relevant for debug info.
6323 if (Offset + RegFragmentSizeInBits > ExprFragmentSizeInBits) {
6324 RegFragmentSizeInBits = ExprFragmentSizeInBits - Offset;
6325 }
6326 }
6327
6328 auto FragmentExpr = DIExpression::createFragmentExpression(
6329 Expr, Offset, RegFragmentSizeInBits);
6330 Offset += RegSizeInBits.getFixedValue();
6331 // If a valid fragment expression cannot be created, the variable's
6332 // correct value cannot be determined and so it is set as poison.
6333 if (!FragmentExpr) {
6334 SDDbgValue *SDV = DAG.getConstantDbgValue(
6335 Variable, Expr, PoisonValue::get(V->getType()), DL, SDNodeOrder);
6336 DAG.AddDbgValue(SDV, false);
6337 continue;
6338 }
6339 MachineInstr *NewMI = MakeVRegDbgValue(
6340 Reg, *FragmentExpr, Kind != FuncArgumentDbgValueKind::Value);
6341 FuncInfo.ArgDbgValues.push_back(NewMI);
6342 }
6343
6344 return true;
6345 };
6346
6347 // Check if ValueMap has reg number.
6349 VMI = FuncInfo.ValueMap.find(V);
6350 if (VMI != FuncInfo.ValueMap.end()) {
6351 const auto &TLI = DAG.getTargetLoweringInfo();
6352 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second,
6353 V->getType(), std::nullopt);
6354 if (RFV.occupiesMultipleRegs())
6355 return splitMultiRegDbgValue(RFV.getRegsAndSizes());
6356
6357 Op = MachineOperand::CreateReg(VMI->second, false);
6358 IsIndirect = Kind != FuncArgumentDbgValueKind::Value;
6359 } else if (ArgRegsAndSizes.size() > 1) {
6360 // This was split due to the calling convention, and no virtual register
6361 // mapping exists for the value.
6362 return splitMultiRegDbgValue(ArgRegsAndSizes);
6363 }
6364 }
6365
6366 if (!Op)
6367 return false;
6368
6369 assert(Variable->isValidLocationForIntrinsic(DL) &&
6370 "Expected inlined-at fields to agree");
6371 MachineInstr *NewMI = nullptr;
6372
6373 if (Op->isReg())
6374 NewMI = MakeVRegDbgValue(Op->getReg(), Expr, IsIndirect);
6375 else
6376 NewMI = BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), true, *Op,
6377 Variable, Expr);
6378
6379 // Otherwise, use ArgDbgValues.
6380 FuncInfo.ArgDbgValues.push_back(NewMI);
6381 return true;
6382}
6383
6384/// Return the appropriate SDDbgValue based on N.
6385SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N,
6386 DILocalVariable *Variable,
6387 DIExpression *Expr,
6388 const DebugLoc &dl,
6389 unsigned DbgSDNodeOrder) {
6390 if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) {
6391 // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe
6392 // stack slot locations.
6393 //
6394 // Consider "int x = 0; int *px = &x;". There are two kinds of interesting
6395 // debug values here after optimization:
6396 //
6397 // dbg.value(i32* %px, !"int *px", !DIExpression()), and
6398 // dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref))
6399 //
6400 // Both describe the direct values of their associated variables.
6401 return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(),
6402 /*IsIndirect*/ false, dl, DbgSDNodeOrder);
6403 }
6404 return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(),
6405 /*IsIndirect*/ false, dl, DbgSDNodeOrder);
6406}
6407
6408static unsigned FixedPointIntrinsicToOpcode(unsigned Intrinsic) {
6409 switch (Intrinsic) {
6410 case Intrinsic::smul_fix:
6411 return ISD::SMULFIX;
6412 case Intrinsic::umul_fix:
6413 return ISD::UMULFIX;
6414 case Intrinsic::smul_fix_sat:
6415 return ISD::SMULFIXSAT;
6416 case Intrinsic::umul_fix_sat:
6417 return ISD::UMULFIXSAT;
6418 case Intrinsic::sdiv_fix:
6419 return ISD::SDIVFIX;
6420 case Intrinsic::udiv_fix:
6421 return ISD::UDIVFIX;
6422 case Intrinsic::sdiv_fix_sat:
6423 return ISD::SDIVFIXSAT;
6424 case Intrinsic::udiv_fix_sat:
6425 return ISD::UDIVFIXSAT;
6426 default:
6427 llvm_unreachable("Unhandled fixed point intrinsic");
6428 }
6429}
6430
6431/// Given a @llvm.call.preallocated.setup, return the corresponding
6432/// preallocated call.
6433static const CallBase *FindPreallocatedCall(const Value *PreallocatedSetup) {
6434 assert(cast<CallBase>(PreallocatedSetup)
6436 ->getIntrinsicID() == Intrinsic::call_preallocated_setup &&
6437 "expected call_preallocated_setup Value");
6438 for (const auto *U : PreallocatedSetup->users()) {
6439 auto *UseCall = cast<CallBase>(U);
6440 const Function *Fn = UseCall->getCalledFunction();
6441 if (!Fn || Fn->getIntrinsicID() != Intrinsic::call_preallocated_arg) {
6442 return UseCall;
6443 }
6444 }
6445 llvm_unreachable("expected corresponding call to preallocated setup/arg");
6446}
6447
6448/// If DI is a debug value with an EntryValue expression, lower it using the
6449/// corresponding physical register of the associated Argument value
6450/// (guaranteed to exist by the verifier).
6451bool SelectionDAGBuilder::visitEntryValueDbgValue(
6452 ArrayRef<const Value *> Values, DILocalVariable *Variable,
6453 DIExpression *Expr, DebugLoc DbgLoc) {
6454 if (!Expr->isEntryValue() || !hasSingleElement(Values))
6455 return false;
6456
6457 // These properties are guaranteed by the verifier.
6458 const Argument *Arg = cast<Argument>(Values[0]);
6459 assert(Arg->hasAttribute(Attribute::AttrKind::SwiftAsync));
6460
6461 auto ArgIt = FuncInfo.ValueMap.find(Arg);
6462 if (ArgIt == FuncInfo.ValueMap.end()) {
6463 LLVM_DEBUG(
6464 dbgs() << "Dropping dbg.value: expression is entry_value but "
6465 "couldn't find an associated register for the Argument\n");
6466 return true;
6467 }
6468 Register ArgVReg = ArgIt->getSecond();
6469
6470 for (auto [PhysReg, VirtReg] : FuncInfo.RegInfo->liveins())
6471 if (ArgVReg == VirtReg || ArgVReg == PhysReg) {
6472 SDDbgValue *SDV = DAG.getVRegDbgValue(
6473 Variable, Expr, PhysReg, false /*IsIndidrect*/, DbgLoc, SDNodeOrder);
6474 DAG.AddDbgValue(SDV, false /*treat as dbg.declare byval parameter*/);
6475 return true;
6476 }
6477 LLVM_DEBUG(dbgs() << "Dropping dbg.value: expression is entry_value but "
6478 "couldn't find a physical register\n");
6479 return true;
6480}
6481
6482/// Lower the call to the specified intrinsic function.
6483void SelectionDAGBuilder::visitConvergenceControl(const CallInst &I,
6484 unsigned Intrinsic) {
6485 SDLoc sdl = getCurSDLoc();
6486 switch (Intrinsic) {
6487 case Intrinsic::experimental_convergence_anchor:
6488 setValue(&I, DAG.getNode(ISD::CONVERGENCECTRL_ANCHOR, sdl, MVT::Untyped));
6489 break;
6490 case Intrinsic::experimental_convergence_entry:
6491 setValue(&I, DAG.getNode(ISD::CONVERGENCECTRL_ENTRY, sdl, MVT::Untyped));
6492 break;
6493 case Intrinsic::experimental_convergence_loop: {
6494 auto Bundle = I.getOperandBundle(LLVMContext::OB_convergencectrl);
6495 auto *Token = Bundle->Inputs[0].get();
6496 setValue(&I, DAG.getNode(ISD::CONVERGENCECTRL_LOOP, sdl, MVT::Untyped,
6497 getValue(Token)));
6498 break;
6499 }
6500 }
6501}
6502
6503void SelectionDAGBuilder::visitVectorHistogram(const CallInst &I,
6504 unsigned IntrinsicID) {
6505 // For now, we're only lowering an 'add' histogram.
6506 // We can add others later, e.g. saturating adds, min/max.
6507 assert(IntrinsicID == Intrinsic::experimental_vector_histogram_add &&
6508 "Tried to lower unsupported histogram type");
6509 SDLoc sdl = getCurSDLoc();
6510 Value *Ptr = I.getOperand(0);
6511 SDValue Inc = getValue(I.getOperand(1));
6512 SDValue Mask = getValue(I.getOperand(2));
6513
6514 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6515 DataLayout TargetDL = DAG.getDataLayout();
6516 EVT VT = Inc.getValueType();
6517 Align Alignment = DAG.getEVTAlign(VT);
6518
6519 const MDNode *Ranges = getRangeMetadata(I);
6520
6521 SDValue Root = DAG.getRoot();
6522 SDValue Base;
6523 SDValue Index;
6524 SDValue Scale;
6525 bool UniformBase = getUniformBase(Ptr, Base, Index, Scale, this,
6526 I.getParent(), VT.getScalarStoreSize());
6527
6528 unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace();
6529
6530 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
6531 MachinePointerInfo(AS),
6533 MemoryLocation::UnknownSize, Alignment, I.getAAMetadata(), Ranges);
6534
6535 if (!UniformBase) {
6536 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
6537 Index = getValue(Ptr);
6538 Scale =
6539 DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
6540 }
6541
6542 EVT IdxVT = Index.getValueType();
6543 EVT EltTy = IdxVT.getVectorElementType();
6544 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
6545 EVT NewIdxVT = IdxVT.changeVectorElementType(*DAG.getContext(), EltTy);
6546 Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index);
6547 }
6548
6549 SDValue ID = DAG.getTargetConstant(IntrinsicID, sdl, MVT::i32);
6550
6551 SDValue Ops[] = {Root, Inc, Mask, Base, Index, Scale, ID};
6552 SDValue Histogram = DAG.getMaskedHistogram(DAG.getVTList(MVT::Other), VT, sdl,
6553 Ops, MMO, ISD::SIGNED_SCALED);
6554
6555 setValue(&I, Histogram);
6556 DAG.setRoot(Histogram);
6557}
6558
6559void SelectionDAGBuilder::visitVectorExtractLastActive(const CallInst &I,
6560 unsigned Intrinsic) {
6561 assert(Intrinsic == Intrinsic::experimental_vector_extract_last_active &&
6562 "Tried lowering invalid vector extract last");
6563 SDLoc sdl = getCurSDLoc();
6564 const DataLayout &Layout = DAG.getDataLayout();
6565 SDValue Data = getValue(I.getOperand(0));
6566 SDValue Mask = getValue(I.getOperand(1));
6567
6568 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6569 EVT ResVT = TLI.getValueType(Layout, I.getType());
6570
6571 EVT ExtVT = TLI.getVectorIdxTy(Layout);
6572 SDValue Idx = DAG.getNode(ISD::VECTOR_FIND_LAST_ACTIVE, sdl, ExtVT, Mask);
6573 SDValue Result = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, sdl, ResVT, Data, Idx);
6574
6575 Value *Default = I.getOperand(2);
6577 SDValue PassThru = getValue(Default);
6578 EVT BoolVT = Mask.getValueType().getScalarType();
6579 SDValue AnyActive = DAG.getNode(ISD::VECREDUCE_OR, sdl, BoolVT, Mask);
6580 Result = DAG.getSelect(sdl, ResVT, AnyActive, Result, PassThru);
6581 }
6582
6583 setValue(&I, Result);
6584}
6585
6586/// Lower the call to the specified intrinsic function.
6587void SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I,
6588 unsigned Intrinsic) {
6589 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6590 SDLoc sdl = getCurSDLoc();
6591 DebugLoc dl = getCurDebugLoc();
6592 SDValue Res;
6593
6594 SDNodeFlags Flags;
6595 if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
6596 Flags.copyFMF(*FPOp);
6597
6598 switch (Intrinsic) {
6599 default:
6600 // By default, turn this into a target intrinsic node.
6601 visitTargetIntrinsic(I, Intrinsic);
6602 return;
6603 case Intrinsic::vscale: {
6604 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6605 setValue(&I, DAG.getVScale(sdl, VT, APInt(VT.getSizeInBits(), 1)));
6606 return;
6607 }
6608 case Intrinsic::vastart: visitVAStart(I); return;
6609 case Intrinsic::vaend: visitVAEnd(I); return;
6610 case Intrinsic::vacopy: visitVACopy(I); return;
6611 case Intrinsic::returnaddress:
6612 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl,
6613 TLI.getValueType(DAG.getDataLayout(), I.getType()),
6614 getValue(I.getArgOperand(0))));
6615 return;
6616 case Intrinsic::addressofreturnaddress:
6617 setValue(&I,
6618 DAG.getNode(ISD::ADDROFRETURNADDR, sdl,
6619 TLI.getValueType(DAG.getDataLayout(), I.getType())));
6620 return;
6621 case Intrinsic::sponentry:
6622 setValue(&I,
6623 DAG.getNode(ISD::SPONENTRY, sdl,
6624 TLI.getValueType(DAG.getDataLayout(), I.getType())));
6625 return;
6626 case Intrinsic::frameaddress:
6627 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl,
6628 TLI.getFrameIndexTy(DAG.getDataLayout()),
6629 getValue(I.getArgOperand(0))));
6630 return;
6631 case Intrinsic::read_volatile_register:
6632 case Intrinsic::read_register: {
6633 Value *Reg = I.getArgOperand(0);
6634 SDValue Chain = getRoot();
6636 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
6637 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6638 Res = DAG.getNode(ISD::READ_REGISTER, sdl,
6639 DAG.getVTList(VT, MVT::Other), Chain, RegName);
6640 setValue(&I, Res);
6641 DAG.setRoot(Res.getValue(1));
6642 return;
6643 }
6644 case Intrinsic::write_register: {
6645 Value *Reg = I.getArgOperand(0);
6646 Value *RegValue = I.getArgOperand(1);
6647 SDValue Chain = getRoot();
6649 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
6650 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain,
6651 RegName, getValue(RegValue)));
6652 return;
6653 }
6654 case Intrinsic::memcpy:
6655 case Intrinsic::memcpy_inline: {
6656 const auto &MCI = cast<MemCpyInst>(I);
6657 SDValue Dst = getValue(I.getArgOperand(0));
6658 SDValue Src = getValue(I.getArgOperand(1));
6659 SDValue Size = getValue(I.getArgOperand(2));
6660 assert((!MCI.isForceInlined() || isa<ConstantSDNode>(Size)) &&
6661 "memcpy_inline needs constant size");
6662 // @llvm.memcpy.inline defines 0 and 1 to both mean no alignment.
6663 Align DstAlign = MCI.getDestAlign().valueOrOne();
6664 Align SrcAlign = MCI.getSourceAlign().valueOrOne();
6665 Align Alignment = std::min(DstAlign, SrcAlign);
6666 bool isVol = MCI.isVolatile();
6667 // FIXME: Support passing different dest/src alignments to the memcpy DAG
6668 // node.
6669 SDValue Root = isVol ? getRoot() : getMemoryRoot();
6670 SDValue MC = DAG.getMemcpy(Root, sdl, Dst, Src, Size, Alignment, isVol,
6671 MCI.isForceInlined(), &I, std::nullopt,
6672 MachinePointerInfo(I.getArgOperand(0)),
6673 MachinePointerInfo(I.getArgOperand(1)),
6674 I.getAAMetadata(), BatchAA);
6675 updateDAGForMaybeTailCall(MC);
6676 return;
6677 }
6678 case Intrinsic::memset:
6679 case Intrinsic::memset_inline: {
6680 const auto &MSII = cast<MemSetInst>(I);
6681 SDValue Dst = getValue(I.getArgOperand(0));
6682 SDValue Value = getValue(I.getArgOperand(1));
6683 SDValue Size = getValue(I.getArgOperand(2));
6684 assert((!MSII.isForceInlined() || isa<ConstantSDNode>(Size)) &&
6685 "memset_inline needs constant size");
6686 // @llvm.memset defines 0 and 1 to both mean no alignment.
6687 Align DstAlign = MSII.getDestAlign().valueOrOne();
6688 bool isVol = MSII.isVolatile();
6689 SDValue Root = isVol ? getRoot() : getMemoryRoot();
6690 SDValue MC = DAG.getMemset(
6691 Root, sdl, Dst, Value, Size, DstAlign, isVol, MSII.isForceInlined(),
6692 &I, MachinePointerInfo(I.getArgOperand(0)), I.getAAMetadata());
6693 updateDAGForMaybeTailCall(MC);
6694 return;
6695 }
6696 case Intrinsic::memmove: {
6697 const auto &MMI = cast<MemMoveInst>(I);
6698 SDValue Op1 = getValue(I.getArgOperand(0));
6699 SDValue Op2 = getValue(I.getArgOperand(1));
6700 SDValue Op3 = getValue(I.getArgOperand(2));
6701 // @llvm.memmove defines 0 and 1 to both mean no alignment.
6702 Align DstAlign = MMI.getDestAlign().valueOrOne();
6703 Align SrcAlign = MMI.getSourceAlign().valueOrOne();
6704 Align Alignment = std::min(DstAlign, SrcAlign);
6705 bool isVol = MMI.isVolatile();
6706 // FIXME: Support passing different dest/src alignments to the memmove DAG
6707 // node.
6708 SDValue Root = isVol ? getRoot() : getMemoryRoot();
6709 SDValue MM = DAG.getMemmove(Root, sdl, Op1, Op2, Op3, Alignment, isVol, &I,
6710 /* OverrideTailCall */ std::nullopt,
6711 MachinePointerInfo(I.getArgOperand(0)),
6712 MachinePointerInfo(I.getArgOperand(1)),
6713 I.getAAMetadata(), BatchAA);
6714 updateDAGForMaybeTailCall(MM);
6715 return;
6716 }
6717 case Intrinsic::memcpy_element_unordered_atomic: {
6718 auto &MI = cast<AnyMemCpyInst>(I);
6719 SDValue Dst = getValue(MI.getRawDest());
6720 SDValue Src = getValue(MI.getRawSource());
6721 SDValue Length = getValue(MI.getLength());
6722
6723 Type *LengthTy = MI.getLength()->getType();
6724 unsigned ElemSz = MI.getElementSizeInBytes();
6725 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
6726 SDValue MC =
6727 DAG.getAtomicMemcpy(getRoot(), sdl, Dst, Src, Length, LengthTy, ElemSz,
6728 isTC, MachinePointerInfo(MI.getRawDest()),
6729 MachinePointerInfo(MI.getRawSource()));
6730 updateDAGForMaybeTailCall(MC);
6731 return;
6732 }
6733 case Intrinsic::memmove_element_unordered_atomic: {
6734 auto &MI = cast<AnyMemMoveInst>(I);
6735 SDValue Dst = getValue(MI.getRawDest());
6736 SDValue Src = getValue(MI.getRawSource());
6737 SDValue Length = getValue(MI.getLength());
6738
6739 Type *LengthTy = MI.getLength()->getType();
6740 unsigned ElemSz = MI.getElementSizeInBytes();
6741 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
6742 SDValue MC =
6743 DAG.getAtomicMemmove(getRoot(), sdl, Dst, Src, Length, LengthTy, ElemSz,
6744 isTC, MachinePointerInfo(MI.getRawDest()),
6745 MachinePointerInfo(MI.getRawSource()));
6746 updateDAGForMaybeTailCall(MC);
6747 return;
6748 }
6749 case Intrinsic::memset_element_unordered_atomic: {
6750 auto &MI = cast<AnyMemSetInst>(I);
6751 SDValue Dst = getValue(MI.getRawDest());
6752 SDValue Val = getValue(MI.getValue());
6753 SDValue Length = getValue(MI.getLength());
6754
6755 Type *LengthTy = MI.getLength()->getType();
6756 unsigned ElemSz = MI.getElementSizeInBytes();
6757 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
6758 SDValue MC =
6759 DAG.getAtomicMemset(getRoot(), sdl, Dst, Val, Length, LengthTy, ElemSz,
6760 isTC, MachinePointerInfo(MI.getRawDest()));
6761 updateDAGForMaybeTailCall(MC);
6762 return;
6763 }
6764 case Intrinsic::call_preallocated_setup: {
6765 const CallBase *PreallocatedCall = FindPreallocatedCall(&I);
6766 SDValue SrcValue = DAG.getSrcValue(PreallocatedCall);
6767 SDValue Res = DAG.getNode(ISD::PREALLOCATED_SETUP, sdl, MVT::Other,
6768 getRoot(), SrcValue);
6769 setValue(&I, Res);
6770 DAG.setRoot(Res);
6771 return;
6772 }
6773 case Intrinsic::call_preallocated_arg: {
6774 const CallBase *PreallocatedCall = FindPreallocatedCall(I.getOperand(0));
6775 SDValue SrcValue = DAG.getSrcValue(PreallocatedCall);
6776 SDValue Ops[3];
6777 Ops[0] = getRoot();
6778 Ops[1] = SrcValue;
6779 Ops[2] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(1)), sdl,
6780 MVT::i32); // arg index
6781 SDValue Res = DAG.getNode(
6783 DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Ops);
6784 setValue(&I, Res);
6785 DAG.setRoot(Res.getValue(1));
6786 return;
6787 }
6788
6789 case Intrinsic::eh_typeid_for: {
6790 // Find the type id for the given typeinfo.
6791 GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0));
6792 unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV);
6793 Res = DAG.getConstant(TypeID, sdl, MVT::i32);
6794 setValue(&I, Res);
6795 return;
6796 }
6797
6798 case Intrinsic::eh_return_i32:
6799 case Intrinsic::eh_return_i64:
6800 DAG.getMachineFunction().setCallsEHReturn(true);
6801 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl,
6802 MVT::Other,
6804 getValue(I.getArgOperand(0)),
6805 getValue(I.getArgOperand(1))));
6806 return;
6807 case Intrinsic::eh_unwind_init:
6808 DAG.getMachineFunction().setCallsUnwindInit(true);
6809 return;
6810 case Intrinsic::eh_dwarf_cfa:
6811 setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl,
6812 TLI.getPointerTy(DAG.getDataLayout()),
6813 getValue(I.getArgOperand(0))));
6814 return;
6815 case Intrinsic::eh_sjlj_callsite: {
6816 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(0));
6817 assert(FuncInfo.getCurrentCallSite() == 0 && "Overlapping call sites!");
6818
6819 FuncInfo.setCurrentCallSite(CI->getZExtValue());
6820 return;
6821 }
6822 case Intrinsic::eh_sjlj_functioncontext: {
6823 // Get and store the index of the function context.
6824 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
6825 AllocaInst *FnCtx =
6826 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts());
6827 int FI = FuncInfo.StaticAllocaMap[FnCtx];
6829 return;
6830 }
6831 case Intrinsic::eh_sjlj_setjmp: {
6832 SDValue Ops[2];
6833 Ops[0] = getRoot();
6834 Ops[1] = getValue(I.getArgOperand(0));
6835 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl,
6836 DAG.getVTList(MVT::i32, MVT::Other), Ops);
6837 setValue(&I, Op.getValue(0));
6838 DAG.setRoot(Op.getValue(1));
6839 return;
6840 }
6841 case Intrinsic::eh_sjlj_longjmp:
6842 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other,
6843 getRoot(), getValue(I.getArgOperand(0))));
6844 return;
6845 case Intrinsic::eh_sjlj_setup_dispatch:
6846 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other,
6847 getRoot()));
6848 return;
6849 case Intrinsic::masked_gather:
6850 visitMaskedGather(I);
6851 return;
6852 case Intrinsic::masked_load:
6853 visitMaskedLoad(I);
6854 return;
6855 case Intrinsic::masked_scatter:
6856 visitMaskedScatter(I);
6857 return;
6858 case Intrinsic::masked_store:
6859 visitMaskedStore(I);
6860 return;
6861 case Intrinsic::masked_expandload:
6862 visitMaskedLoad(I, true /* IsExpanding */);
6863 return;
6864 case Intrinsic::masked_compressstore:
6865 visitMaskedStore(I, true /* IsCompressing */);
6866 return;
6867 case Intrinsic::powi:
6868 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)),
6869 getValue(I.getArgOperand(1)), DAG));
6870 return;
6871 case Intrinsic::log:
6872 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6873 return;
6874 case Intrinsic::log2:
6875 setValue(&I,
6876 expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6877 return;
6878 case Intrinsic::log10:
6879 setValue(&I,
6880 expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6881 return;
6882 case Intrinsic::exp:
6883 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6884 return;
6885 case Intrinsic::exp2:
6886 setValue(&I,
6887 expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6888 return;
6889 case Intrinsic::pow:
6890 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)),
6891 getValue(I.getArgOperand(1)), DAG, TLI, Flags));
6892 return;
6893 case Intrinsic::sqrt:
6894 case Intrinsic::fabs:
6895 case Intrinsic::sin:
6896 case Intrinsic::cos:
6897 case Intrinsic::tan:
6898 case Intrinsic::asin:
6899 case Intrinsic::acos:
6900 case Intrinsic::atan:
6901 case Intrinsic::sinh:
6902 case Intrinsic::cosh:
6903 case Intrinsic::tanh:
6904 case Intrinsic::exp10:
6905 case Intrinsic::floor:
6906 case Intrinsic::ceil:
6907 case Intrinsic::trunc:
6908 case Intrinsic::rint:
6909 case Intrinsic::nearbyint:
6910 case Intrinsic::round:
6911 case Intrinsic::roundeven:
6912 case Intrinsic::canonicalize: {
6913 unsigned Opcode;
6914 // clang-format off
6915 switch (Intrinsic) {
6916 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here.
6917 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break;
6918 case Intrinsic::fabs: Opcode = ISD::FABS; break;
6919 case Intrinsic::sin: Opcode = ISD::FSIN; break;
6920 case Intrinsic::cos: Opcode = ISD::FCOS; break;
6921 case Intrinsic::tan: Opcode = ISD::FTAN; break;
6922 case Intrinsic::asin: Opcode = ISD::FASIN; break;
6923 case Intrinsic::acos: Opcode = ISD::FACOS; break;
6924 case Intrinsic::atan: Opcode = ISD::FATAN; break;
6925 case Intrinsic::sinh: Opcode = ISD::FSINH; break;
6926 case Intrinsic::cosh: Opcode = ISD::FCOSH; break;
6927 case Intrinsic::tanh: Opcode = ISD::FTANH; break;
6928 case Intrinsic::exp10: Opcode = ISD::FEXP10; break;
6929 case Intrinsic::floor: Opcode = ISD::FFLOOR; break;
6930 case Intrinsic::ceil: Opcode = ISD::FCEIL; break;
6931 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break;
6932 case Intrinsic::rint: Opcode = ISD::FRINT; break;
6933 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break;
6934 case Intrinsic::round: Opcode = ISD::FROUND; break;
6935 case Intrinsic::roundeven: Opcode = ISD::FROUNDEVEN; break;
6936 case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break;
6937 }
6938 // clang-format on
6939
6940 setValue(&I, DAG.getNode(Opcode, sdl,
6941 getValue(I.getArgOperand(0)).getValueType(),
6942 getValue(I.getArgOperand(0)), Flags));
6943 return;
6944 }
6945 case Intrinsic::atan2:
6946 setValue(&I, DAG.getNode(ISD::FATAN2, sdl,
6947 getValue(I.getArgOperand(0)).getValueType(),
6948 getValue(I.getArgOperand(0)),
6949 getValue(I.getArgOperand(1)), Flags));
6950 return;
6951 case Intrinsic::lround:
6952 case Intrinsic::llround:
6953 case Intrinsic::lrint:
6954 case Intrinsic::llrint: {
6955 unsigned Opcode;
6956 // clang-format off
6957 switch (Intrinsic) {
6958 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here.
6959 case Intrinsic::lround: Opcode = ISD::LROUND; break;
6960 case Intrinsic::llround: Opcode = ISD::LLROUND; break;
6961 case Intrinsic::lrint: Opcode = ISD::LRINT; break;
6962 case Intrinsic::llrint: Opcode = ISD::LLRINT; break;
6963 }
6964 // clang-format on
6965
6966 EVT RetVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6967 setValue(&I, DAG.getNode(Opcode, sdl, RetVT,
6968 getValue(I.getArgOperand(0))));
6969 return;
6970 }
6971 case Intrinsic::minnum:
6972 setValue(&I, DAG.getNode(ISD::FMINNUM, sdl,
6973 getValue(I.getArgOperand(0)).getValueType(),
6974 getValue(I.getArgOperand(0)),
6975 getValue(I.getArgOperand(1)), Flags));
6976 return;
6977 case Intrinsic::maxnum:
6978 setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl,
6979 getValue(I.getArgOperand(0)).getValueType(),
6980 getValue(I.getArgOperand(0)),
6981 getValue(I.getArgOperand(1)), Flags));
6982 return;
6983 case Intrinsic::minimum:
6984 setValue(&I, DAG.getNode(ISD::FMINIMUM, sdl,
6985 getValue(I.getArgOperand(0)).getValueType(),
6986 getValue(I.getArgOperand(0)),
6987 getValue(I.getArgOperand(1)), Flags));
6988 return;
6989 case Intrinsic::maximum:
6990 setValue(&I, DAG.getNode(ISD::FMAXIMUM, sdl,
6991 getValue(I.getArgOperand(0)).getValueType(),
6992 getValue(I.getArgOperand(0)),
6993 getValue(I.getArgOperand(1)), Flags));
6994 return;
6995 case Intrinsic::minimumnum:
6996 setValue(&I, DAG.getNode(ISD::FMINIMUMNUM, sdl,
6997 getValue(I.getArgOperand(0)).getValueType(),
6998 getValue(I.getArgOperand(0)),
6999 getValue(I.getArgOperand(1)), Flags));
7000 return;
7001 case Intrinsic::maximumnum:
7002 setValue(&I, DAG.getNode(ISD::FMAXIMUMNUM, sdl,
7003 getValue(I.getArgOperand(0)).getValueType(),
7004 getValue(I.getArgOperand(0)),
7005 getValue(I.getArgOperand(1)), Flags));
7006 return;
7007 case Intrinsic::copysign:
7008 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl,
7009 getValue(I.getArgOperand(0)).getValueType(),
7010 getValue(I.getArgOperand(0)),
7011 getValue(I.getArgOperand(1)), Flags));
7012 return;
7013 case Intrinsic::ldexp:
7014 setValue(&I, DAG.getNode(ISD::FLDEXP, sdl,
7015 getValue(I.getArgOperand(0)).getValueType(),
7016 getValue(I.getArgOperand(0)),
7017 getValue(I.getArgOperand(1)), Flags));
7018 return;
7019 case Intrinsic::modf:
7020 case Intrinsic::sincos:
7021 case Intrinsic::sincospi:
7022 case Intrinsic::frexp: {
7023 unsigned Opcode;
7024 switch (Intrinsic) {
7025 default:
7026 llvm_unreachable("unexpected intrinsic");
7027 case Intrinsic::sincos:
7028 Opcode = ISD::FSINCOS;
7029 break;
7030 case Intrinsic::sincospi:
7031 Opcode = ISD::FSINCOSPI;
7032 break;
7033 case Intrinsic::modf:
7034 Opcode = ISD::FMODF;
7035 break;
7036 case Intrinsic::frexp:
7037 Opcode = ISD::FFREXP;
7038 break;
7039 }
7040 SmallVector<EVT, 2> ValueVTs;
7041 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs);
7042 SDVTList VTs = DAG.getVTList(ValueVTs);
7043 setValue(
7044 &I, DAG.getNode(Opcode, sdl, VTs, getValue(I.getArgOperand(0)), Flags));
7045 return;
7046 }
7047 case Intrinsic::arithmetic_fence: {
7048 setValue(&I, DAG.getNode(ISD::ARITH_FENCE, sdl,
7049 getValue(I.getArgOperand(0)).getValueType(),
7050 getValue(I.getArgOperand(0)), Flags));
7051 return;
7052 }
7053 case Intrinsic::fma:
7054 setValue(&I, DAG.getNode(
7055 ISD::FMA, sdl, getValue(I.getArgOperand(0)).getValueType(),
7056 getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)),
7057 getValue(I.getArgOperand(2)), Flags));
7058 return;
7059#define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC) \
7060 case Intrinsic::INTRINSIC:
7061#include "llvm/IR/ConstrainedOps.def"
7062 visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I));
7063 return;
7064#define BEGIN_REGISTER_VP_INTRINSIC(VPID, ...) case Intrinsic::VPID:
7065#include "llvm/IR/VPIntrinsics.def"
7066 visitVectorPredicationIntrinsic(cast<VPIntrinsic>(I));
7067 return;
7068 case Intrinsic::fptrunc_round: {
7069 // Get the last argument, the metadata and convert it to an integer in the
7070 // call
7071 Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(1))->getMetadata();
7072 std::optional<RoundingMode> RoundMode =
7073 convertStrToRoundingMode(cast<MDString>(MD)->getString());
7074
7075 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7076
7077 // Propagate fast-math-flags from IR to node(s).
7078 SDNodeFlags Flags;
7079 Flags.copyFMF(*cast<FPMathOperator>(&I));
7080 SelectionDAG::FlagInserter FlagsInserter(DAG, Flags);
7081
7083 Result = DAG.getNode(
7084 ISD::FPTRUNC_ROUND, sdl, VT, getValue(I.getArgOperand(0)),
7085 DAG.getTargetConstant((int)*RoundMode, sdl, MVT::i32));
7086 setValue(&I, Result);
7087
7088 return;
7089 }
7090 case Intrinsic::fmuladd: {
7091 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7092 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
7093 TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) {
7094 setValue(&I, DAG.getNode(ISD::FMA, sdl,
7095 getValue(I.getArgOperand(0)).getValueType(),
7096 getValue(I.getArgOperand(0)),
7097 getValue(I.getArgOperand(1)),
7098 getValue(I.getArgOperand(2)), Flags));
7099 } else if (TLI.isOperationLegalOrCustom(ISD::FMULADD, VT)) {
7100 // TODO: Support splitting the vector.
7101 setValue(&I, DAG.getNode(ISD::FMULADD, sdl,
7102 getValue(I.getArgOperand(0)).getValueType(),
7103 getValue(I.getArgOperand(0)),
7104 getValue(I.getArgOperand(1)),
7105 getValue(I.getArgOperand(2)), Flags));
7106 } else {
7107 // TODO: Intrinsic calls should have fast-math-flags.
7108 SDValue Mul = DAG.getNode(
7109 ISD::FMUL, sdl, getValue(I.getArgOperand(0)).getValueType(),
7110 getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)), Flags);
7111 SDValue Add = DAG.getNode(ISD::FADD, sdl,
7112 getValue(I.getArgOperand(0)).getValueType(),
7113 Mul, getValue(I.getArgOperand(2)), Flags);
7114 setValue(&I, Add);
7115 }
7116 return;
7117 }
7118 case Intrinsic::fptosi_sat: {
7119 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7120 setValue(&I, DAG.getNode(ISD::FP_TO_SINT_SAT, sdl, VT,
7121 getValue(I.getArgOperand(0)),
7122 DAG.getValueType(VT.getScalarType())));
7123 return;
7124 }
7125 case Intrinsic::fptoui_sat: {
7126 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7127 setValue(&I, DAG.getNode(ISD::FP_TO_UINT_SAT, sdl, VT,
7128 getValue(I.getArgOperand(0)),
7129 DAG.getValueType(VT.getScalarType())));
7130 return;
7131 }
7132 case Intrinsic::set_rounding:
7133 Res = DAG.getNode(ISD::SET_ROUNDING, sdl, MVT::Other,
7134 {getRoot(), getValue(I.getArgOperand(0))});
7135 setValue(&I, Res);
7136 DAG.setRoot(Res.getValue(0));
7137 return;
7138 case Intrinsic::is_fpclass: {
7139 const DataLayout DLayout = DAG.getDataLayout();
7140 EVT DestVT = TLI.getValueType(DLayout, I.getType());
7141 EVT ArgVT = TLI.getValueType(DLayout, I.getArgOperand(0)->getType());
7142 FPClassTest Test = static_cast<FPClassTest>(
7143 cast<ConstantInt>(I.getArgOperand(1))->getZExtValue());
7144 MachineFunction &MF = DAG.getMachineFunction();
7145 const Function &F = MF.getFunction();
7146 SDValue Op = getValue(I.getArgOperand(0));
7147 SDNodeFlags Flags;
7148 Flags.setNoFPExcept(
7149 !F.getAttributes().hasFnAttr(llvm::Attribute::StrictFP));
7150 // If ISD::IS_FPCLASS should be expanded, do it right now, because the
7151 // expansion can use illegal types. Making expansion early allows
7152 // legalizing these types prior to selection.
7153 if (!TLI.isOperationLegal(ISD::IS_FPCLASS, ArgVT) &&
7154 !TLI.isOperationCustom(ISD::IS_FPCLASS, ArgVT)) {
7155 SDValue Result = TLI.expandIS_FPCLASS(DestVT, Op, Test, Flags, sdl, DAG);
7156 setValue(&I, Result);
7157 return;
7158 }
7159
7160 SDValue Check = DAG.getTargetConstant(Test, sdl, MVT::i32);
7161 SDValue V = DAG.getNode(ISD::IS_FPCLASS, sdl, DestVT, {Op, Check}, Flags);
7162 setValue(&I, V);
7163 return;
7164 }
7165 case Intrinsic::get_fpenv: {
7166 const DataLayout DLayout = DAG.getDataLayout();
7167 EVT EnvVT = TLI.getValueType(DLayout, I.getType());
7168 Align TempAlign = DAG.getEVTAlign(EnvVT);
7169 SDValue Chain = getRoot();
7170 // Use GET_FPENV if it is legal or custom. Otherwise use memory-based node
7171 // and temporary storage in stack.
7172 if (TLI.isOperationLegalOrCustom(ISD::GET_FPENV, EnvVT)) {
7173 Res = DAG.getNode(
7174 ISD::GET_FPENV, sdl,
7175 DAG.getVTList(TLI.getValueType(DAG.getDataLayout(), I.getType()),
7176 MVT::Other),
7177 Chain);
7178 } else {
7179 SDValue Temp = DAG.CreateStackTemporary(EnvVT, TempAlign.value());
7180 int SPFI = cast<FrameIndexSDNode>(Temp.getNode())->getIndex();
7181 auto MPI =
7182 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI);
7183 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
7185 TempAlign);
7186 Chain = DAG.getGetFPEnv(Chain, sdl, Temp, EnvVT, MMO);
7187 Res = DAG.getLoad(EnvVT, sdl, Chain, Temp, MPI);
7188 }
7189 setValue(&I, Res);
7190 DAG.setRoot(Res.getValue(1));
7191 return;
7192 }
7193 case Intrinsic::set_fpenv: {
7194 const DataLayout DLayout = DAG.getDataLayout();
7195 SDValue Env = getValue(I.getArgOperand(0));
7196 EVT EnvVT = Env.getValueType();
7197 Align TempAlign = DAG.getEVTAlign(EnvVT);
7198 SDValue Chain = getRoot();
7199 // If SET_FPENV is custom or legal, use it. Otherwise use loading
7200 // environment from memory.
7201 if (TLI.isOperationLegalOrCustom(ISD::SET_FPENV, EnvVT)) {
7202 Chain = DAG.getNode(ISD::SET_FPENV, sdl, MVT::Other, Chain, Env);
7203 } else {
7204 // Allocate space in stack, copy environment bits into it and use this
7205 // memory in SET_FPENV_MEM.
7206 SDValue Temp = DAG.CreateStackTemporary(EnvVT, TempAlign.value());
7207 int SPFI = cast<FrameIndexSDNode>(Temp.getNode())->getIndex();
7208 auto MPI =
7209 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI);
7210 Chain = DAG.getStore(Chain, sdl, Env, Temp, MPI, TempAlign,
7212 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
7214 TempAlign);
7215 Chain = DAG.getSetFPEnv(Chain, sdl, Temp, EnvVT, MMO);
7216 }
7217 DAG.setRoot(Chain);
7218 return;
7219 }
7220 case Intrinsic::reset_fpenv:
7221 DAG.setRoot(DAG.getNode(ISD::RESET_FPENV, sdl, MVT::Other, getRoot()));
7222 return;
7223 case Intrinsic::get_fpmode:
7224 Res = DAG.getNode(
7225 ISD::GET_FPMODE, sdl,
7226 DAG.getVTList(TLI.getValueType(DAG.getDataLayout(), I.getType()),
7227 MVT::Other),
7228 DAG.getRoot());
7229 setValue(&I, Res);
7230 DAG.setRoot(Res.getValue(1));
7231 return;
7232 case Intrinsic::set_fpmode:
7233 Res = DAG.getNode(ISD::SET_FPMODE, sdl, MVT::Other, {DAG.getRoot()},
7234 getValue(I.getArgOperand(0)));
7235 DAG.setRoot(Res);
7236 return;
7237 case Intrinsic::reset_fpmode: {
7238 Res = DAG.getNode(ISD::RESET_FPMODE, sdl, MVT::Other, getRoot());
7239 DAG.setRoot(Res);
7240 return;
7241 }
7242 case Intrinsic::pcmarker: {
7243 SDValue Tmp = getValue(I.getArgOperand(0));
7244 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp));
7245 return;
7246 }
7247 case Intrinsic::readcyclecounter: {
7248 SDValue Op = getRoot();
7249 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl,
7250 DAG.getVTList(MVT::i64, MVT::Other), Op);
7251 setValue(&I, Res);
7252 DAG.setRoot(Res.getValue(1));
7253 return;
7254 }
7255 case Intrinsic::readsteadycounter: {
7256 SDValue Op = getRoot();
7257 Res = DAG.getNode(ISD::READSTEADYCOUNTER, sdl,
7258 DAG.getVTList(MVT::i64, MVT::Other), Op);
7259 setValue(&I, Res);
7260 DAG.setRoot(Res.getValue(1));
7261 return;
7262 }
7263 case Intrinsic::bitreverse:
7264 setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl,
7265 getValue(I.getArgOperand(0)).getValueType(),
7266 getValue(I.getArgOperand(0))));
7267 return;
7268 case Intrinsic::bswap:
7269 setValue(&I, DAG.getNode(ISD::BSWAP, sdl,
7270 getValue(I.getArgOperand(0)).getValueType(),
7271 getValue(I.getArgOperand(0))));
7272 return;
7273 case Intrinsic::cttz: {
7274 SDValue Arg = getValue(I.getArgOperand(0));
7275 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
7276 EVT Ty = Arg.getValueType();
7277 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF,
7278 sdl, Ty, Arg));
7279 return;
7280 }
7281 case Intrinsic::ctlz: {
7282 SDValue Arg = getValue(I.getArgOperand(0));
7283 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
7284 EVT Ty = Arg.getValueType();
7285 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF,
7286 sdl, Ty, Arg));
7287 return;
7288 }
7289 case Intrinsic::ctpop: {
7290 SDValue Arg = getValue(I.getArgOperand(0));
7291 EVT Ty = Arg.getValueType();
7292 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg));
7293 return;
7294 }
7295 case Intrinsic::fshl:
7296 case Intrinsic::fshr: {
7297 bool IsFSHL = Intrinsic == Intrinsic::fshl;
7298 SDValue X = getValue(I.getArgOperand(0));
7299 SDValue Y = getValue(I.getArgOperand(1));
7300 SDValue Z = getValue(I.getArgOperand(2));
7301 EVT VT = X.getValueType();
7302
7303 if (X == Y) {
7304 auto RotateOpcode = IsFSHL ? ISD::ROTL : ISD::ROTR;
7305 setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, Z));
7306 } else {
7307 auto FunnelOpcode = IsFSHL ? ISD::FSHL : ISD::FSHR;
7308 setValue(&I, DAG.getNode(FunnelOpcode, sdl, VT, X, Y, Z));
7309 }
7310 return;
7311 }
7312 case Intrinsic::clmul: {
7313 SDValue X = getValue(I.getArgOperand(0));
7314 SDValue Y = getValue(I.getArgOperand(1));
7315 setValue(&I, DAG.getNode(ISD::CLMUL, sdl, X.getValueType(), X, Y));
7316 return;
7317 }
7318 case Intrinsic::sadd_sat: {
7319 SDValue Op1 = getValue(I.getArgOperand(0));
7320 SDValue Op2 = getValue(I.getArgOperand(1));
7321 setValue(&I, DAG.getNode(ISD::SADDSAT, sdl, Op1.getValueType(), Op1, Op2));
7322 return;
7323 }
7324 case Intrinsic::uadd_sat: {
7325 SDValue Op1 = getValue(I.getArgOperand(0));
7326 SDValue Op2 = getValue(I.getArgOperand(1));
7327 setValue(&I, DAG.getNode(ISD::UADDSAT, sdl, Op1.getValueType(), Op1, Op2));
7328 return;
7329 }
7330 case Intrinsic::ssub_sat: {
7331 SDValue Op1 = getValue(I.getArgOperand(0));
7332 SDValue Op2 = getValue(I.getArgOperand(1));
7333 setValue(&I, DAG.getNode(ISD::SSUBSAT, sdl, Op1.getValueType(), Op1, Op2));
7334 return;
7335 }
7336 case Intrinsic::usub_sat: {
7337 SDValue Op1 = getValue(I.getArgOperand(0));
7338 SDValue Op2 = getValue(I.getArgOperand(1));
7339 setValue(&I, DAG.getNode(ISD::USUBSAT, sdl, Op1.getValueType(), Op1, Op2));
7340 return;
7341 }
7342 case Intrinsic::sshl_sat:
7343 case Intrinsic::ushl_sat: {
7344 SDValue Op1 = getValue(I.getArgOperand(0));
7345 SDValue Op2 = getValue(I.getArgOperand(1));
7346
7347 EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy(
7348 Op1.getValueType(), DAG.getDataLayout());
7349
7350 // Coerce the shift amount to the right type if we can. This exposes the
7351 // truncate or zext to optimization early.
7352 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
7353 assert(ShiftTy.getSizeInBits() >=
7355 "Unexpected shift type");
7356 Op2 = DAG.getZExtOrTrunc(Op2, getCurSDLoc(), ShiftTy);
7357 }
7358
7359 unsigned Opc =
7360 Intrinsic == Intrinsic::sshl_sat ? ISD::SSHLSAT : ISD::USHLSAT;
7361 setValue(&I, DAG.getNode(Opc, sdl, Op1.getValueType(), Op1, Op2));
7362 return;
7363 }
7364 case Intrinsic::smul_fix:
7365 case Intrinsic::umul_fix:
7366 case Intrinsic::smul_fix_sat:
7367 case Intrinsic::umul_fix_sat: {
7368 SDValue Op1 = getValue(I.getArgOperand(0));
7369 SDValue Op2 = getValue(I.getArgOperand(1));
7370 SDValue Op3 = getValue(I.getArgOperand(2));
7371 setValue(&I, DAG.getNode(FixedPointIntrinsicToOpcode(Intrinsic), sdl,
7372 Op1.getValueType(), Op1, Op2, Op3));
7373 return;
7374 }
7375 case Intrinsic::sdiv_fix:
7376 case Intrinsic::udiv_fix:
7377 case Intrinsic::sdiv_fix_sat:
7378 case Intrinsic::udiv_fix_sat: {
7379 SDValue Op1 = getValue(I.getArgOperand(0));
7380 SDValue Op2 = getValue(I.getArgOperand(1));
7381 SDValue Op3 = getValue(I.getArgOperand(2));
7383 Op1, Op2, Op3, DAG, TLI));
7384 return;
7385 }
7386 case Intrinsic::smax: {
7387 SDValue Op1 = getValue(I.getArgOperand(0));
7388 SDValue Op2 = getValue(I.getArgOperand(1));
7389 setValue(&I, DAG.getNode(ISD::SMAX, sdl, Op1.getValueType(), Op1, Op2));
7390 return;
7391 }
7392 case Intrinsic::smin: {
7393 SDValue Op1 = getValue(I.getArgOperand(0));
7394 SDValue Op2 = getValue(I.getArgOperand(1));
7395 setValue(&I, DAG.getNode(ISD::SMIN, sdl, Op1.getValueType(), Op1, Op2));
7396 return;
7397 }
7398 case Intrinsic::umax: {
7399 SDValue Op1 = getValue(I.getArgOperand(0));
7400 SDValue Op2 = getValue(I.getArgOperand(1));
7401 setValue(&I, DAG.getNode(ISD::UMAX, sdl, Op1.getValueType(), Op1, Op2));
7402 return;
7403 }
7404 case Intrinsic::umin: {
7405 SDValue Op1 = getValue(I.getArgOperand(0));
7406 SDValue Op2 = getValue(I.getArgOperand(1));
7407 setValue(&I, DAG.getNode(ISD::UMIN, sdl, Op1.getValueType(), Op1, Op2));
7408 return;
7409 }
7410 case Intrinsic::abs: {
7411 // TODO: Preserve "int min is poison" arg in SDAG?
