LLVM 22.0.0git
SPIRVInstructionSelector.cpp
Go to the documentation of this file.
1//===- SPIRVInstructionSelector.cpp ------------------------------*- C++ -*-==//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements the targeting of the InstructionSelector class for
10// SPIRV.
11// TODO: This should be generated by TableGen.
12//
13//===----------------------------------------------------------------------===//
14
17#include "SPIRV.h"
18#include "SPIRVGlobalRegistry.h"
19#include "SPIRVInstrInfo.h"
20#include "SPIRVRegisterInfo.h"
21#include "SPIRVTargetMachine.h"
22#include "SPIRVUtils.h"
23#include "llvm/ADT/APFloat.h"
32#include "llvm/IR/IntrinsicsSPIRV.h"
33#include "llvm/Support/Debug.h"
35
36#define DEBUG_TYPE "spirv-isel"
37
38using namespace llvm;
39namespace CL = SPIRV::OpenCLExtInst;
40namespace GL = SPIRV::GLSLExtInst;
41
43 std::vector<std::pair<SPIRV::InstructionSet::InstructionSet, uint32_t>>;
44
45namespace {
46
47llvm::SPIRV::SelectionControl::SelectionControl
48getSelectionOperandForImm(int Imm) {
49 if (Imm == 2)
50 return SPIRV::SelectionControl::Flatten;
51 if (Imm == 1)
52 return SPIRV::SelectionControl::DontFlatten;
53 if (Imm == 0)
54 return SPIRV::SelectionControl::None;
55 llvm_unreachable("Invalid immediate");
56}
57
58#define GET_GLOBALISEL_PREDICATE_BITSET
59#include "SPIRVGenGlobalISel.inc"
60#undef GET_GLOBALISEL_PREDICATE_BITSET
61
62class SPIRVInstructionSelector : public InstructionSelector {
63 const SPIRVSubtarget &STI;
64 const SPIRVInstrInfo &TII;
66 const RegisterBankInfo &RBI;
69 MachineFunction *HasVRegsReset = nullptr;
70
71 /// We need to keep track of the number we give to anonymous global values to
72 /// generate the same name every time when this is needed.
73 mutable DenseMap<const GlobalValue *, unsigned> UnnamedGlobalIDs;
75
76public:
77 SPIRVInstructionSelector(const SPIRVTargetMachine &TM,
78 const SPIRVSubtarget &ST,
79 const RegisterBankInfo &RBI);
80 void setupMF(MachineFunction &MF, GISelValueTracking *VT,
81 CodeGenCoverage *CoverageInfo, ProfileSummaryInfo *PSI,
82 BlockFrequencyInfo *BFI) override;
83 // Common selection code. Instruction-specific selection occurs in spvSelect.
84 bool select(MachineInstr &I) override;
85 static const char *getName() { return DEBUG_TYPE; }
86
87#define GET_GLOBALISEL_PREDICATES_DECL
88#include "SPIRVGenGlobalISel.inc"
89#undef GET_GLOBALISEL_PREDICATES_DECL
90
91#define GET_GLOBALISEL_TEMPORARIES_DECL
92#include "SPIRVGenGlobalISel.inc"
93#undef GET_GLOBALISEL_TEMPORARIES_DECL
94
95private:
96 void resetVRegsType(MachineFunction &MF);
97 void removeDeadInstruction(MachineInstr &MI) const;
98 void removeOpNamesForDeadMI(MachineInstr &MI) const;
99
100 // tblgen-erated 'select' implementation, used as the initial selector for
101 // the patterns that don't require complex C++.
102 bool selectImpl(MachineInstr &I, CodeGenCoverage &CoverageInfo) const;
103
104 // All instruction-specific selection that didn't happen in "select()".
105 // Is basically a large Switch/Case delegating to all other select method.
106 bool spvSelect(Register ResVReg, const SPIRVType *ResType,
107 MachineInstr &I) const;
108
109 bool selectFirstBitHigh(Register ResVReg, const SPIRVType *ResType,
110 MachineInstr &I, bool IsSigned) const;
111
112 bool selectFirstBitLow(Register ResVReg, const SPIRVType *ResType,
113 MachineInstr &I) const;
114
115 bool selectFirstBitSet16(Register ResVReg, const SPIRVType *ResType,
116 MachineInstr &I, unsigned ExtendOpcode,
117 unsigned BitSetOpcode) const;
118
119 bool selectFirstBitSet32(Register ResVReg, const SPIRVType *ResType,
120 MachineInstr &I, Register SrcReg,
121 unsigned BitSetOpcode) const;
122
123 bool selectFirstBitSet64(Register ResVReg, const SPIRVType *ResType,
124 MachineInstr &I, Register SrcReg,
125 unsigned BitSetOpcode, bool SwapPrimarySide) const;
126
127 bool selectFirstBitSet64Overflow(Register ResVReg, const SPIRVType *ResType,
128 MachineInstr &I, Register SrcReg,
129 unsigned BitSetOpcode,
130 bool SwapPrimarySide) const;
131
132 bool selectGlobalValue(Register ResVReg, MachineInstr &I,
133 const MachineInstr *Init = nullptr) const;
134
135 bool selectOpWithSrcs(Register ResVReg, const SPIRVType *ResType,
136 MachineInstr &I, std::vector<Register> SrcRegs,
137 unsigned Opcode) const;
138
139 bool selectUnOp(Register ResVReg, const SPIRVType *ResType, MachineInstr &I,
140 unsigned Opcode) const;
141
142 bool selectBitcast(Register ResVReg, const SPIRVType *ResType,
143 MachineInstr &I) const;
144
145 bool selectLoad(Register ResVReg, const SPIRVType *ResType,
146 MachineInstr &I) const;
147 bool selectStore(MachineInstr &I) const;
148
149 bool selectStackSave(Register ResVReg, const SPIRVType *ResType,
150 MachineInstr &I) const;
151 bool selectStackRestore(MachineInstr &I) const;
152
153 bool selectMemOperation(Register ResVReg, MachineInstr &I) const;
154 Register getOrCreateMemSetGlobal(MachineInstr &I) const;
155 bool selectCopyMemory(MachineInstr &I, Register SrcReg) const;
156 bool selectCopyMemorySized(MachineInstr &I, Register SrcReg) const;
157
158 bool selectAtomicRMW(Register ResVReg, const SPIRVType *ResType,
159 MachineInstr &I, unsigned NewOpcode,
160 unsigned NegateOpcode = 0) const;
161
