LLVM 22.0.0git
SelectionDAGBuilder.cpp
Go to the documentation of this file.
1//===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This implements routines for translating from LLVM IR into SelectionDAG IR.
10//
11//===----------------------------------------------------------------------===//
12
13#include "SelectionDAGBuilder.h"
14#include "SDNodeDbgValue.h"
15#include "llvm/ADT/APFloat.h"
16#include "llvm/ADT/APInt.h"
17#include "llvm/ADT/BitVector.h"
18#include "llvm/ADT/STLExtras.h"
21#include "llvm/ADT/StringRef.h"
22#include "llvm/ADT/Twine.h"
26#include "llvm/Analysis/Loads.h"
58#include "llvm/IR/Argument.h"
59#include "llvm/IR/Attributes.h"
60#include "llvm/IR/BasicBlock.h"
61#include "llvm/IR/CFG.h"
62#include "llvm/IR/CallingConv.h"
63#include "llvm/IR/Constant.h"
65#include "llvm/IR/Constants.h"
66#include "llvm/IR/DataLayout.h"
67#include "llvm/IR/DebugInfo.h"
72#include "llvm/IR/Function.h"
74#include "llvm/IR/InlineAsm.h"
75#include "llvm/IR/InstrTypes.h"
78#include "llvm/IR/Intrinsics.h"
79#include "llvm/IR/IntrinsicsAArch64.h"
80#include "llvm/IR/IntrinsicsAMDGPU.h"
81#include "llvm/IR/IntrinsicsWebAssembly.h"
82#include "llvm/IR/LLVMContext.h"
84#include "llvm/IR/Metadata.h"
85#include "llvm/IR/Module.h"
86#include "llvm/IR/Operator.h"
88#include "llvm/IR/Statepoint.h"
89#include "llvm/IR/Type.h"
90#include "llvm/IR/User.h"
91#include "llvm/IR/Value.h"
92#include "llvm/MC/MCContext.h"
97#include "llvm/Support/Debug.h"
105#include <cstddef>
106#include <limits>
107#include <optional>
108#include <tuple>
109
110using namespace llvm;
111using namespace PatternMatch;
112using namespace SwitchCG;
113
114#define DEBUG_TYPE "isel"
115
116/// LimitFloatPrecision - Generate low-precision inline sequences for
117/// some float libcalls (6, 8 or 12 bits).
118static unsigned LimitFloatPrecision;
119
120static cl::opt<bool>
121 InsertAssertAlign("insert-assert-align", cl::init(true),
122 cl::desc("Insert the experimental `assertalign` node."),
124
126 LimitFPPrecision("limit-float-precision",
127 cl::desc("Generate low-precision inline sequences "
128 "for some float libcalls"),
130 cl::init(0));
131
133 "switch-peel-threshold", cl::Hidden, cl::init(66),
134 cl::desc("Set the case probability threshold for peeling the case from a "
135 "switch statement. A value greater than 100 will void this "
136 "optimization"));
137
138// Limit the width of DAG chains. This is important in general to prevent
139// DAG-based analysis from blowing up. For example, alias analysis and
140// load clustering may not complete in reasonable time. It is difficult to
141// recognize and avoid this situation within each individual analysis, and
142// future analyses are likely to have the same behavior. Limiting DAG width is
143// the safe approach and will be especially important with global DAGs.
144//
145// MaxParallelChains default is arbitrarily high to avoid affecting
146// optimization, but could be lowered to improve compile time. Any ld-ld-st-st
147// sequence over this should have been converted to llvm.memcpy by the
148// frontend. It is easy to induce this behavior with .ll code such as:
149// %buffer = alloca [4096 x i8]
150// %data = load [4096 x i8]* %argPtr
151// store [4096 x i8] %data, [4096 x i8]* %buffer
152static const unsigned MaxParallelChains = 64;
153
155 const SDValue *Parts, unsigned NumParts,
156 MVT PartVT, EVT ValueVT, const Value *V,
157 SDValue InChain,
158 std::optional<CallingConv::ID> CC);
159
160/// getCopyFromParts - Create a value that contains the specified legal parts
161/// combined into the value they represent. If the parts combine to a type
162/// larger than ValueVT then AssertOp can be used to specify whether the extra
163/// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
164/// (ISD::AssertSext).
165static SDValue
166getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts,
167 unsigned NumParts, MVT PartVT, EVT ValueVT, const Value *V,
168 SDValue InChain,
169 std::optional<CallingConv::ID> CC = std::nullopt,
170 std::optional<ISD::NodeType> AssertOp = std::nullopt) {
171 // Let the target assemble the parts if it wants to
172 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
173 if (SDValue Val = TLI.joinRegisterPartsIntoValue(DAG, DL, Parts, NumParts,
174 PartVT, ValueVT, CC))
175 return Val;
176
177 if (ValueVT.isVector())
178 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT, V,
179 InChain, CC);
180
181 assert(NumParts > 0 && "No parts to assemble!");
182 SDValue Val = Parts[0];
183
184 if (NumParts > 1) {
185 // Assemble the value from multiple parts.
186 if (ValueVT.isInteger()) {
187 unsigned PartBits = PartVT.getSizeInBits();
188 unsigned ValueBits = ValueVT.getSizeInBits();
189
190 // Assemble the power of 2 part.
191 unsigned RoundParts = llvm::bit_floor(NumParts);
192 unsigned RoundBits = PartBits * RoundParts;
193 EVT RoundVT = RoundBits == ValueBits ?
194 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
195 SDValue Lo, Hi;
196
197 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
198
199 if (RoundParts > 2) {
200 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, PartVT, HalfVT, V,
201 InChain);
202 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, RoundParts / 2,
203 PartVT, HalfVT, V, InChain);
204 } else {
205 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
206 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
207 }
208
209 if (DAG.getDataLayout().isBigEndian())
210 std::swap(Lo, Hi);
211
212 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
213
214 if (RoundParts < NumParts) {
215 // Assemble the trailing non-power-of-2 part.
216 unsigned OddParts = NumParts - RoundParts;
217 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
218 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts, OddParts, PartVT,
219 OddVT, V, InChain, CC);
220
221 // Combine the round and odd parts.
222 Lo = Val;
223 if (DAG.getDataLayout().isBigEndian())
224 std::swap(Lo, Hi);
225 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
226 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
227 Hi = DAG.getNode(
228 ISD::SHL, DL, TotalVT, Hi,
229 DAG.getShiftAmountConstant(Lo.getValueSizeInBits(), TotalVT, DL));
230 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
231 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
232 }
233 } else if (PartVT.isFloatingPoint()) {
234 // FP split into multiple FP parts (for ppcf128)
235 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 &&
236 "Unexpected split");
237 SDValue Lo, Hi;
238 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
239 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
240 if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout()))
241 std::swap(Lo, Hi);
242 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
243 } else {
244 // FP split into integer parts (soft fp)
245 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
246 !PartVT.isVector() && "Unexpected split");
247 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
248 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V,
249 InChain, CC);
250 }
251 }
252
253 // There is now one part, held in Val. Correct it to match ValueVT.
254 // PartEVT is the type of the register class that holds the value.
255 // ValueVT is the type of the inline asm operation.
256 EVT PartEVT = Val.getValueType();
257
258 if (PartEVT == ValueVT)
259 return Val;
260
261 if (PartEVT.isInteger() && ValueVT.isFloatingPoint() &&
262 ValueVT.bitsLT(PartEVT)) {
263 // For an FP value in an integer part, we need to truncate to the right
264 // width first.
265 PartEVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
266 Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val);
267 }
268
269 // Handle types that have the same size.
270 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits())
271 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
272
273 // Handle types with different sizes.
274 if (PartEVT.isInteger() && ValueVT.isInteger()) {
275 if (ValueVT.bitsLT(PartEVT)) {
276 // For a truncate, see if we have any information to
277 // indicate whether the truncated bits will always be
278 // zero or sign-extension.
279 if (AssertOp)
280 Val = DAG.getNode(*AssertOp, DL, PartEVT, Val,
281 DAG.getValueType(ValueVT));
282 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
283 }
284 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
285 }
286
287 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
288 // FP_ROUND's are always exact here.
289 if (ValueVT.bitsLT(Val.getValueType())) {
290
291 SDValue NoChange =
293
294 if (DAG.getMachineFunction().getFunction().getAttributes().hasFnAttr(
295 llvm::Attribute::StrictFP)) {
296 return DAG.getNode(ISD::STRICT_FP_ROUND, DL,
297 DAG.getVTList(ValueVT, MVT::Other), InChain, Val,
298 NoChange);
299 }
300
301 return DAG.getNode(ISD::FP_ROUND, DL, ValueVT, Val, NoChange);
302 }
303
304 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
305 }
306
307 // Handle MMX to a narrower integer type by bitcasting MMX to integer and
308 // then truncating.
309 if (PartEVT == MVT::x86mmx && ValueVT.isInteger() &&
310 ValueVT.bitsLT(PartEVT)) {
311 Val = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Val);
312 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
313 }
314
315 report_fatal_error("Unknown mismatch in getCopyFromParts!");
316}
317
319 const Twine &ErrMsg) {
321 if (!I)
322 return Ctx.emitError(ErrMsg);
323
324 if (const CallInst *CI = dyn_cast<CallInst>(I))
325 if (CI->isInlineAsm()) {
326 return Ctx.diagnose(DiagnosticInfoInlineAsm(
327 *CI, ErrMsg + ", possible invalid constraint for vector type"));
328 }
329
330 return Ctx.emitError(I, ErrMsg);
331}
332
333/// getCopyFromPartsVector - Create a value that contains the specified legal
334/// parts combined into the value they represent. If the parts combine to a
335/// type larger than ValueVT then AssertOp can be used to specify whether the
336/// extra bits are known to be zero (ISD::AssertZext) or sign extended from
337/// ValueVT (ISD::AssertSext).
339 const SDValue *Parts, unsigned NumParts,
340 MVT PartVT, EVT ValueVT, const Value *V,
341 SDValue InChain,
342 std::optional<CallingConv::ID> CallConv) {
343 assert(ValueVT.isVector() && "Not a vector value");
344 assert(NumParts > 0 && "No parts to assemble!");
345 const bool IsABIRegCopy = CallConv.has_value();
346
347 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
348 SDValue Val = Parts[0];
349
350 // Handle a multi-element vector.
351 if (NumParts > 1) {
352 EVT IntermediateVT;
353 MVT RegisterVT;
354 unsigned NumIntermediates;
355 unsigned NumRegs;
356
357 if (IsABIRegCopy) {
359 *DAG.getContext(), *CallConv, ValueVT, IntermediateVT,
360 NumIntermediates, RegisterVT);
361 } else {
362 NumRegs =
363 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
364 NumIntermediates, RegisterVT);
365 }
366
367 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
368 NumParts = NumRegs; // Silence a compiler warning.
369 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
370 assert(RegisterVT.getSizeInBits() ==
371 Parts[0].getSimpleValueType().getSizeInBits() &&
372 "Part type sizes don't match!");
373
374 // Assemble the parts into intermediate operands.
375 SmallVector<SDValue, 8> Ops(NumIntermediates);
376 if (NumIntermediates == NumParts) {
377 // If the register was not expanded, truncate or copy the value,
378 // as appropriate.
379 for (unsigned i = 0; i != NumParts; ++i)
380 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, PartVT, IntermediateVT,
381 V, InChain, CallConv);
382 } else if (NumParts > 0) {
383 // If the intermediate type was expanded, build the intermediate
384 // operands from the parts.
385 assert(NumParts % NumIntermediates == 0 &&
386 "Must expand into a divisible number of parts!");
387 unsigned Factor = NumParts / NumIntermediates;
388 for (unsigned i = 0; i != NumIntermediates; ++i)
389 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, PartVT,
390 IntermediateVT, V, InChain, CallConv);
391 }
392
393 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
394 // intermediate operands.
395 EVT BuiltVectorTy =
396 IntermediateVT.isVector()
398 *DAG.getContext(), IntermediateVT.getScalarType(),
399 IntermediateVT.getVectorElementCount() * NumParts)
401 IntermediateVT.getScalarType(),
402 NumIntermediates);
403 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS
405 DL, BuiltVectorTy, Ops);
406 }
407
408 // There is now one part, held in Val. Correct it to match ValueVT.
409 EVT PartEVT = Val.getValueType();
410
411 if (PartEVT == ValueVT)
412 return Val;
413
414 if (PartEVT.isVector()) {
415 // Vector/Vector bitcast.
416 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits())
417 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
418
419 // If the parts vector has more elements than the value vector, then we
420 // have a vector widening case (e.g. <2 x float> -> <4 x float>).
421 // Extract the elements we want.
422 if (PartEVT.getVectorElementCount() != ValueVT.getVectorElementCount()) {
425 (PartEVT.getVectorElementCount().isScalable() ==
426 ValueVT.getVectorElementCount().isScalable()) &&
427 "Cannot narrow, it would be a lossy transformation");
428 PartEVT =
430 ValueVT.getVectorElementCount());
431 Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, PartEVT, Val,
432 DAG.getVectorIdxConstant(0, DL));
433 if (PartEVT == ValueVT)
434 return Val;
435 if (PartEVT.isInteger() && ValueVT.isFloatingPoint())
436 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
437
438 // Vector/Vector bitcast (e.g. <2 x bfloat> -> <2 x half>).
439 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits())
440 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
441 }
442
443 // Promoted vector extract
444 return DAG.getAnyExtOrTrunc(Val, DL, ValueVT);
445 }
446
447 // Trivial bitcast if the types are the same size and the destination
448 // vector type is legal.
449 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() &&
450 TLI.isTypeLegal(ValueVT))
451 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
452
453 if (ValueVT.getVectorNumElements() != 1) {
454 // Certain ABIs require that vectors are passed as integers. For vectors
455 // are the same size, this is an obvious bitcast.
456 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) {
457 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
458 } else if (ValueVT.bitsLT(PartEVT)) {
459 const uint64_t ValueSize = ValueVT.getFixedSizeInBits();
460 EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize);
461 // Drop the extra bits.
462 Val = DAG.getNode(ISD::TRUNCATE, DL, IntermediateType, Val);
463 return DAG.getBitcast(ValueVT, Val);
464 }
465
467 *DAG.getContext(), V, "non-trivial scalar-to-vector conversion");
468 return DAG.getUNDEF(ValueVT);
469 }
470
471 // Handle cases such as i8 -> <1 x i1>
472 EVT ValueSVT = ValueVT.getVectorElementType();
473 if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT) {
474 unsigned ValueSize = ValueSVT.getSizeInBits();
475 if (ValueSize == PartEVT.getSizeInBits()) {
476 Val = DAG.getNode(ISD::BITCAST, DL, ValueSVT, Val);
477 } else if (ValueSVT.isFloatingPoint() && PartEVT.isInteger()) {
478 // It's possible a scalar floating point type gets softened to integer and
479 // then promoted to a larger integer. If PartEVT is the larger integer
480 // we need to truncate it and then bitcast to the FP type.
481 assert(ValueSVT.bitsLT(PartEVT) && "Unexpected types");
482 EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize);
483 Val = DAG.getNode(ISD::TRUNCATE, DL, IntermediateType, Val);
484 Val = DAG.getBitcast(ValueSVT, Val);
485 } else {
486 Val = ValueVT.isFloatingPoint()
487 ? DAG.getFPExtendOrRound(Val, DL, ValueSVT)
488 : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT);
489 }
490 }
491
492 return DAG.getBuildVector(ValueVT, DL, Val);
493}
494
495static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl,
496 SDValue Val, SDValue *Parts, unsigned NumParts,
497 MVT PartVT, const Value *V,
498 std::optional<CallingConv::ID> CallConv);
499
500/// getCopyToParts - Create a series of nodes that contain the specified value
501/// split into legal parts. If the parts contain more bits than Val, then, for
502/// integers, ExtendKind can be used to specify how to generate the extra bits.
503static void
505 unsigned NumParts, MVT PartVT, const Value *V,
506 std::optional<CallingConv::ID> CallConv = std::nullopt,
507 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
508 // Let the target split the parts if it wants to
509 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
510 if (TLI.splitValueIntoRegisterParts(DAG, DL, Val, Parts, NumParts, PartVT,
511 CallConv))
512 return;
513 EVT ValueVT = Val.getValueType();
514
515 // Handle the vector case separately.
516 if (ValueVT.isVector())
517 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V,
518 CallConv);
519
520 unsigned OrigNumParts = NumParts;
522 "Copying to an illegal type!");
523
524 if (NumParts == 0)
525 return;
526
527 assert(!ValueVT.isVector() && "Vector case handled elsewhere");
528 EVT PartEVT = PartVT;
529 if (PartEVT == ValueVT) {
530 assert(NumParts == 1 && "No-op copy with multiple parts!");
531 Parts[0] = Val;
532 return;
533 }
534
535 unsigned PartBits = PartVT.getSizeInBits();
536 if (NumParts * PartBits > ValueVT.getSizeInBits()) {
537 // If the parts cover more bits than the value has, promote the value.
538 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
539 assert(NumParts == 1 && "Do not know what to promote to!");
540 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
541 } else {
542 if (ValueVT.isFloatingPoint()) {
543 // FP values need to be bitcast, then extended if they are being put
544 // into a larger container.
545 ValueVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
546 Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
547 }
548 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
549 ValueVT.isInteger() &&
550 "Unknown mismatch!");
551 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
552 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
553 if (PartVT == MVT::x86mmx)
554 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
555 }
556 } else if (PartBits == ValueVT.getSizeInBits()) {
557 // Different types of the same size.
558 assert(NumParts == 1 && PartEVT != ValueVT);
559 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
560 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
561 // If the parts cover less bits than value has, truncate the value.
562 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
563 ValueVT.isInteger() &&
564 "Unknown mismatch!");
565 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
566 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
567 if (PartVT == MVT::x86mmx)
568 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
569 }
570
571 // The value may have changed - recompute ValueVT.
572 ValueVT = Val.getValueType();
573 assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
574 "Failed to tile the value with PartVT!");
575
576 if (NumParts == 1) {
577 if (PartEVT != ValueVT) {
579 "scalar-to-vector conversion failed");
580 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
581 }
582
583 Parts[0] = Val;
584 return;
585 }
586
587 // Expand the value into multiple parts.
588 if (NumParts & (NumParts - 1)) {
589 // The number of parts is not a power of 2. Split off and copy the tail.
590 assert(PartVT.isInteger() && ValueVT.isInteger() &&
591 "Do not know what to expand to!");
592 unsigned RoundParts = llvm::bit_floor(NumParts);
593 unsigned RoundBits = RoundParts * PartBits;
594 unsigned OddParts = NumParts - RoundParts;
595 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
596 DAG.getShiftAmountConstant(RoundBits, ValueVT, DL));
597
598 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V,
599 CallConv);
600
601 if (DAG.getDataLayout().isBigEndian())
602 // The odd parts were reversed by getCopyToParts - unreverse them.
603 std::reverse(Parts + RoundParts, Parts + NumParts);
604
605 NumParts = RoundParts;
606 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
607 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
608 }
609
610 // The number of parts is a power of 2. Repeatedly bisect the value using
611 // EXTRACT_ELEMENT.
612 Parts[0] = DAG.getNode(ISD::BITCAST, DL,
614 ValueVT.getSizeInBits()),
615 Val);
616
617 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
618 for (unsigned i = 0; i < NumParts; i += StepSize) {
619 unsigned ThisBits = StepSize * PartBits / 2;
620 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
621 SDValue &Part0 = Parts[i];
622 SDValue &Part1 = Parts[i+StepSize/2];
623
624 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
625 ThisVT, Part0, DAG.getIntPtrConstant(1, DL));
626 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
627 ThisVT, Part0, DAG.getIntPtrConstant(0, DL));
628
629 if (ThisBits == PartBits && ThisVT != PartVT) {
630 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
631 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
632 }
633 }
634 }
635
636 if (DAG.getDataLayout().isBigEndian())
637 std::reverse(Parts, Parts + OrigNumParts);
638}
639
641 const SDLoc &DL, EVT PartVT) {
642 if (!PartVT.isVector())
643 return SDValue();
644
645 EVT ValueVT = Val.getValueType();
646 EVT PartEVT = PartVT.getVectorElementType();
647 EVT ValueEVT = ValueVT.getVectorElementType();
648 ElementCount PartNumElts = PartVT.getVectorElementCount();
649 ElementCount ValueNumElts = ValueVT.getVectorElementCount();
650
651 // We only support widening vectors with equivalent element types and
652 // fixed/scalable properties. If a target needs to widen a fixed-length type
653 // to a scalable one, it should be possible to use INSERT_SUBVECTOR below.
654 if (ElementCount::isKnownLE(PartNumElts, ValueNumElts) ||
655 PartNumElts.isScalable() != ValueNumElts.isScalable())
656 return SDValue();
657
658 // Have a try for bf16 because some targets share its ABI with fp16.
659 if (ValueEVT == MVT::bf16 && PartEVT == MVT::f16) {
661 "Cannot widen to illegal type");
662 Val = DAG.getNode(
664 ValueVT.changeVectorElementType(*DAG.getContext(), MVT::f16), Val);
665 } else if (PartEVT != ValueEVT) {
666 return SDValue();
667 }
668
669 // Widening a scalable vector to another scalable vector is done by inserting
670 // the vector into a larger undef one.
671 if (PartNumElts.isScalable())
672 return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, PartVT, DAG.getUNDEF(PartVT),
673 Val, DAG.getVectorIdxConstant(0, DL));
674
675 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in
676 // undef elements.
678 DAG.ExtractVectorElements(Val, Ops);
679 SDValue EltUndef = DAG.getUNDEF(PartEVT);
680 Ops.append((PartNumElts - ValueNumElts).getFixedValue(), EltUndef);
681
682 // FIXME: Use CONCAT for 2x -> 4x.
683 return DAG.getBuildVector(PartVT, DL, Ops);
684}
685
686/// getCopyToPartsVector - Create a series of nodes that contain the specified
687/// value split into legal parts.
688static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL,
689 SDValue Val, SDValue *Parts, unsigned NumParts,
690 MVT PartVT, const Value *V,
691 std::optional<CallingConv::ID> CallConv) {
692 EVT ValueVT = Val.getValueType();
693 assert(ValueVT.isVector() && "Not a vector");
694 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
695 const bool IsABIRegCopy = CallConv.has_value();
696
697 if (NumParts == 1) {
698 EVT PartEVT = PartVT;
699 if (PartEVT == ValueVT) {
700 // Nothing to do.
701 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
702 // Bitconvert vector->vector case.
703 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
704 } else if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, PartVT)) {
705 Val = Widened;
706 } else if (PartVT.isVector() &&
708 ValueVT.getVectorElementType()) &&
709 PartEVT.getVectorElementCount() ==
710 ValueVT.getVectorElementCount()) {
711
712 // Promoted vector extract
713 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
714 } else if (PartEVT.isVector() &&
715 PartEVT.getVectorElementType() !=
716 ValueVT.getVectorElementType() &&
717 TLI.getTypeAction(*DAG.getContext(), ValueVT) ==
719 // Combination of widening and promotion.
720 EVT WidenVT =
722 PartVT.getVectorElementCount());
723 SDValue Widened = widenVectorToPartType(DAG, Val, DL, WidenVT);
724 Val = DAG.getAnyExtOrTrunc(Widened, DL, PartVT);
725 } else {
726 // Don't extract an integer from a float vector. This can happen if the
727 // FP type gets softened to integer and then promoted. The promotion
728 // prevents it from being picked up by the earlier bitcast case.
729 if (ValueVT.getVectorElementCount().isScalar() &&
730 (!ValueVT.isFloatingPoint() || !PartVT.isInteger())) {
731 // If we reach this condition and PartVT is FP, this means that
732 // ValueVT is also FP and both have a different size, otherwise we
733 // would have bitcasted them. Producing an EXTRACT_VECTOR_ELT here
734 // would be invalid since that would mean the smaller FP type has to
735 // be extended to the larger one.
736 if (PartVT.isFloatingPoint()) {
737 Val = DAG.getBitcast(ValueVT.getScalarType(), Val);
738 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
739 } else
740 Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val,
741 DAG.getVectorIdxConstant(0, DL));
742 } else {
743 uint64_t ValueSize = ValueVT.getFixedSizeInBits();
744 assert(PartVT.getFixedSizeInBits() > ValueSize &&
745 "lossy conversion of vector to scalar type");
746 EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize);
747 Val = DAG.getBitcast(IntermediateType, Val);
748 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
749 }
750 }
751
752 assert(Val.getValueType() == PartVT && "Unexpected vector part value type");
753 Parts[0] = Val;
754 return;
755 }
756
757 // Handle a multi-element vector.
758 EVT IntermediateVT;
759 MVT RegisterVT;
760 unsigned NumIntermediates;
761 unsigned NumRegs;
762 if (IsABIRegCopy) {
764 *DAG.getContext(), *CallConv, ValueVT, IntermediateVT, NumIntermediates,
765 RegisterVT);
766 } else {
767 NumRegs =
768 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
769 NumIntermediates, RegisterVT);
770 }
771
772 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
773 NumParts = NumRegs; // Silence a compiler warning.
774 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
775
776 assert(IntermediateVT.isScalableVector() == ValueVT.isScalableVector() &&
777 "Mixing scalable and fixed vectors when copying in parts");
778
779 std::optional<ElementCount> DestEltCnt;
780
781 if (IntermediateVT.isVector())
782 DestEltCnt = IntermediateVT.getVectorElementCount() * NumIntermediates;
783 else
784 DestEltCnt = ElementCount::getFixed(NumIntermediates);
785
786 EVT BuiltVectorTy = EVT::getVectorVT(
787 *DAG.getContext(), IntermediateVT.getScalarType(), *DestEltCnt);
788
789 if (ValueVT == BuiltVectorTy) {
790 // Nothing to do.
791 } else if (ValueVT.getSizeInBits() == BuiltVectorTy.getSizeInBits()) {
792 // Bitconvert vector->vector case.
793 Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val);
794 } else {
795 if (BuiltVectorTy.getVectorElementType().bitsGT(
796 ValueVT.getVectorElementType())) {
797 // Integer promotion.
798 ValueVT = EVT::getVectorVT(*DAG.getContext(),
799 BuiltVectorTy.getVectorElementType(),
800 ValueVT.getVectorElementCount());
801 Val = DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
802 }
803
804 if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, BuiltVectorTy)) {
805 Val = Widened;
806 }
807 }
808
809 assert(Val.getValueType() == BuiltVectorTy && "Unexpected vector value type");
810
811 // Split the vector into intermediate operands.
812 SmallVector<SDValue, 8> Ops(NumIntermediates);
813 for (unsigned i = 0; i != NumIntermediates; ++i) {
814 if (IntermediateVT.isVector()) {
815 // This does something sensible for scalable vectors - see the
816 // definition of EXTRACT_SUBVECTOR for further details.
817 unsigned IntermediateNumElts = IntermediateVT.getVectorMinNumElements();
818 Ops[i] =
819 DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val,
820 DAG.getVectorIdxConstant(i * IntermediateNumElts, DL));
821 } else {
822 Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val,
823 DAG.getVectorIdxConstant(i, DL));
824 }
825 }
826
827 // Split the intermediate operands into legal parts.
828 if (NumParts == NumIntermediates) {
829 // If the register was not expanded, promote or copy the value,
830 // as appropriate.
831 for (unsigned i = 0; i != NumParts; ++i)
832 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V, CallConv);
833 } else if (NumParts > 0) {
834 // If the intermediate type was expanded, split each the value into
835 // legal parts.
836 assert(NumIntermediates != 0 && "division by zero");
837 assert(NumParts % NumIntermediates == 0 &&
838 "Must expand into a divisible number of parts!");
839 unsigned Factor = NumParts / NumIntermediates;
840 for (unsigned i = 0; i != NumIntermediates; ++i)
841 getCopyToParts(DAG, DL, Ops[i], &Parts[i * Factor], Factor, PartVT, V,
842 CallConv);
843 }
844}
845
846static void failForInvalidBundles(const CallBase &I, StringRef Name,
847 ArrayRef<uint32_t> AllowedBundles) {
848 if (I.hasOperandBundlesOtherThan(AllowedBundles)) {
849 ListSeparator LS;
850 std::string Error;
852 for (unsigned i = 0, e = I.getNumOperandBundles(); i != e; ++i) {
853 OperandBundleUse U = I.getOperandBundleAt(i);
854 if (!is_contained(AllowedBundles, U.getTagID()))
855 OS << LS << U.getTagName();
856 }
858 Twine("cannot lower ", Name)
859 .concat(Twine(" with arbitrary operand bundles: ", Error)));
860 }
861}
862
864 EVT valuevt, std::optional<CallingConv::ID> CC)
865 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs),
866 RegCount(1, regs.size()), CallConv(CC) {}
867
869 const DataLayout &DL, Register Reg, Type *Ty,
870 std::optional<CallingConv::ID> CC) {
871 ComputeValueVTs(TLI, DL, Ty, ValueVTs);
872
873 CallConv = CC;
874
875 for (EVT ValueVT : ValueVTs) {
876 unsigned NumRegs =
878 ? TLI.getNumRegistersForCallingConv(Context, *CC, ValueVT)
879 : TLI.getNumRegisters(Context, ValueVT);
880 MVT RegisterVT =
882 ? TLI.getRegisterTypeForCallingConv(Context, *CC, ValueVT)
883 : TLI.getRegisterType(Context, ValueVT);
884 for (unsigned i = 0; i != NumRegs; ++i)
885 Regs.push_back(Reg + i);
886 RegVTs.push_back(RegisterVT);
887 RegCount.push_back(NumRegs);
888 Reg = Reg.id() + NumRegs;
889 }
890}
891
893 FunctionLoweringInfo &FuncInfo,
894 const SDLoc &dl, SDValue &Chain,
895 SDValue *Glue, const Value *V) const {
896 // A Value with type {} or [0 x %t] needs no registers.
897 if (ValueVTs.empty())
898 return SDValue();
899
900 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
901
902 // Assemble the legal parts into the final values.
903 SmallVector<SDValue, 4> Values(ValueVTs.size());
905 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
906 // Copy the legal parts from the registers.
907 EVT ValueVT = ValueVTs[Value];
908 unsigned NumRegs = RegCount[Value];
909 MVT RegisterVT = isABIMangled()
911 *DAG.getContext(), *CallConv, RegVTs[Value])
912 : RegVTs[Value];
913
914 Parts.resize(NumRegs);
915 for (unsigned i = 0; i != NumRegs; ++i) {
916 SDValue P;
917 if (!Glue) {
918 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
919 } else {
920 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Glue);
921 *Glue = P.getValue(2);
922 }
923
924 Chain = P.getValue(1);
925 Parts[i] = P;
926
927 // If the source register was virtual and if we know something about it,
928 // add an assert node.
929 if (!Regs[Part + i].isVirtual() || !RegisterVT.isInteger())
930 continue;
931
933 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
934 if (!LOI)
935 continue;
936
937 unsigned RegSize = RegisterVT.getScalarSizeInBits();
938 unsigned NumSignBits = LOI->NumSignBits;
939 unsigned NumZeroBits = LOI->Known.countMinLeadingZeros();
940
941 if (NumZeroBits == RegSize) {
942 // The current value is a zero.
943 // Explicitly express that as it would be easier for
944 // optimizations to kick in.
945 Parts[i] = DAG.getConstant(0, dl, RegisterVT);
946 continue;
947 }
948
949 // FIXME: We capture more information than the dag can represent. For
950 // now, just use the tightest assertzext/assertsext possible.
951 bool isSExt;
952 EVT FromVT(MVT::Other);
953 if (NumZeroBits) {
954 FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits);
955 isSExt = false;
956 } else if (NumSignBits > 1) {
957 FromVT =
958 EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1);
959 isSExt = true;
960 } else {
961 continue;
962 }
963 // Add an assertion node.
964 assert(FromVT != MVT::Other);
965 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
966 RegisterVT, P, DAG.getValueType(FromVT));
967 }
968
969 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), NumRegs,
970 RegisterVT, ValueVT, V, Chain, CallConv);
971 Part += NumRegs;
972 Parts.clear();
973 }
974
975 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values);
976}
977
979 const SDLoc &dl, SDValue &Chain, SDValue *Glue,
980 const Value *V,
981 ISD::NodeType PreferredExtendType) const {
982 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
983 ISD::NodeType ExtendKind = PreferredExtendType;
984
985 // Get the list of the values's legal parts.
986 unsigned NumRegs = Regs.size();
987 SmallVector<SDValue, 8> Parts(NumRegs);
988 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
989 unsigned NumParts = RegCount[Value];
990
991 MVT RegisterVT = isABIMangled()
993 *DAG.getContext(), *CallConv, RegVTs[Value])
994 : RegVTs[Value];
995
996 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT))
997 ExtendKind = ISD::ZERO_EXTEND;
998
999 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), &Parts[Part],
1000 NumParts, RegisterVT, V, CallConv, ExtendKind);
1001 Part += NumParts;
1002 }
1003
1004 // Copy the parts into the registers.
1005 SmallVector<SDValue, 8> Chains(NumRegs);
1006 for (unsigned i = 0; i != NumRegs; ++i) {
1007 SDValue Part;
1008 if (!Glue) {
1009 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
1010 } else {
1011 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Glue);
1012 *Glue = Part.getValue(1);
1013 }
1014
1015 Chains[i] = Part.getValue(0);
1016 }
1017
1018 if (NumRegs == 1 || Glue)
1019 // If NumRegs > 1 && Glue is used then the use of the last CopyToReg is
1020 // flagged to it. That is the CopyToReg nodes and the user are considered
1021 // a single scheduling unit. If we create a TokenFactor and return it as
1022 // chain, then the TokenFactor is both a predecessor (operand) of the
1023 // user as well as a successor (the TF operands are flagged to the user).
1024 // c1, f1 = CopyToReg
1025 // c2, f2 = CopyToReg
1026 // c3 = TokenFactor c1, c2
1027 // ...
1028 // = op c3, ..., f2
1029 Chain = Chains[NumRegs-1];
1030 else
1031 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
1032}
1033
1035 unsigned MatchingIdx, const SDLoc &dl,
1036 SelectionDAG &DAG,
1037 std::vector<SDValue> &Ops) const {
1038 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1039
1040 InlineAsm::Flag Flag(Code, Regs.size());
1041 if (HasMatching)
1042 Flag.setMatchingOp(MatchingIdx);
1043 else if (!Regs.empty() && Regs.front().isVirtual()) {
1044 // Put the register class of the virtual registers in the flag word. That
1045 // way, later passes can recompute register class constraints for inline
1046 // assembly as well as normal instructions.
1047 // Don't do this for tied operands that can use the regclass information
1048 // from the def.
1050 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front());
1051 Flag.setRegClass(RC->getID());
1052 }
1053
1054 SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32);
1055 Ops.push_back(Res);
1056
1057 if (Code == InlineAsm::Kind::Clobber) {
1058 // Clobbers should always have a 1:1 mapping with registers, and may
1059 // reference registers that have illegal (e.g. vector) types. Hence, we
1060 // shouldn't try to apply any sort of splitting logic to them.
1061 assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() &&
1062 "No 1:1 mapping from clobbers to regs?");
1064 (void)SP;
1065 for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) {
1066 Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I]));
1067 assert(
1068 (Regs[I] != SP ||
1070 "If we clobbered the stack pointer, MFI should know about it.");
1071 }
1072 return;
1073 }
1074
1075 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
1076 MVT RegisterVT = RegVTs[Value];
1077 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value],
1078 RegisterVT);
1079 for (unsigned i = 0; i != NumRegs; ++i) {
1080 assert(Reg < Regs.size() && "Mismatch in # registers expected");
1081 Register TheReg = Regs[Reg++];
1082 Ops.push_back(DAG.getRegister(TheReg, RegisterVT));
1083 }
1084 }
1085}
1086
1090 unsigned I = 0;
1091 for (auto CountAndVT : zip_first(RegCount, RegVTs)) {
1092 unsigned RegCount = std::get<0>(CountAndVT);
1093 MVT RegisterVT = std::get<1>(CountAndVT);
1094 TypeSize RegisterSize = RegisterVT.getSizeInBits();
1095 for (unsigned E = I + RegCount; I != E; ++I)
1096 OutVec.push_back(std::make_pair(Regs[I], RegisterSize));
1097 }
1098 return OutVec;
1099}
1100
1102 AssumptionCache *ac, const TargetLibraryInfo *li,
1103 const TargetTransformInfo &TTI) {
1104 BatchAA = aa;
1105 AC = ac;
1106 GFI = gfi;
1107 LibInfo = li;
1108 Context = DAG.getContext();
1109 LPadToCallSiteMap.clear();
1110 this->TTI = &TTI;
1111 SL->init(DAG.getTargetLoweringInfo(), TM, DAG.getDataLayout());
1112 AssignmentTrackingEnabled = isAssignmentTrackingEnabled(
1113 *DAG.getMachineFunction().getFunction().getParent());
1114}
1115
1117 NodeMap.clear();
1118 UnusedArgNodeMap.clear();
1119 PendingLoads.clear();
1120 PendingExports.clear();
1121 PendingConstrainedFP.clear();
1122 PendingConstrainedFPStrict.clear();
1123 CurInst = nullptr;
1124 HasTailCall = false;
1125 SDNodeOrder = LowestSDNodeOrder;
1126 StatepointLowering.clear();
1127}
1128
1130 DanglingDebugInfoMap.clear();
1131}
1132
1133// Update DAG root to include dependencies on Pending chains.
1134SDValue SelectionDAGBuilder::updateRoot(SmallVectorImpl<SDValue> &Pending) {
1135 SDValue Root = DAG.getRoot();
1136
1137 if (Pending.empty())
1138 return Root;
1139
1140 // Add current root to PendingChains, unless we already indirectly
1141 // depend on it.
1142 if (Root.getOpcode() != ISD::EntryToken) {
1143 unsigned i = 0, e = Pending.size();
1144 for (; i != e; ++i) {
1145 assert(Pending[i].getNode()->getNumOperands() > 1);
1146 if (Pending[i].getNode()->getOperand(0) == Root)
1147 break; // Don't add the root if we already indirectly depend on it.
1148 }
1149
1150 if (i == e)
1151 Pending.push_back(Root);
1152 }
1153
1154 if (Pending.size() == 1)
1155 Root = Pending[0];
1156 else
1157 Root = DAG.getTokenFactor(getCurSDLoc(), Pending);
1158
1159 DAG.setRoot(Root);
1160 Pending.clear();
1161 return Root;
1162}
1163
1167
1169 // If the new exception behavior differs from that of the pending
1170 // ones, chain up them and update the root.
1171 switch (EB) {
1174 // Floating-point exceptions produced by such operations are not intended
1175 // to be observed, so the sequence of these operations does not need to be
1176 // preserved.
1177 //
1178 // They however must not be mixed with the instructions that have strict
1179 // exception behavior. Placing an operation with 'ebIgnore' behavior between
1180 // 'ebStrict' operations could distort the observed exception behavior.
1181 if (!PendingConstrainedFPStrict.empty()) {
1182 assert(PendingConstrainedFP.empty());
1183 updateRoot(PendingConstrainedFPStrict);
1184 }
1185 break;
1187 // Floating-point exception produced by these operations may be observed, so
1188 // they must be correctly chained. If trapping on FP exceptions is
1189 // disabled, the exceptions can be observed only by functions that read
1190 // exception flags, like 'llvm.get_fpenv' or 'fetestexcept'. It means that
1191 // the order of operations is not significant between barriers.
1192 //
1193 // If trapping is enabled, each operation becomes an implicit observation
1194 // point, so the operations must be sequenced according their original
1195 // source order.
1196 if (!PendingConstrainedFP.empty()) {
1197 assert(PendingConstrainedFPStrict.empty());
1198 updateRoot(PendingConstrainedFP);
1199 }
1200 // TODO: Add support for trapping-enabled scenarios.
1201 }
1202 return DAG.getRoot();
1203}
1204
1206 // Chain up all pending constrained intrinsics together with all
1207 // pending loads, by simply appending them to PendingLoads and
1208 // then calling getMemoryRoot().
1209 PendingLoads.reserve(PendingLoads.size() +
1210 PendingConstrainedFP.size() +
1211 PendingConstrainedFPStrict.size());
1212 PendingLoads.append(PendingConstrainedFP.begin(),
1213 PendingConstrainedFP.end());
1214 PendingLoads.append(PendingConstrainedFPStrict.begin(),
1215 PendingConstrainedFPStrict.end());
1216 PendingConstrainedFP.clear();
1217 PendingConstrainedFPStrict.clear();
1218 return getMemoryRoot();
1219}
1220
1222 // We need to emit pending fpexcept.strict constrained intrinsics,
1223 // so append them to the PendingExports list.
1224 PendingExports.append(PendingConstrainedFPStrict.begin(),
1225 PendingConstrainedFPStrict.end());
1226 PendingConstrainedFPStrict.clear();
1227 return updateRoot(PendingExports);
1228}
1229
1231 DILocalVariable *Variable,
1233 DebugLoc DL) {
1234 assert(Variable && "Missing variable");
1235
1236 // Check if address has undef value.
1237 if (!Address || isa<UndefValue>(Address) ||
1238 (Address->use_empty() && !isa<Argument>(Address))) {
1239 LLVM_DEBUG(
1240 dbgs()
1241 << "dbg_declare: Dropping debug info (bad/undef/unused-arg address)\n");
1242 return;
1243 }
1244
1245 bool IsParameter = Variable->isParameter() || isa<Argument>(Address);
1246
1247 SDValue &N = NodeMap[Address];
1248 if (!N.getNode() && isa<Argument>(Address))
1249 // Check unused arguments map.
1250 N = UnusedArgNodeMap[Address];
1251 SDDbgValue *SDV;
1252 if (N.getNode()) {
1253 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
1254 Address = BCI->getOperand(0);
1255 // Parameters are handled specially.
1256 auto *FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
1257 if (IsParameter && FINode) {
1258 // Byval parameter. We have a frame index at this point.
1259 SDV = DAG.getFrameIndexDbgValue(Variable, Expression, FINode->getIndex(),
1260 /*IsIndirect*/ true, DL, SDNodeOrder);
1261 } else if (isa<Argument>(Address)) {
1262 // Address is an argument, so try to emit its dbg value using
1263 // virtual register info from the FuncInfo.ValueMap.
1264 EmitFuncArgumentDbgValue(Address, Variable, Expression, DL,
1265 FuncArgumentDbgValueKind::Declare, N);
1266 return;
1267 } else {
1268 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(),
1269 true, DL, SDNodeOrder);
1270 }
1271 DAG.AddDbgValue(SDV, IsParameter);
1272 } else {
1273 // If Address is an argument then try to emit its dbg value using
1274 // virtual register info from the FuncInfo.ValueMap.
1275 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, DL,
1276 FuncArgumentDbgValueKind::Declare, N)) {
1277 LLVM_DEBUG(dbgs() << "dbg_declare: Dropping debug info"
1278 << " (could not emit func-arg dbg_value)\n");
1279 }
1280 }
1281}
1282
1284 // Add SDDbgValue nodes for any var locs here. Do so before updating
1285 // SDNodeOrder, as this mapping is {Inst -> Locs BEFORE Inst}.
1286 if (FunctionVarLocs const *FnVarLocs = DAG.getFunctionVarLocs()) {
1287 // Add SDDbgValue nodes for any var locs here. Do so before updating
1288 // SDNodeOrder, as this mapping is {Inst -> Locs BEFORE Inst}.
1289 for (auto It = FnVarLocs->locs_begin(&I), End = FnVarLocs->locs_end(&I);
1290 It != End; ++It) {
1291 auto *Var = FnVarLocs->getDILocalVariable(It->VariableID);
1292 dropDanglingDebugInfo(Var, It->Expr);
1293 if (It->Values.isKillLocation(It->Expr)) {
1294 handleKillDebugValue(Var, It->Expr, It->DL, SDNodeOrder);
1295 continue;
1296 }
1297 SmallVector<Value *> Values(It->Values.location_ops());
1298 if (!handleDebugValue(Values, Var, It->Expr, It->DL, SDNodeOrder,
1299 It->Values.hasArgList())) {
1300 SmallVector<Value *, 4> Vals(It->Values.location_ops());
1302 FnVarLocs->getDILocalVariable(It->VariableID),
1303 It->Expr, Vals.size() > 1, It->DL, SDNodeOrder);
1304 }
1305 }
1306 }
1307
1308 // We must skip DbgVariableRecords if they've already been processed above as
1309 // we have just emitted the debug values resulting from assignment tracking
1310 // analysis, making any existing DbgVariableRecords redundant (and probably
1311 // less correct). We still need to process DbgLabelRecords. This does sink
1312 // DbgLabelRecords to the bottom of the group of debug records. That sholdn't
1313 // be important as it does so deterministcally and ordering between
1314 // DbgLabelRecords and DbgVariableRecords is immaterial (other than for MIR/IR
1315 // printing).
1316 bool SkipDbgVariableRecords = DAG.getFunctionVarLocs();
1317 // Is there is any debug-info attached to this instruction, in the form of
1318 // DbgRecord non-instruction debug-info records.
1319 for (DbgRecord &DR : I.getDbgRecordRange()) {
1320 if (DbgLabelRecord *DLR = dyn_cast<DbgLabelRecord>(&DR)) {
1321 assert(DLR->getLabel() && "Missing label");
1322 SDDbgLabel *SDV =
1323 DAG.getDbgLabel(DLR->getLabel(), DLR->getDebugLoc(), SDNodeOrder);
1324 DAG.AddDbgLabel(SDV);
1325 continue;
1326 }
1327
1328 if (SkipDbgVariableRecords)
1329 continue;
1331 DILocalVariable *Variable = DVR.getVariable();
1334
1336 if (FuncInfo.PreprocessedDVRDeclares.contains(&DVR))
1337 continue;
1338 LLVM_DEBUG(dbgs() << "SelectionDAG visiting dbg_declare: " << DVR
1339 << "\n");
1341 DVR.getDebugLoc());
1342 continue;
1343 }
1344
1345 // A DbgVariableRecord with no locations is a kill location.
1347 if (Values.empty()) {
1349 SDNodeOrder);
1350 continue;
1351 }
1352
1353 // A DbgVariableRecord with an undef or absent location is also a kill
1354 // location.
1355 if (llvm::any_of(Values,
1356 [](Value *V) { return !V || isa<UndefValue>(V); })) {
1358 SDNodeOrder);
1359 continue;
1360 }
1361
1362 bool IsVariadic = DVR.hasArgList();
1363 if (!handleDebugValue(Values, Variable, Expression, DVR.getDebugLoc(),
1364 SDNodeOrder, IsVariadic)) {
1365 addDanglingDebugInfo(Values, Variable, Expression, IsVariadic,
1366 DVR.getDebugLoc(), SDNodeOrder);
1367 }
1368 }
1369}
1370
1372 visitDbgInfo(I);
1373
1374 // Set up outgoing PHI node register values before emitting the terminator.
1375 if (I.isTerminator()) {
1376 HandlePHINodesInSuccessorBlocks(I.getParent());
1377 }
1378
1379 ++SDNodeOrder;
1380 CurInst = &I;
1381
1382 // Set inserted listener only if required.
1383 bool NodeInserted = false;
1384 std::unique_ptr<SelectionDAG::DAGNodeInsertedListener> InsertedListener;
1385 MDNode *PCSectionsMD = I.getMetadata(LLVMContext::MD_pcsections);
1386 MDNode *MMRA = I.getMetadata(LLVMContext::MD_mmra);
1387 if (PCSectionsMD || MMRA) {
1388 InsertedListener = std::make_unique<SelectionDAG::DAGNodeInsertedListener>(
1389 DAG, [&](SDNode *) { NodeInserted = true; });
1390 }
1391
1392 visit(I.getOpcode(), I);
1393
1394 if (!I.isTerminator() && !HasTailCall &&
1395 !isa<GCStatepointInst>(I)) // statepoints handle their exports internally
1397
1398 // Handle metadata.
1399 if (PCSectionsMD || MMRA) {
1400 auto It = NodeMap.find(&I);
1401 if (It != NodeMap.end()) {
1402 if (PCSectionsMD)
1403 DAG.addPCSections(It->second.getNode(), PCSectionsMD);
1404 if (MMRA)
1405 DAG.addMMRAMetadata(It->second.getNode(), MMRA);
1406 } else if (NodeInserted) {
1407 // This should not happen; if it does, don't let it go unnoticed so we can
1408 // fix it. Relevant visit*() function is probably missing a setValue().
1409 errs() << "warning: loosing !pcsections and/or !mmra metadata ["
1410 << I.getModule()->getName() << "]\n";
1411 LLVM_DEBUG(I.dump());
1412 assert(false);
1413 }
1414 }
1415
1416 CurInst = nullptr;
1417}
1418
1419void SelectionDAGBuilder::visitPHI(const PHINode &) {
1420 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
1421}
1422
1423void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
1424 // Note: this doesn't use InstVisitor, because it has to work with
1425 // ConstantExpr's in addition to instructions.
1426 switch (Opcode) {
1427 default: llvm_unreachable("Unknown instruction type encountered!");
1428 // Build the switch statement using the Instruction.def file.
1429#define HANDLE_INST(NUM, OPCODE, CLASS) \
1430 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break;
1431#include "llvm/IR/Instruction.def"
1432 }
1433}
1434
1436 DILocalVariable *Variable,
1437 DebugLoc DL, unsigned Order,
1440 // For variadic dbg_values we will now insert poison.
1441 // FIXME: We can potentially recover these!
1443 for (const Value *V : Values) {
1444 auto *Poison = PoisonValue::get(V->getType());
1446 }
1447 SDDbgValue *SDV = DAG.getDbgValueList(Variable, Expression, Locs, {},
1448 /*IsIndirect=*/false, DL, Order,
1449 /*IsVariadic=*/true);
1450 DAG.AddDbgValue(SDV, /*isParameter=*/false);
1451 return true;
1452}
1453
1455 DILocalVariable *Var,
1456 DIExpression *Expr,
1457 bool IsVariadic, DebugLoc DL,
1458 unsigned Order) {
1459 if (IsVariadic) {
1460 handleDanglingVariadicDebugInfo(DAG, Var, DL, Order, Values, Expr);
1461 return;
1462 }
1463 // TODO: Dangling debug info will eventually either be resolved or produce
1464 // a poison DBG_VALUE. However in the resolution case, a gap may appear
1465 // between the original dbg.value location and its resolved DBG_VALUE,
1466 // which we should ideally fill with an extra poison DBG_VALUE.
1467 assert(Values.size() == 1);
1468 DanglingDebugInfoMap[Values[0]].emplace_back(Var, Expr, DL, Order);
1469}
1470
1472 const DIExpression *Expr) {
1473 auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) {
1474 DIVariable *DanglingVariable = DDI.getVariable();
1475 DIExpression *DanglingExpr = DDI.getExpression();
1476 if (DanglingVariable == Variable && Expr->fragmentsOverlap(DanglingExpr)) {
1477 LLVM_DEBUG(dbgs() << "Dropping dangling debug info for "
1478 << printDDI(nullptr, DDI) << "\n");
1479 return true;
1480 }
1481 return false;
1482 };
1483
1484 for (auto &DDIMI : DanglingDebugInfoMap) {
1485 DanglingDebugInfoVector &DDIV = DDIMI.second;
1486
1487 // If debug info is to be dropped, run it through final checks to see
1488 // whether it can be salvaged.
1489 for (auto &DDI : DDIV)
1490 if (isMatchingDbgValue(DDI))
1491 salvageUnresolvedDbgValue(DDIMI.first, DDI);
1492
1493 erase_if(DDIV, isMatchingDbgValue);
1494 }
1495}
1496
1497// resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
1498// generate the debug data structures now that we've seen its definition.
1500 SDValue Val) {
1501 auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V);
1502 if (DanglingDbgInfoIt == DanglingDebugInfoMap.end())
1503 return;
1504
1505 DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second;
1506 for (auto &DDI : DDIV) {
1507 DebugLoc DL = DDI.getDebugLoc();
1508 unsigned ValSDNodeOrder = Val.getNode()->getIROrder();
1509 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
1510 DILocalVariable *Variable = DDI.getVariable();
1511 DIExpression *Expr = DDI.getExpression();
1512 assert(Variable->isValidLocationForIntrinsic(DL) &&
1513 "Expected inlined-at fields to agree");
1514 SDDbgValue *SDV;
1515 if (Val.getNode()) {
1516 // FIXME: I doubt that it is correct to resolve a dangling DbgValue as a
1517 // FuncArgumentDbgValue (it would be hoisted to the function entry, and if
1518 // we couldn't resolve it directly when examining the DbgValue intrinsic
1519 // in the first place we should not be more successful here). Unless we
1520 // have some test case that prove this to be correct we should avoid
1521 // calling EmitFuncArgumentDbgValue here.
1522 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, DL,
1523 FuncArgumentDbgValueKind::Value, Val)) {
1524 LLVM_DEBUG(dbgs() << "Resolve dangling debug info for "
1525 << printDDI(V, DDI) << "\n");
1526 LLVM_DEBUG(dbgs() << " By mapping to:\n "; Val.dump());
1527 // Increase the SDNodeOrder for the DbgValue here to make sure it is
1528 // inserted after the definition of Val when emitting the instructions
1529 // after ISel. An alternative could be to teach
1530 // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly.
1531 LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs()
1532 << "changing SDNodeOrder from " << DbgSDNodeOrder << " to "
1533 << ValSDNodeOrder << "\n");
1534 SDV = getDbgValue(Val, Variable, Expr, DL,
1535 std::max(DbgSDNodeOrder, ValSDNodeOrder));
1536 DAG.AddDbgValue(SDV, false);
1537 } else
1538 LLVM_DEBUG(dbgs() << "Resolved dangling debug info for "
1539 << printDDI(V, DDI)
1540 << " in EmitFuncArgumentDbgValue\n");
1541 } else {
1542 LLVM_DEBUG(dbgs() << "Dropping debug info for " << printDDI(V, DDI)
1543 << "\n");
1544 auto Poison = PoisonValue::get(V->getType());
1545 auto SDV =
1546 DAG.getConstantDbgValue(Variable, Expr, Poison, DL, DbgSDNodeOrder);
1547 DAG.AddDbgValue(SDV, false);
1548 }
1549 }
1550 DDIV.clear();
1551}
1552
1554 DanglingDebugInfo &DDI) {
1555 // TODO: For the variadic implementation, instead of only checking the fail
1556 // state of `handleDebugValue`, we need know specifically which values were
1557 // invalid, so that we attempt to salvage only those values when processing
1558 // a DIArgList.
1559 const Value *OrigV = V;
1560 DILocalVariable *Var = DDI.getVariable();
1561 DIExpression *Expr = DDI.getExpression();
1562 DebugLoc DL = DDI.getDebugLoc();
1563 unsigned SDOrder = DDI.getSDNodeOrder();
1564
1565 // Currently we consider only dbg.value intrinsics -- we tell the salvager
1566 // that DW_OP_stack_value is desired.
1567 bool StackValue = true;
1568
1569 // Can this Value can be encoded without any further work?
1570 if (handleDebugValue(V, Var, Expr, DL, SDOrder, /*IsVariadic=*/false))
1571 return;
1572
1573 // Attempt to salvage back through as many instructions as possible. Bail if
1574 // a non-instruction is seen, such as a constant expression or global
1575 // variable. FIXME: Further work could recover those too.
1576 while (isa<Instruction>(V)) {
1577 const Instruction &VAsInst = *cast<const Instruction>(V);
1578 // Temporary "0", awaiting real implementation.
1580 SmallVector<Value *, 4> AdditionalValues;
1581 V = salvageDebugInfoImpl(const_cast<Instruction &>(VAsInst),
1582 Expr->getNumLocationOperands(), Ops,
1583 AdditionalValues);
1584 // If we cannot salvage any further, and haven't yet found a suitable debug
1585 // expression, bail out.
1586 if (!V)
1587 break;
1588
1589 // TODO: If AdditionalValues isn't empty, then the salvage can only be
1590 // represented with a DBG_VALUE_LIST, so we give up. When we have support
1591 // here for variadic dbg_values, remove that condition.
1592 if (!AdditionalValues.empty())
1593 break;
1594
1595 // New value and expr now represent this debuginfo.
1596 Expr = DIExpression::appendOpsToArg(Expr, Ops, 0, StackValue);
1597
1598 // Some kind of simplification occurred: check whether the operand of the
1599 // salvaged debug expression can be encoded in this DAG.
1600 if (handleDebugValue(V, Var, Expr, DL, SDOrder, /*IsVariadic=*/false)) {
1601 LLVM_DEBUG(
1602 dbgs() << "Salvaged debug location info for:\n " << *Var << "\n"
1603 << *OrigV << "\nBy stripping back to:\n " << *V << "\n");
1604 return;
1605 }
1606 }
1607
1608 // This was the final opportunity to salvage this debug information, and it
1609 // couldn't be done. Place a poison DBG_VALUE at this location to terminate
1610 // any earlier variable location.
1611 assert(OrigV && "V shouldn't be null");
1612 auto *Poison = PoisonValue::get(OrigV->getType());
1613 auto *SDV = DAG.getConstantDbgValue(Var, Expr, Poison, DL, SDNodeOrder);
1614 DAG.AddDbgValue(SDV, false);
1615 LLVM_DEBUG(dbgs() << "Dropping debug value info for:\n "
1616 << printDDI(OrigV, DDI) << "\n");
1617}
1618
1620 DIExpression *Expr,
1621 DebugLoc DbgLoc,
1622 unsigned Order) {
1626 handleDebugValue(Poison, Var, NewExpr, DbgLoc, Order,
1627 /*IsVariadic*/ false);
1628}
1629
1631 DILocalVariable *Var,
1632 DIExpression *Expr, DebugLoc DbgLoc,
1633 unsigned Order, bool IsVariadic) {
1634 if (Values.empty())
1635 return true;
1636
1637 // Filter EntryValue locations out early.
1638 if (visitEntryValueDbgValue(Values, Var, Expr, DbgLoc))
1639 return true;
1640
1641 SmallVector<SDDbgOperand> LocationOps;
1642 SmallVector<SDNode *> Dependencies;
1643 for (const Value *V : Values) {
1644 // Constant value.
1647 LocationOps.emplace_back(SDDbgOperand::fromConst(V));
1648 continue;
1649 }
1650
1651 // Look through IntToPtr constants.
1652 if (auto *CE = dyn_cast<ConstantExpr>(V))
1653 if (CE->getOpcode() == Instruction::IntToPtr) {
1654 LocationOps.emplace_back(SDDbgOperand::fromConst(CE->getOperand(0)));
1655 continue;
1656 }
1657
1658 // If the Value is a frame index, we can create a FrameIndex debug value
1659 // without relying on the DAG at all.
1660 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1661 auto SI = FuncInfo.StaticAllocaMap.find(AI);
1662 if (SI != FuncInfo.StaticAllocaMap.end()) {
1663 LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(SI->second));
1664 continue;
1665 }
1666 }
1667
1668 // Do not use getValue() in here; we don't want to generate code at
1669 // this point if it hasn't been done yet.
1670 SDValue N = NodeMap[V];
1671 if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map.
1672 N = UnusedArgNodeMap[V];
1673
1674 if (N.getNode()) {
1675 // Only emit func arg dbg value for non-variadic dbg.values for now.
1676 if (!IsVariadic &&
1677 EmitFuncArgumentDbgValue(V, Var, Expr, DbgLoc,
1678 FuncArgumentDbgValueKind::Value, N))
1679 return true;
1680 if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) {
1681 // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can
1682 // describe stack slot locations.
1683 //
1684 // Consider "int x = 0; int *px = &x;". There are two kinds of
1685 // interesting debug values here after optimization:
1686 //
1687 // dbg.value(i32* %px, !"int *px", !DIExpression()), and
1688 // dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref))
1689 //
1690 // Both describe the direct values of their associated variables.
1691 Dependencies.push_back(N.getNode());
1692 LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(FISDN->getIndex()));
1693 continue;
1694 }
1695 LocationOps.emplace_back(
1696 SDDbgOperand::fromNode(N.getNode(), N.getResNo()));
1697 continue;
1698 }
1699
1700 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1701 // Special rules apply for the first dbg.values of parameter variables in a
1702 // function. Identify them by the fact they reference Argument Values, that
1703 // they're parameters, and they are parameters of the current function. We
1704 // need to let them dangle until they get an SDNode.
1705 bool IsParamOfFunc =
1706 isa<Argument>(V) && Var->isParameter() && !DbgLoc.getInlinedAt();
1707 if (IsParamOfFunc)
1708 return false;
1709
1710 // The value is not used in this block yet (or it would have an SDNode).
1711 // We still want the value to appear for the user if possible -- if it has
1712 // an associated VReg, we can refer to that instead.
1713 auto VMI = FuncInfo.ValueMap.find(V);
1714 if (VMI != FuncInfo.ValueMap.end()) {
1715 Register Reg = VMI->second;
1716 // If this is a PHI node, it may be split up into several MI PHI nodes
1717 // (in FunctionLoweringInfo::set).
1718 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg,
1719 V->getType(), std::nullopt);
1720 if (RFV.occupiesMultipleRegs()) {
1721 // FIXME: We could potentially support variadic dbg_values here.
1722 if (IsVariadic)
1723 return false;
1724 unsigned Offset = 0;
1725 unsigned BitsToDescribe = 0;
1726 if (auto VarSize = Var->getSizeInBits())
1727 BitsToDescribe = *VarSize;
1728 if (auto Fragment = Expr->getFragmentInfo())
1729 BitsToDescribe = Fragment->SizeInBits;
1730 for (const auto &RegAndSize : RFV.getRegsAndSizes()) {
1731 // Bail out if all bits are described already.
1732 if (Offset >= BitsToDescribe)
1733 break;
1734 // TODO: handle scalable vectors.
1735 unsigned RegisterSize = RegAndSize.second;
1736 unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe)
1737 ? BitsToDescribe - Offset
1738 : RegisterSize;
1739 auto FragmentExpr = DIExpression::createFragmentExpression(
1740 Expr, Offset, FragmentSize);
1741 if (!FragmentExpr)
1742 continue;
1743 SDDbgValue *SDV = DAG.getVRegDbgValue(
1744 Var, *FragmentExpr, RegAndSize.first, false, DbgLoc, Order);
1745 DAG.AddDbgValue(SDV, false);
1746 Offset += RegisterSize;
1747 }
1748 return true;
1749 }
1750 // We can use simple vreg locations for variadic dbg_values as well.
1751 LocationOps.emplace_back(SDDbgOperand::fromVReg(Reg));
1752 continue;
1753 }
1754 // We failed to create a SDDbgOperand for V.
1755 return false;
1756 }
1757
1758 // We have created a SDDbgOperand for each Value in Values.
1759 assert(!LocationOps.empty());
1760 SDDbgValue *SDV =
1761 DAG.getDbgValueList(Var, Expr, LocationOps, Dependencies,
1762 /*IsIndirect=*/false, DbgLoc, Order, IsVariadic);
1763 DAG.AddDbgValue(SDV, /*isParameter=*/false);
1764 return true;
1765}
1766
1768 // Try to fixup any remaining dangling debug info -- and drop it if we can't.
1769 for (auto &Pair : DanglingDebugInfoMap)
1770 for (auto &DDI : Pair.second)
1771 salvageUnresolvedDbgValue(const_cast<Value *>(Pair.first), DDI);
1773}
1774
1775/// getCopyFromRegs - If there was virtual register allocated for the value V
1776/// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise.
1779 SDValue Result;
1780
1781 if (It != FuncInfo.ValueMap.end()) {
1782 Register InReg = It->second;
1783
1784 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(),
1785 DAG.getDataLayout(), InReg, Ty,
1786 std::nullopt); // This is not an ABI copy.
1787 SDValue Chain = DAG.getEntryNode();
1788 Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr,
1789 V);
1790 resolveDanglingDebugInfo(V, Result);
1791 }
1792
1793 return Result;
1794}
1795
1796/// getValue - Return an SDValue for the given Value.
1798 // If we already have an SDValue for this value, use it. It's important
1799 // to do this first, so that we don't create a CopyFromReg if we already
1800 // have a regular SDValue.
1801 SDValue &N = NodeMap[V];
1802 if (N.getNode()) return N;
1803
1804 // If there's a virtual register allocated and initialized for this
1805 // value, use it.
1806 if (SDValue copyFromReg = getCopyFromRegs(V, V->getType()))
1807 return copyFromReg;
1808
1809 // Otherwise create a new SDValue and remember it.
1810 SDValue Val = getValueImpl(V);
1811 NodeMap[V] = Val;
1813 return Val;
1814}
1815
1816/// getNonRegisterValue - Return an SDValue for the given Value, but
1817/// don't look in FuncInfo.ValueMap for a virtual register.
1819 // If we already have an SDValue for this value, use it.
1820 SDValue &N = NodeMap[V];
1821 if (N.getNode()) {
1822 if (isIntOrFPConstant(N)) {
1823 // Remove the debug location from the node as the node is about to be used
1824 // in a location which may differ from the original debug location. This
1825 // is relevant to Constant and ConstantFP nodes because they can appear
1826 // as constant expressions inside PHI nodes.
1827 N->setDebugLoc(DebugLoc());
1828 }
1829 return N;
1830 }
1831
1832 // Otherwise create a new SDValue and remember it.
1833 SDValue Val = getValueImpl(V);
1834 NodeMap[V] = Val;
1836 return Val;
1837}
1838
1839/// getValueImpl - Helper function for getValue and getNonRegisterValue.
1840/// Create an SDValue for the given value.
1842 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1843
1844 if (const Constant *C = dyn_cast<Constant>(V)) {
1845 EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true);
1846
1847 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) {
1848 SDLoc DL = getCurSDLoc();
1849
1850 // DAG.getConstant() may attempt to legalise the vector constant which can
1851 // significantly change the combines applied to the DAG. To reduce the
1852 // divergence when enabling ConstantInt based vectors we try to construct
1853 // the DAG in the same way as shufflevector based splats. TODO: The
1854 // divergence sometimes leads to better optimisations. Ideally we should
1855 // prevent DAG.getConstant() from legalising too early but there are some
1856 // degradations preventing this.
1857 if (VT.isScalableVector())
1858 return DAG.getNode(
1859 ISD::SPLAT_VECTOR, DL, VT,
1860 DAG.getConstant(CI->getValue(), DL, VT.getVectorElementType()));
1861 if (VT.isFixedLengthVector())
1862 return DAG.getSplatBuildVector(
1863 VT, DL,
1864 DAG.getConstant(CI->getValue(), DL, VT.getVectorElementType()));
1865 return DAG.getConstant(*CI, DL, VT);
1866 }
1867
1868 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
1869 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT);
1870
1871 if (const ConstantPtrAuth *CPA = dyn_cast<ConstantPtrAuth>(C)) {
1872 return DAG.getNode(ISD::PtrAuthGlobalAddress, getCurSDLoc(), VT,
1873 getValue(CPA->getPointer()), getValue(CPA->getKey()),
1874 getValue(CPA->getAddrDiscriminator()),
1875 getValue(CPA->getDiscriminator()));
1876 }
1877
1879 return DAG.getConstant(0, getCurSDLoc(), VT);
1880
1881 if (match(C, m_VScale()))
1882 return DAG.getVScale(getCurSDLoc(), VT, APInt(VT.getSizeInBits(), 1));
1883
1884 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
1885 return DAG.getConstantFP(*CFP, getCurSDLoc(), VT);
1886
1887 if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
1888 return isa<PoisonValue>(C) ? DAG.getPOISON(VT) : DAG.getUNDEF(VT);
1889
1890 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1891 visit(CE->getOpcode(), *CE);
1892 SDValue N1 = NodeMap[V];
1893 assert(N1.getNode() && "visit didn't populate the NodeMap!");
1894 return N1;
1895 }
1896
1898 SmallVector<SDValue, 4> Constants;
1899 for (const Use &U : C->operands()) {
1900 SDNode *Val = getValue(U).getNode();
1901 // If the operand is an empty aggregate, there are no values.
1902 if (!Val) continue;
1903 // Add each leaf value from the operand to the Constants list
1904 // to form a flattened list of all the values.
1905 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1906 Constants.push_back(SDValue(Val, i));
1907 }
1908
1909 return DAG.getMergeValues(Constants, getCurSDLoc());
1910 }
1911
1912 if (const ConstantDataSequential *CDS =
1915 for (uint64_t i = 0, e = CDS->getNumElements(); i != e; ++i) {
1916 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode();
1917 // Add each leaf value from the operand to the Constants list
1918 // to form a flattened list of all the values.
1919 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1920 Ops.push_back(SDValue(Val, i));
1921 }
1922
1923 if (isa<ArrayType>(CDS->getType()))
1924 return DAG.getMergeValues(Ops, getCurSDLoc());
1925 return DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1926 }
1927
1928 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
1930 "Unknown struct or array constant!");
1931
1932 SmallVector<EVT, 4> ValueVTs;
1933 ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs);
1934 unsigned NumElts = ValueVTs.size();
1935 if (NumElts == 0)
1936 return SDValue(); // empty struct
1937 SmallVector<SDValue, 4> Constants(NumElts);
1938 for (unsigned i = 0; i != NumElts; ++i) {
1939 EVT EltVT = ValueVTs[i];
1940 if (isa<UndefValue>(C))
1941 Constants[i] = DAG.getUNDEF(EltVT);
1942 else if (EltVT.isFloatingPoint())
1943 Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1944 else
1945 Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT);
1946 }
1947
1948 return DAG.getMergeValues(Constants, getCurSDLoc());
1949 }
1950
1951 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1952 return DAG.getBlockAddress(BA, VT);
1953
1954 if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(C))
1955 return getValue(Equiv->getGlobalValue());
1956
1957 if (const auto *NC = dyn_cast<NoCFIValue>(C))
1958 return getValue(NC->getGlobalValue());
1959
1960 if (VT == MVT::aarch64svcount) {
1961 assert(C->isNullValue() && "Can only zero this target type!");
1962 return DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT,
1963 DAG.getConstant(0, getCurSDLoc(), MVT::nxv16i1));
1964 }
1965
1966 if (VT.isRISCVVectorTuple()) {
1967 assert(C->isNullValue() && "Can only zero this target type!");
1968 return DAG.getNode(
1970 DAG.getNode(
1972 EVT::getVectorVT(*DAG.getContext(), MVT::i8,
1973 VT.getSizeInBits().getKnownMinValue() / 8, true),
1974 DAG.getConstant(0, getCurSDLoc(), MVT::getIntegerVT(8))));
1975 }
1976
1977 VectorType *VecTy = cast<VectorType>(V->getType());
1978
1979 // Now that we know the number and type of the elements, get that number of
1980 // elements into the Ops array based on what kind of constant it is.
1981 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
1983 unsigned NumElements = cast<FixedVectorType>(VecTy)->getNumElements();
1984 for (unsigned i = 0; i != NumElements; ++i)
1985 Ops.push_back(getValue(CV->getOperand(i)));
1986
1987 return DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1988 }
1989
1991 EVT EltVT =
1992 TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType());
1993
1994 SDValue Op;
1995 if (EltVT.isFloatingPoint())
1996 Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1997 else
1998 Op = DAG.getConstant(0, getCurSDLoc(), EltVT);
1999
2000 return DAG.getSplat(VT, getCurSDLoc(), Op);
2001 }
2002
2003 llvm_unreachable("Unknown vector constant");
2004 }
2005
2006 // If this is a static alloca, generate it as the frameindex instead of
2007 // computation.
2008 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
2010 FuncInfo.StaticAllocaMap.find(AI);
2011 if (SI != FuncInfo.StaticAllocaMap.end())
2012 return DAG.getFrameIndex(
2013 SI->second, TLI.getValueType(DAG.getDataLayout(), AI->getType()));
2014 }
2015
2016 // If this is an instruction which fast-isel has deferred, select it now.
2017 if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
2018 Register InReg = FuncInfo.InitializeRegForValue(Inst);
2019
2020 std::optional<CallingConv::ID> CallConv;
2021 auto *CB = dyn_cast<CallBase>(Inst);
2022 if (CB && !CB->isInlineAsm())
2023 CallConv = CB->getCallingConv();
2024
2025 RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg,
2026 Inst->getType(), CallConv);
2027 SDValue Chain = DAG.getEntryNode();
2028 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V);
2029 }
2030
2031 if (const MetadataAsValue *MD = dyn_cast<MetadataAsValue>(V))
2032 return DAG.getMDNode(cast<MDNode>(MD->getMetadata()));
2033
2034 if (const auto *BB = dyn_cast<BasicBlock>(V))
2035 return DAG.getBasicBlock(FuncInfo.getMBB(BB));
2036
2037 llvm_unreachable("Can't get register for value!");
2038}
2039
2040void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) {
2042 bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX;
2043 bool IsCoreCLR = Pers == EHPersonality::CoreCLR;
2044 bool IsSEH = isAsynchronousEHPersonality(Pers);
2045 MachineBasicBlock *CatchPadMBB = FuncInfo.MBB;
2046 if (IsSEH) {
2047 // For SEH, EHCont Guard needs to know that this catchpad is a target.
2048 CatchPadMBB->setIsEHContTarget(true);
2050 } else
2051 CatchPadMBB->setIsEHScopeEntry();
2052 // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues.
2053 if (IsMSVCCXX || IsCoreCLR)
2054 CatchPadMBB->setIsEHFuncletEntry();
2055}
2056
2057void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) {
2058 // Update machine-CFG edge.
2059 MachineBasicBlock *TargetMBB = FuncInfo.getMBB(I.getSuccessor());
2060 FuncInfo.MBB->addSuccessor(TargetMBB);
2061
2062 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
2063 bool IsSEH = isAsynchronousEHPersonality(Pers);
2064 if (IsSEH) {
2065 // If this is not a fall-through branch or optimizations are switched off,
2066 // emit the branch.
2067 if (TargetMBB != NextBlock(FuncInfo.MBB) ||
2068 TM.getOptLevel() == CodeGenOptLevel::None)
2069 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
2070 getControlRoot(), DAG.getBasicBlock(TargetMBB)));
2071 return;
2072 }
2073
2074 // For non-SEH, EHCont Guard needs to know that this catchret is a target.
2075 TargetMBB->setIsEHContTarget(true);
2076 DAG.getMachineFunction().setHasEHContTarget(true);
2077
2078 // Figure out the funclet membership for the catchret's successor.
2079 // This will be used by the FuncletLayout pass to determine how to order the
2080 // BB's.
2081 // A 'catchret' returns to the outer scope's color.
2082 Value *ParentPad = I.getCatchSwitchParentPad();
2083 const BasicBlock *SuccessorColor;
2084 if (isa<ConstantTokenNone>(ParentPad))
2085 SuccessorColor = &FuncInfo.Fn->getEntryBlock();
2086 else
2087 SuccessorColor = cast<Instruction>(ParentPad)->getParent();
2088 assert(SuccessorColor && "No parent funclet for catchret!");
2089 MachineBasicBlock *SuccessorColorMBB = FuncInfo.getMBB(SuccessorColor);
2090 assert(SuccessorColorMBB && "No MBB for SuccessorColor!");
2091
2092 // Create the terminator node.
2093 SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other,
2094 getControlRoot(), DAG.getBasicBlock(TargetMBB),
2095 DAG.getBasicBlock(SuccessorColorMBB));
2096 DAG.setRoot(Ret);
2097}
2098
2099void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) {
2100 // Don't emit any special code for the cleanuppad instruction. It just marks
2101 // the start of an EH scope/funclet.
2102 FuncInfo.MBB->setIsEHScopeEntry();
2103 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
2104 if (Pers != EHPersonality::Wasm_CXX) {
2105 FuncInfo.MBB->setIsEHFuncletEntry();
2106 FuncInfo.MBB->setIsCleanupFuncletEntry();
2107 }
2108}
2109
2110/// When an invoke or a cleanupret unwinds to the next EH pad, there are
2111/// many places it could ultimately go. In the IR, we have a single unwind
2112/// destination, but in the machine CFG, we enumerate all the possible blocks.
2113/// This function skips over imaginary basic blocks that hold catchswitch
2114/// instructions, and finds all the "real" machine
2115/// basic block destinations. As those destinations may not be successors of
2116/// EHPadBB, here we also calculate the edge probability to those destinations.
2117/// The passed-in Prob is the edge probability to EHPadBB.
2119 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
2120 BranchProbability Prob,
2121 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
2122 &UnwindDests) {
2123 EHPersonality Personality =
2125 bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX;
2126 bool IsCoreCLR = Personality == EHPersonality::CoreCLR;
2127 bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX;
2128 bool IsSEH = isAsynchronousEHPersonality(Personality);
2129
2130 while (EHPadBB) {
2132 BasicBlock *NewEHPadBB = nullptr;
2133 if (isa<LandingPadInst>(Pad)) {
2134 // Stop on landingpads. They are not funclets.
2135 UnwindDests.emplace_back(FuncInfo.getMBB(EHPadBB), Prob);
2136 break;
2137 } else if (isa<CleanupPadInst>(Pad)) {
2138 // Stop on cleanup pads. Cleanups are always funclet entries for all known
2139 // personalities except Wasm. And in Wasm this becomes a catch_all(_ref),
2140 // which always catches an exception.
2141 UnwindDests.emplace_back(FuncInfo.getMBB(EHPadBB), Prob);
2142 UnwindDests.back().first->setIsEHScopeEntry();
2143 // In Wasm, EH scopes are not funclets
2144 if (!IsWasmCXX)
2145 UnwindDests.back().first->setIsEHFuncletEntry();
2146 break;
2147 } else if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
2148 // Add the catchpad handlers to the possible destinations.
2149 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
2150 UnwindDests.emplace_back(FuncInfo.getMBB(CatchPadBB), Prob);
2151 // For MSVC++ and the CLR, catchblocks are funclets and need prologues.
2152 if (IsMSVCCXX || IsCoreCLR)
2153 UnwindDests.back().first->setIsEHFuncletEntry();
2154 if (!IsSEH)
2155 UnwindDests.back().first->setIsEHScopeEntry();
2156 }
2157 NewEHPadBB = CatchSwitch->getUnwindDest();
2158 } else {
2159 continue;
2160 }
2161
2162 BranchProbabilityInfo *BPI = FuncInfo.BPI;
2163 if (BPI && NewEHPadBB)
2164 Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB);
2165 EHPadBB = NewEHPadBB;
2166 }
2167}
2168
2169void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) {
2170 // Update successor info.