7412 SDValue Op1 = getValue(I.getArgOperand(0));
7413 setValue(&I, DAG.getNode(ISD::ABS, sdl, Op1.getValueType(), Op1));
7414 return;
7415 }
7416 case Intrinsic::scmp: {
7417 SDValue Op1 = getValue(I.getArgOperand(0));
7418 SDValue Op2 = getValue(I.getArgOperand(1));
7419 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7420 setValue(&I, DAG.getNode(ISD::SCMP, sdl, DestVT, Op1, Op2));
7421 break;
7422 }
7423 case Intrinsic::ucmp: {
7424 SDValue Op1 = getValue(I.getArgOperand(0));
7425 SDValue Op2 = getValue(I.getArgOperand(1));
7426 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7427 setValue(&I, DAG.getNode(ISD::UCMP, sdl, DestVT, Op1, Op2));
7428 break;
7429 }
7430 case Intrinsic::stackaddress:
7431 case Intrinsic::stacksave: {
7432 unsigned SDOpcode = Intrinsic == Intrinsic::stackaddress ? ISD::STACKADDRESS
7434 SDValue Op = getRoot();
7435 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7436 Res = DAG.getNode(SDOpcode, sdl, DAG.getVTList(VT, MVT::Other), Op);
7437 setValue(&I, Res);
7438 DAG.setRoot(Res.getValue(1));
7439 return;
7440 }
7441 case Intrinsic::stackrestore:
7442 Res = getValue(I.getArgOperand(0));
7443 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res));
7444 return;
7445 case Intrinsic::get_dynamic_area_offset: {
7446 SDValue Op = getRoot();
7447 EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
7448 Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy),
7449 Op);
7450 DAG.setRoot(Op);
7451 setValue(&I, Res);
7452 return;
7453 }
7454 case Intrinsic::stackguard: {
7455 MachineFunction &MF = DAG.getMachineFunction();
7456 const Module &M = *MF.getFunction().getParent();
7457 EVT PtrTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
7458 SDValue Chain = getRoot();
7459 if (TLI.useLoadStackGuardNode(M)) {
7460 Res = getLoadStackGuard(DAG, sdl, Chain);
7461 Res = DAG.getPtrExtOrTrunc(Res, sdl, PtrTy);
7462 } else {
7463 const Value *Global = TLI.getSDagStackGuard(M, DAG.getLibcalls());
7464 if (!Global) {
7465 LLVMContext &Ctx = *DAG.getContext();
7466 Ctx.diagnose(DiagnosticInfoGeneric("unable to lower stackguard"));
7467 setValue(&I, DAG.getPOISON(PtrTy));
7468 return;
7469 }
7470
7471 Align Align = DAG.getDataLayout().getPrefTypeAlign(Global->getType());
7472 Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global),
7473 MachinePointerInfo(Global, 0), Align,
7475 }
7476 if (TLI.useStackGuardXorFP())
7477 Res = TLI.emitStackGuardXorFP(DAG, Res, sdl);
7478 DAG.setRoot(Chain);
7479 setValue(&I, Res);
7480 return;
7481 }
7482 case Intrinsic::stackprotector: {
7483 // Emit code into the DAG to store the stack guard onto the stack.
7484 MachineFunction &MF = DAG.getMachineFunction();
7485 MachineFrameInfo &MFI = MF.getFrameInfo();
7486 const Module &M = *MF.getFunction().getParent();
7487 SDValue Src, Chain = getRoot();
7488
7489 if (TLI.useLoadStackGuardNode(M))
7490 Src = getLoadStackGuard(DAG, sdl, Chain);
7491 else
7492 Src = getValue(I.getArgOperand(0)); // The guard's value.
7493
7494 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
7495
7496 int FI = FuncInfo.StaticAllocaMap[Slot];
7497 MFI.setStackProtectorIndex(FI);
7498 EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout());
7499
7500 SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
7501
7502 // Store the stack protector onto the stack.
7503 Res = DAG.getStore(
7504 Chain, sdl, Src, FIN,
7505 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI),
7506 MaybeAlign(), MachineMemOperand::MOVolatile);
7507 setValue(&I, Res);
7508 DAG.setRoot(Res);
7509 return;
7510 }
7511 case Intrinsic::objectsize:
7512 llvm_unreachable("llvm.objectsize.* should have been lowered already");
7513
7514 case Intrinsic::is_constant:
7515 llvm_unreachable("llvm.is.constant.* should have been lowered already");
7516
7517 case Intrinsic::annotation:
7518 case Intrinsic::ptr_annotation:
7519 case Intrinsic::launder_invariant_group:
7520 case Intrinsic::strip_invariant_group:
7521 // Drop the intrinsic, but forward the value
7522 setValue(&I, getValue(I.getOperand(0)));
7523 return;
7524
7525 case Intrinsic::type_test:
7526 case Intrinsic::public_type_test:
7527 setValue(&I, getValue(ConstantInt::getTrue(I.getType())));
7528 return;
7529
7530 case Intrinsic::assume:
7531 case Intrinsic::experimental_noalias_scope_decl:
7532 case Intrinsic::var_annotation:
7533 case Intrinsic::sideeffect:
7534 // Discard annotate attributes, noalias scope declarations, assumptions, and
7535 // artificial side-effects.
7536 return;
7537
7538 case Intrinsic::codeview_annotation: {
7539 // Emit a label associated with this metadata.
7540 MachineFunction &MF = DAG.getMachineFunction();
7541 MCSymbol *Label = MF.getContext().createTempSymbol("annotation", true);
7542 Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata();
7543 MF.addCodeViewAnnotation(Label, cast<MDNode>(MD));
7544 Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label);
7545 DAG.setRoot(Res);
7546 return;
7547 }
7548
7549 case Intrinsic::init_trampoline: {
7550 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
7551
7552 SDValue Ops[6];
7553 Ops[0] = getRoot();
7554 Ops[1] = getValue(I.getArgOperand(0));
7555 Ops[2] = getValue(I.getArgOperand(1));
7556 Ops[3] = getValue(I.getArgOperand(2));
7557 Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
7558 Ops[5] = DAG.getSrcValue(F);
7559
7560 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops);
7561
7562 DAG.setRoot(Res);
7563 return;
7564 }
7565 case Intrinsic::adjust_trampoline:
7566 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl,
7567 TLI.getPointerTy(DAG.getDataLayout()),
7568 getValue(I.getArgOperand(0))));
7569 return;
7570 case Intrinsic::gcroot: {
7571 assert(DAG.getMachineFunction().getFunction().hasGC() &&
7572 "only valid in functions with gc specified, enforced by Verifier");
7573 assert(GFI && "implied by previous");
7574 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts();
7575 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
7576
7577 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
7578 GFI->addStackRoot(FI->getIndex(), TypeMap);
7579 return;
7580 }
7581 case Intrinsic::gcread:
7582 case Intrinsic::gcwrite:
7583 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
7584 case Intrinsic::get_rounding:
7585 Res = DAG.getNode(ISD::GET_ROUNDING, sdl, {MVT::i32, MVT::Other}, getRoot());
7586 setValue(&I, Res);
7587 DAG.setRoot(Res.getValue(1));
7588 return;
7589
7590 case Intrinsic::expect:
7591 case Intrinsic::expect_with_probability:
7592 // Just replace __builtin_expect(exp, c) and
7593 // __builtin_expect_with_probability(exp, c, p) with EXP.
7594 setValue(&I, getValue(I.getArgOperand(0)));
7595 return;
7596
7597 case Intrinsic::ubsantrap:
7598 case Intrinsic::debugtrap:
7599 case Intrinsic::trap: {
7600 StringRef TrapFuncName =
7601 I.getAttributes().getFnAttr("trap-func-name").getValueAsString();
7602 if (TrapFuncName.empty()) {
7603 switch (Intrinsic) {
7604 case Intrinsic::trap:
7605 DAG.setRoot(DAG.getNode(ISD::TRAP, sdl, MVT::Other, getRoot()));
7606 break;
7607 case Intrinsic::debugtrap:
7608 DAG.setRoot(DAG.getNode(ISD::DEBUGTRAP, sdl, MVT::Other, getRoot()));
7609 break;
7610 case Intrinsic::ubsantrap:
7611 DAG.setRoot(DAG.getNode(
7612 ISD::UBSANTRAP, sdl, MVT::Other, getRoot(),
7613 DAG.getTargetConstant(
7614 cast<ConstantInt>(I.getArgOperand(0))->getZExtValue(), sdl,
7615 MVT::i32)));
7616 break;
7617 default: llvm_unreachable("unknown trap intrinsic");
7618 }
7619 DAG.addNoMergeSiteInfo(DAG.getRoot().getNode(),
7620 I.hasFnAttr(Attribute::NoMerge));
7621 return;
7622 }
7624 if (Intrinsic == Intrinsic::ubsantrap) {
7625 Value *Arg = I.getArgOperand(0);
7626 Args.emplace_back(Arg, getValue(Arg));
7627 }
7628
7629 TargetLowering::CallLoweringInfo CLI(DAG);
7630 CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee(
7631 CallingConv::C, I.getType(),
7632 DAG.getExternalSymbol(TrapFuncName.data(),
7633 TLI.getPointerTy(DAG.getDataLayout())),
7634 std::move(Args));
7635 CLI.NoMerge = I.hasFnAttr(Attribute::NoMerge);
7636 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
7637 DAG.setRoot(Result.second);
7638 return;
7639 }
7640
7641 case Intrinsic::allow_runtime_check:
7642 case Intrinsic::allow_ubsan_check:
7643 setValue(&I, getValue(ConstantInt::getTrue(I.getType())));
7644 return;
7645
7646 case Intrinsic::uadd_with_overflow:
7647 case Intrinsic::sadd_with_overflow:
7648 case Intrinsic::usub_with_overflow:
7649 case Intrinsic::ssub_with_overflow:
7650 case Intrinsic::umul_with_overflow:
7651 case Intrinsic::smul_with_overflow: {
7653 switch (Intrinsic) {
7654 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here.
7655 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break;
7656 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break;
7657 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break;
7658 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break;
7659 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break;
7660 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break;
7661 }
7662 SDValue Op1 = getValue(I.getArgOperand(0));
7663 SDValue Op2 = getValue(I.getArgOperand(1));
7664
7665 EVT ResultVT = Op1.getValueType();
7666 EVT OverflowVT = ResultVT.changeElementType(*Context, MVT::i1);
7667
7668 SDVTList VTs = DAG.getVTList(ResultVT, OverflowVT);
7669 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2));
7670 return;
7671 }
7672 case Intrinsic::prefetch: {
7673 SDValue Ops[5];
7674 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
7676 Ops[0] = DAG.getRoot();
7677 Ops[1] = getValue(I.getArgOperand(0));
7678 Ops[2] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(1)), sdl,
7679 MVT::i32);
7680 Ops[3] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(2)), sdl,
7681 MVT::i32);
7682 Ops[4] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(3)), sdl,
7683 MVT::i32);
7684 SDValue Result = DAG.getMemIntrinsicNode(
7685 ISD::PREFETCH, sdl, DAG.getVTList(MVT::Other), Ops,
7686 EVT::getIntegerVT(*Context, 8), MachinePointerInfo(I.getArgOperand(0)),
7687 /* align */ std::nullopt, Flags);
7688
7689 // Chain the prefetch in parallel with any pending loads, to stay out of
7690 // the way of later optimizations.
7691 PendingLoads.push_back(Result);
7692 Result = getRoot();
7693 DAG.setRoot(Result);
7694 return;
7695 }
7696 case Intrinsic::lifetime_start:
7697 case Intrinsic::lifetime_end: {
7698 bool IsStart = (Intrinsic == Intrinsic::lifetime_start);
7699 // Stack coloring is not enabled in O0, discard region information.
7700 if (TM.getOptLevel() == CodeGenOptLevel::None)
7701 return;
7702
7703 const AllocaInst *LifetimeObject = dyn_cast<AllocaInst>(I.getArgOperand(0));
7704 if (!LifetimeObject)
7705 return;
7706
7707 // First check that the Alloca is static, otherwise it won't have a
7708 // valid frame index.
7709 auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject);
7710 if (SI == FuncInfo.StaticAllocaMap.end())
7711 return;
7712
7713 const int FrameIndex = SI->second;
7714 Res = DAG.getLifetimeNode(IsStart, sdl, getRoot(), FrameIndex);
7715 DAG.setRoot(Res);
7716 return;
7717 }
7718 case Intrinsic::pseudoprobe: {
7719 auto Guid = cast<ConstantInt>(I.getArgOperand(0))->getZExtValue();
7720 auto Index = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
7721 auto Attr = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue();
7722 Res = DAG.getPseudoProbeNode(sdl, getRoot(), Guid, Index, Attr);
7723 DAG.setRoot(Res);
7724 return;
7725 }
7726 case Intrinsic::invariant_start:
7727 // Discard region information.
7728 setValue(&I,
7729 DAG.getUNDEF(TLI.getValueType(DAG.getDataLayout(), I.getType())));
7730 return;
7731 case Intrinsic::invariant_end:
7732 // Discard region information.
7733 return;
7734 case Intrinsic::clear_cache: {
7735 SDValue InputChain = DAG.getRoot();
7736 SDValue StartVal = getValue(I.getArgOperand(0));
7737 SDValue EndVal = getValue(I.getArgOperand(1));
7738 Res = DAG.getNode(ISD::CLEAR_CACHE, sdl, DAG.getVTList(MVT::Other),
7739 {InputChain, StartVal, EndVal});
7740 setValue(&I, Res);
7741 DAG.setRoot(Res);
7742 return;
7743 }
7744 case Intrinsic::donothing:
7745 case Intrinsic::seh_try_begin:
7746 case Intrinsic::seh_scope_begin:
7747 case Intrinsic::seh_try_end:
7748 case Intrinsic::seh_scope_end:
7749 // ignore
7750 return;
7751 case Intrinsic::experimental_stackmap:
7752 visitStackmap(I);
7753 return;
7754 case Intrinsic::experimental_patchpoint_void:
7755 case Intrinsic::experimental_patchpoint:
7756 visitPatchpoint(I);
7757 return;
7758 case Intrinsic::experimental_gc_statepoint:
7760 return;
7761 case Intrinsic::experimental_gc_result:
7762 visitGCResult(cast<GCResultInst>(I));
7763 return;
7764 case Intrinsic::experimental_gc_relocate:
7765 visitGCRelocate(cast<GCRelocateInst>(I));
7766 return;
7767 case Intrinsic::instrprof_cover:
7768 llvm_unreachable("instrprof failed to lower a cover");
7769 case Intrinsic::instrprof_increment:
7770 llvm_unreachable("instrprof failed to lower an increment");
7771 case Intrinsic::instrprof_timestamp:
7772 llvm_unreachable("instrprof failed to lower a timestamp");
7773 case Intrinsic::instrprof_value_profile:
7774 llvm_unreachable("instrprof failed to lower a value profiling call");
7775 case Intrinsic::instrprof_mcdc_parameters:
7776 llvm_unreachable("instrprof failed to lower mcdc parameters");
7777 case Intrinsic::instrprof_mcdc_tvbitmap_update:
7778 llvm_unreachable("instrprof failed to lower an mcdc tvbitmap update");
7779 case Intrinsic::localescape: {
7780 MachineFunction &MF = DAG.getMachineFunction();
7781 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
7782
7783 // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission
7784 // is the same on all targets.
7785 for (unsigned Idx = 0, E = I.arg_size(); Idx < E; ++Idx) {
7786 Value *Arg = I.getArgOperand(Idx)->stripPointerCasts();
7787 if (isa<ConstantPointerNull>(Arg))
7788 continue; // Skip null pointers. They represent a hole in index space.
7789 AllocaInst *Slot = cast<AllocaInst>(Arg);
7790 assert(FuncInfo.StaticAllocaMap.count(Slot) &&
7791 "can only escape static allocas");
7792 int FI = FuncInfo.StaticAllocaMap[Slot];
7793 MCSymbol *FrameAllocSym = MF.getContext().getOrCreateFrameAllocSymbol(
7795 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl,
7796 TII->get(TargetOpcode::LOCAL_ESCAPE))
7797 .addSym(FrameAllocSym)
7798 .addFrameIndex(FI);
7799 }
7800
7801 return;
7802 }
7803
7804 case Intrinsic::localrecover: {
7805 // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx)
7806 MachineFunction &MF = DAG.getMachineFunction();
7807
7808 // Get the symbol that defines the frame offset.
7809 auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts());
7810 auto *Idx = cast<ConstantInt>(I.getArgOperand(2));
7811 unsigned IdxVal =
7812 unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max()));
7813 MCSymbol *FrameAllocSym = MF.getContext().getOrCreateFrameAllocSymbol(
7815
7816 Value *FP = I.getArgOperand(1);
7817 SDValue FPVal = getValue(FP);
7818 EVT PtrVT = FPVal.getValueType();
7819
7820 // Create a MCSymbol for the label to avoid any target lowering
7821 // that would make this PC relative.
7822 SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT);
7823 SDValue OffsetVal =
7824 DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym);
7825
7826 // Add the offset to the FP.
7827 SDValue Add = DAG.getMemBasePlusOffset(FPVal, OffsetVal, sdl);
7828 setValue(&I, Add);
7829
7830 return;
7831 }
7832
7833 case Intrinsic::fake_use: {
7834 Value *V = I.getArgOperand(0);
7835 SDValue Ops[2];
7836 // For Values not declared or previously used in this basic block, the
7837 // NodeMap will not have an entry, and `getValue` will assert if V has no
7838 // valid register value.
7839 auto FakeUseValue = [&]() -> SDValue {
7840 SDValue &N = NodeMap[V];
7841 if (N.getNode())
7842 return N;
7843
7844 // If there's a virtual register allocated and initialized for this
7845 // value, use it.
7846 if (SDValue copyFromReg = getCopyFromRegs(V, V->getType()))
7847 return copyFromReg;
7848 // FIXME: Do we want to preserve constants? It seems pointless.
7849 if (isa<Constant>(V))
7850 return getValue(V);
7851 return SDValue();
7852 }();
7853 if (!FakeUseValue || FakeUseValue.isUndef())
7854 return;
7855 Ops[0] = getRoot();
7856 Ops[1] = FakeUseValue;
7857 // Also, do not translate a fake use with an undef operand, or any other
7858 // empty SDValues.
7859 if (!Ops[1] || Ops[1].isUndef())
7860 return;
7861 DAG.setRoot(DAG.getNode(ISD::FAKE_USE, sdl, MVT::Other, Ops));
7862 return;
7863 }
7864
7865 case Intrinsic::reloc_none: {
7866 Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata();
7867 StringRef SymbolName = cast<MDString>(MD)->getString();
7868 SDValue Ops[2] = {
7869 getRoot(),
7870 DAG.getTargetExternalSymbol(
7871 SymbolName.data(), TLI.getProgramPointerTy(DAG.getDataLayout()))};
7872 DAG.setRoot(DAG.getNode(ISD::RELOC_NONE, sdl, MVT::Other, Ops));
7873 return;
7874 }
7875
7876 case Intrinsic::eh_exceptionpointer:
7877 case Intrinsic::eh_exceptioncode: {
7878 // Get the exception pointer vreg, copy from it, and resize it to fit.
7879 const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0));
7880 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout());
7881 const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT);
7882 Register VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC);
7883 SDValue N = DAG.getCopyFromReg(DAG.getEntryNode(), sdl, VReg, PtrVT);
7884 if (Intrinsic == Intrinsic::eh_exceptioncode)
7885 N = DAG.getZExtOrTrunc(N, sdl, MVT::i32);
7886 setValue(&I, N);
7887 return;
7888 }
7889 case Intrinsic::xray_customevent: {
7890 // Here we want to make sure that the intrinsic behaves as if it has a
7891 // specific calling convention.
7892 const auto &Triple = DAG.getTarget().getTargetTriple();
7893 if (!Triple.isAArch64(64) && Triple.getArch() != Triple::x86_64)
7894 return;
7895
7897
7898 // We want to say that we always want the arguments in registers.
7899 SDValue LogEntryVal = getValue(I.getArgOperand(0));
7900 SDValue StrSizeVal = getValue(I.getArgOperand(1));
7901 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7902 SDValue Chain = getRoot();
7903 Ops.push_back(LogEntryVal);
7904 Ops.push_back(StrSizeVal);
7905 Ops.push_back(Chain);
7906
7907 // We need to enforce the calling convention for the callsite, so that
7908 // argument ordering is enforced correctly, and that register allocation can
7909 // see that some registers may be assumed clobbered and have to preserve
7910 // them across calls to the intrinsic.
7911 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL,
7912 sdl, NodeTys, Ops);
7913 SDValue patchableNode = SDValue(MN, 0);
7914 DAG.setRoot(patchableNode);
7915 setValue(&I, patchableNode);
7916 return;
7917 }
7918 case Intrinsic::xray_typedevent: {
7919 // Here we want to make sure that the intrinsic behaves as if it has a
7920 // specific calling convention.
7921 const auto &Triple = DAG.getTarget().getTargetTriple();
7922 if (!Triple.isAArch64(64) && Triple.getArch() != Triple::x86_64)
7923 return;
7924
7926
7927 // We want to say that we always want the arguments in registers.
7928 // It's unclear to me how manipulating the selection DAG here forces callers
7929 // to provide arguments in registers instead of on the stack.
7930 SDValue LogTypeId = getValue(I.getArgOperand(0));
7931 SDValue LogEntryVal = getValue(I.getArgOperand(1));
7932 SDValue StrSizeVal = getValue(I.getArgOperand(2));
7933 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7934 SDValue Chain = getRoot();
7935 Ops.push_back(LogTypeId);
7936 Ops.push_back(LogEntryVal);
7937 Ops.push_back(StrSizeVal);
7938 Ops.push_back(Chain);
7939
7940 // We need to enforce the calling convention for the callsite, so that
7941 // argument ordering is enforced correctly, and that register allocation can
7942 // see that some registers may be assumed clobbered and have to preserve
7943 // them across calls to the intrinsic.
7944 MachineSDNode *MN = DAG.getMachineNode(
7945 TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, sdl, NodeTys, Ops);
7946 SDValue patchableNode = SDValue(MN, 0);
7947 DAG.setRoot(patchableNode);
7948 setValue(&I, patchableNode);
7949 return;
7950 }
7951 case Intrinsic::experimental_deoptimize:
7953 return;
7954 case Intrinsic::stepvector:
7955 visitStepVector(I);
7956 return;
7957 case Intrinsic::vector_reduce_fadd:
7958 case Intrinsic::vector_reduce_fmul:
7959 case Intrinsic::vector_reduce_add:
7960 case Intrinsic::vector_reduce_mul:
7961 case Intrinsic::vector_reduce_and:
7962 case Intrinsic::vector_reduce_or:
7963 case Intrinsic::vector_reduce_xor:
7964 case Intrinsic::vector_reduce_smax:
7965 case Intrinsic::vector_reduce_smin:
7966 case Intrinsic::vector_reduce_umax:
7967 case Intrinsic::vector_reduce_umin:
7968 case Intrinsic::vector_reduce_fmax:
7969 case Intrinsic::vector_reduce_fmin:
7970 case Intrinsic::vector_reduce_fmaximum:
7971 case Intrinsic::vector_reduce_fminimum:
7972 visitVectorReduce(I, Intrinsic);
7973 return;
7974
7975 case Intrinsic::icall_branch_funnel: {
7977 Ops.push_back(getValue(I.getArgOperand(0)));
7978
7979 int64_t Offset;
7981 I.getArgOperand(1), Offset, DAG.getDataLayout()));
7982 if (!Base)
7984 "llvm.icall.branch.funnel operand must be a GlobalValue");
7985 Ops.push_back(DAG.getTargetGlobalAddress(Base, sdl, MVT::i64, 0));
7986
7987 struct BranchFunnelTarget {
7988 int64_t Offset;
7990 };
7992
7993 for (unsigned Op = 1, N = I.arg_size(); Op != N; Op += 2) {
7995 I.getArgOperand(Op), Offset, DAG.getDataLayout()));
7996 if (ElemBase != Base)
7997 report_fatal_error("all llvm.icall.branch.funnel operands must refer "
7998 "to the same GlobalValue");
7999
8000 SDValue Val = getValue(I.getArgOperand(Op + 1));
8001 auto *GA = dyn_cast<GlobalAddressSDNode>(Val);
8002 if (!GA)
8004 "llvm.icall.branch.funnel operand must be a GlobalValue");
8005 Targets.push_back({Offset, DAG.getTargetGlobalAddress(
8006 GA->getGlobal(), sdl, Val.getValueType(),
8007 GA->getOffset())});
8008 }
8009 llvm::sort(Targets,
8010 [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) {
8011 return T1.Offset < T2.Offset;
8012 });
8013
8014 for (auto &T : Targets) {
8015 Ops.push_back(DAG.getTargetConstant(T.Offset, sdl, MVT::i32));
8016 Ops.push_back(T.Target);
8017 }
8018
8019 Ops.push_back(DAG.getRoot()); // Chain
8020 SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL, sdl,
8021 MVT::Other, Ops),
8022 0);
8023 DAG.setRoot(N);
8024 setValue(&I, N);
8025 HasTailCall = true;
8026 return;
8027 }
8028
8029 case Intrinsic::wasm_landingpad_index:
8030 // Information this intrinsic contained has been transferred to
8031 // MachineFunction in SelectionDAGISel::PrepareEHLandingPad. We can safely
8032 // delete it now.
8033 return;
8034
8035 case Intrinsic::aarch64_settag:
8036 case Intrinsic::aarch64_settag_zero: {
8037 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
8038 bool ZeroMemory = Intrinsic == Intrinsic::aarch64_settag_zero;
8040 DAG, sdl, getRoot(), getValue(I.getArgOperand(0)),
8041 getValue(I.getArgOperand(1)), MachinePointerInfo(I.getArgOperand(0)),
8042 ZeroMemory);
8043 DAG.setRoot(Val);
8044 setValue(&I, Val);
8045 return;
8046 }
8047 case Intrinsic::amdgcn_cs_chain: {
8048 // At this point we don't care if it's amdgpu_cs_chain or
8049 // amdgpu_cs_chain_preserve.
8051
8052 Type *RetTy = I.getType();
8053 assert(RetTy->isVoidTy() && "Should not return");
8054
8055 SDValue Callee = getValue(I.getOperand(0));
8056
8057 // We only have 2 actual args: one for the SGPRs and one for the VGPRs.
8058 // We'll also tack the value of the EXEC mask at the end.
8060 Args.reserve(3);
8061
8062 for (unsigned Idx : {2, 3, 1}) {
8063 TargetLowering::ArgListEntry Arg(getValue(I.getOperand(Idx)),
8064 I.getOperand(Idx)->getType());
8065 Arg.setAttributes(&I, Idx);
8066 Args.push_back(Arg);
8067 }
8068
8069 assert(Args[0].IsInReg && "SGPR args should be marked inreg");
8070 assert(!Args[1].IsInReg && "VGPR args should not be marked inreg");
8071 Args[2].IsInReg = true; // EXEC should be inreg
8072
8073 // Forward the flags and any additional arguments.
8074 for (unsigned Idx = 4; Idx < I.arg_size(); ++Idx) {
8075 TargetLowering::ArgListEntry Arg(getValue(I.getOperand(Idx)),
8076 I.getOperand(Idx)->getType());
8077 Arg.setAttributes(&I, Idx);
8078 Args.push_back(Arg);
8079 }
8080
8081 TargetLowering::CallLoweringInfo CLI(DAG);
8082 CLI.setDebugLoc(getCurSDLoc())
8083 .setChain(getRoot())
8084 .setCallee(CC, RetTy, Callee, std::move(Args))
8085 .setNoReturn(true)
8086 .setTailCall(true)
8087 .setConvergent(I.isConvergent());
8088 CLI.CB = &I;
8089 std::pair<SDValue, SDValue> Result =
8090 lowerInvokable(CLI, /*EHPadBB*/ nullptr);
8091 (void)Result;
8092 assert(!Result.first.getNode() && !Result.second.getNode() &&
8093 "Should've lowered as tail call");
8094
8095 HasTailCall = true;
8096 return;
8097 }
8098 case Intrinsic::amdgcn_call_whole_wave: {
8100 bool isTailCall = I.isTailCall();
8101
8102 // The first argument is the callee. Skip it when assembling the call args.
8103 for (unsigned Idx = 1; Idx < I.arg_size(); ++Idx) {
8104 TargetLowering::ArgListEntry Arg(getValue(I.getArgOperand(Idx)),
8105 I.getArgOperand(Idx)->getType());
8106 Arg.setAttributes(&I, Idx);
8107
8108 // If we have an explicit sret argument that is an Instruction, (i.e., it
8109 // might point to function-local memory), we can't meaningfully tail-call.
8110 if (Arg.IsSRet && isa<Instruction>(I.getArgOperand(Idx)))
8111 isTailCall = false;
8112
8113 Args.push_back(Arg);
8114 }
8115
8116 SDValue ConvControlToken;
8117 if (auto Bundle = I.getOperandBundle(LLVMContext::OB_convergencectrl)) {
8118 auto *Token = Bundle->Inputs[0].get();
8119 ConvControlToken = getValue(Token);
8120 }
8121
8122 TargetLowering::CallLoweringInfo CLI(DAG);
8123 CLI.setDebugLoc(getCurSDLoc())
8124 .setChain(getRoot())
8125 .setCallee(CallingConv::AMDGPU_Gfx_WholeWave, I.getType(),
8126 getValue(I.getArgOperand(0)), std::move(Args))
8127 .setTailCall(isTailCall && canTailCall(I))
8128 .setIsPreallocated(
8129 I.countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0)
8130 .setConvergent(I.isConvergent())
8131 .setConvergenceControlToken(ConvControlToken);
8132 CLI.CB = &I;
8133
8134 std::pair<SDValue, SDValue> Result =
8135 lowerInvokable(CLI, /*EHPadBB=*/nullptr);
8136
8137 if (Result.first.getNode())
8138 setValue(&I, Result.first);
8139 return;
8140 }
8141 case Intrinsic::ptrmask: {
8142 SDValue Ptr = getValue(I.getOperand(0));
8143 SDValue Mask = getValue(I.getOperand(1));
8144
8145 // On arm64_32, pointers are 32 bits when stored in memory, but
8146 // zero-extended to 64 bits when in registers. Thus the mask is 32 bits to
8147 // match the index type, but the pointer is 64 bits, so the mask must be
8148 // zero-extended up to 64 bits to match the pointer.
8149 EVT PtrVT =
8150 TLI.getValueType(DAG.getDataLayout(), I.getOperand(0)->getType());
8151 EVT MemVT =
8152 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType());
8153 assert(PtrVT == Ptr.getValueType());
8154 if (Mask.getValueType().getFixedSizeInBits() < MemVT.getFixedSizeInBits()) {
8155 // For AMDGPU buffer descriptors the mask is 48 bits, but the pointer is
8156 // 128-bit, so we have to pad the mask with ones for unused bits.
8157 auto HighOnes = DAG.getNode(
8158 ISD::SHL, sdl, PtrVT, DAG.getAllOnesConstant(sdl, PtrVT),
8159 DAG.getShiftAmountConstant(Mask.getValueType().getFixedSizeInBits(),
8160 PtrVT, sdl));
8161 Mask = DAG.getNode(ISD::OR, sdl, PtrVT,
8162 DAG.getZExtOrTrunc(Mask, sdl, PtrVT), HighOnes);
8163 } else if (Mask.getValueType() != PtrVT)
8164 Mask = DAG.getPtrExtOrTrunc(Mask, sdl, PtrVT);
8165
8166 assert(Mask.getValueType() == PtrVT);
8167 setValue(&I, DAG.getNode(ISD::AND, sdl, PtrVT, Ptr, Mask));
8168 return;
8169 }
8170 case Intrinsic::threadlocal_address: {
8171 setValue(&I, getValue(I.getOperand(0)));
8172 return;
8173 }
8174 case Intrinsic::get_active_lane_mask: {
8175 EVT CCVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
8176 SDValue Index = getValue(I.getOperand(0));
8177 SDValue TripCount = getValue(I.getOperand(1));
8178 EVT ElementVT = Index.getValueType();
8179
8180 if (!TLI.shouldExpandGetActiveLaneMask(CCVT, ElementVT)) {
8181 setValue(&I, DAG.getNode(ISD::GET_ACTIVE_LANE_MASK, sdl, CCVT, Index,
8182 TripCount));
8183 return;
8184 }
8185
8186 EVT VecTy = EVT::getVectorVT(*DAG.getContext(), ElementVT,
8187 CCVT.getVectorElementCount());
8188
8189 SDValue VectorIndex = DAG.getSplat(VecTy, sdl, Index);
8190 SDValue VectorTripCount = DAG.getSplat(VecTy, sdl, TripCount);
8191 SDValue VectorStep = DAG.getStepVector(sdl, VecTy);
8192 SDValue VectorInduction = DAG.getNode(
8193 ISD::UADDSAT, sdl, VecTy, VectorIndex, VectorStep);
8194 SDValue SetCC = DAG.getSetCC(sdl, CCVT, VectorInduction,
8195 VectorTripCount, ISD::CondCode::SETULT);
8196 setValue(&I, SetCC);
8197 return;
8198 }
8199 case Intrinsic::experimental_get_vector_length: {
8200 assert(cast<ConstantInt>(I.getOperand(1))->getSExtValue() > 0 &&
8201 "Expected positive VF");
8202 unsigned VF = cast<ConstantInt>(I.getOperand(1))->getZExtValue();
8203 bool IsScalable = cast<ConstantInt>(I.getOperand(2))->isOne();
8204
8205 SDValue Count = getValue(I.getOperand(0));
8206 EVT CountVT = Count.getValueType();
8207
8208 if (!TLI.shouldExpandGetVectorLength(CountVT, VF, IsScalable)) {
8209 visitTargetIntrinsic(I, Intrinsic);
8210 return;
8211 }
8212
8213 // Expand to a umin between the trip count and the maximum elements the type
8214 // can hold.
8215 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
8216
8217 // Extend the trip count to at least the result VT.
8218 if (CountVT.bitsLT(VT)) {
8219 Count = DAG.getNode(ISD::ZERO_EXTEND, sdl, VT, Count);
8220 CountVT = VT;
8221 }
8222
8223 SDValue MaxEVL = DAG.getElementCount(sdl, CountVT,
8224 ElementCount::get(VF, IsScalable));
8225
8226 SDValue UMin = DAG.getNode(ISD::UMIN, sdl, CountVT, Count, MaxEVL);
8227 // Clip to the result type if needed.
8228 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, sdl, VT, UMin);
8229
8230 setValue(&I, Trunc);
8231 return;
8232 }
8233 case Intrinsic::vector_partial_reduce_add: {
8234 SDValue Acc = getValue(I.getOperand(0));
8235 SDValue Input = getValue(I.getOperand(1));
8236 setValue(&I,
8237 DAG.getNode(ISD::PARTIAL_REDUCE_UMLA, sdl, Acc.getValueType(), Acc,
8238 Input, DAG.getConstant(1, sdl, Input.getValueType())));
8239 return;
8240 }
8241 case Intrinsic::vector_partial_reduce_fadd: {
8242 SDValue Acc = getValue(I.getOperand(0));
8243 SDValue Input = getValue(I.getOperand(1));
8244 setValue(&I, DAG.getNode(
8245 ISD::PARTIAL_REDUCE_FMLA, sdl, Acc.getValueType(), Acc,
8246 Input, DAG.getConstantFP(1.0, sdl, Input.getValueType())));
8247 return;
8248 }
8249 case Intrinsic::experimental_cttz_elts: {
8250 auto DL = getCurSDLoc();
8251 SDValue Op = getValue(I.getOperand(0));
8252 EVT OpVT = Op.getValueType();
8253
8254 if (!TLI.shouldExpandCttzElements(OpVT)) {
8255 visitTargetIntrinsic(I, Intrinsic);
8256 return;
8257 }
8258
8259 if (OpVT.getScalarType() != MVT::i1) {
8260 // Compare the input vector elements to zero & use to count trailing zeros
8261 SDValue AllZero = DAG.getConstant(0, DL, OpVT);
8262 OpVT = EVT::getVectorVT(*DAG.getContext(), MVT::i1,
8263 OpVT.getVectorElementCount());
8264 Op = DAG.getSetCC(DL, OpVT, Op, AllZero, ISD::SETNE);
8265 }
8266
8267 // If the zero-is-poison flag is set, we can assume the upper limit
8268 // of the result is VF-1.
8269 bool ZeroIsPoison =
8270 !cast<ConstantSDNode>(getValue(I.getOperand(1)))->isZero();
8271 ConstantRange VScaleRange(1, true); // Dummy value.
8272 if (isa<ScalableVectorType>(I.getOperand(0)->getType()))
8273 VScaleRange = getVScaleRange(I.getCaller(), 64);
8274 unsigned EltWidth = TLI.getBitWidthForCttzElements(
8275 I.getType(), OpVT.getVectorElementCount(), ZeroIsPoison, &VScaleRange);
8276
8277 MVT NewEltTy = MVT::getIntegerVT(EltWidth);
8278
8279 // Create the new vector type & get the vector length
8280 EVT NewVT = EVT::getVectorVT(*DAG.getContext(), NewEltTy,
8281 OpVT.getVectorElementCount());
8282
8283 SDValue VL =
8284 DAG.getElementCount(DL, NewEltTy, OpVT.getVectorElementCount());
8285
8286 SDValue StepVec = DAG.getStepVector(DL, NewVT);
8287 SDValue SplatVL = DAG.getSplat(NewVT, DL, VL);
8288 SDValue StepVL = DAG.getNode(ISD::SUB, DL, NewVT, SplatVL, StepVec);
8289 SDValue Ext = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, Op);
8290 SDValue And = DAG.getNode(ISD::AND, DL, NewVT, StepVL, Ext);
8291 SDValue Max = DAG.getNode(ISD::VECREDUCE_UMAX, DL, NewEltTy, And);
8292 SDValue Sub = DAG.getNode(ISD::SUB, DL, NewEltTy, VL, Max);
8293
8294 EVT RetTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
8295 SDValue Ret = DAG.getZExtOrTrunc(Sub, DL, RetTy);
8296
8297 setValue(&I, Ret);
8298 return;
8299 }
8300 case Intrinsic::vector_insert: {
8301 SDValue Vec = getValue(I.getOperand(0));
8302 SDValue SubVec = getValue(I.getOperand(1));
8303 SDValue Index = getValue(I.getOperand(2));
8304
8305 // The intrinsic's index type is i64, but the SDNode requires an index type
8306 // suitable for the target. Convert the index as required.
8307 MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout());
8308 if (Index.getValueType() != VectorIdxTy)
8309 Index = DAG.getVectorIdxConstant(Index->getAsZExtVal(), sdl);
8310
8311 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
8312 setValue(&I, DAG.getNode(ISD::INSERT_SUBVECTOR, sdl, ResultVT, Vec, SubVec,
8313 Index));
8314 return;
8315 }
8316 case Intrinsic::vector_extract: {
8317 SDValue Vec = getValue(I.getOperand(0));
8318 SDValue Index = getValue(I.getOperand(1));
8319 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
8320
8321 // The intrinsic's index type is i64, but the SDNode requires an index type
8322 // suitable for the target. Convert the index as required.
8323 MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout());
8324 if (Index.getValueType() != VectorIdxTy)
8325 Index = DAG.getVectorIdxConstant(Index->getAsZExtVal(), sdl);
8326
8327 setValue(&I,
8328 DAG.getNode(ISD::EXTRACT_SUBVECTOR, sdl, ResultVT, Vec, Index));
8329 return;
8330 }
8331 case Intrinsic::experimental_vector_match: {
8332 SDValue Op1 = getValue(I.getOperand(0));
8333 SDValue Op2 = getValue(I.getOperand(1));
8334 SDValue Mask = getValue(I.getOperand(2));
8335 EVT Op1VT = Op1.getValueType();
8336 EVT Op2VT = Op2.getValueType();
8337 EVT ResVT = Mask.getValueType();
8338 unsigned SearchSize = Op2VT.getVectorNumElements();
8339
8340 // If the target has native support for this vector match operation, lower
8341 // the intrinsic untouched; otherwise, expand it below.
8342 if (!TLI.shouldExpandVectorMatch(Op1VT, SearchSize)) {
8343 visitTargetIntrinsic(I, Intrinsic);
8344 return;
8345 }
8346
8347 SDValue Ret = DAG.getConstant(0, sdl, ResVT);
8348
8349 for (unsigned i = 0; i < SearchSize; ++i) {
8350 SDValue Op2Elem = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, sdl,
8351 Op2VT.getVectorElementType(), Op2,
8352 DAG.getVectorIdxConstant(i, sdl));
8353 SDValue Splat = DAG.getNode(ISD::SPLAT_VECTOR, sdl, Op1VT, Op2Elem);
8354 SDValue Cmp = DAG.getSetCC(sdl, ResVT, Op1, Splat, ISD::SETEQ);
8355 Ret = DAG.getNode(ISD::OR, sdl, ResVT, Ret, Cmp);
8356 }
8357
8358 setValue(&I, DAG.getNode(ISD::AND, sdl, ResVT, Ret, Mask));
8359 return;
8360 }
8361 case Intrinsic::vector_reverse:
8362 visitVectorReverse(I);
8363 return;
8364 case Intrinsic::vector_splice_left:
8365 case Intrinsic::vector_splice_right:
8366 visitVectorSplice(I);
8367 return;
8368 case Intrinsic::callbr_landingpad:
8369 visitCallBrLandingPad(I);
8370 return;
8371 case Intrinsic::vector_interleave2:
8372 visitVectorInterleave(I, 2);
8373 return;
8374 case Intrinsic::vector_interleave3:
8375 visitVectorInterleave(I, 3);
8376 return;
8377 case Intrinsic::vector_interleave4:
8378 visitVectorInterleave(I, 4);
8379 return;
8380 case Intrinsic::vector_interleave5:
8381 visitVectorInterleave(I, 5);
8382 return;
8383 case Intrinsic::vector_interleave6:
8384 visitVectorInterleave(I, 6);
8385 return;
8386 case Intrinsic::vector_interleave7:
8387 visitVectorInterleave(I, 7);
8388 return;
8389 case Intrinsic::vector_interleave8:
8390 visitVectorInterleave(I, 8);
8391 return;
8392 case Intrinsic::vector_deinterleave2:
8393 visitVectorDeinterleave(I, 2);
8394 return;
8395 case Intrinsic::vector_deinterleave3:
8396 visitVectorDeinterleave(I, 3);
8397 return;
8398 case Intrinsic::vector_deinterleave4:
8399 visitVectorDeinterleave(I, 4);
8400 return;
8401 case Intrinsic::vector_deinterleave5:
8402 visitVectorDeinterleave(I, 5);
8403 return;
8404 case Intrinsic::vector_deinterleave6:
8405 visitVectorDeinterleave(I, 6);
8406 return;
8407 case Intrinsic::vector_deinterleave7:
8408 visitVectorDeinterleave(I, 7);
8409 return;
8410 case Intrinsic::vector_deinterleave8:
8411 visitVectorDeinterleave(I, 8);
8412 return;
8413 case Intrinsic::experimental_vector_compress:
8414 setValue(&I, DAG.getNode(ISD::VECTOR_COMPRESS, sdl,
8415 getValue(I.getArgOperand(0)).getValueType(),
8416 getValue(I.getArgOperand(0)),
8417 getValue(I.getArgOperand(1)),
8418 getValue(I.getArgOperand(2)), Flags));
8419 return;
8420 case Intrinsic::experimental_convergence_anchor:
8421 case Intrinsic::experimental_convergence_entry:
8422 case Intrinsic::experimental_convergence_loop:
8423 visitConvergenceControl(I, Intrinsic);
8424 return;
8425 case Intrinsic::experimental_vector_histogram_add: {
8426 visitVectorHistogram(I, Intrinsic);
8427 return;
8428 }
8429 case Intrinsic::experimental_vector_extract_last_active: {
8430 visitVectorExtractLastActive(I, Intrinsic);
8431 return;
8432 }
8433 case Intrinsic::loop_dependence_war_mask:
8434 setValue(&I,
8436 EVT::getEVT(I.getType()), getValue(I.getOperand(0)),
8437 getValue(I.getOperand(1)), getValue(I.getOperand(2)),
8438 DAG.getConstant(0, sdl, MVT::i64)));
8439 return;
8440 case Intrinsic::loop_dependence_raw_mask:
8441 setValue(&I,
8443 EVT::getEVT(I.getType()), getValue(I.getOperand(0)),
8444 getValue(I.getOperand(1)), getValue(I.getOperand(2)),
8445 DAG.getConstant(0, sdl, MVT::i64)));
8446 return;
8447 }
8448}
8449
8450void SelectionDAGBuilder::pushFPOpOutChain(SDValue Result,
8452 assert(Result.getNode()->getNumValues() == 2);
8453 SDValue OutChain = Result.getValue(1);
8454 assert(OutChain.getValueType() == MVT::Other);
8455
8456 // Instead of updating the root immediately, push the produced chain to the
8457 // appropriate list, deferring the update until the root is requested. In this
8458 // case, the nodes from the lists are chained using TokenFactor, indicating
8459 // that the operations are independent.
8460 //
8461 // In particular, the root is updated before any call that might access the
8462 // floating-point environment, except for constrained intrinsics.
8463 switch (EB) {
8466 PendingConstrainedFP.push_back(OutChain);
8467 break;
8469 PendingConstrainedFPStrict.push_back(OutChain);
8470 break;
8471 }
8472}
8473
8474void SelectionDAGBuilder::visitConstrainedFPIntrinsic(
8475 const ConstrainedFPIntrinsic &FPI) {
8476 SDLoc sdl = getCurSDLoc();
8477
8478 // We do not need to serialize constrained FP intrinsics against
8479 // each other or against (nonvolatile) loads, so they can be
8480 // chained like loads.
8482 SDValue Chain = getFPOperationRoot(EB);
8484 Opers.push_back(Chain);
8485 for (unsigned I = 0, E = FPI.getNonMetadataArgCount(); I != E; ++I)
8486 Opers.push_back(getValue(FPI.getArgOperand(I)));
8487
8488 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8489 EVT VT = TLI.getValueType(DAG.getDataLayout(), FPI.getType());
8490 SDVTList VTs = DAG.getVTList(VT, MVT::Other);
8491
8492 SDNodeFlags Flags;
8494 Flags.setNoFPExcept(true);
8495
8496 if (auto *FPOp = dyn_cast<FPMathOperator>(&FPI))
8497 Flags.copyFMF(*FPOp);
8498
8499 unsigned Opcode;
8500 switch (FPI.getIntrinsicID()) {
8501 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here.
8502#define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \
8503 case Intrinsic::INTRINSIC: \
8504 Opcode = ISD::STRICT_##DAGN; \
8505 break;
8506#include "llvm/IR/ConstrainedOps.def"
8507 case Intrinsic::experimental_constrained_fmuladd: {
8508 Opcode = ISD::STRICT_FMA;
8509 // Break fmuladd into fmul and fadd.
8510 if (TM.Options.AllowFPOpFusion == FPOpFusion::Strict ||
8511 !TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) {
8512 Opers.pop_back();
8513 SDValue Mul = DAG.getNode(ISD::STRICT_FMUL, sdl, VTs, Opers, Flags);
8514 pushFPOpOutChain(Mul, EB);
8515 Opcode = ISD::STRICT_FADD;
8516 Opers.clear();
8517 Opers.push_back(Mul.getValue(1));
8518 Opers.push_back(Mul.getValue(0));
8519 Opers.push_back(getValue(FPI.getArgOperand(2)));
8520 }
8521 break;
8522 }
8523 }
8524
8525 // A few strict DAG nodes carry additional operands that are not
8526 // set up by the default code above.