162 bool selectAtomicCmpXchg(Register ResVReg, const SPIRVType *ResType,
163 MachineInstr &I) const;
164
165 bool selectFence(MachineInstr &I) const;
166
167 bool selectAddrSpaceCast(Register ResVReg, const SPIRVType *ResType,
168 MachineInstr &I) const;
169
170 bool selectAnyOrAll(Register ResVReg, const SPIRVType *ResType,
171 MachineInstr &I, unsigned OpType) const;
172
173 bool selectAll(Register ResVReg, const SPIRVType *ResType,
174 MachineInstr &I) const;
175
176 bool selectAny(Register ResVReg, const SPIRVType *ResType,
177 MachineInstr &I) const;
178
179 bool selectBitreverse(Register ResVReg, const SPIRVType *ResType,
180 MachineInstr &I) const;
181
182 bool selectBuildVector(Register ResVReg, const SPIRVType *ResType,
183 MachineInstr &I) const;
184 bool selectSplatVector(Register ResVReg, const SPIRVType *ResType,
185 MachineInstr &I) const;
186
187 bool selectCmp(Register ResVReg, const SPIRVType *ResType,
188 unsigned comparisonOpcode, MachineInstr &I) const;
189 bool selectDiscard(Register ResVReg, const SPIRVType *ResType,
190 MachineInstr &I) const;
191
192 bool selectICmp(Register ResVReg, const SPIRVType *ResType,
193 MachineInstr &I) const;
194 bool selectFCmp(Register ResVReg, const SPIRVType *ResType,
195 MachineInstr &I) const;
196
197 bool selectSign(Register ResVReg, const SPIRVType *ResType,
198 MachineInstr &I) const;
199
200 bool selectFloatDot(Register ResVReg, const SPIRVType *ResType,
201 MachineInstr &I) const;
202
203 bool selectOverflowArith(Register ResVReg, const SPIRVType *ResType,
204 MachineInstr &I, unsigned Opcode) const;
205 bool selectDebugTrap(Register ResVReg, const SPIRVType *ResType,
206 MachineInstr &I) const;
207
208 bool selectIntegerDot(Register ResVReg, const SPIRVType *ResType,
209 MachineInstr &I, bool Signed) const;
210
211 bool selectIntegerDotExpansion(Register ResVReg, const SPIRVType *ResType,
212 MachineInstr &I) const;
213
214 bool selectOpIsInf(Register ResVReg, const SPIRVType *ResType,
215 MachineInstr &I) const;
216
217 bool selectOpIsNan(Register ResVReg, const SPIRVType *ResType,
218 MachineInstr &I) const;
219
220 template <bool Signed>
221 bool selectDot4AddPacked(Register ResVReg, const SPIRVType *ResType,
222 MachineInstr &I) const;
223 template <bool Signed>
224 bool selectDot4AddPackedExpansion(Register ResVReg, const SPIRVType *ResType,
225 MachineInstr &I) const;
226
227 bool selectWaveReduceMax(Register ResVReg, const SPIRVType *ResType,
228 MachineInstr &I, bool IsUnsigned) const;
229
230 bool selectWaveReduceMin(Register ResVReg, const SPIRVType *ResType,
231 MachineInstr &I, bool IsUnsigned) const;
232
233 bool selectWaveReduceSum(Register ResVReg, const SPIRVType *ResType,
234 MachineInstr &I) const;
235
236 bool selectConst(Register ResVReg, const SPIRVType *ResType,
237 MachineInstr &I) const;
238
239 bool selectSelect(Register ResVReg, const SPIRVType *ResType,
240 MachineInstr &I) const;
241 bool selectSelectDefaultArgs(Register ResVReg, const SPIRVType *ResType,
242 MachineInstr &I, bool IsSigned) const;
243 bool selectIToF(Register ResVReg, const SPIRVType *ResType, MachineInstr &I,
244 bool IsSigned, unsigned Opcode) const;
245 bool selectExt(Register ResVReg, const SPIRVType *ResType, MachineInstr &I,
246 bool IsSigned) const;
247
248 bool selectTrunc(Register ResVReg, const SPIRVType *ResType,
249 MachineInstr &I) const;
250
251 bool selectSUCmp(Register ResVReg, const SPIRVType *ResType, MachineInstr &I,
252 bool IsSigned) const;
253
254 bool selectIntToBool(Register IntReg, Register ResVReg, MachineInstr &I,
255 const SPIRVType *intTy, const SPIRVType *boolTy) const;
256
257 bool selectOpUndef(Register ResVReg, const SPIRVType *ResType,
258 MachineInstr &I) const;
259 bool selectFreeze(Register ResVReg, const SPIRVType *ResType,
260 MachineInstr &I) const;
261 bool selectIntrinsic(Register ResVReg, const SPIRVType *ResType,
262 MachineInstr &I) const;
263 bool selectExtractVal(Register ResVReg, const SPIRVType *ResType,
264 MachineInstr &I) const;
265 bool selectInsertVal(Register ResVReg, const SPIRVType *ResType,
266 MachineInstr &I) const;
267 bool selectExtractElt(Register ResVReg, const SPIRVType *ResType,
268 MachineInstr &I) const;
269 bool selectInsertElt(Register ResVReg, const SPIRVType *ResType,
270 MachineInstr &I) const;
271 bool selectGEP(Register ResVReg, const SPIRVType *ResType,
272 MachineInstr &I) const;
273
274 bool selectFrameIndex(Register ResVReg, const SPIRVType *ResType,
275 MachineInstr &I) const;
276 bool selectAllocaArray(Register ResVReg, const SPIRVType *ResType,
277 MachineInstr &I) const;
278
279 bool selectBranch(MachineInstr &I) const;
280 bool selectBranchCond(MachineInstr &I) const;
281
282 bool selectPhi(Register ResVReg, const SPIRVType *ResType,
283 MachineInstr &I) const;
284
285 bool selectExtInst(Register ResVReg, const SPIRVType *RestType,
286 MachineInstr &I, GL::GLSLExtInst GLInst) const;
287 bool selectExtInst(Register ResVReg, const SPIRVType *ResType,
288 MachineInstr &I, CL::OpenCLExtInst CLInst) const;
289 bool selectExtInst(Register ResVReg, const SPIRVType *ResType,
290 MachineInstr &I, CL::OpenCLExtInst CLInst,
291 GL::GLSLExtInst GLInst) const;
292 bool selectExtInst(Register ResVReg, const SPIRVType *ResType,