2172 auto UnwindDest = I.getUnwindDest();
2173 BranchProbabilityInfo *BPI = FuncInfo.BPI;
2174 BranchProbability UnwindDestProb =
2175 (BPI && UnwindDest)
2176 ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest)
2178 findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests);
2179 for (auto &UnwindDest : UnwindDests) {
2180 UnwindDest.first->setIsEHPad();
2181 addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second);
2182 }
2183 FuncInfo.MBB->normalizeSuccProbs();
2184
2185 // Create the terminator node.
2186 MachineBasicBlock *CleanupPadMBB =
2187 FuncInfo.getMBB(I.getCleanupPad()->getParent());
2188 SDValue Ret = DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other,
2189 getControlRoot(), DAG.getBasicBlock(CleanupPadMBB));
2190 DAG.setRoot(Ret);
2191}
2192
2193void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) {
2194 report_fatal_error("visitCatchSwitch not yet implemented!");
2195}
2196
2197void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
2198 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2199 auto &DL = DAG.getDataLayout();
2200 SDValue Chain = getControlRoot();
2203
2204 // Calls to @llvm.experimental.deoptimize don't generate a return value, so
2205 // lower
2206 //
2207 // %val = call <ty> @llvm.experimental.deoptimize()
2208 // ret <ty> %val
2209 //
2210 // differently.
2211 if (I.getParent()->getTerminatingDeoptimizeCall()) {
2213 return;
2214 }
2215
2216 if (!FuncInfo.CanLowerReturn) {
2217 Register DemoteReg = FuncInfo.DemoteRegister;
2218
2219 // Emit a store of the return value through the virtual register.
2220 // Leave Outs empty so that LowerReturn won't try to load return
2221 // registers the usual way.
2222 MVT PtrValueVT = TLI.getPointerTy(DL, DL.getAllocaAddrSpace());
2223 SDValue RetPtr =
2224 DAG.getCopyFromReg(Chain, getCurSDLoc(), DemoteReg, PtrValueVT);
2225 SDValue RetOp = getValue(I.getOperand(0));
2226
2227 SmallVector<EVT, 4> ValueVTs, MemVTs;
2228 SmallVector<uint64_t, 4> Offsets;
2229 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &MemVTs,
2230 &Offsets, 0);
2231 unsigned NumValues = ValueVTs.size();
2232
2233 SmallVector<SDValue, 4> Chains(NumValues);
2234 Align BaseAlign = DL.getPrefTypeAlign(I.getOperand(0)->getType());
2235 for (unsigned i = 0; i != NumValues; ++i) {
2236 // An aggregate return value cannot wrap around the address space, so
2237 // offsets to its parts don't wrap either.
2238 SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr,
2239 TypeSize::getFixed(Offsets[i]));
2240
2241 SDValue Val = RetOp.getValue(RetOp.getResNo() + i);
2242 if (MemVTs[i] != ValueVTs[i])
2243 Val = DAG.getPtrExtOrTrunc(Val, getCurSDLoc(), MemVTs[i]);
2244 Chains[i] = DAG.getStore(
2245 Chain, getCurSDLoc(), Val,
2246 // FIXME: better loc info would be nice.
2247 Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()),
2248 commonAlignment(BaseAlign, Offsets[i]));
2249 }
2250
2251 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
2252 MVT::Other, Chains);
2253 } else if (I.getNumOperands() != 0) {
2255 ComputeValueTypes(DL, I.getOperand(0)->getType(), Types);
2256 unsigned NumValues = Types.size();
2257 if (NumValues) {
2258 SDValue RetOp = getValue(I.getOperand(0));
2259
2260 const Function *F = I.getParent()->getParent();
2261
2262 bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters(
2263 I.getOperand(0)->getType(), F->getCallingConv(),
2264 /*IsVarArg*/ false, DL);
2265
2266 ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
2267 if (F->getAttributes().hasRetAttr(Attribute::SExt))
2268 ExtendKind = ISD::SIGN_EXTEND;
2269 else if (F->getAttributes().hasRetAttr(Attribute::ZExt))
2270 ExtendKind = ISD::ZERO_EXTEND;
2271
2272 LLVMContext &Context = F->getContext();
2273 bool RetInReg = F->getAttributes().hasRetAttr(Attribute::InReg);
2274
2275 for (unsigned j = 0; j != NumValues; ++j) {
2276 EVT VT = TLI.getValueType(DL, Types[j]);
2277
2278 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
2279 VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind);
2280
2281 CallingConv::ID CC = F->getCallingConv();
2282
2283 unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, CC, VT);
2284 MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, CC, VT);
2285 SmallVector<SDValue, 4> Parts(NumParts);
2287 SDValue(RetOp.getNode(), RetOp.getResNo() + j),
2288 &Parts[0], NumParts, PartVT, &I, CC, ExtendKind);
2289
2290 // 'inreg' on function refers to return value
2291 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
2292 if (RetInReg)
2293 Flags.setInReg();
2294
2295 if (I.getOperand(0)->getType()->isPointerTy()) {
2296 Flags.setPointer();
2297 Flags.setPointerAddrSpace(
2298 cast<PointerType>(I.getOperand(0)->getType())->getAddressSpace());
2299 }
2300
2301 if (NeedsRegBlock) {
2302 Flags.setInConsecutiveRegs();
2303 if (j == NumValues - 1)
2304 Flags.setInConsecutiveRegsLast();
2305 }
2306
2307 // Propagate extension type if any
2308 if (ExtendKind == ISD::SIGN_EXTEND)
2309 Flags.setSExt();
2310 else if (ExtendKind == ISD::ZERO_EXTEND)
2311 Flags.setZExt();
2312 else if (F->getAttributes().hasRetAttr(Attribute::NoExt))
2313 Flags.setNoExt();
2314
2315 for (unsigned i = 0; i < NumParts; ++i) {
2316 Outs.push_back(ISD::OutputArg(Flags,
2317 Parts[i].getValueType().getSimpleVT(),
2318 VT, Types[j], 0, 0));
2319 OutVals.push_back(Parts[i]);
2320 }
2321 }
2322 }
2323 }
2324
2325 // Push in swifterror virtual register as the last element of Outs. This makes
2326 // sure swifterror virtual register will be returned in the swifterror
2327 // physical register.
2328 const Function *F = I.getParent()->getParent();
2329 if (TLI.supportSwiftError() &&
2330 F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) {
2331 assert(SwiftError.getFunctionArg() && "Need a swift error argument");
2332 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
2333 Flags.setSwiftError();
2334 Outs.push_back(ISD::OutputArg(Flags, /*vt=*/TLI.getPointerTy(DL),
2335 /*argvt=*/EVT(TLI.getPointerTy(DL)),
2336 PointerType::getUnqual(*DAG.getContext()),
2337 /*origidx=*/1, /*partOffs=*/0));
2338 // Create SDNode for the swifterror virtual register.
2339 OutVals.push_back(
2340 DAG.getRegister(SwiftError.getOrCreateVRegUseAt(
2341 &I, FuncInfo.MBB, SwiftError.getFunctionArg()),
2342 EVT(TLI.getPointerTy(DL))));
2343 }
2344
2345 bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg();
2346 CallingConv::ID CallConv =
2347 DAG.getMachineFunction().getFunction().getCallingConv();
2348 Chain = DAG.getTargetLoweringInfo().LowerReturn(
2349 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG);
2350
2351 // Verify that the target's LowerReturn behaved as expected.
2352 assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
2353 "LowerReturn didn't return a valid chain!");
2354
2355 // Update the DAG with the new chain value resulting from return lowering.
2356 DAG.setRoot(Chain);
2357}
2358
2359/// CopyToExportRegsIfNeeded - If the given value has virtual registers
2360/// created for it, emit nodes to copy the value into the virtual
2361/// registers.
2363 // Skip empty types
2364 if (V->getType()->isEmptyTy())
2365 return;
2366
2368 if (VMI != FuncInfo.ValueMap.end()) {
2369 assert((!V->use_empty() || isa<CallBrInst>(V)) &&
2370 "Unused value assigned virtual registers!");
2371 CopyValueToVirtualRegister(V, VMI->second);
2372 }
2373}
2374
2375/// ExportFromCurrentBlock - If this condition isn't known to be exported from
2376/// the current basic block, add it to ValueMap now so that we'll get a
2377/// CopyTo/FromReg.
2379 // No need to export constants.
2380 if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
2381
2382 // Already exported?
2383 if (FuncInfo.isExportedInst(V)) return;
2384
2385 Register Reg = FuncInfo.InitializeRegForValue(V);
2387}
2388
2390 const BasicBlock *FromBB) {
2391 // The operands of the setcc have to be in this block. We don't know
2392 // how to export them from some other block.
2393 if (const Instruction *VI = dyn_cast<Instruction>(V)) {
2394 // Can export from current BB.
2395 if (VI->getParent() == FromBB)
2396 return true;
2397
2398 // Is already exported, noop.
2399 return FuncInfo.isExportedInst(V);
2400 }
2401
2402 // If this is an argument, we can export it if the BB is the entry block or
2403 // if it is already exported.
2404 if (isa<Argument>(V)) {
2405 if (FromBB->isEntryBlock())
2406 return true;
2407
2408 // Otherwise, can only export this if it is already exported.
2409 return FuncInfo.isExportedInst(V);
2410 }
2411
2412 // Otherwise, constants can always be exported.
2413 return true;
2414}
2415
2416/// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
2418SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src,
2419 const MachineBasicBlock *Dst) const {
2421 const BasicBlock *SrcBB = Src->getBasicBlock();
2422 const BasicBlock *DstBB = Dst->getBasicBlock();
2423 if (!BPI) {
2424 // If BPI is not available, set the default probability as 1 / N, where N is
2425 // the number of successors.
2426 auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1);
2427 return BranchProbability(1, SuccSize);
2428 }
2429 return BPI->getEdgeProbability(SrcBB, DstBB);
2430}
2431
2432void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src,
2433 MachineBasicBlock *Dst,
2434 BranchProbability Prob) {
2435 if (!FuncInfo.BPI)
2436 Src->addSuccessorWithoutProb(Dst);
2437 else {
2438 if (Prob.isUnknown())
2439 Prob = getEdgeProbability(Src, Dst);
2440 Src->addSuccessor(Dst, Prob);
2441 }
2442}
2443
2444static bool InBlock(const Value *V, const BasicBlock *BB) {
2445 if (const Instruction *I = dyn_cast<Instruction>(V))
2446 return I->getParent() == BB;
2447 return true;
2448}
2449
2450/// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
2451/// This function emits a branch and is used at the leaves of an OR or an
2452/// AND operator tree.
2453void
2456 MachineBasicBlock *FBB,
2457 MachineBasicBlock *CurBB,
2458 MachineBasicBlock *SwitchBB,
2459 BranchProbability TProb,
2460 BranchProbability FProb,
2461 bool InvertCond) {
2462 const BasicBlock *BB = CurBB->getBasicBlock();
2463
2464 // If the leaf of the tree is a comparison, merge the condition into
2465 // the caseblock.
2466 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
2467 // The operands of the cmp have to be in this block. We don't know
2468 // how to export them from some other block. If this is the first block
2469 // of the sequence, no exporting is needed.
2470 if (CurBB == SwitchBB ||
2471 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
2472 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
2473 ISD::CondCode Condition;
2474 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
2475 ICmpInst::Predicate Pred =
2476 InvertCond ? IC->getInversePredicate() : IC->getPredicate();
2477 Condition = getICmpCondCode(Pred);
2478 } else {
2479 const FCmpInst *FC = cast<FCmpInst>(Cond);
2480 FCmpInst::Predicate Pred =
2481 InvertCond ? FC->getInversePredicate() : FC->getPredicate();
2482 Condition = getFCmpCondCode(Pred);
2483 if (TM.Options.NoNaNsFPMath)
2484 Condition = getFCmpCodeWithoutNaN(Condition);
2485 }
2486
2487 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr,
2488 TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
2489 SL->SwitchCases.push_back(CB);
2490 return;
2491 }
2492 }
2493
2494 // Create a CaseBlock record representing this branch.
2495 ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ;
2496 CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()),
2497 nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
2498 SL->SwitchCases.push_back(CB);
2499}
2500
2501// Collect dependencies on V recursively. This is used for the cost analysis in
2502// `shouldKeepJumpConditionsTogether`.
2506 unsigned Depth = 0) {
2507 // Return false if we have an incomplete count.
2509 return false;
2510
2511 auto *I = dyn_cast<Instruction>(V);
2512 if (I == nullptr)
2513 return true;
2514
2515 if (Necessary != nullptr) {
2516 // This instruction is necessary for the other side of the condition so
2517 // don't count it.
2518 if (Necessary->contains(I))
2519 return true;
2520 }
2521
2522 // Already added this dep.
2523 if (!Deps->try_emplace(I, false).second)
2524 return true;
2525
2526 for (unsigned OpIdx = 0, E = I->getNumOperands(); OpIdx < E; ++OpIdx)
2527 if (!collectInstructionDeps(Deps, I->getOperand(OpIdx), Necessary,
2528 Depth + 1))
2529 return false;
2530 return true;
2531}
2532
2535 Instruction::BinaryOps Opc, const Value *Lhs, const Value *Rhs,
2537 if (I.getNumSuccessors() != 2)
2538 return false;
2539
2540 if (!I.isConditional())
2541 return false;
2542
2543 if (Params.BaseCost < 0)
2544 return false;
2545
2546 // Baseline cost.
2547 InstructionCost CostThresh = Params.BaseCost;
2548
2549 BranchProbabilityInfo *BPI = nullptr;
2550 if (Params.LikelyBias || Params.UnlikelyBias)
2551 BPI = FuncInfo.BPI;
2552 if (BPI != nullptr) {
2553 // See if we are either likely to get an early out or compute both lhs/rhs
2554 // of the condition.
2555 BasicBlock *IfFalse = I.getSuccessor(0);
2556 BasicBlock *IfTrue = I.getSuccessor(1);
2557
2558 std::optional<bool> Likely;
2559 if (BPI->isEdgeHot(I.getParent(), IfTrue))
2560 Likely = true;
2561 else if (BPI->isEdgeHot(I.getParent(), IfFalse))
2562 Likely = false;
2563
2564 if (Likely) {
2565 if (Opc == (*Likely ? Instruction::And : Instruction::Or))
2566 // Its likely we will have to compute both lhs and rhs of condition
2567 CostThresh += Params.LikelyBias;
2568 else {
2569 if (Params.UnlikelyBias < 0)
2570 return false;
2571 // Its likely we will get an early out.
2572 CostThresh -= Params.UnlikelyBias;
2573 }
2574 }
2575 }
2576
2577 if (CostThresh <= 0)
2578 return false;
2579
2580 // Collect "all" instructions that lhs condition is dependent on.
2581 // Use map for stable iteration (to avoid non-determanism of iteration of
2582 // SmallPtrSet). The `bool` value is just a dummy.
2584 collectInstructionDeps(&LhsDeps, Lhs);
2585 // Collect "all" instructions that rhs condition is dependent on AND are
2586 // dependencies of lhs. This gives us an estimate on which instructions we
2587 // stand to save by splitting the condition.
2588 if (!collectInstructionDeps(&RhsDeps, Rhs, &LhsDeps))
2589 return false;
2590 // Add the compare instruction itself unless its a dependency on the LHS.
2591 if (const auto *RhsI = dyn_cast<Instruction>(Rhs))
2592 if (!LhsDeps.contains(RhsI))
2593 RhsDeps.try_emplace(RhsI, false);
2594
2595 InstructionCost CostOfIncluding = 0;
2596 // See if this instruction will need to computed independently of whether RHS
2597 // is.
2598 Value *BrCond = I.getCondition();
2599 auto ShouldCountInsn = [&RhsDeps, &BrCond](const Instruction *Ins) {
2600 for (const auto *U : Ins->users()) {
2601 // If user is independent of RHS calculation we don't need to count it.
2602 if (auto *UIns = dyn_cast<Instruction>(U))
2603 if (UIns != BrCond && !RhsDeps.contains(UIns))
2604 return false;
2605 }
2606 return true;
2607 };
2608
2609 // Prune instructions from RHS Deps that are dependencies of unrelated
2610 // instructions. The value (SelectionDAG::MaxRecursionDepth) is fairly
2611 // arbitrary and just meant to cap the how much time we spend in the pruning
2612 // loop. Its highly unlikely to come into affect.
2613 const unsigned MaxPruneIters = SelectionDAG::MaxRecursionDepth;
2614 // Stop after a certain point. No incorrectness from including too many
2615 // instructions.
2616 for (unsigned PruneIters = 0; PruneIters < MaxPruneIters; ++PruneIters) {
2617 const Instruction *ToDrop = nullptr;
2618 for (const auto &InsPair : RhsDeps) {
2619 if (!ShouldCountInsn(InsPair.first)) {
2620 ToDrop = InsPair.first;
2621 break;
2622 }
2623 }
2624 if (ToDrop == nullptr)
2625 break;
2626 RhsDeps.erase(ToDrop);
2627 }
2628
2629 for (const auto &InsPair : RhsDeps) {
2630 // Finally accumulate latency that we can only attribute to computing the
2631 // RHS condition. Use latency because we are essentially trying to calculate
2632 // the cost of the dependency chain.
2633 // Possible TODO: We could try to estimate ILP and make this more precise.
2634 CostOfIncluding += TTI->getInstructionCost(
2635 InsPair.first, TargetTransformInfo::TCK_Latency);
2636
2637 if (CostOfIncluding > CostThresh)
2638 return false;
2639 }
2640 return true;
2641}
2642
2645 MachineBasicBlock *FBB,
2646 MachineBasicBlock *CurBB,
2647 MachineBasicBlock *SwitchBB,
2649 BranchProbability TProb,
2650 BranchProbability FProb,
2651 bool InvertCond) {
2652 // Skip over not part of the tree and remember to invert op and operands at
2653 // next level.
2654 Value *NotCond;
2655 if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) &&
2656 InBlock(NotCond, CurBB->getBasicBlock())) {
2657 FindMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb,
2658 !InvertCond);
2659 return;
2660 }
2661
2663 const Value *BOpOp0, *BOpOp1;
2664 // Compute the effective opcode for Cond, taking into account whether it needs
2665 // to be inverted, e.g.
2666 // and (not (or A, B)), C
2667 // gets lowered as
2668 // and (and (not A, not B), C)
2670 if (BOp) {
2671 BOpc = match(BOp, m_LogicalAnd(m_Value(BOpOp0), m_Value(BOpOp1)))
2672 ? Instruction::And
2673 : (match(BOp, m_LogicalOr(m_Value(BOpOp0), m_Value(BOpOp1)))
2674 ? Instruction::Or
2676 if (InvertCond) {
2677 if (BOpc == Instruction::And)
2678 BOpc = Instruction::Or;
2679 else if (BOpc == Instruction::Or)
2680 BOpc = Instruction::And;
2681 }
2682 }
2683
2684 // If this node is not part of the or/and tree, emit it as a branch.
2685 // Note that all nodes in the tree should have same opcode.
2686 bool BOpIsInOrAndTree = BOpc && BOpc == Opc && BOp->hasOneUse();
2687 if (!BOpIsInOrAndTree || BOp->getParent() != CurBB->getBasicBlock() ||
2688 !InBlock(BOpOp0, CurBB->getBasicBlock()) ||
2689 !InBlock(BOpOp1, CurBB->getBasicBlock())) {
2690 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB,
2691 TProb, FProb, InvertCond);
2692 return;
2693 }
2694
2695 // Create TmpBB after CurBB.
2696 MachineFunction::iterator BBI(CurBB);
2697 MachineFunction &MF = DAG.getMachineFunction();
2699 CurBB->getParent()->insert(++BBI, TmpBB);
2700
2701 if (Opc == Instruction::Or) {
2702 // Codegen X | Y as:
2703 // BB1:
2704 // jmp_if_X TBB
2705 // jmp TmpBB
2706 // TmpBB:
2707 // jmp_if_Y TBB
2708 // jmp FBB
2709 //
2710
2711 // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
2712 // The requirement is that
2713 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
2714 // = TrueProb for original BB.
2715 // Assuming the original probabilities are A and B, one choice is to set
2716 // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to
2717 // A/(1+B) and 2B/(1+B). This choice assumes that
2718 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
2719 // Another choice is to assume TrueProb for BB1 equals to TrueProb for
2720 // TmpBB, but the math is more complicated.
2721
2722 auto NewTrueProb = TProb / 2;
2723 auto NewFalseProb = TProb / 2 + FProb;
2724 // Emit the LHS condition.
2725 FindMergedConditions(BOpOp0, TBB, TmpBB, CurBB, SwitchBB, Opc, NewTrueProb,
2726 NewFalseProb, InvertCond);
2727
2728 // Normalize A/2 and B to get A/(1+B) and 2B/(1+B).
2729 SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb};
2731 // Emit the RHS condition into TmpBB.
2732 FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0],
2733 Probs[1], InvertCond);
2734 } else {
2735 assert(Opc == Instruction::And && "Unknown merge op!");
2736 // Codegen X & Y as:
2737 // BB1:
2738 // jmp_if_X TmpBB
2739 // jmp FBB
2740 // TmpBB:
2741 // jmp_if_Y TBB
2742 // jmp FBB
2743 //
2744 // This requires creation of TmpBB after CurBB.
2745
2746 // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
2747 // The requirement is that
2748 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
2749 // = FalseProb for original BB.
2750 // Assuming the original probabilities are A and B, one choice is to set
2751 // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to
2752 // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 ==
2753 // TrueProb for BB1 * FalseProb for TmpBB.
2754
2755 auto NewTrueProb = TProb + FProb / 2;
2756 auto NewFalseProb = FProb / 2;
2757 // Emit the LHS condition.
2758 FindMergedConditions(BOpOp0, TmpBB, FBB, CurBB, SwitchBB, Opc, NewTrueProb,
2759 NewFalseProb, InvertCond);
2760
2761 // Normalize A and B/2 to get 2A/(1+A) and B/(1+A).
2762 SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2};
2764 // Emit the RHS condition into TmpBB.
2765 FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0],
2766 Probs[1], InvertCond);
2767 }
2768}
2769
2770/// If the set of cases should be emitted as a series of branches, return true.
2771/// If we should emit this as a bunch of and/or'd together conditions, return
2772/// false.
2773bool
2774SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) {
2775 if (Cases.size() != 2) return true;
2776
2777 // If this is two comparisons of the same values or'd or and'd together, they
2778 // will get folded into a single comparison, so don't emit two blocks.
2779 if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
2780 Cases[0].CmpRHS == Cases[1].CmpRHS) ||
2781 (Cases[0].CmpRHS == Cases[1].CmpLHS &&
2782 Cases[0].CmpLHS == Cases[1].CmpRHS)) {
2783 return false;
2784 }
2785
2786 // Handle: (X != null) | (Y != null) --> (X|Y) != 0
2787 // Handle: (X == null) & (Y == null) --> (X|Y) == 0
2788 if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
2789 Cases[0].CC == Cases[1].CC &&
2790 isa<Constant>(Cases[0].CmpRHS) &&
2791 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
2792 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
2793 return false;
2794 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
2795 return false;
2796 }
2797
2798 return true;
2799}
2800
2801void SelectionDAGBuilder::visitBr(const BranchInst &I) {
2803
2804 // Update machine-CFG edges.
2805 MachineBasicBlock *Succ0MBB = FuncInfo.getMBB(I.getSuccessor(0));
2806
2807 if (I.isUnconditional()) {
2808 // Update machine-CFG edges.
2809 BrMBB->addSuccessor(Succ0MBB);
2810
2811 // If this is not a fall-through branch or optimizations are switched off,
2812 // emit the branch.
2813 if (Succ0MBB != NextBlock(BrMBB) ||
2815 auto Br = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
2816 getControlRoot(), DAG.getBasicBlock(Succ0MBB));
2817 setValue(&I, Br);
2818 DAG.setRoot(Br);
2819 }
2820
2821 return;
2822 }
2823
2824 // If this condition is one of the special cases we handle, do special stuff
2825 // now.
2826 const Value *CondVal = I.getCondition();
2827 MachineBasicBlock *Succ1MBB = FuncInfo.getMBB(I.getSuccessor(1));
2828
2829 // If this is a series of conditions that are or'd or and'd together, emit
2830 // this as a sequence of branches instead of setcc's with and/or operations.
2831 // As long as jumps are not expensive (exceptions for multi-use logic ops,
2832 // unpredictable branches, and vector extracts because those jumps are likely
2833 // expensive for any target), this should improve performance.
2834 // For example, instead of something like:
2835 // cmp A, B
2836 // C = seteq
2837 // cmp D, E
2838 // F = setle
2839 // or C, F
2840 // jnz foo
2841 // Emit:
2842 // cmp A, B
2843 // je foo
2844 // cmp D, E
2845 // jle foo
2846 bool IsUnpredictable = I.hasMetadata(LLVMContext::MD_unpredictable);
2847 const Instruction *BOp = dyn_cast<Instruction>(CondVal);
2848 if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp &&
2849 BOp->hasOneUse() && !IsUnpredictable) {
2850 Value *Vec;
2851 const Value *BOp0, *BOp1;
2853 if (match(BOp, m_LogicalAnd(m_Value(BOp0), m_Value(BOp1))))
2854 Opcode = Instruction::And;
2855 else if (match(BOp, m_LogicalOr(m_Value(BOp0), m_Value(BOp1))))
2856 Opcode = Instruction::Or;
2857
2858 if (Opcode &&
2859 !(match(BOp0, m_ExtractElt(m_Value(Vec), m_Value())) &&
2860 match(BOp1, m_ExtractElt(m_Specific(Vec), m_Value()))) &&
2862 FuncInfo, I, Opcode, BOp0, BOp1,
2863 DAG.getTargetLoweringInfo().getJumpConditionMergingParams(
2864 Opcode, BOp0, BOp1))) {
2865 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, Opcode,
2866 getEdgeProbability(BrMBB, Succ0MBB),
2867 getEdgeProbability(BrMBB, Succ1MBB),
2868 /*InvertCond=*/false);
2869 // If the compares in later blocks need to use values not currently
2870 // exported from this block, export them now. This block should always
2871 // be the first entry.
2872 assert(SL->SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
2873
2874 // Allow some cases to be rejected.
2875 if (ShouldEmitAsBranches(SL->SwitchCases)) {
2876 for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) {
2877 ExportFromCurrentBlock(SL->SwitchCases[i].CmpLHS);
2878 ExportFromCurrentBlock(SL->SwitchCases[i].CmpRHS);
2879 }
2880
2881 // Emit the branch for this block.
2882 visitSwitchCase(SL->SwitchCases[0], BrMBB);
2883 SL->SwitchCases.erase(SL->SwitchCases.begin());
2884 return;
2885 }
2886
2887 // Okay, we decided not to do this, remove any inserted MBB's and clear
2888 // SwitchCases.
2889 for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i)
2890 FuncInfo.MF->erase(SL->SwitchCases[i].ThisBB);
2891
2892 SL->SwitchCases.clear();
2893 }
2894 }
2895
2896 // Create a CaseBlock record representing this branch.
2897 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
2898 nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc(),
2900 IsUnpredictable);
2901
2902 // Use visitSwitchCase to actually insert the fast branch sequence for this
2903 // cond branch.
2904 visitSwitchCase(CB, BrMBB);
2905}
2906
2907/// visitSwitchCase - Emits the necessary code to represent a single node in
2908/// the binary search tree resulting from lowering a switch instruction.
2910 MachineBasicBlock *SwitchBB) {
2911 SDValue Cond;
2912 SDValue CondLHS = getValue(CB.CmpLHS);
2913 SDLoc dl = CB.DL;
2914
2915 if (CB.CC == ISD::SETTRUE) {
2916 // Branch or fall through to TrueBB.
2917 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
2918 SwitchBB->normalizeSuccProbs();
2919 if (CB.TrueBB != NextBlock(SwitchBB)) {
2920 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, getControlRoot(),
2921 DAG.getBasicBlock(CB.TrueBB)));
2922 }
2923 return;
2924 }
2925
2926 auto &TLI = DAG.getTargetLoweringInfo();
2927 EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), CB.CmpLHS->getType());
2928
2929 // Build the setcc now.
2930 if (!CB.CmpMHS) {
2931 // Fold "(X == true)" to X and "(X == false)" to !X to
2932 // handle common cases produced by branch lowering.
2933 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
2934 CB.CC == ISD::SETEQ)
2935 Cond = CondLHS;
2936 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
2937 CB.CC == ISD::SETEQ) {
2938 SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType());
2939 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
2940 } else {
2941 SDValue CondRHS = getValue(CB.CmpRHS);
2942
2943 // If a pointer's DAG type is larger than its memory type then the DAG
2944 // values are zero-extended. This breaks signed comparisons so truncate
2945 // back to the underlying type before doing the compare.
2946 if (CondLHS.getValueType() != MemVT) {
2947 CondLHS = DAG.getPtrExtOrTrunc(CondLHS, getCurSDLoc(), MemVT);
2948 CondRHS = DAG.getPtrExtOrTrunc(CondRHS, getCurSDLoc(), MemVT);
2949 }
2950 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, CondRHS, CB.CC);
2951 }
2952 } else {
2953 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
2954
2955 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
2956 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue();
2957
2958 SDValue CmpOp = getValue(CB.CmpMHS);
2959 EVT VT = CmpOp.getValueType();
2960
2961 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
2962 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT),
2963 ISD::SETLE);
2964 } else {
2965 SDValue SUB = DAG.getNode(ISD::SUB, dl,
2966 VT, CmpOp, DAG.getConstant(Low, dl, VT));
2967 Cond = DAG.getSetCC(dl, MVT::i1, SUB,
2968 DAG.getConstant(High-Low, dl, VT), ISD::SETULE);
2969 }
2970 }
2971
2972 // Update successor info
2973 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
2974 // TrueBB and FalseBB are always different unless the incoming IR is
2975 // degenerate. This only happens when running llc on weird IR.
2976 if (CB.TrueBB != CB.FalseBB)
2977 addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb);
2978 SwitchBB->normalizeSuccProbs();
2979
2980 // If the lhs block is the next block, invert the condition so that we can
2981 // fall through to the lhs instead of the rhs block.
2982 if (CB.TrueBB == NextBlock(SwitchBB)) {
2983 std::swap(CB.TrueBB, CB.FalseBB);
2984 SDValue True = DAG.getConstant(1, dl, Cond.getValueType());
2985 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
2986 }
2987
2988 SDNodeFlags Flags;
2990 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, MVT::Other, getControlRoot(),
2991 Cond, DAG.getBasicBlock(CB.TrueBB), Flags);
2992
2993 setValue(CurInst, BrCond);
2994
2995 // Insert the false branch. Do this even if it's a fall through branch,
2996 // this makes it easier to do DAG optimizations which require inverting
2997 // the branch condition.
2998 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
2999 DAG.getBasicBlock(CB.FalseBB));
3000
3001 DAG.setRoot(BrCond);
3002}
3003
3004/// visitJumpTable - Emit JumpTable node in the current MBB
3006 // Emit the code for the jump table
3007 assert(JT.SL && "Should set SDLoc for SelectionDAG!");
3008 assert(JT.Reg && "Should lower JT Header first!");
3009 EVT PTy = DAG.getTargetLoweringInfo().getJumpTableRegTy(DAG.getDataLayout());
3010 SDValue Index = DAG.getCopyFromReg(getControlRoot(), *JT.SL, JT.Reg, PTy);
3011 SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
3012 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, *JT.SL, MVT::Other,
3013 Index.getValue(1), Table, Index);
3014 DAG.setRoot(BrJumpTable);
3015}
3016
3017/// visitJumpTableHeader - This function emits necessary code to produce index
3018/// in the JumpTable from switch case.
3020 JumpTableHeader &JTH,
3021 MachineBasicBlock *SwitchBB) {
3022 assert(JT.SL && "Should set SDLoc for SelectionDAG!");
3023 const SDLoc &dl = *JT.SL;
3024
3025 // Subtract the lowest switch case value from the value being switched on.
3026 SDValue SwitchOp = getValue(JTH.SValue);
3027 EVT VT = SwitchOp.getValueType();
3028 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp,
3029 DAG.getConstant(JTH.First, dl, VT));
3030
3031 // The SDNode we just created, which holds the value being switched on minus
3032 // the smallest case value, needs to be copied to a virtual register so it
3033 // can be used as an index into the jump table in a subsequent basic block.
3034 // This value may be smaller or larger than the target's pointer type, and
3035 // therefore require extension or truncating.
3036 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3037 SwitchOp =
3038 DAG.getZExtOrTrunc(Sub, dl, TLI.getJumpTableRegTy(DAG.getDataLayout()));
3039
3040 Register JumpTableReg =
3041 FuncInfo.CreateReg(TLI.getJumpTableRegTy(DAG.getDataLayout()));
3042 SDValue CopyTo =
3043 DAG.getCopyToReg(getControlRoot(), dl, JumpTableReg, SwitchOp);
3044 JT.Reg = JumpTableReg;
3045
3046 if (!JTH.FallthroughUnreachable) {
3047 // Emit the range check for the jump table, and branch to the default block
3048 // for the switch statement if the value being switched on exceeds the
3049 // largest case in the switch.
3050 SDValue CMP = DAG.getSetCC(
3051 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
3052 Sub.getValueType()),
3053 Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT);
3054
3055 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
3056 MVT::Other, CopyTo, CMP,
3057 DAG.getBasicBlock(JT.Default));
3058
3059 // Avoid emitting unnecessary branches to the next block.
3060 if (JT.MBB != NextBlock(SwitchBB))
3061 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
3062 DAG.getBasicBlock(JT.MBB));
3063
3064 DAG.setRoot(BrCond);
3065 } else {
3066 // Avoid emitting unnecessary branches to the next block.
3067 if (JT.MBB != NextBlock(SwitchBB))
3068 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, CopyTo,
3069 DAG.getBasicBlock(JT.MBB)));
3070 else
3071 DAG.setRoot(CopyTo);
3072 }
3073}
3074
3075/// Create a LOAD_STACK_GUARD node, and let it carry the target specific global
3076/// variable if there exists one.
3078 SDValue &Chain) {
3079 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3080 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
3081 EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout());
3085 DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain);
3086 if (Global) {
3087 MachinePointerInfo MPInfo(Global);
3091 MPInfo, Flags, PtrTy.getSizeInBits() / 8, DAG.getEVTAlign(PtrTy));
3092 DAG.setNodeMemRefs(Node, {MemRef});
3093 }
3094 if (PtrTy != PtrMemTy)
3095 return DAG.getPtrExtOrTrunc(SDValue(Node, 0), DL, PtrMemTy);
3096 return SDValue(Node, 0);
3097}
3098
3099/// Codegen a new tail for a stack protector check ParentMBB which has had its
3100/// tail spliced into a stack protector check success bb.
3101///
3102/// For a high level explanation of how this fits into the stack protector
3103/// generation see the comment on the declaration of class
3104/// StackProtectorDescriptor.
3106 MachineBasicBlock *ParentBB) {
3107
3108 // First create the loads to the guard/stack slot for the comparison.
3109 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3110 auto &DL = DAG.getDataLayout();
3111 EVT PtrTy = TLI.getFrameIndexTy(DL);
3112 EVT PtrMemTy = TLI.getPointerMemTy(DL, DL.getAllocaAddrSpace());
3113
3114 MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo();
3115 int FI = MFI.getStackProtectorIndex();
3116
3117 SDValue Guard;
3118 SDLoc dl = getCurSDLoc();
3119 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy);
3120 const Module &M = *ParentBB->getParent()->getFunction().getParent();
3121 Align Align = DL.getPrefTypeAlign(
3122 PointerType::get(M.getContext(), DL.getAllocaAddrSpace()));
3123
3124 // Generate code to load the content of the guard slot.
3125 SDValue GuardVal = DAG.getLoad(
3126 PtrMemTy, dl, DAG.getEntryNode(), StackSlotPtr,
3127 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align,
3129
3130 if (TLI.useStackGuardXorFP())
3131 GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl);
3132
3133 // If we're using function-based instrumentation, call the guard check
3134 // function
3136 // Get the guard check function from the target and verify it exists since
3137 // we're using function-based instrumentation
3138 const Function *GuardCheckFn = TLI.getSSPStackGuardCheck(M);
3139 assert(GuardCheckFn && "Guard check function is null");
3140
3141 // The target provides a guard check function to validate the guard value.
3142 // Generate a call to that function with the content of the guard slot as
3143 // argument.
3144 FunctionType *FnTy = GuardCheckFn->getFunctionType();
3145 assert(FnTy->getNumParams() == 1 && "Invalid function signature");
3146
3148 TargetLowering::ArgListEntry Entry(GuardVal, FnTy->getParamType(0));
3149 if (GuardCheckFn->hasParamAttribute(0, Attribute::AttrKind::InReg))
3150 Entry.IsInReg = true;
3151 Args.push_back(Entry);
3152
3155 .setChain(DAG.getEntryNode())
3156 .setCallee(GuardCheckFn->getCallingConv(), FnTy->getReturnType(),
3157 getValue(GuardCheckFn), std::move(Args));
3158
3159 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
3160 DAG.setRoot(Result.second);
3161 return;
3162 }
3163
3164 // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD.
3165 // Otherwise, emit a volatile load to retrieve the stack guard value.
3166 SDValue Chain = DAG.getEntryNode();
3167 if (TLI.useLoadStackGuardNode(M)) {
3168 Guard = getLoadStackGuard(DAG, dl, Chain);
3169 } else {
3170 if (const Value *IRGuard = TLI.getSDagStackGuard(M)) {
3171 SDValue GuardPtr = getValue(IRGuard);
3172 Guard = DAG.getLoad(PtrMemTy, dl, Chain, GuardPtr,
3173 MachinePointerInfo(IRGuard, 0), Align,
3175 } else {
3176 LLVMContext &Ctx = *DAG.getContext();
3177 Ctx.diagnose(DiagnosticInfoGeneric("unable to lower stackguard"));
3178 Guard = DAG.getPOISON(PtrMemTy);
3179 }
3180 }
3181
3182 // Perform the comparison via a getsetcc.
3183 SDValue Cmp = DAG.getSetCC(
3184 dl, TLI.getSetCCResultType(DL, *DAG.getContext(), Guard.getValueType()),
3185 Guard, GuardVal, ISD::SETNE);
3186
3187 // If the guard/stackslot do not equal, branch to failure MBB.
3188 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, MVT::Other, getControlRoot(),
3189 Cmp, DAG.getBasicBlock(SPD.getFailureMBB()));
3190 // Otherwise branch to success MBB.
3191 SDValue Br = DAG.getNode(ISD::BR, dl,
3192 MVT::Other, BrCond,
3193 DAG.getBasicBlock(SPD.getSuccessMBB()));
3194
3195 DAG.setRoot(Br);
3196}
3197
3198/// Codegen the failure basic block for a stack protector check.
3199///
3200/// A failure stack protector machine basic block consists simply of a call to
3201/// __stack_chk_fail().
3202///
3203/// For a high level explanation of how this fits into the stack protector
3204/// generation see the comment on the declaration of class
3205/// StackProtectorDescriptor.
3208
3209 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3210 MachineBasicBlock *ParentBB = SPD.getParentMBB();
3211 const Module &M = *ParentBB->getParent()->getFunction().getParent();
3212 SDValue Chain;
3213
3214 // For -Oz builds with a guard check function, we use function-based
3215 // instrumentation. Otherwise, if we have a guard check function, we call it
3216 // in the failure block.
3217 auto *GuardCheckFn = TLI.getSSPStackGuardCheck(M);
3218 if (GuardCheckFn && !SPD.shouldEmitFunctionBasedCheckStackProtector()) {
3219 // First create the loads to the guard/stack slot for the comparison.
3220 auto &DL = DAG.getDataLayout();
3221 EVT PtrTy = TLI.getFrameIndexTy(DL);
3222 EVT PtrMemTy = TLI.getPointerMemTy(DL, DL.getAllocaAddrSpace());
3223
3224 MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo();
3225 int FI = MFI.getStackProtectorIndex();
3226
3227 SDLoc dl = getCurSDLoc();
3228 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy);
3229 Align Align = DL.getPrefTypeAlign(
3230 PointerType::get(M.getContext(), DL.getAllocaAddrSpace()));
3231
3232 // Generate code to load the content of the guard slot.
3233 SDValue GuardVal = DAG.getLoad(
3234 PtrMemTy, dl, DAG.getEntryNode(), StackSlotPtr,
3235 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align,
3237
3238 if (TLI.useStackGuardXorFP())
3239 GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl);
3240
3241 // The target provides a guard check function to validate the guard value.
3242 // Generate a call to that function with the content of the guard slot as
3243 // argument.
3244 FunctionType *FnTy = GuardCheckFn->getFunctionType();
3245 assert(FnTy->getNumParams() == 1 && "Invalid function signature");
3246
3248 TargetLowering::ArgListEntry Entry(GuardVal, FnTy->getParamType(0));
3249 if (GuardCheckFn->hasParamAttribute(0, Attribute::AttrKind::InReg))
3250 Entry.IsInReg = true;
3251 Args.push_back(Entry);
3252
3255 .setChain(DAG.getEntryNode())
3256 .setCallee(GuardCheckFn->getCallingConv(), FnTy->getReturnType(),
3257 getValue(GuardCheckFn), std::move(Args));
3258
3259 Chain = TLI.LowerCallTo(CLI).second;
3260 } else {
3262 CallOptions.setDiscardResult(true);
3263 Chain = TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid,
3264 {}, CallOptions, getCurSDLoc())
3265 .second;
3266 }
3267
3268 // Emit a trap instruction if we are required to do so.
3269 const TargetOptions &TargetOpts = DAG.getTarget().Options;
3270 if (TargetOpts.TrapUnreachable && !TargetOpts.NoTrapAfterNoreturn)
3271 Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain);
3272
3273 DAG.setRoot(Chain);
3274}
3275
3276/// visitBitTestHeader - This function emits necessary code to produce value
3277/// suitable for "bit tests"
3279 MachineBasicBlock *SwitchBB) {
3280 SDLoc dl = getCurSDLoc();
3281
3282 // Subtract the minimum value.
3283 SDValue SwitchOp = getValue(B.SValue);
3284 EVT VT = SwitchOp.getValueType();
3285 SDValue RangeSub =
3286 DAG.getNode(ISD::SUB, dl, VT, SwitchOp, DAG.getConstant(B.First, dl, VT));
3287
3288 // Determine the type of the test operands.
3289 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3290 bool UsePtrType = false;
3291 if (!TLI.isTypeLegal(VT)) {
3292 UsePtrType = true;
3293 } else {
3294 for (const BitTestCase &Case : B.Cases)
3295 if (!isUIntN(VT.getSizeInBits(), Case.Mask)) {
3296 // Switch table case range are encoded into series of masks.
3297 // Just use pointer type, it's guaranteed to fit.
3298 UsePtrType = true;
3299 break;
3300 }
3301 }
3302 SDValue Sub = RangeSub;
3303 if (UsePtrType) {
3304 VT = TLI.getPointerTy(DAG.getDataLayout());
3305 Sub = DAG.getZExtOrTrunc(Sub, dl, VT);
3306 }
3307
3308 B.RegVT = VT.getSimpleVT();
3309 B.Reg = FuncInfo.CreateReg(B.RegVT);
3310 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub);
3311
3312 MachineBasicBlock* MBB = B.Cases[0].ThisBB;
3313
3314 if (!B.FallthroughUnreachable)
3315 addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb);
3316 addSuccessorWithProb(SwitchBB, MBB, B.Prob);
3317 SwitchBB->normalizeSuccProbs();
3318
3319 SDValue Root = CopyTo;
3320 if (!B.FallthroughUnreachable) {
3321 // Conditional branch to the default block.
3322 SDValue RangeCmp = DAG.getSetCC(dl,
3323 TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
3324 RangeSub.getValueType()),
3325 RangeSub, DAG.getConstant(B.Range, dl, RangeSub.getValueType()),
3326 ISD::SETUGT);
3327
3328 Root = DAG.getNode(ISD::BRCOND, dl, MVT::Other, Root, RangeCmp,
3329 DAG.getBasicBlock(B.Default));
3330 }
3331
3332 // Avoid emitting unnecessary branches to the next block.
3333 if (MBB != NextBlock(SwitchBB))
3334 Root = DAG.getNode(ISD::BR, dl, MVT::Other, Root, DAG.getBasicBlock(MBB));
3335
3336 DAG.setRoot(Root);
3337}
3338
3339/// visitBitTestCase - this function produces one "bit test"
3341 MachineBasicBlock *NextMBB,
3342 BranchProbability BranchProbToNext,
3343 Register Reg, BitTestCase &B,
3344 MachineBasicBlock *SwitchBB) {
3345 SDLoc dl = getCurSDLoc();
3346 MVT VT = BB.RegVT;
3347 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT);
3348 SDValue Cmp;
3349 unsigned PopCount = llvm::popcount(B.Mask);
3350 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3351 if (PopCount == 1) {
3352 // Testing for a single bit; just compare the shift count with what it
3353 // would need to be to shift a 1 bit in that position.
3354 Cmp = DAG.getSetCC(
3355 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
3356 ShiftOp, DAG.getConstant(llvm::countr_zero(B.Mask), dl, VT),
3357 ISD::SETEQ);
3358 } else if (PopCount == BB.Range) {
3359 // There is only one zero bit in the range, test for it directly.
3360 Cmp = DAG.getSetCC(
3361 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
3362 ShiftOp, DAG.getConstant(llvm::countr_one(B.Mask), dl, VT), ISD::SETNE);
3363 } else {
3364 // Make desired shift
3365 SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT,
3366 DAG.getConstant(1, dl, VT), ShiftOp);
3367
3368 // Emit bit tests and jumps
3369 SDValue AndOp = DAG.getNode(ISD::AND, dl,
3370 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT));
3371 Cmp = DAG.getSetCC(
3372 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
3373 AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE);
3374 }
3375
3376 // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb.
3377 addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb);
3378 // The branch probability from SwitchBB to NextMBB is BranchProbToNext.
3379 addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext);
3380 // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is
3381 // one as they are relative probabilities (and thus work more like weights),
3382 // and hence we need to normalize them to let the sum of them become one.
3383 SwitchBB->normalizeSuccProbs();
3384
3385 SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl,
3386 MVT::Other, getControlRoot(),
3387 Cmp, DAG.getBasicBlock(B.TargetBB));
3388
3389 // Avoid emitting unnecessary branches to the next block.
3390 if (NextMBB != NextBlock(SwitchBB))
3391 BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd,
3392 DAG.getBasicBlock(NextMBB));
3393
3394 DAG.setRoot(BrAnd);
3395}
3396
3397void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
3398 MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
3399
3400 // Retrieve successors. Look through artificial IR level blocks like
3401 // catchswitch for successors.
3402 MachineBasicBlock *Return = FuncInfo.getMBB(I.getSuccessor(0));
3403 const BasicBlock *EHPadBB = I.getSuccessor(1);
3404 MachineBasicBlock *EHPadMBB = FuncInfo.getMBB(EHPadBB);
3405
3406 // Deopt and ptrauth bundles are lowered in helper functions, and we don't
3407 // have to do anything here to lower funclet bundles.
3408 failForInvalidBundles(I, "invokes",
3414
3415 const Value *Callee(I.getCalledOperand());
3416 const Function *Fn = dyn_cast<Function>(Callee);
3417 if (isa<InlineAsm>(Callee))
3418 visitInlineAsm(I, EHPadBB);
3419 else if (Fn && Fn->isIntrinsic()) {
3420 switch (Fn->getIntrinsicID()) {
3421 default:
3422 llvm_unreachable("Cannot invoke this intrinsic");
3423 case Intrinsic::donothing:
3424 // Ignore invokes to @llvm.donothing: jump directly to the next BB.
3425 case Intrinsic::seh_try_begin:
3426 case Intrinsic::seh_scope_begin:
3427 case Intrinsic::seh_try_end:
3428 case Intrinsic::seh_scope_end:
3429 if (EHPadMBB)
3430 // a block referenced by EH table
3431 // so dtor-funclet not removed by opts
3432 EHPadMBB->setMachineBlockAddressTaken();
3433 break;
3434 case Intrinsic::experimental_patchpoint_void:
3435 case Intrinsic::experimental_patchpoint:
3436 visitPatchpoint(I, EHPadBB);
3437 break;
3438 case Intrinsic::experimental_gc_statepoint:
3440 break;
3441 // wasm_throw, wasm_rethrow: This is usually done in visitTargetIntrinsic,
3442 // but these intrinsics are special because they can be invoked, so we
3443 // manually lower it to a DAG node here.
3444 case Intrinsic::wasm_throw: {
3446 std::array<SDValue, 4> Ops = {
3447 getControlRoot(), // inchain for the terminator node
3448 DAG.getTargetConstant(Intrinsic::wasm_throw, getCurSDLoc(),
3450 getValue(I.getArgOperand(0)), // tag
3451 getValue(I.getArgOperand(1)) // thrown value
3452 };
3453 SDVTList VTs = DAG.getVTList(ArrayRef<EVT>({MVT::Other})); // outchain
3454 DAG.setRoot(DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops));
3455 break;
3456 }
3457 case Intrinsic::wasm_rethrow: {
3458 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3459 std::array<SDValue, 2> Ops = {
3460 getControlRoot(), // inchain for the terminator node
3461 DAG.getTargetConstant(Intrinsic::wasm_rethrow, getCurSDLoc(),
3462 TLI.getPointerTy(DAG.getDataLayout()))};
3463 SDVTList VTs = DAG.getVTList(ArrayRef<EVT>({MVT::Other})); // outchain
3464 DAG.setRoot(DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops));
3465 break;
3466 }
3467 }
3468 } else if (I.hasDeoptState()) {
3469 // Currently we do not lower any intrinsic calls with deopt operand bundles.
3470 // Eventually we will support lowering the @llvm.experimental.deoptimize
3471 // intrinsic, and right now there are no plans to support other intrinsics
3472 // with deopt state.
3473 LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB);
3474 } else if (I.countOperandBundlesOfType(LLVMContext::OB_ptrauth)) {
3476 } else {
3477 LowerCallTo(I, getValue(Callee), false, false, EHPadBB);
3478 }
3479
3480 // If the value of the invoke is used outside of its defining block, make it
3481 // available as a virtual register.
3482 // We already took care of the exported value for the statepoint instruction
3483 // during call to the LowerStatepoint.
3484 if (!isa<GCStatepointInst>(I)) {
3486 }
3487
3489 BranchProbabilityInfo *BPI = FuncInfo.BPI;
3490 BranchProbability EHPadBBProb =
3491 BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB)
3493 findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests);
3494
3495 // Update successor info.
3496 addSuccessorWithProb(InvokeMBB, Return);
3497 for (auto &UnwindDest : UnwindDests) {
3498 UnwindDest.first->setIsEHPad();
3499 addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second);
3500 }
3501 InvokeMBB->normalizeSuccProbs();
3502
3503 // Drop into normal successor.
3504 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, getControlRoot(),
3505 DAG.getBasicBlock(Return)));
3506}
3507
3508/// The intrinsics currently supported by callbr are implicit control flow
3509/// intrinsics such as amdgcn.kill.
3510/// - they should be called (no "dontcall-" attributes)
3511/// - they do not touch memory on the target (= !TLI.getTgtMemIntrinsic())
3512/// - they do not need custom argument handling (no
3513/// TLI.CollectTargetIntrinsicOperands())
3514void SelectionDAGBuilder::visitCallBrIntrinsic(const CallBrInst &I) {
3515 TargetLowering::IntrinsicInfo Info;
3516 assert(!DAG.getTargetLoweringInfo().getTgtMemIntrinsic(
3517 Info, I, DAG.getMachineFunction(), I.getIntrinsicID()) &&
3518 "Intrinsic touches memory");
3519
3520 auto [HasChain, OnlyLoad] = getTargetIntrinsicCallProperties(I);
3521
3523 getTargetIntrinsicOperands(I, HasChain, OnlyLoad);
3524 SDVTList VTs = getTargetIntrinsicVTList(I, HasChain);
3525
3526 // Create the node.
3527 SDValue Result =
3528 getTargetNonMemIntrinsicNode(*I.getType(), HasChain, Ops, VTs);
3529 Result = handleTargetIntrinsicRet(I, HasChain, OnlyLoad, Result);
3530
3531 setValue(&I, Result);
3532}
3533
3534void SelectionDAGBuilder::visitCallBr(const CallBrInst &I) {
3535 MachineBasicBlock *CallBrMBB = FuncInfo.MBB;
3536
3537 if (I.isInlineAsm()) {
3538 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
3539 // have to do anything here to lower funclet bundles.
3540 failForInvalidBundles(I, "callbrs",
3542 visitInlineAsm(I);
3543 } else {
3544 assert(!I.hasOperandBundles() &&
3545 "Can't have operand bundles for intrinsics");
3546 visitCallBrIntrinsic(I);
3547 }
3549
3550 // Retrieve successors.
3551 SmallPtrSet<BasicBlock *, 8> Dests;
3552 Dests.insert(I.getDefaultDest());
3553 MachineBasicBlock *Return = FuncInfo.getMBB(I.getDefaultDest());
3554
3555 // Update successor info.
3556 addSuccessorWithProb(CallBrMBB, Return, BranchProbability::getOne());
3557 // TODO: For most of the cases where there is an intrinsic callbr, we're
3558 // having exactly one indirect target, which will be unreachable. As soon as
3559 // this changes, we might need to enhance
3560 // Target->setIsInlineAsmBrIndirectTarget or add something similar for
3561 // intrinsic indirect branches.
3562 if (I.isInlineAsm()) {
3563 for (BasicBlock *Dest : I.getIndirectDests()) {
3564 MachineBasicBlock *Target = FuncInfo.getMBB(Dest);
3565 Target->setIsInlineAsmBrIndirectTarget();
3566 // If we introduce a type of asm goto statement that is permitted to use
3567 // an indirect call instruction to jump to its labels, then we should add
3568 // a call to Target->setMachineBlockAddressTaken() here, to mark the
3569 // target block as requiring a BTI.
3570
3571 Target->setLabelMustBeEmitted();
3572 // Don't add duplicate machine successors.
3573 if (Dests.insert(Dest).second)
3574 addSuccessorWithProb(CallBrMBB, Target, BranchProbability::getZero());
3575 }
3576 }
3577 CallBrMBB->normalizeSuccProbs();
3578
3579 // Drop into default successor.
3580 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
3581 MVT::Other, getControlRoot(),
3582 DAG.getBasicBlock(Return)));
3583}
3584
3585void SelectionDAGBuilder::visitResume(const ResumeInst &RI) {
3586 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!");
3587}
3588
3589void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) {
3590 assert(FuncInfo.MBB->isEHPad() &&
3591 "Call to landingpad not in landing pad!");
3592
3593 // If there aren't registers to copy the values into (e.g., during SjLj
3594 // exceptions), then don't bother to create these DAG nodes.
3595 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3596 const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn();
3597 if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 &&
3598 TLI.getExceptionSelectorRegister(PersonalityFn) == 0)
3599 return;
3600
3601 // If landingpad's return type is token type, we don't create DAG nodes
3602 // for its exception pointer and selector value. The extraction of exception
3603 // pointer or selector value from token type landingpads is not currently
3604 // supported.
3605 if (LP.getType()->isTokenTy())
3606 return;
3607
3608 SmallVector<EVT, 2> ValueVTs;
3609 SDLoc dl = getCurSDLoc();
3610 ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs);
3611 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported");
3612
3613 // Get the two live-in registers as SDValues. The physregs have already been
3614 // copied into virtual registers.
3615 SDValue Ops[2];
3616 if (FuncInfo.ExceptionPointerVirtReg) {
3617 Ops[0] = DAG.getZExtOrTrunc(
3618 DAG.getCopyFromReg(DAG.getEntryNode(), dl,
3619 FuncInfo.ExceptionPointerVirtReg,
3620 TLI.getPointerTy(DAG.getDataLayout())),
3621 dl, ValueVTs[0]);
3622 } else {
3623 Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout()));
3624 }
3625 Ops[1] = DAG.getZExtOrTrunc(
3626 DAG.getCopyFromReg(DAG.getEntryNode(), dl,
3627 FuncInfo.ExceptionSelectorVirtReg,
3628 TLI.getPointerTy(DAG.getDataLayout())),
3629 dl, ValueVTs[1]);
3630
3631 // Merge into one.
3632 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
3633 DAG.getVTList(ValueVTs), Ops);
3634 setValue(&LP, Res);
3635}
3636
3639 // Update JTCases.
3640 for (JumpTableBlock &JTB : SL->JTCases)
3641 if (JTB.first.HeaderBB == First)
3642 JTB.first.HeaderBB = Last;
3643
3644 // Update BitTestCases.
3645 for (BitTestBlock &BTB : SL->BitTestCases)
3646 if (BTB.Parent == First)
3647 BTB.Parent = Last;
3648}
3649
3650void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
3651 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
3652
3653 // Update machine-CFG edges with unique successors.
3655 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) {
3656 BasicBlock *BB = I.getSuccessor(i);
3657 bool Inserted = Done.insert(BB).second;
3658 if (!Inserted)
3659 continue;
3660
3661 MachineBasicBlock *Succ = FuncInfo.getMBB(BB);
3662 addSuccessorWithProb(IndirectBrMBB, Succ);
3663 }
3664 IndirectBrMBB->normalizeSuccProbs();
3665
3667 MVT::Other, getControlRoot(),
3668 getValue(I.getAddress())));
3669}
3670
3671void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) {
3672 if (!I.shouldLowerToTrap(DAG.getTarget().Options.TrapUnreachable,
3673 DAG.getTarget().Options.NoTrapAfterNoreturn))
3674 return;
3675
3676 DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot()));
3677}
3678
3679void SelectionDAGBuilder::visitUnary(const User &I, unsigned Opcode) {
3680 SDNodeFlags Flags;
3681 if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
3682 Flags.copyFMF(*FPOp);
3683
3684 SDValue Op = getValue(I.getOperand(0));
3685 SDValue UnNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op.getValueType(),
3686 Op, Flags);
3687 setValue(&I, UnNodeValue);
3688}
3689
3690void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) {
3691 SDNodeFlags Flags;
3692 if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) {
3693 Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap());
3694 Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap());
3695 }
3696 if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I))
3697 Flags.setExact(ExactOp->isExact());
3698 if (auto *DisjointOp = dyn_cast<PossiblyDisjointInst>(&I))
3699 Flags.setDisjoint(DisjointOp->isDisjoint());
3700 if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
3701 Flags.copyFMF(*FPOp);
3702
3703 SDValue Op1 = getValue(I.getOperand(0));
3704 SDValue Op2 = getValue(I.getOperand(1));
3705 SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(),
3706 Op1, Op2, Flags);
3707 setValue(&I, BinNodeValue);
3708}
3709
3710void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
3711 SDValue Op1 = getValue(I.getOperand(0));
3712 SDValue Op2 = getValue(I.getOperand(1));
3713
3714 EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy(
3715 Op1.getValueType(), DAG.getDataLayout());
3716
3717 // Coerce the shift amount to the right type if we can. This exposes the
3718 // truncate or zext to optimization early.
3719 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
3721 "Unexpected shift type");
3722 Op2 = DAG.getZExtOrTrunc(Op2, getCurSDLoc(), ShiftTy);
3723 }
3724
3725 bool nuw = false;
3726 bool nsw = false;
3727 bool exact = false;
3728
3729 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) {
3730
3731 if (const OverflowingBinaryOperator *OFBinOp =
3733 nuw = OFBinOp->hasNoUnsignedWrap();
3734 nsw = OFBinOp->hasNoSignedWrap();
3735 }
3736 if (const PossiblyExactOperator *ExactOp =
3738 exact = ExactOp->isExact();
3739 }
3740 SDNodeFlags Flags;
3741 Flags.setExact(exact);
3742 Flags.setNoSignedWrap(nsw);
3743 Flags.setNoUnsignedWrap(nuw);
3744 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2,
3745 Flags);
3746 setValue(&I, Res);
3747}
3748
3749void SelectionDAGBuilder::visitSDiv(const User &I) {
3750 SDValue Op1 = getValue(I.getOperand(0));
3751 SDValue Op2 = getValue(I.getOperand(1));
3752
3753 SDNodeFlags Flags;
3754 Flags.setExact(isa<PossiblyExactOperator>(&I) &&
3755 cast<PossiblyExactOperator>(&I)->isExact());
3756 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1,
3757 Op2, Flags));
3758}
3759
3760void SelectionDAGBuilder::visitICmp(const ICmpInst &I) {
3761 ICmpInst::Predicate predicate = I.getPredicate();
3762 SDValue Op1 = getValue(I.getOperand(0));
3763 SDValue Op2 = getValue(I.getOperand(1));
3764 ISD::CondCode Opcode = getICmpCondCode(predicate);
3765
3766 auto &TLI = DAG.getTargetLoweringInfo();
3767 EVT MemVT =
3768 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType());
3769
3770 // If a pointer's DAG type is larger than its memory type then the DAG values
3771 // are zero-extended. This breaks signed comparisons so truncate back to the
3772 // underlying type before doing the compare.
3773 if (Op1.getValueType() != MemVT) {
3774 Op1 = DAG.getPtrExtOrTrunc(Op1, getCurSDLoc(), MemVT);
3775 Op2 = DAG.getPtrExtOrTrunc(Op2, getCurSDLoc(), MemVT);
3776 }
3777
3778 SDNodeFlags Flags;
3779 Flags.setSameSign(I.hasSameSign());
3780 SelectionDAG::FlagInserter FlagsInserter(DAG, Flags);
3781
3782 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3783 I.getType());
3784 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode));
3785}
3786
3787void SelectionDAGBuilder::visitFCmp(const FCmpInst &I) {
3788 FCmpInst::Predicate predicate = I.getPredicate();
3789 SDValue Op1 = getValue(I.getOperand(0));
3790 SDValue Op2 = getValue(I.getOperand(1));
3791
3792 ISD::CondCode Condition = getFCmpCondCode(predicate);
3793 auto *FPMO = cast<FPMathOperator>(&I);
3794 if (FPMO->hasNoNaNs() || TM.Options.NoNaNsFPMath)
3795 Condition = getFCmpCodeWithoutNaN(Condition);
3796
3797 SDNodeFlags Flags;
3798 Flags.copyFMF(*FPMO);
3799 SelectionDAG::FlagInserter FlagsInserter(DAG, Flags);
3800
3801 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3802 I.getType());
3803 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition));
3804}
3805
3806// Check if the condition of the select has one use or two users that are both
3807// selects with the same condition.
3808static bool hasOnlySelectUsers(const Value *Cond) {
3809 return llvm::all_of(Cond->users(), [](const Value *V) {
3810 return isa<SelectInst>(V);
3811 });
3812}
3813
3814void SelectionDAGBuilder::visitSelect(const User &I) {
3815 SmallVector<EVT, 4> ValueVTs;
3816 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
3817 ValueVTs);
3818 unsigned NumValues = ValueVTs.size();
3819 if (NumValues == 0) return;
3820
3821 SmallVector<SDValue, 4> Values(NumValues);
3822 SDValue Cond = getValue(I.getOperand(0));
3823 SDValue LHSVal = getValue(I.getOperand(1));
3824 SDValue RHSVal = getValue(I.getOperand(2));
3825 SmallVector<SDValue, 1> BaseOps(1, Cond);
3827 Cond.getValueType().isVector() ? ISD::VSELECT : ISD::SELECT;
3828
3829 bool IsUnaryAbs = false;
3830 bool Negate = false;
3831
3832 SDNodeFlags Flags;
3833 if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
3834 Flags.copyFMF(*FPOp);
3835
3836 Flags.setUnpredictable(
3837 cast<SelectInst>(I).getMetadata(LLVMContext::MD_unpredictable));
3838
3839 // Min/max matching is only viable if all output VTs are the same.
3840 if (all_equal(ValueVTs)) {
3841 EVT VT = ValueVTs[0];
3842 LLVMContext &Ctx = *DAG.getContext();
3843 auto &TLI = DAG.getTargetLoweringInfo();
3844
3845 // We care about the legality of the operation after it has been type
3846 // legalized.
3847 while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal)
3848 VT = TLI.getTypeToTransformTo(Ctx, VT);
3849
3850 // If the vselect is legal, assume we want to leave this as a vector setcc +
3851 // vselect. Otherwise, if this is going to be scalarized, we want to see if
3852 // min/max is legal on the scalar type.
3853 bool UseScalarMinMax = VT.isVector() &&
3855
3856 // ValueTracking's select pattern matching does not account for -0.0,
3857 // so we can't lower to FMINIMUM/FMAXIMUM because those nodes specify that
3858 // -0.0 is less than +0.0.
3859 const Value *LHS, *RHS;
3860 auto SPR = matchSelectPattern(&I, LHS, RHS);
3862 switch (SPR.Flavor) {
3863 case SPF_UMAX: Opc = ISD::UMAX; break;
3864 case SPF_UMIN: Opc = ISD::UMIN; break;
3865 case SPF_SMAX: Opc = ISD::SMAX; break;
3866 case SPF_SMIN: Opc = ISD::SMIN; break;
3867 case SPF_FMINNUM:
3868 switch (SPR.NaNBehavior) {
3869 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
3870 case SPNB_RETURNS_NAN: break;
3871 case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break;
3872 case SPNB_RETURNS_ANY:
3874 (UseScalarMinMax &&
3876 Opc = ISD::FMINNUM;
3877 break;
3878 }
3879 break;
3880 case SPF_FMAXNUM:
3881 switch (SPR.NaNBehavior) {
3882 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
3883 case SPNB_RETURNS_NAN: break;
3884 case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break;
3885 case SPNB_RETURNS_ANY:
3887 (UseScalarMinMax &&
3889 Opc = ISD::FMAXNUM;
3890 break;
3891 }
3892 break;
3893 case SPF_NABS:
3894 Negate = true;
3895 [[fallthrough]];
3896 case SPF_ABS:
3897 IsUnaryAbs = true;
3898 Opc = ISD::ABS;
3899 break;
3900 default: break;
3901 }
3902
3903 if (!IsUnaryAbs && Opc != ISD::DELETED_NODE &&
3904 (TLI.isOperationLegalOrCustom(Opc, VT) ||
3905 (UseScalarMinMax &&
3907 // If the underlying comparison instruction is used by any other
3908 // instruction, the consumed instructions won't be destroyed, so it is
3909 // not profitable to convert to a min/max.
3911 OpCode = Opc;
3912 LHSVal = getValue(LHS);
3913 RHSVal = getValue(RHS);
3914 BaseOps.clear();
3915 }
3916
3917 if (IsUnaryAbs) {
3918 OpCode = Opc;
3919 LHSVal = getValue(LHS);
3920 BaseOps.clear();
3921 }
3922 }
3923
3924 if (IsUnaryAbs) {
3925 for (unsigned i = 0; i != NumValues; ++i) {
3926 SDLoc dl = getCurSDLoc();
3927 EVT VT = LHSVal.getNode()->getValueType(LHSVal.getResNo() + i);
3928 Values[i] =
3929 DAG.getNode(OpCode, dl, VT, LHSVal.getValue(LHSVal.getResNo() + i));
3930 if (Negate)
3931 Values[i] = DAG.getNegative(Values[i], dl, VT);
3932 }
3933 } else {
3934 for (unsigned i = 0; i != NumValues; ++i) {
3935 SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end());
3936 Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i));
3937 Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i));
3938 Values[i] = DAG.getNode(
3939 OpCode, getCurSDLoc(),
3940 LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), Ops, Flags);
3941 }
3942 }
3943
3945 DAG.getVTList(ValueVTs), Values));
3946}
3947
3948void SelectionDAGBuilder::visitTrunc(const User &I) {
3949 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
3950 SDValue N = getValue(I.getOperand(0));
3951 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3952 I.getType());
3953 SDNodeFlags Flags;
3954 if (auto *Trunc = dyn_cast<TruncInst>(&I)) {
3955 Flags.setNoSignedWrap(Trunc->hasNoSignedWrap());
3956 Flags.setNoUnsignedWrap(Trunc->hasNoUnsignedWrap());
3957 }
3958
3959 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N, Flags));
3960}
3961
3962void SelectionDAGBuilder::visitZExt(const User &I) {
3963 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3964 // ZExt also can't be a cast to bool for same reason. So, nothing much to do
3965 SDValue N = getValue(I.getOperand(0));
3966 auto &TLI = DAG.getTargetLoweringInfo();
3967 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3968
3969 SDNodeFlags Flags;
3970 if (auto *PNI = dyn_cast<PossiblyNonNegInst>(&I))
3971 Flags.setNonNeg(PNI->hasNonNeg());
3972
3973 // Eagerly use nonneg information to canonicalize towards sign_extend if
3974 // that is the target's preference.
3975 // TODO: Let the target do this later.
3976 if (Flags.hasNonNeg() &&
3977 TLI.isSExtCheaperThanZExt(N.getValueType(), DestVT)) {
3978 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N));
3979 return;
3980 }
3981
3982 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N, Flags));
3983}
3984
3985void SelectionDAGBuilder::visitSExt(const User &I) {
3986 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3987 // SExt also can't be a cast to bool for same reason. So, nothing much to do
3988 SDValue N = getValue(I.getOperand(0));
3989 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3990 I.getType());
3991 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N));
3992}
3993
3994void SelectionDAGBuilder::visitFPTrunc(const User &I) {
3995 // FPTrunc is never a no-op cast, no need to check
3996 SDValue N = getValue(I.getOperand(0));
3997 SDLoc dl = getCurSDLoc();
3998 SDNodeFlags Flags;
3999 if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
4000 Flags.copyFMF(*FPOp);
4001 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4002 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4003 setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N,
4004 DAG.getTargetConstant(
4005 0, dl, TLI.getPointerTy(DAG.getDataLayout())),
4006 Flags));
4007}
4008
4009void SelectionDAGBuilder::visitFPExt(const User &I) {
4010 // FPExt is never a no-op cast, no need to check
4011 SDValue N = getValue(I.getOperand(0));
4012 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
4013 I.getType());
4014 SDNodeFlags Flags;
4015 if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
4016 Flags.copyFMF(*FPOp);
4017 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N, Flags));
4018}
4019
4020void SelectionDAGBuilder::visitFPToUI(const User &I) {
4021 // FPToUI is never a no-op cast, no need to check
4022 SDValue N = getValue(I.getOperand(0));
4023 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
4024 I.getType());
4025 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N));
4026}
4027
4028void SelectionDAGBuilder::visitFPToSI(const User &I) {
4029 // FPToSI is never a no-op cast, no need to check
4030 SDValue N = getValue(I.getOperand(0));
4031 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
4032 I.getType());
4033 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N));
4034}
4035
4036void SelectionDAGBuilder::visitUIToFP(const User &I) {
4037 // UIToFP is never a no-op cast, no need to check
4038 SDValue N = getValue(I.getOperand(0));
4039 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
4040 I.getType());
4041 SDNodeFlags Flags;
4042 if (auto *PNI = dyn_cast<PossiblyNonNegInst>(&I))
4043 Flags.setNonNeg(PNI->hasNonNeg());
4044
4045 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N, Flags));
4046}
4047
4048void SelectionDAGBuilder::visitSIToFP(const User &I) {
4049 // SIToFP is never a no-op cast, no need to check
4050 SDValue N = getValue(I.getOperand(0));
4051 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
4052 I.getType());
4053 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N));
4054}
4055
4056void SelectionDAGBuilder::visitPtrToAddr(const User &I) {
4057 SDValue N = getValue(I.getOperand(0));
4058 // By definition the type of the ptrtoaddr must be equal to the address type.
4059 const auto &TLI = DAG.getTargetLoweringInfo();
4060 EVT AddrVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4061 // The address width must be smaller or equal to the pointer representation
4062 // width, so we lower ptrtoaddr as a truncate (possibly folded to a no-op).
4063 N = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), AddrVT, N);
4064 setValue(&I, N);
4065}
4066
4067void SelectionDAGBuilder::visitPtrToInt(const User &I) {
4068 // What to do depends on the size of the integer and the size of the pointer.
4069 // We can either truncate, zero extend, or no-op, accordingly.
4070 SDValue N = getValue(I.getOperand(0));
4071 auto &TLI = DAG.getTargetLoweringInfo();
4072 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
4073 I.getType());
4074 EVT PtrMemVT =
4075 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType());
4076 N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), PtrMemVT);
4077 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT);
4078 setValue(&I, N);
4079}
4080
4081void SelectionDAGBuilder::visitIntToPtr(const User &I) {
4082 // What to do depends on the size of the integer and the size of the pointer.
4083 // We can either truncate, zero extend, or no-op, accordingly.
4084 SDValue N = getValue(I.getOperand(0));
4085 auto &TLI = DAG.getTargetLoweringInfo();
4086 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4087 EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType());
4088 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), PtrMemVT);
4089 N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), DestVT);
4090 setValue(&I, N);
4091}
4092
4093void SelectionDAGBuilder::visitBitCast(const User &I) {
4094 SDValue N = getValue(I.getOperand(0));
4095 SDLoc dl = getCurSDLoc();
4096 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
4097 I.getType());
4098
4099 // BitCast assures us that source and destination are the same size so this is
4100 // either a BITCAST or a no-op.
4101 if (DestVT != N.getValueType())
4102 setValue(&I, DAG.getNode(ISD::BITCAST, dl,
4103 DestVT, N)); // convert types.
4104 // Check if the original LLVM IR Operand was a ConstantInt, because getValue()
4105 // might fold any kind of constant expression to an integer constant and that
4106 // is not what we are looking for. Only recognize a bitcast of a genuine
4107 // constant integer as an opaque constant.
4108 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0)))
4109 setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false,
4110 /*isOpaque*/true));
4111 else
4112 setValue(&I, N); // noop cast.
4113}
4114
4115void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) {
4116 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4117 const Value *SV = I.getOperand(0);
4118 SDValue N = getValue(SV);
4119 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4120
4121 unsigned SrcAS = SV->getType()->getPointerAddressSpace();
4122 unsigned DestAS = I.getType()->getPointerAddressSpace();
4123
4124 if (!TM.isNoopAddrSpaceCast(SrcAS, DestAS))
4125 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS);
4126
4127 setValue(&I, N);
4128}
4129
4130void SelectionDAGBuilder::visitInsertElement(const User &I) {
4131 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4132 SDValue InVec = getValue(I.getOperand(0));
4133 SDValue InVal = getValue(I.getOperand(1));
4134 SDValue InIdx = DAG.getZExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(),
4135 TLI.getVectorIdxTy(DAG.getDataLayout()));
4137 TLI.getValueType(DAG.getDataLayout(), I.getType()),
4138 InVec, InVal, InIdx));
4139}
4140
4141void SelectionDAGBuilder::visitExtractElement(const User &I) {
4142 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4143 SDValue InVec = getValue(I.getOperand(0));
4144 SDValue InIdx = DAG.getZExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(),
4145 TLI.getVectorIdxTy(DAG.getDataLayout()));
4147 TLI.getValueType(DAG.getDataLayout(), I.getType()),
4148 InVec, InIdx));
4149}
4150
4151void SelectionDAGBuilder::visitShuffleVector(const User &I) {
4152 SDValue Src1 = getValue(I.getOperand(0));
4153 SDValue Src2 = getValue(I.getOperand(1));
4154 ArrayRef<int> Mask;
4155 if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I))
4156 Mask = SVI->getShuffleMask();
4157 else
4158 Mask = cast<ConstantExpr>(I).getShuffleMask();
4159 SDLoc DL = getCurSDLoc();
4160 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4161 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4162 EVT SrcVT = Src1.getValueType();
4163
4164 if (all_of(Mask, [](int Elem) { return Elem == 0; }) &&
4165 VT.isScalableVector()) {
4166 // Canonical splat form of first element of first input vector.
4167 SDValue FirstElt =
4168 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, SrcVT.getScalarType(), Src1,
4169 DAG.getVectorIdxConstant(0, DL));
4170 setValue(&I, DAG.getNode(ISD::SPLAT_VECTOR, DL, VT, FirstElt));
4171 return;
4172 }
4173
4174 // For now, we only handle splats for scalable vectors.
4175 // The DAGCombiner will perform a BUILD_VECTOR -> SPLAT_VECTOR transformation
4176 // for targets that support a SPLAT_VECTOR for non-scalable vector types.
4177 assert(!VT.isScalableVector() && "Unsupported scalable vector shuffle");
4178
4179 unsigned SrcNumElts = SrcVT.getVectorNumElements();
4180 unsigned MaskNumElts = Mask.size();
4181
4182 if (SrcNumElts == MaskNumElts) {
4183 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask));
4184 return;
4185 }
4186
4187 // Normalize the shuffle vector since mask and vector length don't match.
4188 if (SrcNumElts < MaskNumElts) {
4189 // Mask is longer than the source vectors. We can use concatenate vector to
4190 // make the mask and vectors lengths match.
4191
4192 if (MaskNumElts % SrcNumElts == 0) {
4193 // Mask length is a multiple of the source vector length.
4194 // Check if the shuffle is some kind of concatenation of the input
4195 // vectors.
4196 unsigned NumConcat = MaskNumElts / SrcNumElts;
4197 bool IsConcat = true;
4198 SmallVector<int, 8> ConcatSrcs(NumConcat, -1);
4199 for (unsigned i = 0; i != MaskNumElts; ++i) {
4200 int Idx = Mask[i];
4201 if (Idx < 0)
4202 continue;
4203 // Ensure the indices in each SrcVT sized piece are sequential and that
4204 // the same source is used for the whole piece.
4205 if ((Idx % SrcNumElts != (i % SrcNumElts)) ||
4206 (ConcatSrcs[i / SrcNumElts] >= 0 &&
4207 ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) {
4208 IsConcat = false;
4209 break;
4210 }
4211 // Remember which source this index came from.
4212 ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts;
4213 }
4214
4215 // The shuffle is concatenating multiple vectors together. Just emit
4216 // a CONCAT_VECTORS operation.
4217 if (IsConcat) {
4218 SmallVector<SDValue, 8> ConcatOps;
4219 for (auto Src : ConcatSrcs) {
4220 if (Src < 0)
4221 ConcatOps.push_back(DAG.getUNDEF(SrcVT));
4222 else if (Src == 0)
4223 ConcatOps.push_back(Src1);
4224 else
4225 ConcatOps.push_back(Src2);
4226 }
4227 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps));
4228 return;
4229 }
4230 }
4231
4232 unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts);
4233 unsigned NumConcat = PaddedMaskNumElts / SrcNumElts;
4234 EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(),
4235 PaddedMaskNumElts);
4236
4237 // Pad both vectors with undefs to make them the same length as the mask.