8527 switch (Opcode) {
8528 default: break;
8530 Opers.push_back(
8531 DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())));
8532 break;
8533 case ISD::STRICT_FSETCC:
8534 case ISD::STRICT_FSETCCS: {
8535 auto *FPCmp = dyn_cast<ConstrainedFPCmpIntrinsic>(&FPI);
8536 ISD::CondCode Condition = getFCmpCondCode(FPCmp->getPredicate());
8537 if (TM.Options.NoNaNsFPMath)
8538 Condition = getFCmpCodeWithoutNaN(Condition);
8539 Opers.push_back(DAG.getCondCode(Condition));
8540 break;
8541 }
8542 }
8543
8544 SDValue Result = DAG.getNode(Opcode, sdl, VTs, Opers, Flags);
8545 pushFPOpOutChain(Result, EB);
8546
8547 SDValue FPResult = Result.getValue(0);
8548 setValue(&FPI, FPResult);
8549}
8550
8551static unsigned getISDForVPIntrinsic(const VPIntrinsic &VPIntrin) {
8552 std::optional<unsigned> ResOPC;
8553 switch (VPIntrin.getIntrinsicID()) {
8554 case Intrinsic::vp_ctlz: {
8555 bool IsZeroUndef = cast<ConstantInt>(VPIntrin.getArgOperand(1))->isOne();
8556 ResOPC = IsZeroUndef ? ISD::VP_CTLZ_ZERO_UNDEF : ISD::VP_CTLZ;
8557 break;
8558 }
8559 case Intrinsic::vp_cttz: {
8560 bool IsZeroUndef = cast<ConstantInt>(VPIntrin.getArgOperand(1))->isOne();
8561 ResOPC = IsZeroUndef ? ISD::VP_CTTZ_ZERO_UNDEF : ISD::VP_CTTZ;
8562 break;
8563 }
8564 case Intrinsic::vp_cttz_elts: {
8565 bool IsZeroPoison = cast<ConstantInt>(VPIntrin.getArgOperand(1))->isOne();
8566 ResOPC = IsZeroPoison ? ISD::VP_CTTZ_ELTS_ZERO_UNDEF : ISD::VP_CTTZ_ELTS;
8567 break;
8568 }
8569#define HELPER_MAP_VPID_TO_VPSD(VPID, VPSD) \
8570 case Intrinsic::VPID: \
8571 ResOPC = ISD::VPSD; \
8572 break;
8573#include "llvm/IR/VPIntrinsics.def"
8574 }
8575
8576 if (!ResOPC)
8578 "Inconsistency: no SDNode available for this VPIntrinsic!");
8579
8580 if (*ResOPC == ISD::VP_REDUCE_SEQ_FADD ||
8581 *ResOPC == ISD::VP_REDUCE_SEQ_FMUL) {
8582 if (VPIntrin.getFastMathFlags().allowReassoc())
8583 return *ResOPC == ISD::VP_REDUCE_SEQ_FADD ? ISD::VP_REDUCE_FADD
8584 : ISD::VP_REDUCE_FMUL;
8585 }
8586
8587 return *ResOPC;
8588}
8589
8590void SelectionDAGBuilder::visitVPLoad(
8591 const VPIntrinsic &VPIntrin, EVT VT,
8592 const SmallVectorImpl<SDValue> &OpValues) {
8593 SDLoc DL = getCurSDLoc();
8594 Value *PtrOperand = VPIntrin.getArgOperand(0);
8595 MaybeAlign Alignment = VPIntrin.getPointerAlignment();
8596 AAMDNodes AAInfo = VPIntrin.getAAMetadata();
8597 const MDNode *Ranges = getRangeMetadata(VPIntrin);
8598 SDValue LD;
8599 // Do not serialize variable-length loads of constant memory with
8600 // anything.
8601 if (!Alignment)
8602 Alignment = DAG.getEVTAlign(VT);
8603 MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo);
8604 bool AddToChain = !BatchAA || !BatchAA->pointsToConstantMemory(ML);
8605 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
8606 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8607 MachineMemOperand::Flags MMOFlags =
8608 TLI.getVPIntrinsicMemOperandFlags(VPIntrin);
8609 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
8610 MachinePointerInfo(PtrOperand), MMOFlags,
8611 LocationSize::beforeOrAfterPointer(), *Alignment, AAInfo, Ranges);
8612 LD = DAG.getLoadVP(VT, DL, InChain, OpValues[0], OpValues[1], OpValues[2],
8613 MMO, false /*IsExpanding */);
8614 if (AddToChain)
8615 PendingLoads.push_back(LD.getValue(1));
8616 setValue(&VPIntrin, LD);
8617}
8618
8619void SelectionDAGBuilder::visitVPLoadFF(
8620 const VPIntrinsic &VPIntrin, EVT VT, EVT EVLVT,
8621 const SmallVectorImpl<SDValue> &OpValues) {
8622 assert(OpValues.size() == 3 && "Unexpected number of operands");
8623 SDLoc DL = getCurSDLoc();
8624 Value *PtrOperand = VPIntrin.getArgOperand(0);
8625 MaybeAlign Alignment = VPIntrin.getPointerAlignment();
8626 AAMDNodes AAInfo = VPIntrin.getAAMetadata();
8627 const MDNode *Ranges = VPIntrin.getMetadata(LLVMContext::MD_range);
8628 SDValue LD;
8629 // Do not serialize variable-length loads of constant memory with
8630 // anything.
8631 if (!Alignment)
8632 Alignment = DAG.getEVTAlign(VT);
8633 MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo);
8634 bool AddToChain = !BatchAA || !BatchAA->pointsToConstantMemory(ML);
8635 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
8636 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
8637 MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad,
8638 LocationSize::beforeOrAfterPointer(), *Alignment, AAInfo, Ranges);
8639 LD = DAG.getLoadFFVP(VT, DL, InChain, OpValues[0], OpValues[1], OpValues[2],
8640 MMO);
8641 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, EVLVT, LD.getValue(1));
8642 if (AddToChain)
8643 PendingLoads.push_back(LD.getValue(2));
8644 setValue(&VPIntrin, DAG.getMergeValues({LD.getValue(0), Trunc}, DL));
8645}
8646
8647void SelectionDAGBuilder::visitVPGather(
8648 const VPIntrinsic &VPIntrin, EVT VT,
8649 const SmallVectorImpl<SDValue> &OpValues) {
8650 SDLoc DL = getCurSDLoc();
8651 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8652 Value *PtrOperand = VPIntrin.getArgOperand(0);
8653 MaybeAlign Alignment = VPIntrin.getPointerAlignment();
8654 AAMDNodes AAInfo = VPIntrin.getAAMetadata();
8655 const MDNode *Ranges = getRangeMetadata(VPIntrin);
8656 SDValue LD;
8657 if (!Alignment)
8658 Alignment = DAG.getEVTAlign(VT.getScalarType());
8659 unsigned AS =
8660 PtrOperand->getType()->getScalarType()->getPointerAddressSpace();
8661 MachineMemOperand::Flags MMOFlags =
8662 TLI.getVPIntrinsicMemOperandFlags(VPIntrin);
8663 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
8664 MachinePointerInfo(AS), MMOFlags, LocationSize::beforeOrAfterPointer(),
8665 *Alignment, AAInfo, Ranges);
8666 SDValue Base, Index, Scale;
8667 bool UniformBase =
8668 getUniformBase(PtrOperand, Base, Index, Scale, this, VPIntrin.getParent(),
8669 VT.getScalarStoreSize());
8670 if (!UniformBase) {
8671 Base = DAG.getConstant(0, DL, TLI.getPointerTy(DAG.getDataLayout()));
8672 Index = getValue(PtrOperand);
8673 Scale = DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()));
8674 }
8675 EVT IdxVT = Index.getValueType();
8676 EVT EltTy = IdxVT.getVectorElementType();
8677 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
8678 EVT NewIdxVT = IdxVT.changeVectorElementType(*DAG.getContext(), EltTy);
8679 Index = DAG.getNode(ISD::SIGN_EXTEND, DL, NewIdxVT, Index);
8680 }
8681 LD = DAG.getGatherVP(
8682 DAG.getVTList(VT, MVT::Other), VT, DL,
8683 {DAG.getRoot(), Base, Index, Scale, OpValues[1], OpValues[2]}, MMO,
8685 PendingLoads.push_back(LD.getValue(1));
8686 setValue(&VPIntrin, LD);
8687}
8688
8689void SelectionDAGBuilder::visitVPStore(
8690 const VPIntrinsic &VPIntrin, const SmallVectorImpl<SDValue> &OpValues) {
8691 SDLoc DL = getCurSDLoc();
8692 Value *PtrOperand = VPIntrin.getArgOperand(1);
8693 EVT VT = OpValues[0].getValueType();
8694 MaybeAlign Alignment = VPIntrin.getPointerAlignment();
8695 AAMDNodes AAInfo = VPIntrin.getAAMetadata();
8696 SDValue ST;
8697 if (!Alignment)
8698 Alignment = DAG.getEVTAlign(VT);
8699 SDValue Ptr = OpValues[1];
8700 SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
8701 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8702 MachineMemOperand::Flags MMOFlags =
8703 TLI.getVPIntrinsicMemOperandFlags(VPIntrin);
8704 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
8705 MachinePointerInfo(PtrOperand), MMOFlags,
8706 LocationSize::beforeOrAfterPointer(), *Alignment, AAInfo);
8707 ST = DAG.getStoreVP(getMemoryRoot(), DL, OpValues[0], Ptr, Offset,
8708 OpValues[2], OpValues[3], VT, MMO, ISD::UNINDEXED,
8709 /* IsTruncating */ false, /*IsCompressing*/ false);
8710 DAG.setRoot(ST);
8711 setValue(&VPIntrin, ST);
8712}
8713
8714void SelectionDAGBuilder::visitVPScatter(
8715 const VPIntrinsic &VPIntrin, const SmallVectorImpl<SDValue> &OpValues) {
8716 SDLoc DL = getCurSDLoc();
8717 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8718 Value *PtrOperand = VPIntrin.getArgOperand(1);
8719 EVT VT = OpValues[0].getValueType();
8720 MaybeAlign Alignment = VPIntrin.getPointerAlignment();
8721 AAMDNodes AAInfo = VPIntrin.getAAMetadata();
8722 SDValue ST;
8723 if (!Alignment)
8724 Alignment = DAG.getEVTAlign(VT.getScalarType());
8725 unsigned AS =
8726 PtrOperand->getType()->getScalarType()->getPointerAddressSpace();
8727 MachineMemOperand::Flags MMOFlags =
8728 TLI.getVPIntrinsicMemOperandFlags(VPIntrin);
8729 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
8730 MachinePointerInfo(AS), MMOFlags, LocationSize::beforeOrAfterPointer(),
8731 *Alignment, AAInfo);
8732 SDValue Base, Index, Scale;
8733 bool UniformBase =
8734 getUniformBase(PtrOperand, Base, Index, Scale, this, VPIntrin.getParent(),
8735 VT.getScalarStoreSize());
8736 if (!UniformBase) {
8737 Base = DAG.getConstant(0, DL, TLI.getPointerTy(DAG.getDataLayout()));
8738 Index = getValue(PtrOperand);
8739 Scale = DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()));
8740 }
8741 EVT IdxVT = Index.getValueType();
8742 EVT EltTy = IdxVT.getVectorElementType();
8743 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
8744 EVT NewIdxVT = IdxVT.changeVectorElementType(*DAG.getContext(), EltTy);
8745 Index = DAG.getNode(ISD::SIGN_EXTEND, DL, NewIdxVT, Index);
8746 }
8747 ST = DAG.getScatterVP(DAG.getVTList(MVT::Other), VT, DL,
8748 {getMemoryRoot(), OpValues[0], Base, Index, Scale,
8749 OpValues[2], OpValues[3]},
8750 MMO, ISD::SIGNED_SCALED);
8751 DAG.setRoot(ST);
8752 setValue(&VPIntrin, ST);
8753}
8754
8755void SelectionDAGBuilder::visitVPStridedLoad(
8756 const VPIntrinsic &VPIntrin, EVT VT,
8757 const SmallVectorImpl<SDValue> &OpValues) {
8758 SDLoc DL = getCurSDLoc();
8759 Value *PtrOperand = VPIntrin.getArgOperand(0);
8760 MaybeAlign Alignment = VPIntrin.getPointerAlignment();
8761 if (!Alignment)
8762 Alignment = DAG.getEVTAlign(VT.getScalarType());
8763 AAMDNodes AAInfo = VPIntrin.getAAMetadata();
8764 const MDNode *Ranges = getRangeMetadata(VPIntrin);
8765 MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo);
8766 bool AddToChain = !BatchAA || !BatchAA->pointsToConstantMemory(ML);
8767 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
8768 unsigned AS = PtrOperand->getType()->getPointerAddressSpace();
8769 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8770 MachineMemOperand::Flags MMOFlags =
8771 TLI.getVPIntrinsicMemOperandFlags(VPIntrin);
8772 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
8773 MachinePointerInfo(AS), MMOFlags, LocationSize::beforeOrAfterPointer(),
8774 *Alignment, AAInfo, Ranges);
8775
8776 SDValue LD = DAG.getStridedLoadVP(VT, DL, InChain, OpValues[0], OpValues[1],
8777 OpValues[2], OpValues[3], MMO,
8778 false /*IsExpanding*/);
8779
8780 if (AddToChain)
8781 PendingLoads.push_back(LD.getValue(1));
8782 setValue(&VPIntrin, LD);
8783}
8784
8785void SelectionDAGBuilder::visitVPStridedStore(
8786 const VPIntrinsic &VPIntrin, const SmallVectorImpl<SDValue> &OpValues) {
8787 SDLoc DL = getCurSDLoc();
8788 Value *PtrOperand = VPIntrin.getArgOperand(1);
8789 EVT VT = OpValues[0].getValueType();
8790 MaybeAlign Alignment = VPIntrin.getPointerAlignment();
8791 if (!Alignment)
8792 Alignment = DAG.getEVTAlign(VT.getScalarType());
8793 AAMDNodes AAInfo = VPIntrin.getAAMetadata();
8794 unsigned AS = PtrOperand->getType()->getPointerAddressSpace();
8795 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8796 MachineMemOperand::Flags MMOFlags =
8797 TLI.getVPIntrinsicMemOperandFlags(VPIntrin);
8798 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
8799 MachinePointerInfo(AS), MMOFlags, LocationSize::beforeOrAfterPointer(),
8800 *Alignment, AAInfo);
8801
8802 SDValue ST = DAG.getStridedStoreVP(
8803 getMemoryRoot(), DL, OpValues[0], OpValues[1],
8804 DAG.getUNDEF(OpValues[1].getValueType()), OpValues[2], OpValues[3],
8805 OpValues[4], VT, MMO, ISD::UNINDEXED, /*IsTruncating*/ false,
8806 /*IsCompressing*/ false);
8807
8808 DAG.setRoot(ST);
8809 setValue(&VPIntrin, ST);
8810}
8811
8812void SelectionDAGBuilder::visitVPCmp(const VPCmpIntrinsic &VPIntrin) {
8813 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8814 SDLoc DL = getCurSDLoc();
8815
8816 ISD::CondCode Condition;
8818 bool IsFP = VPIntrin.getOperand(0)->getType()->isFPOrFPVectorTy();
8819 if (IsFP) {
8820 // FIXME: Regular fcmps are FPMathOperators which may have fast-math (nnan)
8821 // flags, but calls that don't return floating-point types can't be
8822 // FPMathOperators, like vp.fcmp. This affects constrained fcmp too.
8823 Condition = getFCmpCondCode(CondCode);
8824 if (TM.Options.NoNaNsFPMath)
8825 Condition = getFCmpCodeWithoutNaN(Condition);
8826 } else {
8827 Condition = getICmpCondCode(CondCode);
8828 }
8829
8830 SDValue Op1 = getValue(VPIntrin.getOperand(0));
8831 SDValue Op2 = getValue(VPIntrin.getOperand(1));
8832 // #2 is the condition code
8833 SDValue MaskOp = getValue(VPIntrin.getOperand(3));
8834 SDValue EVL = getValue(VPIntrin.getOperand(4));
8835 MVT EVLParamVT = TLI.getVPExplicitVectorLengthTy();
8836 assert(EVLParamVT.isScalarInteger() && EVLParamVT.bitsGE(MVT::i32) &&
8837 "Unexpected target EVL type");
8838 EVL = DAG.getNode(ISD::ZERO_EXTEND, DL, EVLParamVT, EVL);
8839
8840 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
8841 VPIntrin.getType());
8842 setValue(&VPIntrin,
8843 DAG.getSetCCVP(DL, DestVT, Op1, Op2, Condition, MaskOp, EVL));
8844}
8845
8846void SelectionDAGBuilder::visitVectorPredicationIntrinsic(
8847 const VPIntrinsic &VPIntrin) {
8848 SDLoc DL = getCurSDLoc();
8849 unsigned Opcode = getISDForVPIntrinsic(VPIntrin);
8850
8851 auto IID = VPIntrin.getIntrinsicID();
8852
8853 if (const auto *CmpI = dyn_cast<VPCmpIntrinsic>(&VPIntrin))
8854 return visitVPCmp(*CmpI);
8855
8856 SmallVector<EVT, 4> ValueVTs;
8857 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8858 ComputeValueVTs(TLI, DAG.getDataLayout(), VPIntrin.getType(), ValueVTs);
8859 SDVTList VTs = DAG.getVTList(ValueVTs);
8860
8861 auto EVLParamPos = VPIntrinsic::getVectorLengthParamPos(IID);
8862
8863 MVT EVLParamVT = TLI.getVPExplicitVectorLengthTy();
8864 assert(EVLParamVT.isScalarInteger() && EVLParamVT.bitsGE(MVT::i32) &&
8865 "Unexpected target EVL type");
8866
8867 // Request operands.
8868 SmallVector<SDValue, 7> OpValues;
8869 for (unsigned I = 0; I < VPIntrin.arg_size(); ++I) {
8870 auto Op = getValue(VPIntrin.getArgOperand(I));
8871 if (I == EVLParamPos)
8872 Op = DAG.getNode(ISD::ZERO_EXTEND, DL, EVLParamVT, Op);
8873 OpValues.push_back(Op);
8874 }
8875
8876 switch (Opcode) {
8877 default: {
8878 SDNodeFlags SDFlags;
8879 if (auto *FPMO = dyn_cast<FPMathOperator>(&VPIntrin))
8880 SDFlags.copyFMF(*FPMO);
8881 SDValue Result = DAG.getNode(Opcode, DL, VTs, OpValues, SDFlags);
8882 setValue(&VPIntrin, Result);
8883 break;
8884 }
8885 case ISD::VP_LOAD:
8886 visitVPLoad(VPIntrin, ValueVTs[0], OpValues);
8887 break;
8888 case ISD::VP_LOAD_FF:
8889 visitVPLoadFF(VPIntrin, ValueVTs[0], ValueVTs[1], OpValues);
8890 break;
8891 case ISD::VP_GATHER:
8892 visitVPGather(VPIntrin, ValueVTs[0], OpValues);
8893 break;
8894 case ISD::EXPERIMENTAL_VP_STRIDED_LOAD:
8895 visitVPStridedLoad(VPIntrin, ValueVTs[0], OpValues);
8896 break;
8897 case ISD::VP_STORE:
8898 visitVPStore(VPIntrin, OpValues);
8899 break;
8900 case ISD::VP_SCATTER:
8901 visitVPScatter(VPIntrin, OpValues);
8902 break;
8903 case ISD::EXPERIMENTAL_VP_STRIDED_STORE:
8904 visitVPStridedStore(VPIntrin, OpValues);
8905 break;
8906 case ISD::VP_FMULADD: {
8907 assert(OpValues.size() == 5 && "Unexpected number of operands");
8908 SDNodeFlags SDFlags;
8909 if (auto *FPMO = dyn_cast<FPMathOperator>(&VPIntrin))
8910 SDFlags.copyFMF(*FPMO);
8911 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
8912 TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), ValueVTs[0])) {
8913 setValue(&VPIntrin, DAG.getNode(ISD::VP_FMA, DL, VTs, OpValues, SDFlags));
8914 } else {
8915 SDValue Mul = DAG.getNode(
8916 ISD::VP_FMUL, DL, VTs,
8917 {OpValues[0], OpValues[1], OpValues[3], OpValues[4]}, SDFlags);
8918 SDValue Add =
8919 DAG.getNode(ISD::VP_FADD, DL, VTs,
8920 {Mul, OpValues[2], OpValues[3], OpValues[4]}, SDFlags);
8921 setValue(&VPIntrin, Add);
8922 }
8923 break;
8924 }
8925 case ISD::VP_IS_FPCLASS: {
8926 const DataLayout DLayout = DAG.getDataLayout();
8927 EVT DestVT = TLI.getValueType(DLayout, VPIntrin.getType());
8928 auto Constant = OpValues[1]->getAsZExtVal();
8929 SDValue Check = DAG.getTargetConstant(Constant, DL, MVT::i32);
8930 SDValue V = DAG.getNode(ISD::VP_IS_FPCLASS, DL, DestVT,
8931 {OpValues[0], Check, OpValues[2], OpValues[3]});
8932 setValue(&VPIntrin, V);
8933 return;
8934 }
8935 case ISD::VP_INTTOPTR: {
8936 SDValue N = OpValues[0];
8937 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), VPIntrin.getType());
8938 EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), VPIntrin.getType());
8939 N = DAG.getVPPtrExtOrTrunc(getCurSDLoc(), DestVT, N, OpValues[1],
8940 OpValues[2]);
8941 N = DAG.getVPZExtOrTrunc(getCurSDLoc(), PtrMemVT, N, OpValues[1],
8942 OpValues[2]);
8943 setValue(&VPIntrin, N);
8944 break;
8945 }
8946 case ISD::VP_PTRTOINT: {
8947 SDValue N = OpValues[0];
8948 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
8949 VPIntrin.getType());
8950 EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(),
8951 VPIntrin.getOperand(0)->getType());
8952 N = DAG.getVPPtrExtOrTrunc(getCurSDLoc(), PtrMemVT, N, OpValues[1],
8953 OpValues[2]);
8954 N = DAG.getVPZExtOrTrunc(getCurSDLoc(), DestVT, N, OpValues[1],
8955 OpValues[2]);
8956 setValue(&VPIntrin, N);
8957 break;
8958 }
8959 case ISD::VP_ABS:
8960 case ISD::VP_CTLZ:
8961 case ISD::VP_CTLZ_ZERO_UNDEF:
8962 case ISD::VP_CTTZ:
8963 case ISD::VP_CTTZ_ZERO_UNDEF:
8964 case ISD::VP_CTTZ_ELTS_ZERO_UNDEF:
8965 case ISD::VP_CTTZ_ELTS: {
8966 SDValue Result =
8967 DAG.getNode(Opcode, DL, VTs, {OpValues[0], OpValues[2], OpValues[3]});
8968 setValue(&VPIntrin, Result);
8969 break;
8970 }
8971 }
8972}
8973
8974SDValue SelectionDAGBuilder::lowerStartEH(SDValue Chain,
8975 const BasicBlock *EHPadBB,
8976 MCSymbol *&BeginLabel) {
8977 MachineFunction &MF = DAG.getMachineFunction();
8978
8979 // Insert a label before the invoke call to mark the try range. This can be
8980 // used to detect deletion of the invoke via the MachineModuleInfo.
8981 BeginLabel = MF.getContext().createTempSymbol();
8982
8983 // For SjLj, keep track of which landing pads go with which invokes
8984 // so as to maintain the ordering of pads in the LSDA.
8985 unsigned CallSiteIndex = FuncInfo.getCurrentCallSite();
8986 if (CallSiteIndex) {
8987 MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
8988 LPadToCallSiteMap[FuncInfo.getMBB(EHPadBB)].push_back(CallSiteIndex);
8989
8990 // Now that the call site is handled, stop tracking it.
8991 FuncInfo.setCurrentCallSite(0);
8992 }
8993
8994 return DAG.getEHLabel(getCurSDLoc(), Chain, BeginLabel);
8995}
8996
8997SDValue SelectionDAGBuilder::lowerEndEH(SDValue Chain, const InvokeInst *II,
8998 const BasicBlock *EHPadBB,
8999 MCSymbol *BeginLabel) {
9000 assert(BeginLabel && "BeginLabel should've been set");
9001
9002 MachineFunction &MF = DAG.getMachineFunction();
9003
9004 // Insert a label at the end of the invoke call to mark the try range. This
9005 // can be used to detect deletion of the invoke via the MachineModuleInfo.
9006 MCSymbol *EndLabel = MF.getContext().createTempSymbol();
9007 Chain = DAG.getEHLabel(getCurSDLoc(), Chain, EndLabel);
9008
9009 // Inform MachineModuleInfo of range.
9010 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
9011 // There is a platform (e.g. wasm) that uses funclet style IR but does not
9012 // actually use outlined funclets and their LSDA info style.
9013 if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) {
9014 assert(II && "II should've been set");
9015 WinEHFuncInfo *EHInfo = MF.getWinEHFuncInfo();
9016 EHInfo->addIPToStateRange(II, BeginLabel, EndLabel);
9017 } else if (!isScopedEHPersonality(Pers)) {
9018 assert(EHPadBB);
9019 MF.addInvoke(FuncInfo.getMBB(EHPadBB), BeginLabel, EndLabel);
9020 }
9021
9022 return Chain;
9023}
9024
9025std::pair<SDValue, SDValue>
9027 const BasicBlock *EHPadBB) {
9028 MCSymbol *BeginLabel = nullptr;
9029
9030 if (EHPadBB) {
9031 // Both PendingLoads and PendingExports must be flushed here;
9032 // this call might not return.
9033 (void)getRoot();
9034 DAG.setRoot(lowerStartEH(getControlRoot(), EHPadBB, BeginLabel));
9035 CLI.setChain(getRoot());
9036 }
9037
9038 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9039 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
9040
9041 assert((CLI.IsTailCall || Result.second.getNode()) &&
9042 "Non-null chain expected with non-tail call!");
9043 assert((Result.second.getNode() || !Result.first.getNode()) &&
9044 "Null value expected with tail call!");
9045
9046 if (!Result.second.getNode()) {
9047 // As a special case, a null chain means that a tail call has been emitted
9048 // and the DAG root is already updated.
9049 HasTailCall = true;
9050
9051 // Since there's no actual continuation from this block, nothing can be
9052 // relying on us setting vregs for them.
9053 PendingExports.clear();
9054 } else {
9055 DAG.setRoot(Result.second);
9056 }
9057
9058 if (EHPadBB) {
9059 DAG.setRoot(lowerEndEH(getRoot(), cast_or_null<InvokeInst>(CLI.CB), EHPadBB,
9060 BeginLabel));
9061 Result.second = getRoot();
9062 }
9063
9064 return Result;
9065}
9066
9068 bool isMustTailCall = CB.isMustTailCall();
9069
9070 // Avoid emitting tail calls in functions with the disable-tail-calls
9071 // attribute.
9072 const Function *Caller = CB.getParent()->getParent();
9073 if (!isMustTailCall &&
9074 Caller->getFnAttribute("disable-tail-calls").getValueAsBool())
9075 return false;
9076
9077 // We can't tail call inside a function with a swifterror argument. Lowering
9078 // does not support this yet. It would have to move into the swifterror
9079 // register before the call.
9080 if (DAG.getTargetLoweringInfo().supportSwiftError() &&
9081 Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError))
9082 return false;
9083
9084 // Check if target-independent constraints permit a tail call here.
9085 // Target-dependent constraints are checked within TLI->LowerCallTo.
9086 return isInTailCallPosition(CB, DAG.getTarget());
9087}
9088
9090 bool isTailCall, bool isMustTailCall,
9091 const BasicBlock *EHPadBB,
9092 const TargetLowering::PtrAuthInfo *PAI) {
9093 auto &DL = DAG.getDataLayout();
9094 FunctionType *FTy = CB.getFunctionType();
9095 Type *RetTy = CB.getType();
9096
9098 Args.reserve(CB.arg_size());
9099
9100 const Value *SwiftErrorVal = nullptr;
9101 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9102
9103 if (isTailCall)
9104 isTailCall = canTailCall(CB);
9105
9106 for (auto I = CB.arg_begin(), E = CB.arg_end(); I != E; ++I) {
9107 const Value *V = *I;
9108
9109 // Skip empty types
9110 if (V->getType()->isEmptyTy())
9111 continue;
9112
9113 SDValue ArgNode = getValue(V);
9114 TargetLowering::ArgListEntry Entry(ArgNode, V->getType());
9115 Entry.setAttributes(&CB, I - CB.arg_begin());
9116
9117 // Use swifterror virtual register as input to the call.
9118 if (Entry.IsSwiftError && TLI.supportSwiftError()) {
9119 SwiftErrorVal = V;
9120 // We find the virtual register for the actual swifterror argument.
9121 // Instead of using the Value, we use the virtual register instead.
9122 Entry.Node =
9123 DAG.getRegister(SwiftError.getOrCreateVRegUseAt(&CB, FuncInfo.MBB, V),
9124 EVT(TLI.getPointerTy(DL)));
9125 }
9126
9127 Args.push_back(Entry);
9128
9129 // If we have an explicit sret argument that is an Instruction, (i.e., it
9130 // might point to function-local memory), we can't meaningfully tail-call.
9131 if (Entry.IsSRet && isa<Instruction>(V))
9132 isTailCall = false;
9133 }
9134
9135 // If call site has a cfguardtarget operand bundle, create and add an
9136 // additional ArgListEntry.
9137 if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_cfguardtarget)) {
9138 Value *V = Bundle->Inputs[0];
9140 Entry.IsCFGuardTarget = true;
9141 Args.push_back(Entry);
9142 }
9143
9144 // Disable tail calls if there is an swifterror argument. Targets have not
9145 // been updated to support tail calls.
9146 if (TLI.supportSwiftError() && SwiftErrorVal)
9147 isTailCall = false;
9148
9149 ConstantInt *CFIType = nullptr;
9150 if (CB.isIndirectCall()) {
9151 if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_kcfi)) {
9152 if (!TLI.supportKCFIBundles())
9154 "Target doesn't support calls with kcfi operand bundles.");
9155 CFIType = cast<ConstantInt>(Bundle->Inputs[0]);
9156 assert(CFIType->getType()->isIntegerTy(32) && "Invalid CFI type");
9157 }
9158 }
9159
9160 SDValue ConvControlToken;
9161 if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_convergencectrl)) {
9162 auto *Token = Bundle->Inputs[0].get();
9163 ConvControlToken = getValue(Token);
9164 }
9165
9166 GlobalValue *DeactivationSymbol = nullptr;
9168 DeactivationSymbol = cast<GlobalValue>(Bundle->Inputs[0].get());
9169 }
9170
9173 .setChain(getRoot())
9174 .setCallee(RetTy, FTy, Callee, std::move(Args), CB)
9175 .setTailCall(isTailCall)
9179 .setCFIType(CFIType)
9180 .setConvergenceControlToken(ConvControlToken)
9181 .setDeactivationSymbol(DeactivationSymbol);
9182
9183 // Set the pointer authentication info if we have it.
9184 if (PAI) {
9185 if (!TLI.supportPtrAuthBundles())
9187 "This target doesn't support calls with ptrauth operand bundles.");
9188 CLI.setPtrAuth(*PAI);
9189 }
9190
9191 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
9192
9193 if (Result.first.getNode()) {
9194 Result.first = lowerRangeToAssertZExt(DAG, CB, Result.first);
9195 Result.first = lowerNoFPClassToAssertNoFPClass(DAG, CB, Result.first);
9196 setValue(&CB, Result.first);
9197 }
9198
9199 // The last element of CLI.InVals has the SDValue for swifterror return.
9200 // Here we copy it to a virtual register and update SwiftErrorMap for
9201 // book-keeping.
9202 if (SwiftErrorVal && TLI.supportSwiftError()) {
9203 // Get the last element of InVals.
9204 SDValue Src = CLI.InVals.back();
9205 Register VReg =
9206 SwiftError.getOrCreateVRegDefAt(&CB, FuncInfo.MBB, SwiftErrorVal);
9207 SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src);
9208 DAG.setRoot(CopyNode);
9209 }
9210}
9211
9212static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
9213 SelectionDAGBuilder &Builder) {
9214 // Check to see if this load can be trivially constant folded, e.g. if the
9215 // input is from a string literal.
9216 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
9217 // Cast pointer to the type we really want to load.
9218 Type *LoadTy =
9219 Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits());
9220 if (LoadVT.isVector())
9221 LoadTy = FixedVectorType::get(LoadTy, LoadVT.getVectorNumElements());
9222 if (const Constant *LoadCst =
9223 ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput),
9224 LoadTy, Builder.DAG.getDataLayout()))
9225 return Builder.getValue(LoadCst);
9226 }
9227
9228 // Otherwise, we have to emit the load. If the pointer is to unfoldable but
9229 // still constant memory, the input chain can be the entry node.
9230 SDValue Root;
9231 bool ConstantMemory = false;
9232
9233 // Do not serialize (non-volatile) loads of constant memory with anything.
9234 if (Builder.BatchAA && Builder.BatchAA->pointsToConstantMemory(PtrVal)) {
9235 Root = Builder.DAG.getEntryNode();
9236 ConstantMemory = true;
9237 } else {
9238 // Do not serialize non-volatile loads against each other.
9239 Root = Builder.DAG.getRoot();
9240 }
9241
9242 SDValue Ptr = Builder.getValue(PtrVal);
9243 SDValue LoadVal =
9244 Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, Ptr,
9245 MachinePointerInfo(PtrVal), Align(1));
9246
9247 if (!ConstantMemory)
9248 Builder.PendingLoads.push_back(LoadVal.getValue(1));
9249 return LoadVal;
9250}
9251
9252/// Record the value for an instruction that produces an integer result,
9253/// converting the type where necessary.
9254void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I,
9255 SDValue Value,
9256 bool IsSigned) {
9257 EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
9258 I.getType(), true);
9259 Value = DAG.getExtOrTrunc(IsSigned, Value, getCurSDLoc(), VT);
9260 setValue(&I, Value);
9261}
9262
9263/// See if we can lower a memcmp/bcmp call into an optimized form. If so, return
9264/// true and lower it. Otherwise return false, and it will be lowered like a
9265/// normal call.
9266/// The caller already checked that \p I calls the appropriate LibFunc with a
9267/// correct prototype.
9268bool SelectionDAGBuilder::visitMemCmpBCmpCall(const CallInst &I) {
9269 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
9270 const Value *Size = I.getArgOperand(2);
9271 const ConstantSDNode *CSize = dyn_cast<ConstantSDNode>(getValue(Size));
9272 if (CSize && CSize->getZExtValue() == 0) {
9273 EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
9274 I.getType(), true);
9275 setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT));
9276 return true;
9277 }
9278
9279 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
9280 std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp(
9281 DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS),
9282 getValue(Size), &I);
9283 if (Res.first.getNode()) {
9284 processIntegerCallValue(I, Res.first, true);
9285 PendingLoads.push_back(Res.second);
9286 return true;
9287 }
9288
9289 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0
9290 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0
9291 if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I))
9292 return false;
9293
9294 // If the target has a fast compare for the given size, it will return a
9295 // preferred load type for that size. Require that the load VT is legal and
9296 // that the target supports unaligned loads of that type. Otherwise, return
9297 // INVALID.
9298 auto hasFastLoadsAndCompare = [&](unsigned NumBits) {
9299 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9300 MVT LVT = TLI.hasFastEqualityCompare(NumBits);
9301 if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) {
9302 // TODO: Handle 5 byte compare as 4-byte + 1 byte.
9303 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
9304 // TODO: Check alignment of src and dest ptrs.
9305 unsigned DstAS = LHS->getType()->getPointerAddressSpace();
9306 unsigned SrcAS = RHS->getType()->getPointerAddressSpace();
9307 if (!TLI.isTypeLegal(LVT) ||
9308 !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) ||
9309 !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS))
9311 }
9312
9313 return LVT;
9314 };
9315
9316 // This turns into unaligned loads. We only do this if the target natively
9317 // supports the MVT we'll be loading or if it is small enough (<= 4) that
9318 // we'll only produce a small number of byte loads.
9319 MVT LoadVT;
9320 unsigned NumBitsToCompare = CSize->getZExtValue() * 8;
9321 switch (NumBitsToCompare) {
9322 default:
9323 return false;
9324 case 16:
9325 LoadVT = MVT::i16;
9326 break;
9327 case 32:
9328 LoadVT = MVT::i32;
9329 break;
9330 case 64:
9331 case 128:
9332 case 256:
9333 LoadVT = hasFastLoadsAndCompare(NumBitsToCompare);
9334 break;
9335 }
9336
9337 if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE)
9338 return false;
9339
9340 SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this);
9341 SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this);
9342
9343 // Bitcast to a wide integer type if the loads are vectors.
9344 if (LoadVT.isVector()) {
9345 EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits());
9346 LoadL = DAG.getBitcast(CmpVT, LoadL);
9347 LoadR = DAG.getBitcast(CmpVT, LoadR);
9348 }
9349
9350 SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE);
9351 processIntegerCallValue(I, Cmp, false);
9352 return true;
9353}
9354
9355/// See if we can lower a memchr call into an optimized form. If so, return
9356/// true and lower it. Otherwise return false, and it will be lowered like a
9357/// normal call.
9358/// The caller already checked that \p I calls the appropriate LibFunc with a
9359/// correct prototype.
9360bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) {
9361 const Value *Src = I.getArgOperand(0);
9362 const Value *Char = I.getArgOperand(1);
9363 const Value *Length = I.getArgOperand(2);
9364
9365 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
9366 std::pair<SDValue, SDValue> Res =
9367 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(),
9368 getValue(Src), getValue(Char), getValue(Length),
9369 MachinePointerInfo(Src));
9370 if (Res.first.getNode()) {
9371 setValue(&I, Res.first);
9372 PendingLoads.push_back(Res.second);
9373 return true;
9374 }
9375
9376 return false;
9377}
9378
9379/// See if we can lower a mempcpy call into an optimized form. If so, return
9380/// true and lower it. Otherwise return false, and it will be lowered like a
9381/// normal call.
9382/// The caller already checked that \p I calls the appropriate LibFunc with a
9383/// correct prototype.
9384bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) {
9385 SDValue Dst = getValue(I.getArgOperand(0));
9386 SDValue Src = getValue(I.getArgOperand(1));
9387 SDValue Size = getValue(I.getArgOperand(2));
9388
9389 Align DstAlign = DAG.InferPtrAlign(Dst).valueOrOne();
9390 Align SrcAlign = DAG.InferPtrAlign(Src).valueOrOne();
9391 // DAG::getMemcpy needs Alignment to be defined.
9392 Align Alignment = std::min(DstAlign, SrcAlign);
9393
9394 SDLoc sdl = getCurSDLoc();
9395
9396 // In the mempcpy context we need to pass in a false value for isTailCall
9397 // because the return pointer needs to be adjusted by the size of
9398 // the copied memory.
9399 SDValue Root = getMemoryRoot();
9400 SDValue MC = DAG.getMemcpy(
9401 Root, sdl, Dst, Src, Size, Alignment, false, false, /*CI=*/nullptr,
9402 std::nullopt, MachinePointerInfo(I.getArgOperand(0)),
9403 MachinePointerInfo(I.getArgOperand(1)), I.getAAMetadata());
9404 assert(MC.getNode() != nullptr &&
9405 "** memcpy should not be lowered as TailCall in mempcpy context **");
9406 DAG.setRoot(MC);
9407
9408 // Check if Size needs to be truncated or extended.
9409 Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType());
9410
9411 // Adjust return pointer to point just past the last dst byte.
9412 SDValue DstPlusSize = DAG.getMemBasePlusOffset(Dst, Size, sdl);
9413 setValue(&I, DstPlusSize);
9414 return true;
9415}
9416
9417/// See if we can lower a strcpy call into an optimized form. If so, return
9418/// true and lower it, otherwise return false and it will be lowered like a
9419/// normal call.
9420/// The caller already checked that \p I calls the appropriate LibFunc with a
9421/// correct prototype.
9422bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) {
9423 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
9424
9425 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
9426 std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForStrcpy(
9427 DAG, getCurSDLoc(), getRoot(), getValue(Arg0), getValue(Arg1),
9428 MachinePointerInfo(Arg0), MachinePointerInfo(Arg1), isStpcpy, &I);
9429 if (Res.first.getNode()) {
9430 setValue(&I, Res.first);
9431 DAG.setRoot(Res.second);
9432 return true;
9433 }
9434
9435 return false;
9436}
9437
9438/// See if we can lower a strcmp call into an optimized form. If so, return
9439/// true and lower it, otherwise return false and it will be lowered like a
9440/// normal call.
9441/// The caller already checked that \p I calls the appropriate LibFunc with a
9442/// correct prototype.
9443bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) {
9444 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
9445
9446 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
9447 std::pair<SDValue, SDValue> Res =
9448 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(),
9449 getValue(Arg0), getValue(Arg1),
9450 MachinePointerInfo(Arg0),
9451 MachinePointerInfo(Arg1));
9452 if (Res.first.getNode()) {
9453 processIntegerCallValue(I, Res.first, true);
9454 PendingLoads.push_back(Res.second);
9455 return true;
9456 }
9457
9458 return false;
9459}
9460
9461/// See if we can lower a strlen call into an optimized form. If so, return
9462/// true and lower it, otherwise return false and it will be lowered like a
9463/// normal call.
9464/// The caller already checked that \p I calls the appropriate LibFunc with a
9465/// correct prototype.
9466bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) {
9467 const Value *Arg0 = I.getArgOperand(0);
9468
9469 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
9470 std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForStrlen(
9471 DAG, getCurSDLoc(), DAG.getRoot(), getValue(Arg0), &I);
9472 if (Res.first.getNode()) {
9473 processIntegerCallValue(I, Res.first, false);
9474 PendingLoads.push_back(Res.second);
9475 return true;
9476 }
9477
9478 return false;
9479}
9480
9481/// See if we can lower a strnlen call into an optimized form. If so, return
9482/// true and lower it, otherwise return false and it will be lowered like a
9483/// normal call.
9484/// The caller already checked that \p I calls the appropriate LibFunc with a
9485/// correct prototype.
9486bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) {
9487 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
9488
9489 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
9490 std::pair<SDValue, SDValue> Res =
9491 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(),
9492 getValue(Arg0), getValue(Arg1),
9493 MachinePointerInfo(Arg0));
9494 if (Res.first.getNode()) {
9495 processIntegerCallValue(I, Res.first, false);
9496 PendingLoads.push_back(Res.second);
9497 return true;
9498 }
9499
9500 return false;
9501}
9502
9503/// See if we can lower a Strstr call into an optimized form. If so, return
9504/// true and lower it, otherwise return false and it will be lowered like a
9505/// normal call.
9506/// The caller already checked that \p I calls the appropriate LibFunc with a
9507/// correct prototype.
9508bool SelectionDAGBuilder::visitStrstrCall(const CallInst &I) {
9509 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
9510 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
9511 std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForStrstr(
9512 DAG, getCurSDLoc(), DAG.getRoot(), getValue(Arg0), getValue(Arg1), &I);
9513 if (Res.first) {
9514 processIntegerCallValue(I, Res.first, false);
9515 PendingLoads.push_back(Res.second);
9516 return true;
9517 }
9518 return false;
9519}
9520
9521/// See if we can lower a unary floating-point operation into an SDNode with
9522/// the specified Opcode. If so, return true and lower it, otherwise return
9523/// false and it will be lowered like a normal call.
9524/// The caller already checked that \p I calls the appropriate LibFunc with a
9525/// correct prototype.
9526bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I,
9527 unsigned Opcode) {
9528 // We already checked this call's prototype; verify it doesn't modify errno.
9529 // Do not perform optimizations for call sites that require strict
9530 // floating-point semantics.
9531 if (!I.onlyReadsMemory() || I.isStrictFP())
9532 return false;
9533
9534 SDNodeFlags Flags;
9535 Flags.copyFMF(cast<FPMathOperator>(I));
9536
9537 SDValue Tmp = getValue(I.getArgOperand(0));
9538 setValue(&I,
9539 DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp, Flags));
9540 return true;
9541}
9542
9543/// See if we can lower a binary floating-point operation into an SDNode with
9544/// the specified Opcode. If so, return true and lower it. Otherwise return
9545/// false, and it will be lowered like a normal call.
9546/// The caller already checked that \p I calls the appropriate LibFunc with a
9547/// correct prototype.
9548bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I,
9549 unsigned Opcode) {
9550 // We already checked this call's prototype; verify it doesn't modify errno.
9551 // Do not perform optimizations for call sites that require strict
9552 // floating-point semantics.
9553 if (!I.onlyReadsMemory() || I.isStrictFP())
9554 return false;
9555
9556 SDNodeFlags Flags;
9557 Flags.copyFMF(cast<FPMathOperator>(I));
9558
9559 SDValue Tmp0 = getValue(I.getArgOperand(0));
9560 SDValue Tmp1 = getValue(I.getArgOperand(1));
9561 EVT VT = Tmp0.getValueType();
9562 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1, Flags));
9563 return true;
9564}
9565
9566void SelectionDAGBuilder::visitCall(const CallInst &I) {
9567 // Handle inline assembly differently.
9568 if (I.isInlineAsm()) {
9569 visitInlineAsm(I);
9570 return;
9571 }
9572
9574
9575 if (Function *F = I.getCalledFunction()) {
9576 if (F->isDeclaration()) {
9577 // Is this an LLVM intrinsic?
9578 if (unsigned IID = F->getIntrinsicID()) {
9579 visitIntrinsicCall(I, IID);
9580 return;
9581 }
9582 }
9583
9584 // Check for well-known libc/libm calls. If the function is internal, it
9585 // can't be a library call. Don't do the check if marked as nobuiltin for
9586 // some reason.
9587 // This code should not handle libcalls that are already canonicalized to
9588 // intrinsics by the middle-end.
9589 LibFunc Func;
9590 if (!I.isNoBuiltin() && !F->hasLocalLinkage() && F->hasName() &&
9591 LibInfo->getLibFunc(*F, Func) && LibInfo->hasOptimizedCodeGen(Func)) {
9592 switch (Func) {
9593 default: break;
9594 case LibFunc_bcmp:
9595 if (visitMemCmpBCmpCall(I))
9596 return;
9597 break;
9598 case LibFunc_copysign:
9599 case LibFunc_copysignf:
9600 case LibFunc_copysignl:
9601 // We already checked this call's prototype; verify it doesn't modify
9602 // errno.
9603 if (I.onlyReadsMemory()) {
9604 SDValue LHS = getValue(I.getArgOperand(0));
9605 SDValue RHS = getValue(I.getArgOperand(1));
9607 LHS.getValueType(), LHS, RHS));
9608 return;
9609 }
9610 break;
9611 case LibFunc_sin:
9612 case LibFunc_sinf:
9613 case LibFunc_sinl:
9614 if (visitUnaryFloatCall(I, ISD::FSIN))
9615 return;
9616 break;
9617 case LibFunc_cos:
9618 case LibFunc_cosf:
9619 case LibFunc_cosl:
9620 if (visitUnaryFloatCall(I, ISD::FCOS))
9621 return;
9622 break;
9623 case LibFunc_tan:
9624 case LibFunc_tanf:
9625 case LibFunc_tanl:
9626 if (visitUnaryFloatCall(I, ISD::FTAN))
9627 return;
9628 break;
9629 case LibFunc_asin:
9630 case LibFunc_asinf:
9631 case LibFunc_asinl:
9632 if (visitUnaryFloatCall(I, ISD::FASIN))
9633 return;
9634 break;
9635 case LibFunc_acos:
9636 case LibFunc_acosf:
9637 case LibFunc_acosl:
9638 if (visitUnaryFloatCall(I, ISD::FACOS))
9639 return;
9640 break;
9641 case LibFunc_atan:
9642 case LibFunc_atanf:
9643 case LibFunc_atanl:
9644 if (visitUnaryFloatCall(I, ISD::FATAN))
9645 return;
9646 break;
9647 case LibFunc_atan2:
9648 case LibFunc_atan2f:
9649 case LibFunc_atan2l:
9650 if (visitBinaryFloatCall(I, ISD::FATAN2))
9651 return;
9652 break;
9653 case LibFunc_sinh:
9654 case LibFunc_sinhf:
9655 case LibFunc_sinhl:
9656 if (visitUnaryFloatCall(I, ISD::FSINH))
9657 return;
9658 break;
9659 case LibFunc_cosh:
9660 case LibFunc_coshf:
9661 case LibFunc_coshl:
9662 if (visitUnaryFloatCall(I, ISD::FCOSH))
9663 return;
9664 break;
9665 case LibFunc_tanh:
9666 case LibFunc_tanhf:
9667 case LibFunc_tanhl:
9668 if (visitUnaryFloatCall(I, ISD::FTANH))
9669 return;
9670 break;
9671 case LibFunc_sqrt:
9672 case LibFunc_sqrtf:
9673 case LibFunc_sqrtl:
9674 case LibFunc_sqrt_finite:
9675 case LibFunc_sqrtf_finite:
9676 case LibFunc_sqrtl_finite:
9677 if (visitUnaryFloatCall(I, ISD::FSQRT))
9678 return;
9679 break;
9680 case LibFunc_log2:
9681 case LibFunc_log2f:
9682 case LibFunc_log2l:
9683 if (visitUnaryFloatCall(I, ISD::FLOG2))
9684 return;
9685 break;
9686 case LibFunc_exp2:
9687 case LibFunc_exp2f:
9688 case LibFunc_exp2l:
9689 if (visitUnaryFloatCall(I, ISD::FEXP2))
9690 return;
9691 break;
9692 case LibFunc_exp10:
9693 case LibFunc_exp10f:
9694 case LibFunc_exp10l:
9695 if (visitUnaryFloatCall(I, ISD::FEXP10))
9696 return;
9697 break;
9698 case LibFunc_ldexp:
9699 case LibFunc_ldexpf:
9700 case LibFunc_ldexpl:
9701 if (visitBinaryFloatCall(I, ISD::FLDEXP))
9702 return;
9703 break;
9704 case LibFunc_strstr:
9705 if (visitStrstrCall(I))
9706 return;
9707 break;
9708 case LibFunc_memcmp:
9709 if (visitMemCmpBCmpCall(I))
9710 return;
9711 break;
9712 case LibFunc_mempcpy:
9713 if (visitMemPCpyCall(I))
9714 return;
9715 break;
9716 case LibFunc_memchr:
9717 if (visitMemChrCall(I))
9718 return;
9719 break;
9720 case LibFunc_strcpy:
9721 if (visitStrCpyCall(I, false))
9722 return;
9723 break;
9724 case LibFunc_stpcpy:
9725 if (visitStrCpyCall(I, true))
9726 return;
9727 break;
9728 case LibFunc_strcmp:
9729 if (visitStrCmpCall(I))
9730 return;
9731 break;
9732 case LibFunc_strlen:
9733 if (visitStrLenCall(I))
9734 return;
9735 break;
9736 case LibFunc_strnlen:
9737 if (visitStrNLenCall(I))
9738 return;
9739 break;
9740 }
9741 }
9742 }
9743
9744 if (I.countOperandBundlesOfType(LLVMContext::OB_ptrauth)) {
9745 LowerCallSiteWithPtrAuthBundle(cast<CallBase>(I), /*EHPadBB=*/nullptr);
9746 return;
9747 }
9748
9749 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
9750 // have to do anything here to lower funclet bundles.