293 MachineInstr &I, const ExtInstList &ExtInsts) const;
294 bool selectExtInstForLRound(Register ResVReg, const SPIRVType *ResType,
295 MachineInstr &I, CL::OpenCLExtInst CLInst,
296 GL::GLSLExtInst GLInst) const;
297 bool selectExtInstForLRound(Register ResVReg, const SPIRVType *ResType,
299 const ExtInstList &ExtInsts) const;
300
301 bool selectLog10(Register ResVReg, const SPIRVType *ResType,
302 MachineInstr &I) const;
303
304 bool selectSaturate(Register ResVReg, const SPIRVType *ResType,
305 MachineInstr &I) const;
306
307 bool selectWaveOpInst(Register ResVReg, const SPIRVType *ResType,
308 MachineInstr &I, unsigned Opcode) const;
309
310 bool selectWaveActiveCountBits(Register ResVReg, const SPIRVType *ResType,
311 MachineInstr &I) const;
312
314
315 bool selectHandleFromBinding(Register &ResVReg, const SPIRVType *ResType,
316 MachineInstr &I) const;
317
318 bool selectCounterHandleFromBinding(Register &ResVReg,
319 const SPIRVType *ResType,
320 MachineInstr &I) const;
321
322 bool selectReadImageIntrinsic(Register &ResVReg, const SPIRVType *ResType,
323 MachineInstr &I) const;
324 bool selectImageWriteIntrinsic(MachineInstr &I) const;
325 bool selectResourceGetPointer(Register &ResVReg, const SPIRVType *ResType,
326 MachineInstr &I) const;
327 bool selectPushConstantGetPointer(Register &ResVReg, const SPIRVType *ResType,
328 MachineInstr &I) const;
329 bool selectResourceNonUniformIndex(Register &ResVReg,
330 const SPIRVType *ResType,
331 MachineInstr &I) const;
332 bool selectModf(Register ResVReg, const SPIRVType *ResType,
333 MachineInstr &I) const;
334 bool selectUpdateCounter(Register &ResVReg, const SPIRVType *ResType,
335 MachineInstr &I) const;
336 bool selectFrexp(Register ResVReg, const SPIRVType *ResType,
337 MachineInstr &I) const;
338 bool selectDerivativeInst(Register ResVReg, const SPIRVType *ResType,
339 MachineInstr &I, const unsigned DPdOpCode) const;
340 // Utilities
341 std::pair<Register, bool>
342 buildI32Constant(uint32_t Val, MachineInstr &I,
343 const SPIRVType *ResType = nullptr) const;
344
345 Register buildZerosVal(const SPIRVType *ResType, MachineInstr &I) const;
346 Register buildZerosValF(const SPIRVType *ResType, MachineInstr &I) const;
347 Register buildOnesVal(bool AllOnes, const SPIRVType *ResType,
348 MachineInstr &I) const;
349 Register buildOnesValF(const SPIRVType *ResType, MachineInstr &I) const;
350
351 bool wrapIntoSpecConstantOp(MachineInstr &I,
352 SmallVector<Register> &CompositeArgs) const;
353
354 Register getUcharPtrTypeReg(MachineInstr &I,
355 SPIRV::StorageClass::StorageClass SC) const;
356 MachineInstrBuilder buildSpecConstantOp(MachineInstr &I, Register Dest,
357 Register Src, Register DestType,
358 uint32_t Opcode) const;
359 MachineInstrBuilder buildConstGenericPtr(MachineInstr &I, Register SrcPtr,
360 SPIRVType *SrcPtrTy) const;
361 Register buildPointerToResource(const SPIRVType *ResType,
362 SPIRV::StorageClass::StorageClass SC,
364 uint32_t ArraySize, Register IndexReg,
365 StringRef Name,
366 MachineIRBuilder MIRBuilder) const;
367 SPIRVType *widenTypeToVec4(const SPIRVType *Type, MachineInstr &I) const;
368 bool extractSubvector(Register &ResVReg, const SPIRVType *ResType,
369 Register &ReadReg, MachineInstr &InsertionPoint) const;
370 bool generateImageReadOrFetch(Register &ResVReg, const SPIRVType *ResType,
371 Register ImageReg, Register IdxReg,
372 DebugLoc Loc, MachineInstr &Pos) const;
373 bool BuildCOPY(Register DestReg, Register SrcReg, MachineInstr &I) const;
374 bool loadVec3BuiltinInputID(SPIRV::BuiltIn::BuiltIn BuiltInValue,
375 Register ResVReg, const SPIRVType *ResType,
376 MachineInstr &I) const;
377 bool loadBuiltinInputID(SPIRV::BuiltIn::BuiltIn BuiltInValue,
378 Register ResVReg, const SPIRVType *ResType,
379 MachineInstr &I) const;
380 bool loadHandleBeforePosition(Register &HandleReg, const SPIRVType *ResType,
381 GIntrinsic &HandleDef, MachineInstr &Pos) const;
382 void decorateUsesAsNonUniform(Register &NonUniformReg) const;
383 void errorIfInstrOutsideShader(MachineInstr &I) const;
384};
385
386bool sampledTypeIsSignedInteger(const llvm::Type *HandleType) {
387 const TargetExtType *TET = cast<TargetExtType>(HandleType);
388 if (TET->getTargetExtName() == "spirv.Image") {
389 return false;
390 }
391 assert(TET->getTargetExtName() == "spirv.SignedImage");
392 return TET->getTypeParameter(0)->isIntegerTy();
393}
394} // end anonymous namespace
395
396#define GET_GLOBALISEL_IMPL
397#include "SPIRVGenGlobalISel.inc"
398#undef GET_GLOBALISEL_IMPL
399
400SPIRVInstructionSelector::SPIRVInstructionSelector(const SPIRVTargetMachine &TM,
401 const SPIRVSubtarget &ST,
402 const RegisterBankInfo &RBI)
403 : InstructionSelector(), STI(ST), TII(*ST.getInstrInfo()),
404 TRI(*ST.getRegisterInfo()), RBI(RBI), GR(*ST.getSPIRVGlobalRegistry()),
405 MRI(nullptr),
407#include "SPIRVGenGlobalISel.inc"
410#include "SPIRVGenGlobalISel.inc"
412{
413}
414
415void SPIRVInstructionSelector::setupMF(MachineFunction &MF,
417 CodeGenCoverage *CoverageInfo,
419 BlockFrequencyInfo *BFI) {
420 MRI = &MF.getRegInfo();
421 GR.setCurrentFunc(MF);
422 InstructionSelector::setupMF(MF, VT, CoverageInfo, PSI, BFI);
423}
424
425// Ensure that register classes correspond to pattern matching rules.