4238 SDValue UndefVal = DAG.getUNDEF(SrcVT);
4239
4240 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
4241 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
4242 MOps1[0] = Src1;
4243 MOps2[0] = Src2;
4244
4245 Src1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1);
4246 Src2 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2);
4247
4248 // Readjust mask for new input vector length.
4249 SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1);
4250 for (unsigned i = 0; i != MaskNumElts; ++i) {
4251 int Idx = Mask[i];
4252 if (Idx >= (int)SrcNumElts)
4253 Idx -= SrcNumElts - PaddedMaskNumElts;
4254 MappedOps[i] = Idx;
4255 }
4256
4257 SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps);
4258
4259 // If the concatenated vector was padded, extract a subvector with the
4260 // correct number of elements.
4261 if (MaskNumElts != PaddedMaskNumElts)
4262 Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Result,
4263 DAG.getVectorIdxConstant(0, DL));
4264
4265 setValue(&I, Result);
4266 return;
4267 }
4268
4269 assert(SrcNumElts > MaskNumElts);
4270
4271 // Analyze the access pattern of the vector to see if we can extract
4272 // two subvectors and do the shuffle.
4273 int StartIdx[2] = {-1, -1}; // StartIdx to extract from
4274 bool CanExtract = true;
4275 for (int Idx : Mask) {
4276 unsigned Input = 0;
4277 if (Idx < 0)
4278 continue;
4279
4280 if (Idx >= (int)SrcNumElts) {
4281 Input = 1;
4282 Idx -= SrcNumElts;
4283 }
4284
4285 // If all the indices come from the same MaskNumElts sized portion of
4286 // the sources we can use extract. Also make sure the extract wouldn't
4287 // extract past the end of the source.
4288 int NewStartIdx = alignDown(Idx, MaskNumElts);
4289 if (NewStartIdx + MaskNumElts > SrcNumElts ||
4290 (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx))
4291 CanExtract = false;
4292 // Make sure we always update StartIdx as we use it to track if all
4293 // elements are undef.
4294 StartIdx[Input] = NewStartIdx;
4295 }
4296
4297 if (StartIdx[0] < 0 && StartIdx[1] < 0) {
4298 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
4299 return;
4300 }
4301 if (CanExtract) {
4302 // Extract appropriate subvector and generate a vector shuffle
4303 for (unsigned Input = 0; Input < 2; ++Input) {
4304 SDValue &Src = Input == 0 ? Src1 : Src2;
4305 if (StartIdx[Input] < 0)
4306 Src = DAG.getUNDEF(VT);
4307 else {
4308 Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Src,
4309 DAG.getVectorIdxConstant(StartIdx[Input], DL));
4310 }
4311 }
4312
4313 // Calculate new mask.
4314 SmallVector<int, 8> MappedOps(Mask);
4315 for (int &Idx : MappedOps) {
4316 if (Idx >= (int)SrcNumElts)
4317 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts;
4318 else if (Idx >= 0)
4319 Idx -= StartIdx[0];
4320 }
4321
4322 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps));
4323 return;
4324 }
4325
4326 // We can't use either concat vectors or extract subvectors so fall back to
4327 // replacing the shuffle with extract and build vector.
4328 // to insert and build vector.
4329 EVT EltVT = VT.getVectorElementType();
4331 for (int Idx : Mask) {
4332 SDValue Res;
4333
4334 if (Idx < 0) {
4335 Res = DAG.getUNDEF(EltVT);
4336 } else {
4337 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2;
4338 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts;
4339
4340 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Src,
4341 DAG.getVectorIdxConstant(Idx, DL));
4342 }
4343
4344 Ops.push_back(Res);
4345 }
4346
4347 setValue(&I, DAG.getBuildVector(VT, DL, Ops));
4348}
4349
4350void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) {
4351 ArrayRef<unsigned> Indices = I.getIndices();
4352 const Value *Op0 = I.getOperand(0);
4353 const Value *Op1 = I.getOperand(1);
4354 Type *AggTy = I.getType();
4355 Type *ValTy = Op1->getType();
4356 bool IntoUndef = isa<UndefValue>(Op0);
4357 bool FromUndef = isa<UndefValue>(Op1);
4358
4359 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
4360
4361 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4362 SmallVector<EVT, 4> AggValueVTs;
4363 ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs);
4364 SmallVector<EVT, 4> ValValueVTs;
4365 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
4366
4367 unsigned NumAggValues = AggValueVTs.size();
4368 unsigned NumValValues = ValValueVTs.size();
4369 SmallVector<SDValue, 4> Values(NumAggValues);
4370
4371 // Ignore an insertvalue that produces an empty object
4372 if (!NumAggValues) {
4373 setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
4374 return;
4375 }
4376
4377 SDValue Agg = getValue(Op0);
4378 unsigned i = 0;
4379 // Copy the beginning value(s) from the original aggregate.
4380 for (; i != LinearIndex; ++i)
4381 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
4382 SDValue(Agg.getNode(), Agg.getResNo() + i);
4383 // Copy values from the inserted value(s).
4384 if (NumValValues) {
4385 SDValue Val = getValue(Op1);
4386 for (; i != LinearIndex + NumValValues; ++i)
4387 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
4388 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
4389 }
4390 // Copy remaining value(s) from the original aggregate.
4391 for (; i != NumAggValues; ++i)
4392 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
4393 SDValue(Agg.getNode(), Agg.getResNo() + i);
4394
4396 DAG.getVTList(AggValueVTs), Values));
4397}
4398
4399void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) {
4400 ArrayRef<unsigned> Indices = I.getIndices();
4401 const Value *Op0 = I.getOperand(0);
4402 Type *AggTy = Op0->getType();
4403 Type *ValTy = I.getType();
4404 bool OutOfUndef = isa<UndefValue>(Op0);
4405
4406 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
4407
4408 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4409 SmallVector<EVT, 4> ValValueVTs;
4410 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
4411
4412 unsigned NumValValues = ValValueVTs.size();
4413
4414 // Ignore a extractvalue that produces an empty object
4415 if (!NumValValues) {
4416 setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
4417 return;
4418 }
4419
4420 SmallVector<SDValue, 4> Values(NumValValues);
4421
4422 SDValue Agg = getValue(Op0);
4423 // Copy out the selected value(s).
4424 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
4425 Values[i - LinearIndex] =
4426 OutOfUndef ?
4427 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
4428 SDValue(Agg.getNode(), Agg.getResNo() + i);
4429
4431 DAG.getVTList(ValValueVTs), Values));
4432}
4433
4434void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
4435 Value *Op0 = I.getOperand(0);
4436 // Note that the pointer operand may be a vector of pointers. Take the scalar
4437 // element which holds a pointer.
4438 unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace();
4439 SDValue N = getValue(Op0);
4440 SDLoc dl = getCurSDLoc();
4441 auto &TLI = DAG.getTargetLoweringInfo();
4442 GEPNoWrapFlags NW = cast<GEPOperator>(I).getNoWrapFlags();
4443
4444 // For a vector GEP, keep the prefix scalar as long as possible, then
4445 // convert any scalars encountered after the first vector operand to vectors.
4446 bool IsVectorGEP = I.getType()->isVectorTy();
4447 ElementCount VectorElementCount =
4448 IsVectorGEP ? cast<VectorType>(I.getType())->getElementCount()
4450
4452 GTI != E; ++GTI) {
4453 const Value *Idx = GTI.getOperand();
4454 if (StructType *StTy = GTI.getStructTypeOrNull()) {
4455 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue();
4456 if (Field) {
4457 // N = N + Offset
4458 uint64_t Offset =
4459 DAG.getDataLayout().getStructLayout(StTy)->getElementOffset(Field);
4460
4461 // In an inbounds GEP with an offset that is nonnegative even when
4462 // interpreted as signed, assume there is no unsigned overflow.
4463 SDNodeFlags Flags;
4464 if (NW.hasNoUnsignedWrap() ||
4465 (int64_t(Offset) >= 0 && NW.hasNoUnsignedSignedWrap()))
4467 Flags.setInBounds(NW.isInBounds());
4468
4469 N = DAG.getMemBasePlusOffset(
4470 N, DAG.getConstant(Offset, dl, N.getValueType()), dl, Flags);
4471 }
4472 } else {
4473 // IdxSize is the width of the arithmetic according to IR semantics.
4474 // In SelectionDAG, we may prefer to do arithmetic in a wider bitwidth
4475 // (and fix up the result later).
4476 unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS);
4477 MVT IdxTy = MVT::getIntegerVT(IdxSize);
4478 TypeSize ElementSize =
4479 GTI.getSequentialElementStride(DAG.getDataLayout());
4480 // We intentionally mask away the high bits here; ElementSize may not
4481 // fit in IdxTy.
4482 APInt ElementMul(IdxSize, ElementSize.getKnownMinValue(),
4483 /*isSigned=*/false, /*implicitTrunc=*/true);
4484 bool ElementScalable = ElementSize.isScalable();
4485
4486 // If this is a scalar constant or a splat vector of constants,
4487 // handle it quickly.
4488 const auto *C = dyn_cast<Constant>(Idx);
4489 if (C && isa<VectorType>(C->getType()))
4490 C = C->getSplatValue();
4491
4492 const auto *CI = dyn_cast_or_null<ConstantInt>(C);
4493 if (CI && CI->isZero())
4494 continue;
4495 if (CI && !ElementScalable) {
4496 APInt Offs = ElementMul * CI->getValue().sextOrTrunc(IdxSize);
4497 LLVMContext &Context = *DAG.getContext();
4498 SDValue OffsVal;
4499 if (N.getValueType().isVector())
4500 OffsVal = DAG.getConstant(
4501 Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorElementCount));
4502 else
4503 OffsVal = DAG.getConstant(Offs, dl, IdxTy);
4504
4505 // In an inbounds GEP with an offset that is nonnegative even when
4506 // interpreted as signed, assume there is no unsigned overflow.
4507 SDNodeFlags Flags;
4508 if (NW.hasNoUnsignedWrap() ||
4509 (Offs.isNonNegative() && NW.hasNoUnsignedSignedWrap()))
4510 Flags.setNoUnsignedWrap(true);
4511 Flags.setInBounds(NW.isInBounds());
4512
4513 OffsVal = DAG.getSExtOrTrunc(OffsVal, dl, N.getValueType());
4514
4515 N = DAG.getMemBasePlusOffset(N, OffsVal, dl, Flags);
4516 continue;
4517 }
4518
4519 // N = N + Idx * ElementMul;
4520 SDValue IdxN = getValue(Idx);
4521
4522 if (IdxN.getValueType().isVector() != N.getValueType().isVector()) {
4523 if (N.getValueType().isVector()) {
4524 EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(),
4525 VectorElementCount);
4526 IdxN = DAG.getSplat(VT, dl, IdxN);
4527 } else {
4528 EVT VT =
4529 EVT::getVectorVT(*Context, N.getValueType(), VectorElementCount);
4530 N = DAG.getSplat(VT, dl, N);
4531 }
4532 }
4533
4534 // If the index is smaller or larger than intptr_t, truncate or extend
4535 // it.
4536 IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType());
4537
4538 SDNodeFlags ScaleFlags;
4539 // The multiplication of an index by the type size does not wrap the
4540 // pointer index type in a signed sense (mul nsw).
4542
4543 // The multiplication of an index by the type size does not wrap the
4544 // pointer index type in an unsigned sense (mul nuw).
4545 ScaleFlags.setNoUnsignedWrap(NW.hasNoUnsignedWrap());
4546
4547 if (ElementScalable) {
4548 EVT VScaleTy = N.getValueType().getScalarType();
4549 SDValue VScale = DAG.getNode(
4550 ISD::VSCALE, dl, VScaleTy,
4551 DAG.getConstant(ElementMul.getZExtValue(), dl, VScaleTy));
4552 if (N.getValueType().isVector())
4553 VScale = DAG.getSplatVector(N.getValueType(), dl, VScale);
4554 IdxN = DAG.getNode(ISD::MUL, dl, N.getValueType(), IdxN, VScale,
4555 ScaleFlags);
4556 } else {
4557 // If this is a multiply by a power of two, turn it into a shl
4558 // immediately. This is a very common case.
4559 if (ElementMul != 1) {
4560 if (ElementMul.isPowerOf2()) {
4561 unsigned Amt = ElementMul.logBase2();
4562 IdxN = DAG.getNode(
4563 ISD::SHL, dl, N.getValueType(), IdxN,
4564 DAG.getShiftAmountConstant(Amt, N.getValueType(), dl),
4565 ScaleFlags);
4566 } else {
4567 SDValue Scale = DAG.getConstant(ElementMul.getZExtValue(), dl,
4568 IdxN.getValueType());
4569 IdxN = DAG.getNode(ISD::MUL, dl, N.getValueType(), IdxN, Scale,
4570 ScaleFlags);
4571 }
4572 }
4573 }
4574
4575 // The successive addition of the current address, truncated to the
4576 // pointer index type and interpreted as an unsigned number, and each
4577 // offset, also interpreted as an unsigned number, does not wrap the
4578 // pointer index type (add nuw).
4579 SDNodeFlags AddFlags;
4580 AddFlags.setNoUnsignedWrap(NW.hasNoUnsignedWrap());
4581 AddFlags.setInBounds(NW.isInBounds());
4582
4583 N = DAG.getMemBasePlusOffset(N, IdxN, dl, AddFlags);
4584 }
4585 }
4586
4587 if (IsVectorGEP && !N.getValueType().isVector()) {
4588 EVT VT = EVT::getVectorVT(*Context, N.getValueType(), VectorElementCount);
4589 N = DAG.getSplat(VT, dl, N);
4590 }
4591
4592 MVT PtrTy = TLI.getPointerTy(DAG.getDataLayout(), AS);
4593 MVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout(), AS);
4594 if (IsVectorGEP) {
4595 PtrTy = MVT::getVectorVT(PtrTy, VectorElementCount);
4596 PtrMemTy = MVT::getVectorVT(PtrMemTy, VectorElementCount);
4597 }
4598
4599 if (PtrMemTy != PtrTy && !cast<GEPOperator>(I).isInBounds())
4600 N = DAG.getPtrExtendInReg(N, dl, PtrMemTy);
4601
4602 setValue(&I, N);
4603}
4604
4605void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
4606 // If this is a fixed sized alloca in the entry block of the function,
4607 // allocate it statically on the stack.
4608 if (FuncInfo.StaticAllocaMap.count(&I))
4609 return; // getValue will auto-populate this.
4610
4611 SDLoc dl = getCurSDLoc();
4612 Type *Ty = I.getAllocatedType();
4613 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4614 auto &DL = DAG.getDataLayout();
4615 TypeSize TySize = DL.getTypeAllocSize(Ty);
4616 MaybeAlign Alignment = std::max(DL.getPrefTypeAlign(Ty), I.getAlign());
4617
4618 SDValue AllocSize = getValue(I.getArraySize());
4619
4620 EVT IntPtr = TLI.getPointerTy(DL, I.getAddressSpace());
4621 if (AllocSize.getValueType() != IntPtr)
4622 AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr);
4623
4624 AllocSize = DAG.getNode(
4625 ISD::MUL, dl, IntPtr, AllocSize,
4626 DAG.getZExtOrTrunc(DAG.getTypeSize(dl, MVT::i64, TySize), dl, IntPtr));
4627
4628 // Handle alignment. If the requested alignment is less than or equal to
4629 // the stack alignment, ignore it. If the size is greater than or equal to
4630 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
4631 Align StackAlign = DAG.getSubtarget().getFrameLowering()->getStackAlign();
4632 if (*Alignment <= StackAlign)
4633 Alignment = std::nullopt;
4634
4635 const uint64_t StackAlignMask = StackAlign.value() - 1U;
4636 // Round the size of the allocation up to the stack alignment size
4637 // by add SA-1 to the size. This doesn't overflow because we're computing
4638 // an address inside an alloca.
4639 AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize,
4640 DAG.getConstant(StackAlignMask, dl, IntPtr),
4642
4643 // Mask out the low bits for alignment purposes.
4644 AllocSize = DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize,
4645 DAG.getSignedConstant(~StackAlignMask, dl, IntPtr));
4646
4647 SDValue Ops[] = {
4648 getRoot(), AllocSize,
4649 DAG.getConstant(Alignment ? Alignment->value() : 0, dl, IntPtr)};
4650 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
4651 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops);
4652 setValue(&I, DSA);
4653 DAG.setRoot(DSA.getValue(1));
4654
4655 assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects());
4656}
4657
4658static const MDNode *getRangeMetadata(const Instruction &I) {
4659 return I.getMetadata(LLVMContext::MD_range);
4660}
4661
4662static std::optional<ConstantRange> getRange(const Instruction &I) {
4663 if (const auto *CB = dyn_cast<CallBase>(&I))
4664 if (std::optional<ConstantRange> CR = CB->getRange())
4665 return CR;
4666 if (const MDNode *Range = getRangeMetadata(I))
4668 return std::nullopt;
4669}
4670
4672 if (const auto *CB = dyn_cast<CallBase>(&I))
4673 return CB->getRetNoFPClass();
4674 return fcNone;
4675}
4676
4677void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
4678 if (I.isAtomic())
4679 return visitAtomicLoad(I);
4680
4681 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4682 const Value *SV = I.getOperand(0);
4683 if (TLI.supportSwiftError()) {
4684 // Swifterror values can come from either a function parameter with
4685 // swifterror attribute or an alloca with swifterror attribute.
4686 if (const Argument *Arg = dyn_cast<Argument>(SV)) {
4687 if (Arg->hasSwiftErrorAttr())
4688 return visitLoadFromSwiftError(I);
4689 }
4690
4691 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) {
4692 if (Alloca->isSwiftError())
4693 return visitLoadFromSwiftError(I);
4694 }
4695 }
4696
4697 SDValue Ptr = getValue(SV);
4698
4699 Type *Ty = I.getType();
4700 SmallVector<EVT, 4> ValueVTs, MemVTs;
4702 ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &MemVTs, &Offsets);
4703 unsigned NumValues = ValueVTs.size();
4704 if (NumValues == 0)
4705 return;
4706
4707 Align Alignment = I.getAlign();
4708 AAMDNodes AAInfo = I.getAAMetadata();
4709 const MDNode *Ranges = getRangeMetadata(I);
4710 bool isVolatile = I.isVolatile();
4711 MachineMemOperand::Flags MMOFlags =
4712 TLI.getLoadMemOperandFlags(I, DAG.getDataLayout(), AC, LibInfo);
4713
4714 SDValue Root;
4715 bool ConstantMemory = false;
4716 if (isVolatile)
4717 // Serialize volatile loads with other side effects.
4718 Root = getRoot();
4719 else if (NumValues > MaxParallelChains)
4720 Root = getMemoryRoot();
4721 else if (BatchAA &&
4722 BatchAA->pointsToConstantMemory(MemoryLocation(
4723 SV,
4724 LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)),
4725 AAInfo))) {
4726 // Do not serialize (non-volatile) loads of constant memory with anything.
4727 Root = DAG.getEntryNode();
4728 ConstantMemory = true;
4730 } else {
4731 // Do not serialize non-volatile loads against each other.
4732 Root = DAG.getRoot();
4733 }
4734
4735 SDLoc dl = getCurSDLoc();
4736
4737 if (isVolatile)
4738 Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG);
4739
4740 SmallVector<SDValue, 4> Values(NumValues);
4741 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
4742
4743 unsigned ChainI = 0;
4744 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
4745 // Serializing loads here may result in excessive register pressure, and
4746 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
4747 // could recover a bit by hoisting nodes upward in the chain by recognizing
4748 // they are side-effect free or do not alias. The optimizer should really
4749 // avoid this case by converting large object/array copies to llvm.memcpy
4750 // (MaxParallelChains should always remain as failsafe).
4751 if (ChainI == MaxParallelChains) {
4752 assert(PendingLoads.empty() && "PendingLoads must be serialized first");
4753 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4754 ArrayRef(Chains.data(), ChainI));
4755 Root = Chain;
4756 ChainI = 0;
4757 }
4758
4759 // TODO: MachinePointerInfo only supports a fixed length offset.
4760 MachinePointerInfo PtrInfo =
4761 !Offsets[i].isScalable() || Offsets[i].isZero()
4762 ? MachinePointerInfo(SV, Offsets[i].getKnownMinValue())
4763 : MachinePointerInfo();
4764
4765 SDValue A = DAG.getObjectPtrOffset(dl, Ptr, Offsets[i]);
4766 SDValue L = DAG.getLoad(MemVTs[i], dl, Root, A, PtrInfo, Alignment,
4767 MMOFlags, AAInfo, Ranges);
4768 Chains[ChainI] = L.getValue(1);
4769
4770 if (MemVTs[i] != ValueVTs[i])
4771 L = DAG.getPtrExtOrTrunc(L, dl, ValueVTs[i]);
4772
4773 Values[i] = L;
4774 }
4775
4776 if (!ConstantMemory) {
4777 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4778 ArrayRef(Chains.data(), ChainI));
4779 if (isVolatile)
4780 DAG.setRoot(Chain);
4781 else
4782 PendingLoads.push_back(Chain);
4783 }
4784
4785 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl,
4786 DAG.getVTList(ValueVTs), Values));
4787}
4788
4789void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) {
4790 assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
4791 "call visitStoreToSwiftError when backend supports swifterror");
4792
4793 SmallVector<EVT, 4> ValueVTs;
4794 SmallVector<uint64_t, 4> Offsets;
4795 const Value *SrcV = I.getOperand(0);
4796 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
4797 SrcV->getType(), ValueVTs, /*MemVTs=*/nullptr, &Offsets, 0);
4798 assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
4799 "expect a single EVT for swifterror");
4800
4801 SDValue Src = getValue(SrcV);
4802 // Create a virtual register, then update the virtual register.
4803 Register VReg =
4804 SwiftError.getOrCreateVRegDefAt(&I, FuncInfo.MBB, I.getPointerOperand());
4805 // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue
4806 // Chain can be getRoot or getControlRoot.
4807 SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg,
4808 SDValue(Src.getNode(), Src.getResNo()));
4809 DAG.setRoot(CopyNode);
4810}
4811
4812void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) {
4813 assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
4814 "call visitLoadFromSwiftError when backend supports swifterror");
4815
4816 assert(!I.isVolatile() &&
4817 !I.hasMetadata(LLVMContext::MD_nontemporal) &&
4818 !I.hasMetadata(LLVMContext::MD_invariant_load) &&
4819 "Support volatile, non temporal, invariant for load_from_swift_error");
4820
4821 const Value *SV = I.getOperand(0);
4822 Type *Ty = I.getType();
4823 assert(
4824 (!BatchAA ||
4825 !BatchAA->pointsToConstantMemory(MemoryLocation(
4826 SV, LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)),
4827 I.getAAMetadata()))) &&
4828 "load_from_swift_error should not be constant memory");
4829
4830 SmallVector<EVT, 4> ValueVTs;
4831 SmallVector<uint64_t, 4> Offsets;
4832 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty,
4833 ValueVTs, /*MemVTs=*/nullptr, &Offsets, 0);
4834 assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
4835 "expect a single EVT for swifterror");
4836
4837 // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT
4838 SDValue L = DAG.getCopyFromReg(
4839 getRoot(), getCurSDLoc(),
4840 SwiftError.getOrCreateVRegUseAt(&I, FuncInfo.MBB, SV), ValueVTs[0]);
4841
4842 setValue(&I, L);
4843}
4844
4845void SelectionDAGBuilder::visitStore(const StoreInst &I) {
4846 if (I.isAtomic())
4847 return visitAtomicStore(I);
4848
4849 const Value *SrcV = I.getOperand(0);
4850 const Value *PtrV = I.getOperand(1);
4851
4852 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4853 if (TLI.supportSwiftError()) {
4854 // Swifterror values can come from either a function parameter with
4855 // swifterror attribute or an alloca with swifterror attribute.
4856 if (const Argument *Arg = dyn_cast<Argument>(PtrV)) {
4857 if (Arg->hasSwiftErrorAttr())
4858 return visitStoreToSwiftError(I);
4859 }
4860
4861 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) {
4862 if (Alloca->isSwiftError())
4863 return visitStoreToSwiftError(I);
4864 }
4865 }
4866
4867 SmallVector<EVT, 4> ValueVTs, MemVTs;
4869 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
4870 SrcV->getType(), ValueVTs, &MemVTs, &Offsets);
4871 unsigned NumValues = ValueVTs.size();
4872 if (NumValues == 0)
4873 return;
4874
4875 // Get the lowered operands. Note that we do this after
4876 // checking if NumResults is zero, because with zero results
4877 // the operands won't have values in the map.
4878 SDValue Src = getValue(SrcV);
4879 SDValue Ptr = getValue(PtrV);
4880
4881 SDValue Root = I.isVolatile() ? getRoot() : getMemoryRoot();
4882 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
4883 SDLoc dl = getCurSDLoc();
4884 Align Alignment = I.getAlign();
4885 AAMDNodes AAInfo = I.getAAMetadata();
4886
4887 auto MMOFlags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout());
4888
4889 unsigned ChainI = 0;
4890 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
4891 // See visitLoad comments.
4892 if (ChainI == MaxParallelChains) {
4893 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4894 ArrayRef(Chains.data(), ChainI));
4895 Root = Chain;
4896 ChainI = 0;
4897 }
4898
4899 // TODO: MachinePointerInfo only supports a fixed length offset.
4900 MachinePointerInfo PtrInfo =
4901 !Offsets[i].isScalable() || Offsets[i].isZero()
4902 ? MachinePointerInfo(PtrV, Offsets[i].getKnownMinValue())
4903 : MachinePointerInfo();
4904
4905 SDValue Add = DAG.getObjectPtrOffset(dl, Ptr, Offsets[i]);
4906 SDValue Val = SDValue(Src.getNode(), Src.getResNo() + i);
4907 if (MemVTs[i] != ValueVTs[i])
4908 Val = DAG.getPtrExtOrTrunc(Val, dl, MemVTs[i]);
4909 SDValue St =
4910 DAG.getStore(Root, dl, Val, Add, PtrInfo, Alignment, MMOFlags, AAInfo);
4911 Chains[ChainI] = St;
4912 }
4913
4914 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4915 ArrayRef(Chains.data(), ChainI));
4916 setValue(&I, StoreNode);
4917 DAG.setRoot(StoreNode);
4918}
4919
4920void SelectionDAGBuilder::visitMaskedStore(const CallInst &I,
4921 bool IsCompressing) {
4922 SDLoc sdl = getCurSDLoc();
4923
4924 Value *Src0Operand = I.getArgOperand(0);
4925 Value *PtrOperand = I.getArgOperand(1);
4926 Value *MaskOperand = I.getArgOperand(2);
4927 Align Alignment = I.getParamAlign(1).valueOrOne();
4928
4929 SDValue Ptr = getValue(PtrOperand);
4930 SDValue Src0 = getValue(Src0Operand);
4931 SDValue Mask = getValue(MaskOperand);
4932 SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
4933
4934 EVT VT = Src0.getValueType();
4935
4936 auto MMOFlags = MachineMemOperand::MOStore;
4937 if (I.hasMetadata(LLVMContext::MD_nontemporal))
4939
4940 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4941 MachinePointerInfo(PtrOperand), MMOFlags,
4942 LocationSize::beforeOrAfterPointer(), Alignment, I.getAAMetadata());
4943
4944 const auto &TLI = DAG.getTargetLoweringInfo();
4945
4946 SDValue StoreNode =
4947 !IsCompressing && TTI->hasConditionalLoadStoreForType(
4948 I.getArgOperand(0)->getType(), /*IsStore=*/true)
4949 ? TLI.visitMaskedStore(DAG, sdl, getMemoryRoot(), MMO, Ptr, Src0,
4950 Mask)
4951 : DAG.getMaskedStore(getMemoryRoot(), sdl, Src0, Ptr, Offset, Mask,
4952 VT, MMO, ISD::UNINDEXED, /*Truncating=*/false,
4953 IsCompressing);
4954 DAG.setRoot(StoreNode);
4955 setValue(&I, StoreNode);
4956}
4957
4958// Get a uniform base for the Gather/Scatter intrinsic.
4959// The first argument of the Gather/Scatter intrinsic is a vector of pointers.
4960// We try to represent it as a base pointer + vector of indices.
4961// Usually, the vector of pointers comes from a 'getelementptr' instruction.
4962// The first operand of the GEP may be a single pointer or a vector of pointers
4963// Example:
4964// %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind
4965// or
4966// %gep.ptr = getelementptr i32, i32* %ptr, <8 x i32> %ind
4967// %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, ..
4968//
4969// When the first GEP operand is a single pointer - it is the uniform base we
4970// are looking for. If first operand of the GEP is a splat vector - we
4971// extract the splat value and use it as a uniform base.
4972// In all other cases the function returns 'false'.
4973static bool getUniformBase(const Value *Ptr, SDValue &Base, SDValue &Index,
4974 SDValue &Scale, SelectionDAGBuilder *SDB,
4975 const BasicBlock *CurBB, uint64_t ElemSize) {
4976 SelectionDAG& DAG = SDB->DAG;
4977 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4978 const DataLayout &DL = DAG.getDataLayout();
4979
4980 assert(Ptr->getType()->isVectorTy() && "Unexpected pointer type");
4981
4982 // Handle splat constant pointer.
4983 if (auto *C = dyn_cast<Constant>(Ptr)) {
4984 C = C->getSplatValue();
4985 if (!C)
4986 return false;
4987
4988 Base = SDB->getValue(C);
4989
4990 ElementCount NumElts = cast<VectorType>(Ptr->getType())->getElementCount();
4991 EVT VT = EVT::getVectorVT(*DAG.getContext(), TLI.getPointerTy(DL), NumElts);
4992 Index = DAG.getConstant(0, SDB->getCurSDLoc(), VT);
4993 Scale = DAG.getTargetConstant(1, SDB->getCurSDLoc(), TLI.getPointerTy(DL));
4994 return true;
4995 }
4996
4998 if (!GEP || GEP->getParent() != CurBB)
4999 return false;
5000
5001 if (GEP->getNumOperands() != 2)
5002 return false;
5003
5004 const Value *BasePtr = GEP->getPointerOperand();
5005 const Value *IndexVal = GEP->getOperand(GEP->getNumOperands() - 1);
5006
5007 // Make sure the base is scalar and the index is a vector.
5008 if (BasePtr->getType()->isVectorTy() || !IndexVal->getType()->isVectorTy())
5009 return false;
5010
5011 TypeSize ScaleVal = DL.getTypeAllocSize(GEP->getResultElementType());
5012 if (ScaleVal.isScalable())
5013 return false;
5014
5015 // Target may not support the required addressing mode.
5016 if (ScaleVal != 1 &&
5017 !TLI.isLegalScaleForGatherScatter(ScaleVal.getFixedValue(), ElemSize))
5018 return false;
5019
5020 Base = SDB->getValue(BasePtr);
5021 Index = SDB->getValue(IndexVal);
5022
5023 Scale =
5024 DAG.getTargetConstant(ScaleVal, SDB->getCurSDLoc(), TLI.getPointerTy(DL));
5025 return true;
5026}
5027
5028void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) {
5029 SDLoc sdl = getCurSDLoc();
5030
5031 // llvm.masked.scatter.*(Src0, Ptrs, Mask)
5032 const Value *Ptr = I.getArgOperand(1);
5033 SDValue Src0 = getValue(I.getArgOperand(0));
5034 SDValue Mask = getValue(I.getArgOperand(2));
5035 EVT VT = Src0.getValueType();
5036 Align Alignment = I.getParamAlign(1).valueOrOne();
5037 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5038
5039 SDValue Base;
5040 SDValue Index;
5041 SDValue Scale;
5042 bool UniformBase = getUniformBase(Ptr, Base, Index, Scale, this,
5043 I.getParent(), VT.getScalarStoreSize());
5044
5045 unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace();
5046 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
5047 MachinePointerInfo(AS), MachineMemOperand::MOStore,
5048 LocationSize::beforeOrAfterPointer(), Alignment, I.getAAMetadata());
5049 if (!UniformBase) {
5050 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
5051 Index = getValue(Ptr);
5052 Scale =
5053 DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
5054 }
5055
5056 EVT IdxVT = Index.getValueType();
5057 EVT EltTy = IdxVT.getVectorElementType();
5058 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
5059 EVT NewIdxVT = IdxVT.changeVectorElementType(*DAG.getContext(), EltTy);
5060 Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index);
5061 }
5062
5063 SDValue Ops[] = { getMemoryRoot(), Src0, Mask, Base, Index, Scale };
5064 SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl,
5065 Ops, MMO, ISD::SIGNED_SCALED, false);
5066 DAG.setRoot(Scatter);
5067 setValue(&I, Scatter);
5068}
5069
5070void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) {
5071 SDLoc sdl = getCurSDLoc();
5072
5073 Value *PtrOperand = I.getArgOperand(0);
5074 Value *MaskOperand = I.getArgOperand(1);
5075 Value *Src0Operand = I.getArgOperand(2);
5076 Align Alignment = I.getParamAlign(0).valueOrOne();
5077
5078 SDValue Ptr = getValue(PtrOperand);
5079 SDValue Src0 = getValue(Src0Operand);
5080 SDValue Mask = getValue(MaskOperand);
5081 SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
5082
5083 EVT VT = Src0.getValueType();
5084 AAMDNodes AAInfo = I.getAAMetadata();
5085 const MDNode *Ranges = getRangeMetadata(I);
5086
5087 // Do not serialize masked loads of constant memory with anything.
5088 MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo);
5089 bool AddToChain = !BatchAA || !BatchAA->pointsToConstantMemory(ML);
5090
5091 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
5092
5093 auto MMOFlags = MachineMemOperand::MOLoad;
5094 if (I.hasMetadata(LLVMContext::MD_nontemporal))
5096 if (I.hasMetadata(LLVMContext::MD_invariant_load))
5098
5099 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
5100 MachinePointerInfo(PtrOperand), MMOFlags,
5101 LocationSize::beforeOrAfterPointer(), Alignment, AAInfo, Ranges);
5102
5103 const auto &TLI = DAG.getTargetLoweringInfo();
5104
5105 // The Load/Res may point to different values and both of them are output
5106 // variables.
5107 SDValue Load;
5108 SDValue Res;
5109 if (!IsExpanding &&
5110 TTI->hasConditionalLoadStoreForType(Src0Operand->getType(),
5111 /*IsStore=*/false))
5112 Res = TLI.visitMaskedLoad(DAG, sdl, InChain, MMO, Load, Ptr, Src0, Mask);
5113 else
5114 Res = Load =
5115 DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Offset, Mask, Src0, VT, MMO,
5116 ISD::UNINDEXED, ISD::NON_EXTLOAD, IsExpanding);
5117 if (AddToChain)
5118 PendingLoads.push_back(Load.getValue(1));
5119 setValue(&I, Res);
5120}
5121
5122void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) {
5123 SDLoc sdl = getCurSDLoc();
5124
5125 // @llvm.masked.gather.*(Ptrs, Mask, Src0)
5126 const Value *Ptr = I.getArgOperand(0);
5127 SDValue Src0 = getValue(I.getArgOperand(2));
5128 SDValue Mask = getValue(I.getArgOperand(1));
5129
5130 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5131 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5132 Align Alignment = I.getParamAlign(0).valueOrOne();
5133
5134 const MDNode *Ranges = getRangeMetadata(I);
5135
5136 SDValue Root = DAG.getRoot();
5137 SDValue Base;
5138 SDValue Index;
5139 SDValue Scale;
5140 bool UniformBase = getUniformBase(Ptr, Base, Index, Scale, this,
5141 I.getParent(), VT.getScalarStoreSize());
5142 unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace();
5143 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
5144 MachinePointerInfo(AS), MachineMemOperand::MOLoad,
5145 LocationSize::beforeOrAfterPointer(), Alignment, I.getAAMetadata(),
5146 Ranges);
5147
5148 if (!UniformBase) {
5149 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
5150 Index = getValue(Ptr);
5151 Scale =
5152 DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
5153 }
5154
5155 EVT IdxVT = Index.getValueType();
5156 EVT EltTy = IdxVT.getVectorElementType();
5157 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
5158 EVT NewIdxVT = IdxVT.changeVectorElementType(*DAG.getContext(), EltTy);
5159 Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index);
5160 }
5161
5162 SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale };
5163 SDValue Gather =
5164 DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl, Ops, MMO,
5166
5167 PendingLoads.push_back(Gather.getValue(1));
5168 setValue(&I, Gather);
5169}
5170
5171void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) {
5172 SDLoc dl = getCurSDLoc();
5173 AtomicOrdering SuccessOrdering = I.getSuccessOrdering();
5174 AtomicOrdering FailureOrdering = I.getFailureOrdering();
5175 SyncScope::ID SSID = I.getSyncScopeID();
5176
5177 SDValue InChain = getRoot();
5178
5179 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType();
5180 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other);
5181
5182 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5183 auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout());
5184
5185 MachineFunction &MF = DAG.getMachineFunction();
5186 MachineMemOperand *MMO = MF.getMachineMemOperand(
5187 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
5188 DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, SuccessOrdering,
5189 FailureOrdering);
5190
5192 dl, MemVT, VTs, InChain,
5193 getValue(I.getPointerOperand()),
5194 getValue(I.getCompareOperand()),
5195 getValue(I.getNewValOperand()), MMO);
5196
5197 SDValue OutChain = L.getValue(2);
5198
5199 setValue(&I, L);
5200 DAG.setRoot(OutChain);
5201}
5202
5203void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) {
5204 SDLoc dl = getCurSDLoc();
5206 switch (I.getOperation()) {
5207 default: llvm_unreachable("Unknown atomicrmw operation");
5225 break;
5228 break;
5231 break;
5234 break;
5237 break;
5240 break;
5241 }
5242 AtomicOrdering Ordering = I.getOrdering();
5243 SyncScope::ID SSID = I.getSyncScopeID();
5244
5245 SDValue InChain = getRoot();
5246
5247 auto MemVT = getValue(I.getValOperand()).getSimpleValueType();
5248 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5249 auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout());
5250
5251 MachineFunction &MF = DAG.getMachineFunction();
5252 MachineMemOperand *MMO = MF.getMachineMemOperand(
5253 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
5254 DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, Ordering);
5255
5256 SDValue L =
5257 DAG.getAtomic(NT, dl, MemVT, InChain,
5258 getValue(I.getPointerOperand()), getValue(I.getValOperand()),
5259 MMO);
5260
5261 SDValue OutChain = L.getValue(1);
5262
5263 setValue(&I, L);
5264 DAG.setRoot(OutChain);
5265}
5266
5267void SelectionDAGBuilder::visitFence(const FenceInst &I) {
5268 SDLoc dl = getCurSDLoc();
5269 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5270 SDValue Ops[3];
5271 Ops[0] = getRoot();
5272 Ops[1] = DAG.getTargetConstant((unsigned)I.getOrdering(), dl,
5273 TLI.getFenceOperandTy(DAG.getDataLayout()));
5274 Ops[2] = DAG.getTargetConstant(I.getSyncScopeID(), dl,
5275 TLI.getFenceOperandTy(DAG.getDataLayout()));
5276 SDValue N = DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops);
5277 setValue(&I, N);
5278 DAG.setRoot(N);
5279}
5280
5281void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) {
5282 SDLoc dl = getCurSDLoc();
5283 AtomicOrdering Order = I.getOrdering();
5284 SyncScope::ID SSID = I.getSyncScopeID();
5285
5286 SDValue InChain = getRoot();
5287
5288 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5289 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5290 EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType());
5291
5292 if (!TLI.supportsUnalignedAtomics() &&
5293 I.getAlign().value() < MemVT.getSizeInBits() / 8)
5294 report_fatal_error("Cannot generate unaligned atomic load");
5295
5296 auto Flags = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout(), AC, LibInfo);
5297
5298 const MDNode *Ranges = getRangeMetadata(I);
5299 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
5300 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
5301 I.getAlign(), AAMDNodes(), Ranges, SSID, Order);
5302
5303 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG);
5304
5305 SDValue Ptr = getValue(I.getPointerOperand());
5306 SDValue L =
5307 DAG.getAtomicLoad(ISD::NON_EXTLOAD, dl, MemVT, MemVT, InChain, Ptr, MMO);
5308
5309 SDValue OutChain = L.getValue(1);
5310 if (MemVT != VT)
5311 L = DAG.getPtrExtOrTrunc(L, dl, VT);
5312
5313 setValue(&I, L);
5314 DAG.setRoot(OutChain);
5315}
5316
5317void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) {
5318 SDLoc dl = getCurSDLoc();
5319
5320 AtomicOrdering Ordering = I.getOrdering();
5321 SyncScope::ID SSID = I.getSyncScopeID();
5322
5323 SDValue InChain = getRoot();
5324
5325 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5326 EVT MemVT =
5327 TLI.getMemValueType(DAG.getDataLayout(), I.getValueOperand()->getType());
5328
5329 if (!TLI.supportsUnalignedAtomics() &&
5330 I.getAlign().value() < MemVT.getSizeInBits() / 8)
5331 report_fatal_error("Cannot generate unaligned atomic store");
5332
5333 auto Flags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout());
5334
5335 MachineFunction &MF = DAG.getMachineFunction();
5336 MachineMemOperand *MMO = MF.getMachineMemOperand(
5337 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
5338 I.getAlign(), AAMDNodes(), nullptr, SSID, Ordering);
5339
5340 SDValue Val = getValue(I.getValueOperand());
5341 if (Val.getValueType() != MemVT)
5342 Val = DAG.getPtrExtOrTrunc(Val, dl, MemVT);
5343 SDValue Ptr = getValue(I.getPointerOperand());
5344
5345 SDValue OutChain =
5346 DAG.getAtomic(ISD::ATOMIC_STORE, dl, MemVT, InChain, Val, Ptr, MMO);
5347
5348 setValue(&I, OutChain);
5349 DAG.setRoot(OutChain);
5350}
5351
5352/// Check if this intrinsic call depends on the chain (1st return value)
5353/// and if it only *loads* memory.
5354/// Ignore the callsite's attributes. A specific call site may be marked with
5355/// readnone, but the lowering code will expect the chain based on the
5356/// definition.
5357std::pair<bool, bool>
5358SelectionDAGBuilder::getTargetIntrinsicCallProperties(const CallBase &I) {
5359 const Function *F = I.getCalledFunction();
5360 bool HasChain = !F->doesNotAccessMemory();
5361 bool OnlyLoad =
5362 HasChain && F->onlyReadsMemory() && F->willReturn() && F->doesNotThrow();
5363
5364 return {HasChain, OnlyLoad};
5365}
5366
5367SmallVector<SDValue, 8> SelectionDAGBuilder::getTargetIntrinsicOperands(
5368 const CallBase &I, bool HasChain, bool OnlyLoad,
5369 TargetLowering::IntrinsicInfo *TgtMemIntrinsicInfo) {
5370 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5371
5372 // Build the operand list.
5374 if (HasChain) { // If this intrinsic has side-effects, chainify it.
5375 if (OnlyLoad) {
5376 // We don't need to serialize loads against other loads.
5377 Ops.push_back(DAG.getRoot());
5378 } else {
5379 Ops.push_back(getRoot());
5380 }
5381 }
5382
5383 // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
5384 if (!TgtMemIntrinsicInfo || TgtMemIntrinsicInfo->opc == ISD::INTRINSIC_VOID ||
5385 TgtMemIntrinsicInfo->opc == ISD::INTRINSIC_W_CHAIN)
5386 Ops.push_back(DAG.getTargetConstant(I.getIntrinsicID(), getCurSDLoc(),
5387 TLI.getPointerTy(DAG.getDataLayout())));
5388
5389 // Add all operands of the call to the operand list.
5390 for (unsigned i = 0, e = I.arg_size(); i != e; ++i) {
5391 const Value *Arg = I.getArgOperand(i);
5392 if (!I.paramHasAttr(i, Attribute::ImmArg)) {
5393 Ops.push_back(getValue(Arg));
5394 continue;
5395 }
5396
5397 // Use TargetConstant instead of a regular constant for immarg.
5398 EVT VT = TLI.getValueType(DAG.getDataLayout(), Arg->getType(), true);
5399 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Arg)) {
5400 assert(CI->getBitWidth() <= 64 &&
5401 "large intrinsic immediates not handled");
5402 Ops.push_back(DAG.getTargetConstant(*CI, SDLoc(), VT));
5403 } else {
5404 Ops.push_back(
5405 DAG.getTargetConstantFP(*cast<ConstantFP>(Arg), SDLoc(), VT));
5406 }
5407 }
5408
5409 if (std::optional<OperandBundleUse> Bundle =
5410 I.getOperandBundle(LLVMContext::OB_deactivation_symbol)) {
5411 auto *Sym = Bundle->Inputs[0].get();
5412 SDValue SDSym = getValue(Sym);
5413 SDSym = DAG.getDeactivationSymbol(cast<GlobalValue>(Sym));
5414 Ops.push_back(SDSym);
5415 }
5416
5417 if (std::optional<OperandBundleUse> Bundle =
5418 I.getOperandBundle(LLVMContext::OB_convergencectrl)) {
5419 Value *Token = Bundle->Inputs[0].get();
5420 SDValue ConvControlToken = getValue(Token);
5421 assert(Ops.back().getValueType() != MVT::Glue &&
5422 "Did not expect another glue node here.");
5423 ConvControlToken =
5424 DAG.getNode(ISD::CONVERGENCECTRL_GLUE, {}, MVT::Glue, ConvControlToken);
5425 Ops.push_back(ConvControlToken);
5426 }
5427
5428 return Ops;
5429}
5430
5431SDVTList SelectionDAGBuilder::getTargetIntrinsicVTList(const CallBase &I,
5432 bool HasChain) {
5433 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5434
5435 SmallVector<EVT, 4> ValueVTs;
5436 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs);
5437
5438 if (HasChain)
5439 ValueVTs.push_back(MVT::Other);
5440
5441 return DAG.getVTList(ValueVTs);
5442}
5443
5444/// Get an INTRINSIC node for a target intrinsic which does not touch memory.
5445SDValue SelectionDAGBuilder::getTargetNonMemIntrinsicNode(
5446 const Type &IntrinsicVT, bool HasChain, ArrayRef<SDValue> Ops,
5447 const SDVTList &VTs) {
5448 if (!HasChain)
5449 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops);
5450 if (!IntrinsicVT.isVoidTy())
5451 return DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops);
5452 return DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops);
5453}
5454
5455/// Set root, convert return type if necessary and check alignment.
5456SDValue SelectionDAGBuilder::handleTargetIntrinsicRet(const CallBase &I,
5457 bool HasChain,
5458 bool OnlyLoad,
5459 SDValue Result) {
5460 if (HasChain) {
5461 SDValue Chain = Result.getValue(Result.getNode()->getNumValues() - 1);
5462 if (OnlyLoad)
5463 PendingLoads.push_back(Chain);
5464 else
5465 DAG.setRoot(Chain);
5466 }
5467
5468 if (I.getType()->isVoidTy())
5469 return Result;
5470
5471 if (MaybeAlign Alignment = I.getRetAlign(); InsertAssertAlign && Alignment) {
5472 // Insert `assertalign` node if there's an alignment.
5473 Result = DAG.getAssertAlign(getCurSDLoc(), Result, Alignment.valueOrOne());
5474 } else if (!isa<VectorType>(I.getType())) {
5475 Result = lowerRangeToAssertZExt(DAG, I, Result);
5476 }
5477
5478 return Result;
5479}
5480
5481/// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
5482/// node.
5483void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
5484 unsigned Intrinsic) {
5485 auto [HasChain, OnlyLoad] = getTargetIntrinsicCallProperties(I);
5486
5487 // Info is set by getTgtMemIntrinsic
5488 TargetLowering::IntrinsicInfo Info;
5489 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5490 bool IsTgtMemIntrinsic =
5491 TLI.getTgtMemIntrinsic(Info, I, DAG.getMachineFunction(), Intrinsic);
5492
5493 SmallVector<SDValue, 8> Ops = getTargetIntrinsicOperands(
5494 I, HasChain, OnlyLoad, IsTgtMemIntrinsic ? &Info : nullptr);
5495 SDVTList VTs = getTargetIntrinsicVTList(I, HasChain);
5496
5497 // Propagate fast-math-flags from IR to node(s).
5498 SDNodeFlags Flags;
5499 if (auto *FPMO = dyn_cast<FPMathOperator>(&I))
5500 Flags.copyFMF(*FPMO);
5501 SelectionDAG::FlagInserter FlagsInserter(DAG, Flags);
5502
5503 // Create the node.
5505
5506 // In some cases, custom collection of operands from CallInst I may be needed.
5508 if (IsTgtMemIntrinsic) {
5509 // This is target intrinsic that touches memory
5510 //
5511 // TODO: We currently just fallback to address space 0 if getTgtMemIntrinsic
5512 // didn't yield anything useful.
5513 MachinePointerInfo MPI;
5514 if (Info.ptrVal)
5515 MPI = MachinePointerInfo(Info.ptrVal, Info.offset);
5516 else if (Info.fallbackAddressSpace)
5517 MPI = MachinePointerInfo(*Info.fallbackAddressSpace);
5518 EVT MemVT = Info.memVT;
5519 LocationSize Size = LocationSize::precise(Info.size);
5520 if (Size.hasValue() && !Size.getValue())
5522 Align Alignment = Info.align.value_or(DAG.getEVTAlign(MemVT));
5523 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
5524 MPI, Info.flags, Size, Alignment, I.getAAMetadata(), /*Ranges=*/nullptr,
5525 Info.ssid, Info.order, Info.failureOrder);
5526 Result =
5527 DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), VTs, Ops, MemVT, MMO);
5528 } else {
5529 Result = getTargetNonMemIntrinsicNode(*I.getType(), HasChain, Ops, VTs);
5530 }
5531
5532 Result = handleTargetIntrinsicRet(I, HasChain, OnlyLoad, Result);
5533
5534 setValue(&I, Result);
5535}
5536
5537/// GetSignificand - Get the significand and build it into a floating-point
5538/// number with exponent of 1:
5539///
5540/// Op = (Op & 0x007fffff) | 0x3f800000;
5541///
5542/// where Op is the hexadecimal representation of floating point value.
5544 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
5545 DAG.getConstant(0x007fffff, dl, MVT::i32));
5546 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
5547 DAG.getConstant(0x3f800000, dl, MVT::i32));
5548 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
5549}
5550
5551/// GetExponent - Get the exponent:
5552///
5553/// (float)(int)(((Op & 0x7f800000) >> 23) - 127);
5554///
5555/// where Op is the hexadecimal representation of floating point value.
5557 const TargetLowering &TLI, const SDLoc &dl) {
5558 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
5559 DAG.getConstant(0x7f800000, dl, MVT::i32));
5560 SDValue t1 = DAG.getNode(ISD::SRL, dl, MVT::i32, t0,
5561 DAG.getShiftAmountConstant(23, MVT::i32, dl));
5562 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
5563 DAG.getConstant(127, dl, MVT::i32));
5564 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
5565}
5566
5567/// getF32Constant - Get 32-bit floating point constant.
5568static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt,
5569 const SDLoc &dl) {
5570 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl,
5571 MVT::f32);
5572}
5573
5575 SelectionDAG &DAG) {
5576 // TODO: What fast-math-flags should be set on the floating-point nodes?
5577
5578 // IntegerPartOfX = ((int32_t)(t0);
5579 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
5580
5581 // FractionalPartOfX = t0 - (float)IntegerPartOfX;
5582 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
5583 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
5584
5585 // IntegerPartOfX <<= 23;
5586 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
5587 DAG.getShiftAmountConstant(23, MVT::i32, dl));
5588
5589 SDValue TwoToFractionalPartOfX;
5590 if (LimitFloatPrecision <= 6) {
5591 // For floating-point precision of 6:
5592 //
5593 // TwoToFractionalPartOfX =
5594 // 0.997535578f +
5595 // (0.735607626f + 0.252464424f * x) * x;
5596 //
5597 // error 0.0144103317, which is 6 bits
5598 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5599 getF32Constant(DAG, 0x3e814304, dl));
5600 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5601 getF32Constant(DAG, 0x3f3c50c8, dl));
5602 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5603 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5604 getF32Constant(DAG, 0x3f7f5e7e, dl));
5605 } else if (LimitFloatPrecision <= 12) {
5606 // For floating-point precision of 12:
5607 //
5608 // TwoToFractionalPartOfX =
5609 // 0.999892986f +
5610 // (0.696457318f +
5611 // (0.224338339f + 0.792043434e-1f * x) * x) * x;
5612 //
5613 // error 0.000107046256, which is 13 to 14 bits
5614 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5615 getF32Constant(DAG, 0x3da235e3, dl));
5616 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5617 getF32Constant(DAG, 0x3e65b8f3, dl));
5618 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5619 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5620 getF32Constant(DAG, 0x3f324b07, dl));
5621 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5622 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
5623 getF32Constant(DAG, 0x3f7ff8fd, dl));
5624 } else { // LimitFloatPrecision <= 18
5625 // For floating-point precision of 18:
5626 //
5627 // TwoToFractionalPartOfX =
5628 // 0.999999982f +
5629 // (0.693148872f +
5630 // (0.240227044f +
5631 // (0.554906021e-1f +
5632 // (0.961591928e-2f +
5633 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
5634 // error 2.47208000*10^(-7), which is better than 18 bits
5635 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5636 getF32Constant(DAG, 0x3924b03e, dl));
5637 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5638 getF32Constant(DAG, 0x3ab24b87, dl));
5639 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5640 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5641 getF32Constant(DAG, 0x3c1d8c17, dl));
5642 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5643 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
5644 getF32Constant(DAG, 0x3d634a1d, dl));
5645 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5646 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
5647 getF32Constant(DAG, 0x3e75fe14, dl));
5648 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
5649 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
5650 getF32Constant(DAG, 0x3f317234, dl));
5651 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
5652 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
5653 getF32Constant(DAG, 0x3f800000, dl));
5654 }
5655
5656 // Add the exponent into the result in integer domain.
5657 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX);
5658 return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
5659 DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX));
5660}
5661
5662/// expandExp - Lower an exp intrinsic. Handles the special sequences for
5663/// limited-precision mode.
5665 const TargetLowering &TLI, SDNodeFlags Flags) {
5666 if (Op.getValueType() == MVT::f32 &&
5668
5669 // Put the exponent in the right bit position for later addition to the
5670 // final result:
5671 //
5672 // t0 = Op * log2(e)
5673
5674 // TODO: What fast-math-flags should be set here?
5675 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
5676 DAG.getConstantFP(numbers::log2ef, dl, MVT::f32));
5677 return getLimitedPrecisionExp2(t0, dl, DAG);
5678 }
5679
5680 // No special expansion.
5681 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op, Flags);
5682}
5683
5684/// expandLog - Lower a log intrinsic. Handles the special sequences for
5685/// limited-precision mode.
5687 const TargetLowering &TLI, SDNodeFlags Flags) {
5688 // TODO: What fast-math-flags should be set on the floating-point nodes?
5689
5690 if (Op.getValueType() == MVT::f32 &&
5692 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5693
5694 // Scale the exponent by log(2).
5695 SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
5696 SDValue LogOfExponent =
5697 DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
5698 DAG.getConstantFP(numbers::ln2f, dl, MVT::f32));
5699
5700 // Get the significand and build it into a floating-point number with
5701 // exponent of 1.
5702 SDValue X = GetSignificand(DAG, Op1, dl);
5703
5704 SDValue LogOfMantissa;
5705 if (LimitFloatPrecision <= 6) {
5706 // For floating-point precision of 6:
5707 //
5708 // LogofMantissa =
5709 // -1.1609546f +
5710 // (1.4034025f - 0.23903021f * x) * x;
5711 //
5712 // error 0.0034276066, which is better than 8 bits
5713 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5714 getF32Constant(DAG, 0xbe74c456, dl));
5715 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5716 getF32Constant(DAG, 0x3fb3a2b1, dl));
5717 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5718 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5719 getF32Constant(DAG, 0x3f949a29, dl));
5720 } else if (LimitFloatPrecision <= 12) {
5721 // For floating-point precision of 12:
5722 //
5723 // LogOfMantissa =
5724 // -1.7417939f +
5725 // (2.8212026f +
5726 // (-1.4699568f +
5727 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
5728 //
5729 // error 0.000061011436, which is 14 bits
5730 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5731 getF32Constant(DAG, 0xbd67b6d6, dl));
5732 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5733 getF32Constant(DAG, 0x3ee4f4b8, dl));
5734 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5735 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5736 getF32Constant(DAG, 0x3fbc278b, dl));
5737 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5738 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5739 getF32Constant(DAG, 0x40348e95, dl));
5740 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5741 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5742 getF32Constant(DAG, 0x3fdef31a, dl));
5743 } else { // LimitFloatPrecision <= 18
5744 // For floating-point precision of 18:
5745 //
5746 // LogOfMantissa =
5747 // -2.1072184f +
5748 // (4.2372794f +
5749 // (-3.7029485f +
5750 // (2.2781945f +
5751 // (-0.87823314f +
5752 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
5753 //
5754 // error 0.0000023660568, which is better than 18 bits
5755 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5756 getF32Constant(DAG, 0xbc91e5ac, dl));
5757 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5758 getF32Constant(DAG, 0x3e4350aa, dl));
5759 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5760 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5761 getF32Constant(DAG, 0x3f60d3e3, dl));
5762 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5763 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5764 getF32Constant(DAG, 0x4011cdf0, dl));
5765 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5766 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5767 getF32Constant(DAG, 0x406cfd1c, dl));
5768 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5769 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
5770 getF32Constant(DAG, 0x408797cb, dl));
5771 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
5772 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
5773 getF32Constant(DAG, 0x4006dcab, dl));
5774 }
5775
5776 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa);
5777 }
5778
5779 // No special expansion.
5780 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op, Flags);
5781}
5782
5783/// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for
5784/// limited-precision mode.
5786 const TargetLowering &TLI, SDNodeFlags Flags) {
5787 // TODO: What fast-math-flags should be set on the floating-point nodes?
5788
5789 if (Op.getValueType() == MVT::f32 &&
5791 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5792
5793 // Get the exponent.
5794 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
5795
5796 // Get the significand and build it into a floating-point number with
5797 // exponent of 1.
5798 SDValue X = GetSignificand(DAG, Op1, dl);
5799
5800 // Different possible minimax approximations of significand in
5801 // floating-point for various degrees of accuracy over [1,2].
5802 SDValue Log2ofMantissa;
5803 if (LimitFloatPrecision <= 6) {
5804 // For floating-point precision of 6:
5805 //
5806 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
5807 //
5808 // error 0.0049451742, which is more than 7 bits
5809 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5810 getF32Constant(DAG, 0xbeb08fe0, dl));
5811 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5812 getF32Constant(DAG, 0x40019463, dl));
5813 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5814 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5815 getF32Constant(DAG, 0x3fd6633d, dl));
5816 } else if (LimitFloatPrecision <= 12) {
5817 // For floating-point precision of 12:
5818 //
5819 // Log2ofMantissa =
5820 // -2.51285454f +
5821 // (4.07009056f +
5822 // (-2.12067489f +
5823 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
5824 //
5825 // error 0.0000876136000, which is better than 13 bits
5826 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5827 getF32Constant(DAG, 0xbda7262e, dl));
5828 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5829 getF32Constant(DAG, 0x3f25280b, dl));
5830 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5831 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5832 getF32Constant(DAG, 0x4007b923, dl));
5833 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5834 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5835 getF32Constant(DAG, 0x40823e2f, dl));
5836 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5837 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5838 getF32Constant(DAG, 0x4020d29c, dl));
5839 } else { // LimitFloatPrecision <= 18
5840 // For floating-point precision of 18:
5841 //
5842 // Log2ofMantissa =
5843 // -3.0400495f +
5844 // (6.1129976f +
5845 // (-5.3420409f +
5846 // (3.2865683f +
5847 // (-1.2669343f +
5848 // (0.27515199f -
5849 // 0.25691327e-1f * x) * x) * x) * x) * x) * x;
5850 //
5851 // error 0.0000018516, which is better than 18 bits
5852 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5853 getF32Constant(DAG, 0xbcd2769e, dl));
5854 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5855 getF32Constant(DAG, 0x3e8ce0b9, dl));
5856 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5857 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5858 getF32Constant(DAG, 0x3fa22ae7, dl));
5859 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5860 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5861 getF32Constant(DAG, 0x40525723, dl));
5862 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5863 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5864 getF32Constant(DAG, 0x40aaf200, dl));
5865 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5866 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
5867 getF32Constant(DAG, 0x40c39dad, dl));
5868 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
5869 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
5870 getF32Constant(DAG, 0x4042902c, dl));
5871 }
5872
5873 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa);
5874 }
5875
5876 // No special expansion.
5877 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op, Flags);
5878}
5879
5880/// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for
5881/// limited-precision mode.
5883 const TargetLowering &TLI, SDNodeFlags Flags) {
5884 // TODO: What fast-math-flags should be set on the floating-point nodes?
5885
5886 if (Op.getValueType() == MVT::f32 &&
5888 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5889
5890 // Scale the exponent by log10(2) [0.30102999f].
5891 SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
5892 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
5893 getF32Constant(DAG, 0x3e9a209a, dl));
5894
5895 // Get the significand and build it into a floating-point number with
5896 // exponent of 1.
5897 SDValue X = GetSignificand(DAG, Op1, dl);
5898
5899 SDValue Log10ofMantissa;
5900 if (LimitFloatPrecision <= 6) {
5901 // For floating-point precision of 6:
5902 //
5903 // Log10ofMantissa =
5904 // -0.50419619f +
5905 // (0.60948995f - 0.10380950f * x) * x;
5906 //
5907 // error 0.0014886165, which is 6 bits
5908 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5909 getF32Constant(DAG, 0xbdd49a13, dl));
5910 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5911 getF32Constant(DAG, 0x3f1c0789, dl));
5912 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5913 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5914 getF32Constant(DAG, 0x3f011300, dl));
5915 } else if (LimitFloatPrecision <= 12) {
5916 // For floating-point precision of 12:
5917 //
5918 // Log10ofMantissa =
5919 // -0.64831180f +
5920 // (0.91751397f +
5921 // (-0.31664806f + 0.47637168e-1f * x) * x) * x;
5922 //
5923 // error 0.00019228036, which is better than 12 bits
5924 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5925 getF32Constant(DAG, 0x3d431f31, dl));
5926 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
5927 getF32Constant(DAG, 0x3ea21fb2, dl));
5928 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5929 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5930 getF32Constant(DAG, 0x3f6ae232, dl));
5931 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5932 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
5933 getF32Constant(DAG, 0x3f25f7c3, dl));
5934 } else { // LimitFloatPrecision <= 18
5935 // For floating-point precision of 18:
5936 //
5937 // Log10ofMantissa =
5938 // -0.84299375f +
5939 // (1.5327582f +
5940 // (-1.0688956f +
5941 // (0.49102474f +
5942 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
5943 //
5944 // error 0.0000037995730, which is better than 18 bits
5945 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5946 getF32Constant(DAG, 0x3c5d51ce, dl));
5947 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
5948 getF32Constant(DAG, 0x3e00685a, dl));
5949 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5950 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5951 getF32Constant(DAG, 0x3efb6798, dl));
5952 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5953 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
5954 getF32Constant(DAG, 0x3f88d192, dl));
5955 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5956 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
5957 getF32Constant(DAG, 0x3fc4316c, dl));
5958 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5959 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
5960 getF32Constant(DAG, 0x3f57ce70, dl));
5961 }
5962
5963 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa);
5964 }
5965
5966 // No special expansion.
5967 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op, Flags);
5968}
5969
5970/// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for
5971/// limited-precision mode.
5973 const TargetLowering &TLI, SDNodeFlags Flags) {
5974 if (Op.getValueType() == MVT::f32 &&
5976 return getLimitedPrecisionExp2(Op, dl, DAG);
5977
5978 // No special expansion.
5979 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op, Flags);
5980}
5981
5982/// visitPow - Lower a pow intrinsic. Handles the special sequences for
5983/// limited-precision mode with x == 10.0f.
5985 SelectionDAG &DAG, const TargetLowering &TLI,
5986 SDNodeFlags Flags) {
5987 bool IsExp10 = false;
5988 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 &&
5991 APFloat Ten(10.0f);
5992 IsExp10 = LHSC->isExactlyValue(Ten);
5993 }
5994 }
5995
5996 // TODO: What fast-math-flags should be set on the FMUL node?
5997 if (IsExp10) {
5998 // Put the exponent in the right bit position for later addition to the
5999 // final result:
6000 //
6001 // #define LOG2OF10 3.3219281f
6002 // t0 = Op * LOG2OF10;
6003 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS,
6004 getF32Constant(DAG, 0x40549a78, dl));
6005 return getLimitedPrecisionExp2(t0, dl, DAG);
6006 }
6007
6008 // No special expansion.
6009 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS, Flags);
6010}
6011
6012/// ExpandPowI - Expand a llvm.powi intrinsic.
6014 SelectionDAG &DAG) {
6015 // If RHS is a constant, we can expand this out to a multiplication tree if
6016 // it's beneficial on the target, otherwise we end up lowering to a call to
6017 // __powidf2 (for example).
6019 unsigned Val = RHSC->getSExtValue();
6020
6021 // powi(x, 0) -> 1.0
6022 if (Val == 0)
6023 return DAG.getConstantFP(1.0, DL, LHS.getValueType());
6024
6026 Val, DAG.shouldOptForSize())) {
6027 // Get the exponent as a positive value.
6028 if ((int)Val < 0)
6029 Val = -Val;
6030 // We use the simple binary decomposition method to generate the multiply
6031 // sequence. There are more optimal ways to do this (for example,
6032 // powi(x,15) generates one more multiply than it should), but this has
6033 // the benefit of being both really simple and much better than a libcall.
6034 SDValue Res; // Logically starts equal to 1.0
6035 SDValue CurSquare = LHS;
6036 // TODO: Intrinsics should have fast-math-flags that propagate to these
6037 // nodes.
6038 while (Val) {
6039 if (Val & 1) {
6040 if (Res.getNode())
6041 Res =
6042 DAG.getNode(ISD::FMUL, DL, Res.getValueType(), Res, CurSquare);
6043 else
6044 Res = CurSquare; // 1.0*CurSquare.
6045 }
6046
6047 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
6048 CurSquare, CurSquare);
6049 Val >>= 1;
6050 }
6051
6052 // If the original was negative, invert the result, producing 1/(x*x*x).
6053 if (RHSC->getSExtValue() < 0)
6054 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
6055 DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res);
6056 return Res;
6057 }
6058 }
6059
6060 // Otherwise, expand to a libcall.
6061 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
6062}
6063
6064static SDValue expandDivFix(unsigned Opcode, const SDLoc &DL,
6065 SDValue LHS, SDValue RHS, SDValue Scale,
6066 SelectionDAG &DAG, const TargetLowering &TLI) {
6067 EVT VT = LHS.getValueType();
6068 bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT;
6069 bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT;
6070 LLVMContext &Ctx = *DAG.getContext();
6071
6072 // If the type is legal but the operation isn't, this node might survive all
6073 // the way to operation legalization. If we end up there and we do not have
6074 // the ability to widen the type (if VT*2 is not legal), we cannot expand the
6075 // node.
6076
6077 // Coax the legalizer into expanding the node during type legalization instead
6078 // by bumping the size by one bit. This will force it to Promote, enabling the
6079 // early expansion and avoiding the need to expand later.
6080
6081 // We don't have to do this if Scale is 0; that can always be expanded, unless
6082 // it's a saturating signed operation. Those can experience true integer
6083 // division overflow, a case which we must avoid.
6084
6085 // FIXME: We wouldn't have to do this (or any of the early
6086 // expansion/promotion) if it was possible to expand a libcall of an
6087 // illegal type during operation legalization. But it's not, so things
6088 // get a bit hacky.
6089 unsigned ScaleInt = Scale->getAsZExtVal();
6090 if ((ScaleInt > 0 || (Saturating && Signed)) &&
6091 (TLI.isTypeLegal(VT) ||
6092 (VT.isVector() && TLI.isTypeLegal(VT.getVectorElementType())))) {
6094 Opcode, VT, ScaleInt);
6095 if (Action != TargetLowering::Legal && Action != TargetLowering::Custom) {
6096 EVT PromVT;
6097 if (VT.isScalarInteger())
6098 PromVT = EVT::getIntegerVT(Ctx, VT.getSizeInBits() + 1);
6099 else if (VT.isVector()) {
6100 PromVT = VT.getVectorElementType();
6101 PromVT = EVT::getIntegerVT(Ctx, PromVT.getSizeInBits() + 1);
6102 PromVT = EVT::getVectorVT(Ctx, PromVT, VT.getVectorElementCount());
6103 } else
6104 llvm_unreachable("Wrong VT for DIVFIX?");
6105 LHS = DAG.getExtOrTrunc(Signed, LHS, DL, PromVT);
6106 RHS = DAG.getExtOrTrunc(Signed, RHS, DL, PromVT);
6107 EVT ShiftTy = TLI.getShiftAmountTy(PromVT, DAG.getDataLayout());
6108 // For saturating operations, we need to shift up the LHS to get the
6109 // proper saturation width, and then shift down again afterwards.
6110 if (Saturating)
6111 LHS = DAG.getNode(ISD::SHL, DL, PromVT, LHS,
6112 DAG.getConstant(1, DL, ShiftTy));
6113 SDValue Res = DAG.getNode(Opcode, DL, PromVT, LHS, RHS, Scale);
6114 if (Saturating)
6115 Res = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, PromVT, Res,
6116 DAG.getConstant(1, DL, ShiftTy));
6117 return DAG.getZExtOrTrunc(Res, DL, VT);
6118 }
6119 }
6120
6121 return DAG.getNode(Opcode, DL, VT, LHS, RHS, Scale);
6122}
6123
6124// getUnderlyingArgRegs - Find underlying registers used for a truncated,
6125// bitcasted, or split argument. Returns a list of <Register, size in bits>
6126static void
6127getUnderlyingArgRegs(SmallVectorImpl<std::pair<Register, TypeSize>> &Regs,
6128 const SDValue &N) {
6129 switch (N.getOpcode()) {
6130 case ISD::CopyFromReg: {
6131 SDValue Op = N.getOperand(1);
6132 Regs.emplace_back(cast<RegisterSDNode>(Op)->getReg(),
6133 Op.getValueType().getSizeInBits());
6134 return;
6135 }
6136 case ISD::BITCAST:
6137 case ISD::AssertZext:
6138 case ISD::AssertSext:
6139 case ISD::TRUNCATE:
6140 getUnderlyingArgRegs(Regs, N.getOperand(0));
6141 return;
6142 case ISD::BUILD_PAIR:
6143 case ISD::BUILD_VECTOR:
6145 for (SDValue Op : N->op_values())
6146 getUnderlyingArgRegs(Regs, Op);
6147 return;
6148 default:
6149 return;
6150 }
6151}
6152
6153/// If the DbgValueInst is a dbg_value of a function argument, create the
6154/// corresponding DBG_VALUE machine instruction for it now. At the end of
6155/// instruction selection, they will be inserted to the entry BB.
6156/// We don't currently support this for variadic dbg_values, as they shouldn't
6157/// appear for function arguments or in the prologue.
6158bool SelectionDAGBuilder::EmitFuncArgumentDbgValue(
6159 const Value *V, DILocalVariable *Variable, DIExpression *Expr,
6160 DILocation *DL, FuncArgumentDbgValueKind Kind, const SDValue &N) {
6161 const Argument *Arg = dyn_cast<Argument>(V);
6162 if (!Arg)
6163 return false;
6164
6165 MachineFunction &MF = DAG.getMachineFunction();
6166 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
6167
6168 // Helper to create DBG_INSTR_REFs or DBG_VALUEs, depending on what kind
6169 // we've been asked to pursue.
6170 auto MakeVRegDbgValue = [&](Register Reg, DIExpression *FragExpr,
6171 bool Indirect) {
6172 if (Reg.isVirtual() && MF.useDebugInstrRef()) {
6173 // For VRegs, in instruction referencing mode, create a DBG_INSTR_REF
6174 // pointing at the VReg, which will be patched up later.
6175 auto &Inst = TII->get(TargetOpcode::DBG_INSTR_REF);
6177 /* Reg */ Reg, /* isDef */ false, /* isImp */ false,
6178 /* isKill */ false, /* isDead */ false,
6179 /* isUndef */ false, /* isEarlyClobber */ false,
6180 /* SubReg */ 0, /* isDebug */ true)});
6181
6182 auto *NewDIExpr = FragExpr;
6183 // We don't have an "Indirect" field in DBG_INSTR_REF, fold that into
6184 // the DIExpression.
6185 if (Indirect)
6186 NewDIExpr = DIExpression::prepend(FragExpr, DIExpression::DerefBefore);
6188 NewDIExpr = DIExpression::prependOpcodes(NewDIExpr, Ops);
6189 return BuildMI(MF, DL, Inst, false, MOs, Variable, NewDIExpr);
6190 } else {
6191 // Create a completely standard DBG_VALUE.
6192 auto &Inst = TII->get(TargetOpcode::DBG_VALUE);
6193 return BuildMI(MF, DL, Inst, Indirect, Reg, Variable, FragExpr);
6194 }
6195 };
6196
6197 if (Kind == FuncArgumentDbgValueKind::Value) {
6198 // ArgDbgValues are hoisted to the beginning of the entry block. So we
6199 // should only emit as ArgDbgValue if the dbg.value intrinsic is found in
6200 // the entry block.
6201 bool IsInEntryBlock = FuncInfo.MBB == &FuncInfo.MF->front();
6202 if (!IsInEntryBlock)
6203 return false;
6204
6205 // ArgDbgValues are hoisted to the beginning of the entry block. So we
6206 // should only emit as ArgDbgValue if the dbg.value intrinsic describes a
6207 // variable that also is a param.
6208 //
6209 // Although, if we are at the top of the entry block already, we can still
6210 // emit using ArgDbgValue. This might catch some situations when the
6211 // dbg.value refers to an argument that isn't used in the entry block, so
6212 // any CopyToReg node would be optimized out and the only way to express
6213 // this DBG_VALUE is by using the physical reg (or FI) as done in this
6214 // method. ArgDbgValues are hoisted to the beginning of the entry block. So
6215 // we should only emit as ArgDbgValue if the Variable is an argument to the
6216 // current function, and the dbg.value intrinsic is found in the entry
6217 // block.
6218 bool VariableIsFunctionInputArg = Variable->isParameter() &&
6219 !DL->getInlinedAt();
6220 bool IsInPrologue = SDNodeOrder == LowestSDNodeOrder;
6221 if (!IsInPrologue && !VariableIsFunctionInputArg)
6222 return false;
6223
6224 // Here we assume that a function argument on IR level only can be used to
6225 // describe one input parameter on source level. If we for example have
6226 // source code like this
6227 //
6228 // struct A { long x, y; };
6229 // void foo(struct A a, long b) {
6230 // ...
6231 // b = a.x;
6232 // ...
6233 // }
6234 //
6235 // and IR like this
6236 //
6237 // define void @foo(i32 %a1, i32 %a2, i32 %b) {
6238 // entry:
6239 // call void @llvm.dbg.value(metadata i32 %a1, "a", DW_OP_LLVM_fragment
6240 // call void @llvm.dbg.value(metadata i32 %a2, "a", DW_OP_LLVM_fragment
6241 // call void @llvm.dbg.value(metadata i32 %b, "b",
6242 // ...
6243 // call void @llvm.dbg.value(metadata i32 %a1, "b"
6244 // ...
6245 //
6246 // then the last dbg.value is describing a parameter "b" using a value that
6247 // is an argument. But since we already has used %a1 to describe a parameter
6248 // we should not handle that last dbg.value here (that would result in an
6249 // incorrect hoisting of the DBG_VALUE to the function entry).
6250 // Notice that we allow one dbg.value per IR level argument, to accommodate
6251 // for the situation with fragments above.
6252 // If there is no node for the value being handled, we return true to skip
6253 // the normal generation of debug info, as it would kill existing debug
6254 // info for the parameter in case of duplicates.
6255 if (VariableIsFunctionInputArg) {
6256 unsigned ArgNo = Arg->getArgNo();
6257 if (ArgNo >= FuncInfo.DescribedArgs.size())
6258 FuncInfo.DescribedArgs.resize(ArgNo + 1, false);
6259 else if (!IsInPrologue && FuncInfo.DescribedArgs.test(ArgNo))
6260 return !NodeMap[V].getNode();
6261 FuncInfo.DescribedArgs.set(ArgNo);
6262 }
6263 }
6264
6265 bool IsIndirect = false;
6266 std::optional<MachineOperand> Op;
6267 // Some arguments' frame index is recorded during argument lowering.
6268 int FI = FuncInfo.getArgumentFrameIndex(Arg);
6269 if (FI != std::numeric_limits<int>::max())
6271
6273 if (!Op && N.getNode()) {
6274 getUnderlyingArgRegs(ArgRegsAndSizes, N);
6275 Register Reg;
6276 if (ArgRegsAndSizes.size() == 1)
6277 Reg = ArgRegsAndSizes.front().first;
6278
6279 if (Reg && Reg.isVirtual()) {
6280 MachineRegisterInfo &RegInfo = MF.getRegInfo();
6281 Register PR = RegInfo.getLiveInPhysReg(Reg);
6282 if (PR)
6283 Reg = PR;
6284 }
6285 if (Reg) {
6287 IsIndirect = Kind != FuncArgumentDbgValueKind::Value;
6288 }
6289 }
6290
6291 if (!Op && N.getNode()) {
6292 // Check if frame index is available.
6293 SDValue LCandidate = peekThroughBitcasts(N);
6294 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(LCandidate.getNode()))
6295 if (FrameIndexSDNode *FINode =
6296 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
6297 Op = MachineOperand::CreateFI(FINode->getIndex());
6298 }
6299
6300 if (!Op) {
6301 // Create a DBG_VALUE for each decomposed value in ArgRegs to cover Reg
6302 auto splitMultiRegDbgValue =
6303 [&](ArrayRef<std::pair<Register, TypeSize>> SplitRegs) -> bool {
6304 unsigned Offset = 0;
6305 for (const auto &[Reg, RegSizeInBits] : SplitRegs) {
6306 // FIXME: Scalable sizes are not supported in fragment expressions.