9751 // CFGuardTarget bundles are lowered in LowerCallTo.
9753 I, "calls",
9758
9759 SDValue Callee = getValue(I.getCalledOperand());
9760
9761 if (I.hasDeoptState())
9762 LowerCallSiteWithDeoptBundle(&I, Callee, nullptr);
9763 else
9764 // Check if we can potentially perform a tail call. More detailed checking
9765 // is be done within LowerCallTo, after more information about the call is
9766 // known.
9767 LowerCallTo(I, Callee, I.isTailCall(), I.isMustTailCall());
9768}
9769
9771 const CallBase &CB, const BasicBlock *EHPadBB) {
9772 auto PAB = CB.getOperandBundle("ptrauth");
9773 const Value *CalleeV = CB.getCalledOperand();
9774
9775 // Gather the call ptrauth data from the operand bundle:
9776 // [ i32 <key>, i64 <discriminator> ]
9777 const auto *Key = cast<ConstantInt>(PAB->Inputs[0]);
9778 const Value *Discriminator = PAB->Inputs[1];
9779
9780 assert(Key->getType()->isIntegerTy(32) && "Invalid ptrauth key");
9781 assert(Discriminator->getType()->isIntegerTy(64) &&
9782 "Invalid ptrauth discriminator");
9783
9784 // Look through ptrauth constants to find the raw callee.
9785 // Do a direct unauthenticated call if we found it and everything matches.
9786 if (const auto *CalleeCPA = dyn_cast<ConstantPtrAuth>(CalleeV))
9787 if (CalleeCPA->isKnownCompatibleWith(Key, Discriminator,
9788 DAG.getDataLayout()))
9789 return LowerCallTo(CB, getValue(CalleeCPA->getPointer()), CB.isTailCall(),
9790 CB.isMustTailCall(), EHPadBB);
9791
9792 // Functions should never be ptrauth-called directly.
9793 assert(!isa<Function>(CalleeV) && "invalid direct ptrauth call");
9794
9795 // Otherwise, do an authenticated indirect call.
9796 TargetLowering::PtrAuthInfo PAI = {Key->getZExtValue(),
9797 getValue(Discriminator)};
9798
9799 LowerCallTo(CB, getValue(CalleeV), CB.isTailCall(), CB.isMustTailCall(),
9800 EHPadBB, &PAI);
9801}
9802
9803namespace {
9804
9805/// AsmOperandInfo - This contains information for each constraint that we are
9806/// lowering.
9807class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
9808public:
9809 /// CallOperand - If this is the result output operand or a clobber
9810 /// this is null, otherwise it is the incoming operand to the CallInst.
9811 /// This gets modified as the asm is processed.
9812 SDValue CallOperand;
9813
9814 /// AssignedRegs - If this is a register or register class operand, this
9815 /// contains the set of register corresponding to the operand.
9816 RegsForValue AssignedRegs;
9817
9818 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
9819 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) {
9820 }
9821
9822 /// Whether or not this operand accesses memory
9823 bool hasMemory(const TargetLowering &TLI) const {
9824 // Indirect operand accesses access memory.
9825 if (isIndirect)
9826 return true;
9827
9828 for (const auto &Code : Codes)
9830 return true;
9831
9832 return false;
9833 }
9834};
9835
9836
9837} // end anonymous namespace
9838
9839/// Make sure that the output operand \p OpInfo and its corresponding input
9840/// operand \p MatchingOpInfo have compatible constraint types (otherwise error
9841/// out).
9842static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo,
9843 SDISelAsmOperandInfo &MatchingOpInfo,
9844 SelectionDAG &DAG) {
9845 if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT)
9846 return;
9847
9849 const auto &TLI = DAG.getTargetLoweringInfo();
9850
9851 std::pair<unsigned, const TargetRegisterClass *> MatchRC =
9852 TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
9853 OpInfo.ConstraintVT);
9854 std::pair<unsigned, const TargetRegisterClass *> InputRC =
9855 TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode,
9856 MatchingOpInfo.ConstraintVT);
9857 const bool OutOpIsIntOrFP =
9858 OpInfo.ConstraintVT.isInteger() || OpInfo.ConstraintVT.isFloatingPoint();
9859 const bool InOpIsIntOrFP = MatchingOpInfo.ConstraintVT.isInteger() ||
9860 MatchingOpInfo.ConstraintVT.isFloatingPoint();
9861 if ((OutOpIsIntOrFP != InOpIsIntOrFP) || (MatchRC.second != InputRC.second)) {
9862 // FIXME: error out in a more elegant fashion
9863 report_fatal_error("Unsupported asm: input constraint"
9864 " with a matching output constraint of"
9865 " incompatible type!");
9866 }
9867 MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT;
9868}
9869
9870/// Get a direct memory input to behave well as an indirect operand.
9871/// This may introduce stores, hence the need for a \p Chain.
9872/// \return The (possibly updated) chain.
9873static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location,
9874 SDISelAsmOperandInfo &OpInfo,
9875 SelectionDAG &DAG) {
9876 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9877
9878 // If we don't have an indirect input, put it in the constpool if we can,
9879 // otherwise spill it to a stack slot.
9880 // TODO: This isn't quite right. We need to handle these according to
9881 // the addressing mode that the constraint wants. Also, this may take
9882 // an additional register for the computation and we don't want that
9883 // either.
9884
9885 // If the operand is a float, integer, or vector constant, spill to a
9886 // constant pool entry to get its address.
9887 const Value *OpVal = OpInfo.CallOperandVal;
9888 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
9890 OpInfo.CallOperand = DAG.getConstantPool(
9891 cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout()));
9892 return Chain;
9893 }
9894
9895 // Otherwise, create a stack slot and emit a store to it before the asm.
9896 Type *Ty = OpVal->getType();
9897 auto &DL = DAG.getDataLayout();
9898 TypeSize TySize = DL.getTypeAllocSize(Ty);
9901 int StackID = 0;
9902 if (TySize.isScalable())
9903 StackID = TFI->getStackIDForScalableVectors();
9904 int SSFI = MF.getFrameInfo().CreateStackObject(TySize.getKnownMinValue(),
9905 DL.getPrefTypeAlign(Ty), false,
9906 nullptr, StackID);
9907 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL));
9908 Chain = DAG.getTruncStore(Chain, Location, OpInfo.CallOperand, StackSlot,
9910 TLI.getMemValueType(DL, Ty));
9911 OpInfo.CallOperand = StackSlot;
9912
9913 return Chain;
9914}
9915
9916/// GetRegistersForValue - Assign registers (virtual or physical) for the
9917/// specified operand. We prefer to assign virtual registers, to allow the
9918/// register allocator to handle the assignment process. However, if the asm
9919/// uses features that we can't model on machineinstrs, we have SDISel do the
9920/// allocation. This produces generally horrible, but correct, code.
9921///
9922/// OpInfo describes the operand
9923/// RefOpInfo describes the matching operand if any, the operand otherwise
9924static std::optional<unsigned>
9926 SDISelAsmOperandInfo &OpInfo,
9927 SDISelAsmOperandInfo &RefOpInfo) {
9928 LLVMContext &Context = *DAG.getContext();
9929 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9930
9934
9935 // No work to do for memory/address operands.
9936 if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
9937 OpInfo.ConstraintType == TargetLowering::C_Address)
9938 return std::nullopt;
9939
9940 // If this is a constraint for a single physreg, or a constraint for a
9941 // register class, find it.
9942 unsigned AssignedReg;
9943 const TargetRegisterClass *RC;
9944 std::tie(AssignedReg, RC) = TLI.getRegForInlineAsmConstraint(
9945 &TRI, RefOpInfo.ConstraintCode, RefOpInfo.ConstraintVT);
9946 // RC is unset only on failure. Return immediately.
9947 if (!RC)
9948 return std::nullopt;
9949
9950 // Get the actual register value type. This is important, because the user
9951 // may have asked for (e.g.) the AX register in i32 type. We need to
9952 // remember that AX is actually i16 to get the right extension.
9953 const MVT RegVT = *TRI.legalclasstypes_begin(*RC);
9954
9955 if (OpInfo.ConstraintVT != MVT::Other && RegVT != MVT::Untyped) {
9956 // If this is an FP operand in an integer register (or visa versa), or more
9957 // generally if the operand value disagrees with the register class we plan
9958 // to stick it in, fix the operand type.
9959 //
9960 // If this is an input value, the bitcast to the new type is done now.
9961 // Bitcast for output value is done at the end of visitInlineAsm().
9962 if ((OpInfo.Type == InlineAsm::isOutput ||
9963 OpInfo.Type == InlineAsm::isInput) &&
9964 !TRI.isTypeLegalForClass(*RC, OpInfo.ConstraintVT)) {
9965 // Try to convert to the first EVT that the reg class contains. If the
9966 // types are identical size, use a bitcast to convert (e.g. two differing
9967 // vector types). Note: output bitcast is done at the end of
9968 // visitInlineAsm().
9969 if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) {
9970 // Exclude indirect inputs while they are unsupported because the code
9971 // to perform the load is missing and thus OpInfo.CallOperand still
9972 // refers to the input address rather than the pointed-to value.
9973 if (OpInfo.Type == InlineAsm::isInput && !OpInfo.isIndirect)
9974 OpInfo.CallOperand =
9975 DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand);
9976 OpInfo.ConstraintVT = RegVT;
9977 // If the operand is an FP value and we want it in integer registers,
9978 // use the corresponding integer type. This turns an f64 value into
9979 // i64, which can be passed with two i32 values on a 32-bit machine.
9980 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
9981 MVT VT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits());
9982 if (OpInfo.Type == InlineAsm::isInput)
9983 OpInfo.CallOperand =
9984 DAG.getNode(ISD::BITCAST, DL, VT, OpInfo.CallOperand);
9985 OpInfo.ConstraintVT = VT;
9986 }
9987 }
9988 }
9989
9990 // No need to allocate a matching input constraint since the constraint it's
9991 // matching to has already been allocated.
9992 if (OpInfo.isMatchingInputConstraint())
9993 return std::nullopt;
9994
9995 EVT ValueVT = OpInfo.ConstraintVT;
9996 if (OpInfo.ConstraintVT == MVT::Other)
9997 ValueVT = RegVT;
9998
9999 // Initialize NumRegs.
10000 unsigned NumRegs = 1;
10001 if (OpInfo.ConstraintVT != MVT::Other)
10002 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT, RegVT);
10003
10004 // If this is a constraint for a specific physical register, like {r17},
10005 // assign it now.
10006
10007 // If this associated to a specific register, initialize iterator to correct
10008 // place. If virtual, make sure we have enough registers
10009
10010 // Initialize iterator if necessary
10013
10014 // Do not check for single registers.
10015 if (AssignedReg) {
10016 I = std::find(I, RC->end(), AssignedReg);
10017 if (I == RC->end()) {
10018 // RC does not contain the selected register, which indicates a
10019 // mismatch between the register and the required type/bitwidth.
10020 return {AssignedReg};
10021 }
10022 }
10023
10024 for (; NumRegs; --NumRegs, ++I) {
10025 assert(I != RC->end() && "Ran out of registers to allocate!");
10026 Register R = AssignedReg ? Register(*I) : RegInfo.createVirtualRegister(RC);
10027 Regs.push_back(R);
10028 }
10029
10030 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
10031 return std::nullopt;
10032}
10033
10034static unsigned
10036 const std::vector<SDValue> &AsmNodeOperands) {
10037 // Scan until we find the definition we already emitted of this operand.
10038 unsigned CurOp = InlineAsm::Op_FirstOperand;
10039 for (; OperandNo; --OperandNo) {
10040 // Advance to the next operand.
10041 unsigned OpFlag = AsmNodeOperands[CurOp]->getAsZExtVal();
10042 const InlineAsm::Flag F(OpFlag);
10043 assert(
10044 (F.isRegDefKind() || F.isRegDefEarlyClobberKind() || F.isMemKind()) &&
10045 "Skipped past definitions?");
10046 CurOp += F.getNumOperandRegisters() + 1;
10047 }
10048 return CurOp;
10049}
10050
10051namespace {
10052
10053class ExtraFlags {
10054 unsigned Flags = 0;
10055
10056public:
10057 explicit ExtraFlags(const CallBase &Call) {
10058 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
10059 if (IA->hasSideEffects())
10061 if (IA->isAlignStack())
10063 if (IA->canThrow())
10065 if (Call.isConvergent())
10067 Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect;
10068 }
10069
10070 void update(const TargetLowering::AsmOperandInfo &OpInfo) {
10071 // Ideally, we would only check against memory constraints. However, the
10072 // meaning of an Other constraint can be target-specific and we can't easily
10073 // reason about it. Therefore, be conservative and set MayLoad/MayStore
10074 // for Other constraints as well.
10077 if (OpInfo.Type == InlineAsm::isInput)
10079 else if (OpInfo.Type == InlineAsm::isOutput)
10081 else if (OpInfo.Type == InlineAsm::isClobber)
10083 }
10084 }
10085
10086 unsigned get() const { return Flags; }
10087};
10088
10089} // end anonymous namespace
10090
10091static bool isFunction(SDValue Op) {
10092 if (Op && Op.getOpcode() == ISD::GlobalAddress) {
10093 if (auto *GA = dyn_cast<GlobalAddressSDNode>(Op)) {
10094 auto Fn = dyn_cast_or_null<Function>(GA->getGlobal());
10095
10096 // In normal "call dllimport func" instruction (non-inlineasm) it force
10097 // indirect access by specifing call opcode. And usually specially print
10098 // asm with indirect symbol (i.g: "*") according to opcode. Inline asm can
10099 // not do in this way now. (In fact, this is similar with "Data Access"
10100 // action). So here we ignore dllimport function.
10101 if (Fn && !Fn->hasDLLImportStorageClass())
10102 return true;
10103 }
10104 }
10105 return false;
10106}
10107
10108/// visitInlineAsm - Handle a call to an InlineAsm object.
10109void SelectionDAGBuilder::visitInlineAsm(const CallBase &Call,
10110 const BasicBlock *EHPadBB) {
10111 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
10112
10113 /// ConstraintOperands - Information about all of the constraints.
10114 SmallVector<SDISelAsmOperandInfo, 16> ConstraintOperands;
10115
10116 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10118 DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), Call);
10119
10120 // First Pass: Calculate HasSideEffects and ExtraFlags (AlignStack,
10121 // AsmDialect, MayLoad, MayStore).
10122 bool HasSideEffect = IA->hasSideEffects();
10123 ExtraFlags ExtraInfo(Call);
10124
10125 for (auto &T : TargetConstraints) {
10126 ConstraintOperands.push_back(SDISelAsmOperandInfo(T));
10127 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
10128
10129 if (OpInfo.CallOperandVal)
10130 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
10131
10132 if (!HasSideEffect)
10133 HasSideEffect = OpInfo.hasMemory(TLI);
10134
10135 // Determine if this InlineAsm MayLoad or MayStore based on the constraints.
10136 // FIXME: Could we compute this on OpInfo rather than T?
10137
10138 // Compute the constraint code and ConstraintType to use.
10140
10141 if (T.ConstraintType == TargetLowering::C_Immediate &&
10142 OpInfo.CallOperand && !isa<ConstantSDNode>(OpInfo.CallOperand))
10143 // We've delayed emitting a diagnostic like the "n" constraint because
10144 // inlining could cause an integer showing up.
10145 return emitInlineAsmError(Call, "constraint '" + Twine(T.ConstraintCode) +
10146 "' expects an integer constant "
10147 "expression");
10148
10149 ExtraInfo.update(T);
10150 }
10151
10152 // We won't need to flush pending loads if this asm doesn't touch
10153 // memory and is nonvolatile.
10154 SDValue Glue, Chain = (HasSideEffect) ? getRoot() : DAG.getRoot();
10155
10156 bool EmitEHLabels = isa<InvokeInst>(Call);
10157 if (EmitEHLabels) {
10158 assert(EHPadBB && "InvokeInst must have an EHPadBB");
10159 }
10160 bool IsCallBr = isa<CallBrInst>(Call);
10161
10162 if (IsCallBr || EmitEHLabels) {
10163 // If this is a callbr or invoke we need to flush pending exports since
10164 // inlineasm_br and invoke are terminators.
10165 // We need to do this before nodes are glued to the inlineasm_br node.
10166 Chain = getControlRoot();
10167 }
10168
10169 MCSymbol *BeginLabel = nullptr;
10170 if (EmitEHLabels) {
10171 Chain = lowerStartEH(Chain, EHPadBB, BeginLabel);
10172 }
10173
10174 int OpNo = -1;
10175 SmallVector<StringRef> AsmStrs;
10176 IA->collectAsmStrs(AsmStrs);
10177
10178 // Second pass over the constraints: compute which constraint option to use.
10179 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
10180 if (OpInfo.hasArg() || OpInfo.Type == InlineAsm::isOutput)
10181 OpNo++;
10182
10183 // If this is an output operand with a matching input operand, look up the
10184 // matching input. If their types mismatch, e.g. one is an integer, the
10185 // other is floating point, or their sizes are different, flag it as an
10186 // error.
10187 if (OpInfo.hasMatchingInput()) {
10188 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
10189 patchMatchingInput(OpInfo, Input, DAG);
10190 }
10191
10192 // Compute the constraint code and ConstraintType to use.
10193 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
10194
10195 if ((OpInfo.ConstraintType == TargetLowering::C_Memory &&
10196 OpInfo.Type == InlineAsm::isClobber) ||
10197 OpInfo.ConstraintType == TargetLowering::C_Address)
10198 continue;
10199
10200 // In Linux PIC model, there are 4 cases about value/label addressing:
10201 //
10202 // 1: Function call or Label jmp inside the module.
10203 // 2: Data access (such as global variable, static variable) inside module.
10204 // 3: Function call or Label jmp outside the module.
10205 // 4: Data access (such as global variable) outside the module.
10206 //
10207 // Due to current llvm inline asm architecture designed to not "recognize"
10208 // the asm code, there are quite troubles for us to treat mem addressing
10209 // differently for same value/adress used in different instuctions.
10210 // For example, in pic model, call a func may in plt way or direclty
10211 // pc-related, but lea/mov a function adress may use got.
10212 //
10213 // Here we try to "recognize" function call for the case 1 and case 3 in
10214 // inline asm. And try to adjust the constraint for them.
10215 //
10216 // TODO: Due to current inline asm didn't encourage to jmp to the outsider
10217 // label, so here we don't handle jmp function label now, but we need to
10218 // enhance it (especilly in PIC model) if we meet meaningful requirements.
10219 if (OpInfo.isIndirect && isFunction(OpInfo.CallOperand) &&
10220 TLI.isInlineAsmTargetBranch(AsmStrs, OpNo) &&
10221 TM.getCodeModel() != CodeModel::Large) {
10222 OpInfo.isIndirect = false;
10223 OpInfo.ConstraintType = TargetLowering::C_Address;
10224 }
10225
10226 // If this is a memory input, and if the operand is not indirect, do what we
10227 // need to provide an address for the memory input.
10228 if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
10229 !OpInfo.isIndirect) {
10230 assert((OpInfo.isMultipleAlternative ||
10231 (OpInfo.Type == InlineAsm::isInput)) &&
10232 "Can only indirectify direct input operands!");
10233
10234 // Memory operands really want the address of the value.
10235 Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG);
10236
10237 // There is no longer a Value* corresponding to this operand.
10238 OpInfo.CallOperandVal = nullptr;
10239
10240 // It is now an indirect operand.
10241 OpInfo.isIndirect = true;
10242 }
10243
10244 }
10245
10246 // AsmNodeOperands - The operands for the ISD::INLINEASM node.
10247 std::vector<SDValue> AsmNodeOperands;
10248 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain
10249 AsmNodeOperands.push_back(DAG.getTargetExternalSymbol(
10250 IA->getAsmString().data(), TLI.getProgramPointerTy(DAG.getDataLayout())));
10251
10252 // If we have a !srcloc metadata node associated with it, we want to attach
10253 // this to the ultimately generated inline asm machineinstr. To do this, we
10254 // pass in the third operand as this (potentially null) inline asm MDNode.
10255 const MDNode *SrcLoc = Call.getMetadata("srcloc");
10256 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
10257
10258 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore
10259 // bits as operand 3.
10260 AsmNodeOperands.push_back(DAG.getTargetConstant(
10261 ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
10262
10263 // Third pass: Loop over operands to prepare DAG-level operands.. As part of
10264 // this, assign virtual and physical registers for inputs and otput.
10265 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
10266 // Assign Registers.
10267 SDISelAsmOperandInfo &RefOpInfo =
10268 OpInfo.isMatchingInputConstraint()
10269 ? ConstraintOperands[OpInfo.getMatchedOperand()]
10270 : OpInfo;
10271 const auto RegError =
10272 getRegistersForValue(DAG, getCurSDLoc(), OpInfo, RefOpInfo);
10273 if (RegError) {
10274 const MachineFunction &MF = DAG.getMachineFunction();
10275 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
10276 const char *RegName = TRI.getName(*RegError);
10277 emitInlineAsmError(Call, "register '" + Twine(RegName) +
10278 "' allocated for constraint '" +
10279 Twine(OpInfo.ConstraintCode) +
10280 "' does not match required type");
10281 return;
10282 }
10283
10284 auto DetectWriteToReservedRegister = [&]() {
10285 const MachineFunction &MF = DAG.getMachineFunction();
10286 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
10287 for (Register Reg : OpInfo.AssignedRegs.Regs) {
10288 if (Reg.isPhysical() && TRI.isInlineAsmReadOnlyReg(MF, Reg)) {
10289 const char *RegName = TRI.getName(Reg);
10290 emitInlineAsmError(Call, "write to reserved register '" +
10291 Twine(RegName) + "'");
10292 return true;
10293 }
10294 }
10295 return false;
10296 };
10297 assert((OpInfo.ConstraintType != TargetLowering::C_Address ||
10298 (OpInfo.Type == InlineAsm::isInput &&
10299 !OpInfo.isMatchingInputConstraint())) &&
10300 "Only address as input operand is allowed.");
10301
10302 switch (OpInfo.Type) {
10304 if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
10305 const InlineAsm::ConstraintCode ConstraintID =
10306 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
10308 "Failed to convert memory constraint code to constraint id.");
10309
10310 // Add information to the INLINEASM node to know about this output.
10311 InlineAsm::Flag OpFlags(InlineAsm::Kind::Mem, 1);
10312 OpFlags.setMemConstraint(ConstraintID);
10313 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(),
10314 MVT::i32));
10315 AsmNodeOperands.push_back(OpInfo.CallOperand);
10316 } else {
10317 // Otherwise, this outputs to a register (directly for C_Register /
10318 // C_RegisterClass, and a target-defined fashion for
10319 // C_Immediate/C_Other). Find a register that we can use.
10320 if (OpInfo.AssignedRegs.Regs.empty()) {
10321 emitInlineAsmError(
10322 Call, "couldn't allocate output register for constraint '" +
10323 Twine(OpInfo.ConstraintCode) + "'");
10324 return;
10325 }
10326
10327 if (DetectWriteToReservedRegister())
10328 return;
10329
10330 // Add information to the INLINEASM node to know that this register is
10331 // set.
10332 OpInfo.AssignedRegs.AddInlineAsmOperands(
10333 OpInfo.isEarlyClobber ? InlineAsm::Kind::RegDefEarlyClobber
10335 false, 0, getCurSDLoc(), DAG, AsmNodeOperands);
10336 }
10337 break;
10338
10339 case InlineAsm::isInput:
10340 case InlineAsm::isLabel: {
10341 SDValue InOperandVal = OpInfo.CallOperand;
10342
10343 if (OpInfo.isMatchingInputConstraint()) {
10344 // If this is required to match an output register we have already set,
10345 // just use its register.
10346 auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(),
10347 AsmNodeOperands);
10348 InlineAsm::Flag Flag(AsmNodeOperands[CurOp]->getAsZExtVal());
10349 if (Flag.isRegDefKind() || Flag.isRegDefEarlyClobberKind()) {
10350 if (OpInfo.isIndirect) {
10351 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
10352 emitInlineAsmError(Call, "inline asm not supported yet: "
10353 "don't know how to handle tied "
10354 "indirect register inputs");
10355 return;
10356 }
10357
10359 MachineFunction &MF = DAG.getMachineFunction();
10360 MachineRegisterInfo &MRI = MF.getRegInfo();
10361 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
10362 auto *R = cast<RegisterSDNode>(AsmNodeOperands[CurOp+1]);
10363 Register TiedReg = R->getReg();
10364 MVT RegVT = R->getSimpleValueType(0);
10365 const TargetRegisterClass *RC =
10366 TiedReg.isVirtual() ? MRI.getRegClass(TiedReg)
10367 : RegVT != MVT::Untyped ? TLI.getRegClassFor(RegVT)
10368 : TRI.getMinimalPhysRegClass(TiedReg);
10369 for (unsigned i = 0, e = Flag.getNumOperandRegisters(); i != e; ++i)
10370 Regs.push_back(MRI.createVirtualRegister(RC));
10371
10372 RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType());
10373
10374 SDLoc dl = getCurSDLoc();
10375 // Use the produced MatchedRegs object to
10376 MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Glue, &Call);
10377 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind::RegUse, true,
10378 OpInfo.getMatchedOperand(), dl, DAG,
10379 AsmNodeOperands);
10380 break;
10381 }
10382
10383 assert(Flag.isMemKind() && "Unknown matching constraint!");
10384 assert(Flag.getNumOperandRegisters() == 1 &&
10385 "Unexpected number of operands");
10386 // Add information to the INLINEASM node to know about this input.
10387 // See InlineAsm.h isUseOperandTiedToDef.
10388 Flag.clearMemConstraint();
10389 Flag.setMatchingOp(OpInfo.getMatchedOperand());
10390 AsmNodeOperands.push_back(DAG.getTargetConstant(
10391 Flag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
10392 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
10393 break;
10394 }
10395
10396 // Treat indirect 'X' constraint as memory.
10397 if (OpInfo.ConstraintType == TargetLowering::C_Other &&
10398 OpInfo.isIndirect)
10399 OpInfo.ConstraintType = TargetLowering::C_Memory;
10400
10401 if (OpInfo.ConstraintType == TargetLowering::C_Immediate ||
10402 OpInfo.ConstraintType == TargetLowering::C_Other) {
10403 std::vector<SDValue> Ops;
10404 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode,
10405 Ops, DAG);
10406 if (Ops.empty()) {
10407 if (OpInfo.ConstraintType == TargetLowering::C_Immediate)
10408 if (isa<ConstantSDNode>(InOperandVal)) {
10409 emitInlineAsmError(Call, "value out of range for constraint '" +
10410 Twine(OpInfo.ConstraintCode) + "'");
10411 return;
10412 }
10413
10414 emitInlineAsmError(Call,
10415 "invalid operand for inline asm constraint '" +
10416 Twine(OpInfo.ConstraintCode) + "'");
10417 return;
10418 }
10419
10420 // Add information to the INLINEASM node to know about this input.
10421 InlineAsm::Flag ResOpType(InlineAsm::Kind::Imm, Ops.size());
10422 AsmNodeOperands.push_back(DAG.getTargetConstant(
10423 ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
10424 llvm::append_range(AsmNodeOperands, Ops);
10425 break;
10426 }
10427
10428 if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
10429 assert((OpInfo.isIndirect ||
10430 OpInfo.ConstraintType != TargetLowering::C_Memory) &&
10431 "Operand must be indirect to be a mem!");
10432 assert(InOperandVal.getValueType() ==
10433 TLI.getPointerTy(DAG.getDataLayout()) &&
10434 "Memory operands expect pointer values");
10435
10436 const InlineAsm::ConstraintCode ConstraintID =
10437 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
10439 "Failed to convert memory constraint code to constraint id.");
10440
10441 // Add information to the INLINEASM node to know about this input.
10442 InlineAsm::Flag ResOpType(InlineAsm::Kind::Mem, 1);
10443 ResOpType.setMemConstraint(ConstraintID);
10444 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
10445 getCurSDLoc(),
10446 MVT::i32));
10447 AsmNodeOperands.push_back(InOperandVal);
10448 break;
10449 }
10450
10451 if (OpInfo.ConstraintType == TargetLowering::C_Address) {
10452 const InlineAsm::ConstraintCode ConstraintID =
10453 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
10455 "Failed to convert memory constraint code to constraint id.");
10456
10457 InlineAsm::Flag ResOpType(InlineAsm::Kind::Mem, 1);
10458
10459 SDValue AsmOp = InOperandVal;
10460 if (isFunction(InOperandVal)) {
10461 auto *GA = cast<GlobalAddressSDNode>(InOperandVal);
10462 ResOpType = InlineAsm::Flag(InlineAsm::Kind::Func, 1);
10463 AsmOp = DAG.getTargetGlobalAddress(GA->getGlobal(), getCurSDLoc(),
10464 InOperandVal.getValueType(),
10465 GA->getOffset());
10466 }
10467
10468 // Add information to the INLINEASM node to know about this input.
10469 ResOpType.setMemConstraint(ConstraintID);
10470
10471 AsmNodeOperands.push_back(
10472 DAG.getTargetConstant(ResOpType, getCurSDLoc(), MVT::i32));
10473
10474 AsmNodeOperands.push_back(AsmOp);
10475 break;
10476 }
10477
10478 if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass &&
10479 OpInfo.ConstraintType != TargetLowering::C_Register) {
10480 emitInlineAsmError(Call, "unknown asm constraint '" +
10481 Twine(OpInfo.ConstraintCode) + "'");
10482 return;
10483 }
10484
10485 // TODO: Support this.
10486 if (OpInfo.isIndirect) {
10487 emitInlineAsmError(
10488 Call, "Don't know how to handle indirect register inputs yet "
10489 "for constraint '" +
10490 Twine(OpInfo.ConstraintCode) + "'");
10491 return;
10492 }
10493
10494 // Copy the input into the appropriate registers.
10495 if (OpInfo.AssignedRegs.Regs.empty()) {
10496 emitInlineAsmError(Call,
10497 "couldn't allocate input reg for constraint '" +
10498 Twine(OpInfo.ConstraintCode) + "'");
10499 return;
10500 }
10501
10502 if (DetectWriteToReservedRegister())
10503 return;
10504
10505 SDLoc dl = getCurSDLoc();
10506
10507 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Glue,
10508 &Call);
10509
10510 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind::RegUse, false,
10511 0, dl, DAG, AsmNodeOperands);
10512 break;
10513 }
10515 // Add the clobbered value to the operand list, so that the register
10516 // allocator is aware that the physreg got clobbered.
10517 if (!OpInfo.AssignedRegs.Regs.empty())
10519 false, 0, getCurSDLoc(), DAG,
10520 AsmNodeOperands);
10521 break;
10522 }
10523 }
10524
10525 // Finish up input operands. Set the input chain and add the flag last.
10526 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
10527 if (Glue.getNode()) AsmNodeOperands.push_back(Glue);
10528
10529 unsigned ISDOpc = IsCallBr ? ISD::INLINEASM_BR : ISD::INLINEASM;
10530 Chain = DAG.getNode(ISDOpc, getCurSDLoc(),
10531 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands);
10532 Glue = Chain.getValue(1);
10533
10534 // Do additional work to generate outputs.
10535
10536 SmallVector<EVT, 1> ResultVTs;
10537 SmallVector<SDValue, 1> ResultValues;
10538 SmallVector<SDValue, 8> OutChains;
10539
10540 llvm::Type *CallResultType = Call.getType();
10541 ArrayRef<Type *> ResultTypes;
10542 if (StructType *StructResult = dyn_cast<StructType>(CallResultType))
10543 ResultTypes = StructResult->elements();
10544 else if (!CallResultType->isVoidTy())
10545 ResultTypes = ArrayRef(CallResultType);
10546
10547 auto CurResultType = ResultTypes.begin();
10548 auto handleRegAssign = [&](SDValue V) {
10549 assert(CurResultType != ResultTypes.end() && "Unexpected value");
10550 assert((*CurResultType)->isSized() && "Unexpected unsized type");
10551 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), *CurResultType);
10552 ++CurResultType;
10553 // If the type of the inline asm call site return value is different but has
10554 // same size as the type of the asm output bitcast it. One example of this
10555 // is for vectors with different width / number of elements. This can
10556 // happen for register classes that can contain multiple different value
10557 // types. The preg or vreg allocated may not have the same VT as was
10558 // expected.
10559 //
10560 // This can also happen for a return value that disagrees with the register
10561 // class it is put in, eg. a double in a general-purpose register on a
10562 // 32-bit machine.
10563 if (ResultVT != V.getValueType() &&
10564 ResultVT.getSizeInBits() == V.getValueSizeInBits())
10565 V = DAG.getNode(ISD::BITCAST, getCurSDLoc(), ResultVT, V);
10566 else if (ResultVT != V.getValueType() && ResultVT.isInteger() &&
10567 V.getValueType().isInteger()) {
10568 // If a result value was tied to an input value, the computed result
10569 // may have a wider width than the expected result. Extract the
10570 // relevant portion.
10571 V = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultVT, V);
10572 }
10573 assert(ResultVT == V.getValueType() && "Asm result value mismatch!");
10574 ResultVTs.push_back(ResultVT);
10575 ResultValues.push_back(V);
10576 };
10577
10578 // Deal with output operands.
10579 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
10580 if (OpInfo.Type == InlineAsm::isOutput) {
10581 SDValue Val;
10582 // Skip trivial output operands.
10583 if (OpInfo.AssignedRegs.Regs.empty())
10584 continue;
10585
10586 switch (OpInfo.ConstraintType) {
10589 Val = OpInfo.AssignedRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
10590 Chain, &Glue, &Call);
10591 break;
10594 Val = TLI.LowerAsmOutputForConstraint(Chain, Glue, getCurSDLoc(),
10595 OpInfo, DAG);
10596 break;
10598 break; // Already handled.
10600 break; // Silence warning.
10602 assert(false && "Unexpected unknown constraint");
10603 }
10604
10605 // Indirect output manifest as stores. Record output chains.
10606 if (OpInfo.isIndirect) {
10607 const Value *Ptr = OpInfo.CallOperandVal;
10608 assert(Ptr && "Expected value CallOperandVal for indirect asm operand");
10609 SDValue Store = DAG.getStore(Chain, getCurSDLoc(), Val, getValue(Ptr),
10610 MachinePointerInfo(Ptr));
10611 OutChains.push_back(Store);
10612 } else {
10613 // generate CopyFromRegs to associated registers.
10614 assert(!Call.getType()->isVoidTy() && "Bad inline asm!");
10615 if (Val.getOpcode() == ISD::MERGE_VALUES) {
10616 for (const SDValue &V : Val->op_values())
10617 handleRegAssign(V);
10618 } else
10619 handleRegAssign(Val);
10620 }
10621 }
10622 }
10623
10624 // Set results.
10625 if (!ResultValues.empty()) {
10626 assert(CurResultType == ResultTypes.end() &&
10627 "Mismatch in number of ResultTypes");
10628 assert(ResultValues.size() == ResultTypes.size() &&
10629 "Mismatch in number of output operands in asm result");
10630
10632 DAG.getVTList(ResultVTs), ResultValues);
10633 setValue(&Call, V);
10634 }
10635
10636 // Collect store chains.
10637 if (!OutChains.empty())
10638 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains);
10639
10640 if (EmitEHLabels) {
10641 Chain = lowerEndEH(Chain, cast<InvokeInst>(&Call), EHPadBB, BeginLabel);
10642 }
10643
10644 // Only Update Root if inline assembly has a memory effect.
10645 if (ResultValues.empty() || HasSideEffect || !OutChains.empty() || IsCallBr ||
10646 EmitEHLabels)
10647 DAG.setRoot(Chain);
10648}
10649
10650void SelectionDAGBuilder::emitInlineAsmError(const CallBase &Call,
10651 const Twine &Message) {
10652 LLVMContext &Ctx = *DAG.getContext();
10653 Ctx.diagnose(DiagnosticInfoInlineAsm(Call, Message));
10654
10655 // Make sure we leave the DAG in a valid state
10656 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10657 SmallVector<EVT, 1> ValueVTs;
10658 ComputeValueVTs(TLI, DAG.getDataLayout(), Call.getType(), ValueVTs);
10659
10660 if (ValueVTs.empty())
10661 return;
10662
10664 for (const EVT &VT : ValueVTs)
10665 Ops.push_back(DAG.getUNDEF(VT));
10666
10667 setValue(&Call, DAG.getMergeValues(Ops, getCurSDLoc()));
10668}
10669
10670void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
10671 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(),
10672 MVT::Other, getRoot(),
10673 getValue(I.getArgOperand(0)),
10674 DAG.getSrcValue(I.getArgOperand(0))));
10675}
10676
10677void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
10678 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10679 const DataLayout &DL = DAG.getDataLayout();
10680 SDValue V = DAG.getVAArg(
10681 TLI.getMemValueType(DAG.getDataLayout(), I.getType()), getCurSDLoc(),
10682 getRoot(), getValue(I.getOperand(0)), DAG.getSrcValue(I.getOperand(0)),
10683 DL.getABITypeAlign(I.getType()).value());
10684 DAG.setRoot(V.getValue(1));
10685
10686 if (I.getType()->isPointerTy())
10687 V = DAG.getPtrExtOrTrunc(
10688 V, getCurSDLoc(), TLI.getValueType(DAG.getDataLayout(), I.getType()));
10689 setValue(&I, V);
10690}
10691
10692void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
10693 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(),
10694 MVT::Other, getRoot(),
10695 getValue(I.getArgOperand(0)),
10696 DAG.getSrcValue(I.getArgOperand(0))));
10697}
10698
10699void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
10700 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(),
10701 MVT::Other, getRoot(),
10702 getValue(I.getArgOperand(0)),
10703 getValue(I.getArgOperand(1)),
10704 DAG.getSrcValue(I.getArgOperand(0)),
10705 DAG.getSrcValue(I.getArgOperand(1))));
10706}
10707
10709 const Instruction &I,
10710 SDValue Op) {
10711 std::optional<ConstantRange> CR = getRange(I);
10712
10713 if (!CR || CR->isFullSet() || CR->isEmptySet() || CR->isUpperWrapped())
10714 return Op;
10715
10716 APInt Lo = CR->getUnsignedMin();
10717 if (!Lo.isMinValue())
10718 return Op;
10719
10720 APInt Hi = CR->getUnsignedMax();
10721 unsigned Bits = std::max(Hi.getActiveBits(),
10722 static_cast<unsigned>(IntegerType::MIN_INT_BITS));
10723
10724 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits);
10725
10726 SDLoc SL = getCurSDLoc();
10727
10728 SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op,
10729 DAG.getValueType(SmallVT));
10730 unsigned NumVals = Op.getNode()->getNumValues();
10731 if (NumVals == 1)
10732 return ZExt;
10733
10735
10736 Ops.push_back(ZExt);
10737 for (unsigned I = 1; I != NumVals; ++I)
10738 Ops.push_back(Op.getValue(I));
10739
10740 return DAG.getMergeValues(Ops, SL);
10741}
10742
10744 SelectionDAG &DAG, const Instruction &I, SDValue Op) {
10745 FPClassTest Classes = getNoFPClass(I);
10746 if (Classes == fcNone)
10747 return Op;
10748
10749 SDLoc SL = getCurSDLoc();
10750 SDValue TestConst = DAG.getTargetConstant(Classes, SDLoc(), MVT::i32);
10751
10752 if (Op.getOpcode() != ISD::MERGE_VALUES) {
10753 return DAG.getNode(ISD::AssertNoFPClass, SL, Op.getValueType(), Op,
10754 TestConst);
10755 }
10756
10757 SmallVector<SDValue, 8> Ops(Op.getNumOperands());
10758 for (unsigned I = 0, E = Ops.size(); I != E; ++I) {
10759 SDValue MergeOp = Op.getOperand(I);
10760 Ops[I] = DAG.getNode(ISD::AssertNoFPClass, SL, MergeOp.getValueType(),
10761 MergeOp, TestConst);
10762 }
10763
10764 return DAG.getMergeValues(Ops, SL);
10765}
10766
10767/// Populate a CallLowerinInfo (into \p CLI) based on the properties of
10768/// the call being lowered.
10769///
10770/// This is a helper for lowering intrinsics that follow a target calling
10771/// convention or require stack pointer adjustment. Only a subset of the
10772/// intrinsic's operands need to participate in the calling convention.
10775 unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy,
10776 AttributeSet RetAttrs, bool IsPatchPoint) {
10778 Args.reserve(NumArgs);
10779
10780 // Populate the argument list.
10781 // Attributes for args start at offset 1, after the return attribute.
10782 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs;
10783 ArgI != ArgE; ++ArgI) {
10784 const Value *V = Call->getOperand(ArgI);
10785
10786 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
10787
10788 TargetLowering::ArgListEntry Entry(getValue(V), V->getType());
10789 Entry.setAttributes(Call, ArgI);
10790 Args.push_back(Entry);
10791 }
10792
10794 .setChain(getRoot())
10795 .setCallee(Call->getCallingConv(), ReturnTy, Callee, std::move(Args),
10796 RetAttrs)
10797 .setDiscardResult(Call->use_empty())
10798 .setIsPatchPoint(IsPatchPoint)
10800 Call->countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0);
10801}
10802
10803/// Add a stack map intrinsic call's live variable operands to a stackmap
10804/// or patchpoint target node's operand list.
10805///
10806/// Constants are converted to TargetConstants purely as an optimization to
10807/// avoid constant materialization and register allocation.
10808///
10809/// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not
10810/// generate addess computation nodes, and so FinalizeISel can convert the
10811/// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids
10812/// address materialization and register allocation, but may also be required
10813/// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an
10814/// alloca in the entry block, then the runtime may assume that the alloca's
10815/// StackMap location can be read immediately after compilation and that the
10816/// location is valid at any point during execution (this is similar to the
10817/// assumption made by the llvm.gcroot intrinsic). If the alloca's location were
10818/// only available in a register, then the runtime would need to trap when
10819/// execution reaches the StackMap in order to read the alloca's location.
10820static void addStackMapLiveVars(const CallBase &Call, unsigned StartIdx,
10822 SelectionDAGBuilder &Builder) {
10823 SelectionDAG &DAG = Builder.DAG;
10824 for (unsigned I = StartIdx; I < Call.arg_size(); I++) {
10825 SDValue Op = Builder.getValue(Call.getArgOperand(I));
10826
10827 // Things on the stack are pointer-typed, meaning that they are already
10828 // legal and can be emitted directly to target nodes.
10830 Ops.push_back(DAG.getTargetFrameIndex(FI->getIndex(), Op.getValueType()));
10831 } else {
10832 // Otherwise emit a target independent node to be legalised.
10833 Ops.push_back(Builder.getValue(Call.getArgOperand(I)));
10834 }
10835 }
10836}
10837
10838/// Lower llvm.experimental.stackmap.
10839void SelectionDAGBuilder::visitStackmap(const CallInst &CI) {
10840 // void @llvm.experimental.stackmap(i64 <id>, i32 <numShadowBytes>,
10841 // [live variables...])
10842
10843 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value.");
10844
10845 SDValue Chain, InGlue, Callee;
10847
10848 SDLoc DL = getCurSDLoc();
10850
10851 // The stackmap intrinsic only records the live variables (the arguments
10852 // passed to it) and emits NOPS (if requested). Unlike the patchpoint
10853 // intrinsic, this won't be lowered to a function call. This means we don't
10854 // have to worry about calling conventions and target specific lowering code.
10855 // Instead we perform the call lowering right here.
10856 //
10857 // chain, flag = CALLSEQ_START(chain, 0, 0)
10858 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag)
10859 // chain, flag = CALLSEQ_END(chain, 0, 0, flag)
10860 //
10861 Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL);
10862 InGlue = Chain.getValue(1);
10863
10864 // Add the STACKMAP operands, starting with DAG house-keeping.
10865 Ops.push_back(Chain);
10866 Ops.push_back(InGlue);
10867
10868 // Add the <id>, <numShadowBytes> operands.
10869 //
10870 // These do not require legalisation, and can be emitted directly to target
10871 // constant nodes.
10873 assert(ID.getValueType() == MVT::i64);
10874 SDValue IDConst =
10875 DAG.getTargetConstant(ID->getAsZExtVal(), DL, ID.getValueType());
10876 Ops.push_back(IDConst);
10877
10878 SDValue Shad = getValue(CI.getArgOperand(1));
10879 assert(Shad.getValueType() == MVT::i32);
10880 SDValue ShadConst =
10881 DAG.getTargetConstant(Shad->getAsZExtVal(), DL, Shad.getValueType());
10882 Ops.push_back(ShadConst);
10883
10884 // Add the live variables.
10885 addStackMapLiveVars(CI, 2, DL, Ops, *this);
10886
10887 // Create the STACKMAP node.
10888 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
10889 Chain = DAG.getNode(ISD::STACKMAP, DL, NodeTys, Ops);
10890 InGlue = Chain.getValue(1);
10891
10892 Chain = DAG.getCALLSEQ_END(Chain, 0, 0, InGlue, DL);
10893
10894 // Stackmaps don't generate values, so nothing goes into the NodeMap.
10895
10896 // Set the root to the target-lowered call chain.
10897 DAG.setRoot(Chain);
10898
10899 // Inform the Frame Information that we have a stackmap in this function.
10900 FuncInfo.MF->getFrameInfo().setHasStackMap();
10901}
10902
10903/// Lower llvm.experimental.patchpoint directly to its target opcode.
10904void SelectionDAGBuilder::visitPatchpoint(const CallBase &CB,
10905 const BasicBlock *EHPadBB) {
10906 // <ty> @llvm.experimental.patchpoint.<ty>(i64 <id>,
10907 // i32 <numBytes>,
10908 // i8* <target>,
10909 // i32 <numArgs>,
10910 // [Args...],
10911 // [live variables...])
10912
10914 bool IsAnyRegCC = CC == CallingConv::AnyReg;
10915 bool HasDef = !CB.getType()->isVoidTy();
10916 SDLoc dl = getCurSDLoc();
10918
10919 // Handle immediate and symbolic callees.
10920 if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee))
10921 Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl,
10922 /*isTarget=*/true);
10923 else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee))
10924 Callee = DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(),
10925 SDLoc(SymbolicCallee),
10926 SymbolicCallee->getValueType(0));
10927
10928 // Get the real number of arguments participating in the call <numArgs>
10930 unsigned NumArgs = NArgVal->getAsZExtVal();
10931
10932 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs>
10933 // Intrinsics include all meta-operands up to but not including CC.
10934 unsigned NumMetaOpers = PatchPointOpers::CCPos;
10935 assert(CB.arg_size() >= NumMetaOpers + NumArgs &&
10936 "Not enough arguments provided to the patchpoint intrinsic");
10937
10938 // For AnyRegCC the arguments are lowered later on manually.
10939 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs;
10940 Type *ReturnTy =
10941 IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CB.getType();
10942
10943 TargetLowering::CallLoweringInfo CLI(DAG);
10944 populateCallLoweringInfo(CLI, &CB, NumMetaOpers, NumCallArgs, Callee,
10945 ReturnTy, CB.getAttributes().getRetAttrs(), true);
10946 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
10947
10948 SDNode *CallEnd = Result.second.getNode();
10949 if (CallEnd->getOpcode() == ISD::EH_LABEL)
10950 CallEnd = CallEnd->getOperand(0).getNode();
10951 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg))
10952 CallEnd = CallEnd->getOperand(0).getNode();
10953
10954 /// Get a call instruction from the call sequence chain.
10955 /// Tail calls are not allowed.
10956 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END &&
10957 "Expected a callseq node.");
10958 SDNode *Call = CallEnd->getOperand(0).getNode();
10959 bool HasGlue = Call->getGluedNode();
10960
10961 // Replace the target specific call node with the patchable intrinsic.
10963
10964 // Push the chain.
10965 Ops.push_back(*(Call->op_begin()));
10966
10967 // Optionally, push the glue (if any).
10968 if (HasGlue)
10969 Ops.push_back(*(Call->op_end() - 1));
10970
10971 // Push the register mask info.
10972 if (HasGlue)
10973 Ops.push_back(*(Call->op_end() - 2));
10974 else
10975 Ops.push_back(*(Call->op_end() - 1));
10976
10977 // Add the <id> and <numBytes> constants.
10979 Ops.push_back(DAG.getTargetConstant(IDVal->getAsZExtVal(), dl, MVT::i64));
10981 Ops.push_back(DAG.getTargetConstant(NBytesVal->getAsZExtVal(), dl, MVT::i32));
10982
10983 // Add the callee.