426void SPIRVInstructionSelector::resetVRegsType(MachineFunction &MF) {
427 if (HasVRegsReset == &MF)
428 return;
429 HasVRegsReset = &MF;
430
431 MachineRegisterInfo &MRI = MF.getRegInfo();
432 for (unsigned I = 0, E = MRI.getNumVirtRegs(); I != E; ++I) {
433 Register Reg = Register::index2VirtReg(I);
434 LLT RegType = MRI.getType(Reg);
435 if (RegType.isScalar())
436 MRI.setType(Reg, LLT::scalar(64));
437 else if (RegType.isPointer())
438 MRI.setType(Reg, LLT::pointer(0, 64));
439 else if (RegType.isVector())
440 MRI.setType(Reg, LLT::fixed_vector(2, LLT::scalar(64)));
441 }
442 for (const auto &MBB : MF) {
443 for (const auto &MI : MBB) {
444 if (isPreISelGenericOpcode(MI.getOpcode()))
445 GR.erase(&MI);
446 if (MI.getOpcode() != SPIRV::ASSIGN_TYPE)
447 continue;
448
449 Register DstReg = MI.getOperand(0).getReg();
450 LLT DstType = MRI.getType(DstReg);
451 Register SrcReg = MI.getOperand(1).getReg();
452 LLT SrcType = MRI.getType(SrcReg);
453 if (DstType != SrcType)
454 MRI.setType(DstReg, MRI.getType(SrcReg));
455
456 const TargetRegisterClass *DstRC = MRI.getRegClassOrNull(DstReg);
457 const TargetRegisterClass *SrcRC = MRI.getRegClassOrNull(SrcReg);
458 if (DstRC != SrcRC && SrcRC)
459 MRI.setRegClass(DstReg, SrcRC);
460 }
461 }
462}
463
464// Return true if the type represents a constant register
467 OpDef = passCopy(OpDef, MRI);
468
469 if (Visited.contains(OpDef))
470 return true;
471 Visited.insert(OpDef);
472
473 unsigned Opcode = OpDef->getOpcode();
474 switch (Opcode) {
475 case TargetOpcode::G_CONSTANT:
476 case TargetOpcode::G_FCONSTANT:
477 case TargetOpcode::G_IMPLICIT_DEF:
478 return true;
479 case TargetOpcode::G_INTRINSIC:
480 case TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS:
481 case TargetOpcode::G_INTRINSIC_CONVERGENT_W_SIDE_EFFECTS:
482 return cast<GIntrinsic>(*OpDef).getIntrinsicID() ==
483 Intrinsic::spv_const_composite;
484 case TargetOpcode::G_BUILD_VECTOR:
485 case TargetOpcode::G_SPLAT_VECTOR: {
486 for (unsigned i = OpDef->getNumExplicitDefs(); i < OpDef->getNumOperands();
487 i++) {
488 MachineInstr *OpNestedDef =
489 OpDef->getOperand(i).isReg()
490 ? MRI->getVRegDef(OpDef->getOperand(i).getReg())
491 : nullptr;
492 if (OpNestedDef && !isConstReg(MRI, OpNestedDef, Visited))
493 return false;
494 }
495 return true;
496 case SPIRV::OpConstantTrue:
497 case SPIRV::OpConstantFalse:
498 case SPIRV::OpConstantI:
499 case SPIRV::OpConstantF:
500 case SPIRV::OpConstantComposite:
501 case SPIRV::OpConstantCompositeContinuedINTEL:
502 case SPIRV::OpConstantSampler:
503 case SPIRV::OpConstantNull:
504 case SPIRV::OpUndef:
505 case SPIRV::OpConstantFunctionPointerINTEL:
506 return true;
507 }
508 }
509 return false;
510}
511
512// Return true if the virtual register represents a constant
515 if (MachineInstr *OpDef = MRI->getVRegDef(OpReg))
516 return isConstReg(MRI, OpDef, Visited);
517 return false;
518}
519
520// TODO(168736): We should make this either a flag in tabelgen
521// or reduce our dependence on the global registry, so we can remove this
522// function. It can easily be missed when new intrinsics are added.
523
524// Most SPIR-V instrinsics are considered to have side-effects in their tablegen
525// definition because they are referenced in the global registry. This is a list
526// of intrinsics that have no side effects other than their references in the
527// global registry.
529 switch (ID) {
530 // This is not an exhaustive list and may need to be updated.
531 case Intrinsic::spv_all:
532 case Intrinsic::spv_alloca:
533 case Intrinsic::spv_any:
534 case Intrinsic::spv_bitcast:
535 case Intrinsic::spv_const_composite:
536 case Intrinsic::spv_cross:
537 case Intrinsic::spv_degrees:
538 case Intrinsic::spv_distance:
539 case Intrinsic::spv_extractelt:
540 case Intrinsic::spv_extractv:
541 case Intrinsic::spv_faceforward:
542 case Intrinsic::spv_fdot:
543 case Intrinsic::spv_firstbitlow:
544 case Intrinsic::spv_firstbitshigh:
545 case Intrinsic::spv_firstbituhigh:
546 case Intrinsic::spv_frac:
547 case Intrinsic::spv_gep:
548 case Intrinsic::spv_global_offset:
549 case Intrinsic::spv_global_size:
550 case Intrinsic::spv_group_id:
551 case Intrinsic::spv_insertelt:
552 case Intrinsic::spv_insertv:
553 case Intrinsic::spv_isinf:
554 case Intrinsic::spv_isnan:
555 case Intrinsic::spv_lerp:
556 case Intrinsic::spv_length:
557 case Intrinsic::spv_normalize:
558 case Intrinsic::spv_num_subgroups:
559 case Intrinsic::spv_num_workgroups:
560 case Intrinsic::spv_ptrcast:
561 case Intrinsic::spv_radians:
562 case Intrinsic::spv_reflect:
563 case Intrinsic::spv_refract:
564 case Intrinsic::spv_resource_getpointer:
565 case Intrinsic::spv_resource_handlefrombinding:
566 case Intrinsic::spv_resource_handlefromimplicitbinding:
567 case Intrinsic::spv_resource_nonuniformindex:
568 case Intrinsic::spv_rsqrt:
569 case Intrinsic::spv_saturate:
570 case Intrinsic::spv_sdot:
571 case Intrinsic::spv_sign:
572 case Intrinsic::spv_smoothstep:
573 case Intrinsic::spv_step:
574 case Intrinsic::spv_subgroup_id:
575 case Intrinsic::spv_subgroup_local_invocation_id:
576 case Intrinsic::spv_subgroup_max_size:
577 case Intrinsic::spv_subgroup_size:
578 case Intrinsic::spv_thread_id:
579 case Intrinsic::spv_thread_id_in_group:
580 case Intrinsic::spv_udot:
581 case Intrinsic::spv_undef:
582 case Intrinsic::spv_value_md:
583 case Intrinsic::spv_workgroup_size:
584 return false;
585 default:
586 return true;
587 }
588}
589
590// TODO(168736): We should make this either a flag in tabelgen
591// or reduce our dependence on the global registry, so we can remove this
592// function. It can easily be missed when new intrinsics are added.