6307 if (RegSizeInBits.isScalable())
6308 return false;
6309
6310 // If the expression is already a fragment, the current register
6311 // offset+size might extend beyond the fragment. In this case, only
6312 // the register bits that are inside the fragment are relevant.
6313 int RegFragmentSizeInBits = RegSizeInBits.getFixedValue();
6314 if (auto ExprFragmentInfo = Expr->getFragmentInfo()) {
6315 uint64_t ExprFragmentSizeInBits = ExprFragmentInfo->SizeInBits;
6316 // The register is entirely outside the expression fragment,
6317 // so is irrelevant for debug info.
6318 if (Offset >= ExprFragmentSizeInBits)
6319 break;
6320 // The register is partially outside the expression fragment, only
6321 // the low bits within the fragment are relevant for debug info.
6322 if (Offset + RegFragmentSizeInBits > ExprFragmentSizeInBits) {
6323 RegFragmentSizeInBits = ExprFragmentSizeInBits - Offset;
6324 }
6325 }
6326
6327 auto FragmentExpr = DIExpression::createFragmentExpression(
6328 Expr, Offset, RegFragmentSizeInBits);
6329 Offset += RegSizeInBits.getFixedValue();
6330 // If a valid fragment expression cannot be created, the variable's
6331 // correct value cannot be determined and so it is set as poison.
6332 if (!FragmentExpr) {
6333 SDDbgValue *SDV = DAG.getConstantDbgValue(
6334 Variable, Expr, PoisonValue::get(V->getType()), DL, SDNodeOrder);
6335 DAG.AddDbgValue(SDV, false);
6336 continue;
6337 }
6338 MachineInstr *NewMI = MakeVRegDbgValue(
6339 Reg, *FragmentExpr, Kind != FuncArgumentDbgValueKind::Value);
6340 FuncInfo.ArgDbgValues.push_back(NewMI);
6341 }
6342
6343 return true;
6344 };
6345
6346 // Check if ValueMap has reg number.
6348 VMI = FuncInfo.ValueMap.find(V);
6349 if (VMI != FuncInfo.ValueMap.end()) {
6350 const auto &TLI = DAG.getTargetLoweringInfo();
6351 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second,
6352 V->getType(), std::nullopt);
6353 if (RFV.occupiesMultipleRegs())
6354 return splitMultiRegDbgValue(RFV.getRegsAndSizes());
6355
6356 Op = MachineOperand::CreateReg(VMI->second, false);
6357 IsIndirect = Kind != FuncArgumentDbgValueKind::Value;
6358 } else if (ArgRegsAndSizes.size() > 1) {
6359 // This was split due to the calling convention, and no virtual register
6360 // mapping exists for the value.
6361 return splitMultiRegDbgValue(ArgRegsAndSizes);
6362 }
6363 }
6364
6365 if (!Op)
6366 return false;
6367
6368 assert(Variable->isValidLocationForIntrinsic(DL) &&
6369 "Expected inlined-at fields to agree");
6370 MachineInstr *NewMI = nullptr;
6371
6372 if (Op->isReg())
6373 NewMI = MakeVRegDbgValue(Op->getReg(), Expr, IsIndirect);
6374 else
6375 NewMI = BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), true, *Op,
6376 Variable, Expr);
6377
6378 // Otherwise, use ArgDbgValues.
6379 FuncInfo.ArgDbgValues.push_back(NewMI);
6380 return true;
6381}
6382
6383/// Return the appropriate SDDbgValue based on N.
6384SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N,
6385 DILocalVariable *Variable,
6386 DIExpression *Expr,
6387 const DebugLoc &dl,
6388 unsigned DbgSDNodeOrder) {
6389 if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) {
6390 // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe
6391 // stack slot locations.
6392 //
6393 // Consider "int x = 0; int *px = &x;". There are two kinds of interesting
6394 // debug values here after optimization:
6395 //
6396 // dbg.value(i32* %px, !"int *px", !DIExpression()), and
6397 // dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref))
6398 //
6399 // Both describe the direct values of their associated variables.
6400 return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(),
6401 /*IsIndirect*/ false, dl, DbgSDNodeOrder);
6402 }
6403 return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(),
6404 /*IsIndirect*/ false, dl, DbgSDNodeOrder);
6405}
6406
6407static unsigned FixedPointIntrinsicToOpcode(unsigned Intrinsic) {
6408 switch (Intrinsic) {
6409 case Intrinsic::smul_fix:
6410 return ISD::SMULFIX;
6411 case Intrinsic::umul_fix:
6412 return ISD::UMULFIX;
6413 case Intrinsic::smul_fix_sat:
6414 return ISD::SMULFIXSAT;
6415 case Intrinsic::umul_fix_sat:
6416 return ISD::UMULFIXSAT;
6417 case Intrinsic::sdiv_fix:
6418 return ISD::SDIVFIX;
6419 case Intrinsic::udiv_fix:
6420 return ISD::UDIVFIX;
6421 case Intrinsic::sdiv_fix_sat:
6422 return ISD::SDIVFIXSAT;
6423 case Intrinsic::udiv_fix_sat:
6424 return ISD::UDIVFIXSAT;
6425 default:
6426 llvm_unreachable("Unhandled fixed point intrinsic");
6427 }
6428}
6429
6430/// Given a @llvm.call.preallocated.setup, return the corresponding
6431/// preallocated call.
6432static const CallBase *FindPreallocatedCall(const Value *PreallocatedSetup) {
6433 assert(cast<CallBase>(PreallocatedSetup)
6435 ->getIntrinsicID() == Intrinsic::call_preallocated_setup &&
6436 "expected call_preallocated_setup Value");
6437 for (const auto *U : PreallocatedSetup->users()) {
6438 auto *UseCall = cast<CallBase>(U);
6439 const Function *Fn = UseCall->getCalledFunction();
6440 if (!Fn || Fn->getIntrinsicID() != Intrinsic::call_preallocated_arg) {
6441 return UseCall;
6442 }
6443 }
6444 llvm_unreachable("expected corresponding call to preallocated setup/arg");
6445}
6446
6447/// If DI is a debug value with an EntryValue expression, lower it using the
6448/// corresponding physical register of the associated Argument value
6449/// (guaranteed to exist by the verifier).
6450bool SelectionDAGBuilder::visitEntryValueDbgValue(
6451 ArrayRef<const Value *> Values, DILocalVariable *Variable,
6452 DIExpression *Expr, DebugLoc DbgLoc) {
6453 if (!Expr->isEntryValue() || !hasSingleElement(Values))
6454 return false;
6455
6456 // These properties are guaranteed by the verifier.
6457 const Argument *Arg = cast<Argument>(Values[0]);
6458 assert(Arg->hasAttribute(Attribute::AttrKind::SwiftAsync));
6459
6460 auto ArgIt = FuncInfo.ValueMap.find(Arg);
6461 if (ArgIt == FuncInfo.ValueMap.end()) {
6462 LLVM_DEBUG(
6463 dbgs() << "Dropping dbg.value: expression is entry_value but "
6464 "couldn't find an associated register for the Argument\n");
6465 return true;
6466 }
6467 Register ArgVReg = ArgIt->getSecond();
6468
6469 for (auto [PhysReg, VirtReg] : FuncInfo.RegInfo->liveins())
6470 if (ArgVReg == VirtReg || ArgVReg == PhysReg) {
6471 SDDbgValue *SDV = DAG.getVRegDbgValue(
6472 Variable, Expr, PhysReg, false /*IsIndidrect*/, DbgLoc, SDNodeOrder);
6473 DAG.AddDbgValue(SDV, false /*treat as dbg.declare byval parameter*/);
6474 return true;
6475 }
6476 LLVM_DEBUG(dbgs() << "Dropping dbg.value: expression is entry_value but "
6477 "couldn't find a physical register\n");
6478 return true;
6479}
6480
6481/// Lower the call to the specified intrinsic function.
6482void SelectionDAGBuilder::visitConvergenceControl(const CallInst &I,
6483 unsigned Intrinsic) {
6484 SDLoc sdl = getCurSDLoc();
6485 switch (Intrinsic) {
6486 case Intrinsic::experimental_convergence_anchor:
6487 setValue(&I, DAG.getNode(ISD::CONVERGENCECTRL_ANCHOR, sdl, MVT::Untyped));
6488 break;
6489 case Intrinsic::experimental_convergence_entry:
6490 setValue(&I, DAG.getNode(ISD::CONVERGENCECTRL_ENTRY, sdl, MVT::Untyped));
6491 break;
6492 case Intrinsic::experimental_convergence_loop: {
6493 auto Bundle = I.getOperandBundle(LLVMContext::OB_convergencectrl);
6494 auto *Token = Bundle->Inputs[0].get();
6495 setValue(&I, DAG.getNode(ISD::CONVERGENCECTRL_LOOP, sdl, MVT::Untyped,
6496 getValue(Token)));
6497 break;
6498 }
6499 }
6500}
6501
6502void SelectionDAGBuilder::visitVectorHistogram(const CallInst &I,
6503 unsigned IntrinsicID) {
6504 // For now, we're only lowering an 'add' histogram.
6505 // We can add others later, e.g. saturating adds, min/max.
6506 assert(IntrinsicID == Intrinsic::experimental_vector_histogram_add &&
6507 "Tried to lower unsupported histogram type");
6508 SDLoc sdl = getCurSDLoc();
6509 Value *Ptr = I.getOperand(0);
6510 SDValue Inc = getValue(I.getOperand(1));
6511 SDValue Mask = getValue(I.getOperand(2));
6512
6513 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6514 DataLayout TargetDL = DAG.getDataLayout();
6515 EVT VT = Inc.getValueType();
6516 Align Alignment = DAG.getEVTAlign(VT);
6517
6518 const MDNode *Ranges = getRangeMetadata(I);
6519
6520 SDValue Root = DAG.getRoot();
6521 SDValue Base;
6522 SDValue Index;
6523 SDValue Scale;
6524 bool UniformBase = getUniformBase(Ptr, Base, Index, Scale, this,
6525 I.getParent(), VT.getScalarStoreSize());
6526
6527 unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace();
6528
6529 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
6530 MachinePointerInfo(AS),
6532 MemoryLocation::UnknownSize, Alignment, I.getAAMetadata(), Ranges);
6533
6534 if (!UniformBase) {
6535 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
6536 Index = getValue(Ptr);
6537 Scale =
6538 DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
6539 }
6540
6541 EVT IdxVT = Index.getValueType();
6542 EVT EltTy = IdxVT.getVectorElementType();
6543 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
6544 EVT NewIdxVT = IdxVT.changeVectorElementType(*DAG.getContext(), EltTy);
6545 Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index);
6546 }
6547
6548 SDValue ID = DAG.getTargetConstant(IntrinsicID, sdl, MVT::i32);
6549
6550 SDValue Ops[] = {Root, Inc, Mask, Base, Index, Scale, ID};
6551 SDValue Histogram = DAG.getMaskedHistogram(DAG.getVTList(MVT::Other), VT, sdl,
6552 Ops, MMO, ISD::SIGNED_SCALED);
6553
6554 setValue(&I, Histogram);
6555 DAG.setRoot(Histogram);
6556}
6557
6558void SelectionDAGBuilder::visitVectorExtractLastActive(const CallInst &I,
6559 unsigned Intrinsic) {
6560 assert(Intrinsic == Intrinsic::experimental_vector_extract_last_active &&
6561 "Tried lowering invalid vector extract last");
6562 SDLoc sdl = getCurSDLoc();
6563 const DataLayout &Layout = DAG.getDataLayout();
6564 SDValue Data = getValue(I.getOperand(0));
6565 SDValue Mask = getValue(I.getOperand(1));
6566
6567 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6568 EVT ResVT = TLI.getValueType(Layout, I.getType());
6569
6570 EVT ExtVT = TLI.getVectorIdxTy(Layout);
6571 SDValue Idx = DAG.getNode(ISD::VECTOR_FIND_LAST_ACTIVE, sdl, ExtVT, Mask);
6572 SDValue Result = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, sdl, ResVT, Data, Idx);
6573
6574 Value *Default = I.getOperand(2);
6576 SDValue PassThru = getValue(Default);
6577 EVT BoolVT = Mask.getValueType().getScalarType();
6578 SDValue AnyActive = DAG.getNode(ISD::VECREDUCE_OR, sdl, BoolVT, Mask);
6579 Result = DAG.getSelect(sdl, ResVT, AnyActive, Result, PassThru);
6580 }
6581
6582 setValue(&I, Result);
6583}
6584
6585/// Lower the call to the specified intrinsic function.
6586void SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I,
6587 unsigned Intrinsic) {
6588 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6589 SDLoc sdl = getCurSDLoc();
6590 DebugLoc dl = getCurDebugLoc();
6591 SDValue Res;
6592
6593 SDNodeFlags Flags;
6594 if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
6595 Flags.copyFMF(*FPOp);
6596
6597 switch (Intrinsic) {
6598 default:
6599 // By default, turn this into a target intrinsic node.
6600 visitTargetIntrinsic(I, Intrinsic);
6601 return;
6602 case Intrinsic::vscale: {
6603 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6604 setValue(&I, DAG.getVScale(sdl, VT, APInt(VT.getSizeInBits(), 1)));
6605 return;
6606 }
6607 case Intrinsic::vastart: visitVAStart(I); return;
6608 case Intrinsic::vaend: visitVAEnd(I); return;
6609 case Intrinsic::vacopy: visitVACopy(I); return;
6610 case Intrinsic::returnaddress:
6611 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl,
6612 TLI.getValueType(DAG.getDataLayout(), I.getType()),
6613 getValue(I.getArgOperand(0))));
6614 return;
6615 case Intrinsic::addressofreturnaddress:
6616 setValue(&I,
6617 DAG.getNode(ISD::ADDROFRETURNADDR, sdl,
6618 TLI.getValueType(DAG.getDataLayout(), I.getType())));
6619 return;
6620 case Intrinsic::sponentry:
6621 setValue(&I,
6622 DAG.getNode(ISD::SPONENTRY, sdl,
6623 TLI.getValueType(DAG.getDataLayout(), I.getType())));
6624 return;
6625 case Intrinsic::frameaddress:
6626 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl,
6627 TLI.getFrameIndexTy(DAG.getDataLayout()),
6628 getValue(I.getArgOperand(0))));
6629 return;
6630 case Intrinsic::read_volatile_register:
6631 case Intrinsic::read_register: {
6632 Value *Reg = I.getArgOperand(0);
6633 SDValue Chain = getRoot();
6635 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
6636 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6637 Res = DAG.getNode(ISD::READ_REGISTER, sdl,
6638 DAG.getVTList(VT, MVT::Other), Chain, RegName);
6639 setValue(&I, Res);
6640 DAG.setRoot(Res.getValue(1));
6641 return;
6642 }
6643 case Intrinsic::write_register: {
6644 Value *Reg = I.getArgOperand(0);
6645 Value *RegValue = I.getArgOperand(1);
6646 SDValue Chain = getRoot();
6648 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
6649 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain,
6650 RegName, getValue(RegValue)));
6651 return;
6652 }
6653 case Intrinsic::memcpy:
6654 case Intrinsic::memcpy_inline: {
6655 const auto &MCI = cast<MemCpyInst>(I);
6656 SDValue Dst = getValue(I.getArgOperand(0));
6657 SDValue Src = getValue(I.getArgOperand(1));
6658 SDValue Size = getValue(I.getArgOperand(2));
6659 assert((!MCI.isForceInlined() || isa<ConstantSDNode>(Size)) &&
6660 "memcpy_inline needs constant size");
6661 // @llvm.memcpy.inline defines 0 and 1 to both mean no alignment.
6662 Align DstAlign = MCI.getDestAlign().valueOrOne();
6663 Align SrcAlign = MCI.getSourceAlign().valueOrOne();
6664 Align Alignment = std::min(DstAlign, SrcAlign);
6665 bool isVol = MCI.isVolatile();
6666 // FIXME: Support passing different dest/src alignments to the memcpy DAG
6667 // node.
6668 SDValue Root = isVol ? getRoot() : getMemoryRoot();
6669 SDValue MC = DAG.getMemcpy(Root, sdl, Dst, Src, Size, Alignment, isVol,
6670 MCI.isForceInlined(), &I, std::nullopt,
6671 MachinePointerInfo(I.getArgOperand(0)),
6672 MachinePointerInfo(I.getArgOperand(1)),
6673 I.getAAMetadata(), BatchAA);
6674 updateDAGForMaybeTailCall(MC);
6675 return;
6676 }
6677 case Intrinsic::memset:
6678 case Intrinsic::memset_inline: {
6679 const auto &MSII = cast<MemSetInst>(I);
6680 SDValue Dst = getValue(I.getArgOperand(0));
6681 SDValue Value = getValue(I.getArgOperand(1));
6682 SDValue Size = getValue(I.getArgOperand(2));
6683 assert((!MSII.isForceInlined() || isa<ConstantSDNode>(Size)) &&
6684 "memset_inline needs constant size");
6685 // @llvm.memset defines 0 and 1 to both mean no alignment.
6686 Align DstAlign = MSII.getDestAlign().valueOrOne();
6687 bool isVol = MSII.isVolatile();
6688 SDValue Root = isVol ? getRoot() : getMemoryRoot();
6689 SDValue MC = DAG.getMemset(
6690 Root, sdl, Dst, Value, Size, DstAlign, isVol, MSII.isForceInlined(),
6691 &I, MachinePointerInfo(I.getArgOperand(0)), I.getAAMetadata());
6692 updateDAGForMaybeTailCall(MC);
6693 return;
6694 }
6695 case Intrinsic::memmove: {
6696 const auto &MMI = cast<MemMoveInst>(I);
6697 SDValue Op1 = getValue(I.getArgOperand(0));
6698 SDValue Op2 = getValue(I.getArgOperand(1));
6699 SDValue Op3 = getValue(I.getArgOperand(2));
6700 // @llvm.memmove defines 0 and 1 to both mean no alignment.
6701 Align DstAlign = MMI.getDestAlign().valueOrOne();
6702 Align SrcAlign = MMI.getSourceAlign().valueOrOne();
6703 Align Alignment = std::min(DstAlign, SrcAlign);
6704 bool isVol = MMI.isVolatile();
6705 // FIXME: Support passing different dest/src alignments to the memmove DAG
6706 // node.
6707 SDValue Root = isVol ? getRoot() : getMemoryRoot();
6708 SDValue MM = DAG.getMemmove(Root, sdl, Op1, Op2, Op3, Alignment, isVol, &I,
6709 /* OverrideTailCall */ std::nullopt,
6710 MachinePointerInfo(I.getArgOperand(0)),
6711 MachinePointerInfo(I.getArgOperand(1)),
6712 I.getAAMetadata(), BatchAA);
6713 updateDAGForMaybeTailCall(MM);
6714 return;
6715 }
6716 case Intrinsic::memcpy_element_unordered_atomic: {
6717 auto &MI = cast<AnyMemCpyInst>(I);
6718 SDValue Dst = getValue(MI.getRawDest());
6719 SDValue Src = getValue(MI.getRawSource());
6720 SDValue Length = getValue(MI.getLength());
6721
6722 Type *LengthTy = MI.getLength()->getType();
6723 unsigned ElemSz = MI.getElementSizeInBytes();
6724 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
6725 SDValue MC =
6726 DAG.getAtomicMemcpy(getRoot(), sdl, Dst, Src, Length, LengthTy, ElemSz,
6727 isTC, MachinePointerInfo(MI.getRawDest()),
6728 MachinePointerInfo(MI.getRawSource()));
6729 updateDAGForMaybeTailCall(MC);
6730 return;
6731 }
6732 case Intrinsic::memmove_element_unordered_atomic: {
6733 auto &MI = cast<AnyMemMoveInst>(I);
6734 SDValue Dst = getValue(MI.getRawDest());
6735 SDValue Src = getValue(MI.getRawSource());
6736 SDValue Length = getValue(MI.getLength());
6737
6738 Type *LengthTy = MI.getLength()->getType();
6739 unsigned ElemSz = MI.getElementSizeInBytes();
6740 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
6741 SDValue MC =
6742 DAG.getAtomicMemmove(getRoot(), sdl, Dst, Src, Length, LengthTy, ElemSz,
6743 isTC, MachinePointerInfo(MI.getRawDest()),
6744 MachinePointerInfo(MI.getRawSource()));
6745 updateDAGForMaybeTailCall(MC);
6746 return;
6747 }
6748 case Intrinsic::memset_element_unordered_atomic: {
6749 auto &MI = cast<AnyMemSetInst>(I);
6750 SDValue Dst = getValue(MI.getRawDest());
6751 SDValue Val = getValue(MI.getValue());
6752 SDValue Length = getValue(MI.getLength());
6753
6754 Type *LengthTy = MI.getLength()->getType();
6755 unsigned ElemSz = MI.getElementSizeInBytes();
6756 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
6757 SDValue MC =
6758 DAG.getAtomicMemset(getRoot(), sdl, Dst, Val, Length, LengthTy, ElemSz,
6759 isTC, MachinePointerInfo(MI.getRawDest()));
6760 updateDAGForMaybeTailCall(MC);
6761 return;
6762 }
6763 case Intrinsic::call_preallocated_setup: {
6764 const CallBase *PreallocatedCall = FindPreallocatedCall(&I);
6765 SDValue SrcValue = DAG.getSrcValue(PreallocatedCall);
6766 SDValue Res = DAG.getNode(ISD::PREALLOCATED_SETUP, sdl, MVT::Other,
6767 getRoot(), SrcValue);
6768 setValue(&I, Res);
6769 DAG.setRoot(Res);
6770 return;
6771 }
6772 case Intrinsic::call_preallocated_arg: {
6773 const CallBase *PreallocatedCall = FindPreallocatedCall(I.getOperand(0));
6774 SDValue SrcValue = DAG.getSrcValue(PreallocatedCall);
6775 SDValue Ops[3];
6776 Ops[0] = getRoot();
6777 Ops[1] = SrcValue;
6778 Ops[2] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(1)), sdl,
6779 MVT::i32); // arg index
6780 SDValue Res = DAG.getNode(
6782 DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Ops);
6783 setValue(&I, Res);
6784 DAG.setRoot(Res.getValue(1));
6785 return;
6786 }
6787
6788 case Intrinsic::eh_typeid_for: {
6789 // Find the type id for the given typeinfo.
6790 GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0));
6791 unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV);
6792 Res = DAG.getConstant(TypeID, sdl, MVT::i32);
6793 setValue(&I, Res);
6794 return;
6795 }
6796
6797 case Intrinsic::eh_return_i32:
6798 case Intrinsic::eh_return_i64:
6799 DAG.getMachineFunction().setCallsEHReturn(true);
6800 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl,
6801 MVT::Other,
6803 getValue(I.getArgOperand(0)),
6804 getValue(I.getArgOperand(1))));
6805 return;
6806 case Intrinsic::eh_unwind_init:
6807 DAG.getMachineFunction().setCallsUnwindInit(true);
6808 return;
6809 case Intrinsic::eh_dwarf_cfa:
6810 setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl,
6811 TLI.getPointerTy(DAG.getDataLayout()),
6812 getValue(I.getArgOperand(0))));
6813 return;
6814 case Intrinsic::eh_sjlj_callsite: {
6815 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(0));
6816 assert(FuncInfo.getCurrentCallSite() == 0 && "Overlapping call sites!");
6817
6818 FuncInfo.setCurrentCallSite(CI->getZExtValue());
6819 return;
6820 }
6821 case Intrinsic::eh_sjlj_functioncontext: {
6822 // Get and store the index of the function context.
6823 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
6824 AllocaInst *FnCtx =
6825 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts());
6826 int FI = FuncInfo.StaticAllocaMap[FnCtx];
6828 return;
6829 }
6830 case Intrinsic::eh_sjlj_setjmp: {
6831 SDValue Ops[2];
6832 Ops[0] = getRoot();
6833 Ops[1] = getValue(I.getArgOperand(0));
6834 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl,
6835 DAG.getVTList(MVT::i32, MVT::Other), Ops);
6836 setValue(&I, Op.getValue(0));
6837 DAG.setRoot(Op.getValue(1));
6838 return;
6839 }
6840 case Intrinsic::eh_sjlj_longjmp:
6841 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other,
6842 getRoot(), getValue(I.getArgOperand(0))));
6843 return;
6844 case Intrinsic::eh_sjlj_setup_dispatch:
6845 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other,
6846 getRoot()));
6847 return;
6848 case Intrinsic::masked_gather:
6849 visitMaskedGather(I);
6850 return;
6851 case Intrinsic::masked_load:
6852 visitMaskedLoad(I);
6853 return;
6854 case Intrinsic::masked_scatter:
6855 visitMaskedScatter(I);
6856 return;
6857 case Intrinsic::masked_store:
6858 visitMaskedStore(I);
6859 return;
6860 case Intrinsic::masked_expandload:
6861 visitMaskedLoad(I, true /* IsExpanding */);
6862 return;
6863 case Intrinsic::masked_compressstore:
6864 visitMaskedStore(I, true /* IsCompressing */);
6865 return;
6866 case Intrinsic::powi:
6867 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)),
6868 getValue(I.getArgOperand(1)), DAG));
6869 return;
6870 case Intrinsic::log:
6871 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6872 return;
6873 case Intrinsic::log2:
6874 setValue(&I,
6875 expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6876 return;
6877 case Intrinsic::log10:
6878 setValue(&I,
6879 expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6880 return;
6881 case Intrinsic::exp:
6882 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6883 return;
6884 case Intrinsic::exp2:
6885 setValue(&I,
6886 expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6887 return;
6888 case Intrinsic::pow:
6889 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)),
6890 getValue(I.getArgOperand(1)), DAG, TLI, Flags));
6891 return;
6892 case Intrinsic::sqrt:
6893 case Intrinsic::fabs:
6894 case Intrinsic::sin:
6895 case Intrinsic::cos:
6896 case Intrinsic::tan:
6897 case Intrinsic::asin:
6898 case Intrinsic::acos:
6899 case Intrinsic::atan:
6900 case Intrinsic::sinh:
6901 case Intrinsic::cosh:
6902 case Intrinsic::tanh:
6903 case Intrinsic::exp10:
6904 case Intrinsic::floor:
6905 case Intrinsic::ceil:
6906 case Intrinsic::trunc:
6907 case Intrinsic::rint:
6908 case Intrinsic::nearbyint:
6909 case Intrinsic::round:
6910 case Intrinsic::roundeven:
6911 case Intrinsic::canonicalize: {
6912 unsigned Opcode;
6913 // clang-format off
6914 switch (Intrinsic) {
6915 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here.
6916 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break;
6917 case Intrinsic::fabs: Opcode = ISD::FABS; break;
6918 case Intrinsic::sin: Opcode = ISD::FSIN; break;
6919 case Intrinsic::cos: Opcode = ISD::FCOS; break;
6920 case Intrinsic::tan: Opcode = ISD::FTAN; break;
6921 case Intrinsic::asin: Opcode = ISD::FASIN; break;
6922 case Intrinsic::acos: Opcode = ISD::FACOS; break;
6923 case Intrinsic::atan: Opcode = ISD::FATAN; break;
6924 case Intrinsic::sinh: Opcode = ISD::FSINH; break;
6925 case Intrinsic::cosh: Opcode = ISD::FCOSH; break;
6926 case Intrinsic::tanh: Opcode = ISD::FTANH; break;
6927 case Intrinsic::exp10: Opcode = ISD::FEXP10; break;
6928 case Intrinsic::floor: Opcode = ISD::FFLOOR; break;
6929 case Intrinsic::ceil: Opcode = ISD::FCEIL; break;
6930 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break;
6931 case Intrinsic::rint: Opcode = ISD::FRINT; break;
6932 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break;
6933 case Intrinsic::round: Opcode = ISD::FROUND; break;
6934 case Intrinsic::roundeven: Opcode = ISD::FROUNDEVEN; break;
6935 case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break;
6936 }
6937 // clang-format on
6938
6939 setValue(&I, DAG.getNode(Opcode, sdl,
6940 getValue(I.getArgOperand(0)).getValueType(),
6941 getValue(I.getArgOperand(0)), Flags));
6942 return;
6943 }
6944 case Intrinsic::atan2:
6945 setValue(&I, DAG.getNode(ISD::FATAN2, sdl,
6946 getValue(I.getArgOperand(0)).getValueType(),
6947 getValue(I.getArgOperand(0)),
6948 getValue(I.getArgOperand(1)), Flags));
6949 return;
6950 case Intrinsic::lround:
6951 case Intrinsic::llround:
6952 case Intrinsic::lrint:
6953 case Intrinsic::llrint: {
6954 unsigned Opcode;
6955 // clang-format off
6956 switch (Intrinsic) {
6957 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here.
6958 case Intrinsic::lround: Opcode = ISD::LROUND; break;
6959 case Intrinsic::llround: Opcode = ISD::LLROUND; break;
6960 case Intrinsic::lrint: Opcode = ISD::LRINT; break;
6961 case Intrinsic::llrint: Opcode = ISD::LLRINT; break;
6962 }
6963 // clang-format on
6964
6965 EVT RetVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6966 setValue(&I, DAG.getNode(Opcode, sdl, RetVT,
6967 getValue(I.getArgOperand(0))));
6968 return;
6969 }
6970 case Intrinsic::minnum:
6971 setValue(&I, DAG.getNode(ISD::FMINNUM, sdl,
6972 getValue(I.getArgOperand(0)).getValueType(),
6973 getValue(I.getArgOperand(0)),
6974 getValue(I.getArgOperand(1)), Flags));
6975 return;
6976 case Intrinsic::maxnum:
6977 setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl,
6978 getValue(I.getArgOperand(0)).getValueType(),
6979 getValue(I.getArgOperand(0)),
6980 getValue(I.getArgOperand(1)), Flags));
6981 return;
6982 case Intrinsic::minimum:
6983 setValue(&I, DAG.getNode(ISD::FMINIMUM, sdl,
6984 getValue(I.getArgOperand(0)).getValueType(),
6985 getValue(I.getArgOperand(0)),
6986 getValue(I.getArgOperand(1)), Flags));
6987 return;
6988 case Intrinsic::maximum:
6989 setValue(&I, DAG.getNode(ISD::FMAXIMUM, sdl,
6990 getValue(I.getArgOperand(0)).getValueType(),
6991 getValue(I.getArgOperand(0)),
6992 getValue(I.getArgOperand(1)), Flags));
6993 return;
6994 case Intrinsic::minimumnum:
6995 setValue(&I, DAG.getNode(ISD::FMINIMUMNUM, sdl,
6996 getValue(I.getArgOperand(0)).getValueType(),
6997 getValue(I.getArgOperand(0)),
6998 getValue(I.getArgOperand(1)), Flags));
6999 return;
7000 case Intrinsic::maximumnum:
7001 setValue(&I, DAG.getNode(ISD::FMAXIMUMNUM, sdl,
7002 getValue(I.getArgOperand(0)).getValueType(),
7003 getValue(I.getArgOperand(0)),
7004 getValue(I.getArgOperand(1)), Flags));
7005 return;
7006 case Intrinsic::copysign:
7007 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl,
7008 getValue(I.getArgOperand(0)).getValueType(),
7009 getValue(I.getArgOperand(0)),
7010 getValue(I.getArgOperand(1)), Flags));
7011 return;
7012 case Intrinsic::ldexp:
7013 setValue(&I, DAG.getNode(ISD::FLDEXP, sdl,
7014 getValue(I.getArgOperand(0)).getValueType(),
7015 getValue(I.getArgOperand(0)),
7016 getValue(I.getArgOperand(1)), Flags));
7017 return;
7018 case Intrinsic::modf:
7019 case Intrinsic::sincos:
7020 case Intrinsic::sincospi:
7021 case Intrinsic::frexp: {
7022 unsigned Opcode;
7023 switch (Intrinsic) {
7024 default:
7025 llvm_unreachable("unexpected intrinsic");
7026 case Intrinsic::sincos:
7027 Opcode = ISD::FSINCOS;
7028 break;
7029 case Intrinsic::sincospi:
7030 Opcode = ISD::FSINCOSPI;
7031 break;
7032 case Intrinsic::modf:
7033 Opcode = ISD::FMODF;
7034 break;
7035 case Intrinsic::frexp:
7036 Opcode = ISD::FFREXP;
7037 break;
7038 }
7039 SmallVector<EVT, 2> ValueVTs;
7040 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs);
7041 SDVTList VTs = DAG.getVTList(ValueVTs);
7042 setValue(
7043 &I, DAG.getNode(Opcode, sdl, VTs, getValue(I.getArgOperand(0)), Flags));
7044 return;
7045 }
7046 case Intrinsic::arithmetic_fence: {
7047 setValue(&I, DAG.getNode(ISD::ARITH_FENCE, sdl,
7048 getValue(I.getArgOperand(0)).getValueType(),
7049 getValue(I.getArgOperand(0)), Flags));
7050 return;
7051 }
7052 case Intrinsic::fma:
7053 setValue(&I, DAG.getNode(
7054 ISD::FMA, sdl, getValue(I.getArgOperand(0)).getValueType(),
7055 getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)),
7056 getValue(I.getArgOperand(2)), Flags));
7057 return;
7058#define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC) \
7059 case Intrinsic::INTRINSIC:
7060#include "llvm/IR/ConstrainedOps.def"
7061 visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I));
7062 return;
7063#define BEGIN_REGISTER_VP_INTRINSIC(VPID, ...) case Intrinsic::VPID:
7064#include "llvm/IR/VPIntrinsics.def"
7065 visitVectorPredicationIntrinsic(cast<VPIntrinsic>(I));
7066 return;
7067 case Intrinsic::fptrunc_round: {
7068 // Get the last argument, the metadata and convert it to an integer in the
7069 // call
7070 Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(1))->getMetadata();
7071 std::optional<RoundingMode> RoundMode =
7072 convertStrToRoundingMode(cast<MDString>(MD)->getString());
7073
7074 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7075
7076 // Propagate fast-math-flags from IR to node(s).
7077 SDNodeFlags Flags;
7078 Flags.copyFMF(*cast<FPMathOperator>(&I));
7079 SelectionDAG::FlagInserter FlagsInserter(DAG, Flags);
7080
7082 Result = DAG.getNode(
7083 ISD::FPTRUNC_ROUND, sdl, VT, getValue(I.getArgOperand(0)),
7084 DAG.getTargetConstant((int)*RoundMode, sdl, MVT::i32));
7085 setValue(&I, Result);
7086
7087 return;
7088 }
7089 case Intrinsic::fmuladd: {
7090 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7091 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
7092 TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) {
7093 setValue(&I, DAG.getNode(ISD::FMA, sdl,
7094 getValue(I.getArgOperand(0)).getValueType(),
7095 getValue(I.getArgOperand(0)),
7096 getValue(I.getArgOperand(1)),
7097 getValue(I.getArgOperand(2)), Flags));
7098 } else if (TLI.isOperationLegalOrCustom(ISD::FMULADD, VT)) {
7099 // TODO: Support splitting the vector.
7100 setValue(&I, DAG.getNode(ISD::FMULADD, sdl,
7101 getValue(I.getArgOperand(0)).getValueType(),
7102 getValue(I.getArgOperand(0)),
7103 getValue(I.getArgOperand(1)),
7104 getValue(I.getArgOperand(2)), Flags));
7105 } else {
7106 // TODO: Intrinsic calls should have fast-math-flags.
7107 SDValue Mul = DAG.getNode(
7108 ISD::FMUL, sdl, getValue(I.getArgOperand(0)).getValueType(),
7109 getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)), Flags);
7110 SDValue Add = DAG.getNode(ISD::FADD, sdl,
7111 getValue(I.getArgOperand(0)).getValueType(),
7112 Mul, getValue(I.getArgOperand(2)), Flags);
7113 setValue(&I, Add);
7114 }
7115 return;
7116 }
7117 case Intrinsic::convert_to_fp16:
7118 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16,
7119 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16,
7120 getValue(I.getArgOperand(0)),
7121 DAG.getTargetConstant(0, sdl,
7122 MVT::i32))));
7123 return;
7124 case Intrinsic::convert_from_fp16:
7125 setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl,
7126 TLI.getValueType(DAG.getDataLayout(), I.getType()),
7127 DAG.getNode(ISD::BITCAST, sdl, MVT::f16,
7128 getValue(I.getArgOperand(0)))));
7129 return;
7130 case Intrinsic::fptosi_sat: {
7131 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7132 setValue(&I, DAG.getNode(ISD::FP_TO_SINT_SAT, sdl, VT,
7133 getValue(I.getArgOperand(0)),
7134 DAG.getValueType(VT.getScalarType())));
7135 return;
7136 }
7137 case Intrinsic::fptoui_sat: {
7138 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7139 setValue(&I, DAG.getNode(ISD::FP_TO_UINT_SAT, sdl, VT,
7140 getValue(I.getArgOperand(0)),
7141 DAG.getValueType(VT.getScalarType())));
7142 return;
7143 }
7144 case Intrinsic::set_rounding:
7145 Res = DAG.getNode(ISD::SET_ROUNDING, sdl, MVT::Other,
7146 {getRoot(), getValue(I.getArgOperand(0))});
7147 setValue(&I, Res);
7148 DAG.setRoot(Res.getValue(0));
7149 return;
7150 case Intrinsic::is_fpclass: {
7151 const DataLayout DLayout = DAG.getDataLayout();
7152 EVT DestVT = TLI.getValueType(DLayout, I.getType());
7153 EVT ArgVT = TLI.getValueType(DLayout, I.getArgOperand(0)->getType());
7154 FPClassTest Test = static_cast<FPClassTest>(
7155 cast<ConstantInt>(I.getArgOperand(1))->getZExtValue());
7156 MachineFunction &MF = DAG.getMachineFunction();
7157 const Function &F = MF.getFunction();
7158 SDValue Op = getValue(I.getArgOperand(0));
7159 SDNodeFlags Flags;
7160 Flags.setNoFPExcept(
7161 !F.getAttributes().hasFnAttr(llvm::Attribute::StrictFP));
7162 // If ISD::IS_FPCLASS should be expanded, do it right now, because the
7163 // expansion can use illegal types. Making expansion early allows
7164 // legalizing these types prior to selection.
7165 if (!TLI.isOperationLegal(ISD::IS_FPCLASS, ArgVT) &&
7166 !TLI.isOperationCustom(ISD::IS_FPCLASS, ArgVT)) {
7167 SDValue Result = TLI.expandIS_FPCLASS(DestVT, Op, Test, Flags, sdl, DAG);
7168 setValue(&I, Result);
7169 return;
7170 }
7171
7172 SDValue Check = DAG.getTargetConstant(Test, sdl, MVT::i32);
7173 SDValue V = DAG.getNode(ISD::IS_FPCLASS, sdl, DestVT, {Op, Check}, Flags);
7174 setValue(&I, V);
7175 return;
7176 }
7177 case Intrinsic::get_fpenv: {
7178 const DataLayout DLayout = DAG.getDataLayout();
7179 EVT EnvVT = TLI.getValueType(DLayout, I.getType());
7180 Align TempAlign = DAG.getEVTAlign(EnvVT);
7181 SDValue Chain = getRoot();
7182 // Use GET_FPENV if it is legal or custom. Otherwise use memory-based node
7183 // and temporary storage in stack.
7184 if (TLI.isOperationLegalOrCustom(ISD::GET_FPENV, EnvVT)) {
7185 Res = DAG.getNode(
7186 ISD::GET_FPENV, sdl,
7187 DAG.getVTList(TLI.getValueType(DAG.getDataLayout(), I.getType()),
7188 MVT::Other),
7189 Chain);
7190 } else {
7191 SDValue Temp = DAG.CreateStackTemporary(EnvVT, TempAlign.value());
7192 int SPFI = cast<FrameIndexSDNode>(Temp.getNode())->getIndex();
7193 auto MPI =
7194 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI);
7195 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
7197 TempAlign);
7198 Chain = DAG.getGetFPEnv(Chain, sdl, Temp, EnvVT, MMO);
7199 Res = DAG.getLoad(EnvVT, sdl, Chain, Temp, MPI);
7200 }
7201 setValue(&I, Res);
7202 DAG.setRoot(Res.getValue(1));
7203 return;
7204 }
7205 case Intrinsic::set_fpenv: {
7206 const DataLayout DLayout = DAG.getDataLayout();
7207 SDValue Env = getValue(I.getArgOperand(0));
7208 EVT EnvVT = Env.getValueType();
7209 Align TempAlign = DAG.getEVTAlign(EnvVT);
7210 SDValue Chain = getRoot();
7211 // If SET_FPENV is custom or legal, use it. Otherwise use loading
7212 // environment from memory.
7213 if (TLI.isOperationLegalOrCustom(ISD::SET_FPENV, EnvVT)) {
7214 Chain = DAG.getNode(ISD::SET_FPENV, sdl, MVT::Other, Chain, Env);
7215 } else {
7216 // Allocate space in stack, copy environment bits into it and use this
7217 // memory in SET_FPENV_MEM.
7218 SDValue Temp = DAG.CreateStackTemporary(EnvVT, TempAlign.value());
7219 int SPFI = cast<FrameIndexSDNode>(Temp.getNode())->getIndex();
7220 auto MPI =
7221 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI);
7222 Chain = DAG.getStore(Chain, sdl, Env, Temp, MPI, TempAlign,
7224 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
7226 TempAlign);
7227 Chain = DAG.getSetFPEnv(Chain, sdl, Temp, EnvVT, MMO);
7228 }
7229 DAG.setRoot(Chain);
7230 return;
7231 }
7232 case Intrinsic::reset_fpenv:
7233 DAG.setRoot(DAG.getNode(ISD::RESET_FPENV, sdl, MVT::Other, getRoot()));
7234 return;
7235 case Intrinsic::get_fpmode:
7236 Res = DAG.getNode(
7237 ISD::GET_FPMODE, sdl,
7238 DAG.getVTList(TLI.getValueType(DAG.getDataLayout(), I.getType()),
7239 MVT::Other),
7240 DAG.getRoot());
7241 setValue(&I, Res);
7242 DAG.setRoot(Res.getValue(1));
7243 return;
7244 case Intrinsic::set_fpmode:
7245 Res = DAG.getNode(ISD::SET_FPMODE, sdl, MVT::Other, {DAG.getRoot()},
7246 getValue(I.getArgOperand(0)));
7247 DAG.setRoot(Res);
7248 return;
7249 case Intrinsic::reset_fpmode: {
7250 Res = DAG.getNode(ISD::RESET_FPMODE, sdl, MVT::Other, getRoot());
7251 DAG.setRoot(Res);
7252 return;
7253 }
7254 case Intrinsic::pcmarker: {
7255 SDValue Tmp = getValue(I.getArgOperand(0));
7256 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp));
7257 return;
7258 }
7259 case Intrinsic::readcyclecounter: {
7260 SDValue Op = getRoot();
7261 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl,
7262 DAG.getVTList(MVT::i64, MVT::Other), Op);
7263 setValue(&I, Res);
7264 DAG.setRoot(Res.getValue(1));
7265 return;
7266 }
7267 case Intrinsic::readsteadycounter: {
7268 SDValue Op = getRoot();
7269 Res = DAG.getNode(ISD::READSTEADYCOUNTER, sdl,
7270 DAG.getVTList(MVT::i64, MVT::Other), Op);
7271 setValue(&I, Res);
7272 DAG.setRoot(Res.getValue(1));
7273 return;
7274 }
7275 case Intrinsic::bitreverse:
7276 setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl,
7277 getValue(I.getArgOperand(0)).getValueType(),
7278 getValue(I.getArgOperand(0))));
7279 return;
7280 case Intrinsic::bswap:
7281 setValue(&I, DAG.getNode(ISD::BSWAP, sdl,
7282 getValue(I.getArgOperand(0)).getValueType(),
7283 getValue(I.getArgOperand(0))));
7284 return;
7285 case Intrinsic::cttz: {
7286 SDValue Arg = getValue(I.getArgOperand(0));
7287 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
7288 EVT Ty = Arg.getValueType();
7289 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF,
7290 sdl, Ty, Arg));
7291 return;
7292 }
7293 case Intrinsic::ctlz: {
7294 SDValue Arg = getValue(I.getArgOperand(0));
7295 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
7296 EVT Ty = Arg.getValueType();
7297 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF,
7298 sdl, Ty, Arg));
7299 return;
7300 }
7301 case Intrinsic::ctpop: {
7302 SDValue Arg = getValue(I.getArgOperand(0));
7303 EVT Ty = Arg.getValueType();
7304 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg));
7305 return;
7306 }
7307 case Intrinsic::fshl:
7308 case Intrinsic::fshr: {
7309 bool IsFSHL = Intrinsic == Intrinsic::fshl;
7310 SDValue X = getValue(I.getArgOperand(0));
7311 SDValue Y = getValue(I.getArgOperand(1));
7312 SDValue Z = getValue(I.getArgOperand(2));
7313 EVT VT = X.getValueType();
7314
7315 if (X == Y) {
7316 auto RotateOpcode = IsFSHL ? ISD::ROTL : ISD::ROTR;
7317 setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, Z));
7318 } else {
7319 auto FunnelOpcode = IsFSHL ? ISD::FSHL : ISD::FSHR;
7320 setValue(&I, DAG.getNode(FunnelOpcode, sdl, VT, X, Y, Z));
7321 }
7322 return;
7323 }
7324 case Intrinsic::clmul: {
7325 SDValue X = getValue(I.getArgOperand(0));
7326 SDValue Y = getValue(I.getArgOperand(1));
7327 setValue(&I, DAG.getNode(ISD::CLMUL, sdl, X.getValueType(), X, Y));
7328 return;
7329 }
7330 case Intrinsic::sadd_sat: {
7331 SDValue Op1 = getValue(I.getArgOperand(0));
7332 SDValue Op2 = getValue(I.getArgOperand(1));
7333 setValue(&I, DAG.getNode(ISD::SADDSAT, sdl, Op1.getValueType(), Op1, Op2));
7334 return;
7335 }
7336 case Intrinsic::uadd_sat: {
7337 SDValue Op1 = getValue(I.getArgOperand(0));
7338 SDValue Op2 = getValue(I.getArgOperand(1));
7339 setValue(&I, DAG.getNode(ISD::UADDSAT, sdl, Op1.getValueType(), Op1, Op2));
7340 return;
7341 }
7342 case Intrinsic::ssub_sat: {
7343 SDValue Op1 = getValue(I.getArgOperand(0));
7344 SDValue Op2 = getValue(I.getArgOperand(1));
7345 setValue(&I, DAG.getNode(ISD::SSUBSAT, sdl, Op1.getValueType(), Op1, Op2));
7346 return;
7347 }
7348 case Intrinsic::usub_sat: {
7349 SDValue Op1 = getValue(I.getArgOperand(0));
7350 SDValue Op2 = getValue(I.getArgOperand(1));
7351 setValue(&I, DAG.getNode(ISD::USUBSAT, sdl, Op1.getValueType(), Op1, Op2));
7352 return;
7353 }
7354 case Intrinsic::sshl_sat:
7355 case Intrinsic::ushl_sat: {
7356 SDValue Op1 = getValue(I.getArgOperand(0));
7357 SDValue Op2 = getValue(I.getArgOperand(1));
7358
7359 EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy(
7360 Op1.getValueType(), DAG.getDataLayout());
7361
7362 // Coerce the shift amount to the right type if we can. This exposes the
7363 // truncate or zext to optimization early.
7364 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
7365 assert(ShiftTy.getSizeInBits() >=
7367 "Unexpected shift type");
7368 Op2 = DAG.getZExtOrTrunc(Op2, getCurSDLoc(), ShiftTy);
7369 }
7370
7371 unsigned Opc =
7372 Intrinsic == Intrinsic::sshl_sat ? ISD::SSHLSAT : ISD::USHLSAT;
7373 setValue(&I, DAG.getNode(Opc, sdl, Op1.getValueType(), Op1, Op2));
7374 return;
7375 }
7376 case Intrinsic::smul_fix:
7377 case Intrinsic::umul_fix:
7378 case Intrinsic::smul_fix_sat:
7379 case Intrinsic::umul_fix_sat: {
7380 SDValue Op1 = getValue(I.getArgOperand(0));
7381 SDValue Op2 = getValue(I.getArgOperand(1));
7382 SDValue Op3 = getValue(I.getArgOperand(2));
7383 setValue(&I, DAG.getNode(FixedPointIntrinsicToOpcode(Intrinsic), sdl,
7384 Op1.getValueType(), Op1, Op2, Op3));
7385 return;
7386 }
7387 case Intrinsic::sdiv_fix:
7388 case Intrinsic::udiv_fix:
7389 case Intrinsic::sdiv_fix_sat:
7390 case Intrinsic::udiv_fix_sat: {
7391 SDValue Op1 = getValue(I.getArgOperand(0));
7392 SDValue Op2 = getValue(I.getArgOperand(1));
7393 SDValue Op3 = getValue(I.getArgOperand(2));
7395 Op1, Op2, Op3, DAG, TLI));
7396 return;
7397 }
7398 case Intrinsic::smax: {
7399 SDValue Op1 = getValue(I.getArgOperand(0));
7400 SDValue Op2 = getValue(I.getArgOperand(1));
7401 setValue(&I, DAG.getNode(ISD::SMAX, sdl, Op1.getValueType(), Op1, Op2));
7402 return;
7403 }
7404 case Intrinsic::smin: {
7405 SDValue Op1 = getValue(I.getArgOperand(0));
7406 SDValue Op2 = getValue(I.getArgOperand(1));
7407 setValue(&I, DAG.getNode(ISD::SMIN, sdl, Op1.getValueType(), Op1, Op2));
7408 return;
7409 }
7410 case Intrinsic::umax: {
7411 SDValue Op1 = getValue(I.getArgOperand(0));
7412 SDValue Op2 = getValue(I.getArgOperand(1));
7413 setValue(&I, DAG.getNode(ISD::UMAX, sdl, Op1.getValueType(), Op1, Op2));
7414 return;
7415 }
7416 case Intrinsic::umin: {
7417 SDValue Op1 = getValue(I.getArgOperand(0));
7418 SDValue Op2 = getValue(I.getArgOperand(1));
7419 setValue(&I, DAG.getNode(ISD::UMIN, sdl, Op1.getValueType(), Op1, Op2));
7420 return;
7421 }
7422 case Intrinsic::abs: {
7423 // TODO: Preserve "int min is poison" arg in SDAG?
7424 SDValue Op1 = getValue(I.getArgOperand(0));
7425 setValue(&I, DAG.getNode(ISD::ABS, sdl, Op1.getValueType(), Op1));
7426 return;
7427 }
7428 case Intrinsic::scmp: {
7429 SDValue Op1 = getValue(I.getArgOperand(0));
7430 SDValue Op2 = getValue(I.getArgOperand(1));
7431 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7432 setValue(&I, DAG.getNode(ISD::SCMP, sdl, DestVT, Op1, Op2));
7433 break;
7434 }
7435 case Intrinsic::ucmp: {
7436 SDValue Op1 = getValue(I.getArgOperand(0));
7437 SDValue Op2 = getValue(I.getArgOperand(1));
7438 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7439 setValue(&I, DAG.getNode(ISD::UCMP, sdl, DestVT, Op1, Op2));
7440 break;
7441 }
7442 case Intrinsic::stacksave: {
7443 SDValue Op = getRoot();
7444 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7445 Res = DAG.getNode(ISD::STACKSAVE, sdl, DAG.getVTList(VT, MVT::Other), Op);
7446 setValue(&I, Res);
7447 DAG.setRoot(Res.getValue(1));
7448 return;
7449 }
7450 case Intrinsic::stackrestore:
7451 Res = getValue(I.getArgOperand(0));
7452 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res));
7453 return;
7454 case Intrinsic::get_dynamic_area_offset: {
7455 SDValue Op = getRoot();
7456 EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
7457 Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy),
7458 Op);
7459 DAG.setRoot(Op);
7460 setValue(&I, Res);
7461 return;
7462 }
7463 case Intrinsic::stackguard: {
7464 MachineFunction &MF = DAG.getMachineFunction();
7465 const Module &M = *MF.getFunction().getParent();
7466 EVT PtrTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
7467 SDValue Chain = getRoot();
7468 if (TLI.useLoadStackGuardNode(M)) {
7469 Res = getLoadStackGuard(DAG, sdl, Chain);
7470 Res = DAG.getPtrExtOrTrunc(Res, sdl, PtrTy);
7471 } else {
7472 const Value *Global = TLI.getSDagStackGuard(M);
7473 if (!Global) {
7474 LLVMContext &Ctx = *DAG.getContext();
7475 Ctx.diagnose(DiagnosticInfoGeneric("unable to lower stackguard"));
7476 setValue(&I, DAG.getPOISON(PtrTy));
7477 return;
7478 }
7479
7480 Align Align = DAG.getDataLayout().getPrefTypeAlign(Global->getType());
7481 Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global),
7482 MachinePointerInfo(Global, 0), Align,
7484 }
7485 if (TLI.useStackGuardXorFP())
7486 Res = TLI.emitStackGuardXorFP(DAG, Res, sdl);
7487 DAG.setRoot(Chain);
7488 setValue(&I, Res);
7489 return;
7490 }
7491 case Intrinsic::stackprotector: {
7492 // Emit code into the DAG to store the stack guard onto the stack.
7493 MachineFunction &MF = DAG.getMachineFunction();
7494 MachineFrameInfo &MFI = MF.getFrameInfo();
7495 const Module &M = *MF.getFunction().getParent();
7496 SDValue Src, Chain = getRoot();
7497
7498 if (TLI.useLoadStackGuardNode(M))
7499 Src = getLoadStackGuard(DAG, sdl, Chain);
7500 else
7501 Src = getValue(I.getArgOperand(0)); // The guard's value.
7502
7503 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
7504
7505 int FI = FuncInfo.StaticAllocaMap[Slot];
7506 MFI.setStackProtectorIndex(FI);
7507 EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout());
7508
7509 SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
7510
7511 // Store the stack protector onto the stack.
7512 Res = DAG.getStore(
7513 Chain, sdl, Src, FIN,
7514 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI),
7515 MaybeAlign(), MachineMemOperand::MOVolatile);
7516 setValue(&I, Res);
7517 DAG.setRoot(Res);
7518 return;
7519 }
7520 case Intrinsic::objectsize:
7521 llvm_unreachable("llvm.objectsize.* should have been lowered already");
7522
7523 case Intrinsic::is_constant:
7524 llvm_unreachable("llvm.is.constant.* should have been lowered already");
7525
7526 case Intrinsic::annotation:
7527 case Intrinsic::ptr_annotation:
7528 case Intrinsic::launder_invariant_group:
7529 case Intrinsic::strip_invariant_group:
7530 // Drop the intrinsic, but forward the value
7531 setValue(&I, getValue(I.getOperand(0)));
7532 return;
7533
7534 case Intrinsic::type_test:
7535 case Intrinsic::public_type_test:
7536 setValue(&I, getValue(ConstantInt::getTrue(I.getType())));
7537 return;
7538
7539 case Intrinsic::assume:
7540 case Intrinsic::experimental_noalias_scope_decl:
7541 case Intrinsic::var_annotation:
7542 case Intrinsic::sideeffect:
7543 // Discard annotate attributes, noalias scope declarations, assumptions, and
7544 // artificial side-effects.
7545 return;
7546
7547 case Intrinsic::codeview_annotation: {
7548 // Emit a label associated with this metadata.
7549 MachineFunction &MF = DAG.getMachineFunction();
7550 MCSymbol *Label = MF.getContext().createTempSymbol("annotation", true);
7551 Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata();
7552 MF.addCodeViewAnnotation(Label, cast<MDNode>(MD));
7553 Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label);
7554 DAG.setRoot(Res);
7555 return;
7556 }
7557
7558 case Intrinsic::init_trampoline: {
7559 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
7560
7561 SDValue Ops[6];
7562 Ops[0] = getRoot();
7563 Ops[1] = getValue(I.getArgOperand(0));
7564 Ops[2] = getValue(I.getArgOperand(1));
7565 Ops[3] = getValue(I.getArgOperand(2));
7566 Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
7567 Ops[5] = DAG.getSrcValue(F);
7568
7569 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops);
7570
7571 DAG.setRoot(Res);
7572 return;
7573 }
7574 case Intrinsic::adjust_trampoline:
7575 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl,
7576 TLI.getPointerTy(DAG.getDataLayout()),
7577 getValue(I.getArgOperand(0))));
7578 return;
7579 case Intrinsic::gcroot: {
7580 assert(DAG.getMachineFunction().getFunction().hasGC() &&
7581 "only valid in functions with gc specified, enforced by Verifier");
7582 assert(GFI && "implied by previous");
7583 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts();
7584 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
7585
7586 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
7587 GFI->addStackRoot(FI->getIndex(), TypeMap);
7588 return;
7589 }
7590 case Intrinsic::gcread:
7591 case Intrinsic::gcwrite:
7592 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
7593 case Intrinsic::get_rounding:
7594 Res = DAG.getNode(ISD::GET_ROUNDING, sdl, {MVT::i32, MVT::Other}, getRoot());
7595 setValue(&I, Res);
7596 DAG.setRoot(Res.getValue(1));
7597 return;
7598
7599 case Intrinsic::expect:
7600 case Intrinsic::expect_with_probability:
7601 // Just replace __builtin_expect(exp, c) and
7602 // __builtin_expect_with_probability(exp, c, p) with EXP.
7603 setValue(&I, getValue(I.getArgOperand(0)));
7604 return;
7605
7606 case Intrinsic::ubsantrap:
7607 case Intrinsic::debugtrap:
7608 case Intrinsic::trap: {
7609 StringRef TrapFuncName =
7610 I.getAttributes().getFnAttr("trap-func-name").getValueAsString();
7611 if (TrapFuncName.empty()) {
7612 switch (Intrinsic) {
7613 case Intrinsic::trap:
7614 DAG.setRoot(DAG.getNode(ISD::TRAP, sdl, MVT::Other, getRoot()));
7615 break;
7616 case Intrinsic::debugtrap:
7617 DAG.setRoot(DAG.getNode(ISD::DEBUGTRAP, sdl, MVT::Other, getRoot()));
7618 break;
7619 case Intrinsic::ubsantrap:
7620 DAG.setRoot(DAG.getNode(
7621 ISD::UBSANTRAP, sdl, MVT::Other, getRoot(),
7622 DAG.getTargetConstant(
7623 cast<ConstantInt>(I.getArgOperand(0))->getZExtValue(), sdl,
7624 MVT::i32)));
7625 break;
7626 default: llvm_unreachable("unknown trap intrinsic");
7627 }
7628 DAG.addNoMergeSiteInfo(DAG.getRoot().getNode(),
7629 I.hasFnAttr(Attribute::NoMerge));
7630 return;
7631 }
7633 if (Intrinsic == Intrinsic::ubsantrap) {
7634 Value *Arg = I.getArgOperand(0);
7635 Args.emplace_back(Arg, getValue(Arg));
7636 }
7637
7638 TargetLowering::CallLoweringInfo CLI(DAG);
7639 CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee(
7640 CallingConv::C, I.getType(),
7641 DAG.getExternalSymbol(TrapFuncName.data(),
7642 TLI.getPointerTy(DAG.getDataLayout())),
7643 std::move(Args));
7644 CLI.NoMerge = I.hasFnAttr(Attribute::NoMerge);
7645 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
7646 DAG.setRoot(Result.second);
7647 return;
7648 }
7649
7650 case Intrinsic::allow_runtime_check:
7651 case Intrinsic::allow_ubsan_check:
7652 setValue(&I, getValue(ConstantInt::getTrue(I.getType())));
7653 return;
7654
7655 case Intrinsic::uadd_with_overflow:
7656 case Intrinsic::sadd_with_overflow:
7657 case Intrinsic::usub_with_overflow:
7658 case Intrinsic::ssub_with_overflow:
7659 case Intrinsic::umul_with_overflow:
7660 case Intrinsic::smul_with_overflow: {
7662 switch (Intrinsic) {
7663 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here.
7664 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break;
7665 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break;
7666 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break;
7667 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break;
7668 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break;
7669 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break;
7670 }
7671 SDValue Op1 = getValue(I.getArgOperand(0));
7672 SDValue Op2 = getValue(I.getArgOperand(1));
7673
7674 EVT ResultVT = Op1.getValueType();
7675 EVT OverflowVT = ResultVT.changeElementType(*Context, MVT::i1);
7676
7677 SDVTList VTs = DAG.getVTList(ResultVT, OverflowVT);
7678 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2));
7679 return;
7680 }
7681 case Intrinsic::prefetch: {
7682 SDValue Ops[5];
7683 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
7685 Ops[0] = DAG.getRoot();
7686 Ops[1] = getValue(I.getArgOperand(0));
7687 Ops[2] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(1)), sdl,
7688 MVT::i32);
7689 Ops[3] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(2)), sdl,
7690 MVT::i32);
7691 Ops[4] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(3)), sdl,
7692 MVT::i32);
7693 SDValue Result = DAG.getMemIntrinsicNode(
7694 ISD::PREFETCH, sdl, DAG.getVTList(MVT::Other), Ops,
7695 EVT::getIntegerVT(*Context, 8), MachinePointerInfo(I.getArgOperand(0)),
7696 /* align */ std::nullopt, Flags);
7697
7698 // Chain the prefetch in parallel with any pending loads, to stay out of
7699 // the way of later optimizations.
7700 PendingLoads.push_back(Result);
7701 Result = getRoot();
7702 DAG.setRoot(Result);
7703 return;
7704 }
7705 case Intrinsic::lifetime_start:
7706 case Intrinsic::lifetime_end: {
7707 bool IsStart = (Intrinsic == Intrinsic::lifetime_start);
7708 // Stack coloring is not enabled in O0, discard region information.
7709 if (TM.getOptLevel() == CodeGenOptLevel::None)
7710 return;
7711
7712 const AllocaInst *LifetimeObject = dyn_cast<AllocaInst>(I.getArgOperand(0));
7713 if (!LifetimeObject)
7714 return;
7715
7716 // First check that the Alloca is static, otherwise it won't have a
7717 // valid frame index.
7718 auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject);
7719 if (SI == FuncInfo.StaticAllocaMap.end())
7720 return;
7721
7722 const int FrameIndex = SI->second;
7723 Res = DAG.getLifetimeNode(IsStart, sdl, getRoot(), FrameIndex);
7724 DAG.setRoot(Res);
7725 return;
7726 }
7727 case Intrinsic::pseudoprobe: {
7728 auto Guid = cast<ConstantInt>(I.getArgOperand(0))->getZExtValue();
7729 auto Index = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
7730 auto Attr = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue();
7731 Res = DAG.getPseudoProbeNode(sdl, getRoot(), Guid, Index, Attr);
7732 DAG.setRoot(Res);
7733 return;
7734 }
7735 case Intrinsic::invariant_start:
7736 // Discard region information.
7737 setValue(&I,
7738 DAG.getUNDEF(TLI.getValueType(DAG.getDataLayout(), I.getType())));
7739 return;
7740 case Intrinsic::invariant_end:
7741 // Discard region information.
7742 return;
7743 case Intrinsic::clear_cache: {
7744 SDValue InputChain = DAG.getRoot();
7745 SDValue StartVal = getValue(I.getArgOperand(0));
7746 SDValue EndVal = getValue(I.getArgOperand(1));
7747 Res = DAG.getNode(ISD::CLEAR_CACHE, sdl, DAG.getVTList(MVT::Other),
7748 {InputChain, StartVal, EndVal});
7749 setValue(&I, Res);
7750 DAG.setRoot(Res);
7751 return;
7752 }
7753 case Intrinsic::donothing:
7754 case Intrinsic::seh_try_begin:
7755 case Intrinsic::seh_scope_begin:
7756 case Intrinsic::seh_try_end:
7757 case Intrinsic::seh_scope_end:
7758 // ignore
7759 return;
7760 case Intrinsic::experimental_stackmap:
7761 visitStackmap(I);
7762 return;
7763 case Intrinsic::experimental_patchpoint_void:
7764 case Intrinsic::experimental_patchpoint:
7765 visitPatchpoint(I);
7766 return;
7767 case Intrinsic::experimental_gc_statepoint:
7769 return;
7770 case Intrinsic::experimental_gc_result:
7771 visitGCResult(cast<GCResultInst>(I));
7772 return;
7773 case Intrinsic::experimental_gc_relocate:
7774 visitGCRelocate(cast<GCRelocateInst>(I));
7775 return;
7776 case Intrinsic::instrprof_cover:
7777 llvm_unreachable("instrprof failed to lower a cover");
7778 case Intrinsic::instrprof_increment:
7779 llvm_unreachable("instrprof failed to lower an increment");
7780 case Intrinsic::instrprof_timestamp:
7781 llvm_unreachable("instrprof failed to lower a timestamp");
7782 case Intrinsic::instrprof_value_profile:
7783 llvm_unreachable("instrprof failed to lower a value profiling call");
7784 case Intrinsic::instrprof_mcdc_parameters:
7785 llvm_unreachable("instrprof failed to lower mcdc parameters");
7786 case Intrinsic::instrprof_mcdc_tvbitmap_update:
7787 llvm_unreachable("instrprof failed to lower an mcdc tvbitmap update");
7788 case Intrinsic::localescape: {
7789 MachineFunction &MF = DAG.getMachineFunction();
7790 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
7791
7792 // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission
7793 // is the same on all targets.
7794 for (unsigned Idx = 0, E = I.arg_size(); Idx < E; ++Idx) {
7795 Value *Arg = I.getArgOperand(Idx)->stripPointerCasts();
7796 if (isa<ConstantPointerNull>(Arg))
7797 continue; // Skip null pointers. They represent a hole in index space.
7798 AllocaInst *Slot = cast<AllocaInst>(Arg);
7799 assert(FuncInfo.StaticAllocaMap.count(Slot) &&
7800 "can only escape static allocas");
7801 int FI = FuncInfo.StaticAllocaMap[Slot];
7802 MCSymbol *FrameAllocSym = MF.getContext().getOrCreateFrameAllocSymbol(
7804 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl,
7805 TII->get(TargetOpcode::LOCAL_ESCAPE))
7806 .addSym(FrameAllocSym)
7807 .addFrameIndex(FI);
7808 }
7809
7810 return;
7811 }
7812
7813 case Intrinsic::localrecover: {
7814 // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx)
7815 MachineFunction &MF = DAG.getMachineFunction();
7816
7817 // Get the symbol that defines the frame offset.
7818 auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts());
7819 auto *Idx = cast<ConstantInt>(I.getArgOperand(2));
7820 unsigned IdxVal =
7821 unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max()));
7822 MCSymbol *FrameAllocSym = MF.getContext().getOrCreateFrameAllocSymbol(
7824
7825 Value *FP = I.getArgOperand(1);
7826 SDValue FPVal = getValue(FP);
7827 EVT PtrVT = FPVal.getValueType();
7828
7829 // Create a MCSymbol for the label to avoid any target lowering
7830 // that would make this PC relative.
7831 SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT);
7832 SDValue OffsetVal =
7833 DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym);
7834
7835 // Add the offset to the FP.
7836 SDValue Add = DAG.getMemBasePlusOffset(FPVal, OffsetVal, sdl);
7837 setValue(&I, Add);
7838
7839 return;
7840 }
7841
7842 case Intrinsic::fake_use: {
7843 Value *V = I.getArgOperand(0);
7844 SDValue Ops[2];
7845 // For Values not declared or previously used in this basic block, the
7846 // NodeMap will not have an entry, and `getValue` will assert if V has no
7847 // valid register value.
7848 auto FakeUseValue = [&]() -> SDValue {
7849 SDValue &N = NodeMap[V];
7850 if (N.getNode())
7851 return N;
7852
7853 // If there's a virtual register allocated and initialized for this
7854 // value, use it.
7855 if (SDValue copyFromReg = getCopyFromRegs(V, V->getType()))
7856 return copyFromReg;
7857 // FIXME: Do we want to preserve constants? It seems pointless.
7858 if (isa<Constant>(V))
7859 return getValue(V);
7860 return SDValue();
7861 }();
7862 if (!FakeUseValue || FakeUseValue.isUndef())
7863 return;
7864 Ops[0] = getRoot();
7865 Ops[1] = FakeUseValue;
7866 // Also, do not translate a fake use with an undef operand, or any other
7867 // empty SDValues.
7868 if (!Ops[1] || Ops[1].isUndef())
7869 return;
7870 DAG.setRoot(DAG.getNode(ISD::FAKE_USE, sdl, MVT::Other, Ops));
7871 return;
7872 }
7873
7874 case Intrinsic::reloc_none: {
7875 Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata();
7876 StringRef SymbolName = cast<MDString>(MD)->getString();
7877 SDValue Ops[2] = {
7878 getRoot(),
7879 DAG.getTargetExternalSymbol(
7880 SymbolName.data(), TLI.getProgramPointerTy(DAG.getDataLayout()))};
7881 DAG.setRoot(DAG.getNode(ISD::RELOC_NONE, sdl, MVT::Other, Ops));
7882 return;
7883 }
7884
7885 case Intrinsic::eh_exceptionpointer:
7886 case Intrinsic::eh_exceptioncode: {
7887 // Get the exception pointer vreg, copy from it, and resize it to fit.
7888 const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0));
7889 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout());
7890 const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT);
7891 Register VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC);
7892 SDValue N = DAG.getCopyFromReg(DAG.getEntryNode(), sdl, VReg, PtrVT);
7893 if (Intrinsic == Intrinsic::eh_exceptioncode)
7894 N = DAG.getZExtOrTrunc(N, sdl, MVT::i32);
7895 setValue(&I, N);
7896 return;
7897 }
7898 case Intrinsic::xray_customevent: {
7899 // Here we want to make sure that the intrinsic behaves as if it has a
7900 // specific calling convention.
7901 const auto &Triple = DAG.getTarget().getTargetTriple();
7902 if (!Triple.isAArch64(64) && Triple.getArch() != Triple::x86_64)
7903 return;
7904
7906
7907 // We want to say that we always want the arguments in registers.
7908 SDValue LogEntryVal = getValue(I.getArgOperand(0));
7909 SDValue StrSizeVal = getValue(I.getArgOperand(1));
7910 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7911 SDValue Chain = getRoot();
7912 Ops.push_back(LogEntryVal);
7913 Ops.push_back(StrSizeVal);
7914 Ops.push_back(Chain);
7915
7916 // We need to enforce the calling convention for the callsite, so that
7917 // argument ordering is enforced correctly, and that register allocation can
7918 // see that some registers may be assumed clobbered and have to preserve
7919 // them across calls to the intrinsic.
7920 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL,
7921 sdl, NodeTys, Ops);
7922 SDValue patchableNode = SDValue(MN, 0);
7923 DAG.setRoot(patchableNode);
7924 setValue(&I, patchableNode);
7925 return;
7926 }
7927 case Intrinsic::xray_typedevent: {
7928 // Here we want to make sure that the intrinsic behaves as if it has a
7929 // specific calling convention.
7930 const auto &Triple = DAG.getTarget().getTargetTriple();
7931 if (!Triple.isAArch64(64) && Triple.getArch() != Triple::x86_64)
7932 return;
7933
7935
7936 // We want to say that we always want the arguments in registers.
7937 // It's unclear to me how manipulating the selection DAG here forces callers
7938 // to provide arguments in registers instead of on the stack.
7939 SDValue LogTypeId = getValue(I.getArgOperand(0));
7940 SDValue LogEntryVal = getValue(I.getArgOperand(1));
7941 SDValue StrSizeVal = getValue(I.getArgOperand(2));
7942 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7943 SDValue Chain = getRoot();
7944 Ops.push_back(LogTypeId);
7945 Ops.push_back(LogEntryVal);
7946 Ops.push_back(StrSizeVal);
7947 Ops.push_back(Chain);
7948
7949 // We need to enforce the calling convention for the callsite, so that
7950 // argument ordering is enforced correctly, and that register allocation can
7951 // see that some registers may be assumed clobbered and have to preserve
7952 // them across calls to the intrinsic.
7953 MachineSDNode *MN = DAG.getMachineNode(
7954 TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, sdl, NodeTys, Ops);
7955 SDValue patchableNode = SDValue(MN, 0);
7956 DAG.setRoot(patchableNode);
7957 setValue(&I, patchableNode);
7958 return;
7959 }
7960 case Intrinsic::experimental_deoptimize:
7962 return;
7963 case Intrinsic::stepvector:
7964 visitStepVector(I);
7965 return;
7966 case Intrinsic::vector_reduce_fadd:
7967 case Intrinsic::vector_reduce_fmul:
7968 case Intrinsic::vector_reduce_add:
7969 case Intrinsic::vector_reduce_mul:
7970 case Intrinsic::vector_reduce_and:
7971 case Intrinsic::vector_reduce_or:
7972 case Intrinsic::vector_reduce_xor:
7973 case Intrinsic::vector_reduce_smax:
7974 case Intrinsic::vector_reduce_smin:
7975 case Intrinsic::vector_reduce_umax:
7976 case Intrinsic::vector_reduce_umin:
7977 case Intrinsic::vector_reduce_fmax:
7978 case Intrinsic::vector_reduce_fmin:
7979 case Intrinsic::vector_reduce_fmaximum:
7980 case Intrinsic::vector_reduce_fminimum:
7981 visitVectorReduce(I, Intrinsic);
7982 return;
7983
7984 case Intrinsic::icall_branch_funnel: {
7986 Ops.push_back(getValue(I.getArgOperand(0)));
7987
7988 int64_t Offset;
7990 I.getArgOperand(1), Offset, DAG.getDataLayout()));
7991 if (!Base)
7993 "llvm.icall.branch.funnel operand must be a GlobalValue");
7994 Ops.push_back(DAG.getTargetGlobalAddress(Base, sdl, MVT::i64, 0));
7995
7996 struct BranchFunnelTarget {
7997 int64_t Offset;
7999 };
8001
8002 for (unsigned Op = 1, N = I.arg_size(); Op != N; Op += 2) {
8004 I.getArgOperand(Op), Offset, DAG.getDataLayout()));
8005 if (ElemBase != Base)
8006 report_fatal_error("all llvm.icall.branch.funnel operands must refer "
8007 "to the same GlobalValue");
8008
8009 SDValue Val = getValue(I.getArgOperand(Op + 1));
8010 auto *GA = dyn_cast<GlobalAddressSDNode>(Val);
8011 if (!GA)
8013 "llvm.icall.branch.funnel operand must be a GlobalValue");
8014 Targets.push_back({Offset, DAG.getTargetGlobalAddress(
8015 GA->getGlobal(), sdl, Val.getValueType(),
8016 GA->getOffset())});
8017 }
8018 llvm::sort(Targets,
8019 [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) {
8020 return T1.Offset < T2.Offset;
8021 });
8022
8023 for (auto &T : Targets) {
8024 Ops.push_back(DAG.getTargetConstant(T.Offset, sdl, MVT::i32));
8025 Ops.push_back(T.Target);
8026 }
8027
8028 Ops.push_back(DAG.getRoot()); // Chain
8029 SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL, sdl,
8030 MVT::Other, Ops),
8031 0);
8032 DAG.setRoot(N);
8033 setValue(&I, N);
8034 HasTailCall = true;
8035 return;
8036 }
8037
8038 case Intrinsic::wasm_landingpad_index:
8039 // Information this intrinsic contained has been transferred to
8040 // MachineFunction in SelectionDAGISel::PrepareEHLandingPad. We can safely
8041 // delete it now.
8042 return;
8043
8044 case Intrinsic::aarch64_settag:
8045 case Intrinsic::aarch64_settag_zero: {
8046 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
8047 bool ZeroMemory = Intrinsic == Intrinsic::aarch64_settag_zero;
8049 DAG, sdl, getRoot(), getValue(I.getArgOperand(0)),
8050 getValue(I.getArgOperand(1)), MachinePointerInfo(I.getArgOperand(0)),
8051 ZeroMemory);
8052 DAG.setRoot(Val);
8053 setValue(&I, Val);
8054 return;
8055 }
8056 case Intrinsic::amdgcn_cs_chain: {
8057 // At this point we don't care if it's amdgpu_cs_chain or
8058 // amdgpu_cs_chain_preserve.
8060
8061 Type *RetTy = I.getType();
8062 assert(RetTy->isVoidTy() && "Should not return");
8063
8064 SDValue Callee = getValue(I.getOperand(0));
8065
8066 // We only have 2 actual args: one for the SGPRs and one for the VGPRs.
8067 // We'll also tack the value of the EXEC mask at the end.
8069 Args.reserve(3);
8070
8071 for (unsigned Idx : {2, 3, 1}) {
8072 TargetLowering::ArgListEntry Arg(getValue(I.getOperand(Idx)),
8073 I.getOperand(Idx)->getType());
8074 Arg.setAttributes(&I, Idx);
8075 Args.push_back(Arg);
8076 }
8077
8078 assert(Args[0].IsInReg && "SGPR args should be marked inreg");
8079 assert(!Args[1].IsInReg && "VGPR args should not be marked inreg");
8080 Args[2].IsInReg = true; // EXEC should be inreg
8081
8082 // Forward the flags and any additional arguments.
8083 for (unsigned Idx = 4; Idx < I.arg_size(); ++Idx) {
8084 TargetLowering::ArgListEntry Arg(getValue(I.getOperand(Idx)),
8085 I.getOperand(Idx)->getType());
8086 Arg.setAttributes(&I, Idx);
8087 Args.push_back(Arg);
8088 }
8089
8090 TargetLowering::CallLoweringInfo CLI(DAG);
8091 CLI.setDebugLoc(getCurSDLoc())
8092 .setChain(getRoot())
8093 .setCallee(CC, RetTy, Callee, std::move(Args))
8094 .setNoReturn(true)
8095 .setTailCall(true)
8096 .setConvergent(I.isConvergent());
8097 CLI.CB = &I;
8098 std::pair<SDValue, SDValue> Result =
8099 lowerInvokable(CLI, /*EHPadBB*/ nullptr);
8100 (void)Result;
8101 assert(!Result.first.getNode() && !Result.second.getNode() &&
8102 "Should've lowered as tail call");
8103
8104 HasTailCall = true;
8105 return;
8106 }
8107 case Intrinsic::amdgcn_call_whole_wave: {
8109 bool isTailCall = I.isTailCall();
8110
8111 // The first argument is the callee. Skip it when assembling the call args.
8112 for (unsigned Idx = 1; Idx < I.arg_size(); ++Idx) {
8113 TargetLowering::ArgListEntry Arg(getValue(I.getArgOperand(Idx)),
8114 I.getArgOperand(Idx)->getType());
8115 Arg.setAttributes(&I, Idx);
8116
8117 // If we have an explicit sret argument that is an Instruction, (i.e., it
8118 // might point to function-local memory), we can't meaningfully tail-call.