10984 Ops.push_back(Callee);
10985
10986 // Adjust <numArgs> to account for any arguments that have been passed on the
10987 // stack instead.
10988 // Call Node: Chain, Target, {Args}, RegMask, [Glue]
10989 unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3);
10990 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs;
10991 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32));
10992
10993 // Add the calling convention
10994 Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32));
10995
10996 // Add the arguments we omitted previously. The register allocator should
10997 // place these in any free register.
10998 if (IsAnyRegCC)
10999 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i)
11000 Ops.push_back(getValue(CB.getArgOperand(i)));
11001
11002 // Push the arguments from the call instruction.
11003 SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1;
11004 Ops.append(Call->op_begin() + 2, e);
11005
11006 // Push live variables for the stack map.
11007 addStackMapLiveVars(CB, NumMetaOpers + NumArgs, dl, Ops, *this);
11008
11009 SDVTList NodeTys;
11010 if (IsAnyRegCC && HasDef) {
11011 // Create the return types based on the intrinsic definition
11012 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11013 SmallVector<EVT, 3> ValueVTs;
11014 ComputeValueVTs(TLI, DAG.getDataLayout(), CB.getType(), ValueVTs);
11015 assert(ValueVTs.size() == 1 && "Expected only one return value type.");
11016
11017 // There is always a chain and a glue type at the end
11018 ValueVTs.push_back(MVT::Other);
11019 ValueVTs.push_back(MVT::Glue);
11020 NodeTys = DAG.getVTList(ValueVTs);
11021 } else
11022 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
11023
11024 // Replace the target specific call node with a PATCHPOINT node.
11025 SDValue PPV = DAG.getNode(ISD::PATCHPOINT, dl, NodeTys, Ops);
11026
11027 // Update the NodeMap.
11028 if (HasDef) {
11029 if (IsAnyRegCC)
11030 setValue(&CB, SDValue(PPV.getNode(), 0));
11031 else
11032 setValue(&CB, Result.first);
11033 }
11034
11035 // Fixup the consumers of the intrinsic. The chain and glue may be used in the
11036 // call sequence. Furthermore the location of the chain and glue can change
11037 // when the AnyReg calling convention is used and the intrinsic returns a
11038 // value.
11039 if (IsAnyRegCC && HasDef) {
11040 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)};
11041 SDValue To[] = {PPV.getValue(1), PPV.getValue(2)};
11042 DAG.ReplaceAllUsesOfValuesWith(From, To, 2);
11043 } else
11044 DAG.ReplaceAllUsesWith(Call, PPV.getNode());
11045 DAG.DeleteNode(Call);
11046
11047 // Inform the Frame Information that we have a patchpoint in this function.
11048 FuncInfo.MF->getFrameInfo().setHasPatchPoint();
11049}
11050
11051void SelectionDAGBuilder::visitVectorReduce(const CallInst &I,
11052 unsigned Intrinsic) {
11053 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11054 SDValue Op1 = getValue(I.getArgOperand(0));
11055 SDValue Op2;
11056 if (I.arg_size() > 1)
11057 Op2 = getValue(I.getArgOperand(1));
11058 SDLoc dl = getCurSDLoc();
11059 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
11060 SDValue Res;
11061 SDNodeFlags SDFlags;
11062 if (auto *FPMO = dyn_cast<FPMathOperator>(&I))
11063 SDFlags.copyFMF(*FPMO);
11064
11065 switch (Intrinsic) {
11066 case Intrinsic::vector_reduce_fadd:
11067 if (SDFlags.hasAllowReassociation())
11068 Res = DAG.getNode(ISD::FADD, dl, VT, Op1,
11069 DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2, SDFlags),
11070 SDFlags);
11071 else
11072 Res = DAG.getNode(ISD::VECREDUCE_SEQ_FADD, dl, VT, Op1, Op2, SDFlags);
11073 break;
11074 case Intrinsic::vector_reduce_fmul:
11075 if (SDFlags.hasAllowReassociation())
11076 Res = DAG.getNode(ISD::FMUL, dl, VT, Op1,
11077 DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2, SDFlags),
11078 SDFlags);
11079 else
11080 Res = DAG.getNode(ISD::VECREDUCE_SEQ_FMUL, dl, VT, Op1, Op2, SDFlags);
11081 break;
11082 case Intrinsic::vector_reduce_add:
11083 Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1);
11084 break;
11085 case Intrinsic::vector_reduce_mul:
11086 Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1);
11087 break;
11088 case Intrinsic::vector_reduce_and:
11089 Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1);
11090 break;
11091 case Intrinsic::vector_reduce_or:
11092 Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1);
11093 break;
11094 case Intrinsic::vector_reduce_xor:
11095 Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1);
11096 break;
11097 case Intrinsic::vector_reduce_smax:
11098 Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1);
11099 break;
11100 case Intrinsic::vector_reduce_smin:
11101 Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1);
11102 break;
11103 case Intrinsic::vector_reduce_umax:
11104 Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1);
11105 break;
11106 case Intrinsic::vector_reduce_umin:
11107 Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1);
11108 break;
11109 case Intrinsic::vector_reduce_fmax:
11110 Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1, SDFlags);
11111 break;
11112 case Intrinsic::vector_reduce_fmin:
11113 Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1, SDFlags);
11114 break;
11115 case Intrinsic::vector_reduce_fmaximum:
11116 Res = DAG.getNode(ISD::VECREDUCE_FMAXIMUM, dl, VT, Op1, SDFlags);
11117 break;
11118 case Intrinsic::vector_reduce_fminimum:
11119 Res = DAG.getNode(ISD::VECREDUCE_FMINIMUM, dl, VT, Op1, SDFlags);
11120 break;
11121 default:
11122 llvm_unreachable("Unhandled vector reduce intrinsic");
11123 }
11124 setValue(&I, Res);
11125}
11126
11127/// Returns an AttributeList representing the attributes applied to the return
11128/// value of the given call.
11131 if (CLI.RetSExt)
11132 Attrs.push_back(Attribute::SExt);
11133 if (CLI.RetZExt)
11134 Attrs.push_back(Attribute::ZExt);
11135 if (CLI.IsInReg)
11136 Attrs.push_back(Attribute::InReg);
11137
11138 return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex,
11139 Attrs);
11140}
11141
11142/// TargetLowering::LowerCallTo - This is the default LowerCallTo
11143/// implementation, which just calls LowerCall.
11144/// FIXME: When all targets are
11145/// migrated to using LowerCall, this hook should be integrated into SDISel.
11146std::pair<SDValue, SDValue>
11148 LLVMContext &Context = CLI.RetTy->getContext();
11149
11150 // Handle the incoming return values from the call.
11151 CLI.Ins.clear();
11152 SmallVector<Type *, 4> RetOrigTys;
11154 auto &DL = CLI.DAG.getDataLayout();
11155 ComputeValueTypes(DL, CLI.OrigRetTy, RetOrigTys, &Offsets);
11156
11157 SmallVector<EVT, 4> RetVTs;
11158 if (CLI.RetTy != CLI.OrigRetTy) {
11159 assert(RetOrigTys.size() == 1 &&
11160 "Only supported for non-aggregate returns");
11161 RetVTs.push_back(getValueType(DL, CLI.RetTy));
11162 } else {
11163 for (Type *Ty : RetOrigTys)
11164 RetVTs.push_back(getValueType(DL, Ty));
11165 }
11166
11167 if (CLI.IsPostTypeLegalization) {
11168 // If we are lowering a libcall after legalization, split the return type.
11169 SmallVector<Type *, 4> OldRetOrigTys;
11170 SmallVector<EVT, 4> OldRetVTs;
11171 SmallVector<TypeSize, 4> OldOffsets;
11172 RetOrigTys.swap(OldRetOrigTys);
11173 RetVTs.swap(OldRetVTs);
11174 Offsets.swap(OldOffsets);
11175
11176 for (size_t i = 0, e = OldRetVTs.size(); i != e; ++i) {
11177 EVT RetVT = OldRetVTs[i];
11178 uint64_t Offset = OldOffsets[i];
11179 MVT RegisterVT = getRegisterType(Context, RetVT);
11180 unsigned NumRegs = getNumRegisters(Context, RetVT);
11181 unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8;
11182 RetOrigTys.append(NumRegs, OldRetOrigTys[i]);
11183 RetVTs.append(NumRegs, RegisterVT);
11184 for (unsigned j = 0; j != NumRegs; ++j)
11185 Offsets.push_back(TypeSize::getFixed(Offset + j * RegisterVTByteSZ));
11186 }
11187 }
11188
11190 GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL);
11191
11192 bool CanLowerReturn =
11194 CLI.IsVarArg, Outs, Context, CLI.RetTy);
11195
11196 SDValue DemoteStackSlot;
11197 int DemoteStackIdx = -100;
11198 if (!CanLowerReturn) {
11199 // FIXME: equivalent assert?
11200 // assert(!CS.hasInAllocaArgument() &&
11201 // "sret demotion is incompatible with inalloca");
11202 uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy);
11203 Align Alignment = DL.getPrefTypeAlign(CLI.RetTy);
11205 DemoteStackIdx =
11206 MF.getFrameInfo().CreateStackObject(TySize, Alignment, false);
11207 Type *StackSlotPtrType = PointerType::get(Context, DL.getAllocaAddrSpace());
11208
11209 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL));
11210 ArgListEntry Entry(DemoteStackSlot, StackSlotPtrType);
11211 Entry.IsSRet = true;
11212 Entry.Alignment = Alignment;
11213 CLI.getArgs().insert(CLI.getArgs().begin(), Entry);
11214 CLI.NumFixedArgs += 1;
11215 CLI.getArgs()[0].IndirectType = CLI.RetTy;
11216 CLI.RetTy = CLI.OrigRetTy = Type::getVoidTy(Context);
11217
11218 // sret demotion isn't compatible with tail-calls, since the sret argument
11219 // points into the callers stack frame.
11220 CLI.IsTailCall = false;
11221 } else {
11222 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
11223 CLI.RetTy, CLI.CallConv, CLI.IsVarArg, DL);
11224 for (unsigned I = 0, E = RetVTs.size(); I != E; ++I) {
11225 ISD::ArgFlagsTy Flags;
11226 if (NeedsRegBlock) {
11227 Flags.setInConsecutiveRegs();
11228 if (I == RetVTs.size() - 1)
11229 Flags.setInConsecutiveRegsLast();
11230 }
11231 EVT VT = RetVTs[I];
11232 MVT RegisterVT = getRegisterTypeForCallingConv(Context, CLI.CallConv, VT);
11233 unsigned NumRegs =
11234 getNumRegistersForCallingConv(Context, CLI.CallConv, VT);
11235 for (unsigned i = 0; i != NumRegs; ++i) {
11236 ISD::InputArg Ret(Flags, RegisterVT, VT, RetOrigTys[I],
11238 if (CLI.RetTy->isPointerTy()) {
11239 Ret.Flags.setPointer();
11241 cast<PointerType>(CLI.RetTy)->getAddressSpace());
11242 }
11243 if (CLI.RetSExt)
11244 Ret.Flags.setSExt();
11245 if (CLI.RetZExt)
11246 Ret.Flags.setZExt();
11247 if (CLI.IsInReg)
11248 Ret.Flags.setInReg();
11249 CLI.Ins.push_back(Ret);
11250 }
11251 }
11252 }
11253
11254 // We push in swifterror return as the last element of CLI.Ins.
11255 ArgListTy &Args = CLI.getArgs();
11256 if (supportSwiftError()) {
11257 for (const ArgListEntry &Arg : Args) {
11258 if (Arg.IsSwiftError) {
11259 ISD::ArgFlagsTy Flags;
11260 Flags.setSwiftError();
11262 PointerType::getUnqual(Context),
11263 /*Used=*/true, ISD::InputArg::NoArgIndex, 0);
11264 CLI.Ins.push_back(Ret);
11265 }
11266 }
11267 }
11268
11269 // Handle all of the outgoing arguments.
11270 CLI.Outs.clear();
11271 CLI.OutVals.clear();
11272 for (unsigned i = 0, e = Args.size(); i != e; ++i) {
11273 SmallVector<Type *, 4> OrigArgTys;
11274 ComputeValueTypes(DL, Args[i].OrigTy, OrigArgTys);
11275 // FIXME: Split arguments if CLI.IsPostTypeLegalization
11276 Type *FinalType = Args[i].Ty;
11277 if (Args[i].IsByVal)
11278 FinalType = Args[i].IndirectType;
11279 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
11280 FinalType, CLI.CallConv, CLI.IsVarArg, DL);
11281 for (unsigned Value = 0, NumValues = OrigArgTys.size(); Value != NumValues;
11282 ++Value) {
11283 Type *OrigArgTy = OrigArgTys[Value];
11284 Type *ArgTy = OrigArgTy;
11285 if (Args[i].Ty != Args[i].OrigTy) {
11286 assert(Value == 0 && "Only supported for non-aggregate arguments");
11287 ArgTy = Args[i].Ty;
11288 }
11289
11290 EVT VT = getValueType(DL, ArgTy);
11291 SDValue Op = SDValue(Args[i].Node.getNode(),
11292 Args[i].Node.getResNo() + Value);
11293 ISD::ArgFlagsTy Flags;
11294
11295 // Certain targets (such as MIPS), may have a different ABI alignment
11296 // for a type depending on the context. Give the target a chance to
11297 // specify the alignment it wants.
11298 const Align OriginalAlignment(getABIAlignmentForCallingConv(ArgTy, DL));
11299 Flags.setOrigAlign(OriginalAlignment);
11300
11301 if (i >= CLI.NumFixedArgs)
11302 Flags.setVarArg();
11303 if (ArgTy->isPointerTy()) {
11304 Flags.setPointer();
11305 Flags.setPointerAddrSpace(cast<PointerType>(ArgTy)->getAddressSpace());
11306 }
11307 if (Args[i].IsZExt)
11308 Flags.setZExt();
11309 if (Args[i].IsSExt)
11310 Flags.setSExt();
11311 if (Args[i].IsNoExt)
11312 Flags.setNoExt();
11313 if (Args[i].IsInReg) {
11314 // If we are using vectorcall calling convention, a structure that is
11315 // passed InReg - is surely an HVA
11317 isa<StructType>(FinalType)) {
11318 // The first value of a structure is marked
11319 if (0 == Value)
11320 Flags.setHvaStart();
11321 Flags.setHva();
11322 }
11323 // Set InReg Flag
11324 Flags.setInReg();
11325 }
11326 if (Args[i].IsSRet)
11327 Flags.setSRet();
11328 if (Args[i].IsSwiftSelf)
11329 Flags.setSwiftSelf();
11330 if (Args[i].IsSwiftAsync)
11331 Flags.setSwiftAsync();
11332 if (Args[i].IsSwiftError)
11333 Flags.setSwiftError();
11334 if (Args[i].IsCFGuardTarget)
11335 Flags.setCFGuardTarget();
11336 if (Args[i].IsByVal)
11337 Flags.setByVal();
11338 if (Args[i].IsByRef)
11339 Flags.setByRef();
11340 if (Args[i].IsPreallocated) {
11341 Flags.setPreallocated();
11342 // Set the byval flag for CCAssignFn callbacks that don't know about
11343 // preallocated. This way we can know how many bytes we should've
11344 // allocated and how many bytes a callee cleanup function will pop. If
11345 // we port preallocated to more targets, we'll have to add custom
11346 // preallocated handling in the various CC lowering callbacks.
11347 Flags.setByVal();
11348 }
11349 if (Args[i].IsInAlloca) {
11350 Flags.setInAlloca();
11351 // Set the byval flag for CCAssignFn callbacks that don't know about
11352 // inalloca. This way we can know how many bytes we should've allocated
11353 // and how many bytes a callee cleanup function will pop. If we port
11354 // inalloca to more targets, we'll have to add custom inalloca handling
11355 // in the various CC lowering callbacks.
11356 Flags.setByVal();
11357 }
11358 Align MemAlign;
11359 if (Args[i].IsByVal || Args[i].IsInAlloca || Args[i].IsPreallocated) {
11360 unsigned FrameSize = DL.getTypeAllocSize(Args[i].IndirectType);
11361 Flags.setByValSize(FrameSize);
11362
11363 // info is not there but there are cases it cannot get right.
11364 if (auto MA = Args[i].Alignment)
11365 MemAlign = *MA;
11366 else
11367 MemAlign = getByValTypeAlignment(Args[i].IndirectType, DL);
11368 } else if (auto MA = Args[i].Alignment) {
11369 MemAlign = *MA;
11370 } else {
11371 MemAlign = OriginalAlignment;
11372 }
11373 Flags.setMemAlign(MemAlign);
11374 if (Args[i].IsNest)
11375 Flags.setNest();
11376 if (NeedsRegBlock)
11377 Flags.setInConsecutiveRegs();
11378
11379 MVT PartVT = getRegisterTypeForCallingConv(Context, CLI.CallConv, VT);
11380 unsigned NumParts =
11381 getNumRegistersForCallingConv(Context, CLI.CallConv, VT);
11382 SmallVector<SDValue, 4> Parts(NumParts);
11383 ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
11384
11385 if (Args[i].IsSExt)
11386 ExtendKind = ISD::SIGN_EXTEND;
11387 else if (Args[i].IsZExt)
11388 ExtendKind = ISD::ZERO_EXTEND;
11389
11390 // Conservatively only handle 'returned' on non-vectors that can be lowered,
11391 // for now.
11392 if (Args[i].IsReturned && !Op.getValueType().isVector() &&
11394 assert((CLI.RetTy == Args[i].Ty ||
11395 (CLI.RetTy->isPointerTy() && Args[i].Ty->isPointerTy() &&
11397 Args[i].Ty->getPointerAddressSpace())) &&
11398 RetVTs.size() == NumValues && "unexpected use of 'returned'");
11399 // Before passing 'returned' to the target lowering code, ensure that
11400 // either the register MVT and the actual EVT are the same size or that
11401 // the return value and argument are extended in the same way; in these
11402 // cases it's safe to pass the argument register value unchanged as the
11403 // return register value (although it's at the target's option whether
11404 // to do so)
11405 // TODO: allow code generation to take advantage of partially preserved
11406 // registers rather than clobbering the entire register when the
11407 // parameter extension method is not compatible with the return
11408 // extension method
11409 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) ||
11410 (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt &&
11411 CLI.RetZExt == Args[i].IsZExt))
11412 Flags.setReturned();
11413 }
11414
11415 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, CLI.CB,
11416 CLI.CallConv, ExtendKind);
11417
11418 for (unsigned j = 0; j != NumParts; ++j) {
11419 // if it isn't first piece, alignment must be 1
11420 // For scalable vectors the scalable part is currently handled
11421 // by individual targets, so we just use the known minimum size here.
11422 ISD::OutputArg MyFlags(
11423 Flags, Parts[j].getValueType().getSimpleVT(), VT, OrigArgTy, i,
11424 j * Parts[j].getValueType().getStoreSize().getKnownMinValue());
11425 if (NumParts > 1 && j == 0)
11426 MyFlags.Flags.setSplit();
11427 else if (j != 0) {
11428 MyFlags.Flags.setOrigAlign(Align(1));
11429 if (j == NumParts - 1)
11430 MyFlags.Flags.setSplitEnd();
11431 }
11432
11433 CLI.Outs.push_back(MyFlags);
11434 CLI.OutVals.push_back(Parts[j]);
11435 }
11436
11437 if (NeedsRegBlock && Value == NumValues - 1)
11438 CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast();
11439 }
11440 }
11441
11443 CLI.Chain = LowerCall(CLI, InVals);
11444
11445 // Update CLI.InVals to use outside of this function.
11446 CLI.InVals = InVals;
11447
11448 // Verify that the target's LowerCall behaved as expected.
11449 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other &&
11450 "LowerCall didn't return a valid chain!");
11451 assert((!CLI.IsTailCall || InVals.empty()) &&
11452 "LowerCall emitted a return value for a tail call!");
11453 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) &&
11454 "LowerCall didn't emit the correct number of values!");
11455
11456 // For a tail call, the return value is merely live-out and there aren't
11457 // any nodes in the DAG representing it. Return a special value to
11458 // indicate that a tail call has been emitted and no more Instructions
11459 // should be processed in the current block.
11460 if (CLI.IsTailCall) {
11461 CLI.DAG.setRoot(CLI.Chain);
11462 return std::make_pair(SDValue(), SDValue());
11463 }
11464
11465#ifndef NDEBUG
11466 for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) {
11467 assert(InVals[i].getNode() && "LowerCall emitted a null value!");
11468 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() &&
11469 "LowerCall emitted a value with the wrong type!");
11470 }
11471#endif
11472
11473 SmallVector<SDValue, 4> ReturnValues;
11474 if (!CanLowerReturn) {
11475 // The instruction result is the result of loading from the
11476 // hidden sret parameter.
11477 MVT PtrVT = getPointerTy(DL, DL.getAllocaAddrSpace());
11478
11479 unsigned NumValues = RetVTs.size();
11480 ReturnValues.resize(NumValues);
11481 SmallVector<SDValue, 4> Chains(NumValues);
11482
11483 // An aggregate return value cannot wrap around the address space, so
11484 // offsets to its parts don't wrap either.
11486 Align HiddenSRetAlign = MF.getFrameInfo().getObjectAlign(DemoteStackIdx);
11487 for (unsigned i = 0; i < NumValues; ++i) {
11489 DemoteStackSlot, CLI.DAG.getConstant(Offsets[i], CLI.DL, PtrVT),
11491 SDValue L = CLI.DAG.getLoad(
11492 RetVTs[i], CLI.DL, CLI.Chain, Add,
11494 DemoteStackIdx, Offsets[i]),
11495 HiddenSRetAlign);
11496 ReturnValues[i] = L;
11497 Chains[i] = L.getValue(1);
11498 }
11499
11500 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains);
11501 } else {
11502 // Collect the legal value parts into potentially illegal values
11503 // that correspond to the original function's return values.
11504 std::optional<ISD::NodeType> AssertOp;
11505 if (CLI.RetSExt)
11506 AssertOp = ISD::AssertSext;
11507 else if (CLI.RetZExt)
11508 AssertOp = ISD::AssertZext;
11509 unsigned CurReg = 0;
11510 for (EVT VT : RetVTs) {
11511 MVT RegisterVT = getRegisterTypeForCallingConv(Context, CLI.CallConv, VT);
11512 unsigned NumRegs =
11513 getNumRegistersForCallingConv(Context, CLI.CallConv, VT);
11514
11515 ReturnValues.push_back(getCopyFromParts(
11516 CLI.DAG, CLI.DL, &InVals[CurReg], NumRegs, RegisterVT, VT, nullptr,
11517 CLI.Chain, CLI.CallConv, AssertOp));
11518 CurReg += NumRegs;
11519 }
11520
11521 // For a function returning void, there is no return value. We can't create
11522 // such a node, so we just return a null return value in that case. In
11523 // that case, nothing will actually look at the value.
11524 if (ReturnValues.empty())
11525 return std::make_pair(SDValue(), CLI.Chain);
11526 }
11527
11528 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL,
11529 CLI.DAG.getVTList(RetVTs), ReturnValues);
11530 return std::make_pair(Res, CLI.Chain);
11531}
11532
11533/// Places new result values for the node in Results (their number
11534/// and types must exactly match those of the original return values of
11535/// the node), or leaves Results empty, which indicates that the node is not
11536/// to be custom lowered after all.
11539 SelectionDAG &DAG) const {
11540 SDValue Res = LowerOperation(SDValue(N, 0), DAG);
11541
11542 if (!Res.getNode())
11543 return;
11544
11545 // If the original node has one result, take the return value from
11546 // LowerOperation as is. It might not be result number 0.
11547 if (N->getNumValues() == 1) {
11548 Results.push_back(Res);
11549 return;
11550 }
11551
11552 // If the original node has multiple results, then the return node should
11553 // have the same number of results.
11554 assert((N->getNumValues() == Res->getNumValues()) &&
11555 "Lowering returned the wrong number of results!");
11556
11557 // Places new result values base on N result number.
11558 for (unsigned I = 0, E = N->getNumValues(); I != E; ++I)
11559 Results.push_back(Res.getValue(I));
11560}
11561
11563 llvm_unreachable("LowerOperation not implemented for this target!");
11564}
11565
11567 Register Reg,
11568 ISD::NodeType ExtendType) {
11570 assert((Op.getOpcode() != ISD::CopyFromReg ||
11571 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
11572 "Copy from a reg to the same reg!");
11573 assert(!Reg.isPhysical() && "Is a physreg");
11574
11575 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11576 // If this is an InlineAsm we have to match the registers required, not the
11577 // notional registers required by the type.
11578
11579 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, V->getType(),
11580 std::nullopt); // This is not an ABI copy.
11581 SDValue Chain = DAG.getEntryNode();
11582
11583 if (ExtendType == ISD::ANY_EXTEND) {
11584 auto PreferredExtendIt = FuncInfo.PreferredExtendType.find(V);
11585 if (PreferredExtendIt != FuncInfo.PreferredExtendType.end())
11586 ExtendType = PreferredExtendIt->second;
11587 }
11588 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType);
11589 PendingExports.push_back(Chain);
11590}
11591
11593
11594/// isOnlyUsedInEntryBlock - If the specified argument is only used in the
11595/// entry block, return true. This includes arguments used by switches, since
11596/// the switch may expand into multiple basic blocks.
11597static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) {
11598 // With FastISel active, we may be splitting blocks, so force creation
11599 // of virtual registers for all non-dead arguments.
11600 if (FastISel)
11601 return A->use_empty();
11602
11603 const BasicBlock &Entry = A->getParent()->front();
11604 for (const User *U : A->users())
11605 if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U))
11606 return false; // Use not in entry block.
11607
11608 return true;
11609}
11610
11612 DenseMap<const Argument *,
11613 std::pair<const AllocaInst *, const StoreInst *>>;
11614
11615/// Scan the entry block of the function in FuncInfo for arguments that look
11616/// like copies into a local alloca. Record any copied arguments in
11617/// ArgCopyElisionCandidates.
11618static void
11620 FunctionLoweringInfo *FuncInfo,
11621 ArgCopyElisionMapTy &ArgCopyElisionCandidates) {
11622 // Record the state of every static alloca used in the entry block. Argument
11623 // allocas are all used in the entry block, so we need approximately as many
11624 // entries as we have arguments.
11625 enum StaticAllocaInfo { Unknown, Clobbered, Elidable };
11627 unsigned NumArgs = FuncInfo->Fn->arg_size();
11628 StaticAllocas.reserve(NumArgs * 2);
11629
11630 auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * {
11631 if (!V)
11632 return nullptr;
11633 V = V->stripPointerCasts();
11634 const auto *AI = dyn_cast<AllocaInst>(V);
11635 if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI))
11636 return nullptr;
11637 auto Iter = StaticAllocas.insert({AI, Unknown});
11638 return &Iter.first->second;
11639 };
11640
11641 // Look for stores of arguments to static allocas. Look through bitcasts and
11642 // GEPs to handle type coercions, as long as the alloca is fully initialized
11643 // by the store. Any non-store use of an alloca escapes it and any subsequent
11644 // unanalyzed store might write it.
11645 // FIXME: Handle structs initialized with multiple stores.
11646 for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) {
11647 // Look for stores, and handle non-store uses conservatively.
11648 const auto *SI = dyn_cast<StoreInst>(&I);
11649 if (!SI) {
11650 // We will look through cast uses, so ignore them completely.
11651 if (I.isCast())
11652 continue;
11653 // Ignore debug info and pseudo op intrinsics, they don't escape or store
11654 // to allocas.
11655 if (I.isDebugOrPseudoInst())
11656 continue;
11657 // This is an unknown instruction. Assume it escapes or writes to all
11658 // static alloca operands.
11659 for (const Use &U : I.operands()) {
11660 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U))
11661 *Info = StaticAllocaInfo::Clobbered;
11662 }
11663 continue;
11664 }
11665
11666 // If the stored value is a static alloca, mark it as escaped.
11667 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand()))
11668 *Info = StaticAllocaInfo::Clobbered;
11669
11670 // Check if the destination is a static alloca.
11671 const Value *Dst = SI->getPointerOperand()->stripPointerCasts();
11672 StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst);
11673 if (!Info)
11674 continue;
11675 const AllocaInst *AI = cast<AllocaInst>(Dst);
11676
11677 // Skip allocas that have been initialized or clobbered.
11678 if (*Info != StaticAllocaInfo::Unknown)
11679 continue;
11680
11681 // Check if the stored value is an argument, and that this store fully
11682 // initializes the alloca.
11683 // If the argument type has padding bits we can't directly forward a pointer
11684 // as the upper bits may contain garbage.
11685 // Don't elide copies from the same argument twice.
11686 const Value *Val = SI->getValueOperand()->stripPointerCasts();
11687 const auto *Arg = dyn_cast<Argument>(Val);
11688 std::optional<TypeSize> AllocaSize = AI->getAllocationSize(DL);
11689 if (!Arg || Arg->hasPassPointeeByValueCopyAttr() ||
11690 Arg->getType()->isEmptyTy() || !AllocaSize ||
11691 DL.getTypeStoreSize(Arg->getType()) != *AllocaSize ||
11692 !DL.typeSizeEqualsStoreSize(Arg->getType()) ||
11693 ArgCopyElisionCandidates.count(Arg)) {
11694 *Info = StaticAllocaInfo::Clobbered;
11695 continue;
11696 }
11697
11698 LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI
11699 << '\n');
11700
11701 // Mark this alloca and store for argument copy elision.
11702 *Info = StaticAllocaInfo::Elidable;
11703 ArgCopyElisionCandidates.insert({Arg, {AI, SI}});
11704
11705 // Stop scanning if we've seen all arguments. This will happen early in -O0
11706 // builds, which is useful, because -O0 builds have large entry blocks and
11707 // many allocas.
11708 if (ArgCopyElisionCandidates.size() == NumArgs)
11709 break;
11710 }
11711}
11712
11713/// Try to elide argument copies from memory into a local alloca. Succeeds if
11714/// ArgVal is a load from a suitable fixed stack object.
11717 DenseMap<int, int> &ArgCopyElisionFrameIndexMap,
11718 SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs,
11719 ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg,
11720 ArrayRef<SDValue> ArgVals, bool &ArgHasUses) {
11721 // Check if this is a load from a fixed stack object.
11722 auto *LNode = dyn_cast<LoadSDNode>(ArgVals[0]);
11723 if (!LNode)
11724 return;
11725 auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode());
11726 if (!FINode)
11727 return;
11728
11729 // Check that the fixed stack object is the right size and alignment.
11730 // Look at the alignment that the user wrote on the alloca instead of looking
11731 // at the stack object.
11732 auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg);
11733 assert(ArgCopyIter != ArgCopyElisionCandidates.end());
11734 const AllocaInst *AI = ArgCopyIter->second.first;
11735 int FixedIndex = FINode->getIndex();
11736 int &AllocaIndex = FuncInfo.StaticAllocaMap[AI];
11737 int OldIndex = AllocaIndex;
11738 MachineFrameInfo &MFI = FuncInfo.MF->getFrameInfo();
11739 if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) {
11740 LLVM_DEBUG(
11741 dbgs() << " argument copy elision failed due to bad fixed stack "
11742 "object size\n");
11743 return;
11744 }
11745 Align RequiredAlignment = AI->getAlign();
11746 if (MFI.getObjectAlign(FixedIndex) < RequiredAlignment) {
11747 LLVM_DEBUG(dbgs() << " argument copy elision failed: alignment of alloca "
11748 "greater than stack argument alignment ("
11749 << DebugStr(RequiredAlignment) << " vs "
11750 << DebugStr(MFI.getObjectAlign(FixedIndex)) << ")\n");
11751 return;
11752 }
11753
11754 // Perform the elision. Delete the old stack object and replace its only use
11755 // in the variable info map. Mark the stack object as mutable and aliased.
11756 LLVM_DEBUG({
11757 dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n'
11758 << " Replacing frame index " << OldIndex << " with " << FixedIndex
11759 << '\n';
11760 });
11761 MFI.RemoveStackObject(OldIndex);
11762 MFI.setIsImmutableObjectIndex(FixedIndex, false);
11763 MFI.setIsAliasedObjectIndex(FixedIndex, true);
11764 AllocaIndex = FixedIndex;
11765 ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex});
11766 for (SDValue ArgVal : ArgVals)
11767 Chains.push_back(ArgVal.getValue(1));
11768
11769 // Avoid emitting code for the store implementing the copy.
11770 const StoreInst *SI = ArgCopyIter->second.second;
11771 ElidedArgCopyInstrs.insert(SI);
11772
11773 // Check for uses of the argument again so that we can avoid exporting ArgVal
11774 // if it is't used by anything other than the store.
11775 for (const Value *U : Arg.users()) {
11776 if (U != SI) {
11777 ArgHasUses = true;
11778 break;
11779 }
11780 }
11781}
11782
11783void SelectionDAGISel::LowerArguments(const Function &F) {
11784 SelectionDAG &DAG = SDB->DAG;
11785 SDLoc dl = SDB->getCurSDLoc();
11786 const DataLayout &DL = DAG.getDataLayout();
11788
11789 // In Naked functions we aren't going to save any registers.
11790 if (F.hasFnAttribute(Attribute::Naked))
11791 return;
11792
11793 if (!FuncInfo->CanLowerReturn) {
11794 // Put in an sret pointer parameter before all the other parameters.
11795 MVT ValueVT = TLI->getPointerTy(DL, DL.getAllocaAddrSpace());
11796
11797 ISD::ArgFlagsTy Flags;
11798 Flags.setSRet();
11799 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVT);
11800 ISD::InputArg RetArg(Flags, RegisterVT, ValueVT, F.getReturnType(), true,
11802 Ins.push_back(RetArg);
11803 }
11804
11805 // Look for stores of arguments to static allocas. Mark such arguments with a
11806 // flag to ask the target to give us the memory location of that argument if
11807 // available.
11808 ArgCopyElisionMapTy ArgCopyElisionCandidates;
11810 ArgCopyElisionCandidates);
11811
11812 // Set up the incoming argument description vector.
11813 for (const Argument &Arg : F.args()) {
11814 unsigned ArgNo = Arg.getArgNo();
11816 ComputeValueTypes(DAG.getDataLayout(), Arg.getType(), Types);
11817 bool isArgValueUsed = !Arg.use_empty();
11818 Type *FinalType = Arg.getType();
11819 if (Arg.hasAttribute(Attribute::ByVal))
11820 FinalType = Arg.getParamByValType();
11821 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters(
11822 FinalType, F.getCallingConv(), F.isVarArg(), DL);
11823 for (unsigned Value = 0, NumValues = Types.size(); Value != NumValues;
11824 ++Value) {
11825 Type *ArgTy = Types[Value];
11826 EVT VT = TLI->getValueType(DL, ArgTy);
11827 ISD::ArgFlagsTy Flags;
11828
11829 if (ArgTy->isPointerTy()) {
11830 Flags.setPointer();
11831 Flags.setPointerAddrSpace(cast<PointerType>(ArgTy)->getAddressSpace());
11832 }
11833 if (Arg.hasAttribute(Attribute::ZExt))
11834 Flags.setZExt();
11835 if (Arg.hasAttribute(Attribute::SExt))
11836 Flags.setSExt();
11837 if (Arg.hasAttribute(Attribute::InReg)) {
11838 // If we are using vectorcall calling convention, a structure that is
11839 // passed InReg - is surely an HVA
11840 if (F.getCallingConv() == CallingConv::X86_VectorCall &&
11841 isa<StructType>(Arg.getType())) {
11842 // The first value of a structure is marked
11843 if (0 == Value)
11844 Flags.setHvaStart();
11845 Flags.setHva();
11846 }
11847 // Set InReg Flag
11848 Flags.setInReg();
11849 }
11850 if (Arg.hasAttribute(Attribute::StructRet))
11851 Flags.setSRet();
11852 if (Arg.hasAttribute(Attribute::SwiftSelf))
11853 Flags.setSwiftSelf();
11854 if (Arg.hasAttribute(Attribute::SwiftAsync))
11855 Flags.setSwiftAsync();
11856 if (Arg.hasAttribute(Attribute::SwiftError))
11857 Flags.setSwiftError();
11858 if (Arg.hasAttribute(Attribute::ByVal))
11859 Flags.setByVal();
11860 if (Arg.hasAttribute(Attribute::ByRef))
11861 Flags.setByRef();
11862 if (Arg.hasAttribute(Attribute::InAlloca)) {
11863 Flags.setInAlloca();
11864 // Set the byval flag for CCAssignFn callbacks that don't know about
11865 // inalloca. This way we can know how many bytes we should've allocated
11866 // and how many bytes a callee cleanup function will pop. If we port
11867 // inalloca to more targets, we'll have to add custom inalloca handling
11868 // in the various CC lowering callbacks.
11869 Flags.setByVal();
11870 }
11871 if (Arg.hasAttribute(Attribute::Preallocated)) {
11872 Flags.setPreallocated();
11873 // Set the byval flag for CCAssignFn callbacks that don't know about
11874 // preallocated. This way we can know how many bytes we should've
11875 // allocated and how many bytes a callee cleanup function will pop. If
11876 // we port preallocated to more targets, we'll have to add custom
11877 // preallocated handling in the various CC lowering callbacks.
11878 Flags.setByVal();
11879 }
11880
11881 // Certain targets (such as MIPS), may have a different ABI alignment
11882 // for a type depending on the context. Give the target a chance to
11883 // specify the alignment it wants.
11884 const Align OriginalAlignment(
11885 TLI->getABIAlignmentForCallingConv(ArgTy, DL));
11886 Flags.setOrigAlign(OriginalAlignment);
11887
11888 Align MemAlign;
11889 Type *ArgMemTy = nullptr;
11890 if (Flags.isByVal() || Flags.isInAlloca() || Flags.isPreallocated() ||
11891 Flags.isByRef()) {
11892 if (!ArgMemTy)
11893 ArgMemTy = Arg.getPointeeInMemoryValueType();
11894
11895 uint64_t MemSize = DL.getTypeAllocSize(ArgMemTy);
11896
11897 // For in-memory arguments, size and alignment should be passed from FE.
11898 // BE will guess if this info is not there but there are cases it cannot
11899 // get right.
11900 if (auto ParamAlign = Arg.getParamStackAlign())
11901 MemAlign = *ParamAlign;
11902 else if ((ParamAlign = Arg.getParamAlign()))
11903 MemAlign = *ParamAlign;
11904 else
11905 MemAlign = TLI->getByValTypeAlignment(ArgMemTy, DL);
11906 if (Flags.isByRef())
11907 Flags.setByRefSize(MemSize);
11908 else
11909 Flags.setByValSize(MemSize);
11910 } else if (auto ParamAlign = Arg.getParamStackAlign()) {
11911 MemAlign = *ParamAlign;
11912 } else {
11913 MemAlign = OriginalAlignment;
11914 }
11915 Flags.setMemAlign(MemAlign);
11916
11917 if (Arg.hasAttribute(Attribute::Nest))
11918 Flags.setNest();
11919 if (NeedsRegBlock)
11920 Flags.setInConsecutiveRegs();
11921 if (ArgCopyElisionCandidates.count(&Arg))
11922 Flags.setCopyElisionCandidate();
11923 if (Arg.hasAttribute(Attribute::Returned))
11924 Flags.setReturned();
11925
11926 MVT RegisterVT = TLI->getRegisterTypeForCallingConv(
11927 *CurDAG->getContext(), F.getCallingConv(), VT);
11928 unsigned NumRegs = TLI->getNumRegistersForCallingConv(
11929 *CurDAG->getContext(), F.getCallingConv(), VT);
11930 for (unsigned i = 0; i != NumRegs; ++i) {
11931 // For scalable vectors, use the minimum size; individual targets
11932 // are responsible for handling scalable vector arguments and
11933 // return values.
11934 ISD::InputArg MyFlags(
11935 Flags, RegisterVT, VT, ArgTy, isArgValueUsed, ArgNo,
11936 i * RegisterVT.getStoreSize().getKnownMinValue());
11937 if (NumRegs > 1 && i == 0)
11938 MyFlags.Flags.setSplit();
11939 // if it isn't first piece, alignment must be 1
11940 else if (i > 0) {
11941 MyFlags.Flags.setOrigAlign(Align(1));
11942 if (i == NumRegs - 1)
11943 MyFlags.Flags.setSplitEnd();
11944 }
11945 Ins.push_back(MyFlags);
11946 }
11947 if (NeedsRegBlock && Value == NumValues - 1)
11948 Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast();
11949 }
11950 }
11951
11952 // Call the target to set up the argument values.
11954 SDValue NewRoot = TLI->LowerFormalArguments(
11955 DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals);
11956
11957 // Verify that the target's LowerFormalArguments behaved as expected.
11958 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
11959 "LowerFormalArguments didn't return a valid chain!");
11960 assert(InVals.size() == Ins.size() &&
11961 "LowerFormalArguments didn't emit the correct number of values!");
11962 LLVM_DEBUG({
11963 for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
11964 assert(InVals[i].getNode() &&
11965 "LowerFormalArguments emitted a null value!");
11966 assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
11967 "LowerFormalArguments emitted a value with the wrong type!");
11968 }
11969 });
11970
11971 // Update the DAG with the new chain value resulting from argument lowering.
11972 DAG.setRoot(NewRoot);
11973
11974 // Set up the argument values.
11975 unsigned i = 0;
11976 if (!FuncInfo->CanLowerReturn) {
11977 // Create a virtual register for the sret pointer, and put in a copy
11978 // from the sret argument into it.
11979 MVT VT = TLI->getPointerTy(DL, DL.getAllocaAddrSpace());
11980 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
11981 std::optional<ISD::NodeType> AssertOp;
11982 SDValue ArgValue =
11983 getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, VT, nullptr, NewRoot,
11984 F.getCallingConv(), AssertOp);
11985
11986 MachineFunction& MF = SDB->DAG.getMachineFunction();
11987 MachineRegisterInfo& RegInfo = MF.getRegInfo();
11988 Register SRetReg =
11989 RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT));
11990 FuncInfo->DemoteRegister = SRetReg;
11991 NewRoot =
11992 SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue);
11993 DAG.setRoot(NewRoot);
11994
11995 // i indexes lowered arguments. Bump it past the hidden sret argument.
11996 ++i;
11997 }
11998
12000 DenseMap<int, int> ArgCopyElisionFrameIndexMap;
12001 for (const Argument &Arg : F.args()) {
12002 SmallVector<SDValue, 4> ArgValues;
12003 SmallVector<EVT, 4> ValueVTs;
12004 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
12005 unsigned NumValues = ValueVTs.size();
12006 if (NumValues == 0)
12007 continue;
12008
12009 bool ArgHasUses = !Arg.use_empty();
12010
12011 // Elide the copying store if the target loaded this argument from a
12012 // suitable fixed stack object.
12013 if (Ins[i].Flags.isCopyElisionCandidate()) {
12014 unsigned NumParts = 0;
12015 for (EVT VT : ValueVTs)
12016 NumParts += TLI->getNumRegistersForCallingConv(*CurDAG->getContext(),
12017 F.getCallingConv(), VT);
12018
12019 tryToElideArgumentCopy(*FuncInfo, Chains, ArgCopyElisionFrameIndexMap,
12020 ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg,
12021 ArrayRef(&InVals[i], NumParts), ArgHasUses);
12022 }
12023
12024 // If this argument is unused then remember its value. It is used to generate
12025 // debugging information.
12026 bool isSwiftErrorArg =
12027 TLI->supportSwiftError() &&
12028 Arg.hasAttribute(Attribute::SwiftError);
12029 if (!ArgHasUses && !isSwiftErrorArg) {
12030 SDB->setUnusedArgValue(&Arg, InVals[i]);
12031
12032 // Also remember any frame index for use in FastISel.
12033 if (FrameIndexSDNode *FI =
12035 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
12036 }
12037
12038 for (unsigned Val = 0; Val != NumValues; ++Val) {
12039 EVT VT = ValueVTs[Val];
12040 MVT PartVT = TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(),
12041 F.getCallingConv(), VT);
12042 unsigned NumParts = TLI->getNumRegistersForCallingConv(
12043 *CurDAG->getContext(), F.getCallingConv(), VT);
12044
12045 // Even an apparent 'unused' swifterror argument needs to be returned. So
12046 // we do generate a copy for it that can be used on return from the
12047 // function.
12048 if (ArgHasUses || isSwiftErrorArg) {
12049 std::optional<ISD::NodeType> AssertOp;
12050 if (Arg.hasAttribute(Attribute::SExt))
12051 AssertOp = ISD::AssertSext;
12052 else if (Arg.hasAttribute(Attribute::ZExt))
12053 AssertOp = ISD::AssertZext;
12054
12055 SDValue OutVal =
12056 getCopyFromParts(DAG, dl, &InVals[i], NumParts, PartVT, VT, nullptr,
12057 NewRoot, F.getCallingConv(), AssertOp);
12058
12059 FPClassTest NoFPClass = Arg.getNoFPClass();
12060 if (NoFPClass != fcNone) {
12061 SDValue SDNoFPClass = DAG.getTargetConstant(
12062 static_cast<uint64_t>(NoFPClass), dl, MVT::i32);
12063 OutVal = DAG.getNode(ISD::AssertNoFPClass, dl, OutVal.getValueType(),
12064 OutVal, SDNoFPClass);
12065 }
12066 ArgValues.push_back(OutVal);
12067 }
12068
12069 i += NumParts;
12070 }
12071
12072 // We don't need to do anything else for unused arguments.
12073 if (ArgValues.empty())
12074 continue;
12075
12076 // Note down frame index.
12077 if (FrameIndexSDNode *FI =
12078 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
12079 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
12080
12081 SDValue Res = DAG.getMergeValues(ArrayRef(ArgValues.data(), NumValues),
12082 SDB->getCurSDLoc());
12083
12084 SDB->setValue(&Arg, Res);
12085 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) {
12086 // We want to associate the argument with the frame index, among
12087 // involved operands, that correspond to the lowest address. The
12088 // getCopyFromParts function, called earlier, is swapping the order of
12089 // the operands to BUILD_PAIR depending on endianness. The result of
12090 // that swapping is that the least significant bits of the argument will
12091 // be in the first operand of the BUILD_PAIR node, and the most
12092 // significant bits will be in the second operand.
12093 unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0;
12094 if (LoadSDNode *LNode =
12095 dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode()))
12096 if (FrameIndexSDNode *FI =
12097 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
12098 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
12099 }
12100
12101 // Analyses past this point are naive and don't expect an assertion.
12102 if (Res.getOpcode() == ISD::AssertZext)
12103 Res = Res.getOperand(0);
12104
12105 // Update the SwiftErrorVRegDefMap.
12106 if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) {
12107 Register Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
12108 if (Reg.isVirtual())
12109 SwiftError->setCurrentVReg(FuncInfo->MBB, SwiftError->getFunctionArg(),
12110 Reg);
12111 }
12112
12113 // If this argument is live outside of the entry block, insert a copy from
12114 // wherever we got it to the vreg that other BB's will reference it as.
12115 if (Res.getOpcode() == ISD::CopyFromReg) {
12116 // If we can, though, try to skip creating an unnecessary vreg.
12117 // FIXME: This isn't very clean... it would be nice to make this more
12118 // general.
12119 Register Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
12120 if (Reg.isVirtual()) {
12121 FuncInfo->ValueMap[&Arg] = Reg;
12122 continue;
12123 }
12124 }
12125 if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) {
12126 FuncInfo->InitializeRegForValue(&Arg);
12127 SDB->CopyToExportRegsIfNeeded(&Arg);
12128 }
12129 }
12130
12131 if (!Chains.empty()) {
12132 Chains.push_back(NewRoot);
12133 NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
12134 }
12135
12136 DAG.setRoot(NewRoot);
12137
12138 assert(i == InVals.size() && "Argument register count mismatch!");
12139
12140 // If any argument copy elisions occurred and we have debug info, update the
12141 // stale frame indices used in the dbg.declare variable info table.
12142 if (!ArgCopyElisionFrameIndexMap.empty()) {
12143 for (MachineFunction::VariableDbgInfo &VI :
12144 MF->getInStackSlotVariableDbgInfo()) {
12145 auto I = ArgCopyElisionFrameIndexMap.find(VI.getStackSlot());
12146 if (I != ArgCopyElisionFrameIndexMap.end())
12147 VI.updateStackSlot(I->second);
12148 }
12149 }
12150
12151 // Finally, if the target has anything special to do, allow it to do so.
12153}
12154
12155/// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to
12156/// ensure constants are generated when needed. Remember the virtual registers
12157/// that need to be added to the Machine PHI nodes as input. We cannot just
12158/// directly add them, because expansion might result in multiple MBB's for one
12159/// BB. As such, the start of the BB might correspond to a different MBB than
12160/// the end.
12161void
12162SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
12163 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12164
12165 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
12166
12167 // Check PHI nodes in successors that expect a value to be available from this
12168 // block.
12169 for (const BasicBlock *SuccBB : successors(LLVMBB->getTerminator())) {
12170 if (!isa<PHINode>(SuccBB->begin())) continue;
12171 MachineBasicBlock *SuccMBB = FuncInfo.getMBB(SuccBB);
12172
12173 // If this terminator has multiple identical successors (common for
12174 // switches), only handle each succ once.