593static bool isOpcodeWithNoSideEffects(unsigned Opcode) {
594 switch (Opcode) {
595 case SPIRV::OpTypeVoid:
596 case SPIRV::OpTypeBool:
597 case SPIRV::OpTypeInt:
598 case SPIRV::OpTypeFloat:
599 case SPIRV::OpTypeVector:
600 case SPIRV::OpTypeMatrix:
601 case SPIRV::OpTypeImage:
602 case SPIRV::OpTypeSampler:
603 case SPIRV::OpTypeSampledImage:
604 case SPIRV::OpTypeArray:
605 case SPIRV::OpTypeRuntimeArray:
606 case SPIRV::OpTypeStruct:
607 case SPIRV::OpTypeOpaque:
608 case SPIRV::OpTypePointer:
609 case SPIRV::OpTypeFunction:
610 case SPIRV::OpTypeEvent:
611 case SPIRV::OpTypeDeviceEvent:
612 case SPIRV::OpTypeReserveId:
613 case SPIRV::OpTypeQueue:
614 case SPIRV::OpTypePipe:
615 case SPIRV::OpTypeForwardPointer:
616 case SPIRV::OpTypePipeStorage:
617 case SPIRV::OpTypeNamedBarrier:
618 case SPIRV::OpTypeAccelerationStructureNV:
619 case SPIRV::OpTypeCooperativeMatrixNV:
620 case SPIRV::OpTypeCooperativeMatrixKHR:
621 return true;
622 default:
623 return false;
624 }
625}
626
628 // If there are no definitions, then assume there is some other
629 // side-effect that makes this instruction live.
630 if (MI.getNumDefs() == 0)
631 return false;
632
633 for (const auto &MO : MI.all_defs()) {
634 Register Reg = MO.getReg();
635 if (Reg.isPhysical()) {
636 LLVM_DEBUG(dbgs() << "Not dead: def of physical register " << Reg);
637 return false;
638 }
639 for (const auto &UseMI : MRI.use_nodbg_instructions(Reg)) {
640 if (UseMI.getOpcode() != SPIRV::OpName) {
641 LLVM_DEBUG(dbgs() << "Not dead: def " << MO << " has use in " << UseMI);
642 return false;
643 }
644 }
645 }
646
647 if (MI.getOpcode() == TargetOpcode::LOCAL_ESCAPE || MI.isFakeUse() ||
648 MI.isLifetimeMarker()) {
650 dbgs()
651 << "Not dead: Opcode is LOCAL_ESCAPE, fake use, or lifetime marker.\n");
652 return false;
653 }
654 if (MI.isPHI()) {
655 LLVM_DEBUG(dbgs() << "Dead: Phi instruction with no uses.\n");
656 return true;
657 }
658
659 // It is possible that the only side effect is that the instruction is
660 // referenced in the global registry. If that is the only side effect, the
661 // intrinsic is dead.
662 if (MI.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS ||
663 MI.getOpcode() == TargetOpcode::G_INTRINSIC_CONVERGENT_W_SIDE_EFFECTS) {
664 const auto &Intr = cast<GIntrinsic>(MI);
665 if (!intrinsicHasSideEffects(Intr.getIntrinsicID())) {
666 LLVM_DEBUG(dbgs() << "Dead: Intrinsic with no real side effects.\n");
667 return true;
668 }
669 }
670
671 if (MI.mayStore() || MI.isCall() ||
672 (MI.mayLoad() && MI.hasOrderedMemoryRef()) || MI.isPosition() ||
673 MI.isDebugInstr() || MI.isTerminator() || MI.isJumpTableDebugInfo()) {
674 LLVM_DEBUG(dbgs() << "Not dead: instruction has side effects.\n");
675 return false;
676 }
677
678 if (isPreISelGenericOpcode(MI.getOpcode())) {
679 // TODO: Is there a generic way to check if the opcode has side effects?
680 LLVM_DEBUG(dbgs() << "Dead: Generic opcode with no uses.\n");
681 return true;
682 }
683
684 if (isOpcodeWithNoSideEffects(MI.getOpcode())) {
685 LLVM_DEBUG(dbgs() << "Dead: known opcode with no side effects\n");
686 return true;
687 }
688
689 return false;
690}
691
692void SPIRVInstructionSelector::removeOpNamesForDeadMI(MachineInstr &MI) const {
693 // Delete the OpName that uses the result if there is one.
694 for (const auto &MO : MI.all_defs()) {
695 Register Reg = MO.getReg();
696 if (Reg.isPhysical())
697 continue;
698 SmallVector<MachineInstr *, 4> UselessOpNames;
699 for (MachineInstr &UseMI : MRI->use_nodbg_instructions(Reg)) {
700 assert(UseMI.getOpcode() == SPIRV::OpName &&
701 "There is still a use of the dead function.");
702 UselessOpNames.push_back(&UseMI);
703 }
704 for (MachineInstr *OpNameMI : UselessOpNames) {
705 GR.invalidateMachineInstr(OpNameMI);
706 OpNameMI->eraseFromParent();
707 }
708 }
709}
710
711void SPIRVInstructionSelector::removeDeadInstruction(MachineInstr &MI) const {
714 removeOpNamesForDeadMI(MI);
715 MI.eraseFromParent();
716}
717
718bool SPIRVInstructionSelector::select(MachineInstr &I) {
719 resetVRegsType(*I.getParent()->getParent());
720
721 assert(I.getParent() && "Instruction should be in a basic block!");
722 assert(I.getParent()->getParent() && "Instruction should be in a function!");
723
724 LLVM_DEBUG(dbgs() << "Checking if instruction is dead: " << I;);
725 if (isDead(I, *MRI)) {
726 LLVM_DEBUG(dbgs() << "Instruction is dead.\n");
727 removeDeadInstruction(I);
728 return true;
729 }
730
731 Register Opcode = I.getOpcode();
732 // If it's not a GMIR instruction, we've selected it already.
733 if (!isPreISelGenericOpcode(Opcode)) {
734 if (Opcode == SPIRV::ASSIGN_TYPE) { // These pseudos aren't needed any more.