8119 if (Arg.IsSRet && isa<Instruction>(I.getArgOperand(Idx)))
8120 isTailCall = false;
8121
8122 Args.push_back(Arg);
8123 }
8124
8125 SDValue ConvControlToken;
8126 if (auto Bundle = I.getOperandBundle(LLVMContext::OB_convergencectrl)) {
8127 auto *Token = Bundle->Inputs[0].get();
8128 ConvControlToken = getValue(Token);
8129 }
8130
8131 TargetLowering::CallLoweringInfo CLI(DAG);
8132 CLI.setDebugLoc(getCurSDLoc())
8133 .setChain(getRoot())
8134 .setCallee(CallingConv::AMDGPU_Gfx_WholeWave, I.getType(),
8135 getValue(I.getArgOperand(0)), std::move(Args))
8136 .setTailCall(isTailCall && canTailCall(I))
8137 .setIsPreallocated(
8138 I.countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0)
8139 .setConvergent(I.isConvergent())
8140 .setConvergenceControlToken(ConvControlToken);
8141 CLI.CB = &I;
8142
8143 std::pair<SDValue, SDValue> Result =
8144 lowerInvokable(CLI, /*EHPadBB=*/nullptr);
8145
8146 if (Result.first.getNode())
8147 setValue(&I, Result.first);
8148 return;
8149 }
8150 case Intrinsic::ptrmask: {
8151 SDValue Ptr = getValue(I.getOperand(0));
8152 SDValue Mask = getValue(I.getOperand(1));
8153
8154 // On arm64_32, pointers are 32 bits when stored in memory, but
8155 // zero-extended to 64 bits when in registers. Thus the mask is 32 bits to
8156 // match the index type, but the pointer is 64 bits, so the mask must be
8157 // zero-extended up to 64 bits to match the pointer.
8158 EVT PtrVT =
8159 TLI.getValueType(DAG.getDataLayout(), I.getOperand(0)->getType());
8160 EVT MemVT =
8161 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType());
8162 assert(PtrVT == Ptr.getValueType());
8163 if (Mask.getValueType().getFixedSizeInBits() < MemVT.getFixedSizeInBits()) {
8164 // For AMDGPU buffer descriptors the mask is 48 bits, but the pointer is
8165 // 128-bit, so we have to pad the mask with ones for unused bits.
8166 auto HighOnes = DAG.getNode(
8167 ISD::SHL, sdl, PtrVT, DAG.getAllOnesConstant(sdl, PtrVT),
8168 DAG.getShiftAmountConstant(Mask.getValueType().getFixedSizeInBits(),
8169 PtrVT, sdl));
8170 Mask = DAG.getNode(ISD::OR, sdl, PtrVT,
8171 DAG.getZExtOrTrunc(Mask, sdl, PtrVT), HighOnes);
8172 } else if (Mask.getValueType() != PtrVT)
8173 Mask = DAG.getPtrExtOrTrunc(Mask, sdl, PtrVT);
8174
8175 assert(Mask.getValueType() == PtrVT);
8176 setValue(&I, DAG.getNode(ISD::AND, sdl, PtrVT, Ptr, Mask));
8177 return;
8178 }
8179 case Intrinsic::threadlocal_address: {
8180 setValue(&I, getValue(I.getOperand(0)));
8181 return;
8182 }
8183 case Intrinsic::get_active_lane_mask: {
8184 EVT CCVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
8185 SDValue Index = getValue(I.getOperand(0));
8186 SDValue TripCount = getValue(I.getOperand(1));
8187 EVT ElementVT = Index.getValueType();
8188
8189 if (!TLI.shouldExpandGetActiveLaneMask(CCVT, ElementVT)) {
8190 setValue(&I, DAG.getNode(ISD::GET_ACTIVE_LANE_MASK, sdl, CCVT, Index,
8191 TripCount));
8192 return;
8193 }
8194
8195 EVT VecTy = EVT::getVectorVT(*DAG.getContext(), ElementVT,
8196 CCVT.getVectorElementCount());
8197
8198 SDValue VectorIndex = DAG.getSplat(VecTy, sdl, Index);
8199 SDValue VectorTripCount = DAG.getSplat(VecTy, sdl, TripCount);
8200 SDValue VectorStep = DAG.getStepVector(sdl, VecTy);
8201 SDValue VectorInduction = DAG.getNode(
8202 ISD::UADDSAT, sdl, VecTy, VectorIndex, VectorStep);
8203 SDValue SetCC = DAG.getSetCC(sdl, CCVT, VectorInduction,
8204 VectorTripCount, ISD::CondCode::SETULT);
8205 setValue(&I, SetCC);
8206 return;
8207 }
8208 case Intrinsic::experimental_get_vector_length: {
8209 assert(cast<ConstantInt>(I.getOperand(1))->getSExtValue() > 0 &&
8210 "Expected positive VF");
8211 unsigned VF = cast<ConstantInt>(I.getOperand(1))->getZExtValue();
8212 bool IsScalable = cast<ConstantInt>(I.getOperand(2))->isOne();
8213
8214 SDValue Count = getValue(I.getOperand(0));
8215 EVT CountVT = Count.getValueType();
8216
8217 if (!TLI.shouldExpandGetVectorLength(CountVT, VF, IsScalable)) {
8218 visitTargetIntrinsic(I, Intrinsic);
8219 return;
8220 }
8221
8222 // Expand to a umin between the trip count and the maximum elements the type
8223 // can hold.
8224 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
8225
8226 // Extend the trip count to at least the result VT.
8227 if (CountVT.bitsLT(VT)) {
8228 Count = DAG.getNode(ISD::ZERO_EXTEND, sdl, VT, Count);
8229 CountVT = VT;
8230 }
8231
8232 SDValue MaxEVL = DAG.getElementCount(sdl, CountVT,
8233 ElementCount::get(VF, IsScalable));
8234
8235 SDValue UMin = DAG.getNode(ISD::UMIN, sdl, CountVT, Count, MaxEVL);
8236 // Clip to the result type if needed.
8237 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, sdl, VT, UMin);
8238
8239 setValue(&I, Trunc);
8240 return;
8241 }
8242 case Intrinsic::vector_partial_reduce_add: {
8243 SDValue Acc = getValue(I.getOperand(0));
8244 SDValue Input = getValue(I.getOperand(1));
8245 setValue(&I,
8246 DAG.getNode(ISD::PARTIAL_REDUCE_UMLA, sdl, Acc.getValueType(), Acc,
8247 Input, DAG.getConstant(1, sdl, Input.getValueType())));
8248 return;
8249 }
8250 case Intrinsic::vector_partial_reduce_fadd: {
8251 SDValue Acc = getValue(I.getOperand(0));
8252 SDValue Input = getValue(I.getOperand(1));
8253 setValue(&I, DAG.getNode(
8254 ISD::PARTIAL_REDUCE_FMLA, sdl, Acc.getValueType(), Acc,
8255 Input, DAG.getConstantFP(1.0, sdl, Input.getValueType())));
8256 return;
8257 }
8258 case Intrinsic::experimental_cttz_elts: {
8259 auto DL = getCurSDLoc();
8260 SDValue Op = getValue(I.getOperand(0));
8261 EVT OpVT = Op.getValueType();
8262
8263 if (!TLI.shouldExpandCttzElements(OpVT)) {
8264 visitTargetIntrinsic(I, Intrinsic);
8265 return;
8266 }
8267
8268 if (OpVT.getScalarType() != MVT::i1) {
8269 // Compare the input vector elements to zero & use to count trailing zeros
8270 SDValue AllZero = DAG.getConstant(0, DL, OpVT);
8271 OpVT = EVT::getVectorVT(*DAG.getContext(), MVT::i1,
8272 OpVT.getVectorElementCount());
8273 Op = DAG.getSetCC(DL, OpVT, Op, AllZero, ISD::SETNE);
8274 }
8275
8276 // If the zero-is-poison flag is set, we can assume the upper limit
8277 // of the result is VF-1.
8278 bool ZeroIsPoison =
8279 !cast<ConstantSDNode>(getValue(I.getOperand(1)))->isZero();
8280 ConstantRange VScaleRange(1, true); // Dummy value.
8281 if (isa<ScalableVectorType>(I.getOperand(0)->getType()))
8282 VScaleRange = getVScaleRange(I.getCaller(), 64);
8283 unsigned EltWidth = TLI.getBitWidthForCttzElements(
8284 I.getType(), OpVT.getVectorElementCount(), ZeroIsPoison, &VScaleRange);
8285
8286 MVT NewEltTy = MVT::getIntegerVT(EltWidth);
8287
8288 // Create the new vector type & get the vector length
8289 EVT NewVT = EVT::getVectorVT(*DAG.getContext(), NewEltTy,
8290 OpVT.getVectorElementCount());
8291
8292 SDValue VL =
8293 DAG.getElementCount(DL, NewEltTy, OpVT.getVectorElementCount());
8294
8295 SDValue StepVec = DAG.getStepVector(DL, NewVT);
8296 SDValue SplatVL = DAG.getSplat(NewVT, DL, VL);
8297 SDValue StepVL = DAG.getNode(ISD::SUB, DL, NewVT, SplatVL, StepVec);
8298 SDValue Ext = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, Op);
8299 SDValue And = DAG.getNode(ISD::AND, DL, NewVT, StepVL, Ext);
8300 SDValue Max = DAG.getNode(ISD::VECREDUCE_UMAX, DL, NewEltTy, And);
8301 SDValue Sub = DAG.getNode(ISD::SUB, DL, NewEltTy, VL, Max);
8302
8303 EVT RetTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
8304 SDValue Ret = DAG.getZExtOrTrunc(Sub, DL, RetTy);
8305
8306 setValue(&I, Ret);
8307 return;
8308 }
8309 case Intrinsic::vector_insert: {
8310 SDValue Vec = getValue(I.getOperand(0));
8311 SDValue SubVec = getValue(I.getOperand(1));
8312 SDValue Index = getValue(I.getOperand(2));
8313
8314 // The intrinsic's index type is i64, but the SDNode requires an index type
8315 // suitable for the target. Convert the index as required.
8316 MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout());
8317 if (Index.getValueType() != VectorIdxTy)
8318 Index = DAG.getVectorIdxConstant(Index->getAsZExtVal(), sdl);
8319
8320 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
8321 setValue(&I, DAG.getNode(ISD::INSERT_SUBVECTOR, sdl, ResultVT, Vec, SubVec,
8322 Index));
8323 return;
8324 }
8325 case Intrinsic::vector_extract: {
8326 SDValue Vec = getValue(I.getOperand(0));
8327 SDValue Index = getValue(I.getOperand(1));
8328 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
8329
8330 // The intrinsic's index type is i64, but the SDNode requires an index type
8331 // suitable for the target. Convert the index as required.
8332 MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout());
8333 if (Index.getValueType() != VectorIdxTy)
8334 Index = DAG.getVectorIdxConstant(Index->getAsZExtVal(), sdl);
8335
8336 setValue(&I,
8337 DAG.getNode(ISD::EXTRACT_SUBVECTOR, sdl, ResultVT, Vec, Index));
8338 return;
8339 }
8340 case Intrinsic::experimental_vector_match: {
8341 SDValue Op1 = getValue(I.getOperand(0));
8342 SDValue Op2 = getValue(I.getOperand(1));
8343 SDValue Mask = getValue(I.getOperand(2));
8344 EVT Op1VT = Op1.getValueType();
8345 EVT Op2VT = Op2.getValueType();
8346 EVT ResVT = Mask.getValueType();
8347 unsigned SearchSize = Op2VT.getVectorNumElements();
8348
8349 // If the target has native support for this vector match operation, lower
8350 // the intrinsic untouched; otherwise, expand it below.
8351 if (!TLI.shouldExpandVectorMatch(Op1VT, SearchSize)) {
8352 visitTargetIntrinsic(I, Intrinsic);
8353 return;
8354 }
8355
8356 SDValue Ret = DAG.getConstant(0, sdl, ResVT);
8357
8358 for (unsigned i = 0; i < SearchSize; ++i) {
8359 SDValue Op2Elem = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, sdl,
8360 Op2VT.getVectorElementType(), Op2,
8361 DAG.getVectorIdxConstant(i, sdl));
8362 SDValue Splat = DAG.getNode(ISD::SPLAT_VECTOR, sdl, Op1VT, Op2Elem);
8363 SDValue Cmp = DAG.getSetCC(sdl, ResVT, Op1, Splat, ISD::SETEQ);
8364 Ret = DAG.getNode(ISD::OR, sdl, ResVT, Ret, Cmp);
8365 }
8366
8367 setValue(&I, DAG.getNode(ISD::AND, sdl, ResVT, Ret, Mask));
8368 return;
8369 }
8370 case Intrinsic::vector_reverse:
8371 visitVectorReverse(I);
8372 return;
8373 case Intrinsic::vector_splice_left:
8374 case Intrinsic::vector_splice_right:
8375 visitVectorSplice(I);
8376 return;
8377 case Intrinsic::callbr_landingpad:
8378 visitCallBrLandingPad(I);
8379 return;
8380 case Intrinsic::vector_interleave2:
8381 visitVectorInterleave(I, 2);
8382 return;
8383 case Intrinsic::vector_interleave3:
8384 visitVectorInterleave(I, 3);
8385 return;
8386 case Intrinsic::vector_interleave4:
8387 visitVectorInterleave(I, 4);
8388 return;
8389 case Intrinsic::vector_interleave5:
8390 visitVectorInterleave(I, 5);
8391 return;
8392 case Intrinsic::vector_interleave6:
8393 visitVectorInterleave(I, 6);
8394 return;
8395 case Intrinsic::vector_interleave7:
8396 visitVectorInterleave(I, 7);
8397 return;
8398 case Intrinsic::vector_interleave8:
8399 visitVectorInterleave(I, 8);
8400 return;
8401 case Intrinsic::vector_deinterleave2:
8402 visitVectorDeinterleave(I, 2);
8403 return;
8404 case Intrinsic::vector_deinterleave3:
8405 visitVectorDeinterleave(I, 3);
8406 return;
8407 case Intrinsic::vector_deinterleave4:
8408 visitVectorDeinterleave(I, 4);
8409 return;
8410 case Intrinsic::vector_deinterleave5:
8411 visitVectorDeinterleave(I, 5);
8412 return;
8413 case Intrinsic::vector_deinterleave6:
8414 visitVectorDeinterleave(I, 6);
8415 return;
8416 case Intrinsic::vector_deinterleave7:
8417 visitVectorDeinterleave(I, 7);
8418 return;
8419 case Intrinsic::vector_deinterleave8:
8420 visitVectorDeinterleave(I, 8);
8421 return;
8422 case Intrinsic::experimental_vector_compress:
8423 setValue(&I, DAG.getNode(ISD::VECTOR_COMPRESS, sdl,
8424 getValue(I.getArgOperand(0)).getValueType(),
8425 getValue(I.getArgOperand(0)),
8426 getValue(I.getArgOperand(1)),
8427 getValue(I.getArgOperand(2)), Flags));
8428 return;
8429 case Intrinsic::experimental_convergence_anchor:
8430 case Intrinsic::experimental_convergence_entry:
8431 case Intrinsic::experimental_convergence_loop:
8432 visitConvergenceControl(I, Intrinsic);
8433 return;
8434 case Intrinsic::experimental_vector_histogram_add: {
8435 visitVectorHistogram(I, Intrinsic);
8436 return;
8437 }
8438 case Intrinsic::experimental_vector_extract_last_active: {
8439 visitVectorExtractLastActive(I, Intrinsic);
8440 return;
8441 }
8442 case Intrinsic::loop_dependence_war_mask:
8443 setValue(&I,
8445 EVT::getEVT(I.getType()), getValue(I.getOperand(0)),
8446 getValue(I.getOperand(1)), getValue(I.getOperand(2)),
8447 DAG.getConstant(0, sdl, MVT::i64)));
8448 return;
8449 case Intrinsic::loop_dependence_raw_mask:
8450 setValue(&I,
8452 EVT::getEVT(I.getType()), getValue(I.getOperand(0)),
8453 getValue(I.getOperand(1)), getValue(I.getOperand(2)),
8454 DAG.getConstant(0, sdl, MVT::i64)));
8455 return;
8456 }
8457}
8458
8459void SelectionDAGBuilder::pushFPOpOutChain(SDValue Result,
8461 assert(Result.getNode()->getNumValues() == 2);
8462 SDValue OutChain = Result.getValue(1);
8463 assert(OutChain.getValueType() == MVT::Other);
8464
8465 // Instead of updating the root immediately, push the produced chain to the
8466 // appropriate list, deferring the update until the root is requested. In this
8467 // case, the nodes from the lists are chained using TokenFactor, indicating
8468 // that the operations are independent.
8469 //
8470 // In particular, the root is updated before any call that might access the
8471 // floating-point environment, except for constrained intrinsics.
8472 switch (EB) {
8475 PendingConstrainedFP.push_back(OutChain);
8476 break;
8478 PendingConstrainedFPStrict.push_back(OutChain);
8479 break;
8480 }
8481}
8482
8483void SelectionDAGBuilder::visitConstrainedFPIntrinsic(
8484 const ConstrainedFPIntrinsic &FPI) {
8485 SDLoc sdl = getCurSDLoc();
8486
8487 // We do not need to serialize constrained FP intrinsics against
8488 // each other or against (nonvolatile) loads, so they can be
8489 // chained like loads.
8491 SDValue Chain = getFPOperationRoot(EB);
8493 Opers.push_back(Chain);
8494 for (unsigned I = 0, E = FPI.getNonMetadataArgCount(); I != E; ++I)
8495 Opers.push_back(getValue(FPI.getArgOperand(I)));
8496
8497 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8498 EVT VT = TLI.getValueType(DAG.getDataLayout(), FPI.getType());
8499 SDVTList VTs = DAG.getVTList(VT, MVT::Other);
8500
8501 SDNodeFlags Flags;
8503 Flags.setNoFPExcept(true);
8504
8505 if (auto *FPOp = dyn_cast<FPMathOperator>(&FPI))
8506 Flags.copyFMF(*FPOp);
8507
8508 unsigned Opcode;
8509 switch (FPI.getIntrinsicID()) {
8510 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here.
8511#define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \
8512 case Intrinsic::INTRINSIC: \
8513 Opcode = ISD::STRICT_##DAGN; \
8514 break;
8515#include "llvm/IR/ConstrainedOps.def"
8516 case Intrinsic::experimental_constrained_fmuladd: {
8517 Opcode = ISD::STRICT_FMA;
8518 // Break fmuladd into fmul and fadd.
8519 if (TM.Options.AllowFPOpFusion == FPOpFusion::Strict ||
8520 !TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) {
8521 Opers.pop_back();
8522 SDValue Mul = DAG.getNode(ISD::STRICT_FMUL, sdl, VTs, Opers, Flags);
8523 pushFPOpOutChain(Mul, EB);
8524 Opcode = ISD::STRICT_FADD;
8525 Opers.clear();
8526 Opers.push_back(Mul.getValue(1));
8527 Opers.push_back(Mul.getValue(0));
8528 Opers.push_back(getValue(FPI.getArgOperand(2)));
8529 }
8530 break;
8531 }
8532 }
8533
8534 // A few strict DAG nodes carry additional operands that are not
8535 // set up by the default code above.
8536 switch (Opcode) {
8537 default: break;
8539 Opers.push_back(
8540 DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())));
8541 break;
8542 case ISD::STRICT_FSETCC:
8543 case ISD::STRICT_FSETCCS: {
8544 auto *FPCmp = dyn_cast<ConstrainedFPCmpIntrinsic>(&FPI);
8545 ISD::CondCode Condition = getFCmpCondCode(FPCmp->getPredicate());
8546 if (TM.Options.NoNaNsFPMath)
8547 Condition = getFCmpCodeWithoutNaN(Condition);
8548 Opers.push_back(DAG.getCondCode(Condition));
8549 break;
8550 }
8551 }
8552
8553 SDValue Result = DAG.getNode(Opcode, sdl, VTs, Opers, Flags);
8554 pushFPOpOutChain(Result, EB);
8555
8556 SDValue FPResult = Result.getValue(0);
8557 setValue(&FPI, FPResult);
8558}
8559
8560static unsigned getISDForVPIntrinsic(const VPIntrinsic &VPIntrin) {
8561 std::optional<unsigned> ResOPC;
8562 switch (VPIntrin.getIntrinsicID()) {
8563 case Intrinsic::vp_ctlz: {
8564 bool IsZeroUndef = cast<ConstantInt>(VPIntrin.getArgOperand(1))->isOne();
8565 ResOPC = IsZeroUndef ? ISD::VP_CTLZ_ZERO_UNDEF : ISD::VP_CTLZ;
8566 break;
8567 }
8568 case Intrinsic::vp_cttz: {
8569 bool IsZeroUndef = cast<ConstantInt>(VPIntrin.getArgOperand(1))->isOne();
8570 ResOPC = IsZeroUndef ? ISD::VP_CTTZ_ZERO_UNDEF : ISD::VP_CTTZ;
8571 break;
8572 }
8573 case Intrinsic::vp_cttz_elts: {
8574 bool IsZeroPoison = cast<ConstantInt>(VPIntrin.getArgOperand(1))->isOne();
8575 ResOPC = IsZeroPoison ? ISD::VP_CTTZ_ELTS_ZERO_UNDEF : ISD::VP_CTTZ_ELTS;
8576 break;
8577 }
8578#define HELPER_MAP_VPID_TO_VPSD(VPID, VPSD) \
8579 case Intrinsic::VPID: \
8580 ResOPC = ISD::VPSD; \
8581 break;
8582#include "llvm/IR/VPIntrinsics.def"
8583 }
8584
8585 if (!ResOPC)
8587 "Inconsistency: no SDNode available for this VPIntrinsic!");
8588
8589 if (*ResOPC == ISD::VP_REDUCE_SEQ_FADD ||
8590 *ResOPC == ISD::VP_REDUCE_SEQ_FMUL) {
8591 if (VPIntrin.getFastMathFlags().allowReassoc())
8592 return *ResOPC == ISD::VP_REDUCE_SEQ_FADD ? ISD::VP_REDUCE_FADD
8593 : ISD::VP_REDUCE_FMUL;
8594 }
8595
8596 return *ResOPC;
8597}
8598
8599void SelectionDAGBuilder::visitVPLoad(
8600 const VPIntrinsic &VPIntrin, EVT VT,
8601 const SmallVectorImpl<SDValue> &OpValues) {
8602 SDLoc DL = getCurSDLoc();
8603 Value *PtrOperand = VPIntrin.getArgOperand(0);
8604 MaybeAlign Alignment = VPIntrin.getPointerAlignment();
8605 AAMDNodes AAInfo = VPIntrin.getAAMetadata();
8606 const MDNode *Ranges = getRangeMetadata(VPIntrin);
8607 SDValue LD;
8608 // Do not serialize variable-length loads of constant memory with
8609 // anything.
8610 if (!Alignment)
8611 Alignment = DAG.getEVTAlign(VT);
8612 MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo);
8613 bool AddToChain = !BatchAA || !BatchAA->pointsToConstantMemory(ML);
8614 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
8615 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8616 MachineMemOperand::Flags MMOFlags =
8617 TLI.getVPIntrinsicMemOperandFlags(VPIntrin);
8618 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
8619 MachinePointerInfo(PtrOperand), MMOFlags,
8620 LocationSize::beforeOrAfterPointer(), *Alignment, AAInfo, Ranges);
8621 LD = DAG.getLoadVP(VT, DL, InChain, OpValues[0], OpValues[1], OpValues[2],
8622 MMO, false /*IsExpanding */);
8623 if (AddToChain)
8624 PendingLoads.push_back(LD.getValue(1));
8625 setValue(&VPIntrin, LD);
8626}
8627
8628void SelectionDAGBuilder::visitVPLoadFF(
8629 const VPIntrinsic &VPIntrin, EVT VT, EVT EVLVT,
8630 const SmallVectorImpl<SDValue> &OpValues) {
8631 assert(OpValues.size() == 3 && "Unexpected number of operands");
8632 SDLoc DL = getCurSDLoc();
8633 Value *PtrOperand = VPIntrin.getArgOperand(0);
8634 MaybeAlign Alignment = VPIntrin.getPointerAlignment();
8635 AAMDNodes AAInfo = VPIntrin.getAAMetadata();
8636 const MDNode *Ranges = VPIntrin.getMetadata(LLVMContext::MD_range);
8637 SDValue LD;
8638 // Do not serialize variable-length loads of constant memory with
8639 // anything.
8640 if (!Alignment)
8641 Alignment = DAG.getEVTAlign(VT);
8642 MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo);
8643 bool AddToChain = !BatchAA || !BatchAA->pointsToConstantMemory(ML);
8644 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
8645 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
8646 MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad,
8647 LocationSize::beforeOrAfterPointer(), *Alignment, AAInfo, Ranges);
8648 LD = DAG.getLoadFFVP(VT, DL, InChain, OpValues[0], OpValues[1], OpValues[2],
8649 MMO);
8650 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, EVLVT, LD.getValue(1));
8651 if (AddToChain)
8652 PendingLoads.push_back(LD.getValue(2));
8653 setValue(&VPIntrin, DAG.getMergeValues({LD.getValue(0), Trunc}, DL));
8654}
8655
8656void SelectionDAGBuilder::visitVPGather(
8657 const VPIntrinsic &VPIntrin, EVT VT,
8658 const SmallVectorImpl<SDValue> &OpValues) {
8659 SDLoc DL = getCurSDLoc();
8660 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8661 Value *PtrOperand = VPIntrin.getArgOperand(0);
8662 MaybeAlign Alignment = VPIntrin.getPointerAlignment();
8663 AAMDNodes AAInfo = VPIntrin.getAAMetadata();
8664 const MDNode *Ranges = getRangeMetadata(VPIntrin);
8665 SDValue LD;
8666 if (!Alignment)
8667 Alignment = DAG.getEVTAlign(VT.getScalarType());
8668 unsigned AS =
8669 PtrOperand->getType()->getScalarType()->getPointerAddressSpace();
8670 MachineMemOperand::Flags MMOFlags =
8671 TLI.getVPIntrinsicMemOperandFlags(VPIntrin);
8672 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
8673 MachinePointerInfo(AS), MMOFlags, LocationSize::beforeOrAfterPointer(),
8674 *Alignment, AAInfo, Ranges);
8675 SDValue Base, Index, Scale;
8676 bool UniformBase =
8677 getUniformBase(PtrOperand, Base, Index, Scale, this, VPIntrin.getParent(),
8678 VT.getScalarStoreSize());
8679 if (!UniformBase) {
8680 Base = DAG.getConstant(0, DL, TLI.getPointerTy(DAG.getDataLayout()));
8681 Index = getValue(PtrOperand);
8682 Scale = DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()));
8683 }
8684 EVT IdxVT = Index.getValueType();
8685 EVT EltTy = IdxVT.getVectorElementType();
8686 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
8687 EVT NewIdxVT = IdxVT.changeVectorElementType(*DAG.getContext(), EltTy);
8688 Index = DAG.getNode(ISD::SIGN_EXTEND, DL, NewIdxVT, Index);
8689 }
8690 LD = DAG.getGatherVP(
8691 DAG.getVTList(VT, MVT::Other), VT, DL,
8692 {DAG.getRoot(), Base, Index, Scale, OpValues[1], OpValues[2]}, MMO,
8694 PendingLoads.push_back(LD.getValue(1));
8695 setValue(&VPIntrin, LD);
8696}
8697
8698void SelectionDAGBuilder::visitVPStore(
8699 const VPIntrinsic &VPIntrin, const SmallVectorImpl<SDValue> &OpValues) {
8700 SDLoc DL = getCurSDLoc();
8701 Value *PtrOperand = VPIntrin.getArgOperand(1);
8702 EVT VT = OpValues[0].getValueType();
8703 MaybeAlign Alignment = VPIntrin.getPointerAlignment();
8704 AAMDNodes AAInfo = VPIntrin.getAAMetadata();
8705 SDValue ST;
8706 if (!Alignment)
8707 Alignment = DAG.getEVTAlign(VT);
8708 SDValue Ptr = OpValues[1];
8709 SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
8710 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8711 MachineMemOperand::Flags MMOFlags =
8712 TLI.getVPIntrinsicMemOperandFlags(VPIntrin);
8713 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
8714 MachinePointerInfo(PtrOperand), MMOFlags,
8715 LocationSize::beforeOrAfterPointer(), *Alignment, AAInfo);
8716 ST = DAG.getStoreVP(getMemoryRoot(), DL, OpValues[0], Ptr, Offset,
8717 OpValues[2], OpValues[3], VT, MMO, ISD::UNINDEXED,
8718 /* IsTruncating */ false, /*IsCompressing*/ false);
8719 DAG.setRoot(ST);
8720 setValue(&VPIntrin, ST);
8721}
8722
8723void SelectionDAGBuilder::visitVPScatter(
8724 const VPIntrinsic &VPIntrin, const SmallVectorImpl<SDValue> &OpValues) {
8725 SDLoc DL = getCurSDLoc();
8726 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8727 Value *PtrOperand = VPIntrin.getArgOperand(1);
8728 EVT VT = OpValues[0].getValueType();
8729 MaybeAlign Alignment = VPIntrin.getPointerAlignment();
8730 AAMDNodes AAInfo = VPIntrin.getAAMetadata();
8731 SDValue ST;
8732 if (!Alignment)
8733 Alignment = DAG.getEVTAlign(VT.getScalarType());
8734 unsigned AS =
8735 PtrOperand->getType()->getScalarType()->getPointerAddressSpace();
8736 MachineMemOperand::Flags MMOFlags =
8737 TLI.getVPIntrinsicMemOperandFlags(VPIntrin);
8738 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
8739 MachinePointerInfo(AS), MMOFlags, LocationSize::beforeOrAfterPointer(),
8740 *Alignment, AAInfo);
8741 SDValue Base, Index, Scale;
8742 bool UniformBase =
8743 getUniformBase(PtrOperand, Base, Index, Scale, this, VPIntrin.getParent(),
8744 VT.getScalarStoreSize());
8745 if (!UniformBase) {
8746 Base = DAG.getConstant(0, DL, TLI.getPointerTy(DAG.getDataLayout()));
8747 Index = getValue(PtrOperand);
8748 Scale = DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()));
8749 }
8750 EVT IdxVT = Index.getValueType();
8751 EVT EltTy = IdxVT.getVectorElementType();
8752 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
8753 EVT NewIdxVT = IdxVT.changeVectorElementType(*DAG.getContext(), EltTy);
8754 Index = DAG.getNode(ISD::SIGN_EXTEND, DL, NewIdxVT, Index);
8755 }
8756 ST = DAG.getScatterVP(DAG.getVTList(MVT::Other), VT, DL,
8757 {getMemoryRoot(), OpValues[0], Base, Index, Scale,
8758 OpValues[2], OpValues[3]},
8759 MMO, ISD::SIGNED_SCALED);
8760 DAG.setRoot(ST);
8761 setValue(&VPIntrin, ST);
8762}
8763
8764void SelectionDAGBuilder::visitVPStridedLoad(
8765 const VPIntrinsic &VPIntrin, EVT VT,
8766 const SmallVectorImpl<SDValue> &OpValues) {
8767 SDLoc DL = getCurSDLoc();
8768 Value *PtrOperand = VPIntrin.getArgOperand(0);
8769 MaybeAlign Alignment = VPIntrin.getPointerAlignment();
8770 if (!Alignment)
8771 Alignment = DAG.getEVTAlign(VT.getScalarType());
8772 AAMDNodes AAInfo = VPIntrin.getAAMetadata();
8773 const MDNode *Ranges = getRangeMetadata(VPIntrin);
8774 MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo);
8775 bool AddToChain = !BatchAA || !BatchAA->pointsToConstantMemory(ML);
8776 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
8777 unsigned AS = PtrOperand->getType()->getPointerAddressSpace();
8778 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8779 MachineMemOperand::Flags MMOFlags =
8780 TLI.getVPIntrinsicMemOperandFlags(VPIntrin);
8781 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
8782 MachinePointerInfo(AS), MMOFlags, LocationSize::beforeOrAfterPointer(),
8783 *Alignment, AAInfo, Ranges);
8784
8785 SDValue LD = DAG.getStridedLoadVP(VT, DL, InChain, OpValues[0], OpValues[1],
8786 OpValues[2], OpValues[3], MMO,
8787 false /*IsExpanding*/);
8788
8789 if (AddToChain)
8790 PendingLoads.push_back(LD.getValue(1));
8791 setValue(&VPIntrin, LD);
8792}
8793
8794void SelectionDAGBuilder::visitVPStridedStore(
8795 const VPIntrinsic &VPIntrin, const SmallVectorImpl<SDValue> &OpValues) {
8796 SDLoc DL = getCurSDLoc();
8797 Value *PtrOperand = VPIntrin.getArgOperand(1);
8798 EVT VT = OpValues[0].getValueType();
8799 MaybeAlign Alignment = VPIntrin.getPointerAlignment();
8800 if (!Alignment)
8801 Alignment = DAG.getEVTAlign(VT.getScalarType());
8802 AAMDNodes AAInfo = VPIntrin.getAAMetadata();
8803 unsigned AS = PtrOperand->getType()->getPointerAddressSpace();
8804 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8805 MachineMemOperand::Flags MMOFlags =
8806 TLI.getVPIntrinsicMemOperandFlags(VPIntrin);
8807 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
8808 MachinePointerInfo(AS), MMOFlags, LocationSize::beforeOrAfterPointer(),
8809 *Alignment, AAInfo);
8810
8811 SDValue ST = DAG.getStridedStoreVP(
8812 getMemoryRoot(), DL, OpValues[0], OpValues[1],
8813 DAG.getUNDEF(OpValues[1].getValueType()), OpValues[2], OpValues[3],
8814 OpValues[4], VT, MMO, ISD::UNINDEXED, /*IsTruncating*/ false,
8815 /*IsCompressing*/ false);
8816
8817 DAG.setRoot(ST);
8818 setValue(&VPIntrin, ST);
8819}
8820
8821void SelectionDAGBuilder::visitVPCmp(const VPCmpIntrinsic &VPIntrin) {
8822 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8823 SDLoc DL = getCurSDLoc();
8824
8825 ISD::CondCode Condition;
8827 bool IsFP = VPIntrin.getOperand(0)->getType()->isFPOrFPVectorTy();
8828 if (IsFP) {
8829 // FIXME: Regular fcmps are FPMathOperators which may have fast-math (nnan)
8830 // flags, but calls that don't return floating-point types can't be
8831 // FPMathOperators, like vp.fcmp. This affects constrained fcmp too.
8832 Condition = getFCmpCondCode(CondCode);
8833 if (TM.Options.NoNaNsFPMath)
8834 Condition = getFCmpCodeWithoutNaN(Condition);
8835 } else {
8836 Condition = getICmpCondCode(CondCode);
8837 }
8838
8839 SDValue Op1 = getValue(VPIntrin.getOperand(0));
8840 SDValue Op2 = getValue(VPIntrin.getOperand(1));
8841 // #2 is the condition code
8842 SDValue MaskOp = getValue(VPIntrin.getOperand(3));
8843 SDValue EVL = getValue(VPIntrin.getOperand(4));
8844 MVT EVLParamVT = TLI.getVPExplicitVectorLengthTy();
8845 assert(EVLParamVT.isScalarInteger() && EVLParamVT.bitsGE(MVT::i32) &&
8846 "Unexpected target EVL type");
8847 EVL = DAG.getNode(ISD::ZERO_EXTEND, DL, EVLParamVT, EVL);
8848
8849 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
8850 VPIntrin.getType());
8851 setValue(&VPIntrin,
8852 DAG.getSetCCVP(DL, DestVT, Op1, Op2, Condition, MaskOp, EVL));
8853}
8854
8855void SelectionDAGBuilder::visitVectorPredicationIntrinsic(
8856 const VPIntrinsic &VPIntrin) {
8857 SDLoc DL = getCurSDLoc();
8858 unsigned Opcode = getISDForVPIntrinsic(VPIntrin);
8859
8860 auto IID = VPIntrin.getIntrinsicID();
8861
8862 if (const auto *CmpI = dyn_cast<VPCmpIntrinsic>(&VPIntrin))
8863 return visitVPCmp(*CmpI);
8864
8865 SmallVector<EVT, 4> ValueVTs;
8866 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8867 ComputeValueVTs(TLI, DAG.getDataLayout(), VPIntrin.getType(), ValueVTs);
8868 SDVTList VTs = DAG.getVTList(ValueVTs);
8869
8870 auto EVLParamPos = VPIntrinsic::getVectorLengthParamPos(IID);
8871
8872 MVT EVLParamVT = TLI.getVPExplicitVectorLengthTy();
8873 assert(EVLParamVT.isScalarInteger() && EVLParamVT.bitsGE(MVT::i32) &&
8874 "Unexpected target EVL type");
8875
8876 // Request operands.
8877 SmallVector<SDValue, 7> OpValues;
8878 for (unsigned I = 0; I < VPIntrin.arg_size(); ++I) {
8879 auto Op = getValue(VPIntrin.getArgOperand(I));
8880 if (I == EVLParamPos)
8881 Op = DAG.getNode(ISD::ZERO_EXTEND, DL, EVLParamVT, Op);
8882 OpValues.push_back(Op);
8883 }
8884
8885 switch (Opcode) {
8886 default: {
8887 SDNodeFlags SDFlags;
8888 if (auto *FPMO = dyn_cast<FPMathOperator>(&VPIntrin))
8889 SDFlags.copyFMF(*FPMO);
8890 SDValue Result = DAG.getNode(Opcode, DL, VTs, OpValues, SDFlags);
8891 setValue(&VPIntrin, Result);
8892 break;
8893 }
8894 case ISD::VP_LOAD:
8895 visitVPLoad(VPIntrin, ValueVTs[0], OpValues);
8896 break;
8897 case ISD::VP_LOAD_FF:
8898 visitVPLoadFF(VPIntrin, ValueVTs[0], ValueVTs[1], OpValues);
8899 break;
8900 case ISD::VP_GATHER:
8901 visitVPGather(VPIntrin, ValueVTs[0], OpValues);
8902 break;
8903 case ISD::EXPERIMENTAL_VP_STRIDED_LOAD:
8904 visitVPStridedLoad(VPIntrin, ValueVTs[0], OpValues);
8905 break;
8906 case ISD::VP_STORE:
8907 visitVPStore(VPIntrin, OpValues);
8908 break;
8909 case ISD::VP_SCATTER:
8910 visitVPScatter(VPIntrin, OpValues);
8911 break;
8912 case ISD::EXPERIMENTAL_VP_STRIDED_STORE:
8913 visitVPStridedStore(VPIntrin, OpValues);
8914 break;
8915 case ISD::VP_FMULADD: {
8916 assert(OpValues.size() == 5 && "Unexpected number of operands");
8917 SDNodeFlags SDFlags;
8918 if (auto *FPMO = dyn_cast<FPMathOperator>(&VPIntrin))
8919 SDFlags.copyFMF(*FPMO);
8920 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
8921 TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), ValueVTs[0])) {
8922 setValue(&VPIntrin, DAG.getNode(ISD::VP_FMA, DL, VTs, OpValues, SDFlags));
8923 } else {
8924 SDValue Mul = DAG.getNode(
8925 ISD::VP_FMUL, DL, VTs,
8926 {OpValues[0], OpValues[1], OpValues[3], OpValues[4]}, SDFlags);
8927 SDValue Add =
8928 DAG.getNode(ISD::VP_FADD, DL, VTs,
8929 {Mul, OpValues[2], OpValues[3], OpValues[4]}, SDFlags);
8930 setValue(&VPIntrin, Add);
8931 }
8932 break;
8933 }
8934 case ISD::VP_IS_FPCLASS: {
8935 const DataLayout DLayout = DAG.getDataLayout();
8936 EVT DestVT = TLI.getValueType(DLayout, VPIntrin.getType());
8937 auto Constant = OpValues[1]->getAsZExtVal();
8938 SDValue Check = DAG.getTargetConstant(Constant, DL, MVT::i32);
8939 SDValue V = DAG.getNode(ISD::VP_IS_FPCLASS, DL, DestVT,
8940 {OpValues[0], Check, OpValues[2], OpValues[3]});
8941 setValue(&VPIntrin, V);
8942 return;
8943 }
8944 case ISD::VP_INTTOPTR: {
8945 SDValue N = OpValues[0];
8946 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), VPIntrin.getType());
8947 EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), VPIntrin.getType());
8948 N = DAG.getVPPtrExtOrTrunc(getCurSDLoc(), DestVT, N, OpValues[1],
8949 OpValues[2]);
8950 N = DAG.getVPZExtOrTrunc(getCurSDLoc(), PtrMemVT, N, OpValues[1],
8951 OpValues[2]);
8952 setValue(&VPIntrin, N);
8953 break;
8954 }
8955 case ISD::VP_PTRTOINT: {
8956 SDValue N = OpValues[0];
8957 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
8958 VPIntrin.getType());
8959 EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(),
8960 VPIntrin.getOperand(0)->getType());
8961 N = DAG.getVPPtrExtOrTrunc(getCurSDLoc(), PtrMemVT, N, OpValues[1],
8962 OpValues[2]);
8963 N = DAG.getVPZExtOrTrunc(getCurSDLoc(), DestVT, N, OpValues[1],
8964 OpValues[2]);
8965 setValue(&VPIntrin, N);
8966 break;
8967 }
8968 case ISD::VP_ABS:
8969 case ISD::VP_CTLZ:
8970 case ISD::VP_CTLZ_ZERO_UNDEF:
8971 case ISD::VP_CTTZ:
8972 case ISD::VP_CTTZ_ZERO_UNDEF:
8973 case ISD::VP_CTTZ_ELTS_ZERO_UNDEF:
8974 case ISD::VP_CTTZ_ELTS: {
8975 SDValue Result =
8976 DAG.getNode(Opcode, DL, VTs, {OpValues[0], OpValues[2], OpValues[3]});
8977 setValue(&VPIntrin, Result);
8978 break;
8979 }
8980 }
8981}
8982
8983SDValue SelectionDAGBuilder::lowerStartEH(SDValue Chain,
8984 const BasicBlock *EHPadBB,
8985 MCSymbol *&BeginLabel) {
8986 MachineFunction &MF = DAG.getMachineFunction();
8987
8988 // Insert a label before the invoke call to mark the try range. This can be
8989 // used to detect deletion of the invoke via the MachineModuleInfo.
8990 BeginLabel = MF.getContext().createTempSymbol();
8991
8992 // For SjLj, keep track of which landing pads go with which invokes
8993 // so as to maintain the ordering of pads in the LSDA.
8994 unsigned CallSiteIndex = FuncInfo.getCurrentCallSite();
8995 if (CallSiteIndex) {
8996 MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
8997 LPadToCallSiteMap[FuncInfo.getMBB(EHPadBB)].push_back(CallSiteIndex);
8998
8999 // Now that the call site is handled, stop tracking it.
9000 FuncInfo.setCurrentCallSite(0);
9001 }
9002
9003 return DAG.getEHLabel(getCurSDLoc(), Chain, BeginLabel);
9004}
9005
9006SDValue SelectionDAGBuilder::lowerEndEH(SDValue Chain, const InvokeInst *II,
9007 const BasicBlock *EHPadBB,
9008 MCSymbol *BeginLabel) {
9009 assert(BeginLabel && "BeginLabel should've been set");
9010
9011 MachineFunction &MF = DAG.getMachineFunction();
9012
9013 // Insert a label at the end of the invoke call to mark the try range. This
9014 // can be used to detect deletion of the invoke via the MachineModuleInfo.
9015 MCSymbol *EndLabel = MF.getContext().createTempSymbol();
9016 Chain = DAG.getEHLabel(getCurSDLoc(), Chain, EndLabel);
9017
9018 // Inform MachineModuleInfo of range.
9019 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
9020 // There is a platform (e.g. wasm) that uses funclet style IR but does not
9021 // actually use outlined funclets and their LSDA info style.
9022 if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) {
9023 assert(II && "II should've been set");
9024 WinEHFuncInfo *EHInfo = MF.getWinEHFuncInfo();
9025 EHInfo->addIPToStateRange(II, BeginLabel, EndLabel);
9026 } else if (!isScopedEHPersonality(Pers)) {
9027 assert(EHPadBB);
9028 MF.addInvoke(FuncInfo.getMBB(EHPadBB), BeginLabel, EndLabel);
9029 }
9030
9031 return Chain;
9032}
9033
9034std::pair<SDValue, SDValue>
9036 const BasicBlock *EHPadBB) {
9037 MCSymbol *BeginLabel = nullptr;
9038
9039 if (EHPadBB) {
9040 // Both PendingLoads and PendingExports must be flushed here;
9041 // this call might not return.
9042 (void)getRoot();
9043 DAG.setRoot(lowerStartEH(getControlRoot(), EHPadBB, BeginLabel));
9044 CLI.setChain(getRoot());
9045 }
9046
9047 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9048 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
9049
9050 assert((CLI.IsTailCall || Result.second.getNode()) &&
9051 "Non-null chain expected with non-tail call!");
9052 assert((Result.second.getNode() || !Result.first.getNode()) &&
9053 "Null value expected with tail call!");
9054
9055 if (!Result.second.getNode()) {
9056 // As a special case, a null chain means that a tail call has been emitted
9057 // and the DAG root is already updated.
9058 HasTailCall = true;
9059
9060 // Since there's no actual continuation from this block, nothing can be
9061 // relying on us setting vregs for them.
9062 PendingExports.clear();
9063 } else {
9064 DAG.setRoot(Result.second);
9065 }
9066
9067 if (EHPadBB) {
9068 DAG.setRoot(lowerEndEH(getRoot(), cast_or_null<InvokeInst>(CLI.CB), EHPadBB,
9069 BeginLabel));
9070 Result.second = getRoot();
9071 }
9072
9073 return Result;
9074}
9075
9077 bool isMustTailCall = CB.isMustTailCall();
9078
9079 // Avoid emitting tail calls in functions with the disable-tail-calls
9080 // attribute.
9081 const Function *Caller = CB.getParent()->getParent();
9082 if (!isMustTailCall &&
9083 Caller->getFnAttribute("disable-tail-calls").getValueAsBool())
9084 return false;
9085
9086 // We can't tail call inside a function with a swifterror argument. Lowering
9087 // does not support this yet. It would have to move into the swifterror
9088 // register before the call.
9089 if (DAG.getTargetLoweringInfo().supportSwiftError() &&
9090 Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError))
9091 return false;
9092
9093 // Check if target-independent constraints permit a tail call here.
9094 // Target-dependent constraints are checked within TLI->LowerCallTo.
9095 return isInTailCallPosition(CB, DAG.getTarget());
9096}
9097
9099 bool isTailCall, bool isMustTailCall,
9100 const BasicBlock *EHPadBB,
9101 const TargetLowering::PtrAuthInfo *PAI) {
9102 auto &DL = DAG.getDataLayout();
9103 FunctionType *FTy = CB.getFunctionType();
9104 Type *RetTy = CB.getType();
9105
9107 Args.reserve(CB.arg_size());
9108
9109 const Value *SwiftErrorVal = nullptr;
9110 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9111
9112 if (isTailCall)
9113 isTailCall = canTailCall(CB);
9114
9115 for (auto I = CB.arg_begin(), E = CB.arg_end(); I != E; ++I) {
9116 const Value *V = *I;
9117
9118 // Skip empty types
9119 if (V->getType()->isEmptyTy())
9120 continue;
9121
9122 SDValue ArgNode = getValue(V);
9123 TargetLowering::ArgListEntry Entry(ArgNode, V->getType());
9124 Entry.setAttributes(&CB, I - CB.arg_begin());
9125
9126 // Use swifterror virtual register as input to the call.
9127 if (Entry.IsSwiftError && TLI.supportSwiftError()) {
9128 SwiftErrorVal = V;
9129 // We find the virtual register for the actual swifterror argument.
9130 // Instead of using the Value, we use the virtual register instead.
9131 Entry.Node =
9132 DAG.getRegister(SwiftError.getOrCreateVRegUseAt(&CB, FuncInfo.MBB, V),
9133 EVT(TLI.getPointerTy(DL)));
9134 }
9135
9136 Args.push_back(Entry);
9137
9138 // If we have an explicit sret argument that is an Instruction, (i.e., it
9139 // might point to function-local memory), we can't meaningfully tail-call.
9140 if (Entry.IsSRet && isa<Instruction>(V))
9141 isTailCall = false;
9142 }
9143
9144 // If call site has a cfguardtarget operand bundle, create and add an
9145 // additional ArgListEntry.
9146 if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_cfguardtarget)) {
9147 Value *V = Bundle->Inputs[0];
9149 Entry.IsCFGuardTarget = true;
9150 Args.push_back(Entry);
9151 }
9152
9153 // Disable tail calls if there is an swifterror argument. Targets have not
9154 // been updated to support tail calls.
9155 if (TLI.supportSwiftError() && SwiftErrorVal)
9156 isTailCall = false;
9157
9158 ConstantInt *CFIType = nullptr;
9159 if (CB.isIndirectCall()) {
9160 if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_kcfi)) {
9161 if (!TLI.supportKCFIBundles())
9163 "Target doesn't support calls with kcfi operand bundles.");
9164 CFIType = cast<ConstantInt>(Bundle->Inputs[0]);
9165 assert(CFIType->getType()->isIntegerTy(32) && "Invalid CFI type");
9166 }
9167 }
9168
9169 SDValue ConvControlToken;
9170 if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_convergencectrl)) {
9171 auto *Token = Bundle->Inputs[0].get();
9172 ConvControlToken = getValue(Token);
9173 }
9174
9175 GlobalValue *DeactivationSymbol = nullptr;
9177 DeactivationSymbol = cast<GlobalValue>(Bundle->Inputs[0].get());
9178 }
9179
9182 .setChain(getRoot())
9183 .setCallee(RetTy, FTy, Callee, std::move(Args), CB)
9184 .setTailCall(isTailCall)
9188 .setCFIType(CFIType)
9189 .setConvergenceControlToken(ConvControlToken)
9190 .setDeactivationSymbol(DeactivationSymbol);
9191
9192 // Set the pointer authentication info if we have it.
9193 if (PAI) {
9194 if (!TLI.supportPtrAuthBundles())
9196 "This target doesn't support calls with ptrauth operand bundles.");
9197 CLI.setPtrAuth(*PAI);
9198 }
9199
9200 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
9201
9202 if (Result.first.getNode()) {
9203 Result.first = lowerRangeToAssertZExt(DAG, CB, Result.first);
9204 Result.first = lowerNoFPClassToAssertNoFPClass(DAG, CB, Result.first);
9205 setValue(&CB, Result.first);
9206 }
9207
9208 // The last element of CLI.InVals has the SDValue for swifterror return.
9209 // Here we copy it to a virtual register and update SwiftErrorMap for
9210 // book-keeping.
9211 if (SwiftErrorVal && TLI.supportSwiftError()) {
9212 // Get the last element of InVals.
9213 SDValue Src = CLI.InVals.back();
9214 Register VReg =
9215 SwiftError.getOrCreateVRegDefAt(&CB, FuncInfo.MBB, SwiftErrorVal);
9216 SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src);
9217 DAG.setRoot(CopyNode);
9218 }
9219}
9220
9221static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
9222 SelectionDAGBuilder &Builder) {
9223 // Check to see if this load can be trivially constant folded, e.g. if the
9224 // input is from a string literal.
9225 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
9226 // Cast pointer to the type we really want to load.
9227 Type *LoadTy =
9228 Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits());
9229 if (LoadVT.isVector())
9230 LoadTy = FixedVectorType::get(LoadTy, LoadVT.getVectorNumElements());
9231 if (const Constant *LoadCst =
9232 ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput),
9233 LoadTy, Builder.DAG.getDataLayout()))
9234 return Builder.getValue(LoadCst);
9235 }
9236
9237 // Otherwise, we have to emit the load. If the pointer is to unfoldable but
9238 // still constant memory, the input chain can be the entry node.
9239 SDValue Root;
9240 bool ConstantMemory = false;
9241
9242 // Do not serialize (non-volatile) loads of constant memory with anything.
9243 if (Builder.BatchAA && Builder.BatchAA->pointsToConstantMemory(PtrVal)) {
9244 Root = Builder.DAG.getEntryNode();
9245 ConstantMemory = true;
9246 } else {
9247 // Do not serialize non-volatile loads against each other.
9248 Root = Builder.DAG.getRoot();
9249 }
9250
9251 SDValue Ptr = Builder.getValue(PtrVal);
9252 SDValue LoadVal =
9253 Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, Ptr,
9254 MachinePointerInfo(PtrVal), Align(1));
9255
9256 if (!ConstantMemory)
9257 Builder.PendingLoads.push_back(LoadVal.getValue(1));
9258 return LoadVal;
9259}
9260
9261/// Record the value for an instruction that produces an integer result,
9262/// converting the type where necessary.
9263void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I,
9264 SDValue Value,
9265 bool IsSigned) {
9266 EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
9267 I.getType(), true);
9268 Value = DAG.getExtOrTrunc(IsSigned, Value, getCurSDLoc(), VT);
9269 setValue(&I, Value);
9270}
9271
9272/// See if we can lower a memcmp/bcmp call into an optimized form. If so, return
9273/// true and lower it. Otherwise return false, and it will be lowered like a
9274/// normal call.
9275/// The caller already checked that \p I calls the appropriate LibFunc with a
9276/// correct prototype.
9277bool SelectionDAGBuilder::visitMemCmpBCmpCall(const CallInst &I) {
9278 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
9279 const Value *Size = I.getArgOperand(2);
9280 const ConstantSDNode *CSize = dyn_cast<ConstantSDNode>(getValue(Size));
9281 if (CSize && CSize->getZExtValue() == 0) {
9282 EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
9283 I.getType(), true);
9284 setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT));
9285 return true;
9286 }
9287
9288 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
9289 std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp(
9290 DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS),
9291 getValue(Size), &I);
9292 if (Res.first.getNode()) {
9293 processIntegerCallValue(I, Res.first, true);
9294 PendingLoads.push_back(Res.second);
9295 return true;
9296 }
9297
9298 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0
9299 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0
9300 if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I))
9301 return false;
9302
9303 // If the target has a fast compare for the given size, it will return a
9304 // preferred load type for that size. Require that the load VT is legal and
9305 // that the target supports unaligned loads of that type. Otherwise, return
9306 // INVALID.
9307 auto hasFastLoadsAndCompare = [&](unsigned NumBits) {
9308 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9309 MVT LVT = TLI.hasFastEqualityCompare(NumBits);
9310 if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) {
9311 // TODO: Handle 5 byte compare as 4-byte + 1 byte.
9312 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
9313 // TODO: Check alignment of src and dest ptrs.
9314 unsigned DstAS = LHS->getType()->getPointerAddressSpace();
9315 unsigned SrcAS = RHS->getType()->getPointerAddressSpace();
9316 if (!TLI.isTypeLegal(LVT) ||
9317 !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) ||
9318 !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS))
9320 }
9321
9322 return LVT;
9323 };
9324
9325 // This turns into unaligned loads. We only do this if the target natively
9326 // supports the MVT we'll be loading or if it is small enough (<= 4) that
9327 // we'll only produce a small number of byte loads.
9328 MVT LoadVT;
9329 unsigned NumBitsToCompare = CSize->getZExtValue() * 8;
9330 switch (NumBitsToCompare) {
9331 default:
9332 return false;
9333 case 16:
9334 LoadVT = MVT::i16;
9335 break;
9336 case 32:
9337 LoadVT = MVT::i32;
9338 break;
9339 case 64:
9340 case 128:
9341 case 256:
9342 LoadVT = hasFastLoadsAndCompare(NumBitsToCompare);
9343 break;
9344 }
9345
9346 if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE)
9347 return false;
9348
9349 SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this);
9350 SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this);
9351
9352 // Bitcast to a wide integer type if the loads are vectors.
9353 if (LoadVT.isVector()) {
9354 EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits());
9355 LoadL = DAG.getBitcast(CmpVT, LoadL);
9356 LoadR = DAG.getBitcast(CmpVT, LoadR);
9357 }
9358
9359 SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE);
9360 processIntegerCallValue(I, Cmp, false);
9361 return true;
9362}
9363
9364/// See if we can lower a memchr call into an optimized form. If so, return
9365/// true and lower it. Otherwise return false, and it will be lowered like a
9366/// normal call.
9367/// The caller already checked that \p I calls the appropriate LibFunc with a
9368/// correct prototype.
9369bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) {
9370 const Value *Src = I.getArgOperand(0);
9371 const Value *Char = I.getArgOperand(1);
9372 const Value *Length = I.getArgOperand(2);
9373
9374 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
9375 std::pair<SDValue, SDValue> Res =
9376 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(),
9377 getValue(Src), getValue(Char), getValue(Length),
9378 MachinePointerInfo(Src));
9379 if (Res.first.getNode()) {
9380 setValue(&I, Res.first);
9381 PendingLoads.push_back(Res.second);
9382 return true;
9383 }
9384
9385 return false;
9386}
9387
9388/// See if we can lower a mempcpy call into an optimized form. If so, return
9389/// true and lower it. Otherwise return false, and it will be lowered like a
9390/// normal call.
9391/// The caller already checked that \p I calls the appropriate LibFunc with a
9392/// correct prototype.
9393bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) {
9394 SDValue Dst = getValue(I.getArgOperand(0));
9395 SDValue Src = getValue(I.getArgOperand(1));
9396 SDValue Size = getValue(I.getArgOperand(2));
9397
9398 Align DstAlign = DAG.InferPtrAlign(Dst).valueOrOne();
9399 Align SrcAlign = DAG.InferPtrAlign(Src).valueOrOne();
9400 // DAG::getMemcpy needs Alignment to be defined.
9401 Align Alignment = std::min(DstAlign, SrcAlign);
9402
9403 SDLoc sdl = getCurSDLoc();
9404
9405 // In the mempcpy context we need to pass in a false value for isTailCall
9406 // because the return pointer needs to be adjusted by the size of
9407 // the copied memory.
9408 SDValue Root = getMemoryRoot();
9409 SDValue MC = DAG.getMemcpy(
9410 Root, sdl, Dst, Src, Size, Alignment, false, false, /*CI=*/nullptr,
9411 std::nullopt, MachinePointerInfo(I.getArgOperand(0)),
9412 MachinePointerInfo(I.getArgOperand(1)), I.getAAMetadata());
9413 assert(MC.getNode() != nullptr &&
9414 "** memcpy should not be lowered as TailCall in mempcpy context **");
9415 DAG.setRoot(MC);
9416
9417 // Check if Size needs to be truncated or extended.
9418 Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType());
9419
9420 // Adjust return pointer to point just past the last dst byte.
9421 SDValue DstPlusSize = DAG.getMemBasePlusOffset(Dst, Size, sdl);
9422 setValue(&I, DstPlusSize);
9423 return true;
9424}
9425
9426/// See if we can lower a strcpy call into an optimized form. If so, return
9427/// true and lower it, otherwise return false and it will be lowered like a
9428/// normal call.
9429/// The caller already checked that \p I calls the appropriate LibFunc with a
9430/// correct prototype.
9431bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) {
9432 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
9433
9434 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
9435 std::pair<SDValue, SDValue> Res =
9437 getValue(Arg0), getValue(Arg1),
9438 MachinePointerInfo(Arg0),
9439 MachinePointerInfo(Arg1), isStpcpy);
9440 if (Res.first.getNode()) {
9441 setValue(&I, Res.first);
9442 DAG.setRoot(Res.second);
9443 return true;
9444 }
9445
9446 return false;
9447}
9448
9449/// See if we can lower a strcmp call into an optimized form. If so, return
9450/// true and lower it, otherwise return false and it will be lowered like a
9451/// normal call.
9452/// The caller already checked that \p I calls the appropriate LibFunc with a
9453/// correct prototype.
9454bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) {
9455 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
9456
9457 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
9458 std::pair<SDValue, SDValue> Res =
9459 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(),
9460 getValue(Arg0), getValue(Arg1),
9461 MachinePointerInfo(Arg0),
9462 MachinePointerInfo(Arg1));
9463 if (Res.first.getNode()) {
9464 processIntegerCallValue(I, Res.first, true);
9465 PendingLoads.push_back(Res.second);
9466 return true;
9467 }
9468
9469 return false;
9470}
9471
9472/// See if we can lower a strlen call into an optimized form. If so, return
9473/// true and lower it, otherwise return false and it will be lowered like a
9474/// normal call.
9475/// The caller already checked that \p I calls the appropriate LibFunc with a
9476/// correct prototype.
9477bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) {
9478 const Value *Arg0 = I.getArgOperand(0);
9479
9480 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
9481 std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForStrlen(
9482 DAG, getCurSDLoc(), DAG.getRoot(), getValue(Arg0), &I);
9483 if (Res.first.getNode()) {
9484 processIntegerCallValue(I, Res.first, false);
9485 PendingLoads.push_back(Res.second);
9486 return true;
9487 }
9488
9489 return false;
9490}
9491
9492/// See if we can lower a strnlen call into an optimized form. If so, return
9493/// true and lower it, otherwise return false and it will be lowered like a
9494/// normal call.
9495/// The caller already checked that \p I calls the appropriate LibFunc with a
9496/// correct prototype.
9497bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) {
9498 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
9499
9500 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
9501 std::pair<SDValue, SDValue> Res =
9502 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(),
9503 getValue(Arg0), getValue(Arg1),
9504 MachinePointerInfo(Arg0));
9505 if (Res.first.getNode()) {
9506 processIntegerCallValue(I, Res.first, false);
9507 PendingLoads.push_back(Res.second);
9508 return true;
9509 }
9510
9511 return false;
9512}
9513
9514/// See if we can lower a unary floating-point operation into an SDNode with
9515/// the specified Opcode. If so, return true and lower it, otherwise return
9516/// false and it will be lowered like a normal call.
9517/// The caller already checked that \p I calls the appropriate LibFunc with a
9518/// correct prototype.
9519bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I,
9520 unsigned Opcode) {
9521 // We already checked this call's prototype; verify it doesn't modify errno.
9522 // Do not perform optimizations for call sites that require strict
9523 // floating-point semantics.
9524 if (!I.onlyReadsMemory() || I.isStrictFP())
9525 return false;
9526
9527 SDNodeFlags Flags;
9528 Flags.copyFMF(cast<FPMathOperator>(I));
9529
9530 SDValue Tmp = getValue(I.getArgOperand(0));
9531 setValue(&I,
9532 DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp, Flags));
9533 return true;
9534}
9535
9536/// See if we can lower a binary floating-point operation into an SDNode with
9537/// the specified Opcode. If so, return true and lower it. Otherwise return
9538/// false, and it will be lowered like a normal call.
9539/// The caller already checked that \p I calls the appropriate LibFunc with a
9540/// correct prototype.
9541bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I,
9542 unsigned Opcode) {
9543 // We already checked this call's prototype; verify it doesn't modify errno.
9544 // Do not perform optimizations for call sites that require strict
9545 // floating-point semantics.
9546 if (!I.onlyReadsMemory() || I.isStrictFP())
9547 return false;
9548
9549 SDNodeFlags Flags;
9550 Flags.copyFMF(cast<FPMathOperator>(I));
9551
9552 SDValue Tmp0 = getValue(I.getArgOperand(0));
9553 SDValue Tmp1 = getValue(I.getArgOperand(1));
9554 EVT VT = Tmp0.getValueType();
9555 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1, Flags));
9556 return true;
9557}
9558
9559void SelectionDAGBuilder::visitCall(const CallInst &I) {
9560 // Handle inline assembly differently.
9561 if (I.isInlineAsm()) {
9562 visitInlineAsm(I);
9563 return;
9564 }
9565
9567
9568 if (Function *F = I.getCalledFunction()) {
9569 if (F->isDeclaration()) {
9570 // Is this an LLVM intrinsic?
9571 if (unsigned IID = F->getIntrinsicID()) {
9572 visitIntrinsicCall(I, IID);
9573 return;
9574 }
9575 }
9576
9577 // Check for well-known libc/libm calls. If the function is internal, it
9578 // can't be a library call. Don't do the check if marked as nobuiltin for
9579 // some reason.
9580 // This code should not handle libcalls that are already canonicalized to
9581 // intrinsics by the middle-end.
9582 LibFunc Func;
9583 if (!I.isNoBuiltin() && !F->hasLocalLinkage() && F->hasName() &&
9584 LibInfo->getLibFunc(*F, Func) && LibInfo->hasOptimizedCodeGen(Func)) {
9585 switch (Func) {
9586 default: break;
9587 case LibFunc_bcmp:
9588 if (visitMemCmpBCmpCall(I))
9589 return;
9590 break;
9591 case LibFunc_copysign:
9592 case LibFunc_copysignf:
9593 case LibFunc_copysignl:
9594 // We already checked this call's prototype; verify it doesn't modify
9595 // errno.
9596 if (I.onlyReadsMemory()) {
9597 SDValue LHS = getValue(I.getArgOperand(0));
9598 SDValue RHS = getValue(I.getArgOperand(1));
9600 LHS.getValueType(), LHS, RHS));
9601 return;
9602 }
9603 break;
9604 case LibFunc_fabs:
9605 case LibFunc_fabsf:
9606 case LibFunc_fabsl:
9607 // TODO: Remove this, already canonicalized by the middle-end.
9608 if (visitUnaryFloatCall(I, ISD::FABS))
9609 return;
9610 break;
9611 case LibFunc_sin:
9612 case LibFunc_sinf:
9613 case LibFunc_sinl:
9614 if (visitUnaryFloatCall(I, ISD::FSIN))
9615 return;
9616 break;
9617 case LibFunc_cos:
9618 case LibFunc_cosf:
9619 case LibFunc_cosl:
9620 if (visitUnaryFloatCall(I, ISD::FCOS))
9621 return;
9622 break;
9623 case LibFunc_tan:
9624 case LibFunc_tanf:
9625 case LibFunc_tanl:
9626 if (visitUnaryFloatCall(I, ISD::FTAN))
9627 return;
9628 break;
9629 case LibFunc_asin:
9630 case LibFunc_asinf:
9631 case LibFunc_asinl:
9632 if (visitUnaryFloatCall(I, ISD::FASIN))
9633 return;
9634 break;
9635 case LibFunc_acos:
9636 case LibFunc_acosf:
9637 case LibFunc_acosl:
9638 if (visitUnaryFloatCall(I, ISD::FACOS))
9639 return;
9640 break;
9641 case LibFunc_atan:
9642 case LibFunc_atanf:
9643 case LibFunc_atanl:
9644 if (visitUnaryFloatCall(I, ISD::FATAN))
9645 return;
9646 break;
9647 case LibFunc_atan2:
9648 case LibFunc_atan2f:
9649 case LibFunc_atan2l:
9650 if (visitBinaryFloatCall(I, ISD::FATAN2))
9651 return;
9652 break;
9653 case LibFunc_sinh:
9654 case LibFunc_sinhf:
9655 case LibFunc_sinhl:
9656 if (visitUnaryFloatCall(I, ISD::FSINH))
9657 return;
9658 break;
9659 case LibFunc_cosh:
9660 case LibFunc_coshf:
9661 case LibFunc_coshl:
9662 if (visitUnaryFloatCall(I, ISD::FCOSH))
9663 return;
9664 break;
9665 case LibFunc_tanh:
9666 case LibFunc_tanhf:
9667 case LibFunc_tanhl:
9668 if (visitUnaryFloatCall(I, ISD::FTANH))
9669 return;
9670 break;
9671 case LibFunc_sqrt:
9672 case LibFunc_sqrtf:
9673 case LibFunc_sqrtl:
9674 case LibFunc_sqrt_finite:
9675 case LibFunc_sqrtf_finite:
9676 case LibFunc_sqrtl_finite:
9677 if (visitUnaryFloatCall(I, ISD::FSQRT))
9678 return;
9679 break;
9680 case LibFunc_log2:
9681 case LibFunc_log2f:
9682 case LibFunc_log2l:
9683 if (visitUnaryFloatCall(I, ISD::FLOG2))
9684 return;
9685 break;
9686 case LibFunc_exp2:
9687 case LibFunc_exp2f:
9688 case LibFunc_exp2l:
9689 if (visitUnaryFloatCall(I, ISD::FEXP2))
9690 return;
9691 break;
9692 case LibFunc_exp10:
9693 case LibFunc_exp10f:
9694 case LibFunc_exp10l:
9695 if (visitUnaryFloatCall(I, ISD::FEXP10))
9696 return;
9697 break;
9698 case LibFunc_ldexp:
9699 case LibFunc_ldexpf:
9700 case LibFunc_ldexpl:
9701 if (visitBinaryFloatCall(I, ISD::FLDEXP))
9702 return;
9703 break;
9704 case LibFunc_memcmp:
9705 if (visitMemCmpBCmpCall(I))
9706 return;
9707 break;
9708 case LibFunc_mempcpy:
9709 if (visitMemPCpyCall(I))
9710 return;
9711 break;
9712 case LibFunc_memchr:
9713 if (visitMemChrCall(I))
9714 return;
9715 break;
9716 case LibFunc_strcpy:
9717 if (visitStrCpyCall(I, false))
9718 return;
9719 break;
9720 case LibFunc_stpcpy:
9721 if (visitStrCpyCall(I, true))
9722 return;
9723 break;
9724 case LibFunc_strcmp:
9725 if (visitStrCmpCall(I))
9726 return;
9727 break;
9728 case LibFunc_strlen:
9729 if (visitStrLenCall(I))
9730 return;
9731 break;
9732 case LibFunc_strnlen:
9733 if (visitStrNLenCall(I))
9734 return;
9735 break;
9736 }
9737 }
9738 }
9739
9740 if (I.countOperandBundlesOfType(LLVMContext::OB_ptrauth)) {
9741 LowerCallSiteWithPtrAuthBundle(cast<CallBase>(I), /*EHPadBB=*/nullptr);
9742 return;
9743 }
9744
9745 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
9746 // have to do anything here to lower funclet bundles.
9747 // CFGuardTarget bundles are lowered in LowerCallTo.
9749 I, "calls",
9754
9755 SDValue Callee = getValue(I.getCalledOperand());
9756
9757 if (I.hasDeoptState())
9758 LowerCallSiteWithDeoptBundle(&I, Callee, nullptr);
9759 else
9760 // Check if we can potentially perform a tail call. More detailed checking
9761 // is be done within LowerCallTo, after more information about the call is
9762 // known.
9763 LowerCallTo(I, Callee, I.isTailCall(), I.isMustTailCall());
9764}
9765
9767 const CallBase &CB, const BasicBlock *EHPadBB) {
9768 auto PAB = CB.getOperandBundle("ptrauth");
9769 const Value *CalleeV = CB.getCalledOperand();
9770
9771 // Gather the call ptrauth data from the operand bundle:
9772 // [ i32 <key>, i64 <discriminator> ]
9773 const auto *Key = cast<ConstantInt>(PAB->Inputs[0]);
9774 const Value *Discriminator = PAB->Inputs[1];
9775
9776 assert(Key->getType()->isIntegerTy(32) && "Invalid ptrauth key");
9777 assert(Discriminator->getType()->isIntegerTy(64) &&
9778 "Invalid ptrauth discriminator");
9779
9780 // Look through ptrauth constants to find the raw callee.
9781 // Do a direct unauthenticated call if we found it and everything matches.
9782 if (const auto *CalleeCPA = dyn_cast<ConstantPtrAuth>(CalleeV))
9783 if (CalleeCPA->isKnownCompatibleWith(Key, Discriminator,
9784 DAG.getDataLayout()))
9785 return LowerCallTo(CB, getValue(CalleeCPA->getPointer()), CB.isTailCall(),
9786 CB.isMustTailCall(), EHPadBB);
9787
9788 // Functions should never be ptrauth-called directly.
9789 assert(!isa<Function>(CalleeV) && "invalid direct ptrauth call");
9790
9791 // Otherwise, do an authenticated indirect call.
9792 TargetLowering::PtrAuthInfo PAI = {Key->getZExtValue(),
9793 getValue(Discriminator)};
9794
9795 LowerCallTo(CB, getValue(CalleeV), CB.isTailCall(), CB.isMustTailCall(),
9796 EHPadBB, &PAI);
9797}
9798
9799namespace {
9800
9801/// AsmOperandInfo - This contains information for each constraint that we are
9802/// lowering.
9803class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
9804public:
9805 /// CallOperand - If this is the result output operand or a clobber
9806 /// this is null, otherwise it is the incoming operand to the CallInst.
9807 /// This gets modified as the asm is processed.
9808 SDValue CallOperand;
9809
9810 /// AssignedRegs - If this is a register or register class operand, this
9811 /// contains the set of register corresponding to the operand.
9812 RegsForValue AssignedRegs;
9813
9814 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
9815 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) {
9816 }
9817
9818 /// Whether or not this operand accesses memory
9819 bool hasMemory(const TargetLowering &TLI) const {
9820 // Indirect operand accesses access memory.
9821 if (isIndirect)
9822 return true;
9823
9824 for (const auto &Code : Codes)
9826 return true;
9827
9828 return false;
9829 }
9830};
9831
9832
9833} // end anonymous namespace
9834
9835/// Make sure that the output operand \p OpInfo and its corresponding input
9836/// operand \p MatchingOpInfo have compatible constraint types (otherwise error
9837/// out).
9838static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo,
9839 SDISelAsmOperandInfo &MatchingOpInfo,
9840 SelectionDAG &DAG) {
9841 if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT)
9842 return;
9843
9845 const auto &TLI = DAG.getTargetLoweringInfo();
9846
9847 std::pair<unsigned, const TargetRegisterClass *> MatchRC =
9848 TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
9849 OpInfo.ConstraintVT);
9850 std::pair<unsigned, const TargetRegisterClass *> InputRC =
9851 TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode,
9852 MatchingOpInfo.ConstraintVT);
9853 const bool OutOpIsIntOrFP =
9854 OpInfo.ConstraintVT.isInteger() || OpInfo.ConstraintVT.isFloatingPoint();
9855 const bool InOpIsIntOrFP = MatchingOpInfo.ConstraintVT.isInteger() ||
9856 MatchingOpInfo.ConstraintVT.isFloatingPoint();
9857 if ((OutOpIsIntOrFP != InOpIsIntOrFP) || (MatchRC.second != InputRC.second)) {
9858 // FIXME: error out in a more elegant fashion
9859 report_fatal_error("Unsupported asm: input constraint"
9860 " with a matching output constraint of"
9861 " incompatible type!");
9862 }
9863 MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT;
9864}
9865
9866/// Get a direct memory input to behave well as an indirect operand.
9867/// This may introduce stores, hence the need for a \p Chain.
9868/// \return The (possibly updated) chain.
9869static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location,
9870 SDISelAsmOperandInfo &OpInfo,
9871 SelectionDAG &DAG) {
9872 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9873
9874 // If we don't have an indirect input, put it in the constpool if we can,
9875 // otherwise spill it to a stack slot.
9876 // TODO: This isn't quite right. We need to handle these according to
9877 // the addressing mode that the constraint wants. Also, this may take
9878 // an additional register for the computation and we don't want that
9879 // either.
9880
9881 // If the operand is a float, integer, or vector constant, spill to a
9882 // constant pool entry to get its address.
9883 const Value *OpVal = OpInfo.CallOperandVal;
9884 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
9886 OpInfo.CallOperand = DAG.getConstantPool(
9887 cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout()));
9888 return Chain;
9889 }
9890
9891 // Otherwise, create a stack slot and emit a store to it before the asm.
9892 Type *Ty = OpVal->getType();
9893 auto &DL = DAG.getDataLayout();
9894 TypeSize TySize = DL.getTypeAllocSize(Ty);
9897 int StackID = 0;
9898 if (TySize.isScalable())
9899 StackID = TFI->getStackIDForScalableVectors();
9900 int SSFI = MF.getFrameInfo().CreateStackObject(TySize.getKnownMinValue(),
9901 DL.getPrefTypeAlign(Ty), false,
9902 nullptr, StackID);
9903 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL));
9904 Chain = DAG.getTruncStore(Chain, Location, OpInfo.CallOperand, StackSlot,
9906 TLI.getMemValueType(DL, Ty));
9907 OpInfo.CallOperand = StackSlot;
9908
9909 return Chain;
9910}
9911
9912/// GetRegistersForValue - Assign registers (virtual or physical) for the
9913/// specified operand. We prefer to assign virtual registers, to allow the
9914/// register allocator to handle the assignment process. However, if the asm
9915/// uses features that we can't model on machineinstrs, we have SDISel do the
9916/// allocation. This produces generally horrible, but correct, code.
9917///
9918/// OpInfo describes the operand
9919/// RefOpInfo describes the matching operand if any, the operand otherwise
9920static std::optional<unsigned>
9922 SDISelAsmOperandInfo &OpInfo,
9923 SDISelAsmOperandInfo &RefOpInfo) {
9924 LLVMContext &Context = *DAG.getContext();
9925 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9926
9930
9931 // No work to do for memory/address operands.
9932 if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
9933 OpInfo.ConstraintType == TargetLowering::C_Address)
9934 return std::nullopt;
9935
9936 // If this is a constraint for a single physreg, or a constraint for a
9937 // register class, find it.
9938 unsigned AssignedReg;
9939 const TargetRegisterClass *RC;
9940 std::tie(AssignedReg, RC) = TLI.getRegForInlineAsmConstraint(
9941 &TRI, RefOpInfo.ConstraintCode, RefOpInfo.ConstraintVT);
9942 // RC is unset only on failure. Return immediately.
9943 if (!RC)
9944 return std::nullopt;
9945
9946 // Get the actual register value type. This is important, because the user
9947 // may have asked for (e.g.) the AX register in i32 type. We need to
9948 // remember that AX is actually i16 to get the right extension.
9949 const MVT RegVT = *TRI.legalclasstypes_begin(*RC);
9950
9951 if (OpInfo.ConstraintVT != MVT::Other && RegVT != MVT::Untyped) {
9952 // If this is an FP operand in an integer register (or visa versa), or more
9953 // generally if the operand value disagrees with the register class we plan
9954 // to stick it in, fix the operand type.
9955 //
9956 // If this is an input value, the bitcast to the new type is done now.
9957 // Bitcast for output value is done at the end of visitInlineAsm().