12175 if (!SuccsHandled.insert(SuccMBB).second)
12176 continue;
12177
12179
12180 // At this point we know that there is a 1-1 correspondence between LLVM PHI
12181 // nodes and Machine PHI nodes, but the incoming operands have not been
12182 // emitted yet.
12183 for (const PHINode &PN : SuccBB->phis()) {
12184 // Ignore dead phi's.
12185 if (PN.use_empty())
12186 continue;
12187
12188 // Skip empty types
12189 if (PN.getType()->isEmptyTy())
12190 continue;
12191
12192 Register Reg;
12193 const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB);
12194
12195 if (const auto *C = dyn_cast<Constant>(PHIOp)) {
12196 Register &RegOut = ConstantsOut[C];
12197 if (!RegOut) {
12198 RegOut = FuncInfo.CreateRegs(&PN);
12199 // We need to zero/sign extend ConstantInt phi operands to match
12200 // assumptions in FunctionLoweringInfo::ComputePHILiveOutRegInfo.
12201 ISD::NodeType ExtendType = ISD::ANY_EXTEND;
12202 if (auto *CI = dyn_cast<ConstantInt>(C))
12203 ExtendType = TLI.signExtendConstant(CI) ? ISD::SIGN_EXTEND
12205 CopyValueToVirtualRegister(C, RegOut, ExtendType);
12206 }
12207 Reg = RegOut;
12208 } else {
12210 FuncInfo.ValueMap.find(PHIOp);
12211 if (I != FuncInfo.ValueMap.end())
12212 Reg = I->second;
12213 else {
12214 assert(isa<AllocaInst>(PHIOp) &&
12215 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
12216 "Didn't codegen value into a register!??");
12217 Reg = FuncInfo.CreateRegs(&PN);
12219 }
12220 }
12221
12222 // Remember that this register needs to added to the machine PHI node as
12223 // the input for this MBB.
12224 SmallVector<EVT, 4> ValueVTs;
12225 ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs);
12226 for (EVT VT : ValueVTs) {
12227 const unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
12228 for (unsigned i = 0; i != NumRegisters; ++i)
12229 FuncInfo.PHINodesToUpdate.emplace_back(&*MBBI++, Reg + i);
12230 Reg += NumRegisters;
12231 }
12232 }
12233 }
12234
12235 ConstantsOut.clear();
12236}
12237
12238MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) {
12240 if (++I == FuncInfo.MF->end())
12241 return nullptr;
12242 return &*I;
12243}
12244
12245/// During lowering new call nodes can be created (such as memset, etc.).
12246/// Those will become new roots of the current DAG, but complications arise
12247/// when they are tail calls. In such cases, the call lowering will update
12248/// the root, but the builder still needs to know that a tail call has been
12249/// lowered in order to avoid generating an additional return.
12250void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) {
12251 // If the node is null, we do have a tail call.
12252 if (MaybeTC.getNode() != nullptr)
12253 DAG.setRoot(MaybeTC);
12254 else
12255 HasTailCall = true;
12256}
12257
12258void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond,
12259 MachineBasicBlock *SwitchMBB,
12260 MachineBasicBlock *DefaultMBB) {
12261 MachineFunction *CurMF = FuncInfo.MF;
12262 MachineBasicBlock *NextMBB = nullptr;
12264 if (++BBI != FuncInfo.MF->end())
12265 NextMBB = &*BBI;
12266
12267 unsigned Size = W.LastCluster - W.FirstCluster + 1;
12268
12269 BranchProbabilityInfo *BPI = FuncInfo.BPI;
12270
12271 if (Size == 2 && W.MBB == SwitchMBB) {
12272 // If any two of the cases has the same destination, and if one value
12273 // is the same as the other, but has one bit unset that the other has set,
12274 // use bit manipulation to do two compares at once. For example:
12275 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
12276 // TODO: This could be extended to merge any 2 cases in switches with 3
12277 // cases.
12278 // TODO: Handle cases where W.CaseBB != SwitchBB.
12279 CaseCluster &Small = *W.FirstCluster;
12280 CaseCluster &Big = *W.LastCluster;
12281
12282 if (Small.Low == Small.High && Big.Low == Big.High &&
12283 Small.MBB == Big.MBB) {
12284 const APInt &SmallValue = Small.Low->getValue();
12285 const APInt &BigValue = Big.Low->getValue();
12286
12287 // Check that there is only one bit different.
12288 APInt CommonBit = BigValue ^ SmallValue;
12289 if (CommonBit.isPowerOf2()) {
12290 SDValue CondLHS = getValue(Cond);
12291 EVT VT = CondLHS.getValueType();
12292 SDLoc DL = getCurSDLoc();
12293
12294 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
12295 DAG.getConstant(CommonBit, DL, VT));
12296 SDValue Cond = DAG.getSetCC(
12297 DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT),
12298 ISD::SETEQ);
12299
12300 // Update successor info.
12301 // Both Small and Big will jump to Small.BB, so we sum up the
12302 // probabilities.
12303 addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob);
12304 if (BPI)
12305 addSuccessorWithProb(
12306 SwitchMBB, DefaultMBB,
12307 // The default destination is the first successor in IR.
12308 BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0));
12309 else
12310 addSuccessorWithProb(SwitchMBB, DefaultMBB);
12311
12312 // Insert the true branch.
12313 SDValue BrCond =
12314 DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond,
12315 DAG.getBasicBlock(Small.MBB));
12316 // Insert the false branch.
12317 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
12318 DAG.getBasicBlock(DefaultMBB));
12319
12320 DAG.setRoot(BrCond);
12321 return;
12322 }
12323 }
12324 }
12325
12326 if (TM.getOptLevel() != CodeGenOptLevel::None) {
12327 // Here, we order cases by probability so the most likely case will be
12328 // checked first. However, two clusters can have the same probability in
12329 // which case their relative ordering is non-deterministic. So we use Low
12330 // as a tie-breaker as clusters are guaranteed to never overlap.
12331 llvm::sort(W.FirstCluster, W.LastCluster + 1,
12332 [](const CaseCluster &a, const CaseCluster &b) {
12333 return a.Prob != b.Prob ?
12334 a.Prob > b.Prob :
12335 a.Low->getValue().slt(b.Low->getValue());
12336 });
12337
12338 // Rearrange the case blocks so that the last one falls through if possible
12339 // without changing the order of probabilities.
12340 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) {
12341 --I;
12342 if (I->Prob > W.LastCluster->Prob)
12343 break;
12344 if (I->Kind == CC_Range && I->MBB == NextMBB) {
12345 std::swap(*I, *W.LastCluster);
12346 break;
12347 }
12348 }
12349 }
12350
12351 // Compute total probability.
12352 BranchProbability DefaultProb = W.DefaultProb;
12353 BranchProbability UnhandledProbs = DefaultProb;
12354 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I)
12355 UnhandledProbs += I->Prob;
12356
12357 MachineBasicBlock *CurMBB = W.MBB;
12358 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) {
12359 bool FallthroughUnreachable = false;
12360 MachineBasicBlock *Fallthrough;
12361 if (I == W.LastCluster) {
12362 // For the last cluster, fall through to the default destination.
12363 Fallthrough = DefaultMBB;
12364 FallthroughUnreachable = isa<UnreachableInst>(
12365 DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg());
12366 } else {
12367 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock());
12368 CurMF->insert(BBI, Fallthrough);
12369 // Put Cond in a virtual register to make it available from the new blocks.
12371 }
12372 UnhandledProbs -= I->Prob;
12373
12374 switch (I->Kind) {
12375 case CC_JumpTable: {
12376 // FIXME: Optimize away range check based on pivot comparisons.
12377 JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first;
12378 SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second;
12379
12380 // The jump block hasn't been inserted yet; insert it here.
12381 MachineBasicBlock *JumpMBB = JT->MBB;
12382 CurMF->insert(BBI, JumpMBB);
12383
12384 auto JumpProb = I->Prob;
12385 auto FallthroughProb = UnhandledProbs;
12386
12387 // If the default statement is a target of the jump table, we evenly
12388 // distribute the default probability to successors of CurMBB. Also
12389 // update the probability on the edge from JumpMBB to Fallthrough.
12390 for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(),
12391 SE = JumpMBB->succ_end();
12392 SI != SE; ++SI) {
12393 if (*SI == DefaultMBB) {
12394 JumpProb += DefaultProb / 2;
12395 FallthroughProb -= DefaultProb / 2;
12396 JumpMBB->setSuccProbability(SI, DefaultProb / 2);
12397 JumpMBB->normalizeSuccProbs();
12398 break;
12399 }
12400 }
12401
12402 // If the default clause is unreachable, propagate that knowledge into
12403 // JTH->FallthroughUnreachable which will use it to suppress the range
12404 // check.
12405 //
12406 // However, don't do this if we're doing branch target enforcement,
12407 // because a table branch _without_ a range check can be a tempting JOP
12408 // gadget - out-of-bounds inputs that are impossible in correct
12409 // execution become possible again if an attacker can influence the
12410 // control flow. So if an attacker doesn't already have a BTI bypass
12411 // available, we don't want them to be able to get one out of this
12412 // table branch.
12413 if (FallthroughUnreachable) {
12414 Function &CurFunc = CurMF->getFunction();
12415 if (!CurFunc.hasFnAttribute("branch-target-enforcement"))
12416 JTH->FallthroughUnreachable = true;
12417 }
12418
12419 if (!JTH->FallthroughUnreachable)
12420 addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb);
12421 addSuccessorWithProb(CurMBB, JumpMBB, JumpProb);
12422 CurMBB->normalizeSuccProbs();
12423
12424 // The jump table header will be inserted in our current block, do the
12425 // range check, and fall through to our fallthrough block.
12426 JTH->HeaderBB = CurMBB;
12427 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader.
12428
12429 // If we're in the right place, emit the jump table header right now.
12430 if (CurMBB == SwitchMBB) {
12431 visitJumpTableHeader(*JT, *JTH, SwitchMBB);
12432 JTH->Emitted = true;
12433 }
12434 break;
12435 }
12436 case CC_BitTests: {
12437 // FIXME: Optimize away range check based on pivot comparisons.
12438 BitTestBlock *BTB = &SL->BitTestCases[I->BTCasesIndex];
12439
12440 // The bit test blocks haven't been inserted yet; insert them here.
12441 for (BitTestCase &BTC : BTB->Cases)
12442 CurMF->insert(BBI, BTC.ThisBB);
12443
12444 // Fill in fields of the BitTestBlock.
12445 BTB->Parent = CurMBB;
12446 BTB->Default = Fallthrough;
12447
12448 BTB->DefaultProb = UnhandledProbs;
12449 // If the cases in bit test don't form a contiguous range, we evenly
12450 // distribute the probability on the edge to Fallthrough to two
12451 // successors of CurMBB.
12452 if (!BTB->ContiguousRange) {
12453 BTB->Prob += DefaultProb / 2;
12454 BTB->DefaultProb -= DefaultProb / 2;
12455 }
12456
12457 if (FallthroughUnreachable)
12458 BTB->FallthroughUnreachable = true;
12459
12460 // If we're in the right place, emit the bit test header right now.
12461 if (CurMBB == SwitchMBB) {
12462 visitBitTestHeader(*BTB, SwitchMBB);
12463 BTB->Emitted = true;
12464 }
12465 break;
12466 }
12467 case CC_Range: {
12468 const Value *RHS, *LHS, *MHS;
12469 ISD::CondCode CC;
12470 if (I->Low == I->High) {
12471 // Check Cond == I->Low.
12472 CC = ISD::SETEQ;
12473 LHS = Cond;
12474 RHS=I->Low;
12475 MHS = nullptr;
12476 } else {
12477 // Check I->Low <= Cond <= I->High.
12478 CC = ISD::SETLE;
12479 LHS = I->Low;
12480 MHS = Cond;
12481 RHS = I->High;
12482 }
12483
12484 // If Fallthrough is unreachable, fold away the comparison.
12485 if (FallthroughUnreachable)
12486 CC = ISD::SETTRUE;
12487
12488 // The false probability is the sum of all unhandled cases.
12489 CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB,
12490 getCurSDLoc(), I->Prob, UnhandledProbs);
12491
12492 if (CurMBB == SwitchMBB)
12493 visitSwitchCase(CB, SwitchMBB);
12494 else
12495 SL->SwitchCases.push_back(CB);
12496
12497 break;
12498 }
12499 }
12500 CurMBB = Fallthrough;
12501 }
12502}
12503
12504void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList,
12505 const SwitchWorkListItem &W,
12506 Value *Cond,
12507 MachineBasicBlock *SwitchMBB) {
12508 assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) &&
12509 "Clusters not sorted?");
12510 assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!");
12511
12512 auto [LastLeft, FirstRight, LeftProb, RightProb] =
12513 SL->computeSplitWorkItemInfo(W);
12514
12515 // Use the first element on the right as pivot since we will make less-than
12516 // comparisons against it.
12517 CaseClusterIt PivotCluster = FirstRight;
12518 assert(PivotCluster > W.FirstCluster);
12519 assert(PivotCluster <= W.LastCluster);
12520
12521 CaseClusterIt FirstLeft = W.FirstCluster;
12522 CaseClusterIt LastRight = W.LastCluster;
12523
12524 const ConstantInt *Pivot = PivotCluster->Low;
12525
12526 // New blocks will be inserted immediately after the current one.
12528 ++BBI;
12529
12530 // We will branch to the LHS if Value < Pivot. If LHS is a single cluster,
12531 // we can branch to its destination directly if it's squeezed exactly in
12532 // between the known lower bound and Pivot - 1.
12533 MachineBasicBlock *LeftMBB;
12534 if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range &&
12535 FirstLeft->Low == W.GE &&
12536 (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) {
12537 LeftMBB = FirstLeft->MBB;
12538 } else {
12539 LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
12540 FuncInfo.MF->insert(BBI, LeftMBB);
12541 WorkList.push_back(
12542 {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2});
12543 // Put Cond in a virtual register to make it available from the new blocks.
12545 }
12546
12547 // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a
12548 // single cluster, RHS.Low == Pivot, and we can branch to its destination
12549 // directly if RHS.High equals the current upper bound.
12550 MachineBasicBlock *RightMBB;
12551 if (FirstRight == LastRight && FirstRight->Kind == CC_Range &&
12552 W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) {
12553 RightMBB = FirstRight->MBB;
12554 } else {
12555 RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
12556 FuncInfo.MF->insert(BBI, RightMBB);
12557 WorkList.push_back(
12558 {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2});
12559 // Put Cond in a virtual register to make it available from the new blocks.
12561 }
12562
12563 // Create the CaseBlock record that will be used to lower the branch.
12564 CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB,
12565 getCurSDLoc(), LeftProb, RightProb);
12566
12567 if (W.MBB == SwitchMBB)
12568 visitSwitchCase(CB, SwitchMBB);
12569 else
12570 SL->SwitchCases.push_back(CB);
12571}
12572
12573// Scale CaseProb after peeling a case with the probablity of PeeledCaseProb
12574// from the swith statement.
12576 BranchProbability PeeledCaseProb) {
12577 if (PeeledCaseProb == BranchProbability::getOne())
12579 BranchProbability SwitchProb = PeeledCaseProb.getCompl();
12580
12581 uint32_t Numerator = CaseProb.getNumerator();
12582 uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator());
12583 return BranchProbability(Numerator, std::max(Numerator, Denominator));
12584}
12585
12586// Try to peel the top probability case if it exceeds the threshold.
12587// Return current MachineBasicBlock for the switch statement if the peeling
12588// does not occur.
12589// If the peeling is performed, return the newly created MachineBasicBlock
12590// for the peeled switch statement. Also update Clusters to remove the peeled
12591// case. PeeledCaseProb is the BranchProbability for the peeled case.
12592MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster(
12593 const SwitchInst &SI, CaseClusterVector &Clusters,
12594 BranchProbability &PeeledCaseProb) {
12595 MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
12596 // Don't perform if there is only one cluster or optimizing for size.
12597 if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 ||
12598 TM.getOptLevel() == CodeGenOptLevel::None ||
12599 SwitchMBB->getParent()->getFunction().hasMinSize())
12600 return SwitchMBB;
12601
12602 BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100);
12603 unsigned PeeledCaseIndex = 0;
12604 bool SwitchPeeled = false;
12605 for (unsigned Index = 0; Index < Clusters.size(); ++Index) {
12606 CaseCluster &CC = Clusters[Index];
12607 if (CC.Prob < TopCaseProb)
12608 continue;
12609 TopCaseProb = CC.Prob;
12610 PeeledCaseIndex = Index;
12611 SwitchPeeled = true;
12612 }
12613 if (!SwitchPeeled)
12614 return SwitchMBB;
12615
12616 LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: "
12617 << TopCaseProb << "\n");
12618
12619 // Record the MBB for the peeled switch statement.
12620 MachineFunction::iterator BBI(SwitchMBB);
12621 ++BBI;
12622 MachineBasicBlock *PeeledSwitchMBB =
12623 FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock());
12624 FuncInfo.MF->insert(BBI, PeeledSwitchMBB);
12625
12626 ExportFromCurrentBlock(SI.getCondition());
12627 auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex;
12628 SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt,
12629 nullptr, nullptr, TopCaseProb.getCompl()};
12630 lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB);
12631
12632 Clusters.erase(PeeledCaseIt);
12633 for (CaseCluster &CC : Clusters) {
12634 LLVM_DEBUG(
12635 dbgs() << "Scale the probablity for one cluster, before scaling: "
12636 << CC.Prob << "\n");
12637 CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb);
12638 LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n");
12639 }
12640 PeeledCaseProb = TopCaseProb;
12641 return PeeledSwitchMBB;
12642}
12643
12644void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
12645 // Extract cases from the switch.
12646 BranchProbabilityInfo *BPI = FuncInfo.BPI;
12647 CaseClusterVector Clusters;
12648 Clusters.reserve(SI.getNumCases());
12649 for (auto I : SI.cases()) {
12650 MachineBasicBlock *Succ = FuncInfo.getMBB(I.getCaseSuccessor());
12651 const ConstantInt *CaseVal = I.getCaseValue();
12652 BranchProbability Prob =
12653 BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex())
12654 : BranchProbability(1, SI.getNumCases() + 1);
12655 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob));
12656 }
12657
12658 MachineBasicBlock *DefaultMBB = FuncInfo.getMBB(SI.getDefaultDest());
12659
12660 // Cluster adjacent cases with the same destination. We do this at all
12661 // optimization levels because it's cheap to do and will make codegen faster
12662 // if there are many clusters.
12663 sortAndRangeify(Clusters);
12664
12665 // The branch probablity of the peeled case.
12666 BranchProbability PeeledCaseProb = BranchProbability::getZero();
12667 MachineBasicBlock *PeeledSwitchMBB =
12668 peelDominantCaseCluster(SI, Clusters, PeeledCaseProb);
12669
12670 // If there is only the default destination, jump there directly.
12671 MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
12672 if (Clusters.empty()) {
12673 assert(PeeledSwitchMBB == SwitchMBB);
12674 SwitchMBB->addSuccessor(DefaultMBB);
12675 if (DefaultMBB != NextBlock(SwitchMBB)) {
12676 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
12677 getControlRoot(), DAG.getBasicBlock(DefaultMBB)));
12678 }
12679 return;
12680 }
12681
12682 SL->findJumpTables(Clusters, &SI, getCurSDLoc(), DefaultMBB, DAG.getPSI(),
12683 DAG.getBFI());
12684 SL->findBitTestClusters(Clusters, &SI);
12685
12686 LLVM_DEBUG({
12687 dbgs() << "Case clusters: ";
12688 for (const CaseCluster &C : Clusters) {
12689 if (C.Kind == CC_JumpTable)
12690 dbgs() << "JT:";
12691 if (C.Kind == CC_BitTests)
12692 dbgs() << "BT:";
12693
12694 C.Low->getValue().print(dbgs(), true);
12695 if (C.Low != C.High) {
12696 dbgs() << '-';
12697 C.High->getValue().print(dbgs(), true);
12698 }
12699 dbgs() << ' ';
12700 }
12701 dbgs() << '\n';
12702 });
12703
12704 assert(!Clusters.empty());
12705 SwitchWorkList WorkList;
12706 CaseClusterIt First = Clusters.begin();
12707 CaseClusterIt Last = Clusters.end() - 1;
12708 auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB);
12709 // Scale the branchprobability for DefaultMBB if the peel occurs and
12710 // DefaultMBB is not replaced.
12711 if (PeeledCaseProb != BranchProbability::getZero() &&
12712 DefaultMBB == FuncInfo.getMBB(SI.getDefaultDest()))
12713 DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb);
12714 WorkList.push_back(
12715 {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb});
12716
12717 while (!WorkList.empty()) {
12718 SwitchWorkListItem W = WorkList.pop_back_val();
12719 unsigned NumClusters = W.LastCluster - W.FirstCluster + 1;
12720
12721 if (NumClusters > 3 && TM.getOptLevel() != CodeGenOptLevel::None &&
12722 !DefaultMBB->getParent()->getFunction().hasMinSize()) {
12723 // For optimized builds, lower large range as a balanced binary tree.
12724 splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB);
12725 continue;
12726 }
12727
12728 lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB);
12729 }
12730}
12731
12732void SelectionDAGBuilder::visitStepVector(const CallInst &I) {
12733 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12734 auto DL = getCurSDLoc();
12735 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
12736 setValue(&I, DAG.getStepVector(DL, ResultVT));
12737}
12738
12739void SelectionDAGBuilder::visitVectorReverse(const CallInst &I) {
12740 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12741 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
12742
12743 SDLoc DL = getCurSDLoc();
12744 SDValue V = getValue(I.getOperand(0));
12745 assert(VT == V.getValueType() && "Malformed vector.reverse!");
12746
12747 if (VT.isScalableVector()) {
12748 setValue(&I, DAG.getNode(ISD::VECTOR_REVERSE, DL, VT, V));
12749 return;
12750 }
12751
12752 // Use VECTOR_SHUFFLE for the fixed-length vector
12753 // to maintain existing behavior.
12754 SmallVector<int, 8> Mask;
12755 unsigned NumElts = VT.getVectorMinNumElements();
12756 for (unsigned i = 0; i != NumElts; ++i)
12757 Mask.push_back(NumElts - 1 - i);
12758
12759 setValue(&I, DAG.getVectorShuffle(VT, DL, V, DAG.getUNDEF(VT), Mask));
12760}
12761
12762void SelectionDAGBuilder::visitVectorDeinterleave(const CallInst &I,
12763 unsigned Factor) {
12764 auto DL = getCurSDLoc();
12765 SDValue InVec = getValue(I.getOperand(0));
12766
12767 SmallVector<EVT, 4> ValueVTs;
12768 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
12769 ValueVTs);
12770
12771 EVT OutVT = ValueVTs[0];
12772 unsigned OutNumElts = OutVT.getVectorMinNumElements();
12773
12774 SmallVector<SDValue, 4> SubVecs(Factor);
12775 for (unsigned i = 0; i != Factor; ++i) {
12776 assert(ValueVTs[i] == OutVT && "Expected VTs to be the same");
12777 SubVecs[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, OutVT, InVec,
12778 DAG.getVectorIdxConstant(OutNumElts * i, DL));
12779 }
12780
12781 // Use VECTOR_SHUFFLE for fixed-length vectors with factor of 2 to benefit
12782 // from existing legalisation and combines.
12783 if (OutVT.isFixedLengthVector() && Factor == 2) {
12784 SDValue Even = DAG.getVectorShuffle(OutVT, DL, SubVecs[0], SubVecs[1],
12785 createStrideMask(0, 2, OutNumElts));
12786 SDValue Odd = DAG.getVectorShuffle(OutVT, DL, SubVecs[0], SubVecs[1],
12787 createStrideMask(1, 2, OutNumElts));
12788 SDValue Res = DAG.getMergeValues({Even, Odd}, getCurSDLoc());
12789 setValue(&I, Res);
12790 return;
12791 }
12792
12793 SDValue Res = DAG.getNode(ISD::VECTOR_DEINTERLEAVE, DL,
12794 DAG.getVTList(ValueVTs), SubVecs);
12795 setValue(&I, Res);
12796}
12797
12798void SelectionDAGBuilder::visitVectorInterleave(const CallInst &I,
12799 unsigned Factor) {
12800 auto DL = getCurSDLoc();
12801 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12802 EVT InVT = getValue(I.getOperand(0)).getValueType();
12803 EVT OutVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
12804
12805 SmallVector<SDValue, 8> InVecs(Factor);
12806 for (unsigned i = 0; i < Factor; ++i) {
12807 InVecs[i] = getValue(I.getOperand(i));
12808 assert(InVecs[i].getValueType() == InVecs[0].getValueType() &&
12809 "Expected VTs to be the same");
12810 }
12811
12812 // Use VECTOR_SHUFFLE for fixed-length vectors with factor of 2 to benefit
12813 // from existing legalisation and combines.
12814 if (OutVT.isFixedLengthVector() && Factor == 2) {
12815 unsigned NumElts = InVT.getVectorMinNumElements();
12816 SDValue V = DAG.getNode(ISD::CONCAT_VECTORS, DL, OutVT, InVecs);
12817 setValue(&I, DAG.getVectorShuffle(OutVT, DL, V, DAG.getUNDEF(OutVT),
12818 createInterleaveMask(NumElts, 2)));
12819 return;
12820 }
12821
12822 SmallVector<EVT, 8> ValueVTs(Factor, InVT);
12823 SDValue Res =
12824 DAG.getNode(ISD::VECTOR_INTERLEAVE, DL, DAG.getVTList(ValueVTs), InVecs);
12825
12827 for (unsigned i = 0; i < Factor; ++i)
12828 Results[i] = Res.getValue(i);
12829
12830 Res = DAG.getNode(ISD::CONCAT_VECTORS, DL, OutVT, Results);
12831 setValue(&I, Res);
12832}
12833
12834void SelectionDAGBuilder::visitFreeze(const FreezeInst &I) {
12835 SmallVector<EVT, 4> ValueVTs;
12836 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
12837 ValueVTs);
12838 unsigned NumValues = ValueVTs.size();
12839 if (NumValues == 0) return;
12840
12841 SmallVector<SDValue, 4> Values(NumValues);
12842 SDValue Op = getValue(I.getOperand(0));
12843
12844 for (unsigned i = 0; i != NumValues; ++i)
12845 Values[i] = DAG.getNode(ISD::FREEZE, getCurSDLoc(), ValueVTs[i],
12846 SDValue(Op.getNode(), Op.getResNo() + i));
12847
12849 DAG.getVTList(ValueVTs), Values));
12850}
12851
12852void SelectionDAGBuilder::visitVectorSplice(const CallInst &I) {
12853 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12854 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
12855
12856 SDLoc DL = getCurSDLoc();
12857 SDValue V1 = getValue(I.getOperand(0));
12858 SDValue V2 = getValue(I.getOperand(1));
12859 const bool IsLeft = I.getIntrinsicID() == Intrinsic::vector_splice_left;
12860
12861 // VECTOR_SHUFFLE doesn't support a scalable or non-constant mask.
12862 if (VT.isScalableVector() || !isa<ConstantInt>(I.getOperand(2))) {
12863 SDValue Offset = DAG.getZExtOrTrunc(
12864 getValue(I.getOperand(2)), DL, TLI.getVectorIdxTy(DAG.getDataLayout()));
12865 setValue(&I, DAG.getNode(IsLeft ? ISD::VECTOR_SPLICE_LEFT
12867 DL, VT, V1, V2, Offset));
12868 return;
12869 }
12870 uint64_t Imm = cast<ConstantInt>(I.getOperand(2))->getZExtValue();
12871
12872 unsigned NumElts = VT.getVectorNumElements();
12873
12874 uint64_t Idx = IsLeft ? Imm : NumElts - Imm;
12875
12876 // Use VECTOR_SHUFFLE to maintain original behaviour for fixed-length vectors.
12877 SmallVector<int, 8> Mask;
12878 for (unsigned i = 0; i < NumElts; ++i)
12879 Mask.push_back(Idx + i);
12880 setValue(&I, DAG.getVectorShuffle(VT, DL, V1, V2, Mask));
12881}
12882
12883// Consider the following MIR after SelectionDAG, which produces output in
12884// phyregs in the first case or virtregs in the second case.
12885//
12886// INLINEASM_BR ..., implicit-def $ebx, ..., implicit-def $edx
12887// %5:gr32 = COPY $ebx
12888// %6:gr32 = COPY $edx
12889// %1:gr32 = COPY %6:gr32
12890// %0:gr32 = COPY %5:gr32
12891//
12892// INLINEASM_BR ..., def %5:gr32, ..., def %6:gr32
12893// %1:gr32 = COPY %6:gr32
12894// %0:gr32 = COPY %5:gr32
12895//
12896// Given %0, we'd like to return $ebx in the first case and %5 in the second.
12897// Given %1, we'd like to return $edx in the first case and %6 in the second.
12898//
12899// If a callbr has outputs, it will have a single mapping in FuncInfo.ValueMap
12900// to a single virtreg (such as %0). The remaining outputs monotonically
12901// increase in virtreg number from there. If a callbr has no outputs, then it
12902// should not have a corresponding callbr landingpad; in fact, the callbr
12903// landingpad would not even be able to refer to such a callbr.
12905 MachineInstr *MI = MRI.def_begin(Reg)->getParent();
12906 // There is definitely at least one copy.
12907 assert(MI->getOpcode() == TargetOpcode::COPY &&
12908 "start of copy chain MUST be COPY");
12909 Reg = MI->getOperand(1).getReg();
12910
12911 // If the copied register in the first copy must be virtual.
12912 assert(Reg.isVirtual() && "expected COPY of virtual register");
12913 MI = MRI.def_begin(Reg)->getParent();
12914
12915 // There may be an optional second copy.
12916 if (MI->getOpcode() == TargetOpcode::COPY) {
12917 assert(Reg.isVirtual() && "expected COPY of virtual register");
12918 Reg = MI->getOperand(1).getReg();
12919 assert(Reg.isPhysical() && "expected COPY of physical register");
12920 } else {
12921 // The start of the chain must be an INLINEASM_BR.
12922 assert(MI->getOpcode() == TargetOpcode::INLINEASM_BR &&
12923 "end of copy chain MUST be INLINEASM_BR");
12924 }
12925
12926 return Reg;
12927}
12928
12929// We must do this walk rather than the simpler
12930// setValue(&I, getCopyFromRegs(CBR, CBR->getType()));
12931// otherwise we will end up with copies of virtregs only valid along direct
12932// edges.
12933void SelectionDAGBuilder::visitCallBrLandingPad(const CallInst &I) {
12934 SmallVector<EVT, 8> ResultVTs;
12935 SmallVector<SDValue, 8> ResultValues;
12936 const auto *CBR =
12937 cast<CallBrInst>(I.getParent()->getUniquePredecessor()->getTerminator());
12938
12939 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12940 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo();
12941 MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
12942
12943 Register InitialDef = FuncInfo.ValueMap[CBR];
12944 SDValue Chain = DAG.getRoot();
12945
12946 // Re-parse the asm constraints string.
12947 TargetLowering::AsmOperandInfoVector TargetConstraints =
12948 TLI.ParseConstraints(DAG.getDataLayout(), TRI, *CBR);
12949 for (auto &T : TargetConstraints) {
12950 SDISelAsmOperandInfo OpInfo(T);
12951 if (OpInfo.Type != InlineAsm::isOutput)
12952 continue;
12953
12954 // Pencil in OpInfo.ConstraintType and OpInfo.ConstraintVT based on the
12955 // individual constraint.
12956 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
12957
12958 switch (OpInfo.ConstraintType) {
12961 // Fill in OpInfo.AssignedRegs.Regs.
12962 getRegistersForValue(DAG, getCurSDLoc(), OpInfo, OpInfo);
12963
12964 // getRegistersForValue may produce 1 to many registers based on whether
12965 // the OpInfo.ConstraintVT is legal on the target or not.
12966 for (Register &Reg : OpInfo.AssignedRegs.Regs) {
12967 Register OriginalDef = FollowCopyChain(MRI, InitialDef++);
12968 if (OriginalDef.isPhysical())
12969 FuncInfo.MBB->addLiveIn(OriginalDef);
12970 // Update the assigned registers to use the original defs.
12971 Reg = OriginalDef;
12972 }
12973
12974 SDValue V = OpInfo.AssignedRegs.getCopyFromRegs(
12975 DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, CBR);
12976 ResultValues.push_back(V);
12977 ResultVTs.push_back(OpInfo.ConstraintVT);
12978 break;
12979 }
12981 SDValue Flag;
12982 SDValue V = TLI.LowerAsmOutputForConstraint(Chain, Flag, getCurSDLoc(),
12983 OpInfo, DAG);
12984 ++InitialDef;
12985 ResultValues.push_back(V);
12986 ResultVTs.push_back(OpInfo.ConstraintVT);
12987 break;
12988 }
12989 default:
12990 break;
12991 }
12992 }
12994 DAG.getVTList(ResultVTs), ResultValues);
12995 setValue(&I, V);
12996}
unsigned const MachineRegisterInfo * MRI
return SDValue()
static unsigned getIntrinsicID(const SDNode *N)
unsigned RegSize
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
static msgpack::DocNode getNode(msgpack::DocNode DN, msgpack::Type Type, MCValue Val)
This file declares a class to represent arbitrary precision floating point values and provide a varie...
This file implements a class to represent arbitrary precision integral constant values and operations...
MachineBasicBlock & MBB
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
MachineBasicBlock MachineBasicBlock::iterator MBBI
Function Alias Analysis Results
Atomic ordering constants.
This file contains the simple types necessary to represent the attributes associated with functions a...
static const Function * getParent(const Value *V)
This file implements the BitVector class.
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
This file contains the declarations for the subclasses of Constant, which represent the different fla...
dxil translate DXIL Translate Metadata
static AttributeList getReturnAttrs(FastISel::CallLoweringInfo &CLI)
Returns an AttributeList representing the attributes applied to the return value of the given call.
Definition FastISel.cpp:942
#define Check(C,...)
static Value * getCondition(Instruction *I)
Hexagon Common GEP
const HexagonInstrInfo * TII
IRTranslator LLVM IR MI
This file provides various utilities for inspecting and working with the control flow graph in LLVM I...
Module.h This file contains the declarations for the Module class.
static void getRegistersForValue(MachineFunction &MF, MachineIRBuilder &MIRBuilder, GISelAsmOperandInfo &OpInfo, GISelAsmOperandInfo &RefOpInfo)
Assign virtual/physical registers for the specified register operand.
This file defines an InstructionCost class that is used when calculating the cost of an instruction,...
const AbstractManglingParser< Derived, Alloc >::OperatorInfo AbstractManglingParser< Derived, Alloc >::Ops[]
#define RegName(no)
lazy value info
#define F(x, y, z)
Definition MD5.cpp:54
#define I(x, y, z)
Definition MD5.cpp:57
Machine Check Debug Module
static bool isUndef(const MachineInstr &MI)
Register Reg
Register const TargetRegisterInfo * TRI
Promote Memory to Register
Definition Mem2Reg.cpp:110
static const Function * getCalledFunction(const Value *V)
This file provides utility analysis objects describing memory locations.
This file provides utility for Memory Model Relaxation Annotations (MMRAs).
This file contains the declarations for metadata subclasses.
Type::TypeID TypeID
#define T
#define T1
static MCRegister getReg(const MCDisassembler *D, unsigned RC, unsigned RegNo)
static unsigned getAddressSpace(const Value *V, unsigned MaxLookup)
MachineInstr unsigned OpIdx
ConstantRange Range(APInt(BitWidth, Low), APInt(BitWidth, High))
uint64_t High
uint64_t IntrinsicInst * II
OptimizedStructLayoutField Field
#define P(N)
const SmallVectorImpl< MachineOperand > MachineBasicBlock * TBB
const SmallVectorImpl< MachineOperand > & Cond
static Type * getValueType(Value *V)
Returns the type of the given value/instruction V.
This file contains some templates that are useful if you are working with the STL at all.
static bool hasOnlySelectUsers(const Value *Cond)
static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL, SDValue &Chain)
Create a LOAD_STACK_GUARD node, and let it carry the target specific global variable if there exists ...
static bool getUniformBase(const Value *Ptr, SDValue &Base, SDValue &Index, SDValue &Scale, SelectionDAGBuilder *SDB, const BasicBlock *CurBB, uint64_t ElemSize)
static void failForInvalidBundles(const CallBase &I, StringRef Name, ArrayRef< uint32_t > AllowedBundles)
static void addStackMapLiveVars(const CallBase &Call, unsigned StartIdx, const SDLoc &DL, SmallVectorImpl< SDValue > &Ops, SelectionDAGBuilder &Builder)
Add a stack map intrinsic call's live variable operands to a stackmap or patchpoint target node's ope...
static const unsigned MaxParallelChains
static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS, SelectionDAG &DAG, const TargetLowering &TLI, SDNodeFlags Flags)
visitPow - Lower a pow intrinsic.
static const CallBase * FindPreallocatedCall(const Value *PreallocatedSetup)
Given a @llvm.call.preallocated.setup, return the corresponding preallocated call.
static cl::opt< unsigned > SwitchPeelThreshold("switch-peel-threshold", cl::Hidden, cl::init(66), cl::desc("Set the case probability threshold for peeling the case from a " "switch statement. A value greater than 100 will void this " "optimization"))
static cl::opt< bool > InsertAssertAlign("insert-assert-align", cl::init(true), cl::desc("Insert the experimental `assertalign` node."), cl::ReallyHidden)
static unsigned getISDForVPIntrinsic(const VPIntrinsic &VPIntrin)
static bool handleDanglingVariadicDebugInfo(SelectionDAG &DAG, DILocalVariable *Variable, DebugLoc DL, unsigned Order, SmallVectorImpl< Value * > &Values, DIExpression *Expression)
static unsigned findMatchingInlineAsmOperand(unsigned OperandNo, const std::vector< SDValue > &AsmNodeOperands)
static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo, SDISelAsmOperandInfo &MatchingOpInfo, SelectionDAG &DAG)
Make sure that the output operand OpInfo and its corresponding input operand MatchingOpInfo have comp...
static void findUnwindDestinations(FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, BranchProbability Prob, SmallVectorImpl< std::pair< MachineBasicBlock *, BranchProbability > > &UnwindDests)
When an invoke or a cleanupret unwinds to the next EH pad, there are many places it could ultimately ...
static unsigned FixedPointIntrinsicToOpcode(unsigned Intrinsic)
static BranchProbability scaleCaseProbality(BranchProbability CaseProb, BranchProbability PeeledCaseProb)
static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, const TargetLowering &TLI, SDNodeFlags Flags)
expandExp2 - Lower an exp2 intrinsic.
static SDValue expandDivFix(unsigned Opcode, const SDLoc &DL, SDValue LHS, SDValue RHS, SDValue Scale, SelectionDAG &DAG, const TargetLowering &TLI)
static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt, const SDLoc &dl)
getF32Constant - Get 32-bit floating point constant.
static SDValue widenVectorToPartType(SelectionDAG &DAG, SDValue Val, const SDLoc &DL, EVT PartVT)
static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, const TargetLowering &TLI, SDNodeFlags Flags)
expandLog10 - Lower a log10 intrinsic.
DenseMap< const Argument *, std::pair< const AllocaInst *, const StoreInst * > > ArgCopyElisionMapTy
static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl, SDValue Val, SDValue *Parts, unsigned NumParts, MVT PartVT, const Value *V, std::optional< CallingConv::ID > CallConv)
getCopyToPartsVector - Create a series of nodes that contain the specified value split into legal par...
static void getUnderlyingArgRegs(SmallVectorImpl< std::pair< Register, TypeSize > > &Regs, const SDValue &N)
static void getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts, unsigned NumParts, MVT PartVT, const Value *V, std::optional< CallingConv::ID > CallConv=std::nullopt, ISD::NodeType ExtendKind=ISD::ANY_EXTEND)
getCopyToParts - Create a series of nodes that contain the specified value split into legal parts.
static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, SelectionDAGBuilder &Builder)
static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, const TargetLowering &TLI, SDNodeFlags Flags)
expandLog2 - Lower a log2 intrinsic.
static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location, SDISelAsmOperandInfo &OpInfo, SelectionDAG &DAG)
Get a direct memory input to behave well as an indirect operand.
static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel)
isOnlyUsedInEntryBlock - If the specified argument is only used in the entry block,...
static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, const Twine &ErrMsg)
static bool collectInstructionDeps(SmallMapVector< const Instruction *, bool, 8 > *Deps, const Value *V, SmallMapVector< const Instruction *, bool, 8 > *Necessary=nullptr, unsigned Depth=0)
static void findArgumentCopyElisionCandidates(const DataLayout &DL, FunctionLoweringInfo *FuncInfo, ArgCopyElisionMapTy &ArgCopyElisionCandidates)
Scan the entry block of the function in FuncInfo for arguments that look like copies into a local all...
static bool isFunction(SDValue Op)
static SDValue GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI, const SDLoc &dl)
GetExponent - Get the exponent:
static Register FollowCopyChain(MachineRegisterInfo &MRI, Register Reg)
static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS, SelectionDAG &DAG)
ExpandPowI - Expand a llvm.powi intrinsic.
static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, const TargetLowering &TLI, SDNodeFlags Flags)
expandLog - Lower a log intrinsic.
static SDValue getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts, unsigned NumParts, MVT PartVT, EVT ValueVT, const Value *V, SDValue InChain, std::optional< CallingConv::ID > CC=std::nullopt, std::optional< ISD::NodeType > AssertOp=std::nullopt)
getCopyFromParts - Create a value that contains the specified legal parts combined into the value the...
static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl, SelectionDAG &DAG)
static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl)
GetSignificand - Get the significand and build it into a floating-point number with exponent of 1:
static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, const TargetLowering &TLI, SDNodeFlags Flags)
expandExp - Lower an exp intrinsic.
static const MDNode * getRangeMetadata(const Instruction &I)
static cl::opt< unsigned, true > LimitFPPrecision("limit-float-precision", cl::desc("Generate low-precision inline sequences " "for some float libcalls"), cl::location(LimitFloatPrecision), cl::Hidden, cl::init(0))
static void tryToElideArgumentCopy(FunctionLoweringInfo &FuncInfo, SmallVectorImpl< SDValue > &Chains, DenseMap< int, int > &ArgCopyElisionFrameIndexMap, SmallPtrSetImpl< const Instruction * > &ElidedArgCopyInstrs, ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg, ArrayRef< SDValue > ArgVals, bool &ArgHasUses)
Try to elide argument copies from memory into a local alloca.
static unsigned LimitFloatPrecision
LimitFloatPrecision - Generate low-precision inline sequences for some float libcalls (6,...
static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts, unsigned NumParts, MVT PartVT, EVT ValueVT, const Value *V, SDValue InChain, std::optional< CallingConv::ID > CC)
getCopyFromPartsVector - Create a value that contains the specified legal parts combined into the val...
static bool InBlock(const Value *V, const BasicBlock *BB)
static FPClassTest getNoFPClass(const Instruction &I)
static LLVM_ATTRIBUTE_ALWAYS_INLINE MVT::SimpleValueType getSimpleVT(const uint8_t *MatcherTable, unsigned &MatcherIndex)
getSimpleVT - Decode a value in MatcherTable, if it's a VBR encoded value, use GetVBR to decode it.
This file defines the SmallPtrSet class.
This file contains some functions that are useful when dealing with strings.
#define LLVM_DEBUG(...)
Definition Debug.h:114
static TableGen::Emitter::Opt Y("gen-skeleton-entry", EmitSkeleton, "Generate example skeleton entry")
static TableGen::Emitter::OptClass< SkeletonEmitter > X("gen-skeleton-class", "Generate example skeleton class")
static SymbolRef::Type getType(const Symbol *Sym)
Definition TapiFile.cpp:39
This pass exposes codegen information to IR-level passes.
uint16_t RegSizeInBits(const MCRegisterInfo &MRI, MCRegister RegNo)
Value * RHS
Value * LHS
static const fltSemantics & IEEEsingle()
Definition APFloat.h:296
Class for arbitrary precision integers.
Definition APInt.h:78
bool isNonNegative() const
Determine if this APInt Value is non-negative (>= 0)
Definition APInt.h:335
bool isPowerOf2() const
Check if this APInt's value is a power of two greater than zero.
Definition APInt.h:441
an instruction to allocate memory on the stack
Align getAlign() const
Return the alignment of the memory that is being allocated by the instruction.
LLVM_ABI std::optional< TypeSize > getAllocationSize(const DataLayout &DL) const
Get allocation size in bytes.
This class represents an incoming formal argument to a Function.
Definition Argument.h:32
LLVM_ABI bool hasAttribute(Attribute::AttrKind Kind) const
Check if an argument has a given attribute.
Definition Function.cpp:338
unsigned getArgNo() const
Return the index of this formal argument in its containing function.
Definition Argument.h:50
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Definition ArrayRef.h:40
iterator end() const
Definition ArrayRef.h:131
size_t size() const
size - Get the array size.
Definition ArrayRef.h:142
iterator begin() const
Definition ArrayRef.h:130
bool empty() const
empty - Check if the array is empty.
Definition ArrayRef.h:137
A cache of @llvm.assume calls within a function.
An instruction that atomically checks whether a specified value is in a memory location,...
an instruction that atomically reads a memory location, combines it with another value,...
@ Add
*p = old + v
@ FAdd
*p = old + v
@ USubCond
Subtract only if no unsigned overflow.
@ FMinimum
*p = minimum(old, v) minimum matches the behavior of llvm.minimum.
@ Min
*p = old <signed v ? old : v
@ Sub
*p = old - v
@ And
*p = old & v
@ Xor
*p = old ^ v
@ USubSat
*p = usub.sat(old, v) usub.sat matches the behavior of llvm.usub.sat.
@ FMaximum
*p = maximum(old, v) maximum matches the behavior of llvm.maximum.
@ FSub
*p = old - v
@ UIncWrap
Increment one up to a maximum value.
@ Max
*p = old >signed v ? old : v
@ UMin
*p = old <unsigned v ? old : v
@ FMin
*p = minnum(old, v) minnum matches the behavior of llvm.minnum.
@ UMax
*p = old >unsigned v ? old : v
@ FMax
*p = maxnum(old, v) maxnum matches the behavior of llvm.maxnum.
@ UDecWrap
Decrement one until a minimum value or zero.
@ Nand
*p = ~(old & v)
This class holds the attributes for a particular argument, parameter, function, or return value.
Definition Attributes.h:402
LLVM Basic Block Representation.
Definition BasicBlock.h:62
const Function * getParent() const
Return the enclosing method, or null if none.
Definition BasicBlock.h:213
LLVM_ABI InstListType::const_iterator getFirstNonPHIIt() const
Returns an iterator to the first instruction in this block that is not a PHINode instruction.
InstListType::const_iterator const_iterator
Definition BasicBlock.h:171
LLVM_ABI bool isEntryBlock() const
Return true if this is the entry block of the containing function.
LLVM_ABI InstListType::const_iterator getFirstNonPHIOrDbg(bool SkipPseudoOp=true) const
Returns a pointer to the first instruction in this block that is not a PHINode or a debug intrinsic,...
const Instruction * getTerminator() const LLVM_READONLY
Returns the terminator instruction if the block is well formed or null if the block is not well forme...
Definition BasicBlock.h:233
This class is a wrapper over an AAResults, and it is intended to be used only when there are no IR ch...
This class represents a no-op cast from one type to another.
The address of a basic block.
Definition Constants.h:904
Conditional or Unconditional Branch instruction.
Analysis providing branch probability information.
LLVM_ABI BranchProbability getEdgeProbability(const BasicBlock *Src, unsigned IndexInSuccessors) const
Get an edge's probability, relative to other out-edges of the Src.
LLVM_ABI bool isEdgeHot(const BasicBlock *Src, const BasicBlock *Dst) const
Test if an edge is hot relative to other out-edges of the Src.
static uint32_t getDenominator()
static BranchProbability getOne()
static BranchProbability getUnknown()
uint32_t getNumerator() const
LLVM_ABI uint64_t scale(uint64_t Num) const
Scale a large integer.
BranchProbability getCompl() const
static BranchProbability getZero()
static void normalizeProbabilities(ProbabilityIter Begin, ProbabilityIter End)
Base class for all callable instructions (InvokeInst and CallInst) Holds everything related to callin...
std::optional< OperandBundleUse > getOperandBundle(StringRef Name) const
Return an operand bundle by name, if present.
CallingConv::ID getCallingConv() const
User::op_iterator arg_begin()
Return the iterator pointing to the beginning of the argument list.
LLVM_ABI bool isMustTailCall() const
Tests if this call site must be tail call optimized.
LLVM_ABI bool isIndirectCall() const
Return true if the callsite is an indirect call.
unsigned countOperandBundlesOfType(StringRef Name) const
Return the number of operand bundles with the tag Name attached to this instruction.
Value * getCalledOperand() const
Value * getArgOperand(unsigned i) const
User::op_iterator arg_end()
Return the iterator pointing to the end of the argument list.
bool isConvergent() const
Determine if the invoke is convergent.
FunctionType * getFunctionType() const
unsigned arg_size() const
AttributeList getAttributes() const
Return the attributes for this call.
LLVM_ABI bool isTailCall() const
Tests if this call site is marked as a tail call.