735 Register DstReg = I.getOperand(0).getReg();
736 Register SrcReg = I.getOperand(1).getReg();
737 auto *Def = MRI->getVRegDef(SrcReg);
738 if (isTypeFoldingSupported(Def->getOpcode()) &&
739 Def->getOpcode() != TargetOpcode::G_CONSTANT &&
740 Def->getOpcode() != TargetOpcode::G_FCONSTANT) {
741 bool Res = false;
742 if (Def->getOpcode() == TargetOpcode::G_SELECT) {
743 Register SelectDstReg = Def->getOperand(0).getReg();
744 Res = selectSelect(SelectDstReg, GR.getSPIRVTypeForVReg(SelectDstReg),
745 *Def);
747 Def->removeFromParent();
748 MRI->replaceRegWith(DstReg, SelectDstReg);
750 I.removeFromParent();
751 } else
752 Res = selectImpl(I, *CoverageInfo);
753 LLVM_DEBUG({
754 if (!Res && Def->getOpcode() != TargetOpcode::G_CONSTANT) {
755 dbgs() << "Unexpected pattern in ASSIGN_TYPE.\nInstruction: ";
756 I.print(dbgs());
757 }
758 });
759 assert(Res || Def->getOpcode() == TargetOpcode::G_CONSTANT);
760 if (Res) {
761 if (!isTriviallyDead(*Def, *MRI) && isDead(*Def, *MRI))
762 DeadMIs.insert(Def);
763 return Res;
764 }
765 }
766 MRI->setRegClass(SrcReg, MRI->getRegClass(DstReg));
767 MRI->replaceRegWith(SrcReg, DstReg);
769 I.removeFromParent();
770 return true;
771 } else if (I.getNumDefs() == 1) {
772 // Make all vregs 64 bits (for SPIR-V IDs).
773 MRI->setType(I.getOperand(0).getReg(), LLT::scalar(64));
774 }
776 }
777
778 if (DeadMIs.contains(&I)) {
779 // if the instruction has been already made dead by folding it away
780 // erase it
781 LLVM_DEBUG(dbgs() << "Instruction is folded and dead.\n");
782 removeDeadInstruction(I);
783 return true;
784 }
785
786 if (I.getNumOperands() != I.getNumExplicitOperands()) {
787 LLVM_DEBUG(errs() << "Generic instr has unexpected implicit operands\n");
788 return false;
789 }
790
791 // Common code for getting return reg+type, and removing selected instr
792 // from parent occurs here. Instr-specific selection happens in spvSelect().
793 bool HasDefs = I.getNumDefs() > 0;
794 Register ResVReg = HasDefs ? I.getOperand(0).getReg() : Register(0);
795 SPIRVType *ResType = HasDefs ? GR.getSPIRVTypeForVReg(ResVReg) : nullptr;
796 assert(!HasDefs || ResType || I.getOpcode() == TargetOpcode::G_GLOBAL_VALUE ||
797 I.getOpcode() == TargetOpcode::G_IMPLICIT_DEF);
798 if (spvSelect(ResVReg, ResType, I)) {
799 if (HasDefs) // Make all vregs 64 bits (for SPIR-V IDs).
800 for (unsigned i = 0; i < I.getNumDefs(); ++i)
801 MRI->setType(I.getOperand(i).getReg(), LLT::scalar(64));
803 I.removeFromParent();
804 return true;
805 }
806 return false;
807}
808
809static bool mayApplyGenericSelection(unsigned Opcode) {
810 switch (Opcode) {
811 case TargetOpcode::G_CONSTANT:
812 case TargetOpcode::G_FCONSTANT:
813 return false;
814 case TargetOpcode::G_SADDO:
815 case TargetOpcode::G_SSUBO:
816 return true;
817 }
818 return isTypeFoldingSupported(Opcode);
819}
820
821bool SPIRVInstructionSelector::BuildCOPY(Register DestReg, Register SrcReg,
822 MachineInstr &I) const {
823 const TargetRegisterClass *DstRC = MRI->getRegClassOrNull(DestReg);
824 const TargetRegisterClass *SrcRC = MRI->getRegClassOrNull(SrcReg);
825 if (DstRC != SrcRC && SrcRC)
826 MRI->setRegClass(DestReg, SrcRC);
827 return BuildMI(*I.getParent(), I, I.getDebugLoc(),
828 TII.get(TargetOpcode::COPY))
829 .addDef(DestReg)
830 .addUse(SrcReg)
831 .constrainAllUses(TII, TRI, RBI);
832}
833
834bool SPIRVInstructionSelector::spvSelect(Register ResVReg,
835 const SPIRVType *ResType,
836 MachineInstr &I) const {
837 const unsigned Opcode = I.getOpcode();
838 if (mayApplyGenericSelection(Opcode))
839 return selectImpl(I, *CoverageInfo);
840 switch (Opcode) {
841 case TargetOpcode::G_CONSTANT:
842 case TargetOpcode::G_FCONSTANT:
843 return selectConst(ResVReg, ResType, I);
844 case TargetOpcode::G_GLOBAL_VALUE:
845 return selectGlobalValue(ResVReg, I);
846 case TargetOpcode::G_IMPLICIT_DEF:
847 return selectOpUndef(ResVReg, ResType, I);
848 case TargetOpcode::G_FREEZE:
849 return selectFreeze(ResVReg, ResType, I);
850
851 case TargetOpcode::G_INTRINSIC:
852 case TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS:
853 case TargetOpcode::G_INTRINSIC_CONVERGENT:
854 case TargetOpcode::G_INTRINSIC_CONVERGENT_W_SIDE_EFFECTS:
855 return selectIntrinsic(ResVReg, ResType, I);
856 case TargetOpcode::G_BITREVERSE:
857 return selectBitreverse(ResVReg, ResType, I);
858
859 case TargetOpcode::G_BUILD_VECTOR:
860 return selectBuildVector(ResVReg, ResType, I);
861 case TargetOpcode::G_SPLAT_VECTOR:
862 return selectSplatVector(ResVReg, ResType, I);
863
864 case TargetOpcode::G_SHUFFLE_VECTOR: {
865 MachineBasicBlock &BB = *I.getParent();
866 auto MIB = BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpVectorShuffle))
867 .addDef(ResVReg)
868 .addUse(GR.getSPIRVTypeID(ResType))
869 .addUse(I.getOperand(1).getReg())
870 .addUse(I.getOperand(2).getReg());