9958 if ((OpInfo.Type == InlineAsm::isOutput ||
9959 OpInfo.Type == InlineAsm::isInput) &&
9960 !TRI.isTypeLegalForClass(*RC, OpInfo.ConstraintVT)) {
9961 // Try to convert to the first EVT that the reg class contains. If the
9962 // types are identical size, use a bitcast to convert (e.g. two differing
9963 // vector types). Note: output bitcast is done at the end of
9964 // visitInlineAsm().
9965 if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) {
9966 // Exclude indirect inputs while they are unsupported because the code
9967 // to perform the load is missing and thus OpInfo.CallOperand still
9968 // refers to the input address rather than the pointed-to value.
9969 if (OpInfo.Type == InlineAsm::isInput && !OpInfo.isIndirect)
9970 OpInfo.CallOperand =
9971 DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand);
9972 OpInfo.ConstraintVT = RegVT;
9973 // If the operand is an FP value and we want it in integer registers,
9974 // use the corresponding integer type. This turns an f64 value into
9975 // i64, which can be passed with two i32 values on a 32-bit machine.
9976 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
9977 MVT VT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits());
9978 if (OpInfo.Type == InlineAsm::isInput)
9979 OpInfo.CallOperand =
9980 DAG.getNode(ISD::BITCAST, DL, VT, OpInfo.CallOperand);
9981 OpInfo.ConstraintVT = VT;
9982 }
9983 }
9984 }
9985
9986 // No need to allocate a matching input constraint since the constraint it's
9987 // matching to has already been allocated.
9988 if (OpInfo.isMatchingInputConstraint())
9989 return std::nullopt;
9990
9991 EVT ValueVT = OpInfo.ConstraintVT;
9992 if (OpInfo.ConstraintVT == MVT::Other)
9993 ValueVT = RegVT;
9994
9995 // Initialize NumRegs.
9996 unsigned NumRegs = 1;
9997 if (OpInfo.ConstraintVT != MVT::Other)
9998 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT, RegVT);
9999
10000 // If this is a constraint for a specific physical register, like {r17},
10001 // assign it now.
10002
10003 // If this associated to a specific register, initialize iterator to correct
10004 // place. If virtual, make sure we have enough registers
10005
10006 // Initialize iterator if necessary
10009
10010 // Do not check for single registers.
10011 if (AssignedReg) {
10012 I = std::find(I, RC->end(), AssignedReg);
10013 if (I == RC->end()) {
10014 // RC does not contain the selected register, which indicates a
10015 // mismatch between the register and the required type/bitwidth.
10016 return {AssignedReg};
10017 }
10018 }
10019
10020 for (; NumRegs; --NumRegs, ++I) {
10021 assert(I != RC->end() && "Ran out of registers to allocate!");
10022 Register R = AssignedReg ? Register(*I) : RegInfo.createVirtualRegister(RC);
10023 Regs.push_back(R);
10024 }
10025
10026 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
10027 return std::nullopt;
10028}
10029
10030static unsigned
10032 const std::vector<SDValue> &AsmNodeOperands) {
10033 // Scan until we find the definition we already emitted of this operand.
10034 unsigned CurOp = InlineAsm::Op_FirstOperand;
10035 for (; OperandNo; --OperandNo) {
10036 // Advance to the next operand.
10037 unsigned OpFlag = AsmNodeOperands[CurOp]->getAsZExtVal();
10038 const InlineAsm::Flag F(OpFlag);
10039 assert(
10040 (F.isRegDefKind() || F.isRegDefEarlyClobberKind() || F.isMemKind()) &&
10041 "Skipped past definitions?");
10042 CurOp += F.getNumOperandRegisters() + 1;
10043 }
10044 return CurOp;
10045}
10046
10047namespace {
10048
10049class ExtraFlags {
10050 unsigned Flags = 0;
10051
10052public:
10053 explicit ExtraFlags(const CallBase &Call) {
10054 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
10055 if (IA->hasSideEffects())
10057 if (IA->isAlignStack())
10059 if (Call.isConvergent())
10061 Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect;
10062 }
10063
10064 void update(const TargetLowering::AsmOperandInfo &OpInfo) {
10065 // Ideally, we would only check against memory constraints. However, the
10066 // meaning of an Other constraint can be target-specific and we can't easily
10067 // reason about it. Therefore, be conservative and set MayLoad/MayStore
10068 // for Other constraints as well.
10071 if (OpInfo.Type == InlineAsm::isInput)
10073 else if (OpInfo.Type == InlineAsm::isOutput)
10075 else if (OpInfo.Type == InlineAsm::isClobber)
10077 }
10078 }
10079
10080 unsigned get() const { return Flags; }
10081};
10082
10083} // end anonymous namespace
10084
10085static bool isFunction(SDValue Op) {
10086 if (Op && Op.getOpcode() == ISD::GlobalAddress) {
10087 if (auto *GA = dyn_cast<GlobalAddressSDNode>(Op)) {
10088 auto Fn = dyn_cast_or_null<Function>(GA->getGlobal());
10089
10090 // In normal "call dllimport func" instruction (non-inlineasm) it force
10091 // indirect access by specifing call opcode. And usually specially print
10092 // asm with indirect symbol (i.g: "*") according to opcode. Inline asm can
10093 // not do in this way now. (In fact, this is similar with "Data Access"
10094 // action). So here we ignore dllimport function.
10095 if (Fn && !Fn->hasDLLImportStorageClass())
10096 return true;
10097 }
10098 }
10099 return false;
10100}
10101
10102/// visitInlineAsm - Handle a call to an InlineAsm object.
10103void SelectionDAGBuilder::visitInlineAsm(const CallBase &Call,
10104 const BasicBlock *EHPadBB) {
10105 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
10106
10107 /// ConstraintOperands - Information about all of the constraints.
10108 SmallVector<SDISelAsmOperandInfo, 16> ConstraintOperands;
10109
10110 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10112 DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), Call);
10113
10114 // First Pass: Calculate HasSideEffects and ExtraFlags (AlignStack,
10115 // AsmDialect, MayLoad, MayStore).
10116 bool HasSideEffect = IA->hasSideEffects();
10117 ExtraFlags ExtraInfo(Call);
10118
10119 for (auto &T : TargetConstraints) {
10120 ConstraintOperands.push_back(SDISelAsmOperandInfo(T));
10121 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
10122
10123 if (OpInfo.CallOperandVal)
10124 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
10125
10126 if (!HasSideEffect)
10127 HasSideEffect = OpInfo.hasMemory(TLI);
10128
10129 // Determine if this InlineAsm MayLoad or MayStore based on the constraints.
10130 // FIXME: Could we compute this on OpInfo rather than T?
10131
10132 // Compute the constraint code and ConstraintType to use.
10134
10135 if (T.ConstraintType == TargetLowering::C_Immediate &&
10136 OpInfo.CallOperand && !isa<ConstantSDNode>(OpInfo.CallOperand))
10137 // We've delayed emitting a diagnostic like the "n" constraint because
10138 // inlining could cause an integer showing up.
10139 return emitInlineAsmError(Call, "constraint '" + Twine(T.ConstraintCode) +
10140 "' expects an integer constant "
10141 "expression");
10142
10143 ExtraInfo.update(T);
10144 }
10145
10146 // We won't need to flush pending loads if this asm doesn't touch
10147 // memory and is nonvolatile.
10148 SDValue Glue, Chain = (HasSideEffect) ? getRoot() : DAG.getRoot();
10149
10150 bool EmitEHLabels = isa<InvokeInst>(Call);
10151 if (EmitEHLabels) {
10152 assert(EHPadBB && "InvokeInst must have an EHPadBB");
10153 }
10154 bool IsCallBr = isa<CallBrInst>(Call);
10155
10156 if (IsCallBr || EmitEHLabels) {
10157 // If this is a callbr or invoke we need to flush pending exports since
10158 // inlineasm_br and invoke are terminators.
10159 // We need to do this before nodes are glued to the inlineasm_br node.
10160 Chain = getControlRoot();
10161 }
10162
10163 MCSymbol *BeginLabel = nullptr;
10164 if (EmitEHLabels) {
10165 Chain = lowerStartEH(Chain, EHPadBB, BeginLabel);
10166 }
10167
10168 int OpNo = -1;
10169 SmallVector<StringRef> AsmStrs;
10170 IA->collectAsmStrs(AsmStrs);
10171
10172 // Second pass over the constraints: compute which constraint option to use.
10173 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
10174 if (OpInfo.hasArg() || OpInfo.Type == InlineAsm::isOutput)
10175 OpNo++;
10176
10177 // If this is an output operand with a matching input operand, look up the
10178 // matching input. If their types mismatch, e.g. one is an integer, the
10179 // other is floating point, or their sizes are different, flag it as an
10180 // error.
10181 if (OpInfo.hasMatchingInput()) {
10182 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
10183 patchMatchingInput(OpInfo, Input, DAG);
10184 }
10185
10186 // Compute the constraint code and ConstraintType to use.
10187 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
10188
10189 if ((OpInfo.ConstraintType == TargetLowering::C_Memory &&
10190 OpInfo.Type == InlineAsm::isClobber) ||
10191 OpInfo.ConstraintType == TargetLowering::C_Address)
10192 continue;
10193
10194 // In Linux PIC model, there are 4 cases about value/label addressing:
10195 //
10196 // 1: Function call or Label jmp inside the module.
10197 // 2: Data access (such as global variable, static variable) inside module.
10198 // 3: Function call or Label jmp outside the module.
10199 // 4: Data access (such as global variable) outside the module.
10200 //
10201 // Due to current llvm inline asm architecture designed to not "recognize"
10202 // the asm code, there are quite troubles for us to treat mem addressing
10203 // differently for same value/adress used in different instuctions.
10204 // For example, in pic model, call a func may in plt way or direclty
10205 // pc-related, but lea/mov a function adress may use got.
10206 //
10207 // Here we try to "recognize" function call for the case 1 and case 3 in
10208 // inline asm. And try to adjust the constraint for them.
10209 //
10210 // TODO: Due to current inline asm didn't encourage to jmp to the outsider
10211 // label, so here we don't handle jmp function label now, but we need to
10212 // enhance it (especilly in PIC model) if we meet meaningful requirements.
10213 if (OpInfo.isIndirect && isFunction(OpInfo.CallOperand) &&
10214 TLI.isInlineAsmTargetBranch(AsmStrs, OpNo) &&
10215 TM.getCodeModel() != CodeModel::Large) {
10216 OpInfo.isIndirect = false;
10217 OpInfo.ConstraintType = TargetLowering::C_Address;
10218 }
10219
10220 // If this is a memory input, and if the operand is not indirect, do what we
10221 // need to provide an address for the memory input.
10222 if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
10223 !OpInfo.isIndirect) {
10224 assert((OpInfo.isMultipleAlternative ||
10225 (OpInfo.Type == InlineAsm::isInput)) &&
10226 "Can only indirectify direct input operands!");
10227
10228 // Memory operands really want the address of the value.
10229 Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG);
10230
10231 // There is no longer a Value* corresponding to this operand.
10232 OpInfo.CallOperandVal = nullptr;
10233
10234 // It is now an indirect operand.
10235 OpInfo.isIndirect = true;
10236 }
10237
10238 }
10239
10240 // AsmNodeOperands - The operands for the ISD::INLINEASM node.
10241 std::vector<SDValue> AsmNodeOperands;
10242 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain
10243 AsmNodeOperands.push_back(DAG.getTargetExternalSymbol(
10244 IA->getAsmString().data(), TLI.getProgramPointerTy(DAG.getDataLayout())));
10245
10246 // If we have a !srcloc metadata node associated with it, we want to attach
10247 // this to the ultimately generated inline asm machineinstr. To do this, we
10248 // pass in the third operand as this (potentially null) inline asm MDNode.
10249 const MDNode *SrcLoc = Call.getMetadata("srcloc");
10250 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
10251
10252 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore
10253 // bits as operand 3.
10254 AsmNodeOperands.push_back(DAG.getTargetConstant(
10255 ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
10256
10257 // Third pass: Loop over operands to prepare DAG-level operands.. As part of
10258 // this, assign virtual and physical registers for inputs and otput.
10259 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
10260 // Assign Registers.
10261 SDISelAsmOperandInfo &RefOpInfo =
10262 OpInfo.isMatchingInputConstraint()
10263 ? ConstraintOperands[OpInfo.getMatchedOperand()]
10264 : OpInfo;
10265 const auto RegError =
10266 getRegistersForValue(DAG, getCurSDLoc(), OpInfo, RefOpInfo);
10267 if (RegError) {
10268 const MachineFunction &MF = DAG.getMachineFunction();
10269 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
10270 const char *RegName = TRI.getName(*RegError);
10271 emitInlineAsmError(Call, "register '" + Twine(RegName) +
10272 "' allocated for constraint '" +
10273 Twine(OpInfo.ConstraintCode) +
10274 "' does not match required type");
10275 return;
10276 }
10277
10278 auto DetectWriteToReservedRegister = [&]() {
10279 const MachineFunction &MF = DAG.getMachineFunction();
10280 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
10281 for (Register Reg : OpInfo.AssignedRegs.Regs) {
10282 if (Reg.isPhysical() && TRI.isInlineAsmReadOnlyReg(MF, Reg)) {
10283 const char *RegName = TRI.getName(Reg);
10284 emitInlineAsmError(Call, "write to reserved register '" +
10285 Twine(RegName) + "'");
10286 return true;
10287 }
10288 }
10289 return false;
10290 };
10291 assert((OpInfo.ConstraintType != TargetLowering::C_Address ||
10292 (OpInfo.Type == InlineAsm::isInput &&
10293 !OpInfo.isMatchingInputConstraint())) &&
10294 "Only address as input operand is allowed.");
10295
10296 switch (OpInfo.Type) {
10298 if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
10299 const InlineAsm::ConstraintCode ConstraintID =
10300 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
10302 "Failed to convert memory constraint code to constraint id.");
10303
10304 // Add information to the INLINEASM node to know about this output.
10305 InlineAsm::Flag OpFlags(InlineAsm::Kind::Mem, 1);
10306 OpFlags.setMemConstraint(ConstraintID);
10307 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(),
10308 MVT::i32));
10309 AsmNodeOperands.push_back(OpInfo.CallOperand);
10310 } else {
10311 // Otherwise, this outputs to a register (directly for C_Register /
10312 // C_RegisterClass, and a target-defined fashion for
10313 // C_Immediate/C_Other). Find a register that we can use.
10314 if (OpInfo.AssignedRegs.Regs.empty()) {
10315 emitInlineAsmError(
10316 Call, "couldn't allocate output register for constraint '" +
10317 Twine(OpInfo.ConstraintCode) + "'");
10318 return;
10319 }
10320
10321 if (DetectWriteToReservedRegister())
10322 return;
10323
10324 // Add information to the INLINEASM node to know that this register is
10325 // set.
10326 OpInfo.AssignedRegs.AddInlineAsmOperands(
10327 OpInfo.isEarlyClobber ? InlineAsm::Kind::RegDefEarlyClobber
10329 false, 0, getCurSDLoc(), DAG, AsmNodeOperands);
10330 }
10331 break;
10332
10333 case InlineAsm::isInput:
10334 case InlineAsm::isLabel: {
10335 SDValue InOperandVal = OpInfo.CallOperand;
10336
10337 if (OpInfo.isMatchingInputConstraint()) {
10338 // If this is required to match an output register we have already set,
10339 // just use its register.
10340 auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(),
10341 AsmNodeOperands);
10342 InlineAsm::Flag Flag(AsmNodeOperands[CurOp]->getAsZExtVal());
10343 if (Flag.isRegDefKind() || Flag.isRegDefEarlyClobberKind()) {
10344 if (OpInfo.isIndirect) {
10345 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
10346 emitInlineAsmError(Call, "inline asm not supported yet: "
10347 "don't know how to handle tied "
10348 "indirect register inputs");
10349 return;
10350 }
10351
10353 MachineFunction &MF = DAG.getMachineFunction();
10354 MachineRegisterInfo &MRI = MF.getRegInfo();
10355 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
10356 auto *R = cast<RegisterSDNode>(AsmNodeOperands[CurOp+1]);
10357 Register TiedReg = R->getReg();
10358 MVT RegVT = R->getSimpleValueType(0);
10359 const TargetRegisterClass *RC =
10360 TiedReg.isVirtual() ? MRI.getRegClass(TiedReg)
10361 : RegVT != MVT::Untyped ? TLI.getRegClassFor(RegVT)
10362 : TRI.getMinimalPhysRegClass(TiedReg);
10363 for (unsigned i = 0, e = Flag.getNumOperandRegisters(); i != e; ++i)
10364 Regs.push_back(MRI.createVirtualRegister(RC));
10365
10366 RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType());
10367
10368 SDLoc dl = getCurSDLoc();
10369 // Use the produced MatchedRegs object to
10370 MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Glue, &Call);
10371 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind::RegUse, true,
10372 OpInfo.getMatchedOperand(), dl, DAG,
10373 AsmNodeOperands);
10374 break;
10375 }
10376
10377 assert(Flag.isMemKind() && "Unknown matching constraint!");
10378 assert(Flag.getNumOperandRegisters() == 1 &&
10379 "Unexpected number of operands");
10380 // Add information to the INLINEASM node to know about this input.
10381 // See InlineAsm.h isUseOperandTiedToDef.
10382 Flag.clearMemConstraint();
10383 Flag.setMatchingOp(OpInfo.getMatchedOperand());
10384 AsmNodeOperands.push_back(DAG.getTargetConstant(
10385 Flag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
10386 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
10387 break;
10388 }
10389
10390 // Treat indirect 'X' constraint as memory.
10391 if (OpInfo.ConstraintType == TargetLowering::C_Other &&
10392 OpInfo.isIndirect)
10393 OpInfo.ConstraintType = TargetLowering::C_Memory;
10394
10395 if (OpInfo.ConstraintType == TargetLowering::C_Immediate ||
10396 OpInfo.ConstraintType == TargetLowering::C_Other) {
10397 std::vector<SDValue> Ops;
10398 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode,
10399 Ops, DAG);
10400 if (Ops.empty()) {
10401 if (OpInfo.ConstraintType == TargetLowering::C_Immediate)
10402 if (isa<ConstantSDNode>(InOperandVal)) {
10403 emitInlineAsmError(Call, "value out of range for constraint '" +
10404 Twine(OpInfo.ConstraintCode) + "'");
10405 return;
10406 }
10407
10408 emitInlineAsmError(Call,
10409 "invalid operand for inline asm constraint '" +
10410 Twine(OpInfo.ConstraintCode) + "'");
10411 return;
10412 }
10413
10414 // Add information to the INLINEASM node to know about this input.
10415 InlineAsm::Flag ResOpType(InlineAsm::Kind::Imm, Ops.size());
10416 AsmNodeOperands.push_back(DAG.getTargetConstant(
10417 ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
10418 llvm::append_range(AsmNodeOperands, Ops);
10419 break;
10420 }
10421
10422 if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
10423 assert((OpInfo.isIndirect ||
10424 OpInfo.ConstraintType != TargetLowering::C_Memory) &&
10425 "Operand must be indirect to be a mem!");
10426 assert(InOperandVal.getValueType() ==
10427 TLI.getPointerTy(DAG.getDataLayout()) &&
10428 "Memory operands expect pointer values");
10429
10430 const InlineAsm::ConstraintCode ConstraintID =
10431 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
10433 "Failed to convert memory constraint code to constraint id.");
10434
10435 // Add information to the INLINEASM node to know about this input.
10436 InlineAsm::Flag ResOpType(InlineAsm::Kind::Mem, 1);
10437 ResOpType.setMemConstraint(ConstraintID);
10438 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
10439 getCurSDLoc(),
10440 MVT::i32));
10441 AsmNodeOperands.push_back(InOperandVal);
10442 break;
10443 }
10444
10445 if (OpInfo.ConstraintType == TargetLowering::C_Address) {
10446 const InlineAsm::ConstraintCode ConstraintID =
10447 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
10449 "Failed to convert memory constraint code to constraint id.");
10450
10451 InlineAsm::Flag ResOpType(InlineAsm::Kind::Mem, 1);
10452
10453 SDValue AsmOp = InOperandVal;
10454 if (isFunction(InOperandVal)) {
10455 auto *GA = cast<GlobalAddressSDNode>(InOperandVal);
10456 ResOpType = InlineAsm::Flag(InlineAsm::Kind::Func, 1);
10457 AsmOp = DAG.getTargetGlobalAddress(GA->getGlobal(), getCurSDLoc(),
10458 InOperandVal.getValueType(),
10459 GA->getOffset());
10460 }
10461
10462 // Add information to the INLINEASM node to know about this input.
10463 ResOpType.setMemConstraint(ConstraintID);
10464
10465 AsmNodeOperands.push_back(
10466 DAG.getTargetConstant(ResOpType, getCurSDLoc(), MVT::i32));
10467
10468 AsmNodeOperands.push_back(AsmOp);
10469 break;
10470 }
10471
10472 if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass &&
10473 OpInfo.ConstraintType != TargetLowering::C_Register) {
10474 emitInlineAsmError(Call, "unknown asm constraint '" +
10475 Twine(OpInfo.ConstraintCode) + "'");
10476 return;
10477 }
10478
10479 // TODO: Support this.
10480 if (OpInfo.isIndirect) {
10481 emitInlineAsmError(
10482 Call, "Don't know how to handle indirect register inputs yet "
10483 "for constraint '" +
10484 Twine(OpInfo.ConstraintCode) + "'");
10485 return;
10486 }
10487
10488 // Copy the input into the appropriate registers.
10489 if (OpInfo.AssignedRegs.Regs.empty()) {
10490 emitInlineAsmError(Call,
10491 "couldn't allocate input reg for constraint '" +
10492 Twine(OpInfo.ConstraintCode) + "'");
10493 return;
10494 }
10495
10496 if (DetectWriteToReservedRegister())
10497 return;
10498
10499 SDLoc dl = getCurSDLoc();
10500
10501 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Glue,
10502 &Call);
10503
10504 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind::RegUse, false,
10505 0, dl, DAG, AsmNodeOperands);
10506 break;
10507 }
10509 // Add the clobbered value to the operand list, so that the register
10510 // allocator is aware that the physreg got clobbered.
10511 if (!OpInfo.AssignedRegs.Regs.empty())
10513 false, 0, getCurSDLoc(), DAG,
10514 AsmNodeOperands);
10515 break;
10516 }
10517 }
10518
10519 // Finish up input operands. Set the input chain and add the flag last.
10520 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
10521 if (Glue.getNode()) AsmNodeOperands.push_back(Glue);
10522
10523 unsigned ISDOpc = IsCallBr ? ISD::INLINEASM_BR : ISD::INLINEASM;
10524 Chain = DAG.getNode(ISDOpc, getCurSDLoc(),
10525 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands);
10526 Glue = Chain.getValue(1);
10527
10528 // Do additional work to generate outputs.
10529
10530 SmallVector<EVT, 1> ResultVTs;
10531 SmallVector<SDValue, 1> ResultValues;
10532 SmallVector<SDValue, 8> OutChains;
10533
10534 llvm::Type *CallResultType = Call.getType();
10535 ArrayRef<Type *> ResultTypes;
10536 if (StructType *StructResult = dyn_cast<StructType>(CallResultType))
10537 ResultTypes = StructResult->elements();
10538 else if (!CallResultType->isVoidTy())
10539 ResultTypes = ArrayRef(CallResultType);
10540
10541 auto CurResultType = ResultTypes.begin();
10542 auto handleRegAssign = [&](SDValue V) {
10543 assert(CurResultType != ResultTypes.end() && "Unexpected value");
10544 assert((*CurResultType)->isSized() && "Unexpected unsized type");
10545 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), *CurResultType);
10546 ++CurResultType;
10547 // If the type of the inline asm call site return value is different but has
10548 // same size as the type of the asm output bitcast it. One example of this
10549 // is for vectors with different width / number of elements. This can
10550 // happen for register classes that can contain multiple different value
10551 // types. The preg or vreg allocated may not have the same VT as was
10552 // expected.
10553 //
10554 // This can also happen for a return value that disagrees with the register
10555 // class it is put in, eg. a double in a general-purpose register on a
10556 // 32-bit machine.
10557 if (ResultVT != V.getValueType() &&
10558 ResultVT.getSizeInBits() == V.getValueSizeInBits())
10559 V = DAG.getNode(ISD::BITCAST, getCurSDLoc(), ResultVT, V);
10560 else if (ResultVT != V.getValueType() && ResultVT.isInteger() &&
10561 V.getValueType().isInteger()) {
10562 // If a result value was tied to an input value, the computed result
10563 // may have a wider width than the expected result. Extract the
10564 // relevant portion.
10565 V = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultVT, V);
10566 }
10567 assert(ResultVT == V.getValueType() && "Asm result value mismatch!");
10568 ResultVTs.push_back(ResultVT);
10569 ResultValues.push_back(V);
10570 };
10571
10572 // Deal with output operands.
10573 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
10574 if (OpInfo.Type == InlineAsm::isOutput) {
10575 SDValue Val;
10576 // Skip trivial output operands.
10577 if (OpInfo.AssignedRegs.Regs.empty())
10578 continue;
10579
10580 switch (OpInfo.ConstraintType) {
10583 Val = OpInfo.AssignedRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
10584 Chain, &Glue, &Call);
10585 break;
10588 Val = TLI.LowerAsmOutputForConstraint(Chain, Glue, getCurSDLoc(),
10589 OpInfo, DAG);
10590 break;
10592 break; // Already handled.
10594 break; // Silence warning.
10596 assert(false && "Unexpected unknown constraint");
10597 }
10598
10599 // Indirect output manifest as stores. Record output chains.
10600 if (OpInfo.isIndirect) {
10601 const Value *Ptr = OpInfo.CallOperandVal;
10602 assert(Ptr && "Expected value CallOperandVal for indirect asm operand");
10603 SDValue Store = DAG.getStore(Chain, getCurSDLoc(), Val, getValue(Ptr),
10604 MachinePointerInfo(Ptr));
10605 OutChains.push_back(Store);
10606 } else {
10607 // generate CopyFromRegs to associated registers.
10608 assert(!Call.getType()->isVoidTy() && "Bad inline asm!");
10609 if (Val.getOpcode() == ISD::MERGE_VALUES) {
10610 for (const SDValue &V : Val->op_values())
10611 handleRegAssign(V);
10612 } else
10613 handleRegAssign(Val);
10614 }
10615 }
10616 }
10617
10618 // Set results.
10619 if (!ResultValues.empty()) {
10620 assert(CurResultType == ResultTypes.end() &&
10621 "Mismatch in number of ResultTypes");
10622 assert(ResultValues.size() == ResultTypes.size() &&
10623 "Mismatch in number of output operands in asm result");
10624
10626 DAG.getVTList(ResultVTs), ResultValues);
10627 setValue(&Call, V);
10628 }
10629
10630 // Collect store chains.
10631 if (!OutChains.empty())
10632 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains);
10633
10634 if (EmitEHLabels) {
10635 Chain = lowerEndEH(Chain, cast<InvokeInst>(&Call), EHPadBB, BeginLabel);
10636 }
10637
10638 // Only Update Root if inline assembly has a memory effect.
10639 if (ResultValues.empty() || HasSideEffect || !OutChains.empty() || IsCallBr ||
10640 EmitEHLabels)
10641 DAG.setRoot(Chain);
10642}
10643
10644void SelectionDAGBuilder::emitInlineAsmError(const CallBase &Call,
10645 const Twine &Message) {
10646 LLVMContext &Ctx = *DAG.getContext();
10647 Ctx.diagnose(DiagnosticInfoInlineAsm(Call, Message));
10648
10649 // Make sure we leave the DAG in a valid state
10650 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10651 SmallVector<EVT, 1> ValueVTs;
10652 ComputeValueVTs(TLI, DAG.getDataLayout(), Call.getType(), ValueVTs);
10653
10654 if (ValueVTs.empty())
10655 return;
10656
10658 for (const EVT &VT : ValueVTs)
10659 Ops.push_back(DAG.getUNDEF(VT));
10660
10661 setValue(&Call, DAG.getMergeValues(Ops, getCurSDLoc()));
10662}
10663
10664void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
10665 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(),
10666 MVT::Other, getRoot(),
10667 getValue(I.getArgOperand(0)),
10668 DAG.getSrcValue(I.getArgOperand(0))));
10669}
10670
10671void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
10672 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10673 const DataLayout &DL = DAG.getDataLayout();
10674 SDValue V = DAG.getVAArg(
10675 TLI.getMemValueType(DAG.getDataLayout(), I.getType()), getCurSDLoc(),
10676 getRoot(), getValue(I.getOperand(0)), DAG.getSrcValue(I.getOperand(0)),
10677 DL.getABITypeAlign(I.getType()).value());
10678 DAG.setRoot(V.getValue(1));
10679
10680 if (I.getType()->isPointerTy())
10681 V = DAG.getPtrExtOrTrunc(
10682 V, getCurSDLoc(), TLI.getValueType(DAG.getDataLayout(), I.getType()));
10683 setValue(&I, V);
10684}
10685
10686void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
10687 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(),
10688 MVT::Other, getRoot(),
10689 getValue(I.getArgOperand(0)),
10690 DAG.getSrcValue(I.getArgOperand(0))));
10691}
10692
10693void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
10694 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(),
10695 MVT::Other, getRoot(),
10696 getValue(I.getArgOperand(0)),
10697 getValue(I.getArgOperand(1)),
10698 DAG.getSrcValue(I.getArgOperand(0)),
10699 DAG.getSrcValue(I.getArgOperand(1))));
10700}
10701
10703 const Instruction &I,
10704 SDValue Op) {
10705 std::optional<ConstantRange> CR = getRange(I);
10706
10707 if (!CR || CR->isFullSet() || CR->isEmptySet() || CR->isUpperWrapped())
10708 return Op;
10709
10710 APInt Lo = CR->getUnsignedMin();
10711 if (!Lo.isMinValue())
10712 return Op;
10713
10714 APInt Hi = CR->getUnsignedMax();
10715 unsigned Bits = std::max(Hi.getActiveBits(),
10716 static_cast<unsigned>(IntegerType::MIN_INT_BITS));
10717
10718 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits);
10719
10720 SDLoc SL = getCurSDLoc();
10721
10722 SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op,
10723 DAG.getValueType(SmallVT));
10724 unsigned NumVals = Op.getNode()->getNumValues();
10725 if (NumVals == 1)
10726 return ZExt;
10727
10729
10730 Ops.push_back(ZExt);
10731 for (unsigned I = 1; I != NumVals; ++I)
10732 Ops.push_back(Op.getValue(I));
10733
10734 return DAG.getMergeValues(Ops, SL);
10735}
10736
10738 SelectionDAG &DAG, const Instruction &I, SDValue Op) {
10739 FPClassTest Classes = getNoFPClass(I);
10740 if (Classes == fcNone)
10741 return Op;
10742
10743 SDLoc SL = getCurSDLoc();
10744 SDValue TestConst = DAG.getTargetConstant(Classes, SDLoc(), MVT::i32);
10745
10746 if (Op.getOpcode() != ISD::MERGE_VALUES) {
10747 return DAG.getNode(ISD::AssertNoFPClass, SL, Op.getValueType(), Op,
10748 TestConst);
10749 }
10750
10751 SmallVector<SDValue, 8> Ops(Op.getNumOperands());
10752 for (unsigned I = 0, E = Ops.size(); I != E; ++I) {
10753 SDValue MergeOp = Op.getOperand(I);
10754 Ops[I] = DAG.getNode(ISD::AssertNoFPClass, SL, MergeOp.getValueType(),
10755 MergeOp, TestConst);
10756 }
10757
10758 return DAG.getMergeValues(Ops, SL);
10759}
10760
10761/// Populate a CallLowerinInfo (into \p CLI) based on the properties of
10762/// the call being lowered.
10763///
10764/// This is a helper for lowering intrinsics that follow a target calling
10765/// convention or require stack pointer adjustment. Only a subset of the
10766/// intrinsic's operands need to participate in the calling convention.
10769 unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy,
10770 AttributeSet RetAttrs, bool IsPatchPoint) {
10772 Args.reserve(NumArgs);
10773
10774 // Populate the argument list.
10775 // Attributes for args start at offset 1, after the return attribute.
10776 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs;
10777 ArgI != ArgE; ++ArgI) {
10778 const Value *V = Call->getOperand(ArgI);
10779
10780 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
10781
10782 TargetLowering::ArgListEntry Entry(getValue(V), V->getType());
10783 Entry.setAttributes(Call, ArgI);
10784 Args.push_back(Entry);
10785 }
10786
10788 .setChain(getRoot())
10789 .setCallee(Call->getCallingConv(), ReturnTy, Callee, std::move(Args),
10790 RetAttrs)
10791 .setDiscardResult(Call->use_empty())
10792 .setIsPatchPoint(IsPatchPoint)
10794 Call->countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0);
10795}
10796
10797/// Add a stack map intrinsic call's live variable operands to a stackmap
10798/// or patchpoint target node's operand list.
10799///
10800/// Constants are converted to TargetConstants purely as an optimization to
10801/// avoid constant materialization and register allocation.
10802///
10803/// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not
10804/// generate addess computation nodes, and so FinalizeISel can convert the
10805/// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids
10806/// address materialization and register allocation, but may also be required
10807/// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an
10808/// alloca in the entry block, then the runtime may assume that the alloca's
10809/// StackMap location can be read immediately after compilation and that the
10810/// location is valid at any point during execution (this is similar to the
10811/// assumption made by the llvm.gcroot intrinsic). If the alloca's location were
10812/// only available in a register, then the runtime would need to trap when
10813/// execution reaches the StackMap in order to read the alloca's location.
10814static void addStackMapLiveVars(const CallBase &Call, unsigned StartIdx,
10816 SelectionDAGBuilder &Builder) {
10817 SelectionDAG &DAG = Builder.DAG;
10818 for (unsigned I = StartIdx; I < Call.arg_size(); I++) {
10819 SDValue Op = Builder.getValue(Call.getArgOperand(I));
10820
10821 // Things on the stack are pointer-typed, meaning that they are already
10822 // legal and can be emitted directly to target nodes.
10824 Ops.push_back(DAG.getTargetFrameIndex(FI->getIndex(), Op.getValueType()));
10825 } else {
10826 // Otherwise emit a target independent node to be legalised.
10827 Ops.push_back(Builder.getValue(Call.getArgOperand(I)));
10828 }
10829 }
10830}
10831
10832/// Lower llvm.experimental.stackmap.
10833void SelectionDAGBuilder::visitStackmap(const CallInst &CI) {
10834 // void @llvm.experimental.stackmap(i64 <id>, i32 <numShadowBytes>,
10835 // [live variables...])
10836
10837 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value.");
10838
10839 SDValue Chain, InGlue, Callee;
10841
10842 SDLoc DL = getCurSDLoc();
10844
10845 // The stackmap intrinsic only records the live variables (the arguments
10846 // passed to it) and emits NOPS (if requested). Unlike the patchpoint
10847 // intrinsic, this won't be lowered to a function call. This means we don't
10848 // have to worry about calling conventions and target specific lowering code.
10849 // Instead we perform the call lowering right here.
10850 //
10851 // chain, flag = CALLSEQ_START(chain, 0, 0)
10852 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag)
10853 // chain, flag = CALLSEQ_END(chain, 0, 0, flag)
10854 //
10855 Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL);
10856 InGlue = Chain.getValue(1);
10857
10858 // Add the STACKMAP operands, starting with DAG house-keeping.
10859 Ops.push_back(Chain);
10860 Ops.push_back(InGlue);
10861
10862 // Add the <id>, <numShadowBytes> operands.
10863 //
10864 // These do not require legalisation, and can be emitted directly to target
10865 // constant nodes.
10867 assert(ID.getValueType() == MVT::i64);
10868 SDValue IDConst =
10869 DAG.getTargetConstant(ID->getAsZExtVal(), DL, ID.getValueType());
10870 Ops.push_back(IDConst);
10871
10872 SDValue Shad = getValue(CI.getArgOperand(1));
10873 assert(Shad.getValueType() == MVT::i32);
10874 SDValue ShadConst =
10875 DAG.getTargetConstant(Shad->getAsZExtVal(), DL, Shad.getValueType());
10876 Ops.push_back(ShadConst);
10877
10878 // Add the live variables.
10879 addStackMapLiveVars(CI, 2, DL, Ops, *this);
10880
10881 // Create the STACKMAP node.
10882 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
10883 Chain = DAG.getNode(ISD::STACKMAP, DL, NodeTys, Ops);
10884 InGlue = Chain.getValue(1);
10885
10886 Chain = DAG.getCALLSEQ_END(Chain, 0, 0, InGlue, DL);
10887
10888 // Stackmaps don't generate values, so nothing goes into the NodeMap.
10889
10890 // Set the root to the target-lowered call chain.
10891 DAG.setRoot(Chain);
10892
10893 // Inform the Frame Information that we have a stackmap in this function.
10894 FuncInfo.MF->getFrameInfo().setHasStackMap();
10895}
10896
10897/// Lower llvm.experimental.patchpoint directly to its target opcode.
10898void SelectionDAGBuilder::visitPatchpoint(const CallBase &CB,
10899 const BasicBlock *EHPadBB) {
10900 // <ty> @llvm.experimental.patchpoint.<ty>(i64 <id>,
10901 // i32 <numBytes>,
10902 // i8* <target>,
10903 // i32 <numArgs>,
10904 // [Args...],
10905 // [live variables...])
10906
10908 bool IsAnyRegCC = CC == CallingConv::AnyReg;
10909 bool HasDef = !CB.getType()->isVoidTy();
10910 SDLoc dl = getCurSDLoc();
10912
10913 // Handle immediate and symbolic callees.
10914 if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee))
10915 Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl,
10916 /*isTarget=*/true);
10917 else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee))
10918 Callee = DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(),
10919 SDLoc(SymbolicCallee),
10920 SymbolicCallee->getValueType(0));
10921
10922 // Get the real number of arguments participating in the call <numArgs>
10924 unsigned NumArgs = NArgVal->getAsZExtVal();
10925
10926 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs>
10927 // Intrinsics include all meta-operands up to but not including CC.
10928 unsigned NumMetaOpers = PatchPointOpers::CCPos;
10929 assert(CB.arg_size() >= NumMetaOpers + NumArgs &&
10930 "Not enough arguments provided to the patchpoint intrinsic");
10931
10932 // For AnyRegCC the arguments are lowered later on manually.
10933 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs;
10934 Type *ReturnTy =
10935 IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CB.getType();
10936
10937 TargetLowering::CallLoweringInfo CLI(DAG);
10938 populateCallLoweringInfo(CLI, &CB, NumMetaOpers, NumCallArgs, Callee,
10939 ReturnTy, CB.getAttributes().getRetAttrs(), true);
10940 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
10941
10942 SDNode *CallEnd = Result.second.getNode();
10943 if (CallEnd->getOpcode() == ISD::EH_LABEL)
10944 CallEnd = CallEnd->getOperand(0).getNode();
10945 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg))
10946 CallEnd = CallEnd->getOperand(0).getNode();
10947
10948 /// Get a call instruction from the call sequence chain.
10949 /// Tail calls are not allowed.
10950 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END &&
10951 "Expected a callseq node.");
10952 SDNode *Call = CallEnd->getOperand(0).getNode();
10953 bool HasGlue = Call->getGluedNode();
10954
10955 // Replace the target specific call node with the patchable intrinsic.
10957
10958 // Push the chain.
10959 Ops.push_back(*(Call->op_begin()));
10960
10961 // Optionally, push the glue (if any).
10962 if (HasGlue)
10963 Ops.push_back(*(Call->op_end() - 1));
10964
10965 // Push the register mask info.
10966 if (HasGlue)
10967 Ops.push_back(*(Call->op_end() - 2));
10968 else
10969 Ops.push_back(*(Call->op_end() - 1));
10970
10971 // Add the <id> and <numBytes> constants.
10973 Ops.push_back(DAG.getTargetConstant(IDVal->getAsZExtVal(), dl, MVT::i64));
10975 Ops.push_back(DAG.getTargetConstant(NBytesVal->getAsZExtVal(), dl, MVT::i32));
10976
10977 // Add the callee.
10978 Ops.push_back(Callee);
10979
10980 // Adjust <numArgs> to account for any arguments that have been passed on the
10981 // stack instead.
10982 // Call Node: Chain, Target, {Args}, RegMask, [Glue]
10983 unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3);
10984 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs;
10985 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32));
10986
10987 // Add the calling convention
10988 Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32));
10989
10990 // Add the arguments we omitted previously. The register allocator should
10991 // place these in any free register.
10992 if (IsAnyRegCC)
10993 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i)
10994 Ops.push_back(getValue(CB.getArgOperand(i)));
10995
10996 // Push the arguments from the call instruction.
10997 SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1;
10998 Ops.append(Call->op_begin() + 2, e);
10999
11000 // Push live variables for the stack map.
11001 addStackMapLiveVars(CB, NumMetaOpers + NumArgs, dl, Ops, *this);
11002
11003 SDVTList NodeTys;
11004 if (IsAnyRegCC && HasDef) {
11005 // Create the return types based on the intrinsic definition
11006 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11007 SmallVector<EVT, 3> ValueVTs;
11008 ComputeValueVTs(TLI, DAG.getDataLayout(), CB.getType(), ValueVTs);
11009 assert(ValueVTs.size() == 1 && "Expected only one return value type.");
11010
11011 // There is always a chain and a glue type at the end
11012 ValueVTs.push_back(MVT::Other);
11013 ValueVTs.push_back(MVT::Glue);
11014 NodeTys = DAG.getVTList(ValueVTs);
11015 } else
11016 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
11017
11018 // Replace the target specific call node with a PATCHPOINT node.
11019 SDValue PPV = DAG.getNode(ISD::PATCHPOINT, dl, NodeTys, Ops);
11020
11021 // Update the NodeMap.
11022 if (HasDef) {
11023 if (IsAnyRegCC)
11024 setValue(&CB, SDValue(PPV.getNode(), 0));
11025 else
11026 setValue(&CB, Result.first);
11027 }
11028
11029 // Fixup the consumers of the intrinsic. The chain and glue may be used in the
11030 // call sequence. Furthermore the location of the chain and glue can change
11031 // when the AnyReg calling convention is used and the intrinsic returns a
11032 // value.
11033 if (IsAnyRegCC && HasDef) {
11034 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)};
11035 SDValue To[] = {PPV.getValue(1), PPV.getValue(2)};
11036 DAG.ReplaceAllUsesOfValuesWith(From, To, 2);
11037 } else
11038 DAG.ReplaceAllUsesWith(Call, PPV.getNode());
11039 DAG.DeleteNode(Call);
11040
11041 // Inform the Frame Information that we have a patchpoint in this function.
11042 FuncInfo.MF->getFrameInfo().setHasPatchPoint();
11043}
11044
11045void SelectionDAGBuilder::visitVectorReduce(const CallInst &I,
11046 unsigned Intrinsic) {
11047 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11048 SDValue Op1 = getValue(I.getArgOperand(0));
11049 SDValue Op2;
11050 if (I.arg_size() > 1)
11051 Op2 = getValue(I.getArgOperand(1));
11052 SDLoc dl = getCurSDLoc();
11053 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
11054 SDValue Res;
11055 SDNodeFlags SDFlags;
11056 if (auto *FPMO = dyn_cast<FPMathOperator>(&I))
11057 SDFlags.copyFMF(*FPMO);
11058
11059 switch (Intrinsic) {
11060 case Intrinsic::vector_reduce_fadd:
11061 if (SDFlags.hasAllowReassociation())
11062 Res = DAG.getNode(ISD::FADD, dl, VT, Op1,
11063 DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2, SDFlags),
11064 SDFlags);
11065 else
11066 Res = DAG.getNode(ISD::VECREDUCE_SEQ_FADD, dl, VT, Op1, Op2, SDFlags);
11067 break;
11068 case Intrinsic::vector_reduce_fmul:
11069 if (SDFlags.hasAllowReassociation())
11070 Res = DAG.getNode(ISD::FMUL, dl, VT, Op1,
11071 DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2, SDFlags),
11072 SDFlags);
11073 else
11074 Res = DAG.getNode(ISD::VECREDUCE_SEQ_FMUL, dl, VT, Op1, Op2, SDFlags);
11075 break;
11076 case Intrinsic::vector_reduce_add:
11077 Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1);
11078 break;
11079 case Intrinsic::vector_reduce_mul:
11080 Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1);
11081 break;
11082 case Intrinsic::vector_reduce_and:
11083 Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1);
11084 break;
11085 case Intrinsic::vector_reduce_or:
11086 Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1);
11087 break;
11088 case Intrinsic::vector_reduce_xor:
11089 Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1);
11090 break;
11091 case Intrinsic::vector_reduce_smax:
11092 Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1);
11093 break;
11094 case Intrinsic::vector_reduce_smin:
11095 Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1);
11096 break;
11097 case Intrinsic::vector_reduce_umax:
11098 Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1);
11099 break;
11100 case Intrinsic::vector_reduce_umin:
11101 Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1);
11102 break;
11103 case Intrinsic::vector_reduce_fmax:
11104 Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1, SDFlags);
11105 break;
11106 case Intrinsic::vector_reduce_fmin:
11107 Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1, SDFlags);
11108 break;
11109 case Intrinsic::vector_reduce_fmaximum:
11110 Res = DAG.getNode(ISD::VECREDUCE_FMAXIMUM, dl, VT, Op1, SDFlags);
11111 break;
11112 case Intrinsic::vector_reduce_fminimum:
11113 Res = DAG.getNode(ISD::VECREDUCE_FMINIMUM, dl, VT, Op1, SDFlags);
11114 break;
11115 default:
11116 llvm_unreachable("Unhandled vector reduce intrinsic");
11117 }
11118 setValue(&I, Res);
11119}
11120
11121/// Returns an AttributeList representing the attributes applied to the return
11122/// value of the given call.
11125 if (CLI.RetSExt)
11126 Attrs.push_back(Attribute::SExt);
11127 if (CLI.RetZExt)
11128 Attrs.push_back(Attribute::ZExt);
11129 if (CLI.IsInReg)
11130 Attrs.push_back(Attribute::InReg);
11131
11132 return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex,
11133 Attrs);
11134}
11135
11136/// TargetLowering::LowerCallTo - This is the default LowerCallTo
11137/// implementation, which just calls LowerCall.
11138/// FIXME: When all targets are
11139/// migrated to using LowerCall, this hook should be integrated into SDISel.
11140std::pair<SDValue, SDValue>
11142 LLVMContext &Context = CLI.RetTy->getContext();
11143
11144 // Handle the incoming return values from the call.
11145 CLI.Ins.clear();
11146 SmallVector<Type *, 4> RetOrigTys;
11148 auto &DL = CLI.DAG.getDataLayout();
11149 ComputeValueTypes(DL, CLI.OrigRetTy, RetOrigTys, &Offsets);
11150
11151 SmallVector<EVT, 4> RetVTs;
11152 if (CLI.RetTy != CLI.OrigRetTy) {
11153 assert(RetOrigTys.size() == 1 &&
11154 "Only supported for non-aggregate returns");
11155 RetVTs.push_back(getValueType(DL, CLI.RetTy));
11156 } else {
11157 for (Type *Ty : RetOrigTys)
11158 RetVTs.push_back(getValueType(DL, Ty));
11159 }
11160
11161 if (CLI.IsPostTypeLegalization) {
11162 // If we are lowering a libcall after legalization, split the return type.
11163 SmallVector<Type *, 4> OldRetOrigTys;
11164 SmallVector<EVT, 4> OldRetVTs;
11165 SmallVector<TypeSize, 4> OldOffsets;
11166 RetOrigTys.swap(OldRetOrigTys);
11167 RetVTs.swap(OldRetVTs);
11168 Offsets.swap(OldOffsets);
11169
11170 for (size_t i = 0, e = OldRetVTs.size(); i != e; ++i) {
11171 EVT RetVT = OldRetVTs[i];
11172 uint64_t Offset = OldOffsets[i];
11173 MVT RegisterVT = getRegisterType(Context, RetVT);
11174 unsigned NumRegs = getNumRegisters(Context, RetVT);
11175 unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8;
11176 RetOrigTys.append(NumRegs, OldRetOrigTys[i]);
11177 RetVTs.append(NumRegs, RegisterVT);
11178 for (unsigned j = 0; j != NumRegs; ++j)
11179 Offsets.push_back(TypeSize::getFixed(Offset + j * RegisterVTByteSZ));
11180 }
11181 }
11182
11184 GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL);
11185
11186 bool CanLowerReturn =
11188 CLI.IsVarArg, Outs, Context, CLI.RetTy);
11189
11190 SDValue DemoteStackSlot;
11191 int DemoteStackIdx = -100;
11192 if (!CanLowerReturn) {
11193 // FIXME: equivalent assert?
11194 // assert(!CS.hasInAllocaArgument() &&
11195 // "sret demotion is incompatible with inalloca");
11196 uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy);
11197 Align Alignment = DL.getPrefTypeAlign(CLI.RetTy);
11199 DemoteStackIdx =
11200 MF.getFrameInfo().CreateStackObject(TySize, Alignment, false);
11201 Type *StackSlotPtrType = PointerType::get(Context, DL.getAllocaAddrSpace());
11202
11203 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL));
11204 ArgListEntry Entry(DemoteStackSlot, StackSlotPtrType);
11205 Entry.IsSRet = true;
11206 Entry.Alignment = Alignment;
11207 CLI.getArgs().insert(CLI.getArgs().begin(), Entry);
11208 CLI.NumFixedArgs += 1;
11209 CLI.getArgs()[0].IndirectType = CLI.RetTy;
11210 CLI.RetTy = CLI.OrigRetTy = Type::getVoidTy(Context);
11211
11212 // sret demotion isn't compatible with tail-calls, since the sret argument
11213 // points into the callers stack frame.
11214 CLI.IsTailCall = false;
11215 } else {
11216 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
11217 CLI.RetTy, CLI.CallConv, CLI.IsVarArg, DL);
11218 for (unsigned I = 0, E = RetVTs.size(); I != E; ++I) {
11219 ISD::ArgFlagsTy Flags;
11220 if (NeedsRegBlock) {
11221 Flags.setInConsecutiveRegs();
11222 if (I == RetVTs.size() - 1)
11223 Flags.setInConsecutiveRegsLast();
11224 }
11225 EVT VT = RetVTs[I];
11226 MVT RegisterVT = getRegisterTypeForCallingConv(Context, CLI.CallConv, VT);
11227 unsigned NumRegs =
11228 getNumRegistersForCallingConv(Context, CLI.CallConv, VT);
11229 for (unsigned i = 0; i != NumRegs; ++i) {
11230 ISD::InputArg Ret(Flags, RegisterVT, VT, RetOrigTys[I],
11232 if (CLI.RetTy->isPointerTy()) {
11233 Ret.Flags.setPointer();
11235 cast<PointerType>(CLI.RetTy)->getAddressSpace());
11236 }
11237 if (CLI.RetSExt)
11238 Ret.Flags.setSExt();
11239 if (CLI.RetZExt)
11240 Ret.Flags.setZExt();
11241 if (CLI.IsInReg)
11242 Ret.Flags.setInReg();
11243 CLI.Ins.push_back(Ret);
11244 }
11245 }
11246 }
11247
11248 // We push in swifterror return as the last element of CLI.Ins.
11249 ArgListTy &Args = CLI.getArgs();
11250 if (supportSwiftError()) {
11251 for (const ArgListEntry &Arg : Args) {
11252 if (Arg.IsSwiftError) {
11253 ISD::ArgFlagsTy Flags;
11254 Flags.setSwiftError();
11256 PointerType::getUnqual(Context),
11257 /*Used=*/true, ISD::InputArg::NoArgIndex, 0);
11258 CLI.Ins.push_back(Ret);
11259 }
11260 }
11261 }
11262
11263 // Handle all of the outgoing arguments.
11264 CLI.Outs.clear();
11265 CLI.OutVals.clear();
11266 for (unsigned i = 0, e = Args.size(); i != e; ++i) {
11267 SmallVector<Type *, 4> OrigArgTys;
11268 ComputeValueTypes(DL, Args[i].OrigTy, OrigArgTys);
11269 // FIXME: Split arguments if CLI.IsPostTypeLegalization
11270 Type *FinalType = Args[i].Ty;
11271 if (Args[i].IsByVal)
11272 FinalType = Args[i].IndirectType;
11273 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
11274 FinalType, CLI.CallConv, CLI.IsVarArg, DL);
11275 for (unsigned Value = 0, NumValues = OrigArgTys.size(); Value != NumValues;
11276 ++Value) {
11277 Type *OrigArgTy = OrigArgTys[Value];
11278 Type *ArgTy = OrigArgTy;
11279 if (Args[i].Ty != Args[i].OrigTy) {
11280 assert(Value == 0 && "Only supported for non-aggregate arguments");
11281 ArgTy = Args[i].Ty;
11282 }
11283
11284 EVT VT = getValueType(DL, ArgTy);
11285 SDValue Op = SDValue(Args[i].Node.getNode(),
11286 Args[i].Node.getResNo() + Value);
11287 ISD::ArgFlagsTy Flags;
11288
11289 // Certain targets (such as MIPS), may have a different ABI alignment
11290 // for a type depending on the context. Give the target a chance to
11291 // specify the alignment it wants.
11292 const Align OriginalAlignment(getABIAlignmentForCallingConv(ArgTy, DL));
11293 Flags.setOrigAlign(OriginalAlignment);
11294
11295 if (i >= CLI.NumFixedArgs)
11296 Flags.setVarArg();
11297 if (ArgTy->isPointerTy()) {
11298 Flags.setPointer();
11299 Flags.setPointerAddrSpace(cast<PointerType>(ArgTy)->getAddressSpace());
11300 }
11301 if (Args[i].IsZExt)
11302 Flags.setZExt();
11303 if (Args[i].IsSExt)
11304 Flags.setSExt();
11305 if (Args[i].IsNoExt)
11306 Flags.setNoExt();
11307 if (Args[i].IsInReg) {
11308 // If we are using vectorcall calling convention, a structure that is
11309 // passed InReg - is surely an HVA
11311 isa<StructType>(FinalType)) {
11312 // The first value of a structure is marked
11313 if (0 == Value)
11314 Flags.setHvaStart();
11315 Flags.setHva();
11316 }
11317 // Set InReg Flag
11318 Flags.setInReg();
11319 }
11320 if (Args[i].IsSRet)
11321 Flags.setSRet();
11322 if (Args[i].IsSwiftSelf)
11323 Flags.setSwiftSelf();
11324 if (Args[i].IsSwiftAsync)
11325 Flags.setSwiftAsync();
11326 if (Args[i].IsSwiftError)
11327 Flags.setSwiftError();
11328 if (Args[i].IsCFGuardTarget)
11329 Flags.setCFGuardTarget();
11330 if (Args[i].IsByVal)
11331 Flags.setByVal();
11332 if (Args[i].IsByRef)
11333 Flags.setByRef();
11334 if (Args[i].IsPreallocated) {
11335 Flags.setPreallocated();
11336 // Set the byval flag for CCAssignFn callbacks that don't know about
11337 // preallocated. This way we can know how many bytes we should've
11338 // allocated and how many bytes a callee cleanup function will pop. If
11339 // we port preallocated to more targets, we'll have to add custom
11340 // preallocated handling in the various CC lowering callbacks.
11341 Flags.setByVal();
11342 }
11343 if (Args[i].IsInAlloca) {
11344 Flags.setInAlloca();
11345 // Set the byval flag for CCAssignFn callbacks that don't know about
11346 // inalloca. This way we can know how many bytes we should've allocated
11347 // and how many bytes a callee cleanup function will pop. If we port
11348 // inalloca to more targets, we'll have to add custom inalloca handling
11349 // in the various CC lowering callbacks.
11350 Flags.setByVal();
11351 }
11352 Align MemAlign;
11353 if (Args[i].IsByVal || Args[i].IsInAlloca || Args[i].IsPreallocated) {
11354 unsigned FrameSize = DL.getTypeAllocSize(Args[i].IndirectType);
11355 Flags.setByValSize(FrameSize);
11356
11357 // info is not there but there are cases it cannot get right.
11358 if (auto MA = Args[i].Alignment)
11359 MemAlign = *MA;
11360 else
11361 MemAlign = getByValTypeAlignment(Args[i].IndirectType, DL);
11362 } else if (auto MA = Args[i].Alignment) {
11363 MemAlign = *MA;
11364 } else {
11365 MemAlign = OriginalAlignment;
11366 }
11367 Flags.setMemAlign(MemAlign);
11368 if (Args[i].IsNest)
11369 Flags.setNest();
11370 if (NeedsRegBlock)
11371 Flags.setInConsecutiveRegs();
11372
11373 MVT PartVT = getRegisterTypeForCallingConv(Context, CLI.CallConv, VT);
11374 unsigned NumParts =
11375 getNumRegistersForCallingConv(Context, CLI.CallConv, VT);
11376 SmallVector<SDValue, 4> Parts(NumParts);
11377 ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
11378
11379 if (Args[i].IsSExt)
11380 ExtendKind = ISD::SIGN_EXTEND;
11381 else if (Args[i].IsZExt)
11382 ExtendKind = ISD::ZERO_EXTEND;
11383
11384 // Conservatively only handle 'returned' on non-vectors that can be lowered,
11385 // for now.
11386 if (Args[i].IsReturned && !Op.getValueType().isVector() &&
11388 assert((CLI.RetTy == Args[i].Ty ||
11389 (CLI.RetTy->isPointerTy() && Args[i].Ty->isPointerTy() &&
11391 Args[i].Ty->getPointerAddressSpace())) &&
11392 RetVTs.size() == NumValues && "unexpected use of 'returned'");
11393 // Before passing 'returned' to the target lowering code, ensure that
11394 // either the register MVT and the actual EVT are the same size or that
11395 // the return value and argument are extended in the same way; in these
11396 // cases it's safe to pass the argument register value unchanged as the
11397 // return register value (although it's at the target's option whether
11398 // to do so)
11399 // TODO: allow code generation to take advantage of partially preserved
11400 // registers rather than clobbering the entire register when the
11401 // parameter extension method is not compatible with the return
11402 // extension method
11403 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) ||
11404 (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt &&
11405 CLI.RetZExt == Args[i].IsZExt))
11406 Flags.setReturned();
11407 }
11408
11409 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, CLI.CB,
11410 CLI.CallConv, ExtendKind);
11411
11412 for (unsigned j = 0; j != NumParts; ++j) {
11413 // if it isn't first piece, alignment must be 1
11414 // For scalable vectors the scalable part is currently handled
11415 // by individual targets, so we just use the known minimum size here.
11416 ISD::OutputArg MyFlags(
11417 Flags, Parts[j].getValueType().getSimpleVT(), VT, OrigArgTy, i,
11418 j * Parts[j].getValueType().getStoreSize().getKnownMinValue());
11419 if (NumParts > 1 && j == 0)
11420 MyFlags.Flags.setSplit();
11421 else if (j != 0) {
11422 MyFlags.Flags.setOrigAlign(Align(1));
11423 if (j == NumParts - 1)
11424 MyFlags.Flags.setSplitEnd();
11425 }
11426
11427 CLI.Outs.push_back(MyFlags);
11428 CLI.OutVals.push_back(Parts[j]);
11429 }
11430
11431 if (NeedsRegBlock && Value == NumValues - 1)
11432 CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast();
11433 }
11434 }
11435
11437 CLI.Chain = LowerCall(CLI, InVals);
11438
11439 // Update CLI.InVals to use outside of this function.
11440 CLI.InVals = InVals;
11441
11442 // Verify that the target's LowerCall behaved as expected.
11443 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other &&
11444 "LowerCall didn't return a valid chain!");
11445 assert((!CLI.IsTailCall || InVals.empty()) &&
11446 "LowerCall emitted a return value for a tail call!");
11447 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) &&
11448 "LowerCall didn't emit the correct number of values!");
11449
11450 // For a tail call, the return value is merely live-out and there aren't
11451 // any nodes in the DAG representing it. Return a special value to
11452 // indicate that a tail call has been emitted and no more Instructions
11453 // should be processed in the current block.
11454 if (CLI.IsTailCall) {
11455 CLI.DAG.setRoot(CLI.Chain);
11456 return std::make_pair(SDValue(), SDValue());
11457 }
11458
11459#ifndef NDEBUG
11460 for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) {
11461 assert(InVals[i].getNode() && "LowerCall emitted a null value!");
11462 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() &&
11463 "LowerCall emitted a value with the wrong type!");
11464 }
11465#endif
11466
11467 SmallVector<SDValue, 4> ReturnValues;
11468 if (!CanLowerReturn) {
11469 // The instruction result is the result of loading from the
11470 // hidden sret parameter.
11471 MVT PtrVT = getPointerTy(DL, DL.getAllocaAddrSpace());
11472
11473 unsigned NumValues = RetVTs.size();
11474 ReturnValues.resize(NumValues);
11475 SmallVector<SDValue, 4> Chains(NumValues);
11476
11477 // An aggregate return value cannot wrap around the address space, so
11478 // offsets to its parts don't wrap either.
11480 Align HiddenSRetAlign = MF.getFrameInfo().getObjectAlign(DemoteStackIdx);
11481 for (unsigned i = 0; i < NumValues; ++i) {
11483 DemoteStackSlot, CLI.DAG.getConstant(Offsets[i], CLI.DL, PtrVT),
11485 SDValue L = CLI.DAG.getLoad(
11486 RetVTs[i], CLI.DL, CLI.Chain, Add,
11488 DemoteStackIdx, Offsets[i]),
11489 HiddenSRetAlign);
11490 ReturnValues[i] = L;
11491 Chains[i] = L.getValue(1);
11492 }
11493
11494 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains);
11495 } else {
11496 // Collect the legal value parts into potentially illegal values
11497 // that correspond to the original function's return values.
11498 std::optional<ISD::NodeType> AssertOp;
11499 if (CLI.RetSExt)
11500 AssertOp = ISD::AssertSext;
11501 else if (CLI.RetZExt)
11502 AssertOp = ISD::AssertZext;
11503 unsigned CurReg = 0;
11504 for (EVT VT : RetVTs) {
11505 MVT RegisterVT = getRegisterTypeForCallingConv(Context, CLI.CallConv, VT);
11506 unsigned NumRegs =
11507 getNumRegistersForCallingConv(Context, CLI.CallConv, VT);
11508
11509 ReturnValues.push_back(getCopyFromParts(
11510 CLI.DAG, CLI.DL, &InVals[CurReg], NumRegs, RegisterVT, VT, nullptr,
11511 CLI.Chain, CLI.CallConv, AssertOp));
11512 CurReg += NumRegs;
11513 }
11514
11515 // For a function returning void, there is no return value. We can't create
11516 // such a node, so we just return a null return value in that case. In
11517 // that case, nothing will actually look at the value.
11518 if (ReturnValues.empty())
11519 return std::make_pair(SDValue(), CLI.Chain);
11520 }
11521
11522 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL,
11523 CLI.DAG.getVTList(RetVTs), ReturnValues);
11524 return std::make_pair(Res, CLI.Chain);
11525}
11526
11527/// Places new result values for the node in Results (their number
11528/// and types must exactly match those of the original return values of
11529/// the node), or leaves Results empty, which indicates that the node is not
11530/// to be custom lowered after all.
11533 SelectionDAG &DAG) const {
11534 SDValue Res = LowerOperation(SDValue(N, 0), DAG);
11535
11536 if (!Res.getNode())
11537 return;
11538
11539 // If the original node has one result, take the return value from
11540 // LowerOperation as is. It might not be result number 0.
11541 if (N->getNumValues() == 1) {
11542 Results.push_back(Res);
11543 return;
11544 }
11545
11546 // If the original node has multiple results, then the return node should
11547 // have the same number of results.
11548 assert((N->getNumValues() == Res->getNumValues()) &&
11549 "Lowering returned the wrong number of results!");
11550
11551 // Places new result values base on N result number.
11552 for (unsigned I = 0, E = N->getNumValues(); I != E; ++I)
11553 Results.push_back(Res.getValue(I));
11554}
11555
11557 llvm_unreachable("LowerOperation not implemented for this target!");
11558}
11559
11561 Register Reg,
11562 ISD::NodeType ExtendType) {
11564 assert((Op.getOpcode() != ISD::CopyFromReg ||
11565 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
11566 "Copy from a reg to the same reg!");
11567 assert(!Reg.isPhysical() && "Is a physreg");
11568
11569 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11570 // If this is an InlineAsm we have to match the registers required, not the
11571 // notional registers required by the type.
11572
11573 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, V->getType(),
11574 std::nullopt); // This is not an ABI copy.
11575 SDValue Chain = DAG.getEntryNode();
11576
11577 if (ExtendType == ISD::ANY_EXTEND) {
11578 auto PreferredExtendIt = FuncInfo.PreferredExtendType.find(V);
11579 if (PreferredExtendIt != FuncInfo.PreferredExtendType.end())
11580 ExtendType = PreferredExtendIt->second;
11581 }
11582 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType);
11583 PendingExports.push_back(Chain);
11584}
11585
11587
11588/// isOnlyUsedInEntryBlock - If the specified argument is only used in the
11589/// entry block, return true. This includes arguments used by switches, since
11590/// the switch may expand into multiple basic blocks.
11591static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) {
11592 // With FastISel active, we may be splitting blocks, so force creation
11593 // of virtual registers for all non-dead arguments.
11594 if (FastISel)
11595 return A->use_empty();
11596
11597 const BasicBlock &Entry = A->getParent()->front();
11598 for (const User *U : A->users())
11599 if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U))
11600 return false; // Use not in entry block.
11601
11602 return true;
11603}
11604
11606 DenseMap<const Argument *,
11607 std::pair<const AllocaInst *, const StoreInst *>>;
11608
11609/// Scan the entry block of the function in FuncInfo for arguments that look
11610/// like copies into a local alloca. Record any copied arguments in
11611/// ArgCopyElisionCandidates.
11612static void
11614 FunctionLoweringInfo *FuncInfo,
11615 ArgCopyElisionMapTy &ArgCopyElisionCandidates) {
11616 // Record the state of every static alloca used in the entry block. Argument
11617 // allocas are all used in the entry block, so we need approximately as many
11618 // entries as we have arguments.
11619 enum StaticAllocaInfo { Unknown, Clobbered, Elidable };
11621 unsigned NumArgs = FuncInfo->Fn->arg_size();
11622 StaticAllocas.reserve(NumArgs * 2);
11623
11624 auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * {
11625 if (!V)
11626 return nullptr;
11627 V = V->stripPointerCasts();
11628 const auto *AI = dyn_cast<AllocaInst>(V);
11629 if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI))
11630 return nullptr;
11631 auto Iter = StaticAllocas.insert({AI, Unknown});
11632 return &Iter.first->second;
11633 };
11634
11635 // Look for stores of arguments to static allocas. Look through bitcasts and
11636 // GEPs to handle type coercions, as long as the alloca is fully initialized
11637 // by the store. Any non-store use of an alloca escapes it and any subsequent
11638 // unanalyzed store might write it.
11639 // FIXME: Handle structs initialized with multiple stores.
11640 for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) {
11641 // Look for stores, and handle non-store uses conservatively.
11642 const auto *SI = dyn_cast<StoreInst>(&I);
11643 if (!SI) {
11644 // We will look through cast uses, so ignore them completely.
11645 if (I.isCast())
11646 continue;
11647 // Ignore debug info and pseudo op intrinsics, they don't escape or store
11648 // to allocas.
11649 if (I.isDebugOrPseudoInst())
11650 continue;
11651 // This is an unknown instruction. Assume it escapes or writes to all
11652 // static alloca operands.
11653 for (const Use &U : I.operands()) {
11654 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U))
11655 *Info = StaticAllocaInfo::Clobbered;
11656 }
11657 continue;
11658 }
11659
11660 // If the stored value is a static alloca, mark it as escaped.
11661 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand()))
11662 *Info = StaticAllocaInfo::Clobbered;
11663
11664 // Check if the destination is a static alloca.
11665 const Value *Dst = SI->getPointerOperand()->stripPointerCasts();
11666 StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst);
11667 if (!Info)
11668 continue;
11669 const AllocaInst *AI = cast<AllocaInst>(Dst);
11670
11671 // Skip allocas that have been initialized or clobbered.
11672 if (*Info != StaticAllocaInfo::Unknown)
11673 continue;
11674
11675 // Check if the stored value is an argument, and that this store fully
11676 // initializes the alloca.
11677 // If the argument type has padding bits we can't directly forward a pointer
11678 // as the upper bits may contain garbage.
11679 // Don't elide copies from the same argument twice.
11680 const Value *Val = SI->getValueOperand()->stripPointerCasts();
11681 const auto *Arg = dyn_cast<Argument>(Val);
11682 if (!Arg || Arg->hasPassPointeeByValueCopyAttr() ||
11683 Arg->getType()->isEmptyTy() ||
11684 DL.getTypeStoreSize(Arg->getType()) !=
11685 DL.getTypeAllocSize(AI->getAllocatedType()) ||
11686 !DL.typeSizeEqualsStoreSize(Arg->getType()) ||
11687 ArgCopyElisionCandidates.count(Arg)) {
11688 *Info = StaticAllocaInfo::Clobbered;
11689 continue;
11690 }
11691
11692 LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI
11693 << '\n');
11694
11695 // Mark this alloca and store for argument copy elision.
11696 *Info = StaticAllocaInfo::Elidable;
11697 ArgCopyElisionCandidates.insert({Arg, {AI, SI}});
11698
11699 // Stop scanning if we've seen all arguments. This will happen early in -O0
11700 // builds, which is useful, because -O0 builds have large entry blocks and
11701 // many allocas.
11702 if (ArgCopyElisionCandidates.size() == NumArgs)
11703 break;
11704 }
11705}
11706
11707/// Try to elide argument copies from memory into a local alloca. Succeeds if
11708/// ArgVal is a load from a suitable fixed stack object.
11711 DenseMap<int, int> &ArgCopyElisionFrameIndexMap,
11712 SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs,
11713 ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg,
11714 ArrayRef<SDValue> ArgVals, bool &ArgHasUses) {
11715 // Check if this is a load from a fixed stack object.
11716 auto *LNode = dyn_cast<LoadSDNode>(ArgVals[0]);
11717 if (!LNode)
11718 return;
11719 auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode());
11720 if (!FINode)
11721 return;
11722
11723 // Check that the fixed stack object is the right size and alignment.
11724 // Look at the alignment that the user wrote on the alloca instead of looking
11725 // at the stack object.
11726 auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg);
11727 assert(ArgCopyIter != ArgCopyElisionCandidates.end());
11728 const AllocaInst *AI = ArgCopyIter->second.first;
11729 int FixedIndex = FINode->getIndex();
11730 int &AllocaIndex = FuncInfo.StaticAllocaMap[AI];
11731 int OldIndex = AllocaIndex;
11732 MachineFrameInfo &MFI = FuncInfo.MF->getFrameInfo();
11733 if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) {
11734 LLVM_DEBUG(
11735 dbgs() << " argument copy elision failed due to bad fixed stack "
11736 "object size\n");
11737 return;
11738 }
11739 Align RequiredAlignment = AI->getAlign();
11740 if (MFI.getObjectAlign(FixedIndex) < RequiredAlignment) {
11741 LLVM_DEBUG(dbgs() << " argument copy elision failed: alignment of alloca "
11742 "greater than stack argument alignment ("
11743 << DebugStr(RequiredAlignment) << " vs "
11744 << DebugStr(MFI.getObjectAlign(FixedIndex)) << ")\n");
11745 return;
11746 }
11747
11748 // Perform the elision. Delete the old stack object and replace its only use
11749 // in the variable info map. Mark the stack object as mutable and aliased.
11750 LLVM_DEBUG({
11751 dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n'
11752 << " Replacing frame index " << OldIndex << " with " << FixedIndex
11753 << '\n';
11754 });
11755 MFI.RemoveStackObject(OldIndex);
11756 MFI.setIsImmutableObjectIndex(FixedIndex, false);
11757 MFI.setIsAliasedObjectIndex(FixedIndex, true);
11758 AllocaIndex = FixedIndex;
11759 ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex});
11760 for (SDValue ArgVal : ArgVals)
11761 Chains.push_back(ArgVal.getValue(1));
11762
11763 // Avoid emitting code for the store implementing the copy.
11764 const StoreInst *SI = ArgCopyIter->second.second;
11765 ElidedArgCopyInstrs.insert(SI);
11766
11767 // Check for uses of the argument again so that we can avoid exporting ArgVal
11768 // if it is't used by anything other than the store.
11769 for (const Value *U : Arg.users()) {
11770 if (U != SI) {
11771 ArgHasUses = true;
11772 break;
11773 }
11774 }
11775}
11776
11777void SelectionDAGISel::LowerArguments(const Function &F) {
11778 SelectionDAG &DAG = SDB->DAG;
11779 SDLoc dl = SDB->getCurSDLoc();
11780 const DataLayout &DL = DAG.getDataLayout();
11782
11783 // In Naked functions we aren't going to save any registers.
11784 if (F.hasFnAttribute(Attribute::Naked))
11785 return;
11786
11787 if (!FuncInfo->CanLowerReturn) {
11788 // Put in an sret pointer parameter before all the other parameters.
11789 MVT ValueVT = TLI->getPointerTy(DL, DL.getAllocaAddrSpace());
11790
11791 ISD::ArgFlagsTy Flags;
11792 Flags.setSRet();
11793 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVT);
11794 ISD::InputArg RetArg(Flags, RegisterVT, ValueVT, F.getReturnType(), true,
11796 Ins.push_back(RetArg);
11797 }
11798
11799 // Look for stores of arguments to static allocas. Mark such arguments with a
11800 // flag to ask the target to give us the memory location of that argument if
11801 // available.
11802 ArgCopyElisionMapTy ArgCopyElisionCandidates;
11804 ArgCopyElisionCandidates);
11805
11806 // Set up the incoming argument description vector.
11807 for (const Argument &Arg : F.args()) {
11808 unsigned ArgNo = Arg.getArgNo();
11810 ComputeValueTypes(DAG.getDataLayout(), Arg.getType(), Types);
11811 bool isArgValueUsed = !Arg.use_empty();
11812 Type *FinalType = Arg.getType();
11813 if (Arg.hasAttribute(Attribute::ByVal))
11814 FinalType = Arg.getParamByValType();
11815 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters(
11816 FinalType, F.getCallingConv(), F.isVarArg(), DL);
11817 for (unsigned Value = 0, NumValues = Types.size(); Value != NumValues;
11818 ++Value) {
11819 Type *ArgTy = Types[Value];
11820 EVT VT = TLI->getValueType(DL, ArgTy);
11821 ISD::ArgFlagsTy Flags;
11822
11823 if (ArgTy->isPointerTy()) {
11824 Flags.setPointer();
11825 Flags.setPointerAddrSpace(cast<PointerType>(ArgTy)->getAddressSpace());
11826 }
11827 if (Arg.hasAttribute(Attribute::ZExt))
11828 Flags.setZExt();
11829 if (Arg.hasAttribute(Attribute::SExt))
11830 Flags.setSExt();
11831 if (Arg.hasAttribute(Attribute::InReg)) {
11832 // If we are using vectorcall calling convention, a structure that is
11833 // passed InReg - is surely an HVA
11834 if (F.getCallingConv() == CallingConv::X86_VectorCall &&
11835 isa<StructType>(Arg.getType())) {
11836 // The first value of a structure is marked
11837 if (0 == Value)
11838 Flags.setHvaStart();
11839 Flags.setHva();
11840 }
11841 // Set InReg Flag
11842 Flags.setInReg();
11843 }
11844 if (Arg.hasAttribute(Attribute::StructRet))
11845 Flags.setSRet();
11846 if (Arg.hasAttribute(Attribute::SwiftSelf))
11847 Flags.setSwiftSelf();
11848 if (Arg.hasAttribute(Attribute::SwiftAsync))
11849 Flags.setSwiftAsync();
11850 if (Arg.hasAttribute(Attribute::SwiftError))
11851 Flags.setSwiftError();
11852 if (Arg.hasAttribute(Attribute::ByVal))
11853 Flags.setByVal();
11854 if (Arg.hasAttribute(Attribute::ByRef))
11855 Flags.setByRef();
11856 if (Arg.hasAttribute(Attribute::InAlloca)) {
11857 Flags.setInAlloca();
11858 // Set the byval flag for CCAssignFn callbacks that don't know about
11859 // inalloca. This way we can know how many bytes we should've allocated
11860 // and how many bytes a callee cleanup function will pop. If we port
11861 // inalloca to more targets, we'll have to add custom inalloca handling
11862 // in the various CC lowering callbacks.
11863 Flags.setByVal();
11864 }
11865 if (Arg.hasAttribute(Attribute::Preallocated)) {
11866 Flags.setPreallocated();
11867 // Set the byval flag for CCAssignFn callbacks that don't know about
11868 // preallocated. This way we can know how many bytes we should've
11869 // allocated and how many bytes a callee cleanup function will pop. If
11870 // we port preallocated to more targets, we'll have to add custom
11871 // preallocated handling in the various CC lowering callbacks.
11872 Flags.setByVal();
11873 }
11874
11875 // Certain targets (such as MIPS), may have a different ABI alignment
11876 // for a type depending on the context. Give the target a chance to
11877 // specify the alignment it wants.
11878 const Align OriginalAlignment(
11879 TLI->getABIAlignmentForCallingConv(ArgTy, DL));
11880 Flags.setOrigAlign(OriginalAlignment);
11881
11882 Align MemAlign;
11883 Type *ArgMemTy = nullptr;
11884 if (Flags.isByVal() || Flags.isInAlloca() || Flags.isPreallocated() ||
11885 Flags.isByRef()) {
11886 if (!ArgMemTy)
11887 ArgMemTy = Arg.getPointeeInMemoryValueType();
11888
11889 uint64_t MemSize = DL.getTypeAllocSize(ArgMemTy);
11890
11891 // For in-memory arguments, size and alignment should be passed from FE.
11892 // BE will guess if this info is not there but there are cases it cannot
11893 // get right.