CallBr instruction, tracking function calls that may not return control but instead transfer it to a ...
This class represents a function call, abstracting a target machine's calling convention.
This class is the base class for the comparison instructions.
Definition InstrTypes.h:664
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
Definition InstrTypes.h:676
ConstantDataSequential - A vector or array constant whose element type is a simple 1/2/4/8-byte integ...
Definition Constants.h:598
A constant value that is initialized with an expression using other constant values.
Definition Constants.h:1130
ConstantFP - Floating Point Values [float, double].
Definition Constants.h:282
This is the shared class of boolean and integer constants.
Definition Constants.h:87
static LLVM_ABI ConstantInt * getTrue(LLVMContext &Context)
bool isZero() const
This is just a convenience method to make client code smaller for a common code.
Definition Constants.h:219
static LLVM_ABI ConstantInt * getFalse(LLVMContext &Context)
uint64_t getZExtValue() const
Return the constant as a 64-bit unsigned integer value after it has been zero extended as appropriate...
Definition Constants.h:168
const APInt & getValue() const
Return the constant as an APInt value reference.
Definition Constants.h:159
A signed pointer, in the ptrauth sense.
Definition Constants.h:1037
uint64_t getZExtValue() const
Constant Vector Declarations.
Definition Constants.h:522
This is an important base class in LLVM.
Definition Constant.h:43
This is the common base class for constrained floating point intrinsics.
LLVM_ABI std::optional< fp::ExceptionBehavior > getExceptionBehavior() const
LLVM_ABI unsigned getNonMetadataArgCount() const
DWARF expression.
LLVM_ABI bool isEntryValue() const
Check if the expression consists of exactly one entry value operand.
static bool fragmentsOverlap(const FragmentInfo &A, const FragmentInfo &B)
Check if fragments overlap between a pair of FragmentInfos.
static LLVM_ABI DIExpression * appendOpsToArg(const DIExpression *Expr, ArrayRef< uint64_t > Ops, unsigned ArgNo, bool StackValue=false)
Create a copy of Expr by appending the given list of Ops to each instance of the operand DW_OP_LLVM_a...
static LLVM_ABI std::optional< FragmentInfo > getFragmentInfo(expr_op_iterator Start, expr_op_iterator End)
Retrieve the details of this fragment expression.
LLVM_ABI uint64_t getNumLocationOperands() const
Return the number of unique location operands referred to (via DW_OP_LLVM_arg) in this expression; th...
static LLVM_ABI std::optional< DIExpression * > createFragmentExpression(const DIExpression *Expr, unsigned OffsetInBits, unsigned SizeInBits)
Create a DIExpression to describe one part of an aggregate variable that is fragmented across multipl...
static LLVM_ABI const DIExpression * convertToUndefExpression(const DIExpression *Expr)
Removes all elements from Expr that do not apply to an undef debug value, which includes every operat...
static LLVM_ABI DIExpression * prepend(const DIExpression *Expr, uint8_t Flags, int64_t Offset=0)
Prepend DIExpr with a deref and offset operation and optionally turn it into a stack value or/and an ...
static LLVM_ABI DIExpression * prependOpcodes(const DIExpression *Expr, SmallVectorImpl< uint64_t > &Ops, bool StackValue=false, bool EntryValue=false)
Prepend DIExpr with the given opcodes and optionally turn it into a stack value.
Base class for variables.
LLVM_ABI std::optional< uint64_t > getSizeInBits() const
Determines the size of the variable's type.
A parsed version of the target data layout string in and methods for querying it.
Definition DataLayout.h:64
bool isBigEndian() const
Definition DataLayout.h:215
Records a position in IR for a source label (DILabel).
Base class for non-instruction debug metadata records that have positions within IR.
DebugLoc getDebugLoc() const
Record of a variable value-assignment, aka a non instruction representation of the dbg....
LLVM_ABI Value * getVariableLocationOp(unsigned OpIdx) const
DIExpression * getExpression() const
DILocalVariable * getVariable() const
LLVM_ABI iterator_range< location_op_iterator > location_ops() const
Get the locations corresponding to the variable referenced by the debug info intrinsic.
A debug info location.
Definition DebugLoc.h:123
LLVM_ABI DILocation * getInlinedAt() const
Definition DebugLoc.cpp:67
iterator find(const_arg_type_t< KeyT > Val)
Definition DenseMap.h:178
DenseMapIterator< KeyT, ValueT, KeyInfoT, BucketT > iterator
Definition DenseMap.h:74
bool empty() const
Definition DenseMap.h:109
DenseMapIterator< KeyT, ValueT, KeyInfoT, BucketT, true > const_iterator
Definition DenseMap.h:75
iterator end()
Definition DenseMap.h:81
std::pair< iterator, bool > insert(const std::pair< KeyT, ValueT > &KV)
Definition DenseMap.h:241
void reserve(size_type NumEntries)
Grow the densemap so that it can contain at least NumEntries items before resizing again.
Definition DenseMap.h:114
Diagnostic information for inline asm reporting.
static constexpr ElementCount getFixed(ScalarTy MinVal)
Definition TypeSize.h:309
static constexpr ElementCount get(ScalarTy MinVal, bool Scalable)
Definition TypeSize.h:315
constexpr bool isScalar() const
Exactly one element.
Definition TypeSize.h:320
Lightweight error class with error context and mandatory checking.
Definition Error.h:159
Class representing an expression and its matching format.
This instruction extracts a struct member or array element value from an aggregate value.
This instruction compares its operands according to the predicate given to the constructor.
This is a fast-path instruction selection class that generates poor code and doesn't support illegal ...
Definition FastISel.h:66
bool allowReassoc() const
Flag queries.
Definition FMF.h:64
An instruction for ordering other memory operations.
static LLVM_ABI FixedVectorType * get(Type *ElementType, unsigned NumElts)
Definition Type.cpp:802
This class represents a freeze function that returns random concrete value if an operand is either a ...
FunctionLoweringInfo - This contains information that is global to a function that is used when lower...
BranchProbabilityInfo * BPI
MachineBasicBlock * getMBB(const BasicBlock *BB) const
DenseMap< const AllocaInst *, int > StaticAllocaMap
StaticAllocaMap - Keep track of frame indices for fixed sized allocas in the entry block.
const LiveOutInfo * GetLiveOutRegInfo(Register Reg)
GetLiveOutRegInfo - Gets LiveOutInfo for a register, returning NULL if the register is a PHI destinat...
MachineBasicBlock * MBB
MBB - The current block.
Class to represent function types.
unsigned getNumParams() const
Return the number of fixed parameters this function type requires.
Type * getParamType(unsigned i) const
Parameter type accessors.
Type * getReturnType() const
Data structure describing the variable locations in a function.
const BasicBlock & getEntryBlock() const
Definition Function.h:813
FunctionType * getFunctionType() const
Returns the FunctionType for me.
Definition Function.h:209
Intrinsic::ID getIntrinsicID() const LLVM_READONLY
getIntrinsicID - This method returns the ID number of the specified function, or Intrinsic::not_intri...
Definition Function.h:244
bool hasMinSize() const
Optimize this function for minimum size (-Oz).
Definition Function.h:709
bool hasParamAttribute(unsigned ArgNo, Attribute::AttrKind Kind) const
check if an attributes is in the list of attributes.
Definition Function.cpp:741
CallingConv::ID getCallingConv() const
getCallingConv()/setCallingConv(CC) - These method get and set the calling convention of this functio...
Definition Function.h:270
Constant * getPersonalityFn() const
Get the personality function associated with this function.
AttributeList getAttributes() const
Return the attribute list for this Function.
Definition Function.h:352
bool isIntrinsic() const
isIntrinsic - Returns true if the function's name starts with "llvm.".
Definition Function.h:249
size_t arg_size() const
Definition Function.h:905
bool hasFnAttribute(Attribute::AttrKind Kind) const
Return true if the function has the attribute.
Definition Function.cpp:729
Garbage collection metadata for a single function.
Definition GCMetadata.h:80
bool hasNoUnsignedSignedWrap() const
bool hasNoUnsignedWrap() const
bool isInBounds() const
an instruction for type-safe pointer arithmetic to access elements of arrays and structs
static StringRef dropLLVMManglingEscape(StringRef Name)
If the given string begins with the GlobalValue name mangling escape character '\1',...
bool hasDLLImportStorageClass() const
Module * getParent()
Get the module that this global value is contained inside of...
This instruction compares its operands according to the predicate given to the constructor.
Indirect Branch Instruction.
This instruction inserts a struct field of array element value into an aggregate value.
MDNode * getMetadata(unsigned KindID) const
Get the metadata of given kind attached to this Instruction.
LLVM_ABI FastMathFlags getFastMathFlags() const LLVM_READONLY
Convenience function for getting all the fast-math flags, which must be an operator which supports th...
LLVM_ABI AAMDNodes getAAMetadata() const
Returns the AA metadata for this instruction.
@ MIN_INT_BITS
Minimum number of bits that can be specified.
Intrinsic::ID getIntrinsicID() const
Return the intrinsic ID of this intrinsic.
Invoke instruction.
This is an important class for using LLVM in a threaded context.
Definition LLVMContext.h:68
LLVM_ABI void diagnose(const DiagnosticInfo &DI)
Report a message to the currently installed diagnostic handler.
The landingpad instruction holds all of the information necessary to generate correct exception handl...
A helper class to return the specified delimiter string after the first invocation of operator String...
An instruction for reading from memory.
static LocationSize precise(uint64_t Value)
static constexpr LocationSize beforeOrAfterPointer()
Any location before or after the base pointer (but still within the underlying object).
LLVM_ABI MCSymbol * createTempSymbol()
Create a temporary symbol with a unique name.
LLVM_ABI MCSymbol * getOrCreateFrameAllocSymbol(const Twine &FuncName, unsigned Idx)
Gets a symbol that will be defined to the final stack offset of a local variable after codegen.
MCSymbol - Instances of this class represent a symbol name in the MC file, and MCSymbols are created ...
Definition MCSymbol.h:42
Metadata node.
Definition Metadata.h:1080
Machine Value Type.
@ INVALID_SIMPLE_VALUE_TYPE
uint64_t getScalarSizeInBits() const
unsigned getVectorNumElements() const
bool isVector() const
Return true if this is a vector value type.
bool isInteger() const
Return true if this is an integer or a vector integer type.
TypeSize getSizeInBits() const
Returns the size of the specified MVT in bits.
uint64_t getFixedSizeInBits() const
Return the size of the specified fixed width value type in bits.
ElementCount getVectorElementCount() const
TypeSize getStoreSize() const
Return the number of bytes overwritten by a store of the specified value type.
bool bitsGE(MVT VT) const
Return true if this has no less bits than VT.
bool isScalarInteger() const
Return true if this is an integer, not including vectors.
static MVT getVectorVT(MVT VT, unsigned NumElements)
bool isFloatingPoint() const
Return true if this is a FP or a vector FP type.
static MVT getIntegerVT(unsigned BitWidth)
void normalizeSuccProbs()
Normalize probabilities of all successors so that the sum of them becomes one.
const BasicBlock * getBasicBlock() const
Return the LLVM basic block that this instance corresponded to originally.
LLVM_ABI void setSuccProbability(succ_iterator I, BranchProbability Prob)
Set successor probability of a given iterator.
LLVM_ABI void addSuccessor(MachineBasicBlock *Succ, BranchProbability Prob=BranchProbability::getUnknown())
Add Succ as a successor of this MachineBasicBlock.
SmallVectorImpl< MachineBasicBlock * >::iterator succ_iterator
const MachineFunction * getParent() const
Return the MachineFunction containing this basic block.
void setIsEHContTarget(bool V=true)
Indicates if this is a target of Windows EH Continuation Guard.
void setIsEHFuncletEntry(bool V=true)
Indicates if this is the entry block of an EH funclet.
MachineInstrBundleIterator< MachineInstr > iterator
void setIsEHScopeEntry(bool V=true)
Indicates if this is the entry block of an EH scope, i.e., the block that that used to have a catchpa...
void setMachineBlockAddressTaken()
Set this block to indicate that its address is used as something other than the target of a terminato...
The MachineFrameInfo class represents an abstract stack frame until prolog/epilog code is inserted.
void setIsImmutableObjectIndex(int ObjectIdx, bool IsImmutable)
Marks the immutability of an object.
LLVM_ABI int CreateStackObject(uint64_t Size, Align Alignment, bool isSpillSlot, const AllocaInst *Alloca=nullptr, uint8_t ID=0)
Create a new statically sized stack object, returning a nonnegative identifier to represent it.
bool hasOpaqueSPAdjustment() const
Returns true if the function contains opaque dynamic stack adjustments.
int getStackProtectorIndex() const
Return the index for the stack protector object.
void setIsAliasedObjectIndex(int ObjectIdx, bool IsAliased)
Set "maybe pointed to by an LLVM IR value" for an object.
Align getObjectAlign(int ObjectIdx) const
Return the alignment of the specified stack object.
int64_t getObjectSize(int ObjectIdx) const
Return the size of the specified object.
void RemoveStackObject(int ObjectIdx)
Remove or mark dead a statically sized stack object.
void setFunctionContextIndex(int I)
const WinEHFuncInfo * getWinEHFuncInfo() const
getWinEHFuncInfo - Return information about how the current function uses Windows exception handling.
bool useDebugInstrRef() const
Returns true if the function's variable locations are tracked with instruction referencing.
void setCallSiteBeginLabel(MCSymbol *BeginLabel, unsigned Site)
Map the begin label for a call site.
const TargetSubtargetInfo & getSubtarget() const
getSubtarget - Return the subtarget for which this machine code is being compiled.
StringRef getName() const
getName - Return the name of the corresponding LLVM function.
MachineMemOperand * getMachineMemOperand(MachinePointerInfo PtrInfo, MachineMemOperand::Flags f, LLT MemTy, Align base_alignment, const AAMDNodes &AAInfo=AAMDNodes(), const MDNode *Ranges=nullptr, SyncScope::ID SSID=SyncScope::System, AtomicOrdering Ordering=AtomicOrdering::NotAtomic, AtomicOrdering FailureOrdering=AtomicOrdering::NotAtomic)
getMachineMemOperand - Allocate a new MachineMemOperand.
MachineFrameInfo & getFrameInfo()
getFrameInfo - Return the frame info object for the current function.
MCContext & getContext() const
MachineRegisterInfo & getRegInfo()
getRegInfo - Return information about the registers currently in use.
void addCodeViewAnnotation(MCSymbol *Label, MDNode *MD)
Record annotations associated with a particular label.
Function & getFunction()
Return the LLVM function that this machine code represents.
BasicBlockListType::iterator iterator
void setHasEHContTarget(bool V)
void addInvoke(MachineBasicBlock *LandingPad, MCSymbol *BeginLabel, MCSymbol *EndLabel)
Provide the begin and end labels of an invoke style call and associate it with a try landing pad bloc...
MachineBasicBlock * CreateMachineBasicBlock(const BasicBlock *BB=nullptr, std::optional< UniqueBBID > BBID=std::nullopt)
CreateMachineInstr - Allocate a new MachineInstr.
void insert(iterator MBBI, MachineBasicBlock *MBB)
const MachineInstrBuilder & addSym(MCSymbol *Sym, unsigned char TargetFlags=0) const
const MachineInstrBuilder & addFrameIndex(int Idx) const
Representation of each machine instruction.
A description of a memory reference used in the backend.
Flags
Flags values. These may be or'd together.
@ MOVolatile
The memory access is volatile.
@ MODereferenceable
The memory access is dereferenceable (i.e., doesn't trap).
@ MOLoad
The memory access reads data.
@ MONonTemporal
The memory access is non-temporal.
@ MOInvariant
The memory access always returns the same value (or traps).
@ MOStore
The memory access writes data.
static MachineOperand CreateReg(Register Reg, bool isDef, bool isImp=false, bool isKill=false, bool isDead=false, bool isUndef=false, bool isEarlyClobber=false, unsigned SubReg=0, bool isDebug=false, bool isInternalRead=false, bool isRenamable=false)
static MachineOperand CreateFI(int Idx)
MachineRegisterInfo - Keep track of information for virtual and physical registers,...
LLVM_ABI MCRegister getLiveInPhysReg(Register VReg) const
getLiveInPhysReg - If VReg is a live-in virtual register, return the corresponding live-in physical r...
An SDNode that represents everything that will be needed to construct a MachineInstr.
bool contains(const KeyT &Key) const
Definition MapVector.h:146
std::pair< iterator, bool > try_emplace(const KeyT &Key, Ts &&...Args)
Definition MapVector.h:116
static MemoryLocation getAfter(const Value *Ptr, const AAMDNodes &AATags=AAMDNodes())
Return a location that may access any location after Ptr, while remaining within the underlying objec...
Metadata wrapper in the Value hierarchy.
Definition Metadata.h:184
A Module instance is used to store all the information related to an LLVM module.
Definition Module.h:67
static PointerType * getUnqual(Type *ElementType)
This constructs a pointer to an object of the specified type in the default address space (address sp...
static LLVM_ABI PointerType * get(Type *ElementType, unsigned AddressSpace)
This constructs a pointer to an object of the specified type in a numbered address space.
static LLVM_ABI PoisonValue * get(Type *T)
Static factory methods - Return an 'poison' object of the specified type.
Wrapper class representing virtual and physical registers.
Definition Register.h:20
constexpr bool isVirtual() const
Return true if the specified register number is in the virtual register namespace.
Definition Register.h:79
constexpr bool isPhysical() const
Return true if the specified register number is in the physical register namespace.
Definition Register.h:83
Resume the propagation of an exception.
Return a value (possibly void), from a function.
Holds the information from a dbg_label node through SDISel.
static SDDbgOperand fromNode(SDNode *Node, unsigned ResNo)
static SDDbgOperand fromFrameIdx(unsigned FrameIdx)
static SDDbgOperand fromVReg(Register VReg)
static SDDbgOperand fromConst(const Value *Const)
Holds the information from a dbg_value node through SDISel.
Wrapper class for IR location info (IR ordering and DebugLoc) to be passed into SDNode creation funct...
Represents one node in the SelectionDAG.
unsigned getOpcode() const
Return the SelectionDAG opcode value for this node.
iterator_range< value_op_iterator > op_values() const
unsigned getIROrder() const
Return the node ordering.
uint64_t getAsZExtVal() const
Helper method returns the zero-extended integer value of a ConstantSDNode.
unsigned getNumValues() const
Return the number of values defined/returned by this operator.
const SDValue & getOperand(unsigned Num) const
EVT getValueType(unsigned ResNo) const
Return the type of a specified result.
Unlike LLVM values, Selection DAG nodes may return multiple values as the result of a computation.
SDNode * getNode() const
get the SDNode which holds the desired result
SDValue getValue(unsigned R) const
EVT getValueType() const
Return the ValueType of the referenced return value.
TypeSize getValueSizeInBits() const
Returns the size of the value in bits.
const SDValue & getOperand(unsigned i) const
unsigned getResNo() const
get the index which selects a specific result in the SDNode
MVT getSimpleValueType() const
Return the simple ValueType of the referenced return value.
unsigned getOpcode() const
SelectionDAGBuilder - This is the common target-independent lowering implementation that is parameter...
SDValue getValue(const Value *V)
getValue - Return an SDValue for the given Value.
DenseMap< const Constant *, Register > ConstantsOut
void addDanglingDebugInfo(SmallVectorImpl< Value * > &Values, DILocalVariable *Var, DIExpression *Expr, bool IsVariadic, DebugLoc DL, unsigned Order)
Register a dbg_value which relies on a Value which we have not yet seen.
void visitDbgInfo(const Instruction &I)
void clearDanglingDebugInfo()
Clear the dangling debug information map.
void LowerCallTo(const CallBase &CB, SDValue Callee, bool IsTailCall, bool IsMustTailCall, const BasicBlock *EHPadBB=nullptr, const TargetLowering::PtrAuthInfo *PAI=nullptr)
void clear()
Clear out the current SelectionDAG and the associated state and prepare this SelectionDAGBuilder obje...
void visitBitTestHeader(SwitchCG::BitTestBlock &B, MachineBasicBlock *SwitchBB)
visitBitTestHeader - This function emits necessary code to produce value suitable for "bit tests"
void LowerStatepoint(const GCStatepointInst &I, const BasicBlock *EHPadBB=nullptr)
std::unique_ptr< SDAGSwitchLowering > SL
SDValue lowerRangeToAssertZExt(SelectionDAG &DAG, const Instruction &I, SDValue Op)
bool HasTailCall
This is set to true if a call in the current block has been translated as a tail call.
bool ShouldEmitAsBranches(const std::vector< SwitchCG::CaseBlock > &Cases)
If the set of cases should be emitted as a series of branches, return true.
void EmitBranchForMergedCondition(const Value *Cond, MachineBasicBlock *TBB, MachineBasicBlock *FBB, MachineBasicBlock *CurBB, MachineBasicBlock *SwitchBB, BranchProbability TProb, BranchProbability FProb, bool InvertCond)
EmitBranchForMergedCondition - Helper method for FindMergedConditions.
void LowerDeoptimizeCall(const CallInst *CI)
void LowerCallSiteWithDeoptBundle(const CallBase *Call, SDValue Callee, const BasicBlock *EHPadBB)
SwiftErrorValueTracking & SwiftError
Information about the swifterror values used throughout the function.
SDValue getNonRegisterValue(const Value *V)
getNonRegisterValue - Return an SDValue for the given Value, but don't look in FuncInfo....
const TargetTransformInfo * TTI
DenseMap< MachineBasicBlock *, SmallVector< unsigned, 4 > > LPadToCallSiteMap
Map a landing pad to the call site indexes.
SDValue lowerNoFPClassToAssertNoFPClass(SelectionDAG &DAG, const Instruction &I, SDValue Op)
void handleDebugDeclare(Value *Address, DILocalVariable *Variable, DIExpression *Expression, DebugLoc DL)
bool shouldKeepJumpConditionsTogether(const FunctionLoweringInfo &FuncInfo, const BranchInst &I, Instruction::BinaryOps Opc, const Value *Lhs, const Value *Rhs, TargetLoweringBase::CondMergingParams Params) const
StatepointLoweringState StatepointLowering
State used while lowering a statepoint sequence (gc_statepoint, gc_relocate, and gc_result).
void visitBitTestCase(SwitchCG::BitTestBlock &BB, MachineBasicBlock *NextMBB, BranchProbability BranchProbToNext, Register Reg, SwitchCG::BitTestCase &B, MachineBasicBlock *SwitchBB)
visitBitTestCase - this function produces one "bit test"
bool canTailCall(const CallBase &CB) const
void populateCallLoweringInfo(TargetLowering::CallLoweringInfo &CLI, const CallBase *Call, unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy, AttributeSet RetAttrs, bool IsPatchPoint)
Populate a CallLowerinInfo (into CLI) based on the properties of the call being lowered.
void CopyValueToVirtualRegister(const Value *V, Register Reg, ISD::NodeType ExtendType=ISD::ANY_EXTEND)
void salvageUnresolvedDbgValue(const Value *V, DanglingDebugInfo &DDI)
For the given dangling debuginfo record, perform last-ditch efforts to resolve the debuginfo to somet...
SmallVector< SDValue, 8 > PendingLoads
Loads are not emitted to the program immediately.
GCFunctionInfo * GFI
Garbage collection metadata for the function.
void init(GCFunctionInfo *gfi, BatchAAResults *BatchAA, AssumptionCache *AC, const TargetLibraryInfo *li, const TargetTransformInfo &TTI)
SDValue getRoot()
Similar to getMemoryRoot, but also flushes PendingConstrainedFP(Strict) items.
void ExportFromCurrentBlock(const Value *V)
ExportFromCurrentBlock - If this condition isn't known to be exported from the current basic block,...
void resolveOrClearDbgInfo()
Evict any dangling debug information, attempting to salvage it first.
std::pair< SDValue, SDValue > lowerInvokable(TargetLowering::CallLoweringInfo &CLI, const BasicBlock *EHPadBB=nullptr)
SDValue getMemoryRoot()
Return the current virtual root of the Selection DAG, flushing any PendingLoad items.
void resolveDanglingDebugInfo(const Value *V, SDValue Val)
If we saw an earlier dbg_value referring to V, generate the debug data structures now that we've seen...
void visit(const Instruction &I)
void dropDanglingDebugInfo(const DILocalVariable *Variable, const DIExpression *Expr)
If we have dangling debug info that describes Variable, or an overlapping part of variable considerin...
SDValue getCopyFromRegs(const Value *V, Type *Ty)
If there was virtual register allocated for the value V emit CopyFromReg of the specified type Ty.
void CopyToExportRegsIfNeeded(const Value *V)
CopyToExportRegsIfNeeded - If the given value has virtual registers created for it,...
void handleKillDebugValue(DILocalVariable *Var, DIExpression *Expr, DebugLoc DbgLoc, unsigned Order)
Create a record for a kill location debug intrinsic.
void visitJumpTable(SwitchCG::JumpTable &JT)
visitJumpTable - Emit JumpTable node in the current MBB
SDValue getFPOperationRoot(fp::ExceptionBehavior EB)
Return the current virtual root of the Selection DAG, flushing PendingConstrainedFP or PendingConstra...
void visitJumpTableHeader(SwitchCG::JumpTable &JT, SwitchCG::JumpTableHeader &JTH, MachineBasicBlock *SwitchBB)
visitJumpTableHeader - This function emits necessary code to produce index in the JumpTable from swit...
void LowerCallSiteWithPtrAuthBundle(const CallBase &CB, const BasicBlock *EHPadBB)
static const unsigned LowestSDNodeOrder
Lowest valid SDNodeOrder.
FunctionLoweringInfo & FuncInfo
Information about the function as a whole.
void setValue(const Value *V, SDValue NewN)
void FindMergedConditions(const Value *Cond, MachineBasicBlock *TBB, MachineBasicBlock *FBB, MachineBasicBlock *CurBB, MachineBasicBlock *SwitchBB, Instruction::BinaryOps Opc, BranchProbability TProb, BranchProbability FProb, bool InvertCond)
const TargetLibraryInfo * LibInfo
bool isExportableFromCurrentBlock(const Value *V, const BasicBlock *FromBB)
void visitSPDescriptorParent(StackProtectorDescriptor &SPD, MachineBasicBlock *ParentBB)
Codegen a new tail for a stack protector check ParentMBB which has had its tail spliced into a stack ...
bool handleDebugValue(ArrayRef< const Value * > Values, DILocalVariable *Var, DIExpression *Expr, DebugLoc DbgLoc, unsigned Order, bool IsVariadic)
For a given list of Values, attempt to create and record a SDDbgValue in the SelectionDAG.
SDValue getControlRoot()
Similar to getRoot, but instead of flushing all the PendingLoad items, flush all the PendingExports (...
void UpdateSplitBlock(MachineBasicBlock *First, MachineBasicBlock *Last)
When an MBB was split during scheduling, update the references that need to refer to the last resulti...
SDValue getValueImpl(const Value *V)
getValueImpl - Helper function for getValue and getNonRegisterValue.
void visitSwitchCase(SwitchCG::CaseBlock &CB, MachineBasicBlock *SwitchBB)
visitSwitchCase - Emits the necessary code to represent a single node in the binary search tree resul...
void visitSPDescriptorFailure(StackProtectorDescriptor &SPD)
Codegen the failure basic block for a stack protector check.
std::unique_ptr< FunctionLoweringInfo > FuncInfo
SmallPtrSet< const Instruction *, 4 > ElidedArgCopyInstrs
const TargetLowering * TLI
MachineRegisterInfo * RegInfo
std::unique_ptr< SwiftErrorValueTracking > SwiftError
virtual void emitFunctionEntryCode()
std::unique_ptr< SelectionDAGBuilder > SDB
virtual std::pair< SDValue, SDValue > EmitTargetCodeForStrnlen(SelectionDAG &DAG, const SDLoc &DL, SDValue Chain, SDValue Src, SDValue MaxLength, MachinePointerInfo SrcPtrInfo) const
virtual std::pair< SDValue, SDValue > EmitTargetCodeForStrlen(SelectionDAG &DAG, const SDLoc &DL, SDValue Chain, SDValue Src, const CallInst *CI) const
virtual std::pair< SDValue, SDValue > EmitTargetCodeForStrstr(SelectionDAG &DAG, const SDLoc &dl, SDValue Chain, SDValue Op1, SDValue Op2, const CallInst *CI) const
Emit target-specific code that performs a strstr, in cases where that is faster than a libcall.
virtual std::pair< SDValue, SDValue > EmitTargetCodeForMemchr(SelectionDAG &DAG, const SDLoc &dl, SDValue Chain, SDValue Src, SDValue Char, SDValue Length, MachinePointerInfo SrcPtrInfo) const
Emit target-specific code that performs a memchr, in cases where that is faster than a libcall.
virtual std::pair< SDValue, SDValue > EmitTargetCodeForMemcmp(SelectionDAG &DAG, const SDLoc &dl, SDValue Chain, SDValue Op1, SDValue Op2, SDValue Op3, const CallInst *CI) const
Emit target-specific code that performs a memcmp/bcmp, in cases where that is faster than a libcall.
virtual std::pair< SDValue, SDValue > EmitTargetCodeForStrcmp(SelectionDAG &DAG, const SDLoc &dl, SDValue Chain, SDValue Op1, SDValue Op2, MachinePointerInfo Op1PtrInfo, MachinePointerInfo Op2PtrInfo) const
Emit target-specific code that performs a strcmp, in cases where that is faster than a libcall.
virtual SDValue EmitTargetCodeForSetTag(SelectionDAG &DAG, const SDLoc &dl, SDValue Chain, SDValue Addr, SDValue Size, MachinePointerInfo DstPtrInfo, bool ZeroData) const
virtual std::pair< SDValue, SDValue > EmitTargetCodeForStrcpy(SelectionDAG &DAG, const SDLoc &DL, SDValue Chain, SDValue Dest, SDValue Src, MachinePointerInfo DestPtrInfo, MachinePointerInfo SrcPtrInfo, bool isStpcpy, const CallInst *CI) const
Emit target-specific code that performs a strcpy or stpcpy, in cases where that is faster than a libc...
This is used to represent a portion of an LLVM function in a low-level Data Dependence DAG representa...
SDValue getExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT, unsigned Opcode)
Convert Op, which must be of integer type, to the integer type VT, by either any/sign/zero-extending ...
const SDValue & getRoot() const
Return the root tag of the SelectionDAG.
const TargetSubtargetInfo & getSubtarget() const
SDValue getCopyToReg(SDValue Chain, const SDLoc &dl, Register Reg, SDValue N)
LLVM_ABI SDValue getMergeValues(ArrayRef< SDValue > Ops, const SDLoc &dl)
Create a MERGE_VALUES node from the given operands.
LLVM_ABI SDVTList getVTList(EVT VT)
Return an SDVTList that represents the list of values specified.
LLVM_ABI SDValue getShiftAmountConstant(uint64_t Val, EVT VT, const SDLoc &DL)
LLVM_ABI MachineSDNode * getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT)
These are used for target selectors to create a new node with specified return type(s),...
LLVM_ABI void ExtractVectorElements(SDValue Op, SmallVectorImpl< SDValue > &Args, unsigned Start=0, unsigned Count=0, EVT EltVT=EVT())
Append the extracted elements from Start to Count out of the vector Op in Args.
LLVM_ABI SDValue getConstantPool(const Constant *C, EVT VT, MaybeAlign Align=std::nullopt, int Offs=0, bool isT=false, unsigned TargetFlags=0)
LLVM_ABI SDValue getConstantFP(double Val, const SDLoc &DL, EVT VT, bool isTarget=false)
Create a ConstantFPSDNode wrapping a constant value.
LLVM_ABI SDValue getRegister(Register Reg, EVT VT)
LLVM_ABI SDValue getLoad(EVT VT, const SDLoc &dl, SDValue Chain, SDValue Ptr, MachinePointerInfo PtrInfo, MaybeAlign Alignment=MaybeAlign(), MachineMemOperand::Flags MMOFlags=MachineMemOperand::MONone, const AAMDNodes &AAInfo=AAMDNodes(), const MDNode *Ranges=nullptr)
Loads are not normal binary operators: their result type is not determined by their operands,...
LLVM_ABI Align getEVTAlign(EVT MemoryVT) const
Compute the default alignment value for the given type.
LLVM_ABI bool shouldOptForSize() const
const TargetLowering & getTargetLoweringInfo() const
static constexpr unsigned MaxRecursionDepth
LLVM_ABI void AddDbgValue(SDDbgValue *DB, bool isParameter)
Add a dbg_value SDNode.
SDValue getUNDEF(EVT VT)
Return an UNDEF node. UNDEF does not have a useful SDLoc.
SDValue getBuildVector(EVT VT, const SDLoc &DL, ArrayRef< SDValue > Ops)
Return an ISD::BUILD_VECTOR node.
LLVM_ABI SDValue getBitcast(EVT VT, SDValue V)
Return a bitcast using the SDLoc of the value operand, and casting to the provided type.
LLVM_ABI SDDbgValue * getDbgValueList(DIVariable *Var, DIExpression *Expr, ArrayRef< SDDbgOperand > Locs, ArrayRef< SDNode * > Dependencies, bool IsIndirect, const DebugLoc &DL, unsigned O, bool IsVariadic)
Creates a SDDbgValue node from a list of locations.
SDValue getCopyFromReg(SDValue Chain, const SDLoc &dl, Register Reg, EVT VT)
LLVM_ABI void setNodeMemRefs(MachineSDNode *N, ArrayRef< MachineMemOperand * > NewMemRefs)
Mutate the specified machine node's memory references to the provided list.
const DataLayout & getDataLayout() const
SDValue getTargetFrameIndex(int FI, EVT VT)
LLVM_ABI SDValue getConstant(uint64_t Val, const SDLoc &DL, EVT VT, bool isTarget=false, bool isOpaque=false)
Create a ConstantSDNode wrapping a constant value.
LLVM_ABI SDValue getMemBasePlusOffset(SDValue Base, TypeSize Offset, const SDLoc &DL, const SDNodeFlags Flags=SDNodeFlags())
Returns sum of the base pointer and offset.
LLVM_ABI SDValue getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr, MachinePointerInfo PtrInfo, EVT SVT, Align Alignment, MachineMemOperand::Flags MMOFlags=MachineMemOperand::MONone, const AAMDNodes &AAInfo=AAMDNodes())
LLVM_ABI SDValue getBasicBlock(MachineBasicBlock *MBB)
LLVM_ABI SDValue getPtrExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of integer type, to the integer type VT, by either truncating it or perform...
LLVM_ABI SDValue getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of integer type, to the integer type VT, by either any-extending or truncat...
const LibcallLoweringInfo & getLibcalls() const
LLVM_ABI SDValue getIntPtrConstant(uint64_t Val, const SDLoc &DL, bool isTarget=false)
LLVM_ABI SDValue getValueType(EVT)
LLVM_ABI SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, ArrayRef< SDUse > Ops)
Gets or creates the specified node.
LLVM_ABI SDValue getFPExtendOrRound(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of float type, to the float type VT, by either extending or rounding (by tr...
SDValue getTargetConstant(uint64_t Val, const SDLoc &DL, EVT VT, bool isOpaque=false)
LLVM_ABI SDValue getVectorIdxConstant(uint64_t Val, const SDLoc &DL, bool isTarget=false)
MachineFunction & getMachineFunction() const
LLVM_ABI SDValue getFrameIndex(int FI, EVT VT, bool isTarget=false)
LLVM_ABI SDValue getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of integer type, to the integer type VT, by either zero-extending or trunca...
LLVMContext * getContext() const
const SDValue & setRoot(SDValue N)
Set the current root tag of the SelectionDAG.
A templated base class for SmallPtrSet which provides the typesafe interface that is common across al...
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
reference emplace_back(ArgTypes &&... Args)
void append(ItTy in_start, ItTy in_end)
Add the specified range to the end of the SmallVector.
void swap(SmallVectorImpl &RHS)
void resize(size_type N)
void push_back(const T &Elt)
pointer data()
Return a pointer to the vector's buffer, even if empty().
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
Encapsulates all of the information needed to generate a stack protector check, and signals to isel w...
MachineBasicBlock * getSuccessMBB()
MachineBasicBlock * getFailureMBB()
MachineBasicBlock * getParentMBB()
bool shouldEmitFunctionBasedCheckStackProtector() const
An instruction for storing to memory.
StringRef - Represent a constant reference to a string, i.e.
Definition StringRef.h:55
constexpr bool empty() const
empty - Check if the string is empty.
Definition StringRef.h:143
constexpr const char * data() const
data - Get a pointer to the start of the string (which may not be null terminated).
Definition StringRef.h:140
Multiway switch.
Information about stack frame layout on the target.
virtual TargetStackID::Value getStackIDForScalableVectors() const
Returns the StackID that scalable vectors should be associated with.
Provides information about what library functions are available for the current target.
virtual Align getByValTypeAlignment(Type *Ty, const DataLayout &DL) const
Returns the desired alignment for ByVal or InAlloca aggregate function arguments in the caller parame...
virtual bool isFMAFasterThanFMulAndFAdd(const MachineFunction &MF, EVT) const
Return true if an FMA operation is faster than a pair of fmul and fadd instructions.
EVT getMemValueType(const DataLayout &DL, Type *Ty, bool AllowUnknown=false) const
Function * getSSPStackGuardCheck(const Module &M, const LibcallLoweringInfo &Libcalls) const
If the target has a standard stack protection check function that performs validation and error handl...
EVT getValueType(const DataLayout &DL, Type *Ty, bool AllowUnknown=false) const
Return the EVT corresponding to this LLVM type.
LegalizeAction
This enum indicates whether operations are valid for a target, and if not, what action should be used...
virtual bool useStackGuardXorFP() const
If this function returns true, stack protection checks should XOR the frame pointer (or whichever poi...
virtual const TargetRegisterClass * getRegClassFor(MVT VT, bool isDivergent=false) const
Return the register class that should be used for the specified value type.
virtual bool isLegalScaleForGatherScatter(uint64_t Scale, uint64_t ElemSize) const
virtual bool isSExtCheaperThanZExt(EVT FromTy, EVT ToTy) const
Return true if sign-extension from FromTy to ToTy is cheaper than zero-extension.
MVT getVectorIdxTy(const DataLayout &DL) const
Returns the type to be used for the index operand of: ISD::INSERT_VECTOR_ELT, ISD::EXTRACT_VECTOR_ELT...
virtual unsigned getNumRegistersForCallingConv(LLVMContext &Context, CallingConv::ID CC, EVT VT) const
Certain targets require unusual breakdowns of certain types.
virtual bool isZExtFree(Type *FromTy, Type *ToTy) const
Return true if any actual instruction that defines a value of type FromTy implicitly zero-extends the...
virtual MVT getRegisterTypeForCallingConv(LLVMContext &Context, CallingConv::ID CC, EVT VT) const
Certain combinations of ABIs, Targets and features require that types are legal for some operations a...
virtual unsigned getNumRegisters(LLVMContext &Context, EVT VT, std::optional< MVT > RegisterVT=std::nullopt) const
Return the number of registers that this ValueType will eventually require.
unsigned getBitWidthForCttzElements(Type *RetTy, ElementCount EC, bool ZeroIsPoison, const ConstantRange *VScaleRange) const
Return the minimum number of bits required to hold the maximum possible number of trailing zero vecto...
virtual bool shouldExtendGSIndex(EVT VT, EVT &EltTy) const
Returns true if the index type for a masked gather/scatter requires extending.
virtual unsigned getVectorTypeBreakdownForCallingConv(LLVMContext &Context, CallingConv::ID CC, EVT VT, EVT &IntermediateVT, unsigned &NumIntermediates, MVT &RegisterVT) const
Certain targets such as MIPS require that some types such as vectors are always broken down into scal...
Register getStackPointerRegisterToSaveRestore() const
If a physical register, this specifies the register that llvm.savestack/llvm.restorestack should save...
LegalizeAction getFixedPointOperationAction(unsigned Op, EVT VT, unsigned Scale) const
Some fixed point operations may be natively supported by the target but only for specific scales.
MachineMemOperand::Flags getAtomicMemOperandFlags(const Instruction &AI, const DataLayout &DL) const
virtual bool allowsMisalignedMemoryAccesses(EVT, unsigned AddrSpace=0, Align Alignment=Align(1), MachineMemOperand::Flags Flags=MachineMemOperand::MONone, unsigned *=nullptr) const
Determine if the target supports unaligned memory accesses.
bool isOperationCustom(unsigned Op, EVT VT) const
Return true if the operation uses custom lowering, regardless of whether the type is legal or not.
bool hasBigEndianPartOrdering(EVT VT, const DataLayout &DL) const
When splitting a value of the specified type into parts, does the Lo or Hi part come first?
EVT getShiftAmountTy(EVT LHSTy, const DataLayout &DL) const
Returns the type for the shift amount of a shift opcode.
virtual Align getABIAlignmentForCallingConv(Type *ArgTy, const DataLayout &DL) const
Certain targets have context sensitive alignment requirements, where one type has the alignment requi...
MachineMemOperand::Flags getVPIntrinsicMemOperandFlags(const VPIntrinsic &VPIntrin) const
virtual bool shouldExpandGetActiveLaneMask(EVT VT, EVT OpVT) const
Return true if the @llvm.get.active.lane.mask intrinsic should be expanded using generic code in Sele...
virtual bool getTgtMemIntrinsic(IntrinsicInfo &, const CallBase &, MachineFunction &, unsigned) const
Given an intrinsic, checks if on the target the intrinsic will need to map to a MemIntrinsicNode (tou...
virtual EVT getSetCCResultType(const DataLayout &DL, LLVMContext &Context, EVT VT) const
Return the ValueType of the result of SETCC operations.
MachineMemOperand::Flags getLoadMemOperandFlags(const LoadInst &LI, const DataLayout &DL, AssumptionCache *AC=nullptr, const TargetLibraryInfo *LibInfo=nullptr) const
virtual EVT getTypeToTransformTo(LLVMContext &Context, EVT VT) const
For types supported by the target, this is an identity function.
bool isTypeLegal(EVT VT) const
Return true if the target has native support for the specified value type.
MVT getProgramPointerTy(const DataLayout &DL) const
Return the type for code pointers, which is determined by the program address space specified through...
virtual MVT getPointerTy(const DataLayout &DL, uint32_t AS=0) const
Return the pointer type for the given address space, defaults to the pointer type from the data layou...
bool isOperationLegal(unsigned Op, EVT VT) const
Return true if the specified operation is legal on this target.
virtual bool shouldExpandVectorMatch(EVT VT, unsigned SearchSize) const
Return true if the @llvm.experimental.vector.match intrinsic should be expanded for vector type ‘VT’ ...
virtual MVT getFenceOperandTy(const DataLayout &DL) const
Return the type for operands of fence.
virtual bool shouldExpandGetVectorLength(EVT CountVT, unsigned VF, bool IsScalable) const
bool isOperationLegalOrCustom(unsigned Op, EVT VT, bool LegalOnly=false) const
Return true if the specified operation is legal on this target or can be made legal with custom lower...
virtual MVT hasFastEqualityCompare(unsigned NumBits) const
Return the preferred operand type if the target has a quick way to compare integer values of the give...
MachineMemOperand::Flags getStoreMemOperandFlags(const StoreInst &SI, const DataLayout &DL) const
virtual bool shouldExpandCttzElements(EVT VT) const
Return true if the @llvm.experimental.cttz.elts intrinsic should be expanded using generic code in Se...
virtual bool signExtendConstant(const ConstantInt *C) const
Return true if this constant should be sign extended when promoting to a larger type.
virtual Value * getSDagStackGuard(const Module &M, const LibcallLoweringInfo &Libcalls) const
Return the variable that's previously inserted by insertSSPDeclarations, if any, otherwise return nul...
LegalizeTypeAction getTypeAction(LLVMContext &Context, EVT VT) const
Return how we should legalize values of this type, either it is already legal (return 'Legal') or we ...
virtual Register getExceptionPointerRegister(const Constant *PersonalityFn) const
If a physical register, this returns the register that receives the exception address on entry to an ...
bool supportsUnalignedAtomics() const
Whether the target supports unaligned atomic operations.
std::vector< ArgListEntry > ArgListTy
bool isBeneficialToExpandPowI(int64_t Exponent, bool OptForSize) const
Return true if it is beneficial to expand an @llvm.powi.
MVT getFrameIndexTy(const DataLayout &DL) const
Return the type for frame index, which is determined by the alloca address space specified through th...
virtual Register getExceptionSelectorRegister(const Constant *PersonalityFn) const
If a physical register, this returns the register that receives the exception typeid on entry to a la...
virtual MVT getPointerMemTy(const DataLayout &DL, uint32_t AS=0) const
Return the in-memory pointer type for the given address space, defaults to the pointer type from the ...
MVT getRegisterType(MVT VT) const
Return the type of registers that this ValueType will eventually require.
unsigned getVectorTypeBreakdown(LLVMContext &Context, EVT VT, EVT &IntermediateVT, unsigned &NumIntermediates, MVT &RegisterVT) const
Vector types are broken down into some number of legal first class types.
virtual MVT getVPExplicitVectorLengthTy() const
Returns the type to be used for the EVL/AVL operand of VP nodes: ISD::VP_ADD, ISD::VP_SUB,...
This class defines information used to lower LLVM code to legal SelectionDAG operators that the targe...
virtual bool supportKCFIBundles() const
Return true if the target supports kcfi operand bundles.
virtual bool supportPtrAuthBundles() const
Return true if the target supports ptrauth operand bundles.
virtual bool supportSwiftError() const
Return true if the target supports swifterror attribute.
virtual SDValue visitMaskedLoad(SelectionDAG &DAG, const SDLoc &DL, SDValue Chain, MachineMemOperand *MMO, SDValue &NewLoad, SDValue Ptr, SDValue PassThru, SDValue Mask) const
virtual SDValue emitStackGuardXorFP(SelectionDAG &DAG, SDValue Val, const SDLoc &DL) const
virtual EVT getTypeForExtReturn(LLVMContext &Context, EVT VT, ISD::NodeType) const
Return the type that should be used to zero or sign extend a zeroext/signext integer return value.
virtual InlineAsm::ConstraintCode getInlineAsmMemConstraint(StringRef ConstraintCode) const
std::vector< AsmOperandInfo > AsmOperandInfoVector
SDValue expandIS_FPCLASS(EVT ResultVT, SDValue Op, FPClassTest Test, SDNodeFlags Flags, const SDLoc &DL, SelectionDAG &DAG) const
Expand check for floating point class.
virtual SDValue prepareVolatileOrAtomicLoad(SDValue Chain, const SDLoc &DL, SelectionDAG &DAG) const
This callback is used to prepare for a volatile or atomic load.
virtual ConstraintType getConstraintType(StringRef Constraint) const
Given a constraint, return the type of constraint it is for this target.
virtual bool splitValueIntoRegisterParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts, unsigned NumParts, MVT PartVT, std::optional< CallingConv::ID > CC) const
Target-specific splitting of values into parts that fit a register storing a legal type.
virtual SDValue joinRegisterPartsIntoValue(SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts, unsigned NumParts, MVT PartVT, EVT ValueVT, std::optional< CallingConv::ID > CC) const
Target-specific combining of register parts into its original value.
virtual SDValue LowerCall(CallLoweringInfo &, SmallVectorImpl< SDValue > &) const
This hook must be implemented to lower calls into the specified DAG.
std::pair< SDValue, SDValue > LowerCallTo(CallLoweringInfo &CLI) const
This function lowers an abstract call to a function into an actual call.
virtual SDValue LowerAsmOutputForConstraint(SDValue &Chain, SDValue &Glue, const SDLoc &DL, const AsmOperandInfo &OpInfo, SelectionDAG &DAG) const
virtual std::pair< unsigned, const TargetRegisterClass * > getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const
Given a physical register constraint (e.g.
virtual AsmOperandInfoVector ParseConstraints(const DataLayout &DL, const TargetRegisterInfo *TRI, const CallBase &Call) const
Split up the constraint string from the inline assembly value into the specific constraints and their...
virtual SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const
This callback is invoked for operations that are unsupported by the target, which are registered to u...
virtual bool functionArgumentNeedsConsecutiveRegisters(Type *Ty, CallingConv::ID CallConv, bool isVarArg, const DataLayout &DL) const
For some targets, an LLVM struct type must be broken down into multiple simple types,...
virtual void ComputeConstraintToUse(AsmOperandInfo &OpInfo, SDValue Op, SelectionDAG *DAG=nullptr) const
Determines the constraint code and constraint type to use for the specific AsmOperandInfo,...
virtual void CollectTargetIntrinsicOperands(const CallInst &I, SmallVectorImpl< SDValue > &Ops, SelectionDAG &DAG) const
virtual SDValue visitMaskedStore(SelectionDAG &DAG, const SDLoc &DL, SDValue Chain, MachineMemOperand *MMO, SDValue Ptr, SDValue Val, SDValue Mask) const
virtual bool useLoadStackGuardNode(const Module &M) const
If this function returns true, SelectionDAGBuilder emits a LOAD_STACK_GUARD node when it is lowering ...
virtual void LowerAsmOperandForConstraint(SDValue Op, StringRef Constraint, std::vector< SDValue > &Ops, SelectionDAG &DAG) const
Lower the specified operand into the Ops vector.
std::pair< SDValue, SDValue > makeLibCall(SelectionDAG &DAG, RTLIB::LibcallImpl LibcallImpl, EVT RetVT, ArrayRef< SDValue > Ops, MakeLibCallOptions CallOptions, const SDLoc &dl, SDValue Chain=SDValue()) const
Returns a pair of (return value, chain).
virtual void LowerOperationWrapper(SDNode *N, SmallVectorImpl< SDValue > &Results, SelectionDAG &DAG) const
This callback is invoked by the type legalizer to legalize nodes with an illegal operand type but leg...
virtual bool isInlineAsmTargetBranch(const SmallVectorImpl< StringRef > &AsmStrs, unsigned OpNo) const
On x86, return true if the operand with index OpNo is a CALL or JUMP instruction, which can use eithe...
virtual MVT getJumpTableRegTy(const DataLayout &DL) const
virtual bool CanLowerReturn(CallingConv::ID, MachineFunction &, bool, const SmallVectorImpl< ISD::OutputArg > &, LLVMContext &, const Type *RetTy) const
This hook should be implemented to check whether the return values described by the Outs array can fi...