11894 if (auto ParamAlign = Arg.getParamStackAlign())
11895 MemAlign = *ParamAlign;
11896 else if ((ParamAlign = Arg.getParamAlign()))
11897 MemAlign = *ParamAlign;
11898 else
11899 MemAlign = TLI->getByValTypeAlignment(ArgMemTy, DL);
11900 if (Flags.isByRef())
11901 Flags.setByRefSize(MemSize);
11902 else
11903 Flags.setByValSize(MemSize);
11904 } else if (auto ParamAlign = Arg.getParamStackAlign()) {
11905 MemAlign = *ParamAlign;
11906 } else {
11907 MemAlign = OriginalAlignment;
11908 }
11909 Flags.setMemAlign(MemAlign);
11910
11911 if (Arg.hasAttribute(Attribute::Nest))
11912 Flags.setNest();
11913 if (NeedsRegBlock)
11914 Flags.setInConsecutiveRegs();
11915 if (ArgCopyElisionCandidates.count(&Arg))
11916 Flags.setCopyElisionCandidate();
11917 if (Arg.hasAttribute(Attribute::Returned))
11918 Flags.setReturned();
11919
11920 MVT RegisterVT = TLI->getRegisterTypeForCallingConv(
11921 *CurDAG->getContext(), F.getCallingConv(), VT);
11922 unsigned NumRegs = TLI->getNumRegistersForCallingConv(
11923 *CurDAG->getContext(), F.getCallingConv(), VT);
11924 for (unsigned i = 0; i != NumRegs; ++i) {
11925 // For scalable vectors, use the minimum size; individual targets
11926 // are responsible for handling scalable vector arguments and
11927 // return values.
11928 ISD::InputArg MyFlags(
11929 Flags, RegisterVT, VT, ArgTy, isArgValueUsed, ArgNo,
11930 i * RegisterVT.getStoreSize().getKnownMinValue());
11931 if (NumRegs > 1 && i == 0)
11932 MyFlags.Flags.setSplit();
11933 // if it isn't first piece, alignment must be 1
11934 else if (i > 0) {
11935 MyFlags.Flags.setOrigAlign(Align(1));
11936 if (i == NumRegs - 1)
11937 MyFlags.Flags.setSplitEnd();
11938 }
11939 Ins.push_back(MyFlags);
11940 }
11941 if (NeedsRegBlock && Value == NumValues - 1)
11942 Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast();
11943 }
11944 }
11945
11946 // Call the target to set up the argument values.
11948 SDValue NewRoot = TLI->LowerFormalArguments(
11949 DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals);
11950
11951 // Verify that the target's LowerFormalArguments behaved as expected.
11952 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
11953 "LowerFormalArguments didn't return a valid chain!");
11954 assert(InVals.size() == Ins.size() &&
11955 "LowerFormalArguments didn't emit the correct number of values!");
11956 LLVM_DEBUG({
11957 for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
11958 assert(InVals[i].getNode() &&
11959 "LowerFormalArguments emitted a null value!");
11960 assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
11961 "LowerFormalArguments emitted a value with the wrong type!");
11962 }
11963 });
11964
11965 // Update the DAG with the new chain value resulting from argument lowering.
11966 DAG.setRoot(NewRoot);
11967
11968 // Set up the argument values.
11969 unsigned i = 0;
11970 if (!FuncInfo->CanLowerReturn) {
11971 // Create a virtual register for the sret pointer, and put in a copy
11972 // from the sret argument into it.
11973 MVT VT = TLI->getPointerTy(DL, DL.getAllocaAddrSpace());
11974 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
11975 std::optional<ISD::NodeType> AssertOp;
11976 SDValue ArgValue =
11977 getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, VT, nullptr, NewRoot,
11978 F.getCallingConv(), AssertOp);
11979
11980 MachineFunction& MF = SDB->DAG.getMachineFunction();
11981 MachineRegisterInfo& RegInfo = MF.getRegInfo();
11982 Register SRetReg =
11983 RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT));
11984 FuncInfo->DemoteRegister = SRetReg;
11985 NewRoot =
11986 SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue);
11987 DAG.setRoot(NewRoot);
11988
11989 // i indexes lowered arguments. Bump it past the hidden sret argument.
11990 ++i;
11991 }
11992
11994 DenseMap<int, int> ArgCopyElisionFrameIndexMap;
11995 for (const Argument &Arg : F.args()) {
11996 SmallVector<SDValue, 4> ArgValues;
11997 SmallVector<EVT, 4> ValueVTs;
11998 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
11999 unsigned NumValues = ValueVTs.size();
12000 if (NumValues == 0)
12001 continue;
12002
12003 bool ArgHasUses = !Arg.use_empty();
12004
12005 // Elide the copying store if the target loaded this argument from a
12006 // suitable fixed stack object.
12007 if (Ins[i].Flags.isCopyElisionCandidate()) {
12008 unsigned NumParts = 0;
12009 for (EVT VT : ValueVTs)
12010 NumParts += TLI->getNumRegistersForCallingConv(*CurDAG->getContext(),
12011 F.getCallingConv(), VT);
12012
12013 tryToElideArgumentCopy(*FuncInfo, Chains, ArgCopyElisionFrameIndexMap,
12014 ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg,
12015 ArrayRef(&InVals[i], NumParts), ArgHasUses);
12016 }
12017
12018 // If this argument is unused then remember its value. It is used to generate
12019 // debugging information.
12020 bool isSwiftErrorArg =
12021 TLI->supportSwiftError() &&
12022 Arg.hasAttribute(Attribute::SwiftError);
12023 if (!ArgHasUses && !isSwiftErrorArg) {
12024 SDB->setUnusedArgValue(&Arg, InVals[i]);
12025
12026 // Also remember any frame index for use in FastISel.
12027 if (FrameIndexSDNode *FI =
12029 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
12030 }
12031
12032 for (unsigned Val = 0; Val != NumValues; ++Val) {
12033 EVT VT = ValueVTs[Val];
12034 MVT PartVT = TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(),
12035 F.getCallingConv(), VT);
12036 unsigned NumParts = TLI->getNumRegistersForCallingConv(
12037 *CurDAG->getContext(), F.getCallingConv(), VT);
12038
12039 // Even an apparent 'unused' swifterror argument needs to be returned. So
12040 // we do generate a copy for it that can be used on return from the
12041 // function.
12042 if (ArgHasUses || isSwiftErrorArg) {
12043 std::optional<ISD::NodeType> AssertOp;
12044 if (Arg.hasAttribute(Attribute::SExt))
12045 AssertOp = ISD::AssertSext;
12046 else if (Arg.hasAttribute(Attribute::ZExt))
12047 AssertOp = ISD::AssertZext;
12048
12049 SDValue OutVal =
12050 getCopyFromParts(DAG, dl, &InVals[i], NumParts, PartVT, VT, nullptr,
12051 NewRoot, F.getCallingConv(), AssertOp);
12052
12053 FPClassTest NoFPClass = Arg.getNoFPClass();
12054 if (NoFPClass != fcNone) {
12055 SDValue SDNoFPClass = DAG.getTargetConstant(
12056 static_cast<uint64_t>(NoFPClass), dl, MVT::i32);
12057 OutVal = DAG.getNode(ISD::AssertNoFPClass, dl, OutVal.getValueType(),
12058 OutVal, SDNoFPClass);
12059 }
12060 ArgValues.push_back(OutVal);
12061 }
12062
12063 i += NumParts;
12064 }
12065
12066 // We don't need to do anything else for unused arguments.
12067 if (ArgValues.empty())
12068 continue;
12069
12070 // Note down frame index.
12071 if (FrameIndexSDNode *FI =
12072 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
12073 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
12074
12075 SDValue Res = DAG.getMergeValues(ArrayRef(ArgValues.data(), NumValues),
12076 SDB->getCurSDLoc());
12077
12078 SDB->setValue(&Arg, Res);
12079 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) {
12080 // We want to associate the argument with the frame index, among
12081 // involved operands, that correspond to the lowest address. The
12082 // getCopyFromParts function, called earlier, is swapping the order of
12083 // the operands to BUILD_PAIR depending on endianness. The result of
12084 // that swapping is that the least significant bits of the argument will
12085 // be in the first operand of the BUILD_PAIR node, and the most
12086 // significant bits will be in the second operand.
12087 unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0;
12088 if (LoadSDNode *LNode =
12089 dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode()))
12090 if (FrameIndexSDNode *FI =
12091 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
12092 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
12093 }
12094
12095 // Analyses past this point are naive and don't expect an assertion.
12096 if (Res.getOpcode() == ISD::AssertZext)
12097 Res = Res.getOperand(0);
12098
12099 // Update the SwiftErrorVRegDefMap.
12100 if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) {
12101 Register Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
12102 if (Reg.isVirtual())
12103 SwiftError->setCurrentVReg(FuncInfo->MBB, SwiftError->getFunctionArg(),
12104 Reg);
12105 }
12106
12107 // If this argument is live outside of the entry block, insert a copy from
12108 // wherever we got it to the vreg that other BB's will reference it as.
12109 if (Res.getOpcode() == ISD::CopyFromReg) {
12110 // If we can, though, try to skip creating an unnecessary vreg.
12111 // FIXME: This isn't very clean... it would be nice to make this more
12112 // general.
12113 Register Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
12114 if (Reg.isVirtual()) {
12115 FuncInfo->ValueMap[&Arg] = Reg;
12116 continue;
12117 }
12118 }
12119 if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) {
12120 FuncInfo->InitializeRegForValue(&Arg);
12121 SDB->CopyToExportRegsIfNeeded(&Arg);
12122 }
12123 }
12124
12125 if (!Chains.empty()) {
12126 Chains.push_back(NewRoot);
12127 NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
12128 }
12129
12130 DAG.setRoot(NewRoot);
12131
12132 assert(i == InVals.size() && "Argument register count mismatch!");
12133
12134 // If any argument copy elisions occurred and we have debug info, update the
12135 // stale frame indices used in the dbg.declare variable info table.
12136 if (!ArgCopyElisionFrameIndexMap.empty()) {
12137 for (MachineFunction::VariableDbgInfo &VI :
12138 MF->getInStackSlotVariableDbgInfo()) {
12139 auto I = ArgCopyElisionFrameIndexMap.find(VI.getStackSlot());
12140 if (I != ArgCopyElisionFrameIndexMap.end())
12141 VI.updateStackSlot(I->second);
12142 }
12143 }
12144
12145 // Finally, if the target has anything special to do, allow it to do so.
12147}
12148
12149/// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to
12150/// ensure constants are generated when needed. Remember the virtual registers
12151/// that need to be added to the Machine PHI nodes as input. We cannot just
12152/// directly add them, because expansion might result in multiple MBB's for one
12153/// BB. As such, the start of the BB might correspond to a different MBB than
12154/// the end.
12155void
12156SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
12157 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12158
12159 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
12160
12161 // Check PHI nodes in successors that expect a value to be available from this
12162 // block.
12163 for (const BasicBlock *SuccBB : successors(LLVMBB->getTerminator())) {
12164 if (!isa<PHINode>(SuccBB->begin())) continue;
12165 MachineBasicBlock *SuccMBB = FuncInfo.getMBB(SuccBB);
12166
12167 // If this terminator has multiple identical successors (common for
12168 // switches), only handle each succ once.
12169 if (!SuccsHandled.insert(SuccMBB).second)
12170 continue;
12171
12173
12174 // At this point we know that there is a 1-1 correspondence between LLVM PHI
12175 // nodes and Machine PHI nodes, but the incoming operands have not been
12176 // emitted yet.
12177 for (const PHINode &PN : SuccBB->phis()) {
12178 // Ignore dead phi's.
12179 if (PN.use_empty())
12180 continue;
12181
12182 // Skip empty types
12183 if (PN.getType()->isEmptyTy())
12184 continue;
12185
12186 Register Reg;
12187 const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB);
12188
12189 if (const auto *C = dyn_cast<Constant>(PHIOp)) {
12190 Register &RegOut = ConstantsOut[C];
12191 if (!RegOut) {
12192 RegOut = FuncInfo.CreateRegs(&PN);
12193 // We need to zero/sign extend ConstantInt phi operands to match
12194 // assumptions in FunctionLoweringInfo::ComputePHILiveOutRegInfo.
12195 ISD::NodeType ExtendType = ISD::ANY_EXTEND;
12196 if (auto *CI = dyn_cast<ConstantInt>(C))
12197 ExtendType = TLI.signExtendConstant(CI) ? ISD::SIGN_EXTEND
12199 CopyValueToVirtualRegister(C, RegOut, ExtendType);
12200 }
12201 Reg = RegOut;
12202 } else {
12204 FuncInfo.ValueMap.find(PHIOp);
12205 if (I != FuncInfo.ValueMap.end())
12206 Reg = I->second;
12207 else {
12208 assert(isa<AllocaInst>(PHIOp) &&
12209 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
12210 "Didn't codegen value into a register!??");
12211 Reg = FuncInfo.CreateRegs(&PN);
12213 }
12214 }
12215
12216 // Remember that this register needs to added to the machine PHI node as
12217 // the input for this MBB.
12218 SmallVector<EVT, 4> ValueVTs;
12219 ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs);
12220 for (EVT VT : ValueVTs) {
12221 const unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
12222 for (unsigned i = 0; i != NumRegisters; ++i)
12223 FuncInfo.PHINodesToUpdate.emplace_back(&*MBBI++, Reg + i);
12224 Reg += NumRegisters;
12225 }
12226 }
12227 }
12228
12229 ConstantsOut.clear();
12230}
12231
12232MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) {
12234 if (++I == FuncInfo.MF->end())
12235 return nullptr;
12236 return &*I;
12237}
12238
12239/// During lowering new call nodes can be created (such as memset, etc.).
12240/// Those will become new roots of the current DAG, but complications arise
12241/// when they are tail calls. In such cases, the call lowering will update
12242/// the root, but the builder still needs to know that a tail call has been
12243/// lowered in order to avoid generating an additional return.
12244void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) {
12245 // If the node is null, we do have a tail call.
12246 if (MaybeTC.getNode() != nullptr)
12247 DAG.setRoot(MaybeTC);
12248 else
12249 HasTailCall = true;
12250}
12251
12252void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond,
12253 MachineBasicBlock *SwitchMBB,
12254 MachineBasicBlock *DefaultMBB) {
12255 MachineFunction *CurMF = FuncInfo.MF;
12256 MachineBasicBlock *NextMBB = nullptr;
12258 if (++BBI != FuncInfo.MF->end())
12259 NextMBB = &*BBI;
12260
12261 unsigned Size = W.LastCluster - W.FirstCluster + 1;
12262
12263 BranchProbabilityInfo *BPI = FuncInfo.BPI;
12264
12265 if (Size == 2 && W.MBB == SwitchMBB) {
12266 // If any two of the cases has the same destination, and if one value
12267 // is the same as the other, but has one bit unset that the other has set,
12268 // use bit manipulation to do two compares at once. For example:
12269 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
12270 // TODO: This could be extended to merge any 2 cases in switches with 3
12271 // cases.
12272 // TODO: Handle cases where W.CaseBB != SwitchBB.
12273 CaseCluster &Small = *W.FirstCluster;
12274 CaseCluster &Big = *W.LastCluster;
12275
12276 if (Small.Low == Small.High && Big.Low == Big.High &&
12277 Small.MBB == Big.MBB) {
12278 const APInt &SmallValue = Small.Low->getValue();
12279 const APInt &BigValue = Big.Low->getValue();
12280
12281 // Check that there is only one bit different.
12282 APInt CommonBit = BigValue ^ SmallValue;
12283 if (CommonBit.isPowerOf2()) {
12284 SDValue CondLHS = getValue(Cond);
12285 EVT VT = CondLHS.getValueType();
12286 SDLoc DL = getCurSDLoc();
12287
12288 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
12289 DAG.getConstant(CommonBit, DL, VT));
12290 SDValue Cond = DAG.getSetCC(
12291 DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT),
12292 ISD::SETEQ);
12293
12294 // Update successor info.
12295 // Both Small and Big will jump to Small.BB, so we sum up the
12296 // probabilities.
12297 addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob);
12298 if (BPI)
12299 addSuccessorWithProb(
12300 SwitchMBB, DefaultMBB,
12301 // The default destination is the first successor in IR.
12302 BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0));
12303 else
12304 addSuccessorWithProb(SwitchMBB, DefaultMBB);
12305
12306 // Insert the true branch.
12307 SDValue BrCond =
12308 DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond,
12309 DAG.getBasicBlock(Small.MBB));
12310 // Insert the false branch.
12311 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
12312 DAG.getBasicBlock(DefaultMBB));
12313
12314 DAG.setRoot(BrCond);
12315 return;
12316 }
12317 }
12318 }
12319
12320 if (TM.getOptLevel() != CodeGenOptLevel::None) {
12321 // Here, we order cases by probability so the most likely case will be
12322 // checked first. However, two clusters can have the same probability in
12323 // which case their relative ordering is non-deterministic. So we use Low
12324 // as a tie-breaker as clusters are guaranteed to never overlap.
12325 llvm::sort(W.FirstCluster, W.LastCluster + 1,
12326 [](const CaseCluster &a, const CaseCluster &b) {
12327 return a.Prob != b.Prob ?
12328 a.Prob > b.Prob :
12329 a.Low->getValue().slt(b.Low->getValue());
12330 });
12331
12332 // Rearrange the case blocks so that the last one falls through if possible
12333 // without changing the order of probabilities.
12334 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) {
12335 --I;
12336 if (I->Prob > W.LastCluster->Prob)
12337 break;
12338 if (I->Kind == CC_Range && I->MBB == NextMBB) {
12339 std::swap(*I, *W.LastCluster);
12340 break;
12341 }
12342 }
12343 }
12344
12345 // Compute total probability.
12346 BranchProbability DefaultProb = W.DefaultProb;
12347 BranchProbability UnhandledProbs = DefaultProb;
12348 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I)
12349 UnhandledProbs += I->Prob;
12350
12351 MachineBasicBlock *CurMBB = W.MBB;
12352 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) {
12353 bool FallthroughUnreachable = false;
12354 MachineBasicBlock *Fallthrough;
12355 if (I == W.LastCluster) {
12356 // For the last cluster, fall through to the default destination.
12357 Fallthrough = DefaultMBB;
12358 FallthroughUnreachable = isa<UnreachableInst>(
12359 DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg());
12360 } else {
12361 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock());
12362 CurMF->insert(BBI, Fallthrough);
12363 // Put Cond in a virtual register to make it available from the new blocks.
12365 }
12366 UnhandledProbs -= I->Prob;
12367
12368 switch (I->Kind) {
12369 case CC_JumpTable: {
12370 // FIXME: Optimize away range check based on pivot comparisons.
12371 JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first;
12372 SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second;
12373
12374 // The jump block hasn't been inserted yet; insert it here.
12375 MachineBasicBlock *JumpMBB = JT->MBB;
12376 CurMF->insert(BBI, JumpMBB);
12377
12378 auto JumpProb = I->Prob;
12379 auto FallthroughProb = UnhandledProbs;
12380
12381 // If the default statement is a target of the jump table, we evenly
12382 // distribute the default probability to successors of CurMBB. Also
12383 // update the probability on the edge from JumpMBB to Fallthrough.
12384 for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(),
12385 SE = JumpMBB->succ_end();
12386 SI != SE; ++SI) {
12387 if (*SI == DefaultMBB) {
12388 JumpProb += DefaultProb / 2;
12389 FallthroughProb -= DefaultProb / 2;
12390 JumpMBB->setSuccProbability(SI, DefaultProb / 2);
12391 JumpMBB->normalizeSuccProbs();
12392 break;
12393 }
12394 }
12395
12396 // If the default clause is unreachable, propagate that knowledge into
12397 // JTH->FallthroughUnreachable which will use it to suppress the range
12398 // check.
12399 //
12400 // However, don't do this if we're doing branch target enforcement,
12401 // because a table branch _without_ a range check can be a tempting JOP
12402 // gadget - out-of-bounds inputs that are impossible in correct
12403 // execution become possible again if an attacker can influence the
12404 // control flow. So if an attacker doesn't already have a BTI bypass
12405 // available, we don't want them to be able to get one out of this
12406 // table branch.
12407 if (FallthroughUnreachable) {
12408 Function &CurFunc = CurMF->getFunction();
12409 if (!CurFunc.hasFnAttribute("branch-target-enforcement"))
12410 JTH->FallthroughUnreachable = true;
12411 }
12412
12413 if (!JTH->FallthroughUnreachable)
12414 addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb);
12415 addSuccessorWithProb(CurMBB, JumpMBB, JumpProb);
12416 CurMBB->normalizeSuccProbs();
12417
12418 // The jump table header will be inserted in our current block, do the
12419 // range check, and fall through to our fallthrough block.
12420 JTH->HeaderBB = CurMBB;
12421 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader.
12422
12423 // If we're in the right place, emit the jump table header right now.
12424 if (CurMBB == SwitchMBB) {
12425 visitJumpTableHeader(*JT, *JTH, SwitchMBB);
12426 JTH->Emitted = true;
12427 }
12428 break;
12429 }
12430 case CC_BitTests: {
12431 // FIXME: Optimize away range check based on pivot comparisons.
12432 BitTestBlock *BTB = &SL->BitTestCases[I->BTCasesIndex];
12433
12434 // The bit test blocks haven't been inserted yet; insert them here.
12435 for (BitTestCase &BTC : BTB->Cases)
12436 CurMF->insert(BBI, BTC.ThisBB);
12437
12438 // Fill in fields of the BitTestBlock.
12439 BTB->Parent = CurMBB;
12440 BTB->Default = Fallthrough;
12441
12442 BTB->DefaultProb = UnhandledProbs;
12443 // If the cases in bit test don't form a contiguous range, we evenly
12444 // distribute the probability on the edge to Fallthrough to two
12445 // successors of CurMBB.
12446 if (!BTB->ContiguousRange) {
12447 BTB->Prob += DefaultProb / 2;
12448 BTB->DefaultProb -= DefaultProb / 2;
12449 }
12450
12451 if (FallthroughUnreachable)
12452 BTB->FallthroughUnreachable = true;
12453
12454 // If we're in the right place, emit the bit test header right now.
12455 if (CurMBB == SwitchMBB) {
12456 visitBitTestHeader(*BTB, SwitchMBB);
12457 BTB->Emitted = true;
12458 }
12459 break;
12460 }
12461 case CC_Range: {
12462 const Value *RHS, *LHS, *MHS;
12463 ISD::CondCode CC;
12464 if (I->Low == I->High) {
12465 // Check Cond == I->Low.
12466 CC = ISD::SETEQ;
12467 LHS = Cond;
12468 RHS=I->Low;
12469 MHS = nullptr;
12470 } else {
12471 // Check I->Low <= Cond <= I->High.
12472 CC = ISD::SETLE;
12473 LHS = I->Low;
12474 MHS = Cond;
12475 RHS = I->High;
12476 }
12477
12478 // If Fallthrough is unreachable, fold away the comparison.
12479 if (FallthroughUnreachable)
12480 CC = ISD::SETTRUE;
12481
12482 // The false probability is the sum of all unhandled cases.
12483 CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB,
12484 getCurSDLoc(), I->Prob, UnhandledProbs);
12485
12486 if (CurMBB == SwitchMBB)
12487 visitSwitchCase(CB, SwitchMBB);
12488 else
12489 SL->SwitchCases.push_back(CB);
12490
12491 break;
12492 }
12493 }
12494 CurMBB = Fallthrough;
12495 }
12496}
12497
12498void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList,
12499 const SwitchWorkListItem &W,
12500 Value *Cond,
12501 MachineBasicBlock *SwitchMBB) {
12502 assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) &&
12503 "Clusters not sorted?");
12504 assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!");
12505
12506 auto [LastLeft, FirstRight, LeftProb, RightProb] =
12507 SL->computeSplitWorkItemInfo(W);
12508
12509 // Use the first element on the right as pivot since we will make less-than
12510 // comparisons against it.
12511 CaseClusterIt PivotCluster = FirstRight;
12512 assert(PivotCluster > W.FirstCluster);
12513 assert(PivotCluster <= W.LastCluster);
12514
12515 CaseClusterIt FirstLeft = W.FirstCluster;
12516 CaseClusterIt LastRight = W.LastCluster;
12517
12518 const ConstantInt *Pivot = PivotCluster->Low;
12519
12520 // New blocks will be inserted immediately after the current one.
12522 ++BBI;
12523
12524 // We will branch to the LHS if Value < Pivot. If LHS is a single cluster,
12525 // we can branch to its destination directly if it's squeezed exactly in
12526 // between the known lower bound and Pivot - 1.
12527 MachineBasicBlock *LeftMBB;
12528 if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range &&
12529 FirstLeft->Low == W.GE &&
12530 (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) {
12531 LeftMBB = FirstLeft->MBB;
12532 } else {
12533 LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
12534 FuncInfo.MF->insert(BBI, LeftMBB);
12535 WorkList.push_back(
12536 {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2});
12537 // Put Cond in a virtual register to make it available from the new blocks.
12539 }
12540
12541 // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a
12542 // single cluster, RHS.Low == Pivot, and we can branch to its destination
12543 // directly if RHS.High equals the current upper bound.
12544 MachineBasicBlock *RightMBB;
12545 if (FirstRight == LastRight && FirstRight->Kind == CC_Range &&
12546 W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) {
12547 RightMBB = FirstRight->MBB;
12548 } else {
12549 RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
12550 FuncInfo.MF->insert(BBI, RightMBB);
12551 WorkList.push_back(
12552 {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2});
12553 // Put Cond in a virtual register to make it available from the new blocks.
12555 }
12556
12557 // Create the CaseBlock record that will be used to lower the branch.
12558 CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB,
12559 getCurSDLoc(), LeftProb, RightProb);
12560
12561 if (W.MBB == SwitchMBB)
12562 visitSwitchCase(CB, SwitchMBB);
12563 else
12564 SL->SwitchCases.push_back(CB);
12565}
12566
12567// Scale CaseProb after peeling a case with the probablity of PeeledCaseProb
12568// from the swith statement.
12570 BranchProbability PeeledCaseProb) {
12571 if (PeeledCaseProb == BranchProbability::getOne())
12573 BranchProbability SwitchProb = PeeledCaseProb.getCompl();
12574
12575 uint32_t Numerator = CaseProb.getNumerator();
12576 uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator());
12577 return BranchProbability(Numerator, std::max(Numerator, Denominator));
12578}
12579
12580// Try to peel the top probability case if it exceeds the threshold.
12581// Return current MachineBasicBlock for the switch statement if the peeling
12582// does not occur.
12583// If the peeling is performed, return the newly created MachineBasicBlock
12584// for the peeled switch statement. Also update Clusters to remove the peeled
12585// case. PeeledCaseProb is the BranchProbability for the peeled case.
12586MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster(
12587 const SwitchInst &SI, CaseClusterVector &Clusters,
12588 BranchProbability &PeeledCaseProb) {
12589 MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
12590 // Don't perform if there is only one cluster or optimizing for size.
12591 if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 ||
12592 TM.getOptLevel() == CodeGenOptLevel::None ||
12593 SwitchMBB->getParent()->getFunction().hasMinSize())
12594 return SwitchMBB;
12595
12596 BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100);
12597 unsigned PeeledCaseIndex = 0;
12598 bool SwitchPeeled = false;
12599 for (unsigned Index = 0; Index < Clusters.size(); ++Index) {
12600 CaseCluster &CC = Clusters[Index];
12601 if (CC.Prob < TopCaseProb)
12602 continue;
12603 TopCaseProb = CC.Prob;
12604 PeeledCaseIndex = Index;
12605 SwitchPeeled = true;
12606 }
12607 if (!SwitchPeeled)
12608 return SwitchMBB;
12609
12610 LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: "
12611 << TopCaseProb << "\n");
12612
12613 // Record the MBB for the peeled switch statement.
12614 MachineFunction::iterator BBI(SwitchMBB);
12615 ++BBI;
12616 MachineBasicBlock *PeeledSwitchMBB =
12617 FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock());
12618 FuncInfo.MF->insert(BBI, PeeledSwitchMBB);
12619
12620 ExportFromCurrentBlock(SI.getCondition());
12621 auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex;
12622 SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt,
12623 nullptr, nullptr, TopCaseProb.getCompl()};
12624 lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB);
12625
12626 Clusters.erase(PeeledCaseIt);
12627 for (CaseCluster &CC : Clusters) {
12628 LLVM_DEBUG(
12629 dbgs() << "Scale the probablity for one cluster, before scaling: "
12630 << CC.Prob << "\n");
12631 CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb);
12632 LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n");
12633 }
12634 PeeledCaseProb = TopCaseProb;
12635 return PeeledSwitchMBB;
12636}
12637
12638void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
12639 // Extract cases from the switch.
12640 BranchProbabilityInfo *BPI = FuncInfo.BPI;
12641 CaseClusterVector Clusters;
12642 Clusters.reserve(SI.getNumCases());
12643 for (auto I : SI.cases()) {
12644 MachineBasicBlock *Succ = FuncInfo.getMBB(I.getCaseSuccessor());
12645 const ConstantInt *CaseVal = I.getCaseValue();
12646 BranchProbability Prob =
12647 BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex())
12648 : BranchProbability(1, SI.getNumCases() + 1);
12649 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob));
12650 }
12651
12652 MachineBasicBlock *DefaultMBB = FuncInfo.getMBB(SI.getDefaultDest());
12653
12654 // Cluster adjacent cases with the same destination. We do this at all
12655 // optimization levels because it's cheap to do and will make codegen faster
12656 // if there are many clusters.
12657 sortAndRangeify(Clusters);
12658
12659 // The branch probablity of the peeled case.
12660 BranchProbability PeeledCaseProb = BranchProbability::getZero();
12661 MachineBasicBlock *PeeledSwitchMBB =
12662 peelDominantCaseCluster(SI, Clusters, PeeledCaseProb);
12663
12664 // If there is only the default destination, jump there directly.
12665 MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
12666 if (Clusters.empty()) {
12667 assert(PeeledSwitchMBB == SwitchMBB);
12668 SwitchMBB->addSuccessor(DefaultMBB);
12669 if (DefaultMBB != NextBlock(SwitchMBB)) {
12670 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
12671 getControlRoot(), DAG.getBasicBlock(DefaultMBB)));
12672 }
12673 return;
12674 }
12675
12676 SL->findJumpTables(Clusters, &SI, getCurSDLoc(), DefaultMBB, DAG.getPSI(),
12677 DAG.getBFI());
12678 SL->findBitTestClusters(Clusters, &SI);
12679
12680 LLVM_DEBUG({
12681 dbgs() << "Case clusters: ";
12682 for (const CaseCluster &C : Clusters) {
12683 if (C.Kind == CC_JumpTable)
12684 dbgs() << "JT:";
12685 if (C.Kind == CC_BitTests)
12686 dbgs() << "BT:";
12687
12688 C.Low->getValue().print(dbgs(), true);
12689 if (C.Low != C.High) {
12690 dbgs() << '-';
12691 C.High->getValue().print(dbgs(), true);
12692 }
12693 dbgs() << ' ';
12694 }
12695 dbgs() << '\n';
12696 });
12697
12698 assert(!Clusters.empty());
12699 SwitchWorkList WorkList;
12700 CaseClusterIt First = Clusters.begin();
12701 CaseClusterIt Last = Clusters.end() - 1;
12702 auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB);
12703 // Scale the branchprobability for DefaultMBB if the peel occurs and
12704 // DefaultMBB is not replaced.
12705 if (PeeledCaseProb != BranchProbability::getZero() &&
12706 DefaultMBB == FuncInfo.getMBB(SI.getDefaultDest()))
12707 DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb);
12708 WorkList.push_back(
12709 {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb});
12710
12711 while (!WorkList.empty()) {
12712 SwitchWorkListItem W = WorkList.pop_back_val();
12713 unsigned NumClusters = W.LastCluster - W.FirstCluster + 1;
12714
12715 if (NumClusters > 3 && TM.getOptLevel() != CodeGenOptLevel::None &&
12716 !DefaultMBB->getParent()->getFunction().hasMinSize()) {
12717 // For optimized builds, lower large range as a balanced binary tree.
12718 splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB);
12719 continue;
12720 }
12721
12722 lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB);
12723 }
12724}
12725
12726void SelectionDAGBuilder::visitStepVector(const CallInst &I) {
12727 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12728 auto DL = getCurSDLoc();
12729 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
12730 setValue(&I, DAG.getStepVector(DL, ResultVT));
12731}
12732
12733void SelectionDAGBuilder::visitVectorReverse(const CallInst &I) {
12734 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12735 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
12736
12737 SDLoc DL = getCurSDLoc();
12738 SDValue V = getValue(I.getOperand(0));
12739 assert(VT == V.getValueType() && "Malformed vector.reverse!");
12740
12741 if (VT.isScalableVector()) {
12742 setValue(&I, DAG.getNode(ISD::VECTOR_REVERSE, DL, VT, V));
12743 return;
12744 }
12745
12746 // Use VECTOR_SHUFFLE for the fixed-length vector
12747 // to maintain existing behavior.
12748 SmallVector<int, 8> Mask;
12749 unsigned NumElts = VT.getVectorMinNumElements();
12750 for (unsigned i = 0; i != NumElts; ++i)
12751 Mask.push_back(NumElts - 1 - i);
12752
12753 setValue(&I, DAG.getVectorShuffle(VT, DL, V, DAG.getUNDEF(VT), Mask));
12754}
12755
12756void SelectionDAGBuilder::visitVectorDeinterleave(const CallInst &I,
12757 unsigned Factor) {
12758 auto DL = getCurSDLoc();
12759 SDValue InVec = getValue(I.getOperand(0));
12760
12761 SmallVector<EVT, 4> ValueVTs;
12762 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
12763 ValueVTs);
12764
12765 EVT OutVT = ValueVTs[0];
12766 unsigned OutNumElts = OutVT.getVectorMinNumElements();
12767
12768 SmallVector<SDValue, 4> SubVecs(Factor);
12769 for (unsigned i = 0; i != Factor; ++i) {
12770 assert(ValueVTs[i] == OutVT && "Expected VTs to be the same");
12771 SubVecs[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, OutVT, InVec,
12772 DAG.getVectorIdxConstant(OutNumElts * i, DL));
12773 }
12774
12775 // Use VECTOR_SHUFFLE for fixed-length vectors with factor of 2 to benefit
12776 // from existing legalisation and combines.
12777 if (OutVT.isFixedLengthVector() && Factor == 2) {
12778 SDValue Even = DAG.getVectorShuffle(OutVT, DL, SubVecs[0], SubVecs[1],
12779 createStrideMask(0, 2, OutNumElts));
12780 SDValue Odd = DAG.getVectorShuffle(OutVT, DL, SubVecs[0], SubVecs[1],
12781 createStrideMask(1, 2, OutNumElts));
12782 SDValue Res = DAG.getMergeValues({Even, Odd}, getCurSDLoc());
12783 setValue(&I, Res);
12784 return;
12785 }
12786
12787 SDValue Res = DAG.getNode(ISD::VECTOR_DEINTERLEAVE, DL,
12788 DAG.getVTList(ValueVTs), SubVecs);
12789 setValue(&I, Res);
12790}
12791
12792void SelectionDAGBuilder::visitVectorInterleave(const CallInst &I,
12793 unsigned Factor) {
12794 auto DL = getCurSDLoc();
12795 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12796 EVT InVT = getValue(I.getOperand(0)).getValueType();
12797 EVT OutVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
12798
12799 SmallVector<SDValue, 8> InVecs(Factor);
12800 for (unsigned i = 0; i < Factor; ++i) {
12801 InVecs[i] = getValue(I.getOperand(i));
12802 assert(InVecs[i].getValueType() == InVecs[0].getValueType() &&
12803 "Expected VTs to be the same");
12804 }
12805
12806 // Use VECTOR_SHUFFLE for fixed-length vectors with factor of 2 to benefit
12807 // from existing legalisation and combines.
12808 if (OutVT.isFixedLengthVector() && Factor == 2) {
12809 unsigned NumElts = InVT.getVectorMinNumElements();
12810 SDValue V = DAG.getNode(ISD::CONCAT_VECTORS, DL, OutVT, InVecs);
12811 setValue(&I, DAG.getVectorShuffle(OutVT, DL, V, DAG.getUNDEF(OutVT),
12812 createInterleaveMask(NumElts, 2)));
12813 return;
12814 }
12815
12816 SmallVector<EVT, 8> ValueVTs(Factor, InVT);
12817 SDValue Res =
12818 DAG.getNode(ISD::VECTOR_INTERLEAVE, DL, DAG.getVTList(ValueVTs), InVecs);
12819
12821 for (unsigned i = 0; i < Factor; ++i)
12822 Results[i] = Res.getValue(i);
12823
12824 Res = DAG.getNode(ISD::CONCAT_VECTORS, DL, OutVT, Results);
12825 setValue(&I, Res);
12826}
12827
12828void SelectionDAGBuilder::visitFreeze(const FreezeInst &I) {
12829 SmallVector<EVT, 4> ValueVTs;
12830 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
12831 ValueVTs);
12832 unsigned NumValues = ValueVTs.size();
12833 if (NumValues == 0) return;
12834
12835 SmallVector<SDValue, 4> Values(NumValues);
12836 SDValue Op = getValue(I.getOperand(0));
12837
12838 for (unsigned i = 0; i != NumValues; ++i)
12839 Values[i] = DAG.getNode(ISD::FREEZE, getCurSDLoc(), ValueVTs[i],
12840 SDValue(Op.getNode(), Op.getResNo() + i));
12841
12843 DAG.getVTList(ValueVTs), Values));
12844}
12845
12846void SelectionDAGBuilder::visitVectorSplice(const CallInst &I) {
12847 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12848 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
12849
12850 SDLoc DL = getCurSDLoc();
12851 SDValue V1 = getValue(I.getOperand(0));
12852 SDValue V2 = getValue(I.getOperand(1));
12853 uint64_t Imm = cast<ConstantInt>(I.getOperand(2))->getZExtValue();
12854 const bool IsLeft = I.getIntrinsicID() == Intrinsic::vector_splice_left;
12855
12856 // VECTOR_SHUFFLE doesn't support a scalable mask so use a dedicated node.
12857 if (VT.isScalableVector()) {
12858 setValue(
12859 &I,
12860 DAG.getNode(
12862 V1, V2,
12863 DAG.getConstant(Imm, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))));
12864 return;
12865 }
12866
12867 unsigned NumElts = VT.getVectorNumElements();
12868
12869 uint64_t Idx = IsLeft ? Imm : NumElts - Imm;
12870
12871 // Use VECTOR_SHUFFLE to maintain original behaviour for fixed-length vectors.
12872 SmallVector<int, 8> Mask;
12873 for (unsigned i = 0; i < NumElts; ++i)
12874 Mask.push_back(Idx + i);
12875 setValue(&I, DAG.getVectorShuffle(VT, DL, V1, V2, Mask));
12876}
12877
12878// Consider the following MIR after SelectionDAG, which produces output in
12879// phyregs in the first case or virtregs in the second case.
12880//
12881// INLINEASM_BR ..., implicit-def $ebx, ..., implicit-def $edx
12882// %5:gr32 = COPY $ebx
12883// %6:gr32 = COPY $edx
12884// %1:gr32 = COPY %6:gr32
12885// %0:gr32 = COPY %5:gr32
12886//
12887// INLINEASM_BR ..., def %5:gr32, ..., def %6:gr32
12888// %1:gr32 = COPY %6:gr32
12889// %0:gr32 = COPY %5:gr32
12890//
12891// Given %0, we'd like to return $ebx in the first case and %5 in the second.
12892// Given %1, we'd like to return $edx in the first case and %6 in the second.
12893//
12894// If a callbr has outputs, it will have a single mapping in FuncInfo.ValueMap
12895// to a single virtreg (such as %0). The remaining outputs monotonically
12896// increase in virtreg number from there. If a callbr has no outputs, then it
12897// should not have a corresponding callbr landingpad; in fact, the callbr
12898// landingpad would not even be able to refer to such a callbr.
12900 MachineInstr *MI = MRI.def_begin(Reg)->getParent();
12901 // There is definitely at least one copy.
12902 assert(MI->getOpcode() == TargetOpcode::COPY &&
12903 "start of copy chain MUST be COPY");
12904 Reg = MI->getOperand(1).getReg();
12905
12906 // If the copied register in the first copy must be virtual.
12907 assert(Reg.isVirtual() && "expected COPY of virtual register");
12908 MI = MRI.def_begin(Reg)->getParent();
12909
12910 // There may be an optional second copy.
12911 if (MI->getOpcode() == TargetOpcode::COPY) {
12912 assert(Reg.isVirtual() && "expected COPY of virtual register");
12913 Reg = MI->getOperand(1).getReg();
12914 assert(Reg.isPhysical() && "expected COPY of physical register");
12915 } else {
12916 // The start of the chain must be an INLINEASM_BR.
12917 assert(MI->getOpcode() == TargetOpcode::INLINEASM_BR &&
12918 "end of copy chain MUST be INLINEASM_BR");
12919 }
12920
12921 return Reg;
12922}
12923
12924// We must do this walk rather than the simpler
12925// setValue(&I, getCopyFromRegs(CBR, CBR->getType()));
12926// otherwise we will end up with copies of virtregs only valid along direct
12927// edges.
12928void SelectionDAGBuilder::visitCallBrLandingPad(const CallInst &I) {
12929 SmallVector<EVT, 8> ResultVTs;
12930 SmallVector<SDValue, 8> ResultValues;
12931 const auto *CBR =
12932 cast<CallBrInst>(I.getParent()->getUniquePredecessor()->getTerminator());
12933
12934 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12935 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo();
12936 MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
12937
12938 Register InitialDef = FuncInfo.ValueMap[CBR];
12939 SDValue Chain = DAG.getRoot();
12940
12941 // Re-parse the asm constraints string.
12942 TargetLowering::AsmOperandInfoVector TargetConstraints =
12943 TLI.ParseConstraints(DAG.getDataLayout(), TRI, *CBR);
12944 for (auto &T : TargetConstraints) {
12945 SDISelAsmOperandInfo OpInfo(T);
12946 if (OpInfo.Type != InlineAsm::isOutput)
12947 continue;
12948
12949 // Pencil in OpInfo.ConstraintType and OpInfo.ConstraintVT based on the
12950 // individual constraint.
12951 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
12952
12953 switch (OpInfo.ConstraintType) {
12956 // Fill in OpInfo.AssignedRegs.Regs.
12957 getRegistersForValue(DAG, getCurSDLoc(), OpInfo, OpInfo);
12958
12959 // getRegistersForValue may produce 1 to many registers based on whether
12960 // the OpInfo.ConstraintVT is legal on the target or not.
12961 for (Register &Reg : OpInfo.AssignedRegs.Regs) {
12962 Register OriginalDef = FollowCopyChain(MRI, InitialDef++);
12963 if (OriginalDef.isPhysical())
12964 FuncInfo.MBB->addLiveIn(OriginalDef);
12965 // Update the assigned registers to use the original defs.
12966 Reg = OriginalDef;
12967 }
12968
12969 SDValue V = OpInfo.AssignedRegs.getCopyFromRegs(
12970 DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, CBR);
12971 ResultValues.push_back(V);
12972 ResultVTs.push_back(OpInfo.ConstraintVT);
12973 break;
12974 }
12976 SDValue Flag;
12977 SDValue V = TLI.LowerAsmOutputForConstraint(Chain, Flag, getCurSDLoc(),
12978 OpInfo, DAG);
12979 ++InitialDef;
12980 ResultValues.push_back(V);
12981 ResultVTs.push_back(OpInfo.ConstraintVT);
12982 break;
12983 }
12984 default:
12985 break;
12986 }
12987 }
12989 DAG.getVTList(ResultVTs), ResultValues);
12990 setValue(&I, V);
12991}
unsigned const MachineRegisterInfo * MRI
return SDValue()
static unsigned getIntrinsicID(const SDNode *N)
unsigned RegSize
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
static msgpack::DocNode getNode(msgpack::DocNode DN, msgpack::Type Type, MCValue Val)
This file declares a class to represent arbitrary precision floating point values and provide a varie...
This file implements a class to represent arbitrary precision integral constant values and operations...
MachineBasicBlock & MBB
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
MachineBasicBlock MachineBasicBlock::iterator MBBI
Function Alias Analysis Results
Atomic ordering constants.
This file contains the simple types necessary to represent the attributes associated with functions a...
static const Function * getParent(const Value *V)
This file implements the BitVector class.
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
Analysis containing CSE Info
Definition CSEInfo.cpp:27
This file contains the declarations for the subclasses of Constant, which represent the different fla...
dxil translate DXIL Translate Metadata
static AttributeList getReturnAttrs(FastISel::CallLoweringInfo &CLI)
Returns an AttributeList representing the attributes applied to the return value of the given call.
Definition FastISel.cpp:942
#define Check(C,...)
static Value * getCondition(Instruction *I)
Hexagon Common GEP
const HexagonInstrInfo * TII
IRTranslator LLVM IR MI
This file provides various utilities for inspecting and working with the control flow graph in LLVM I...
Module.h This file contains the declarations for the Module class.
static void getRegistersForValue(MachineFunction &MF, MachineIRBuilder &MIRBuilder, GISelAsmOperandInfo &OpInfo, GISelAsmOperandInfo &RefOpInfo)
Assign virtual/physical registers for the specified register operand.
This file defines an InstructionCost class that is used when calculating the cost of an instruction,...
const AbstractManglingParser< Derived, Alloc >::OperatorInfo AbstractManglingParser< Derived, Alloc >::Ops[]
#define RegName(no)
lazy value info
#define F(x, y, z)
Definition MD5.cpp:54
#define I(x, y, z)
Definition MD5.cpp:57
Machine Check Debug Module
static bool isUndef(const MachineInstr &MI)
Register Reg
Register const TargetRegisterInfo * TRI
Promote Memory to Register
Definition Mem2Reg.cpp:110
static const Function * getCalledFunction(const Value *V)
This file provides utility analysis objects describing memory locations.
This file provides utility for Memory Model Relaxation Annotations (MMRAs).
This file contains the declarations for metadata subclasses.
Type::TypeID TypeID
#define T
#define T1
static MCRegister getReg(const MCDisassembler *D, unsigned RC, unsigned RegNo)
static unsigned getAddressSpace(const Value *V, unsigned MaxLookup)
MachineInstr unsigned OpIdx
ConstantRange Range(APInt(BitWidth, Low), APInt(BitWidth, High))
uint64_t High
uint64_t IntrinsicInst * II
OptimizedStructLayoutField Field
#define P(N)
const SmallVectorImpl< MachineOperand > MachineBasicBlock * TBB
const SmallVectorImpl< MachineOperand > & Cond
static Type * getValueType(Value *V)
Returns the type of the given value/instruction V.
This file contains some templates that are useful if you are working with the STL at all.
static bool hasOnlySelectUsers(const Value *Cond)
static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL, SDValue &Chain)
Create a LOAD_STACK_GUARD node, and let it carry the target specific global variable if there exists ...
static bool getUniformBase(const Value *Ptr, SDValue &Base, SDValue &Index, SDValue &Scale, SelectionDAGBuilder *SDB, const BasicBlock *CurBB, uint64_t ElemSize)
static void failForInvalidBundles(const CallBase &I, StringRef Name, ArrayRef< uint32_t > AllowedBundles)
static void addStackMapLiveVars(const CallBase &Call, unsigned StartIdx, const SDLoc &DL, SmallVectorImpl< SDValue > &Ops, SelectionDAGBuilder &Builder)
Add a stack map intrinsic call's live variable operands to a stackmap or patchpoint target node's ope...
static const unsigned MaxParallelChains
static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS, SelectionDAG &DAG, const TargetLowering &TLI, SDNodeFlags Flags)
visitPow - Lower a pow intrinsic.
static const CallBase * FindPreallocatedCall(const Value *PreallocatedSetup)
Given a @llvm.call.preallocated.setup, return the corresponding preallocated call.
static cl::opt< unsigned > SwitchPeelThreshold("switch-peel-threshold", cl::Hidden, cl::init(66), cl::desc("Set the case probability threshold for peeling the case from a " "switch statement. A value greater than 100 will void this " "optimization"))
static cl::opt< bool > InsertAssertAlign("insert-assert-align", cl::init(true), cl::desc("Insert the experimental `assertalign` node."), cl::ReallyHidden)
static unsigned getISDForVPIntrinsic(const VPIntrinsic &VPIntrin)
static bool handleDanglingVariadicDebugInfo(SelectionDAG &DAG, DILocalVariable *Variable, DebugLoc DL, unsigned Order, SmallVectorImpl< Value * > &Values, DIExpression *Expression)
static unsigned findMatchingInlineAsmOperand(unsigned OperandNo, const std::vector< SDValue > &AsmNodeOperands)
static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo, SDISelAsmOperandInfo &MatchingOpInfo, SelectionDAG &DAG)
Make sure that the output operand OpInfo and its corresponding input operand MatchingOpInfo have comp...
static void findUnwindDestinations(FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, BranchProbability Prob, SmallVectorImpl< std::pair< MachineBasicBlock *, BranchProbability > > &UnwindDests)
When an invoke or a cleanupret unwinds to the next EH pad, there are many places it could ultimately ...
static unsigned FixedPointIntrinsicToOpcode(unsigned Intrinsic)
static BranchProbability scaleCaseProbality(BranchProbability CaseProb, BranchProbability PeeledCaseProb)
static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, const TargetLowering &TLI, SDNodeFlags Flags)
expandExp2 - Lower an exp2 intrinsic.
static SDValue expandDivFix(unsigned Opcode, const SDLoc &DL, SDValue LHS, SDValue RHS, SDValue Scale, SelectionDAG &DAG, const TargetLowering &TLI)
static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt, const SDLoc &dl)
getF32Constant - Get 32-bit floating point constant.
static SDValue widenVectorToPartType(SelectionDAG &DAG, SDValue Val, const SDLoc &DL, EVT PartVT)
static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, const TargetLowering &TLI, SDNodeFlags Flags)
expandLog10 - Lower a log10 intrinsic.
DenseMap< const Argument *, std::pair< const AllocaInst *, const StoreInst * > > ArgCopyElisionMapTy
static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl, SDValue Val, SDValue *Parts, unsigned NumParts, MVT PartVT, const Value *V, std::optional< CallingConv::ID > CallConv)
getCopyToPartsVector - Create a series of nodes that contain the specified value split into legal par...
static void getUnderlyingArgRegs(SmallVectorImpl< std::pair< Register, TypeSize > > &Regs, const SDValue &N)
static void getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts, unsigned NumParts, MVT PartVT, const Value *V, std::optional< CallingConv::ID > CallConv=std::nullopt, ISD::NodeType ExtendKind=ISD::ANY_EXTEND)
getCopyToParts - Create a series of nodes that contain the specified value split into legal parts.
static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, SelectionDAGBuilder &Builder)
static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, const TargetLowering &TLI, SDNodeFlags Flags)
expandLog2 - Lower a log2 intrinsic.
static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location, SDISelAsmOperandInfo &OpInfo, SelectionDAG &DAG)
Get a direct memory input to behave well as an indirect operand.
static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel)
isOnlyUsedInEntryBlock - If the specified argument is only used in the entry block,...
static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, const Twine &ErrMsg)
static bool collectInstructionDeps(SmallMapVector< const Instruction *, bool, 8 > *Deps, const Value *V, SmallMapVector< const Instruction *, bool, 8 > *Necessary=nullptr, unsigned Depth=0)
static void findArgumentCopyElisionCandidates(const DataLayout &DL, FunctionLoweringInfo *FuncInfo, ArgCopyElisionMapTy &ArgCopyElisionCandidates)
Scan the entry block of the function in FuncInfo for arguments that look like copies into a local all...
static bool isFunction(SDValue Op)
static SDValue GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI, const SDLoc &dl)
GetExponent - Get the exponent:
static Register FollowCopyChain(MachineRegisterInfo &MRI, Register Reg)
static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS, SelectionDAG &DAG)
ExpandPowI - Expand a llvm.powi intrinsic.
static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, const TargetLowering &TLI, SDNodeFlags Flags)
expandLog - Lower a log intrinsic.
static SDValue getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts, unsigned NumParts, MVT PartVT, EVT ValueVT, const Value *V, SDValue InChain, std::optional< CallingConv::ID > CC=std::nullopt, std::optional< ISD::NodeType > AssertOp=std::nullopt)
getCopyFromParts - Create a value that contains the specified legal parts combined into the value the...
static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl, SelectionDAG &DAG)
static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl)
GetSignificand - Get the significand and build it into a floating-point number with exponent of 1:
static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, const TargetLowering &TLI, SDNodeFlags Flags)
expandExp - Lower an exp intrinsic.
static const MDNode * getRangeMetadata(const Instruction &I)
static cl::opt< unsigned, true > LimitFPPrecision("limit-float-precision", cl::desc("Generate low-precision inline sequences " "for some float libcalls"), cl::location(LimitFloatPrecision), cl::Hidden, cl::init(0))
static void tryToElideArgumentCopy(FunctionLoweringInfo &FuncInfo, SmallVectorImpl< SDValue > &Chains, DenseMap< int, int > &ArgCopyElisionFrameIndexMap, SmallPtrSetImpl< const Instruction * > &ElidedArgCopyInstrs, ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg, ArrayRef< SDValue > ArgVals, bool &ArgHasUses)
Try to elide argument copies from memory into a local alloca.
static unsigned LimitFloatPrecision
LimitFloatPrecision - Generate low-precision inline sequences for some float libcalls (6,...
static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts, unsigned NumParts, MVT PartVT, EVT ValueVT, const Value *V, SDValue InChain, std::optional< CallingConv::ID > CC)
getCopyFromPartsVector - Create a value that contains the specified legal parts combined into the val...
static bool InBlock(const Value *V, const BasicBlock *BB)
static FPClassTest getNoFPClass(const Instruction &I)
static LLVM_ATTRIBUTE_ALWAYS_INLINE MVT::SimpleValueType getSimpleVT(const uint8_t *MatcherTable, unsigned &MatcherIndex)
getSimpleVT - Decode a value in MatcherTable, if it's a VBR encoded value, use GetVBR to decode it.
This file defines the SmallPtrSet class.
This file contains some functions that are useful when dealing with strings.
#define LLVM_DEBUG(...)
Definition Debug.h:114
static TableGen::Emitter::Opt Y("gen-skeleton-entry", EmitSkeleton, "Generate example skeleton entry")
static TableGen::Emitter::OptClass< SkeletonEmitter > X("gen-skeleton-class", "Generate example skeleton class")
static SymbolRef::Type getType(const Symbol *Sym)
Definition TapiFile.cpp:39
This pass exposes codegen information to IR-level passes.
uint16_t RegSizeInBits(const MCRegisterInfo &MRI, MCRegister RegNo)
Value * RHS
Value * LHS
static const fltSemantics & IEEEsingle()
Definition APFloat.h:296
Class for arbitrary precision integers.
Definition APInt.h:78
bool isNonNegative() const
Determine if this APInt Value is non-negative (>= 0)
Definition APInt.h:335
bool isPowerOf2() const
Check if this APInt's value is a power of two greater than zero.
Definition APInt.h:441
an instruction to allocate memory on the stack
Align getAlign() const
Return the alignment of the memory that is being allocated by the instruction.
Type * getAllocatedType() const
Return the type that is being allocated by the instruction.
This class represents an incoming formal argument to a Function.
Definition Argument.h:32
LLVM_ABI bool hasAttribute(Attribute::AttrKind Kind) const
Check if an argument has a given attribute.
Definition Function.cpp:339
unsigned getArgNo() const
Return the index of this formal argument in its containing function.
Definition Argument.h:50
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Definition ArrayRef.h:40
iterator end() const
Definition ArrayRef.h:131
size_t size() const
size - Get the array size.
Definition ArrayRef.h:142
iterator begin() const
Definition ArrayRef.h:130
bool empty() const
empty - Check if the array is empty.
Definition ArrayRef.h:137
A cache of @llvm.assume calls within a function.
An instruction that atomically checks whether a specified value is in a memory location,...
an instruction that atomically reads a memory location, combines it with another value,...
@ Add
*p = old + v
@ FAdd
*p = old + v
@ USubCond
Subtract only if no unsigned overflow.
@ FMinimum
*p = minimum(old, v) minimum matches the behavior of llvm.minimum.
@ Min
*p = old <signed v ? old : v
@ Sub
*p = old - v
@ And
*p = old & v
@ Xor
*p = old ^ v
@ USubSat
*p = usub.sat(old, v) usub.sat matches the behavior of llvm.usub.sat.
@ FMaximum
*p = maximum(old, v) maximum matches the behavior of llvm.maximum.
@ FSub
*p = old - v
@ UIncWrap
Increment one up to a maximum value.
@ Max
*p = old >signed v ? old : v
@ UMin
*p = old <unsigned v ? old : v
@ FMin
*p = minnum(old, v) minnum matches the behavior of llvm.minnum.
@ UMax
*p = old >unsigned v ? old : v
@ FMax
*p = maxnum(old, v) maxnum matches the behavior of llvm.maxnum.
@ UDecWrap
Decrement one until a minimum value or zero.
@ Nand
*p = ~(old & v)
This class holds the attributes for a particular argument, parameter, function, or return value.
Definition Attributes.h:361
LLVM Basic Block Representation.
Definition BasicBlock.h:62
const Function * getParent() const
Return the enclosing method, or null if none.
Definition BasicBlock.h:213
LLVM_ABI InstListType::const_iterator getFirstNonPHIIt() const
Returns an iterator to the first instruction in this block that is not a PHINode instruction.
InstListType::const_iterator const_iterator
Definition BasicBlock.h:171
LLVM_ABI bool isEntryBlock() const
Return true if this is the entry block of the containing function.
LLVM_ABI InstListType::const_iterator getFirstNonPHIOrDbg(bool SkipPseudoOp=true) const
Returns a pointer to the first instruction in this block that is not a PHINode or a debug intrinsic,...
const Instruction * getTerminator() const LLVM_READONLY
Returns the terminator instruction if the block is well formed or null if the block is not well forme...
Definition BasicBlock.h:233
This class is a wrapper over an AAResults, and it is intended to be used only when there are no IR ch...
This class represents a no-op cast from one type to another.
The address of a basic block.
Definition Constants.h:904
Conditional or Unconditional Branch instruction.
Analysis providing branch probability information.
LLVM_ABI BranchProbability getEdgeProbability(const BasicBlock *Src, unsigned IndexInSuccessors) const
Get an edge's probability, relative to other out-edges of the Src.
LLVM_ABI bool isEdgeHot(const BasicBlock *Src, const BasicBlock *Dst) const
Test if an edge is hot relative to other out-edges of the Src.
static uint32_t getDenominator()
static BranchProbability getOne()
static BranchProbability getUnknown()
uint32_t getNumerator() const
LLVM_ABI uint64_t scale(uint64_t Num) const
Scale a large integer.
BranchProbability getCompl() const
static BranchProbability getZero()
static void normalizeProbabilities(ProbabilityIter Begin, ProbabilityIter End)
Base class for all callable instructions (InvokeInst and CallInst) Holds everything related to callin...
std::optional< OperandBundleUse > getOperandBundle(StringRef Name) const
Return an operand bundle by name, if present.
CallingConv::ID getCallingConv() const
User::op_iterator arg_begin()
Return the iterator pointing to the beginning of the argument list.
LLVM_ABI bool isMustTailCall() const
Tests if this call site must be tail call optimized.
LLVM_ABI bool isIndirectCall() const
Return true if the callsite is an indirect call.
unsigned countOperandBundlesOfType(StringRef Name) const
Return the number of operand bundles with the tag Name attached to this instruction.
Value * getCalledOperand() const
Value * getArgOperand(unsigned i) const
User::op_iterator arg_end()
Return the iterator pointing to the end of the argument list.
bool isConvergent() const
Determine if the invoke is convergent.
FunctionType * getFunctionType() const
unsigned arg_size() const
AttributeList getAttributes() const
Return the attributes for this call.
LLVM_ABI bool isTailCall() const
Tests if this call site is marked as a tail call.
CallBr instruction, tracking function calls that may not return control but instead transfer it to a ...
This class represents a function call, abstracting a target machine's calling convention.
This class is the base class for the comparison instructions.
Definition InstrTypes.h:664
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
Definition InstrTypes.h:676
ConstantDataSequential - A vector or array constant whose element type is a simple 1/2/4/8-byte integ...
Definition Constants.h:598
A constant value that is initialized with an expression using other constant values.
Definition Constants.h:1130
ConstantFP - Floating Point Values [float, double].
Definition Constants.h:282
This is the shared class of boolean and integer constants.
Definition Constants.h:87
static LLVM_ABI ConstantInt * getTrue(LLVMContext &Context)
bool isZero() const
This is just a convenience method to make client code smaller for a common code.
Definition Constants.h:219
static LLVM_ABI ConstantInt * getFalse(LLVMContext &Context)
uint64_t getZExtValue() const
Return the constant as a 64-bit unsigned integer value after it has been zero extended as appropriate...
Definition Constants.h:168
const APInt & getValue() const
Return the constant as an APInt value reference.
Definition Constants.h:159
A signed pointer, in the ptrauth sense.
Definition Constants.h:1037
uint64_t getZExtValue() const
Constant Vector Declarations.
Definition Constants.h:522
This is an important base class in LLVM.
Definition Constant.h:43
This is the common base class for constrained floating point intrinsics.
LLVM_ABI std::optional< fp::ExceptionBehavior > getExceptionBehavior() const
LLVM_ABI unsigned getNonMetadataArgCount() const
DWARF expression.
LLVM_ABI bool isEntryValue() const
Check if the expression consists of exactly one entry value operand.
static bool fragmentsOverlap(const FragmentInfo &A, const FragmentInfo &B)
Check if fragments overlap between a pair of FragmentInfos.
static LLVM_ABI DIExpression * appendOpsToArg(const DIExpression *Expr, ArrayRef< uint64_t > Ops, unsigned ArgNo, bool StackValue=false)
Create a copy of Expr by appending the given list of Ops to each instance of the operand DW_OP_LLVM_a...
static LLVM_ABI std::optional< FragmentInfo > getFragmentInfo(expr_op_iterator Start, expr_op_iterator End)
Retrieve the details of this fragment expression.
LLVM_ABI uint64_t getNumLocationOperands() const
Return the number of unique location operands referred to (via DW_OP_LLVM_arg) in this expression; th...
static LLVM_ABI std::optional< DIExpression * > createFragmentExpression(const DIExpression *Expr, unsigned OffsetInBits, unsigned SizeInBits)
Create a DIExpression to describe one part of an aggregate variable that is fragmented across multipl...
static LLVM_ABI const DIExpression * convertToUndefExpression(const DIExpression *Expr)
Removes all elements from Expr that do not apply to an undef debug value, which includes every operat...
static LLVM_ABI DIExpression * prepend(const DIExpression *Expr, uint8_t Flags, int64_t Offset=0)
Prepend DIExpr with a deref and offset operation and optionally turn it into a stack value or/and an ...
static LLVM_ABI DIExpression * prependOpcodes(const DIExpression *Expr, SmallVectorImpl< uint64_t > &Ops, bool StackValue=false, bool EntryValue=false)
Prepend DIExpr with the given opcodes and optionally turn it into a stack value.
Base class for variables.
LLVM_ABI std::optional< uint64_t > getSizeInBits() const
Determines the size of the variable's type.
A parsed version of the target data layout string in and methods for querying it.
Definition DataLayout.h:64
bool isBigEndian() const
Definition DataLayout.h:215
Records a position in IR for a source label (DILabel).
Base class for non-instruction debug metadata records that have positions within IR.
DebugLoc getDebugLoc() const
Record of a variable value-assignment, aka a non instruction representation of the dbg....
LLVM_ABI Value * getVariableLocationOp(unsigned OpIdx) const
DIExpression * getExpression() const
DILocalVariable * getVariable() const
LLVM_ABI iterator_range< location_op_iterator > location_ops() const
Get the locations corresponding to the variable referenced by the debug info intrinsic.
A debug info location.
Definition DebugLoc.h:123
LLVM_ABI DILocation * getInlinedAt() const
Definition DebugLoc.cpp:67
iterator find(const_arg_type_t< KeyT > Val)
Definition DenseMap.h:178
DenseMapIterator< KeyT, ValueT, KeyInfoT, BucketT > iterator
Definition DenseMap.h:74
bool empty() const
Definition DenseMap.h:109
DenseMapIterator< KeyT, ValueT, KeyInfoT, BucketT, true > const_iterator
Definition DenseMap.h:75
iterator end()
Definition DenseMap.h:81
std::pair< iterator, bool > insert(const std::pair< KeyT, ValueT > &KV)
Definition DenseMap.h:241
void reserve(size_type NumEntries)
Grow the densemap so that it can contain at least NumEntries items before resizing again.
Definition DenseMap.h:114
Diagnostic information for inline asm reporting.
static constexpr ElementCount getFixed(ScalarTy MinVal)
Definition TypeSize.h:309
static constexpr ElementCount get(ScalarTy MinVal, bool Scalable)
Definition TypeSize.h:315
constexpr bool isScalar() const
Exactly one element.
Definition TypeSize.h:320
Lightweight error class with error context and mandatory checking.
Definition Error.h:159
Class representing an expression and its matching format.
This instruction extracts a struct member or array element value from an aggregate value.
This instruction compares its operands according to the predicate given to the constructor.
This is a fast-path instruction selection class that generates poor code and doesn't support illegal ...
Definition FastISel.h:66
bool allowReassoc() const
Flag queries.
Definition FMF.h:64
An instruction for ordering other memory operations.
static LLVM_ABI FixedVectorType * get(Type *ElementType, unsigned NumElts)
Definition Type.cpp:802
This class represents a freeze function that returns random concrete value if an operand is either a ...
FunctionLoweringInfo - This contains information that is global to a function that is used when lower...
BranchProbabilityInfo * BPI
MachineBasicBlock * getMBB(const BasicBlock *BB) const
DenseMap< const AllocaInst *, int > StaticAllocaMap
StaticAllocaMap - Keep track of frame indices for fixed sized allocas in the entry block.
const LiveOutInfo * GetLiveOutRegInfo(Register Reg)
GetLiveOutRegInfo - Gets LiveOutInfo for a register, returning NULL if the register is a PHI destinat...
MachineBasicBlock * MBB
MBB - The current block.
Class to represent function types.
unsigned getNumParams() const
Return the number of fixed parameters this function type requires.
Type * getParamType(unsigned i) const
Parameter type accessors.
Type * getReturnType() const
Data structure describing the variable locations in a function.
const BasicBlock & getEntryBlock() const
Definition Function.h:807
FunctionType * getFunctionType() const
Returns the FunctionType for me.
Definition Function.h:209
Intrinsic::ID getIntrinsicID() const LLVM_READONLY
getIntrinsicID - This method returns the ID number of the specified function, or Intrinsic::not_intri...
Definition Function.h:244
bool hasMinSize() const
Optimize this function for minimum size (-Oz).
Definition Function.h:703
bool hasParamAttribute(unsigned ArgNo, Attribute::AttrKind Kind) const
check if an attributes is in the list of attributes.
Definition Function.cpp:742
CallingConv::ID getCallingConv() const
getCallingConv()/setCallingConv(CC) - These method get and set the calling convention of this functio...
Definition Function.h:270
Constant * getPersonalityFn() const
Get the personality function associated with this function.
AttributeList getAttributes() const
Return the attribute list for this Function.
Definition Function.h:352
bool isIntrinsic() const
isIntrinsic - Returns true if the function's name starts with "llvm.".
Definition Function.h:249
size_t arg_size() const
Definition Function.h:899
bool hasFnAttribute(Attribute::AttrKind Kind) const
Return true if the function has the attribute.
Definition Function.cpp:730
Garbage collection metadata for a single function.
Definition GCMetadata.h:80
bool hasNoUnsignedSignedWrap() const
bool hasNoUnsignedWrap() const
bool isInBounds() const
an instruction for type-safe pointer arithmetic to access elements of arrays and structs
static StringRef dropLLVMManglingEscape(StringRef Name)
If the given string begins with the GlobalValue name mangling escape character '\1',...
bool hasDLLImportStorageClass() const
Module * getParent()
Get the module that this global value is contained inside of...
This instruction compares its operands according to the predicate given to the constructor.
Indirect Branch Instruction.
This instruction inserts a struct field of array element value into an aggregate value.
MDNode * getMetadata(unsigned KindID) const
Get the metadata of given kind attached to this Instruction.
LLVM_ABI FastMathFlags getFastMathFlags() const LLVM_READONLY
Convenience function for getting all the fast-math flags, which must be an operator which supports th...
LLVM_ABI AAMDNodes getAAMetadata() const
Returns the AA metadata for this instruction.
@ MIN_INT_BITS
Minimum number of bits that can be specified.
Intrinsic::ID getIntrinsicID() const
Return the intrinsic ID of this intrinsic.
Invoke instruction.
This is an important class for using LLVM in a threaded context.
Definition LLVMContext.h:68
LLVM_ABI void diagnose(const DiagnosticInfo &DI)
Report a message to the currently installed diagnostic handler.
The landingpad instruction holds all of the information necessary to generate correct exception handl...
A helper class to return the specified delimiter string after the first invocation of operator String...
An instruction for reading from memory.
static LocationSize precise(uint64_t Value)
static constexpr LocationSize beforeOrAfterPointer()
Any location before or after the base pointer (but still within the underlying object).
LLVM_ABI MCSymbol * createTempSymbol()
Create a temporary symbol with a unique name.
LLVM_ABI MCSymbol * getOrCreateFrameAllocSymbol(const Twine &FuncName, unsigned Idx)
Gets a symbol that will be defined to the final stack offset of a local variable after codegen.
MCSymbol - Instances of this class represent a symbol name in the MC file, and MCSymbols are created ...
Definition MCSymbol.h:42
Metadata node.
Definition Metadata.h:1078
Machine Value Type.
@ INVALID_SIMPLE_VALUE_TYPE
uint64_t getScalarSizeInBits() const
unsigned getVectorNumElements() const
bool isVector() const
Return true if this is a vector value type.
bool isInteger() const
Return true if this is an integer or a vector integer type.
TypeSize getSizeInBits() const
Returns the size of the specified MVT in bits.
uint64_t getFixedSizeInBits() const
Return the size of the specified fixed width value type in bits.
ElementCount getVectorElementCount() const
TypeSize getStoreSize() const
Return the number of bytes overwritten by a store of the specified value type.
bool bitsGE(MVT VT) const
Return true if this has no less bits than VT.
bool isScalarInteger() const
Return true if this is an integer, not including vectors.
static MVT getVectorVT(MVT VT, unsigned NumElements)
bool isFloatingPoint() const
Return true if this is a FP or a vector FP type.
static MVT getIntegerVT(unsigned BitWidth)
void normalizeSuccProbs()
Normalize probabilities of all successors so that the sum of them becomes one.
const BasicBlock * getBasicBlock() const
Return the LLVM basic block that this instance corresponded to originally.
LLVM_ABI void setSuccProbability(succ_iterator I, BranchProbability Prob)
Set successor probability of a given iterator.
LLVM_ABI void addSuccessor(MachineBasicBlock *Succ, BranchProbability Prob=BranchProbability::getUnknown())
Add Succ as a successor of this MachineBasicBlock.
SmallVectorImpl< MachineBasicBlock * >::iterator succ_iterator
const MachineFunction * getParent() const
Return the MachineFunction containing this basic block.
void setIsEHContTarget(bool V=true)
Indicates if this is a target of Windows EH Continuation Guard.
void setIsEHFuncletEntry(bool V=true)
Indicates if this is the entry block of an EH funclet.
MachineInstrBundleIterator< MachineInstr > iterator
void setIsEHScopeEntry(bool V=true)
Indicates if this is the entry block of an EH scope, i.e., the block that that used to have a catchpa...
void setMachineBlockAddressTaken()
Set this block to indicate that its address is used as something other than the target of a terminato...
The MachineFrameInfo class represents an abstract stack frame until prolog/epilog code is inserted.
void setIsImmutableObjectIndex(int ObjectIdx, bool IsImmutable)
Marks the immutability of an object.
LLVM_ABI int CreateStackObject(uint64_t Size, Align Alignment, bool isSpillSlot, const AllocaInst *Alloca=nullptr, uint8_t ID=0)
Create a new statically sized stack object, returning a nonnegative identifier to represent it.
bool hasOpaqueSPAdjustment() const
Returns true if the function contains opaque dynamic stack adjustments.
int getStackProtectorIndex() const
Return the index for the stack protector object.
void setIsAliasedObjectIndex(int ObjectIdx, bool IsAliased)
Set "maybe pointed to by an LLVM IR value" for an object.
Align getObjectAlign(int ObjectIdx) const
Return the alignment of the specified stack object.
int64_t getObjectSize(int ObjectIdx) const
Return the size of the specified object.
void RemoveStackObject(int ObjectIdx)
Remove or mark dead a statically sized stack object.
void setFunctionContextIndex(int I)
const WinEHFuncInfo * getWinEHFuncInfo() const
getWinEHFuncInfo - Return information about how the current function uses Windows exception handling.
bool useDebugInstrRef() const
Returns true if the function's variable locations are tracked with instruction referencing.
void setCallSiteBeginLabel(MCSymbol *BeginLabel, unsigned Site)
Map the begin label for a call site.
const TargetSubtargetInfo & getSubtarget() const
getSubtarget - Return the subtarget for which this machine code is being compiled.
StringRef getName() const
getName - Return the name of the corresponding LLVM function.
MachineMemOperand * getMachineMemOperand(MachinePointerInfo PtrInfo, MachineMemOperand::Flags f, LLT MemTy, Align base_alignment, const AAMDNodes &AAInfo=AAMDNodes(), const MDNode *Ranges=nullptr, SyncScope::ID SSID=SyncScope::System, AtomicOrdering Ordering=AtomicOrdering::NotAtomic, AtomicOrdering FailureOrdering=AtomicOrdering::NotAtomic)
getMachineMemOperand - Allocate a new MachineMemOperand.
MachineFrameInfo & getFrameInfo()
getFrameInfo - Return the frame info object for the current function.
MCContext & getContext() const
MachineRegisterInfo & getRegInfo()
getRegInfo - Return information about the registers currently in use.
void addCodeViewAnnotation(MCSymbol *Label, MDNode *MD)
Record annotations associated with a particular label.
Function & getFunction()
Return the LLVM function that this machine code represents.
BasicBlockListType::iterator iterator
void setHasEHContTarget(bool V)
void addInvoke(MachineBasicBlock *LandingPad, MCSymbol *BeginLabel, MCSymbol *EndLabel)
Provide the begin and end labels of an invoke style call and associate it with a try landing pad bloc...
MachineBasicBlock * CreateMachineBasicBlock(const BasicBlock *BB=nullptr, std::optional< UniqueBBID > BBID=std::nullopt)
CreateMachineInstr - Allocate a new MachineInstr.
void insert(iterator MBBI, MachineBasicBlock *MBB)
const MachineInstrBuilder & addSym(MCSymbol *Sym, unsigned char TargetFlags=0) const
const MachineInstrBuilder & addFrameIndex(int Idx) const
Representation of each machine instruction.
A description of a memory reference used in the backend.
Flags
Flags values. These may be or'd together.
@ MOVolatile
The memory access is volatile.
@ MODereferenceable
The memory access is dereferenceable (i.e., doesn't trap).
@ MOLoad
The memory access reads data.
@ MONonTemporal
The memory access is non-temporal.
@ MOInvariant
The memory access always returns the same value (or traps).
@ MOStore
The memory access writes data.
static MachineOperand CreateReg(Register Reg, bool isDef, bool isImp=false, bool isKill=false, bool isDead=false, bool isUndef=false, bool isEarlyClobber=false, unsigned SubReg=0, bool isDebug=false, bool isInternalRead=false, bool isRenamable=false)
static MachineOperand CreateFI(int Idx)
MachineRegisterInfo - Keep track of information for virtual and physical registers,...
LLVM_ABI MCRegister getLiveInPhysReg(Register VReg) const
getLiveInPhysReg - If VReg is a live-in virtual register, return the corresponding live-in physical r...
An SDNode that represents everything that will be needed to construct a MachineInstr.
bool contains(const KeyT &Key) const
Definition MapVector.h:146
std::pair< iterator, bool > try_emplace(const KeyT &Key, Ts &&...Args)
Definition MapVector.h:116
static MemoryLocation getAfter(const Value *Ptr, const AAMDNodes &AATags=AAMDNodes())
Return a location that may access any location after Ptr, while remaining within the underlying objec...
Metadata wrapper in the Value hierarchy.
Definition Metadata.h:183
A Module instance is used to store all the information related to an LLVM module.
Definition Module.h:67
static PointerType * getUnqual(Type *ElementType)
This constructs a pointer to an object of the specified type in the default address space (address sp...
static LLVM_ABI PointerType * get(Type *ElementType, unsigned AddressSpace)
This constructs a pointer to an object of the specified type in a numbered address space.
static LLVM_ABI PoisonValue * get(Type *T)
Static factory methods - Return an 'poison' object of the specified type.
Wrapper class representing virtual and physical registers.
Definition Register.h:20
constexpr bool isVirtual() const
Return true if the specified register number is in the virtual register namespace.
Definition Register.h:79
constexpr bool isPhysical() const
Return true if the specified register number is in the physical register namespace.
Definition Register.h:83
Resume the propagation of an exception.
Return a value (possibly void), from a function.
Holds the information from a dbg_label node through SDISel.
static SDDbgOperand fromNode(SDNode *Node, unsigned ResNo)
static SDDbgOperand fromFrameIdx(unsigned FrameIdx)
static SDDbgOperand fromVReg(Register VReg)
static SDDbgOperand fromConst(const Value *Const)
Holds the information from a dbg_value node through SDISel.
Wrapper class for IR location info (IR ordering and DebugLoc) to be passed into SDNode creation funct...
Represents one node in the SelectionDAG.
unsigned getOpcode() const
Return the SelectionDAG opcode value for this node.
iterator_range< value_op_iterator > op_values() const
unsigned getIROrder() const
Return the node ordering.
uint64_t getAsZExtVal() const
Helper method returns the zero-extended integer value of a ConstantSDNode.
unsigned getNumValues() const
Return the number of values defined/returned by this operator.
const SDValue & getOperand(unsigned Num) const
EVT getValueType(unsigned ResNo) const
Return the type of a specified result.
Unlike LLVM values, Selection DAG nodes may return multiple values as the result of a computation.
SDNode * getNode() const
get the SDNode which holds the desired result
SDValue getValue(unsigned R) const
EVT getValueType() const
Return the ValueType of the referenced return value.
TypeSize getValueSizeInBits() const
Returns the size of the value in bits.
const SDValue & getOperand(unsigned i) const
unsigned getResNo() const
get the index which selects a specific result in the SDNode
MVT getSimpleValueType() const
Return the simple ValueType of the referenced return value.
unsigned getOpcode() const
SelectionDAGBuilder - This is the common target-independent lowering implementation that is parameter...
SDValue getValue(const Value *V)
getValue - Return an SDValue for the given Value.
DenseMap< const Constant *, Register > ConstantsOut
void addDanglingDebugInfo(SmallVectorImpl< Value * > &Values, DILocalVariable *Var, DIExpression *Expr, bool IsVariadic, DebugLoc DL, unsigned Order)
Register a dbg_value which relies on a Value which we have not yet seen.
void visitDbgInfo(const Instruction &I)
void clearDanglingDebugInfo()
Clear the dangling debug information map.
void LowerCallTo(const CallBase &CB, SDValue Callee, bool IsTailCall, bool IsMustTailCall, const BasicBlock *EHPadBB=nullptr, const TargetLowering::PtrAuthInfo *PAI=nullptr)
void clear()
Clear out the current SelectionDAG and the associated state and prepare this SelectionDAGBuilder obje...
void visitBitTestHeader(SwitchCG::BitTestBlock &B, MachineBasicBlock *SwitchBB)
visitBitTestHeader - This function emits necessary code to produce value suitable for "bit tests"
void LowerStatepoint(const GCStatepointInst &I, const BasicBlock *EHPadBB=nullptr)
std::unique_ptr< SDAGSwitchLowering > SL
SDValue lowerRangeToAssertZExt(SelectionDAG &DAG, const Instruction &I, SDValue Op)
bool HasTailCall
This is set to true if a call in the current block has been translated as a tail call.
bool ShouldEmitAsBranches(const std::vector< SwitchCG::CaseBlock > &Cases)
If the set of cases should be emitted as a series of branches, return true.
void EmitBranchForMergedCondition(const Value *Cond, MachineBasicBlock *TBB, MachineBasicBlock *FBB, MachineBasicBlock *CurBB, MachineBasicBlock *SwitchBB, BranchProbability TProb, BranchProbability FProb, bool InvertCond)
EmitBranchForMergedCondition - Helper method for FindMergedConditions.
void LowerDeoptimizeCall(const CallInst *CI)
void LowerCallSiteWithDeoptBundle(const CallBase *Call, SDValue Callee, const BasicBlock *EHPadBB)
SwiftErrorValueTracking & SwiftError
Information about the swifterror values used throughout the function.
SDValue getNonRegisterValue(const Value *V)
getNonRegisterValue - Return an SDValue for the given Value, but don't look in FuncInfo....
const TargetTransformInfo * TTI
DenseMap< MachineBasicBlock *, SmallVector< unsigned, 4 > > LPadToCallSiteMap
Map a landing pad to the call site indexes.
SDValue lowerNoFPClassToAssertNoFPClass(SelectionDAG &DAG, const Instruction &I, SDValue Op)
void handleDebugDeclare(Value *Address, DILocalVariable *Variable, DIExpression *Expression, DebugLoc DL)
bool shouldKeepJumpConditionsTogether(const FunctionLoweringInfo &FuncInfo, const BranchInst &I, Instruction::BinaryOps Opc, const Value *Lhs, const Value *Rhs, TargetLoweringBase::CondMergingParams Params) const
StatepointLoweringState StatepointLowering
State used while lowering a statepoint sequence (gc_statepoint, gc_relocate, and gc_result).
void visitBitTestCase(SwitchCG::BitTestBlock &BB, MachineBasicBlock *NextMBB, BranchProbability BranchProbToNext, Register Reg, SwitchCG::BitTestCase &B, MachineBasicBlock *SwitchBB)
visitBitTestCase - this function produces one "bit test"
bool canTailCall(const CallBase &CB) const
void populateCallLoweringInfo(TargetLowering::CallLoweringInfo &CLI, const CallBase *Call, unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy, AttributeSet RetAttrs, bool IsPatchPoint)
Populate a CallLowerinInfo (into CLI) based on the properties of the call being lowered.
void CopyValueToVirtualRegister(const Value *V, Register Reg, ISD::NodeType ExtendType=ISD::ANY_EXTEND)
void salvageUnresolvedDbgValue(const Value *V, DanglingDebugInfo &DDI)
For the given dangling debuginfo record, perform last-ditch efforts to resolve the debuginfo to somet...
SmallVector< SDValue, 8 > PendingLoads
Loads are not emitted to the program immediately.
GCFunctionInfo * GFI
Garbage collection metadata for the function.
void init(GCFunctionInfo *gfi, BatchAAResults *BatchAA, AssumptionCache *AC, const TargetLibraryInfo *li, const TargetTransformInfo &TTI)
SDValue getRoot()
Similar to getMemoryRoot, but also flushes PendingConstrainedFP(Strict) items.
void ExportFromCurrentBlock(const Value *V)
ExportFromCurrentBlock - If this condition isn't known to be exported from the current basic block,...
void resolveOrClearDbgInfo()
Evict any dangling debug information, attempting to salvage it first.
std::pair< SDValue, SDValue > lowerInvokable(TargetLowering::CallLoweringInfo &CLI, const BasicBlock *EHPadBB=nullptr)
SDValue getMemoryRoot()
Return the current virtual root of the Selection DAG, flushing any PendingLoad items.
void resolveDanglingDebugInfo(const Value *V, SDValue Val)
If we saw an earlier dbg_value referring to V, generate the debug data structures now that we've seen...
void visit(const Instruction &I)
void dropDanglingDebugInfo(const DILocalVariable *Variable, const DIExpression *Expr)
If we have dangling debug info that describes Variable, or an overlapping part of variable considerin...
SDValue getCopyFromRegs(const Value *V, Type *Ty)
If there was virtual register allocated for the value V emit CopyFromReg of the specified type Ty.
void CopyToExportRegsIfNeeded(const Value *V)
CopyToExportRegsIfNeeded - If the given value has virtual registers created for it,...
void handleKillDebugValue(DILocalVariable *Var, DIExpression *Expr, DebugLoc DbgLoc, unsigned Order)
Create a record for a kill location debug intrinsic.
void visitJumpTable(SwitchCG::JumpTable &JT)
visitJumpTable - Emit JumpTable node in the current MBB
SDValue getFPOperationRoot(fp::ExceptionBehavior EB)
Return the current virtual root of the Selection DAG, flushing PendingConstrainedFP or PendingConstra...
void visitJumpTableHeader(SwitchCG::JumpTable &JT, SwitchCG::JumpTableHeader &JTH, MachineBasicBlock *SwitchBB)
visitJumpTableHeader - This function emits necessary code to produce index in the JumpTable from swit...
void LowerCallSiteWithPtrAuthBundle(const CallBase &CB, const BasicBlock *EHPadBB)
static const unsigned LowestSDNodeOrder
Lowest valid SDNodeOrder.
FunctionLoweringInfo & FuncInfo
Information about the function as a whole.
void setValue(const Value *V, SDValue NewN)
void FindMergedConditions(const Value *Cond, MachineBasicBlock *TBB, MachineBasicBlock *FBB, MachineBasicBlock *CurBB, MachineBasicBlock *SwitchBB, Instruction::BinaryOps Opc, BranchProbability TProb, BranchProbability FProb, bool InvertCond)
const TargetLibraryInfo * LibInfo
bool isExportableFromCurrentBlock(const Value *V, const BasicBlock *FromBB)
void visitSPDescriptorParent(StackProtectorDescriptor &SPD, MachineBasicBlock *ParentBB)
Codegen a new tail for a stack protector check ParentMBB which has had its tail spliced into a stack ...
bool handleDebugValue(ArrayRef< const Value * > Values, DILocalVariable *Var, DIExpression *Expr, DebugLoc DbgLoc, unsigned Order, bool IsVariadic)
For a given list of Values, attempt to create and record a SDDbgValue in the SelectionDAG.
SDValue getControlRoot()
Similar to getRoot, but instead of flushing all the PendingLoad items, flush all the PendingExports (...
void UpdateSplitBlock(MachineBasicBlock *First, MachineBasicBlock *Last)
When an MBB was split during scheduling, update the references that need to refer to the last resulti...
SDValue getValueImpl(const Value *V)
getValueImpl - Helper function for getValue and getNonRegisterValue.
void visitSwitchCase(SwitchCG::CaseBlock &CB, MachineBasicBlock *SwitchBB)
visitSwitchCase - Emits the necessary code to represent a single node in the binary search tree resul...
void visitSPDescriptorFailure(StackProtectorDescriptor &SPD)
Codegen the failure basic block for a stack protector check.
std::unique_ptr< FunctionLoweringInfo > FuncInfo
SmallPtrSet< const Instruction *, 4 > ElidedArgCopyInstrs
const TargetLowering * TLI
MachineRegisterInfo * RegInfo
std::unique_ptr< SwiftErrorValueTracking > SwiftError
virtual void emitFunctionEntryCode()
std::unique_ptr< SelectionDAGBuilder > SDB
virtual std::pair< SDValue, SDValue > EmitTargetCodeForStrnlen(SelectionDAG &DAG, const SDLoc &DL, SDValue Chain, SDValue Src, SDValue MaxLength, MachinePointerInfo SrcPtrInfo) const
virtual std::pair< SDValue, SDValue > EmitTargetCodeForStrlen(SelectionDAG &DAG, const SDLoc &DL, SDValue Chain, SDValue Src, const CallInst *CI) const
virtual std::pair< SDValue, SDValue > EmitTargetCodeForStrcpy(SelectionDAG &DAG, const SDLoc &DL, SDValue Chain, SDValue Dest, SDValue Src, MachinePointerInfo DestPtrInfo, MachinePointerInfo SrcPtrInfo, bool isStpcpy) const
Emit target-specific code that performs a strcpy or stpcpy, in cases where that is faster than a libc...
virtual std::pair< SDValue, SDValue > EmitTargetCodeForMemchr(SelectionDAG &DAG, const SDLoc &dl, SDValue Chain, SDValue Src, SDValue Char, SDValue Length, MachinePointerInfo SrcPtrInfo) const
Emit target-specific code that performs a memchr, in cases where that is faster than a libcall.
virtual std::pair< SDValue, SDValue > EmitTargetCodeForMemcmp(SelectionDAG &DAG, const SDLoc &dl, SDValue Chain, SDValue Op1, SDValue Op2, SDValue Op3, const CallInst *CI) const
Emit target-specific code that performs a memcmp/bcmp, in cases where that is faster than a libcall.
virtual std::pair< SDValue, SDValue > EmitTargetCodeForStrcmp(SelectionDAG &DAG, const SDLoc &dl, SDValue Chain, SDValue Op1, SDValue Op2, MachinePointerInfo Op1PtrInfo, MachinePointerInfo Op2PtrInfo) const
Emit target-specific code that performs a strcmp, in cases where that is faster than a libcall.
virtual SDValue EmitTargetCodeForSetTag(SelectionDAG &DAG, const SDLoc &dl, SDValue Chain, SDValue Addr, SDValue Size, MachinePointerInfo DstPtrInfo, bool ZeroData) const
This is used to represent a portion of an LLVM function in a low-level Data Dependence DAG representa...
SDValue getExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT, unsigned Opcode)
Convert Op, which must be of integer type, to the integer type VT, by either any/sign/zero-extending ...
const SDValue & getRoot() const
Return the root tag of the SelectionDAG.
const TargetSubtargetInfo & getSubtarget() const
SDValue getCopyToReg(SDValue Chain, const SDLoc &dl, Register Reg, SDValue N)
LLVM_ABI SDValue getMergeValues(ArrayRef< SDValue > Ops, const SDLoc &dl)
Create a MERGE_VALUES node from the given operands.
LLVM_ABI SDVTList getVTList(EVT VT)
Return an SDVTList that represents the list of values specified.
LLVM_ABI SDValue getShiftAmountConstant(uint64_t Val, EVT VT, const SDLoc &DL)
LLVM_ABI MachineSDNode * getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT)
These are used for target selectors to create a new node with specified return type(s),...
LLVM_ABI void ExtractVectorElements(SDValue Op, SmallVectorImpl< SDValue > &Args, unsigned Start=0, unsigned Count=0, EVT EltVT=EVT())
Append the extracted elements from Start to Count out of the vector Op in Args.
LLVM_ABI SDValue getConstantPool(const Constant *C, EVT VT, MaybeAlign Align=std::nullopt, int Offs=0, bool isT=false, unsigned TargetFlags=0)
LLVM_ABI SDValue getConstantFP(double Val, const SDLoc &DL, EVT VT, bool isTarget=false)
Create a ConstantFPSDNode wrapping a constant value.
LLVM_ABI SDValue getRegister(Register Reg, EVT VT)
LLVM_ABI SDValue getLoad(EVT VT, const SDLoc &dl, SDValue Chain, SDValue Ptr, MachinePointerInfo PtrInfo, MaybeAlign Alignment=MaybeAlign(), MachineMemOperand::Flags MMOFlags=MachineMemOperand::MONone, const AAMDNodes &AAInfo=AAMDNodes(), const MDNode *Ranges=nullptr)
Loads are not normal binary operators: their result type is not determined by their operands,...
LLVM_ABI Align getEVTAlign(EVT MemoryVT) const
Compute the default alignment value for the given type.
LLVM_ABI bool shouldOptForSize() const
const TargetLowering & getTargetLoweringInfo() const
static constexpr unsigned MaxRecursionDepth
LLVM_ABI void AddDbgValue(SDDbgValue *DB, bool isParameter)
Add a dbg_value SDNode.
SDValue getUNDEF(EVT VT)
Return an UNDEF node. UNDEF does not have a useful SDLoc.
SDValue getBuildVector(EVT VT, const SDLoc &DL, ArrayRef< SDValue > Ops)
Return an ISD::BUILD_VECTOR node.
LLVM_ABI SDValue getBitcast(EVT VT, SDValue V)
Return a bitcast using the SDLoc of the value operand, and casting to the provided type.
LLVM_ABI SDDbgValue * getDbgValueList(DIVariable *Var, DIExpression *Expr, ArrayRef< SDDbgOperand > Locs, ArrayRef< SDNode * > Dependencies, bool IsIndirect, const DebugLoc &DL, unsigned O, bool IsVariadic)
Creates a SDDbgValue node from a list of locations.
SDValue getCopyFromReg(SDValue Chain, const SDLoc &dl, Register Reg, EVT VT)
LLVM_ABI void setNodeMemRefs(MachineSDNode *N, ArrayRef< MachineMemOperand * > NewMemRefs)
Mutate the specified machine node's memory references to the provided list.
const DataLayout & getDataLayout() const
SDValue getTargetFrameIndex(int FI, EVT VT)
LLVM_ABI SDValue getConstant(uint64_t Val, const SDLoc &DL, EVT VT, bool isTarget=false, bool isOpaque=false)
Create a ConstantSDNode wrapping a constant value.
LLVM_ABI SDValue getMemBasePlusOffset(SDValue Base, TypeSize Offset, const SDLoc &DL, const SDNodeFlags Flags=SDNodeFlags())
Returns sum of the base pointer and offset.
LLVM_ABI SDValue getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr, MachinePointerInfo PtrInfo, EVT SVT, Align Alignment, MachineMemOperand::Flags MMOFlags=MachineMemOperand::MONone, const AAMDNodes &AAInfo=AAMDNodes())
LLVM_ABI SDValue getBasicBlock(MachineBasicBlock *MBB)
LLVM_ABI SDValue getPtrExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of integer type, to the integer type VT, by either truncating it or perform...
LLVM_ABI SDValue getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of integer type, to the integer type VT, by either any-extending or truncat...
LLVM_ABI SDValue getIntPtrConstant(uint64_t Val, const SDLoc &DL, bool isTarget=false)
LLVM_ABI SDValue getValueType(EVT)
LLVM_ABI SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, ArrayRef< SDUse > Ops)
Gets or creates the specified node.
LLVM_ABI SDValue getFPExtendOrRound(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of float type, to the float type VT, by either extending or rounding (by tr...
SDValue getTargetConstant(uint64_t Val, const SDLoc &DL, EVT VT, bool isOpaque=false)
LLVM_ABI SDValue getVectorIdxConstant(uint64_t Val, const SDLoc &DL, bool isTarget=false)
MachineFunction & getMachineFunction() const
LLVM_ABI SDValue getFrameIndex(int FI, EVT VT, bool isTarget=false)
LLVM_ABI SDValue getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of integer type, to the integer type VT, by either zero-extending or trunca...
LLVMContext * getContext() const
const SDValue & setRoot(SDValue N)
Set the current root tag of the SelectionDAG.
A templated base class for SmallPtrSet which provides the typesafe interface that is common across al...
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
reference emplace_back(ArgTypes &&... Args)
void append(ItTy in_start, ItTy in_end)
Add the specified range to the end of the SmallVector.
void swap(SmallVectorImpl &RHS)
void resize(size_type N)
void push_back(const T &Elt)
pointer data()
Return a pointer to the vector's buffer, even if empty().
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
Encapsulates all of the information needed to generate a stack protector check, and signals to isel w...
MachineBasicBlock * getSuccessMBB()
MachineBasicBlock * getFailureMBB()
MachineBasicBlock * getParentMBB()
bool shouldEmitFunctionBasedCheckStackProtector() const
An instruction for storing to memory.
StringRef - Represent a constant reference to a string, i.e.
Definition StringRef.h:55
constexpr bool empty() const
empty - Check if the string is empty.
Definition StringRef.h:143
constexpr const char * data() const
data - Get a pointer to the start of the string (which may not be null terminated).
Definition StringRef.h:140
Multiway switch.
Information about stack frame layout on the target.
virtual TargetStackID::Value getStackIDForScalableVectors() const
Returns the StackID that scalable vectors should be associated with.
Provides information about what library functions are available for the current target.
virtual Align getByValTypeAlignment(Type *Ty, const DataLayout &DL) const
Returns the desired alignment for ByVal or InAlloca aggregate function arguments in the caller parame...
virtual bool isFMAFasterThanFMulAndFAdd(const MachineFunction &MF, EVT) const
Return true if an FMA operation is faster than a pair of fmul and fadd instructions.
EVT getMemValueType(const DataLayout &DL, Type *Ty, bool AllowUnknown=false) const
EVT getValueType(const DataLayout &DL, Type *Ty, bool AllowUnknown=false) const
Return the EVT corresponding to this LLVM type.
LegalizeAction
This enum indicates whether operations are valid for a target, and if not, what action should be used...
virtual bool useStackGuardXorFP() const
If this function returns true, stack protection checks should XOR the frame pointer (or whichever poi...
virtual const TargetRegisterClass * getRegClassFor(MVT VT, bool isDivergent=false) const
Return the register class that should be used for the specified value type.
virtual bool isLegalScaleForGatherScatter(uint64_t Scale, uint64_t ElemSize) const
virtual bool isSExtCheaperThanZExt(EVT FromTy, EVT ToTy) const
Return true if sign-extension from FromTy to ToTy is cheaper than zero-extension.
MVT getVectorIdxTy(const DataLayout &DL) const
Returns the type to be used for the index operand of: ISD::INSERT_VECTOR_ELT, ISD::EXTRACT_VECTOR_ELT...
virtual unsigned getNumRegistersForCallingConv(LLVMContext &Context, CallingConv::ID CC, EVT VT) const
Certain targets require unusual breakdowns of certain types.
virtual bool isZExtFree(Type *FromTy, Type *ToTy) const
Return true if any actual instruction that defines a value of type FromTy implicitly zero-extends the...
virtual MVT getRegisterTypeForCallingConv(LLVMContext &Context, CallingConv::ID CC, EVT VT) const
Certain combinations of ABIs, Targets and features require that types are legal for some operations a...
virtual Value * getSDagStackGuard(const Module &M) const
Return the variable that's previously inserted by insertSSPDeclarations, if any, otherwise return nul...
virtual unsigned getNumRegisters(LLVMContext &Context, EVT VT, std::optional< MVT > RegisterVT=std::nullopt) const
Return the number of registers that this ValueType will eventually require.
unsigned getBitWidthForCttzElements(Type *RetTy, ElementCount EC, bool ZeroIsPoison, const ConstantRange *VScaleRange) const
Return the minimum number of bits required to hold the maximum possible number of trailing zero vecto...
virtual bool shouldExtendGSIndex(EVT VT, EVT &EltTy) const
Returns true if the index type for a masked gather/scatter requires extending.
virtual unsigned getVectorTypeBreakdownForCallingConv(LLVMContext &Context, CallingConv::ID CC, EVT VT, EVT &IntermediateVT, unsigned &NumIntermediates, MVT &RegisterVT) const
Certain targets such as MIPS require that some types such as vectors are always broken down into scal...
Function * getSSPStackGuardCheck(const Module &M) const
If the target has a standard stack protection check function that performs validation and error handl...
Register getStackPointerRegisterToSaveRestore() const
If a physical register, this specifies the register that llvm.savestack/llvm.restorestack should save...
LegalizeAction getFixedPointOperationAction(unsigned Op, EVT VT, unsigned Scale) const
Some fixed point operations may be natively supported by the target but only for specific scales.
MachineMemOperand::Flags getAtomicMemOperandFlags(const Instruction &AI, const DataLayout &DL) const
virtual bool allowsMisalignedMemoryAccesses(EVT, unsigned AddrSpace=0, Align Alignment=Align(1), MachineMemOperand::Flags Flags=MachineMemOperand::MONone, unsigned *=nullptr) const
Determine if the target supports unaligned memory accesses.
bool isOperationCustom(unsigned Op, EVT VT) const
Return true if the operation uses custom lowering, regardless of whether the type is legal or not.
bool hasBigEndianPartOrdering(EVT VT, const DataLayout &DL) const
When splitting a value of the specified type into parts, does the Lo or Hi part come first?
EVT getShiftAmountTy(EVT LHSTy, const DataLayout &DL) const
Returns the type for the shift amount of a shift opcode.
virtual Align getABIAlignmentForCallingConv(Type *ArgTy, const DataLayout &DL) const
Certain targets have context sensitive alignment requirements, where one type has the alignment requi...
MachineMemOperand::Flags getVPIntrinsicMemOperandFlags(const VPIntrinsic &VPIntrin) const
virtual bool shouldExpandGetActiveLaneMask(EVT VT, EVT OpVT) const
Return true if the @llvm.get.active.lane.mask intrinsic should be expanded using generic code in Sele...
virtual bool getTgtMemIntrinsic(IntrinsicInfo &, const CallBase &, MachineFunction &, unsigned) const
Given an intrinsic, checks if on the target the intrinsic will need to map to a MemIntrinsicNode (tou...
virtual EVT getSetCCResultType(const DataLayout &DL, LLVMContext &Context, EVT VT) const
Return the ValueType of the result of SETCC operations.
MachineMemOperand::Flags getLoadMemOperandFlags(const LoadInst &LI, const DataLayout &DL, AssumptionCache *AC=nullptr, const TargetLibraryInfo *LibInfo=nullptr) const
virtual EVT getTypeToTransformTo(LLVMContext &Context, EVT VT) const
For types supported by the target, this is an identity function.
bool isTypeLegal(EVT VT) const
Return true if the target has native support for the specified value type.
MVT getProgramPointerTy(const DataLayout &DL) const
Return the type for code pointers, which is determined by the program address space specified through...
virtual MVT getPointerTy(const DataLayout &DL, uint32_t AS=0) const
Return the pointer type for the given address space, defaults to the pointer type from the data layou...
bool isOperationLegal(unsigned Op, EVT VT) const
Return true if the specified operation is legal on this target.
virtual bool shouldExpandVectorMatch(EVT VT, unsigned SearchSize) const
Return true if the @llvm.experimental.vector.match intrinsic should be expanded for vector type ‘VT’ ...
virtual MVT getFenceOperandTy(const DataLayout &DL) const
Return the type for operands of fence.
virtual bool shouldExpandGetVectorLength(EVT CountVT, unsigned VF, bool IsScalable) const
bool isOperationLegalOrCustom(unsigned Op, EVT VT, bool LegalOnly=false) const
Return true if the specified operation is legal on this target or can be made legal with custom lower...
virtual MVT hasFastEqualityCompare(unsigned NumBits) const
Return the preferred operand type if the target has a quick way to compare integer values of the give...
MachineMemOperand::Flags getStoreMemOperandFlags(const StoreInst &SI, const DataLayout &DL) const
virtual bool shouldExpandCttzElements(EVT VT) const
Return true if the @llvm.experimental.cttz.elts intrinsic should be expanded using generic code in Se...
virtual bool signExtendConstant(const ConstantInt *C) const
Return true if this constant should be sign extended when promoting to a larger type.
LegalizeTypeAction getTypeAction(LLVMContext &Context, EVT VT) const
Return how we should legalize values of this type, either it is already legal (return 'Legal') or we ...
virtual Register getExceptionPointerRegister(const Constant *PersonalityFn) const
If a physical register, this returns the register that receives the exception address on entry to an ...
bool supportsUnalignedAtomics() const
Whether the target supports unaligned atomic operations.
std::vector< ArgListEntry > ArgListTy
bool isBeneficialToExpandPowI(int64_t Exponent, bool OptForSize) const
Return true if it is beneficial to expand an @llvm.powi.
MVT getFrameIndexTy(const DataLayout &DL) const
Return the type for frame index, which is determined by the alloca address space specified through th...
virtual Register getExceptionSelectorRegister(const Constant *PersonalityFn) const
If a physical register, this returns the register that receives the exception typeid on entry to a la...
virtual MVT getPointerMemTy(const DataLayout &DL, uint32_t AS=0) const
Return the in-memory pointer type for the given address space, defaults to the pointer type from the ...
MVT getRegisterType(MVT VT) const
Return the type of registers that this ValueType will eventually require.
unsigned getVectorTypeBreakdown(LLVMContext &Context, EVT VT, EVT &IntermediateVT, unsigned &NumIntermediates, MVT &RegisterVT) const
Vector types are broken down into some number of legal first class types.
virtual MVT getVPExplicitVectorLengthTy() const
Returns the type to be used for the EVL/AVL operand of VP nodes: ISD::VP_ADD, ISD::VP_SUB,...
This class defines information used to lower LLVM code to legal SelectionDAG operators that the targe...
virtual bool supportKCFIBundles() const
Return true if the target supports kcfi operand bundles.
virtual bool supportPtrAuthBundles() const
Return true if the target supports ptrauth operand bundles.
virtual bool supportSwiftError() const
Return true if the target supports swifterror attribute.
virtual SDValue visitMaskedLoad(SelectionDAG &DAG, const SDLoc &DL, SDValue Chain, MachineMemOperand *MMO, SDValue &NewLoad, SDValue Ptr, SDValue PassThru, SDValue Mask) const
virtual SDValue emitStackGuardXorFP(SelectionDAG &DAG, SDValue Val, const SDLoc &DL) const
virtual EVT getTypeForExtReturn(LLVMContext &Context, EVT VT, ISD::NodeType) const
Return the type that should be used to zero or sign extend a zeroext/signext integer return value.
virtual InlineAsm::ConstraintCode getInlineAsmMemConstraint(StringRef ConstraintCode) const
std::vector< AsmOperandInfo > AsmOperandInfoVector
SDValue expandIS_FPCLASS(EVT ResultVT, SDValue Op, FPClassTest Test, SDNodeFlags Flags, const SDLoc &DL, SelectionDAG &DAG) const
Expand check for floating point class.
virtual SDValue prepareVolatileOrAtomicLoad(SDValue Chain, const SDLoc &DL, SelectionDAG &DAG) const
This callback is used to prepare for a volatile or atomic load.
virtual ConstraintType getConstraintType(StringRef Constraint) const
Given a constraint, return the type of constraint it is for this target.
virtual bool splitValueIntoRegisterParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts, unsigned NumParts, MVT PartVT, std::optional< CallingConv::ID > CC) const
Target-specific splitting of values into parts that fit a register storing a legal type.
virtual SDValue joinRegisterPartsIntoValue(SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts, unsigned NumParts, MVT PartVT, EVT ValueVT, std::optional< CallingConv::ID > CC) const
Target-specific combining of register parts into its original value.
virtual SDValue LowerCall(CallLoweringInfo &, SmallVectorImpl< SDValue > &) const
This hook must be implemented to lower calls into the specified DAG.
std::pair< SDValue, SDValue > LowerCallTo(CallLoweringInfo &CLI) const
This function lowers an abstract call to a function into an actual call.
virtual SDValue LowerAsmOutputForConstraint(SDValue &Chain, SDValue &Glue, const SDLoc &DL, const AsmOperandInfo &OpInfo, SelectionDAG &DAG) const
virtual std::pair< unsigned, const TargetRegisterClass * > getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const
Given a physical register constraint (e.g.
virtual AsmOperandInfoVector ParseConstraints(const DataLayout &DL, const TargetRegisterInfo *TRI, const CallBase &Call) const
Split up the constraint string from the inline assembly value into the specific constraints and their...
virtual SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const
This callback is invoked for operations that are unsupported by the target, which are registered to u...
virtual bool functionArgumentNeedsConsecutiveRegisters(Type *Ty, CallingConv::ID CallConv, bool isVarArg, const DataLayout &DL) const
For some targets, an LLVM struct type must be broken down into multiple simple types,...
virtual void ComputeConstraintToUse(AsmOperandInfo &OpInfo, SDValue Op, SelectionDAG *DAG=nullptr) const
Determines the constraint code and constraint type to use for the specific AsmOperandInfo,...
virtual void CollectTargetIntrinsicOperands(const CallInst &I, SmallVectorImpl< SDValue > &Ops, SelectionDAG &DAG) const
virtual SDValue visitMaskedStore(SelectionDAG &DAG, const SDLoc &DL, SDValue Chain, MachineMemOperand *MMO, SDValue Ptr, SDValue Val, SDValue Mask) const
virtual bool useLoadStackGuardNode(const Module &M) const
If this function returns true, SelectionDAGBuilder emits a LOAD_STACK_GUARD node when it is lowering ...
virtual void LowerAsmOperandForConstraint(SDValue Op, StringRef Constraint, std::vector< SDValue > &Ops, SelectionDAG &DAG) const
Lower the specified operand into the Ops vector.
std::pair< SDValue, SDValue > makeLibCall(SelectionDAG &DAG, RTLIB::LibcallImpl LibcallImpl, EVT RetVT, ArrayRef< SDValue > Ops, MakeLibCallOptions CallOptions, const SDLoc &dl, SDValue Chain=SDValue()) const
Returns a pair of (return value, chain).
virtual void LowerOperationWrapper(SDNode *N, SmallVectorImpl< SDValue > &Results, SelectionDAG &DAG) const
This callback is invoked by the type legalizer to legalize nodes with an illegal operand type but leg...
virtual bool isInlineAsmTargetBranch(const SmallVectorImpl< StringRef > &AsmStrs, unsigned OpNo) const
On x86, return true if the operand with index OpNo is a CALL or JUMP instruction, which can use eithe...
virtual MVT getJumpTableRegTy(const DataLayout &DL) const
virtual bool CanLowerReturn(CallingConv::ID, MachineFunction &, bool, const SmallVectorImpl< ISD::OutputArg > &, LLVMContext &, const Type *RetTy) const
This hook should be implemented to check whether the return values described by the Outs array can fi...
CodeGenOptLevel getOptLevel() const
Returns the optimization level: None, Less, Default, or Aggressive.
unsigned NoTrapAfterNoreturn
Do not emit a trap instruction for 'unreachable' IR instructions behind noreturn calls,...
unsigned TrapUnreachable
Emit target-specific trap instruction for 'unreachable' IR instructions.
unsigned getID() const
Return the register class ID number.
iterator begin() const
begin/end - Return all of the registers in this class.
TargetRegisterInfo base class - We assume that the target defines a static array of TargetRegisterDes...
virtual const TargetFrameLowering * getFrameLowering() const
virtual const TargetRegisterInfo * getRegisterInfo() const =0
Return the target's register information.
This pass provides access to the codegen interfaces that are needed for IR-level transformations.
@ TCK_Latency
The latency of instruction.
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
Definition Twine.h:82
static constexpr TypeSize getFixed(ScalarTy ExactSize)
Definition TypeSize.h:343
The instances of the Type class are immutable: once they are created, they are never changed.
Definition Type.h:45
LLVM_ABI bool isEmptyTy() const
Return true if this type is empty, that is, it has no elements or all of its elements are empty.
Definition Type.cpp:180
bool isVectorTy() const
True if this is an instance of VectorType.
Definition Type.h:273
bool isPointerTy() const
True if this is an instance of PointerType.
Definition Type.h:267
LLVM_ABI unsigned getPointerAddressSpace() const
Get the address space of this pointer or pointer vector type.
static LLVM_ABI Type * getVoidTy(LLVMContext &C)
Definition Type.cpp:280
Type * getScalarType() const
If this is a vector type, return the element type, otherwise return 'this'.
Definition Type.h:352
LLVMContext & getContext() const
Return the LLVMContext in which this type was uniqued.
Definition Type.h:128
static LLVM_ABI IntegerType * getInt1Ty(LLVMContext &C)
Definition Type.cpp:293
bool isIntegerTy() const
True if this is an instance of IntegerType.
Definition Type.h:240
bool isTokenTy() const
Return true if this is 'token'.
Definition Type.h:234
static LLVM_ABI IntegerType * getIntNTy(LLVMContext &C, unsigned N)
Definition Type.cpp:300
bool isFPOrFPVectorTy() const
Return true if this is a FP type or a vector of FP.
Definition Type.h:225
bool isVoidTy() const
Return true if this is 'void'.
Definition Type.h:139
This function has undefined behavior.
A Use represents the edge between a Value definition and its users.
Definition Use.h:35
op_iterator op_begin()
Definition User.h:285
Value * getOperand(unsigned i) const
Definition User.h:233
unsigned getNumOperands() const
Definition User.h:255
op_iterator op_end()
Definition User.h:287
This class represents the va_arg llvm instruction, which returns an argument of the specified type gi...
LLVM_ABI CmpInst::Predicate getPredicate() const
This is the common base class for vector predication intrinsics.
static LLVM_ABI std::optional< unsigned > getVectorLengthParamPos(Intrinsic::ID IntrinsicID)
LLVM_ABI MaybeAlign getPointerAlignment() const
LLVM Value Representation.
Definition Value.h:75
Type * getType() const
All values are typed, get the type of this value.
Definition Value.h:256
bool hasOneUse() const
Return true if there is exactly one use of this value.
Definition Value.h:439
iterator_range< user_iterator > users()
Definition Value.h:426
LLVM_ABI const Value * stripPointerCasts() const
Strip off pointer casts, all-zero GEPs and address space casts.
Definition Value.cpp:708
bool use_empty() const
Definition Value.h:346
LLVM_ABI LLVMContext & getContext() const
All values hold a context through their type.
Definition Value.cpp:1106
LLVM_ABI StringRef getName() const
Return a constant reference to the value's name.
Definition Value.cpp:322
Base class of all SIMD vector types.
Type * getElementType() const
constexpr ScalarTy getFixedValue() const
Definition TypeSize.h:200
static constexpr bool isKnownLE(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
Definition TypeSize.h:230
constexpr bool isScalable() const
Returns whether the quantity is scaled by a runtime quantity (vscale).
Definition TypeSize.h:168
constexpr ScalarTy getKnownMinValue() const
Returns the minimum value this quantity can represent.
Definition TypeSize.h:165
const ParentTy * getParent() const
Definition ilist_node.h:34
A raw_ostream that writes to an std::string.
CallInst * Call
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
constexpr char Align[]
Key for Kernel::Arg::Metadata::mAlign.
constexpr char Args[]
Key for Kernel::Metadata::mArgs.
constexpr char SymbolName[]
Key for Kernel::Metadata::mSymbolName.
constexpr std::underlying_type_t< E > Mask()
Get a bitmask with 1s in all places up to the high-order bit of E's largest value.
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
Definition CallingConv.h:24
@ AnyReg
OBSOLETED - Used for stack based JavaScript calls.
Definition CallingConv.h:60
@ AMDGPU_CS_Chain
Used on AMDGPUs to give the middle-end more control over argument placement.
@ X86_VectorCall
MSVC calling convention that passes vectors and vector aggregates in SSE registers.
@ C
The default llvm calling convention, compatible with C.
Definition CallingConv.h:34
NodeType
ISD::NodeType enum - This enum defines the target-independent operators for a SelectionDAG.
Definition ISDOpcodes.h:41
@ MERGE_VALUES
MERGE_VALUES - This node takes multiple discrete operands and returns them all as its individual resu...
Definition ISDOpcodes.h:256
@ STACKRESTORE
STACKRESTORE has two operands, an input chain and a pointer to restore to it returns an output chain.
@ STACKSAVE
STACKSAVE - STACKSAVE has one operand, an input chain.
@ CTLZ_ZERO_UNDEF
Definition ISDOpcodes.h:782
@ CONVERGENCECTRL_ANCHOR
The llvm.experimental.convergence.* intrinsics.
@ STRICT_FSETCC
STRICT_FSETCC/STRICT_FSETCCS - Constrained versions of SETCC, used for floating-point operands only.
Definition ISDOpcodes.h:506
@ DELETED_NODE
DELETED_NODE - This is an illegal value that is used to catch errors.
Definition ISDOpcodes.h:45
@ SET_FPENV
Sets the current floating-point environment.
@ LOOP_DEPENDENCE_RAW_MASK
@ VECREDUCE_SEQ_FADD
Generic reduction nodes.
@ EH_SJLJ_LONGJMP
OUTCHAIN = EH_SJLJ_LONGJMP(INCHAIN, buffer) This corresponds to the eh.sjlj.longjmp intrinsic.
Definition ISDOpcodes.h:163
@ INSERT_SUBVECTOR
INSERT_SUBVECTOR(VECTOR1, VECTOR2, IDX) - Returns a vector with VECTOR2 inserted into VECTOR1.
Definition ISDOpcodes.h:595
@ BSWAP
Byte Swap and Counting operators.
Definition ISDOpcodes.h:773
@ SMULFIX
RESULT = [US]MULFIX(LHS, RHS, SCALE) - Perform fixed point multiplication on 2 integers with the same...
Definition ISDOpcodes.h:389
@ VAEND
VAEND, VASTART - VAEND and VASTART have three operands: an input chain, pointer, and a SRCVALUE.
@ ATOMIC_STORE
OUTCHAIN = ATOMIC_STORE(INCHAIN, val, ptr) This corresponds to "store atomic" instruction.
@ RESET_FPENV
Set floating-point environment to default state.
@ ADD
Simple integer binary arithmetic operators.
Definition ISDOpcodes.h:259
@ SMULFIXSAT
Same as the corresponding unsaturated fixed point instructions, but the result is clamped between the...
Definition ISDOpcodes.h:395
@ SET_FPMODE
Sets the current dynamic floating-point control modes.
@ ANY_EXTEND
ANY_EXTEND - Used for integer types. The high bits are undefined.
Definition ISDOpcodes.h:847
@ ATOMIC_LOAD_USUB_COND
@ FMA
FMA - Perform a * b + c with no intermediate rounding step.
Definition ISDOpcodes.h:513
@ VECTOR_FIND_LAST_ACTIVE
Finds the index of the last active mask element Operands: Mask.
@ FMODF
FMODF - Decomposes the operand into integral and fractional parts, each having the same type and sign...
@ FATAN2
FATAN2 - atan2, inspired by libm.
@ FSINCOSPI
FSINCOSPI - Compute both the sine and cosine times pi more accurately than FSINCOS(pi*x),...
@ INTRINSIC_VOID
OUTCHAIN = INTRINSIC_VOID(INCHAIN, INTRINSICID, arg1, arg2, ...) This node represents a target intrin...
Definition ISDOpcodes.h:215
@ EH_SJLJ_SETUP_DISPATCH
OUTCHAIN = EH_SJLJ_SETUP_DISPATCH(INCHAIN) The target initializes the dispatch table here.
Definition ISDOpcodes.h:167
@ GlobalAddress
Definition ISDOpcodes.h:88
@ ATOMIC_CMP_SWAP_WITH_SUCCESS
Val, Success, OUTCHAIN = ATOMIC_CMP_SWAP_WITH_SUCCESS(INCHAIN, ptr, cmp, swap) N.b.
@ SINT_TO_FP
[SU]INT_TO_FP - These operators convert integers (whose interpreted sign depends on the first letter)...
Definition ISDOpcodes.h:874
@ CONCAT_VECTORS
CONCAT_VECTORS(VECTOR0, VECTOR1, ...) - Given a number of values of vector type with the same length ...
Definition ISDOpcodes.h:579
@ VECREDUCE_FMAX
FMIN/FMAX nodes can have flags, for NaN/NoNaN variants.
@ FADD
Simple binary floating point operators.
Definition ISDOpcodes.h:412
@ VECREDUCE_FMAXIMUM
FMINIMUM/FMAXIMUM nodes propatate NaNs and signed zeroes using the llvm.minimum and llvm....
@ ABS
ABS - Determine the unsigned absolute value of a signed integer value of the same bitwidth.
Definition ISDOpcodes.h:741
@ ATOMIC_FENCE
OUTCHAIN = ATOMIC_FENCE(INCHAIN, ordering, scope) This corresponds to the fence instruction.
@ RESET_FPMODE
Sets default dynamic floating-point control modes.
@ FMULADD
FMULADD - Performs a * b + c, with, or without, intermediate rounding.
Definition ISDOpcodes.h:523
@ FPTRUNC_ROUND
FPTRUNC_ROUND - This corresponds to the fptrunc_round intrinsic.
Definition ISDOpcodes.h:510
@ FAKE_USE
FAKE_USE represents a use of the operand but does not do anything.
@ BITCAST
BITCAST - This operator converts between integer, vector and FP values, as if the value was stored to...
Definition ISDOpcodes.h:987
@ BUILD_PAIR
BUILD_PAIR - This is the opposite of EXTRACT_ELEMENT in some ways.
Definition ISDOpcodes.h:249
@ CLMUL
Carry-less multiplication operations.
Definition ISDOpcodes.h:768
@ INIT_TRAMPOLINE
INIT_TRAMPOLINE - This corresponds to the init_trampoline intrinsic.
@ FLDEXP
FLDEXP - ldexp, inspired by libm (op0 * 2**op1).
@ SDIVFIX
RESULT = [US]DIVFIX(LHS, RHS, SCALE) - Perform fixed point division on 2 integers with the same width...
Definition ISDOpcodes.h:402
@ EH_LABEL
EH_LABEL - Represents a label in mid basic block used to track locations needed for debug and excepti...
@ ATOMIC_LOAD_USUB_SAT
@ EH_RETURN
OUTCHAIN = EH_RETURN(INCHAIN, OFFSET, HANDLER) - This node represents 'eh_return' gcc dwarf builtin,...
Definition ISDOpcodes.h:151
@ ANNOTATION_LABEL
ANNOTATION_LABEL - Represents a mid basic block label used by annotations.
@ SET_ROUNDING
Set rounding mode.
Definition ISDOpcodes.h:969
@ CONVERGENCECTRL_GLUE
This does not correspond to any convergence control intrinsic.
@ PARTIAL_REDUCE_UMLA
@ SIGN_EXTEND
Conversion operators.
Definition ISDOpcodes.h:838
@ PREALLOCATED_SETUP
PREALLOCATED_SETUP - This has 2 operands: an input chain and a SRCVALUE with the preallocated call Va...
@ READSTEADYCOUNTER
READSTEADYCOUNTER - This corresponds to the readfixedcounter intrinsic.
@ ADDROFRETURNADDR
ADDROFRETURNADDR - Represents the llvm.addressofreturnaddress intrinsic.
Definition ISDOpcodes.h:117
@ CONVERGENCECTRL_ENTRY
@ BR
Control flow instructions. These all have token chains.
@ VECREDUCE_FADD
These reductions have relaxed evaluation order semantics, and have a single vector operand.
@ CTTZ_ZERO_UNDEF
Bit counting operators with an undefined result for zero inputs.
Definition ISDOpcodes.h:781
@ PARTIAL_REDUCE_FMLA
@ PREFETCH
PREFETCH - This corresponds to a prefetch intrinsic.
@ FSINCOS
FSINCOS - Compute both fsin and fcos as a single operation.
@ SSUBO
Same for subtraction.
Definition ISDOpcodes.h:347
@ PREALLOCATED_ARG
PREALLOCATED_ARG - This has 3 operands: an input chain, a SRCVALUE with the preallocated call Value,...
@ BRIND
BRIND - Indirect branch.
@ BR_JT
BR_JT - Jumptable branch.
@ VECTOR_INTERLEAVE
VECTOR_INTERLEAVE(VEC1, VEC2, ...) - Returns N vectors from N input vectors, where N is the factor to...
Definition ISDOpcodes.h:630
@ FCANONICALIZE
Returns platform specific canonical encoding of a floating point number.
Definition ISDOpcodes.h:536
@ IS_FPCLASS
Performs a check of floating point class property, defined by IEEE-754.
Definition ISDOpcodes.h:543
@ SSUBSAT
RESULT = [US]SUBSAT(LHS, RHS) - Perform saturation subtraction on 2 integers with the same bit width ...
Definition ISDOpcodes.h:369
@ SELECT
Select(COND, TRUEVAL, FALSEVAL).
Definition ISDOpcodes.h:790
@ EXTRACT_ELEMENT
EXTRACT_ELEMENT - This is used to get the lower or upper (determined by a Constant,...
Definition ISDOpcodes.h:242
@ SPLAT_VECTOR
SPLAT_VECTOR(VAL) - Returns a vector with the scalar value VAL duplicated in all lanes.
Definition ISDOpcodes.h:666
@ VACOPY
VACOPY - VACOPY has 5 operands: an input chain, a destination pointer, a source pointer,...
@ GET_ACTIVE_LANE_MASK
GET_ACTIVE_LANE_MASK - this corrosponds to the llvm.get.active.lane.mask intrinsic.
@ BasicBlock
Various leaf nodes.
Definition ISDOpcodes.h:81
@ CopyFromReg
CopyFromReg - This node indicates that the input value is a virtual or physical register that is defi...
Definition ISDOpcodes.h:225
@ SADDO
RESULT, BOOL = [SU]ADDO(LHS, RHS) - Overflow-aware nodes for addition.
Definition ISDOpcodes.h:343
@ ARITH_FENCE
ARITH_FENCE - This corresponds to a arithmetic fence intrinsic.
@ VECREDUCE_ADD
Integer reductions may have a result type larger than the vector element type.
@ GET_ROUNDING
Returns current rounding mode: -1 Undefined 0 Round to 0 1 Round to nearest, ties to even 2 Round to ...
Definition ISDOpcodes.h:964
@ CLEANUPRET
CLEANUPRET - Represents a return from a cleanup block funclet.
@ ATOMIC_LOAD_FMAXIMUM
@ GET_FPMODE
Reads the current dynamic floating-point control modes.
@ GET_FPENV
Gets the current floating-point environment.
@ SHL
Shift and rotation operations.
Definition ISDOpcodes.h:759
@ AssertNoFPClass
AssertNoFPClass - These nodes record if a register contains a float value that is known to be not som...
Definition ISDOpcodes.h:78
@ PtrAuthGlobalAddress
A ptrauth constant.
Definition ISDOpcodes.h:100
@ EXTRACT_SUBVECTOR
EXTRACT_SUBVECTOR(VECTOR, IDX) - Returns a subvector from VECTOR.
Definition ISDOpcodes.h:609
@ EntryToken
EntryToken - This is the marker used to indicate the start of a region.
Definition ISDOpcodes.h:48
@ READ_REGISTER
READ_REGISTER, WRITE_REGISTER - This node represents llvm.register on the DAG, which implements the n...
Definition ISDOpcodes.h:134
@ EXTRACT_VECTOR_ELT
EXTRACT_VECTOR_ELT(VECTOR, IDX) - Returns a single element from VECTOR identified by the (potentially...
Definition ISDOpcodes.h:571
@ ZERO_EXTEND
ZERO_EXTEND - Used for integer types, zeroing the new bits.
Definition ISDOpcodes.h:844
@ DEBUGTRAP
DEBUGTRAP - Trap intended to get the attention of a debugger.
@ VSCALE
VSCALE(IMM) - Returns the runtime scaling factor used to calculate the number of elements within a sc...
@ LOCAL_RECOVER
LOCAL_RECOVER - Represents the llvm.localrecover intrinsic.
Definition ISDOpcodes.h:130
@ FMINNUM
FMINNUM/FMAXNUM - Perform floating-point minimum maximum on two values, following IEEE-754 definition...
@ UBSANTRAP
UBSANTRAP - Trap with an immediate describing the kind of sanitizer failure.
@ SSHLSAT
RESULT = [US]SHLSAT(LHS, RHS) - Perform saturation left shift.
Definition ISDOpcodes.h:381
@ PATCHPOINT
The llvm.experimental.patchpoint.
@ SMULO
Same for multiplication.
Definition ISDOpcodes.h:351
@ ATOMIC_LOAD_FMINIMUM
@ DYNAMIC_STACKALLOC
DYNAMIC_STACKALLOC - Allocate some number of bytes on the stack aligned to a specified boundary.
@ VECTOR_SPLICE_LEFT
VECTOR_SPLICE_LEFT(VEC1, VEC2, IMM) - Shifts CONCAT_VECTORS(VEC1, VEC2) left by IMM elements and retu...
Definition ISDOpcodes.h:648
@ SMIN
[US]{MIN/MAX} - Binary minimum or maximum of signed or unsigned integers.
Definition ISDOpcodes.h:721
@ VECTOR_REVERSE
VECTOR_REVERSE(VECTOR) - Returns a vector, of the same type as VECTOR, whose elements are shuffled us...
Definition ISDOpcodes.h:635
@ SDIVFIXSAT
Same as the corresponding unsaturated fixed point instructions, but the result is clamped between the...
Definition ISDOpcodes.h:408
@ FP_EXTEND
X = FP_EXTEND(Y) - Extend a smaller FP type into a larger FP type.
Definition ISDOpcodes.h:972
@ VSELECT
Select with a vector condition (op #0) and two vector operands (ops #1 and #2), returning a vector re...
Definition ISDOpcodes.h:799
@ PCMARKER
PCMARKER - This corresponds to the pcmarker intrinsic.
@ INLINEASM_BR
INLINEASM_BR - Branching version of inline asm. Used by asm-goto.
@ EH_DWARF_CFA
EH_DWARF_CFA - This node represents the pointer to the DWARF Canonical Frame Address (CFA),...
Definition ISDOpcodes.h:145
@ FRAMEADDR
FRAMEADDR, RETURNADDR - These nodes represent llvm.frameaddress and llvm.returnaddress on the DAG.
Definition ISDOpcodes.h:110
@ ATOMIC_LOAD_UDEC_WRAP
@ STRICT_FP_ROUND
X = STRICT_FP_ROUND(Y, TRUNC) - Rounding 'Y' from a larger floating point type down to the precision ...
Definition ISDOpcodes.h:495
@ FMINIMUM
FMINIMUM/FMAXIMUM - NaN-propagating minimum/maximum that also treat -0.0 as less than 0....
@ FP_TO_SINT
FP_TO_[US]INT - Convert a floating point value to a signed or unsigned integer.
Definition ISDOpcodes.h:920
@ READCYCLECOUNTER
READCYCLECOUNTER - This corresponds to the readcyclecounter intrinsic.
@ RELOC_NONE
Issue a no-op relocation against a given symbol at the current location.
@ AND
Bitwise operators - logical and, logical or, logical xor.
Definition ISDOpcodes.h:733
@ TRAP
TRAP - Trapping instruction.
@ INTRINSIC_WO_CHAIN
RESULT = INTRINSIC_WO_CHAIN(INTRINSICID, arg1, arg2, ...) This node represents a target intrinsic fun...
Definition ISDOpcodes.h:200
@ SCMP
[US]CMP - 3-way comparison of signed or unsigned integers.
Definition ISDOpcodes.h:729
@ VECTOR_SPLICE_RIGHT
VECTOR_SPLICE_RIGHT(VEC1, VEC2, IMM) - Shifts CONCAT_VECTORS(VEC1, VEC2) right by IMM elements and re...
Definition ISDOpcodes.h:651
@ STRICT_FADD
Constrained versions of the binary floating point operators.
Definition ISDOpcodes.h:422
@ STACKMAP
The llvm.experimental.stackmap intrinsic.
@ FREEZE
FREEZE - FREEZE(VAL) returns an arbitrary value if VAL is UNDEF (or is evaluated to UNDEF),...
Definition ISDOpcodes.h:236
@ INSERT_VECTOR_ELT
INSERT_VECTOR_ELT(VECTOR, VAL, IDX) - Returns VECTOR with the element at IDX replaced with VAL.
Definition ISDOpcodes.h:560
@ TokenFactor
TokenFactor - This node takes multiple tokens as input and produces a single token result.
Definition ISDOpcodes.h:53
@ ATOMIC_SWAP
Val, OUTCHAIN = ATOMIC_SWAP(INCHAIN, ptr, amt) Val, OUTCHAIN = ATOMIC_LOAD_[OpName](INCHAIN,...
@ FFREXP
FFREXP - frexp, extract fractional and exponent component of a floating-point value.
@ FP_ROUND
X = FP_ROUND(Y, TRUNC) - Rounding 'Y' from a larger floating point type down to the precision of the ...
Definition ISDOpcodes.h:953
@ VECTOR_COMPRESS
VECTOR_COMPRESS(Vec, Mask, Passthru) consecutively place vector elements based on mask e....
Definition ISDOpcodes.h:693
@ SPONENTRY
SPONENTRY - Represents the llvm.sponentry intrinsic.
Definition ISDOpcodes.h:122
@ CLEAR_CACHE
llvm.clear_cache intrinsic Operands: Input Chain, Start Addres, End Address Outputs: Output Chain
@ CONVERGENCECTRL_LOOP
@ INLINEASM
INLINEASM - Represents an inline asm block.
@ FP_TO_SINT_SAT
FP_TO_[US]INT_SAT - Convert floating point value in operand 0 to a signed or unsigned scalar integer ...
Definition ISDOpcodes.h:939
@ VECREDUCE_FMINIMUM
@ EH_SJLJ_SETJMP
RESULT, OUTCHAIN = EH_SJLJ_SETJMP(INCHAIN, buffer) This corresponds to the eh.sjlj....
Definition ISDOpcodes.h:157
@ TRUNCATE
TRUNCATE - Completely drop the high bits.
Definition ISDOpcodes.h:850
@ BRCOND
BRCOND - Conditional branch.
@ VECREDUCE_SEQ_FMUL
@ CATCHRET
CATCHRET - Represents a return from a catch block funclet.
@ AssertSext
AssertSext, AssertZext - These nodes record if a register contains a value that has already been zero...
Definition ISDOpcodes.h:62
@ ATOMIC_LOAD_UINC_WRAP
@ FCOPYSIGN
FCOPYSIGN(X, Y) - Return the value of X with the sign of Y.
Definition ISDOpcodes.h:529
@ SADDSAT
RESULT = [US]ADDSAT(LHS, RHS) - Perform saturation addition on 2 integers with the same bit width (W)...
Definition ISDOpcodes.h:360
@ VECTOR_DEINTERLEAVE
VECTOR_DEINTERLEAVE(VEC1, VEC2, ...) - Returns N vectors from N input vectors, where N is the factor ...
Definition ISDOpcodes.h:619
@ GET_DYNAMIC_AREA_OFFSET
GET_DYNAMIC_AREA_OFFSET - get offset from native SP to the address of the most recent dynamic alloca.
@ FMINIMUMNUM
FMINIMUMNUM/FMAXIMUMNUM - minimumnum/maximumnum that is same with FMINNUM_IEEE and FMAXNUM_IEEE besid...
@ ADJUST_TRAMPOLINE
ADJUST_TRAMPOLINE - This corresponds to the adjust_trampoline intrinsic.
@ INTRINSIC_W_CHAIN
RESULT,OUTCHAIN = INTRINSIC_W_CHAIN(INCHAIN, INTRINSICID, arg1, ...) This node represents a target in...
Definition ISDOpcodes.h:208
@ BUILD_VECTOR
BUILD_VECTOR(ELT0, ELT1, ELT2, ELT3,...) - Return a fixed-width vector with the specified,...
Definition ISDOpcodes.h:551
@ LOOP_DEPENDENCE_WAR_MASK
The llvm.loop.dependence.
CondCode
ISD::CondCode enum - These are ordered carefully to make the bitfields below work out,...
This namespace contains an enum with a value for every intrinsic/builtin function known by LLVM.
Flag
These should be considered private to the implementation of the MCInstrDesc class.
BinaryOp_match< SrcTy, SpecificConstantMatch, TargetOpcode::G_XOR, true > m_Not(const SrcTy &&Src)
Matches a register not-ed by a G_XOR.
OneUse_match< SubPat > m_OneUse(const SubPat &SP)
bool match(Val *V, const Pattern &P)
specificval_ty m_Specific(const Value *V)
Match if we have a specific specified value.
TwoOps_match< Val_t, Idx_t, Instruction::ExtractElement > m_ExtractElt(const Val_t &Val, const Idx_t &Idx)
Matches ExtractElementInst.
IntrinsicID_match m_VScale()
Matches a call to llvm.vscale().
auto m_LogicalOr()
Matches L || R where L and R are arbitrary values.
class_match< Value > m_Value()
Match an arbitrary value and ignore it.
auto m_LogicalAnd()
Matches L && R where L and R are arbitrary values.
Offsets
Offsets in bytes from the start of the input buffer.
std::pair< JumpTableHeader, JumpTable > JumpTableBlock
void sortAndRangeify(CaseClusterVector &Clusters)
Sort Clusters and merge adjacent cases.
std::vector< CaseCluster > CaseClusterVector
@ CC_Range
A cluster of adjacent case labels with the same destination, or just one case.
@ CC_JumpTable
A cluster of cases suitable for jump table lowering.
@ CC_BitTests
A cluster of cases suitable for bit test lowering.
SmallVector< SwitchWorkListItem, 4 > SwitchWorkList
CaseClusterVector::iterator CaseClusterIt
initializer< Ty > init(const Ty &Val)
LocationClass< Ty > location(Ty &L)
@ DW_OP_LLVM_arg
Only used in LLVM metadata.
Definition Dwarf.h:149
ExceptionBehavior
Exception behavior used for floating point operations.
Definition FPEnv.h:39
@ ebStrict
This corresponds to "fpexcept.strict".
Definition FPEnv.h:42
@ ebMayTrap
This corresponds to "fpexcept.maytrap".
Definition FPEnv.h:41
@ ebIgnore
This corresponds to "fpexcept.ignore".
Definition FPEnv.h:40
constexpr float log2ef
Definition MathExtras.h:51
constexpr double e
constexpr float ln2f
Definition MathExtras.h:49
NodeAddr< FuncNode * > Func
Definition RDFGraph.h:393
friend class Instruction
Iterator for Instructions in a `BasicBlock.
Definition BasicBlock.h:73
This is an optimization pass for GlobalISel generic memory operations.
Definition Types.h:26
@ Low
Lower the current thread's priority such that it does not affect foreground tasks significantly.
Definition Threading.h:280
unsigned Log2_32_Ceil(uint32_t Value)
Return the ceil log base 2 of the specified value, 32 if the value is zero.
Definition MathExtras.h:344
@ Offset
Definition DWP.cpp:532
@ Length
Definition DWP.cpp:532
FunctionAddr VTableAddr Value
Definition InstrProf.h:137
ISD::CondCode getICmpCondCode(ICmpInst::Predicate Pred)
getICmpCondCode - Return the ISD condition code corresponding to the given LLVM IR integer condition ...
Definition Analysis.cpp:237
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1737
auto size(R &&Range, std::enable_if_t< std::is_base_of< std::random_access_iterator_tag, typename std::iterator_traits< decltype(Range.begin())>::iterator_category >::value, void > *=nullptr)
Get the size of a range.
Definition STLExtras.h:1667
LLVM_ABI void GetReturnInfo(CallingConv::ID CC, Type *ReturnType, AttributeList attr, SmallVectorImpl< ISD::OutputArg > &Outs, const TargetLowering &TLI, const DataLayout &DL)
Given an LLVM IR type and return type attributes, compute the return value EVTs and flags,...
MachineInstrBuilder BuildMI(MachineFunction &MF, const MIMetadata &MIMD, const MCInstrDesc &MCID)
Builder interface. Specify how to create the initial instruction itself.
LLVM_ABI bool isOnlyUsedInZeroEqualityComparison(const Instruction *CxtI)
void ComputeValueVTs(const TargetLowering &TLI, const DataLayout &DL, Type *Ty, SmallVectorImpl< EVT > &ValueVTs, SmallVectorImpl< EVT > *MemVTs=nullptr, SmallVectorImpl< TypeSize > *Offsets=nullptr, TypeSize StartingOffset=TypeSize::getZero())
ComputeValueVTs - Given an LLVM IR type, compute a sequence of EVTs that represent all the individual...
Definition Analysis.cpp:119
LLVM_ABI SDValue peekThroughBitcasts(SDValue V)
Return the non-bitcasted source operand of V if it exists.
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:643
@ Done
Definition Threading.h:60
int countr_one(T Value)
Count the number of ones from the least significant bit to the first zero bit.
Definition bit.h:293
LLVM_ABI void diagnoseDontCall(const CallInst &CI)
auto successors(const MachineBasicBlock *BB)
bool isIntOrFPConstant(SDValue V)
Return true if V is either a integer or FP constant.
static ConstantRange getRange(Value *Op, SCCPSolver &Solver, const SmallPtrSetImpl< Value * > &InsertedValues)
Helper for getting ranges from Solver.
void append_range(Container &C, Range &&R)
Wrapper function to append range R to container C.
Definition STLExtras.h:2184
Value * GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset, const DataLayout &DL, bool AllowNonInbounds=true)
Analyze the specified pointer to see if it can be expressed as a base pointer plus a constant offset.
constexpr bool isUIntN(unsigned N, uint64_t x)
Checks if an unsigned integer fits into the given (dynamic) bit width.
Definition MathExtras.h:243
auto cast_or_null(const Y &Val)
Definition Casting.h:714
constexpr T alignDown(U Value, V Align, W Skew=0)
Returns the largest unsigned integer less than or equal to Value and is Skew mod Align.
Definition MathExtras.h:546
gep_type_iterator gep_type_end(const User *GEP)
constexpr int popcount(T Value) noexcept
Count the number of set bits in a value.
Definition bit.h:154
LLVM_ABI ConstantRange getConstantRangeFromMetadata(const MDNode &RangeMD)
Parse out a conservative ConstantRange from !range metadata.
detail::concat_range< ValueT, RangeTs... > concat(RangeTs &&...Ranges)
Returns a concatenated range across two or more ranges.
Definition STLExtras.h:1150
bool isScopedEHPersonality(EHPersonality Pers)
Returns true if this personality uses scope-style EH IR instructions: catchswitch,...
int countr_zero(T Val)
Count number of 0's from the least significant bit to the most stopping at the first 1.
Definition bit.h:202
void ComputeValueTypes(const DataLayout &DL, Type *Ty, SmallVectorImpl< Type * > &Types, SmallVectorImpl< TypeSize > *Offsets=nullptr, TypeSize StartingOffset=TypeSize::getZero())
Given an LLVM IR type, compute non-aggregate subtypes.
Definition Analysis.cpp:72
auto dyn_cast_or_null(const Y &Val)
Definition Casting.h:753
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1744
LLVM_ABI llvm::SmallVector< int, 16 > createStrideMask(unsigned Start, unsigned Stride, unsigned VF)
Create a stride shuffle mask.
@ SPF_ABS
Floating point maxnum.
@ SPF_NABS
Absolute value.
@ SPF_FMAXNUM
Floating point minnum.
@ SPF_UMIN
Signed minimum.
@ SPF_UMAX
Signed maximum.
@ SPF_SMAX
Unsigned minimum.
@ SPF_FMINNUM
Unsigned maximum.
decltype(auto) get(const PointerIntPair< PointerTy, IntBits, IntType, PtrTraits, Info > &Pair)
detail::zippy< detail::zip_first, T, U, Args... > zip_first(T &&t, U &&u, Args &&...args)
zip iterator that, for the sake of efficiency, assumes the first iteratee to be the shortest.
Definition STLExtras.h:852
void sort(IteratorTy Start, IteratorTy End)
Definition STLExtras.h:1634
FPClassTest
Floating-point class tests, supported by 'is_fpclass' intrinsic.
LLVM_ABI SelectPatternResult matchSelectPattern(Value *V, Value *&LHS, Value *&RHS, Instruction::CastOps *CastOp=nullptr, unsigned Depth=0)
Pattern match integer [SU]MIN, [SU]MAX and ABS idioms, returning the kind and providing the out param...
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition Debug.cpp:207
LLVM_ABI void report_fatal_error(Error Err, bool gen_crash_diag=true)
Definition Error.cpp:167
generic_gep_type_iterator<> gep_type_iterator
FunctionAddr VTableAddr Count
Definition InstrProf.h:139
auto succ_size(const MachineBasicBlock *BB)
bool hasSingleElement(ContainerTy &&C)
Returns true if the given container only contains a single element.
Definition STLExtras.h:300
LLVM_ABI ConstantRange getVScaleRange(const Function *F, unsigned BitWidth)
Determine the possible constant range of vscale with the given bit width, based on the vscale_range f...
ISD::CondCode getFCmpCondCode(FCmpInst::Predicate Pred)
getFCmpCondCode - Return the ISD condition code corresponding to the given LLVM IR floating-point con...
Definition Analysis.cpp:203
LLVM_ABI EHPersonality classifyEHPersonality(const Value *Pers)
See if the given exception handling personality function is one that we understand.
class LLVM_GSL_OWNER SmallVector
Forward declaration of SmallVector so that calculateSmallVectorDefaultInlinedElements can reference s...
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
Definition Casting.h:547
LLVM_ATTRIBUTE_VISIBILITY_DEFAULT AnalysisKey InnerAnalysisManagerProxy< AnalysisManagerT, IRUnitT, ExtraArgTs... >::Key
LLVM_ABI Value * salvageDebugInfoImpl(Instruction &I, uint64_t CurrentLocOps, SmallVectorImpl< uint64_t > &Ops, SmallVectorImpl< Value * > &AdditionalValues)
Definition Local.cpp:2274
LLVM_ABI raw_fd_ostream & errs()
This returns a reference to a raw_ostream for standard error.
@ Global
Append to llvm.global_dtors.
AtomicOrdering
Atomic ordering for LLVM's memory model.
@ First
Helpers to iterate all locations in the MemoryEffectsBase class.
Definition ModRef.h:74
bool isFuncletEHPersonality(EHPersonality Pers)
Returns true if this is a personality function that invokes handler funclets (which must return to it...
FunctionAddr VTableAddr uintptr_t uintptr_t Data
Definition InstrProf.h:189
LLVM_ABI bool isAssignmentTrackingEnabled(const Module &M)
Return true if assignment tracking is enabled for module M.
LLVM_ABI llvm::SmallVector< int, 16 > createInterleaveMask(unsigned VF, unsigned NumVecs)
Create an interleave shuffle mask.
@ UMin
Unsigned integer min implemented in terms of select(cmp()).
@ Or
Bitwise or logical OR of integers.
@ Mul
Product of integers.
@ And
Bitwise or logical AND of integers.
@ Sub
Subtraction of integers.
@ Add
Sum of integers.
uint64_t alignTo(uint64_t Size, Align A)
Returns a multiple of A needed to store Size bytes.
Definition Alignment.h:144
@ SPNB_RETURNS_NAN
NaN behavior not applicable.
@ SPNB_RETURNS_OTHER
Given one NaN input, returns the NaN.
@ SPNB_RETURNS_ANY
Given one NaN input, returns the non-NaN.
bool isInTailCallPosition(const CallBase &Call, const TargetMachine &TM, bool ReturnsFirstArg=false)
Test if the given instruction is in a position to be optimized with a tail-call.
Definition Analysis.cpp:539
DWARFExpression::Operation Op
ISD::CondCode getFCmpCodeWithoutNaN(ISD::CondCode CC)
getFCmpCodeWithoutNaN - Given an ISD condition code comparing floats, return the equivalent code if w...
Definition Analysis.cpp:225
ArrayRef(const T &OneElt) -> ArrayRef< T >
bool isAsynchronousEHPersonality(EHPersonality Pers)
Returns true if this personality function catches asynchronous exceptions.
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:559
LLVM_ABI std::optional< RoundingMode > convertStrToRoundingMode(StringRef)
Returns a valid RoundingMode enumerator when given a string that is valid as input in constrained int...
Definition FPEnv.cpp:25
gep_type_iterator gep_type_begin(const User *GEP)
void erase_if(Container &C, UnaryPredicate P)
Provide a container algorithm similar to C++ Library Fundamentals v2's erase_if which is equivalent t...
Definition STLExtras.h:2168
GlobalValue * ExtractTypeInfo(Value *V)
ExtractTypeInfo - Returns the type info, possibly bitcast, encoded in V.
Definition Analysis.cpp:181
bool is_contained(R &&Range, const E &Element)
Returns true if Element is found in Range.
Definition STLExtras.h:1945
Align commonAlignment(Align A, uint64_t Offset)
Returns the alignment that satisfies both alignments.
Definition Alignment.h:201
bool all_equal(std::initializer_list< T > Values)
Returns true if all Values in the initializer lists are equal or the list.
Definition STLExtras.h:2156
LLVM_ABI Constant * ConstantFoldLoadFromConstPtr(Constant *C, Type *Ty, APInt Offset, const DataLayout &DL)
Return the value that a load from C with offset Offset would produce if it is constant and determinab...
unsigned ComputeLinearIndex(Type *Ty, const unsigned *Indices, const unsigned *IndicesEnd, unsigned CurIndex=0)
Compute the linearized index of a member in a nested aggregate/struct/array.
Definition Analysis.cpp:33
T bit_floor(T Value)
Returns the largest integral power of two no greater than Value if Value is nonzero.
Definition bit.h:330
@ Default
The result values are uniform if and only if all operands are uniform.
Definition Uniformity.h:20
LLVM_ABI void reportFatalUsageError(Error Err)
Report a fatal error that does not indicate a bug in LLVM.
Definition Error.cpp:180
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
Definition BitVector.h:872
#define N
#define NC
Definition regutils.h:42
This struct is a compact representation of a valid (non-zero power of two) alignment.
Definition Alignment.h:39
constexpr uint64_t value() const
This is a hole in the type system and should not be abused.
Definition Alignment.h:77
Extended Value Type.
Definition ValueTypes.h:35
TypeSize getStoreSize() const
Return the number of bytes overwritten by a store of the specified value type.
Definition ValueTypes.h:395
static EVT getVectorVT(LLVMContext &Context, EVT VT, unsigned NumElements, bool IsScalable=false)
Returns the EVT that represents a vector NumElements in length, where each element is of type VT.
Definition ValueTypes.h:74
uint64_t getScalarStoreSize() const
Definition ValueTypes.h:402
bool bitsGT(EVT VT) const
Return true if this has more bits than VT.
Definition ValueTypes.h:284
bool bitsLT(EVT VT) const
Return true if this has less bits than VT.
Definition ValueTypes.h:300
bool isFloatingPoint() const
Return true if this is a FP or a vector FP type.
Definition ValueTypes.h:147
ElementCount getVectorElementCount() const
Definition ValueTypes.h:350
TypeSize getSizeInBits() const
Return the size of the specified value type in bits.
Definition ValueTypes.h:373
unsigned getVectorMinNumElements() const
Given a vector type, return the minimum number of elements it contains.
Definition ValueTypes.h:359
static LLVM_ABI EVT getEVT(Type *Ty, bool HandleUnknown=false)
Return the value type corresponding to the specified type.
EVT changeVectorElementType(LLVMContext &Context, EVT EltVT) const
Return a VT for a vector type whose attributes match ourselves with the exception of the element type...
Definition ValueTypes.h:102
MVT getSimpleVT() const
Return the SimpleValueType held in the specified simple EVT.
Definition ValueTypes.h:316
static EVT getIntegerVT(LLVMContext &Context, unsigned BitWidth)
Returns the EVT that represents an integer with the given number of bits.
Definition ValueTypes.h:65
bool isRISCVVectorTuple() const
Return true if this is a vector value type.
Definition ValueTypes.h:179
uint64_t getFixedSizeInBits() const
Return the size of the specified fixed width value type in bits.
Definition ValueTypes.h:381
bool isFixedLengthVector() const
Definition ValueTypes.h:181
bool isVector() const
Return true if this is a vector value type.
Definition ValueTypes.h:168
EVT getScalarType() const
If this is a vector type, return the element type, otherwise return this.
Definition ValueTypes.h:323
bool bitsGE(EVT VT) const
Return true if this has no less bits than VT.
Definition ValueTypes.h:292
bool isScalableVector() const
Return true if this is a vector type where the runtime length is machine dependent.
Definition ValueTypes.h:174
EVT getVectorElementType() const
Given a vector type, return the type of each element.
Definition ValueTypes.h:328
EVT changeElementType(LLVMContext &Context, EVT EltVT) const
Return a VT for a type whose attributes match ourselves with the exception of the element type that i...
Definition ValueTypes.h:113
bool isScalarInteger() const
Return true if this is an integer, but not a vector.
Definition ValueTypes.h:157
unsigned getVectorNumElements() const
Given a vector type, return the number of elements it contains.
Definition ValueTypes.h:336
bool isInteger() const
Return true if this is an integer or a vector integer type.
Definition ValueTypes.h:152
void setPointerAddrSpace(unsigned AS)
InputArg - This struct carries flags and type information about a single incoming (formal) argument o...
static const unsigned NoArgIndex
Sentinel value for implicit machine-level input arguments.
OutputArg - This struct carries flags and a value for a single outgoing (actual) argument or outgoing...
ConstraintPrefix Type
Type - The basic type of the constraint: input/output/clobber/label.
Definition InlineAsm.h:128
unsigned countMinLeadingZeros() const
Returns the minimum number of leading zero bits.
Definition KnownBits.h:248
This class contains a discriminated union of information about pointers in memory operands,...
static LLVM_ABI MachinePointerInfo getUnknownStack(MachineFunction &MF)
Stack memory without other information.
static LLVM_ABI MachinePointerInfo getFixedStack(MachineFunction &MF, int FI, int64_t Offset=0)
Return a MachinePointerInfo record that refers to the specified FrameIndex.
A lightweight accessor for an operand bundle meant to be passed around by value.
This struct represents the registers (physical or virtual) that a particular set of values is assigne...
SmallVector< std::pair< Register, TypeSize >, 4 > getRegsAndSizes() const
Return a list of registers and their sizes.
RegsForValue()=default
SmallVector< unsigned, 4 > RegCount
This list holds the number of registers for each value.
SmallVector< EVT, 4 > ValueVTs
The value types of the values, which may not be legal, and may need be promoted or synthesized from o...
SmallVector< Register, 4 > Regs
This list holds the registers assigned to the values.
void AddInlineAsmOperands(InlineAsm::Kind Code, bool HasMatching, unsigned MatchingIdx, const SDLoc &dl, SelectionDAG &DAG, std::vector< SDValue > &Ops) const
Add this value to the specified inlineasm node operand list.
SDValue getCopyFromRegs(SelectionDAG &DAG, FunctionLoweringInfo &FuncInfo, const SDLoc &dl, SDValue &Chain, SDValue *Glue, const Value *V=nullptr) const
Emit a series of CopyFromReg nodes that copies from this value and returns the result as a ValueVTs v...
SmallVector< MVT, 4 > RegVTs
The value types of the registers.
void getCopyToRegs(SDValue Val, SelectionDAG &DAG, const SDLoc &dl, SDValue &Chain, SDValue *Glue, const Value *V=nullptr, ISD::NodeType PreferredExtendType=ISD::ANY_EXTEND) const
Emit a series of CopyToReg nodes that copies the specified value into the registers specified by this...
std::optional< CallingConv::ID > CallConv
Records if this value needs to be treated in an ABI dependant manner, different to normal type legali...
bool occupiesMultipleRegs() const
Check if the total RegCount is greater than one.
These are IR-level optimization flags that may be propagated to SDNodes.
void copyFMF(const FPMathOperator &FPMO)
Propagate the fast-math-flags from an IR FPMathOperator.
void setUnpredictable(bool b)
bool hasAllowReassociation() const
void setNoUnsignedWrap(bool b)
void setNoSignedWrap(bool b)
This represents a list of ValueType's that has been intern'd by a SelectionDAG.
A MapVector that performs no allocations if smaller than a certain size.
Definition MapVector.h:276
This structure is used to communicate between SelectionDAGBuilder and SDISel for the code generation ...
SDLoc DL
The debug location of the instruction this CaseBlock was produced from.
static CaseCluster range(const ConstantInt *Low, const ConstantInt *High, MachineBasicBlock *MBB, BranchProbability Prob)
Register Reg
The virtual register containing the index of the jump table entry to jump to.
MachineBasicBlock * Default
The MBB of the default bb, which is a successor of the range check MBB.
unsigned JTI
The JumpTableIndex for this jump table in the function.
MachineBasicBlock * MBB
The MBB into which to emit the code for the indirect jump.
std::optional< SDLoc > SL
The debug location of the instruction this JumpTable was produced from.
This contains information for each constraint that we are lowering.
TargetLowering::ConstraintType ConstraintType
Information about the constraint code, e.g.
This structure contains all information that is necessary for lowering calls.
CallLoweringInfo & setConvergent(bool Value=true)
CallLoweringInfo & setDeactivationSymbol(GlobalValue *Sym)
CallLoweringInfo & setCFIType(const ConstantInt *Type)
SmallVector< ISD::InputArg, 32 > Ins
Type * OrigRetTy
Original unlegalized return type.
CallLoweringInfo & setDiscardResult(bool Value=true)
CallLoweringInfo & setIsPatchPoint(bool Value=true)
CallLoweringInfo & setDebugLoc(const SDLoc &dl)
CallLoweringInfo & setTailCall(bool Value=true)
CallLoweringInfo & setIsPreallocated(bool Value=true)
CallLoweringInfo & setConvergenceControlToken(SDValue Token)
SmallVector< ISD::OutputArg, 32 > Outs
Type * RetTy
Same as OrigRetTy, or partially legalized for soft float libcalls.
CallLoweringInfo & setChain(SDValue InChain)
CallLoweringInfo & setPtrAuth(PtrAuthInfo Value)
CallLoweringInfo & setCallee(CallingConv::ID CC, Type *ResultType, SDValue Target, ArgListTy &&ArgsList, AttributeSet ResultAttrs={})
This structure is used to pass arguments to makeLibCall function.
MakeLibCallOptions & setDiscardResult(bool Value=true)
This structure contains the information necessary for lowering pointer-authenticating indirect calls.
void addIPToStateRange(const InvokeInst *II, MCSymbol *InvokeBegin, MCSymbol *InvokeEnd)