CodeGenOptLevel getOptLevel() const
Returns the optimization level: None, Less, Default, or Aggressive.
unsigned NoTrapAfterNoreturn
Do not emit a trap instruction for 'unreachable' IR instructions behind noreturn calls,...
unsigned TrapUnreachable
Emit target-specific trap instruction for 'unreachable' IR instructions.
unsigned getID() const
Return the register class ID number.
iterator begin() const
begin/end - Return all of the registers in this class.
TargetRegisterInfo base class - We assume that the target defines a static array of TargetRegisterDes...
virtual const TargetFrameLowering * getFrameLowering() const
virtual const TargetRegisterInfo * getRegisterInfo() const =0
Return the target's register information.
This pass provides access to the codegen interfaces that are needed for IR-level transformations.
@ TCK_Latency
The latency of instruction.
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
Definition Twine.h:82
static constexpr TypeSize getFixed(ScalarTy ExactSize)
Definition TypeSize.h:343
The instances of the Type class are immutable: once they are created, they are never changed.
Definition Type.h:45
LLVM_ABI bool isEmptyTy() const
Return true if this type is empty, that is, it has no elements or all of its elements are empty.
Definition Type.cpp:180
bool isVectorTy() const
True if this is an instance of VectorType.
Definition Type.h:273
bool isPointerTy() const
True if this is an instance of PointerType.
Definition Type.h:267
LLVM_ABI unsigned getPointerAddressSpace() const
Get the address space of this pointer or pointer vector type.
static LLVM_ABI Type * getVoidTy(LLVMContext &C)
Definition Type.cpp:280
Type * getScalarType() const
If this is a vector type, return the element type, otherwise return 'this'.
Definition Type.h:352
LLVMContext & getContext() const
Return the LLVMContext in which this type was uniqued.
Definition Type.h:128
static LLVM_ABI IntegerType * getInt1Ty(LLVMContext &C)
Definition Type.cpp:293
bool isIntegerTy() const
True if this is an instance of IntegerType.
Definition Type.h:240
bool isTokenTy() const
Return true if this is 'token'.
Definition Type.h:234
static LLVM_ABI IntegerType * getIntNTy(LLVMContext &C, unsigned N)
Definition Type.cpp:300
bool isFPOrFPVectorTy() const
Return true if this is a FP type or a vector of FP.
Definition Type.h:225
bool isVoidTy() const
Return true if this is 'void'.
Definition Type.h:139
This function has undefined behavior.
A Use represents the edge between a Value definition and its users.
Definition Use.h:35
op_iterator op_begin()
Definition User.h:259
Value * getOperand(unsigned i) const
Definition User.h:207
unsigned getNumOperands() const
Definition User.h:229
op_iterator op_end()
Definition User.h:261
This class represents the va_arg llvm instruction, which returns an argument of the specified type gi...
LLVM_ABI CmpInst::Predicate getPredicate() const
This is the common base class for vector predication intrinsics.
static LLVM_ABI std::optional< unsigned > getVectorLengthParamPos(Intrinsic::ID IntrinsicID)
LLVM_ABI MaybeAlign getPointerAlignment() const
LLVM Value Representation.
Definition Value.h:75
Type * getType() const
All values are typed, get the type of this value.
Definition Value.h:256
bool hasOneUse() const
Return true if there is exactly one use of this value.
Definition Value.h:439
LLVMContext & getContext() const
All values hold a context through their type.
Definition Value.h:259
iterator_range< user_iterator > users()
Definition Value.h:426
LLVM_ABI const Value * stripPointerCasts() const
Strip off pointer casts, all-zero GEPs and address space casts.
Definition Value.cpp:708
bool use_empty() const
Definition Value.h:346
LLVM_ABI StringRef getName() const
Return a constant reference to the value's name.
Definition Value.cpp:322
Base class of all SIMD vector types.
Type * getElementType() const
constexpr ScalarTy getFixedValue() const
Definition TypeSize.h:200
static constexpr bool isKnownLE(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
Definition TypeSize.h:230
constexpr bool isScalable() const
Returns whether the quantity is scaled by a runtime quantity (vscale).
Definition TypeSize.h:168
constexpr ScalarTy getKnownMinValue() const
Returns the minimum value this quantity can represent.
Definition TypeSize.h:165
const ParentTy * getParent() const
Definition ilist_node.h:34
A raw_ostream that writes to an std::string.
CallInst * Call
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
constexpr char Align[]
Key for Kernel::Arg::Metadata::mAlign.
constexpr char Args[]
Key for Kernel::Metadata::mArgs.
constexpr char SymbolName[]
Key for Kernel::Metadata::mSymbolName.
constexpr std::underlying_type_t< E > Mask()
Get a bitmask with 1s in all places up to the high-order bit of E's largest value.
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
Definition CallingConv.h:24
@ AnyReg
OBSOLETED - Used for stack based JavaScript calls.
Definition CallingConv.h:60
@ AMDGPU_CS_Chain
Used on AMDGPUs to give the middle-end more control over argument placement.
@ X86_VectorCall
MSVC calling convention that passes vectors and vector aggregates in SSE registers.
@ C
The default llvm calling convention, compatible with C.
Definition CallingConv.h:34
NodeType
ISD::NodeType enum - This enum defines the target-independent operators for a SelectionDAG.
Definition ISDOpcodes.h:41
@ MERGE_VALUES
MERGE_VALUES - This node takes multiple discrete operands and returns them all as its individual resu...
Definition ISDOpcodes.h:261
@ STACKRESTORE
STACKRESTORE has two operands, an input chain and a pointer to restore to it returns an output chain.
@ STACKSAVE
STACKSAVE - STACKSAVE has one operand, an input chain.
@ CTLZ_ZERO_UNDEF
Definition ISDOpcodes.h:788
@ CONVERGENCECTRL_ANCHOR
The llvm.experimental.convergence.* intrinsics.
@ STRICT_FSETCC
STRICT_FSETCC/STRICT_FSETCCS - Constrained versions of SETCC, used for floating-point operands only.
Definition ISDOpcodes.h:511
@ DELETED_NODE
DELETED_NODE - This is an illegal value that is used to catch errors.
Definition ISDOpcodes.h:45
@ SET_FPENV
Sets the current floating-point environment.
@ LOOP_DEPENDENCE_RAW_MASK
@ VECREDUCE_SEQ_FADD
Generic reduction nodes.
@ EH_SJLJ_LONGJMP
OUTCHAIN = EH_SJLJ_LONGJMP(INCHAIN, buffer) This corresponds to the eh.sjlj.longjmp intrinsic.
Definition ISDOpcodes.h:168
@ INSERT_SUBVECTOR
INSERT_SUBVECTOR(VECTOR1, VECTOR2, IDX) - Returns a vector with VECTOR2 inserted into VECTOR1.
Definition ISDOpcodes.h:600
@ STACKADDRESS
STACKADDRESS - Represents the llvm.stackaddress intrinsic.
Definition ISDOpcodes.h:127
@ BSWAP
Byte Swap and Counting operators.
Definition ISDOpcodes.h:779
@ SMULFIX
RESULT = [US]MULFIX(LHS, RHS, SCALE) - Perform fixed point multiplication on 2 integers with the same...
Definition ISDOpcodes.h:394
@ VAEND
VAEND, VASTART - VAEND and VASTART have three operands: an input chain, pointer, and a SRCVALUE.
@ ATOMIC_STORE
OUTCHAIN = ATOMIC_STORE(INCHAIN, val, ptr) This corresponds to "store atomic" instruction.
@ RESET_FPENV
Set floating-point environment to default state.
@ ADD
Simple integer binary arithmetic operators.
Definition ISDOpcodes.h:264
@ SMULFIXSAT
Same as the corresponding unsaturated fixed point instructions, but the result is clamped between the...
Definition ISDOpcodes.h:400
@ SET_FPMODE
Sets the current dynamic floating-point control modes.
@ ANY_EXTEND
ANY_EXTEND - Used for integer types. The high bits are undefined.
Definition ISDOpcodes.h:853
@ ATOMIC_LOAD_USUB_COND
@ FMA
FMA - Perform a * b + c with no intermediate rounding step.
Definition ISDOpcodes.h:518
@ VECTOR_FIND_LAST_ACTIVE
Finds the index of the last active mask element Operands: Mask.
@ FMODF
FMODF - Decomposes the operand into integral and fractional parts, each having the same type and sign...
@ FATAN2
FATAN2 - atan2, inspired by libm.
@ FSINCOSPI
FSINCOSPI - Compute both the sine and cosine times pi more accurately than FSINCOS(pi*x),...
@ INTRINSIC_VOID
OUTCHAIN = INTRINSIC_VOID(INCHAIN, INTRINSICID, arg1, arg2, ...) This node represents a target intrin...
Definition ISDOpcodes.h:220
@ EH_SJLJ_SETUP_DISPATCH
OUTCHAIN = EH_SJLJ_SETUP_DISPATCH(INCHAIN) The target initializes the dispatch table here.
Definition ISDOpcodes.h:172
@ GlobalAddress
Definition ISDOpcodes.h:88
@ ATOMIC_CMP_SWAP_WITH_SUCCESS
Val, Success, OUTCHAIN = ATOMIC_CMP_SWAP_WITH_SUCCESS(INCHAIN, ptr, cmp, swap) N.b.
@ SINT_TO_FP
[SU]INT_TO_FP - These operators convert integers (whose interpreted sign depends on the first letter)...
Definition ISDOpcodes.h:880
@ CONCAT_VECTORS
CONCAT_VECTORS(VECTOR0, VECTOR1, ...) - Given a number of values of vector type with the same length ...
Definition ISDOpcodes.h:584
@ VECREDUCE_FMAX
FMIN/FMAX nodes can have flags, for NaN/NoNaN variants.
@ FADD
Simple binary floating point operators.
Definition ISDOpcodes.h:417
@ VECREDUCE_FMAXIMUM
FMINIMUM/FMAXIMUM nodes propatate NaNs and signed zeroes using the llvm.minimum and llvm....
@ ABS
ABS - Determine the unsigned absolute value of a signed integer value of the same bitwidth.
Definition ISDOpcodes.h:747
@ ATOMIC_FENCE
OUTCHAIN = ATOMIC_FENCE(INCHAIN, ordering, scope) This corresponds to the fence instruction.
@ RESET_FPMODE
Sets default dynamic floating-point control modes.
@ FMULADD
FMULADD - Performs a * b + c, with, or without, intermediate rounding.
Definition ISDOpcodes.h:528
@ FPTRUNC_ROUND
FPTRUNC_ROUND - This corresponds to the fptrunc_round intrinsic.
Definition ISDOpcodes.h:515
@ FAKE_USE
FAKE_USE represents a use of the operand but does not do anything.
@ BITCAST
BITCAST - This operator converts between integer, vector and FP values, as if the value was stored to...
Definition ISDOpcodes.h:993
@ BUILD_PAIR
BUILD_PAIR - This is the opposite of EXTRACT_ELEMENT in some ways.
Definition ISDOpcodes.h:254
@ CLMUL
Carry-less multiplication operations.
Definition ISDOpcodes.h:774
@ INIT_TRAMPOLINE
INIT_TRAMPOLINE - This corresponds to the init_trampoline intrinsic.
@ FLDEXP
FLDEXP - ldexp, inspired by libm (op0 * 2**op1).
@ SDIVFIX
RESULT = [US]DIVFIX(LHS, RHS, SCALE) - Perform fixed point division on 2 integers with the same width...
Definition ISDOpcodes.h:407
@ EH_LABEL
EH_LABEL - Represents a label in mid basic block used to track locations needed for debug and excepti...
@ ATOMIC_LOAD_USUB_SAT
@ EH_RETURN
OUTCHAIN = EH_RETURN(INCHAIN, OFFSET, HANDLER) - This node represents 'eh_return' gcc dwarf builtin,...
Definition ISDOpcodes.h:156
@ ANNOTATION_LABEL
ANNOTATION_LABEL - Represents a mid basic block label used by annotations.
@ SET_ROUNDING
Set rounding mode.
Definition ISDOpcodes.h:975
@ CONVERGENCECTRL_GLUE
This does not correspond to any convergence control intrinsic.
@ PARTIAL_REDUCE_UMLA
@ SIGN_EXTEND
Conversion operators.
Definition ISDOpcodes.h:844
@ PREALLOCATED_SETUP
PREALLOCATED_SETUP - This has 2 operands: an input chain and a SRCVALUE with the preallocated call Va...
@ READSTEADYCOUNTER
READSTEADYCOUNTER - This corresponds to the readfixedcounter intrinsic.
@ ADDROFRETURNADDR
ADDROFRETURNADDR - Represents the llvm.addressofreturnaddress intrinsic.
Definition ISDOpcodes.h:117
@ CONVERGENCECTRL_ENTRY
@ BR
Control flow instructions. These all have token chains.
@ VECREDUCE_FADD
These reductions have relaxed evaluation order semantics, and have a single vector operand.
@ CTTZ_ZERO_UNDEF
Bit counting operators with an undefined result for zero inputs.
Definition ISDOpcodes.h:787
@ PARTIAL_REDUCE_FMLA
@ PREFETCH
PREFETCH - This corresponds to a prefetch intrinsic.
@ FSINCOS
FSINCOS - Compute both fsin and fcos as a single operation.
@ SSUBO
Same for subtraction.
Definition ISDOpcodes.h:352
@ PREALLOCATED_ARG
PREALLOCATED_ARG - This has 3 operands: an input chain, a SRCVALUE with the preallocated call Value,...
@ BRIND
BRIND - Indirect branch.
@ BR_JT
BR_JT - Jumptable branch.
@ VECTOR_INTERLEAVE
VECTOR_INTERLEAVE(VEC1, VEC2, ...) - Returns N vectors from N input vectors, where N is the factor to...
Definition ISDOpcodes.h:635
@ FCANONICALIZE
Returns platform specific canonical encoding of a floating point number.
Definition ISDOpcodes.h:541
@ IS_FPCLASS
Performs a check of floating point class property, defined by IEEE-754.
Definition ISDOpcodes.h:548
@ SSUBSAT
RESULT = [US]SUBSAT(LHS, RHS) - Perform saturation subtraction on 2 integers with the same bit width ...
Definition ISDOpcodes.h:374
@ SELECT
Select(COND, TRUEVAL, FALSEVAL).
Definition ISDOpcodes.h:796
@ EXTRACT_ELEMENT
EXTRACT_ELEMENT - This is used to get the lower or upper (determined by a Constant,...
Definition ISDOpcodes.h:247
@ SPLAT_VECTOR
SPLAT_VECTOR(VAL) - Returns a vector with the scalar value VAL duplicated in all lanes.
Definition ISDOpcodes.h:672
@ VACOPY
VACOPY - VACOPY has 5 operands: an input chain, a destination pointer, a source pointer,...
@ GET_ACTIVE_LANE_MASK
GET_ACTIVE_LANE_MASK - this corrosponds to the llvm.get.active.lane.mask intrinsic.
@ BasicBlock
Various leaf nodes.
Definition ISDOpcodes.h:81
@ CopyFromReg
CopyFromReg - This node indicates that the input value is a virtual or physical register that is defi...
Definition ISDOpcodes.h:230
@ SADDO
RESULT, BOOL = [SU]ADDO(LHS, RHS) - Overflow-aware nodes for addition.
Definition ISDOpcodes.h:348
@ ARITH_FENCE
ARITH_FENCE - This corresponds to a arithmetic fence intrinsic.
@ VECREDUCE_ADD
Integer reductions may have a result type larger than the vector element type.
@ GET_ROUNDING
Returns current rounding mode: -1 Undefined 0 Round to 0 1 Round to nearest, ties to even 2 Round to ...
Definition ISDOpcodes.h:970
@ CLEANUPRET
CLEANUPRET - Represents a return from a cleanup block funclet.
@ ATOMIC_LOAD_FMAXIMUM
@ GET_FPMODE
Reads the current dynamic floating-point control modes.
@ GET_FPENV
Gets the current floating-point environment.
@ SHL
Shift and rotation operations.
Definition ISDOpcodes.h:765
@ AssertNoFPClass
AssertNoFPClass - These nodes record if a register contains a float value that is known to be not som...
Definition ISDOpcodes.h:78
@ PtrAuthGlobalAddress
A ptrauth constant.
Definition ISDOpcodes.h:100
@ EXTRACT_SUBVECTOR
EXTRACT_SUBVECTOR(VECTOR, IDX) - Returns a subvector from VECTOR.
Definition ISDOpcodes.h:614
@ EntryToken
EntryToken - This is the marker used to indicate the start of a region.
Definition ISDOpcodes.h:48
@ READ_REGISTER
READ_REGISTER, WRITE_REGISTER - This node represents llvm.register on the DAG, which implements the n...
Definition ISDOpcodes.h:139
@ EXTRACT_VECTOR_ELT
EXTRACT_VECTOR_ELT(VECTOR, IDX) - Returns a single element from VECTOR identified by the (potentially...
Definition ISDOpcodes.h:576
@ ZERO_EXTEND
ZERO_EXTEND - Used for integer types, zeroing the new bits.
Definition ISDOpcodes.h:850
@ DEBUGTRAP
DEBUGTRAP - Trap intended to get the attention of a debugger.
@ VSCALE
VSCALE(IMM) - Returns the runtime scaling factor used to calculate the number of elements within a sc...
@ LOCAL_RECOVER
LOCAL_RECOVER - Represents the llvm.localrecover intrinsic.
Definition ISDOpcodes.h:135
@ FMINNUM
FMINNUM/FMAXNUM - Perform floating-point minimum maximum on two values, following IEEE-754 definition...
@ UBSANTRAP
UBSANTRAP - Trap with an immediate describing the kind of sanitizer failure.
@ SSHLSAT
RESULT = [US]SHLSAT(LHS, RHS) - Perform saturation left shift.
Definition ISDOpcodes.h:386
@ PATCHPOINT
The llvm.experimental.patchpoint.
@ SMULO
Same for multiplication.
Definition ISDOpcodes.h:356
@ ATOMIC_LOAD_FMINIMUM
@ DYNAMIC_STACKALLOC
DYNAMIC_STACKALLOC - Allocate some number of bytes on the stack aligned to a specified boundary.
@ VECTOR_SPLICE_LEFT
VECTOR_SPLICE_LEFT(VEC1, VEC2, OFFSET) - Shifts CONCAT_VECTORS(VEC1, VEC2) left by OFFSET elements an...
Definition ISDOpcodes.h:653
@ SMIN
[US]{MIN/MAX} - Binary minimum or maximum of signed or unsigned integers.
Definition ISDOpcodes.h:727
@ VECTOR_REVERSE
VECTOR_REVERSE(VECTOR) - Returns a vector, of the same type as VECTOR, whose elements are shuffled us...
Definition ISDOpcodes.h:640
@ SDIVFIXSAT
Same as the corresponding unsaturated fixed point instructions, but the result is clamped between the...
Definition ISDOpcodes.h:413
@ FP_EXTEND
X = FP_EXTEND(Y) - Extend a smaller FP type into a larger FP type.
Definition ISDOpcodes.h:978
@ VSELECT
Select with a vector condition (op #0) and two vector operands (ops #1 and #2), returning a vector re...
Definition ISDOpcodes.h:805
@ PCMARKER
PCMARKER - This corresponds to the pcmarker intrinsic.
@ INLINEASM_BR
INLINEASM_BR - Branching version of inline asm. Used by asm-goto.
@ EH_DWARF_CFA
EH_DWARF_CFA - This node represents the pointer to the DWARF Canonical Frame Address (CFA),...
Definition ISDOpcodes.h:150
@ FRAMEADDR
FRAMEADDR, RETURNADDR - These nodes represent llvm.frameaddress and llvm.returnaddress on the DAG.
Definition ISDOpcodes.h:110
@ ATOMIC_LOAD_UDEC_WRAP
@ STRICT_FP_ROUND
X = STRICT_FP_ROUND(Y, TRUNC) - Rounding 'Y' from a larger floating point type down to the precision ...
Definition ISDOpcodes.h:500
@ FMINIMUM
FMINIMUM/FMAXIMUM - NaN-propagating minimum/maximum that also treat -0.0 as less than 0....
@ FP_TO_SINT
FP_TO_[US]INT - Convert a floating point value to a signed or unsigned integer.
Definition ISDOpcodes.h:926
@ READCYCLECOUNTER
READCYCLECOUNTER - This corresponds to the readcyclecounter intrinsic.
@ RELOC_NONE
Issue a no-op relocation against a given symbol at the current location.
@ AND
Bitwise operators - logical and, logical or, logical xor.
Definition ISDOpcodes.h:739
@ TRAP
TRAP - Trapping instruction.
@ INTRINSIC_WO_CHAIN
RESULT = INTRINSIC_WO_CHAIN(INTRINSICID, arg1, arg2, ...) This node represents a target intrinsic fun...
Definition ISDOpcodes.h:205
@ SCMP
[US]CMP - 3-way comparison of signed or unsigned integers.
Definition ISDOpcodes.h:735
@ VECTOR_SPLICE_RIGHT
VECTOR_SPLICE_RIGHT(VEC1, VEC2, OFFSET) - Shifts CONCAT_VECTORS(VEC1,VEC2) right by OFFSET elements a...
Definition ISDOpcodes.h:657
@ STRICT_FADD
Constrained versions of the binary floating point operators.
Definition ISDOpcodes.h:427
@ STACKMAP
The llvm.experimental.stackmap intrinsic.
@ FREEZE
FREEZE - FREEZE(VAL) returns an arbitrary value if VAL is UNDEF (or is evaluated to UNDEF),...
Definition ISDOpcodes.h:241
@ INSERT_VECTOR_ELT
INSERT_VECTOR_ELT(VECTOR, VAL, IDX) - Returns VECTOR with the element at IDX replaced with VAL.
Definition ISDOpcodes.h:565
@ TokenFactor
TokenFactor - This node takes multiple tokens as input and produces a single token result.
Definition ISDOpcodes.h:53
@ ATOMIC_SWAP
Val, OUTCHAIN = ATOMIC_SWAP(INCHAIN, ptr, amt) Val, OUTCHAIN = ATOMIC_LOAD_[OpName](INCHAIN,...
@ FFREXP
FFREXP - frexp, extract fractional and exponent component of a floating-point value.
@ FP_ROUND
X = FP_ROUND(Y, TRUNC) - Rounding 'Y' from a larger floating point type down to the precision of the ...
Definition ISDOpcodes.h:959
@ VECTOR_COMPRESS
VECTOR_COMPRESS(Vec, Mask, Passthru) consecutively place vector elements based on mask e....
Definition ISDOpcodes.h:699
@ SPONENTRY
SPONENTRY - Represents the llvm.sponentry intrinsic.
Definition ISDOpcodes.h:122
@ CLEAR_CACHE
llvm.clear_cache intrinsic Operands: Input Chain, Start Addres, End Address Outputs: Output Chain
@ CONVERGENCECTRL_LOOP
@ INLINEASM
INLINEASM - Represents an inline asm block.
@ FP_TO_SINT_SAT
FP_TO_[US]INT_SAT - Convert floating point value in operand 0 to a signed or unsigned scalar integer ...
Definition ISDOpcodes.h:945
@ VECREDUCE_FMINIMUM
@ EH_SJLJ_SETJMP
RESULT, OUTCHAIN = EH_SJLJ_SETJMP(INCHAIN, buffer) This corresponds to the eh.sjlj....
Definition ISDOpcodes.h:162
@ TRUNCATE
TRUNCATE - Completely drop the high bits.
Definition ISDOpcodes.h:856
@ BRCOND
BRCOND - Conditional branch.
@ VECREDUCE_SEQ_FMUL
@ CATCHRET
CATCHRET - Represents a return from a catch block funclet.
@ AssertSext
AssertSext, AssertZext - These nodes record if a register contains a value that has already been zero...
Definition ISDOpcodes.h:62
@ ATOMIC_LOAD_UINC_WRAP
@ FCOPYSIGN
FCOPYSIGN(X, Y) - Return the value of X with the sign of Y.
Definition ISDOpcodes.h:534
@ SADDSAT
RESULT = [US]ADDSAT(LHS, RHS) - Perform saturation addition on 2 integers with the same bit width (W)...
Definition ISDOpcodes.h:365
@ VECTOR_DEINTERLEAVE
VECTOR_DEINTERLEAVE(VEC1, VEC2, ...) - Returns N vectors from N input vectors, where N is the factor ...
Definition ISDOpcodes.h:624
@ GET_DYNAMIC_AREA_OFFSET
GET_DYNAMIC_AREA_OFFSET - get offset from native SP to the address of the most recent dynamic alloca.
@ FMINIMUMNUM
FMINIMUMNUM/FMAXIMUMNUM - minimumnum/maximumnum that is same with FMINNUM_IEEE and FMAXNUM_IEEE besid...
@ ADJUST_TRAMPOLINE
ADJUST_TRAMPOLINE - This corresponds to the adjust_trampoline intrinsic.
@ INTRINSIC_W_CHAIN
RESULT,OUTCHAIN = INTRINSIC_W_CHAIN(INCHAIN, INTRINSICID, arg1, ...) This node represents a target in...
Definition ISDOpcodes.h:213
@ BUILD_VECTOR
BUILD_VECTOR(ELT0, ELT1, ELT2, ELT3,...) - Return a fixed-width vector with the specified,...
Definition ISDOpcodes.h:556
@ LOOP_DEPENDENCE_WAR_MASK
The llvm.loop.dependence.
CondCode
ISD::CondCode enum - These are ordered carefully to make the bitfields below work out,...
This namespace contains an enum with a value for every intrinsic/builtin function known by LLVM.
Flag
These should be considered private to the implementation of the MCInstrDesc class.
BinaryOp_match< SrcTy, SpecificConstantMatch, TargetOpcode::G_XOR, true > m_Not(const SrcTy &&Src)
Matches a register not-ed by a G_XOR.
OneUse_match< SubPat > m_OneUse(const SubPat &SP)
bool match(Val *V, const Pattern &P)
specificval_ty m_Specific(const Value *V)
Match if we have a specific specified value.
TwoOps_match< Val_t, Idx_t, Instruction::ExtractElement > m_ExtractElt(const Val_t &Val, const Idx_t &Idx)
Matches ExtractElementInst.
IntrinsicID_match m_VScale()
Matches a call to llvm.vscale().
auto m_LogicalOr()
Matches L || R where L and R are arbitrary values.
class_match< Value > m_Value()
Match an arbitrary value and ignore it.
auto m_LogicalAnd()
Matches L && R where L and R are arbitrary values.
Offsets
Offsets in bytes from the start of the input buffer.
std::pair< JumpTableHeader, JumpTable > JumpTableBlock
void sortAndRangeify(CaseClusterVector &Clusters)
Sort Clusters and merge adjacent cases.
std::vector< CaseCluster > CaseClusterVector
@ CC_Range
A cluster of adjacent case labels with the same destination, or just one case.
@ CC_JumpTable
A cluster of cases suitable for jump table lowering.
@ CC_BitTests
A cluster of cases suitable for bit test lowering.
SmallVector< SwitchWorkListItem, 4 > SwitchWorkList
CaseClusterVector::iterator CaseClusterIt
initializer< Ty > init(const Ty &Val)
LocationClass< Ty > location(Ty &L)
@ DW_OP_LLVM_arg
Only used in LLVM metadata.
Definition Dwarf.h:149
ExceptionBehavior
Exception behavior used for floating point operations.
Definition FPEnv.h:39
@ ebStrict
This corresponds to "fpexcept.strict".
Definition FPEnv.h:42
@ ebMayTrap
This corresponds to "fpexcept.maytrap".
Definition FPEnv.h:41
@ ebIgnore
This corresponds to "fpexcept.ignore".
Definition FPEnv.h:40
constexpr float log2ef
Definition MathExtras.h:51
constexpr double e
constexpr float ln2f
Definition MathExtras.h:49
NodeAddr< FuncNode * > Func
Definition RDFGraph.h:393
friend class Instruction
Iterator for Instructions in a `BasicBlock.
Definition BasicBlock.h:73
This is an optimization pass for GlobalISel generic memory operations.
Definition Types.h:26
@ Low
Lower the current thread's priority such that it does not affect foreground tasks significantly.
Definition Threading.h:280
unsigned Log2_32_Ceil(uint32_t Value)
Return the ceil log base 2 of the specified value, 32 if the value is zero.
Definition MathExtras.h:344
@ Offset
Definition DWP.cpp:532
@ Length
Definition DWP.cpp:532
FunctionAddr VTableAddr Value
Definition InstrProf.h:137
ISD::CondCode getICmpCondCode(ICmpInst::Predicate Pred)
getICmpCondCode - Return the ISD condition code corresponding to the given LLVM IR integer condition ...
Definition Analysis.cpp:237
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1737
auto size(R &&Range, std::enable_if_t< std::is_base_of< std::random_access_iterator_tag, typename std::iterator_traits< decltype(Range.begin())>::iterator_category >::value, void > *=nullptr)
Get the size of a range.
Definition STLExtras.h:1667
LLVM_ABI void GetReturnInfo(CallingConv::ID CC, Type *ReturnType, AttributeList attr, SmallVectorImpl< ISD::OutputArg > &Outs, const TargetLowering &TLI, const DataLayout &DL)
Given an LLVM IR type and return type attributes, compute the return value EVTs and flags,...
MachineInstrBuilder BuildMI(MachineFunction &MF, const MIMetadata &MIMD, const MCInstrDesc &MCID)
Builder interface. Specify how to create the initial instruction itself.
LLVM_ABI bool isOnlyUsedInZeroEqualityComparison(const Instruction *CxtI)
void ComputeValueVTs(const TargetLowering &TLI, const DataLayout &DL, Type *Ty, SmallVectorImpl< EVT > &ValueVTs, SmallVectorImpl< EVT > *MemVTs=nullptr, SmallVectorImpl< TypeSize > *Offsets=nullptr, TypeSize StartingOffset=TypeSize::getZero())
ComputeValueVTs - Given an LLVM IR type, compute a sequence of EVTs that represent all the individual...
Definition Analysis.cpp:119
LLVM_ABI SDValue peekThroughBitcasts(SDValue V)
Return the non-bitcasted source operand of V if it exists.
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:643
@ Done
Definition Threading.h:60
int countr_one(T Value)
Count the number of ones from the least significant bit to the first zero bit.
Definition bit.h:293
LLVM_ABI void diagnoseDontCall(const CallInst &CI)
auto successors(const MachineBasicBlock *BB)
bool isIntOrFPConstant(SDValue V)
Return true if V is either a integer or FP constant.
static ConstantRange getRange(Value *Op, SCCPSolver &Solver, const SmallPtrSetImpl< Value * > &InsertedValues)
Helper for getting ranges from Solver.
void append_range(Container &C, Range &&R)
Wrapper function to append range R to container C.
Definition STLExtras.h:2198
Value * GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset, const DataLayout &DL, bool AllowNonInbounds=true)
Analyze the specified pointer to see if it can be expressed as a base pointer plus a constant offset.
constexpr bool isUIntN(unsigned N, uint64_t x)
Checks if an unsigned integer fits into the given (dynamic) bit width.
Definition MathExtras.h:243
auto cast_or_null(const Y &Val)
Definition Casting.h:714
constexpr T alignDown(U Value, V Align, W Skew=0)
Returns the largest unsigned integer less than or equal to Value and is Skew mod Align.
Definition MathExtras.h:546
gep_type_iterator gep_type_end(const User *GEP)
constexpr auto equal_to(T &&Arg)
Functor variant of std::equal_to that can be used as a UnaryPredicate in functional algorithms like a...
Definition STLExtras.h:2163
constexpr int popcount(T Value) noexcept
Count the number of set bits in a value.
Definition bit.h:154
LLVM_ABI ConstantRange getConstantRangeFromMetadata(const MDNode &RangeMD)
Parse out a conservative ConstantRange from !range metadata.
detail::concat_range< ValueT, RangeTs... > concat(RangeTs &&...Ranges)
Returns a concatenated range across two or more ranges.
Definition STLExtras.h:1150
bool isScopedEHPersonality(EHPersonality Pers)
Returns true if this personality uses scope-style EH IR instructions: catchswitch,...
int countr_zero(T Val)
Count number of 0's from the least significant bit to the most stopping at the first 1.
Definition bit.h:202
void ComputeValueTypes(const DataLayout &DL, Type *Ty, SmallVectorImpl< Type * > &Types, SmallVectorImpl< TypeSize > *Offsets=nullptr, TypeSize StartingOffset=TypeSize::getZero())
Given an LLVM IR type, compute non-aggregate subtypes.
Definition Analysis.cpp:72
auto dyn_cast_or_null(const Y &Val)
Definition Casting.h:753
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1744
LLVM_ABI llvm::SmallVector< int, 16 > createStrideMask(unsigned Start, unsigned Stride, unsigned VF)
Create a stride shuffle mask.
@ SPF_ABS
Floating point maxnum.
@ SPF_NABS
Absolute value.
@ SPF_FMAXNUM
Floating point minnum.
@ SPF_UMIN
Signed minimum.
@ SPF_UMAX
Signed maximum.
@ SPF_SMAX
Unsigned minimum.
@ SPF_FMINNUM
Unsigned maximum.
decltype(auto) get(const PointerIntPair< PointerTy, IntBits, IntType, PtrTraits, Info > &Pair)
detail::zippy< detail::zip_first, T, U, Args... > zip_first(T &&t, U &&u, Args &&...args)
zip iterator that, for the sake of efficiency, assumes the first iteratee to be the shortest.
Definition STLExtras.h:852
void sort(IteratorTy Start, IteratorTy End)
Definition STLExtras.h:1634
FPClassTest
Floating-point class tests, supported by 'is_fpclass' intrinsic.
LLVM_ABI SelectPatternResult matchSelectPattern(Value *V, Value *&LHS, Value *&RHS, Instruction::CastOps *CastOp=nullptr, unsigned Depth=0)
Pattern match integer [SU]MIN, [SU]MAX and ABS idioms, returning the kind and providing the out param...
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition Debug.cpp:207
LLVM_ABI void report_fatal_error(Error Err, bool gen_crash_diag=true)
Definition Error.cpp:163
generic_gep_type_iterator<> gep_type_iterator
FunctionAddr VTableAddr Count
Definition InstrProf.h:139
auto succ_size(const MachineBasicBlock *BB)
bool hasSingleElement(ContainerTy &&C)
Returns true if the given container only contains a single element.
Definition STLExtras.h:300
LLVM_ABI ConstantRange getVScaleRange(const Function *F, unsigned BitWidth)
Determine the possible constant range of vscale with the given bit width, based on the vscale_range f...
ISD::CondCode getFCmpCondCode(FCmpInst::Predicate Pred)
getFCmpCondCode - Return the ISD condition code corresponding to the given LLVM IR floating-point con...
Definition Analysis.cpp:203
LLVM_ABI EHPersonality classifyEHPersonality(const Value *Pers)
See if the given exception handling personality function is one that we understand.
class LLVM_GSL_OWNER SmallVector
Forward declaration of SmallVector so that calculateSmallVectorDefaultInlinedElements can reference s...
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
Definition Casting.h:547
LLVM_ATTRIBUTE_VISIBILITY_DEFAULT AnalysisKey InnerAnalysisManagerProxy< AnalysisManagerT, IRUnitT, ExtraArgTs... >::Key
LLVM_ABI Value * salvageDebugInfoImpl(Instruction &I, uint64_t CurrentLocOps, SmallVectorImpl< uint64_t > &Ops, SmallVectorImpl< Value * > &AdditionalValues)
Definition Local.cpp:2287
LLVM_ABI raw_fd_ostream & errs()
This returns a reference to a raw_ostream for standard error.
@ Global
Append to llvm.global_dtors.
AtomicOrdering
Atomic ordering for LLVM's memory model.
@ First
Helpers to iterate all locations in the MemoryEffectsBase class.
Definition ModRef.h:74
bool isFuncletEHPersonality(EHPersonality Pers)
Returns true if this is a personality function that invokes handler funclets (which must return to it...
FunctionAddr VTableAddr uintptr_t uintptr_t Data
Definition InstrProf.h:189
LLVM_ABI bool isAssignmentTrackingEnabled(const Module &M)
Return true if assignment tracking is enabled for module M.
LLVM_ABI llvm::SmallVector< int, 16 > createInterleaveMask(unsigned VF, unsigned NumVecs)
Create an interleave shuffle mask.
@ UMin
Unsigned integer min implemented in terms of select(cmp()).
@ Or
Bitwise or logical OR of integers.
@ Mul
Product of integers.
@ And
Bitwise or logical AND of integers.
@ Sub
Subtraction of integers.
@ Add
Sum of integers.
uint64_t alignTo(uint64_t Size, Align A)
Returns a multiple of A needed to store Size bytes.
Definition Alignment.h:144
@ SPNB_RETURNS_NAN
NaN behavior not applicable.
@ SPNB_RETURNS_OTHER
Given one NaN input, returns the NaN.
@ SPNB_RETURNS_ANY
Given one NaN input, returns the non-NaN.
bool isInTailCallPosition(const CallBase &Call, const TargetMachine &TM, bool ReturnsFirstArg=false)
Test if the given instruction is in a position to be optimized with a tail-call.
Definition Analysis.cpp:539
DWARFExpression::Operation Op
ISD::CondCode getFCmpCodeWithoutNaN(ISD::CondCode CC)
getFCmpCodeWithoutNaN - Given an ISD condition code comparing floats, return the equivalent code if w...
Definition Analysis.cpp:225
ArrayRef(const T &OneElt) -> ArrayRef< T >
bool isAsynchronousEHPersonality(EHPersonality Pers)
Returns true if this personality function catches asynchronous exceptions.
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:559
LLVM_ABI std::optional< RoundingMode > convertStrToRoundingMode(StringRef)
Returns a valid RoundingMode enumerator when given a string that is valid as input in constrained int...
Definition FPEnv.cpp:25
gep_type_iterator gep_type_begin(const User *GEP)
void erase_if(Container &C, UnaryPredicate P)
Provide a container algorithm similar to C++ Library Fundamentals v2's erase_if which is equivalent t...
Definition STLExtras.h:2182
GlobalValue * ExtractTypeInfo(Value *V)
ExtractTypeInfo - Returns the type info, possibly bitcast, encoded in V.
Definition Analysis.cpp:181
bool is_contained(R &&Range, const E &Element)
Returns true if Element is found in Range.
Definition STLExtras.h:1945
Align commonAlignment(Align A, uint64_t Offset)
Returns the alignment that satisfies both alignments.
Definition Alignment.h:201
bool all_equal(std::initializer_list< T > Values)
Returns true if all Values in the initializer lists are equal or the list.
Definition STLExtras.h:2156
LLVM_ABI Constant * ConstantFoldLoadFromConstPtr(Constant *C, Type *Ty, APInt Offset, const DataLayout &DL)
Return the value that a load from C with offset Offset would produce if it is constant and determinab...
unsigned ComputeLinearIndex(Type *Ty, const unsigned *Indices, const unsigned *IndicesEnd, unsigned CurIndex=0)
Compute the linearized index of a member in a nested aggregate/struct/array.
Definition Analysis.cpp:33
T bit_floor(T Value)
Returns the largest integral power of two no greater than Value if Value is nonzero.
Definition bit.h:330
@ Default
The result values are uniform if and only if all operands are uniform.
Definition Uniformity.h:20
LLVM_ABI void reportFatalUsageError(Error Err)
Report a fatal error that does not indicate a bug in LLVM.
Definition Error.cpp:177
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
Definition BitVector.h:872
#define N
#define NC
Definition regutils.h:42
This struct is a compact representation of a valid (non-zero power of two) alignment.
Definition Alignment.h:39
constexpr uint64_t value() const
This is a hole in the type system and should not be abused.
Definition Alignment.h:77
Extended Value Type.
Definition ValueTypes.h:35
TypeSize getStoreSize() const
Return the number of bytes overwritten by a store of the specified value type.
Definition ValueTypes.h:395
static EVT getVectorVT(LLVMContext &Context, EVT VT, unsigned NumElements, bool IsScalable=false)
Returns the EVT that represents a vector NumElements in length, where each element is of type VT.
Definition ValueTypes.h:74
uint64_t getScalarStoreSize() const
Definition ValueTypes.h:402
bool bitsGT(EVT VT) const
Return true if this has more bits than VT.
Definition ValueTypes.h:284
bool bitsLT(EVT VT) const
Return true if this has less bits than VT.
Definition ValueTypes.h:300
bool isFloatingPoint() const
Return true if this is a FP or a vector FP type.
Definition ValueTypes.h:147
ElementCount getVectorElementCount() const
Definition ValueTypes.h:350
TypeSize getSizeInBits() const
Return the size of the specified value type in bits.
Definition ValueTypes.h:373
unsigned getVectorMinNumElements() const
Given a vector type, return the minimum number of elements it contains.
Definition ValueTypes.h:359
static LLVM_ABI EVT getEVT(Type *Ty, bool HandleUnknown=false)
Return the value type corresponding to the specified type.
EVT changeVectorElementType(LLVMContext &Context, EVT EltVT) const
Return a VT for a vector type whose attributes match ourselves with the exception of the element type...
Definition ValueTypes.h:102
MVT getSimpleVT() const
Return the SimpleValueType held in the specified simple EVT.
Definition ValueTypes.h:316
static EVT getIntegerVT(LLVMContext &Context, unsigned BitWidth)
Returns the EVT that represents an integer with the given number of bits.
Definition ValueTypes.h:65
bool isRISCVVectorTuple() const
Return true if this is a vector value type.
Definition ValueTypes.h:179
uint64_t getFixedSizeInBits() const
Return the size of the specified fixed width value type in bits.
Definition ValueTypes.h:381
bool isFixedLengthVector() const
Definition ValueTypes.h:181
bool isVector() const
Return true if this is a vector value type.
Definition ValueTypes.h:168
EVT getScalarType() const
If this is a vector type, return the element type, otherwise return this.
Definition ValueTypes.h:323
bool bitsGE(EVT VT) const
Return true if this has no less bits than VT.
Definition ValueTypes.h:292
bool isScalableVector() const
Return true if this is a vector type where the runtime length is machine dependent.
Definition ValueTypes.h:174
EVT getVectorElementType() const
Given a vector type, return the type of each element.
Definition ValueTypes.h:328
EVT changeElementType(LLVMContext &Context, EVT EltVT) const
Return a VT for a type whose attributes match ourselves with the exception of the element type that i...
Definition ValueTypes.h:113
bool isScalarInteger() const
Return true if this is an integer, but not a vector.
Definition ValueTypes.h:157
unsigned getVectorNumElements() const
Given a vector type, return the number of elements it contains.
Definition ValueTypes.h:336
bool isInteger() const
Return true if this is an integer or a vector integer type.
Definition ValueTypes.h:152
void setPointerAddrSpace(unsigned AS)
InputArg - This struct carries flags and type information about a single incoming (formal) argument o...
static const unsigned NoArgIndex
Sentinel value for implicit machine-level input arguments.
OutputArg - This struct carries flags and a value for a single outgoing (actual) argument or outgoing...
ConstraintPrefix Type
Type - The basic type of the constraint: input/output/clobber/label.
Definition InlineAsm.h:128
unsigned countMinLeadingZeros() const
Returns the minimum number of leading zero bits.
Definition KnownBits.h:261
This class contains a discriminated union of information about pointers in memory operands,...
static LLVM_ABI MachinePointerInfo getUnknownStack(MachineFunction &MF)
Stack memory without other information.
static LLVM_ABI MachinePointerInfo getFixedStack(MachineFunction &MF, int FI, int64_t Offset=0)
Return a MachinePointerInfo record that refers to the specified FrameIndex.
A lightweight accessor for an operand bundle meant to be passed around by value.
This struct represents the registers (physical or virtual) that a particular set of values is assigne...
SmallVector< std::pair< Register, TypeSize >, 4 > getRegsAndSizes() const
Return a list of registers and their sizes.
RegsForValue()=default
SmallVector< unsigned, 4 > RegCount
This list holds the number of registers for each value.
SmallVector< EVT, 4 > ValueVTs
The value types of the values, which may not be legal, and may need be promoted or synthesized from o...
SmallVector< Register, 4 > Regs
This list holds the registers assigned to the values.
void AddInlineAsmOperands(InlineAsm::Kind Code, bool HasMatching, unsigned MatchingIdx, const SDLoc &dl, SelectionDAG &DAG, std::vector< SDValue > &Ops) const
Add this value to the specified inlineasm node operand list.
SDValue getCopyFromRegs(SelectionDAG &DAG, FunctionLoweringInfo &FuncInfo, const SDLoc &dl, SDValue &Chain, SDValue *Glue, const Value *V=nullptr) const
Emit a series of CopyFromReg nodes that copies from this value and returns the result as a ValueVTs v...
SmallVector< MVT, 4 > RegVTs
The value types of the registers.
void getCopyToRegs(SDValue Val, SelectionDAG &DAG, const SDLoc &dl, SDValue &Chain, SDValue *Glue, const Value *V=nullptr, ISD::NodeType PreferredExtendType=ISD::ANY_EXTEND) const
Emit a series of CopyToReg nodes that copies the specified value into the registers specified by this...
std::optional< CallingConv::ID > CallConv
Records if this value needs to be treated in an ABI dependant manner, different to normal type legali...
bool occupiesMultipleRegs() const
Check if the total RegCount is greater than one.
These are IR-level optimization flags that may be propagated to SDNodes.
void copyFMF(const FPMathOperator &FPMO)
Propagate the fast-math-flags from an IR FPMathOperator.
void setUnpredictable(bool b)
bool hasAllowReassociation() const
void setNoUnsignedWrap(bool b)
void setNoSignedWrap(bool b)
This represents a list of ValueType's that has been intern'd by a SelectionDAG.
A MapVector that performs no allocations if smaller than a certain size.
Definition MapVector.h:276
This structure is used to communicate between SelectionDAGBuilder and SDISel for the code generation ...
SDLoc DL
The debug location of the instruction this CaseBlock was produced from.
static CaseCluster range(const ConstantInt *Low, const ConstantInt *High, MachineBasicBlock *MBB, BranchProbability Prob)
Register Reg
The virtual register containing the index of the jump table entry to jump to.
MachineBasicBlock * Default
The MBB of the default bb, which is a successor of the range check MBB.
unsigned JTI
The JumpTableIndex for this jump table in the function.
MachineBasicBlock * MBB
The MBB into which to emit the code for the indirect jump.
std::optional< SDLoc > SL
The debug location of the instruction this JumpTable was produced from.
This contains information for each constraint that we are lowering.
TargetLowering::ConstraintType ConstraintType
Information about the constraint code, e.g.
This structure contains all information that is necessary for lowering calls.
CallLoweringInfo & setConvergent(bool Value=true)
CallLoweringInfo & setDeactivationSymbol(GlobalValue *Sym)
CallLoweringInfo & setCFIType(const ConstantInt *Type)
SmallVector< ISD::InputArg, 32 > Ins
Type * OrigRetTy
Original unlegalized return type.
CallLoweringInfo & setDiscardResult(bool Value=true)
CallLoweringInfo & setIsPatchPoint(bool Value=true)
CallLoweringInfo & setDebugLoc(const SDLoc &dl)
CallLoweringInfo & setTailCall(bool Value=true)
CallLoweringInfo & setIsPreallocated(bool Value=true)
CallLoweringInfo & setConvergenceControlToken(SDValue Token)
SmallVector< ISD::OutputArg, 32 > Outs
Type * RetTy
Same as OrigRetTy, or partially legalized for soft float libcalls.
CallLoweringInfo & setChain(SDValue InChain)
CallLoweringInfo & setPtrAuth(PtrAuthInfo Value)
CallLoweringInfo & setCallee(CallingConv::ID CC, Type *ResultType, SDValue Target, ArgListTy &&ArgsList, AttributeSet ResultAttrs={})
This structure is used to pass arguments to makeLibCall function.
MakeLibCallOptions & setDiscardResult(bool Value=true)
This structure contains the information necessary for lowering pointer-authenticating indirect calls.
void addIPToStateRange(const InvokeInst *II, MCSymbol *InvokeBegin, MCSymbol *InvokeEnd)