871 for (auto V : I.getOperand(3).getShuffleMask())
872 MIB.addImm(V);
873 return MIB.constrainAllUses(TII, TRI, RBI);
874 }
875 case TargetOpcode::G_MEMMOVE:
876 case TargetOpcode::G_MEMCPY:
877 case TargetOpcode::G_MEMSET:
878 return selectMemOperation(ResVReg, I);
879
880 case TargetOpcode::G_ICMP:
881 return selectICmp(ResVReg, ResType, I);
882 case TargetOpcode::G_FCMP:
883 return selectFCmp(ResVReg, ResType, I);
884
885 case TargetOpcode::G_FRAME_INDEX:
886 return selectFrameIndex(ResVReg, ResType, I);
887
888 case TargetOpcode::G_LOAD:
889 return selectLoad(ResVReg, ResType, I);
890 case TargetOpcode::G_STORE:
891 return selectStore(I);
892
893 case TargetOpcode::G_BR:
894 return selectBranch(I);
895 case TargetOpcode::G_BRCOND:
896 return selectBranchCond(I);
897
898 case TargetOpcode::G_PHI:
899 return selectPhi(ResVReg, ResType, I);
900
901 case TargetOpcode::G_FPTOSI:
902 return selectUnOp(ResVReg, ResType, I, SPIRV::OpConvertFToS);
903 case TargetOpcode::G_FPTOUI:
904 return selectUnOp(ResVReg, ResType, I, SPIRV::OpConvertFToU);
905
906 case TargetOpcode::G_FPTOSI_SAT:
907 return selectUnOp(ResVReg, ResType, I, SPIRV::OpConvertFToS);
908 case TargetOpcode::G_FPTOUI_SAT:
909 return selectUnOp(ResVReg, ResType, I, SPIRV::OpConvertFToU);
910
911 case TargetOpcode::G_SITOFP:
912 return selectIToF(ResVReg, ResType, I, true, SPIRV::OpConvertSToF);
913 case TargetOpcode::G_UITOFP:
914 return selectIToF(ResVReg, ResType, I, false, SPIRV::OpConvertUToF);
915
916 case TargetOpcode::G_CTPOP:
917 return selectUnOp(ResVReg, ResType, I, SPIRV::OpBitCount);
918 case TargetOpcode::G_SMIN:
919 return selectExtInst(ResVReg, ResType, I, CL::s_min, GL::SMin);
920 case TargetOpcode::G_UMIN:
921 return selectExtInst(ResVReg, ResType, I, CL::u_min, GL::UMin);
922
923 case TargetOpcode::G_SMAX:
924 return selectExtInst(ResVReg, ResType, I, CL::s_max, GL::SMax);
925 case TargetOpcode::G_UMAX:
926 return selectExtInst(ResVReg, ResType, I, CL::u_max, GL::UMax);
927
928 case TargetOpcode::G_SCMP:
929 return selectSUCmp(ResVReg, ResType, I, true);
930 case TargetOpcode::G_UCMP:
931 return selectSUCmp(ResVReg, ResType, I, false);
932 case TargetOpcode::G_LROUND:
933 case TargetOpcode::G_LLROUND: {
934 Register regForLround =
935 MRI->createVirtualRegister(MRI->getRegClass(ResVReg), "lround");
936 MRI->setRegClass(regForLround, &SPIRV::iIDRegClass);
937 GR.assignSPIRVTypeToVReg(GR.getSPIRVTypeForVReg(I.getOperand(1).getReg()),
938 regForLround, *(I.getParent()->getParent()));
939 selectExtInstForLRound(regForLround, GR.getSPIRVTypeForVReg(regForLround),
940 I, CL::round, GL::Round);
941 MachineBasicBlock &BB = *I.getParent();
942 auto MIB = BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpConvertFToS))
943 .addDef(ResVReg)
944 .addUse(GR.getSPIRVTypeID(ResType))
945 .addUse(regForLround);
946 return MIB.constrainAllUses(TII, TRI, RBI);
947 }
948 case TargetOpcode::G_STRICT_FMA:
949 case TargetOpcode::G_FMA:
950 return selectExtInst(ResVReg, ResType, I, CL::fma, GL::Fma);
951
952 case TargetOpcode::G_STRICT_FLDEXP:
953 return selectExtInst(ResVReg, ResType, I, CL::ldexp);
954
955 case TargetOpcode::G_FPOW:
956 return selectExtInst(ResVReg, ResType, I, CL::pow, GL::Pow);
957 case TargetOpcode::G_FPOWI:
958 return selectExtInst(ResVReg, ResType, I, CL::pown);
959
960 case TargetOpcode::G_FEXP:
961 return selectExtInst(ResVReg, ResType, I, CL::exp, GL::Exp);
962 case TargetOpcode::G_FEXP2:
963 return selectExtInst(ResVReg, ResType, I, CL::exp2, GL::Exp2);
964 case TargetOpcode::G_FMODF:
965 return selectModf(ResVReg, ResType, I);
966
967 case TargetOpcode::G_FLOG:
968 return selectExtInst(ResVReg, ResType, I, CL::log, GL::Log);
969 case TargetOpcode::G_FLOG2:
970 return selectExtInst(ResVReg, ResType, I, CL::log2, GL::Log2);
971 case TargetOpcode::G_FLOG10:
972 return selectLog10(ResVReg, ResType, I);
973
974 case TargetOpcode::G_FABS:
975 return selectExtInst(ResVReg, ResType, I, CL::fabs, GL::FAbs);
976 case TargetOpcode::G_ABS:
977 return selectExtInst(ResVReg, ResType, I, CL::s_abs, GL::SAbs);
978
979 case TargetOpcode::G_FMINNUM:
980 case TargetOpcode::G_FMINIMUM:
981 return selectExtInst(ResVReg, ResType, I, CL::fmin, GL::NMin);
982 case TargetOpcode::G_FMAXNUM:
983 case TargetOpcode::G_FMAXIMUM:
984 return selectExtInst(ResVReg, ResType, I, CL::fmax, GL::NMax);
985
986 case TargetOpcode::G_FCOPYSIGN:
987 return selectExtInst(ResVReg, ResType, I, CL::copysign);
988
989 case TargetOpcode::G_FCEIL:
990 return selectExtInst(ResVReg, ResType, I, CL::ceil, GL::Ceil);
991 case TargetOpcode::G_FFLOOR:
992 return selectExtInst(ResVReg, ResType, I, CL::floor, GL::Floor);
993
994 case TargetOpcode::G_FCOS:
995 return selectExtInst(ResVReg, ResType, I, CL::cos, GL::Cos);
996 case TargetOpcode::G_FSIN:
997 return selectExtInst(ResVReg, ResType, I, CL::sin, GL::Sin);
998 case TargetOpcode::G_FTAN:
999 return selectExtInst(ResVReg, ResType, I, CL::tan, GL::Tan);
1000 case TargetOpcode::G_FACOS:
1001 return selectExtInst(ResVReg, ResType, I, CL::acos, GL::Acos);
1002 case TargetOpcode::G_FASIN:
1003 return selectExtInst(ResVReg, ResType, I, CL::asin, GL::Asin);
1004 case TargetOpcode::G_FATAN:
1005 return selectExtInst(ResVReg, ResType, I, CL::atan, GL::Atan);
1006 case TargetOpcode::G_FATAN2:
1007 return selectExtInst(ResVReg, ResType, I, CL::atan2, GL::Atan2);
1008 case TargetOpcode::G_FCOSH:
1009 return selectExtInst(ResVReg, ResType, I, CL::cosh, GL::Cosh);
1010 case TargetOpcode::G_FSINH:
1011 return selectExtInst(ResVReg, ResType, I, CL::sinh, GL::Sinh);
1012 case TargetOpcode::G_FTANH:
1013 return selectExtInst(ResVReg, ResType, I, CL::tanh, GL::Tanh);
1014
1015 case TargetOpcode::G_STRICT_FSQRT:
1016 case TargetOpcode::G_FSQRT:
1017 return selectExtInst(ResVReg, ResType, I, CL::sqrt, GL::Sqrt);
1018
1019 case TargetOpcode::G_CTTZ:
1020 case TargetOpcode::G_CTTZ_ZERO_UNDEF:
1021 return selectExtInst(ResVReg, ResType, I, CL::ctz);
1022 case TargetOpcode::G_CTLZ:
1023 case TargetOpcode::G_CTLZ_ZERO_UNDEF:
1024 return selectExtInst(ResVReg, ResType, I, CL::clz);
1025
1026 case TargetOpcode::G_INTRINSIC_ROUND:
1027 return selectExtInst(ResVReg, ResType, I, CL::round, GL::Round);
1028 case TargetOpcode::G_INTRINSIC_ROUNDEVEN:
1029 return selectExtInst(ResVReg, ResType, I, CL::rint, GL::RoundEven);
1030 case TargetOpcode::G_INTRINSIC_TRUNC:
1031 return selectExtInst(ResVReg, ResType, I, CL::trunc, GL::Trunc);
1032 case TargetOpcode::G_FRINT:
1033 case TargetOpcode::G_FNEARBYINT:
1034 return selectExtInst(ResVReg, ResType, I, CL::rint, GL::RoundEven);
1035
1036 case TargetOpcode::G_SMULH:
1037 return selectExtInst(ResVReg, ResType, I, CL::s_mul_hi);
1038 case TargetOpcode::G_UMULH:
1039 return selectExtInst(ResVReg, ResType, I, CL::u_mul_hi);
1040
1041 case TargetOpcode::G_SADDSAT:
1042 return selectExtInst(ResVReg, ResType, I, CL::s_add_sat);
1043 case TargetOpcode::G_UADDSAT:
1044 return selectExtInst(ResVReg, ResType, I, CL::u_add_sat);
1045 case TargetOpcode::G_SSUBSAT:
1046 return selectExtInst(ResVReg, ResType, I, CL::s_sub_sat);
1047 case TargetOpcode::G_USUBSAT:
1048 return selectExtInst(ResVReg, ResType, I, CL::u_sub_sat);
1049
1050 case TargetOpcode::G_FFREXP:
1051 return selectFrexp(ResVReg, ResType, I);
1052
1053 case TargetOpcode::G_UADDO:
1054 return selectOverflowArith(ResVReg, ResType, I,
1055 ResType->getOpcode() == SPIRV::OpTypeVector
1056 ? SPIRV::OpIAddCarryV
1057 : SPIRV::OpIAddCarryS);
1058 case TargetOpcode::G_USUBO:
1059 return selectOverflowArith(ResVReg, ResType, I,
1060 ResType->getOpcode() == SPIRV::OpTypeVector
1061 ? SPIRV::OpISubBorrowV
1062 : SPIRV::OpISubBorrowS);
1063 case TargetOpcode::G_UMULO:
1064 return selectOverflowArith(ResVReg, ResType, I, SPIRV::OpUMulExtended);
1065 case TargetOpcode::G_SMULO:
1066 return selectOverflowArith(ResVReg, ResType, I, SPIRV::OpSMulExtended);
1067
1068 case TargetOpcode::G_SEXT:
1069 return selectExt(ResVReg, ResType, I, true);
1070 case TargetOpcode::G_ANYEXT:
1071 case TargetOpcode::G_ZEXT:
1072 return selectExt(ResVReg, ResType, I, false);
1073 case TargetOpcode::G_TRUNC:
1074 return selectTrunc(ResVReg, ResType, I);
1075 case TargetOpcode::G_FPTRUNC:
1076 case TargetOpcode::G_FPEXT:
1077 return selectUnOp(ResVReg, ResType, I, SPIRV::OpFConvert);
1078
1079 case TargetOpcode::G_PTRTOINT:
1080 return selectUnOp(ResVReg, ResType, I, SPIRV::OpConvertPtrToU);
1081 case TargetOpcode::G_INTTOPTR:
1082 return selectUnOp(ResVReg, ResType, I, SPIRV::OpConvertUToPtr);
1083 case TargetOpcode::G_BITCAST:
1084 return selectBitcast(ResVReg, ResType, I);
1085 case TargetOpcode::G_ADDRSPACE_CAST:
1086 return selectAddrSpaceCast(ResVReg, ResType, I);
1087 case TargetOpcode::G_PTR_ADD: {
1088 // Currently, we get G_PTR_ADD only applied to global variables.
1089 assert(I.getOperand(1).isReg() && I.getOperand(2).isReg());
1090 Register GV = I.getOperand(1).getReg();
1091 MachineRegisterInfo::def_instr_iterator II = MRI->def_instr_begin(GV);
1092 (void)II;
1093 assert(((*II).getOpcode() == TargetOpcode::G_GLOBAL_VALUE ||
1094 (*II).getOpcode() == TargetOpcode::COPY ||
1095 (*II).getOpcode() == SPIRV::OpVariable) &&
1096 getImm(I.getOperand(2), MRI));
1097 // It may be the initialization of a global variable.
1098 bool IsGVInit = false;
1100 UseIt = MRI->use_instr_begin(I.getOperand(0).getReg()),
1101 UseEnd = MRI->use_instr_end();
1102 UseIt != UseEnd; UseIt = std::next(UseIt)) {
1103 if ((*UseIt).getOpcode() == TargetOpcode::G_GLOBAL_VALUE ||
1104 (*UseIt).getOpcode() == SPIRV::OpSpecConstantOp ||
1105 (*UseIt).getOpcode() == SPIRV::OpVariable) {
1106 IsGVInit = true;
1107 break;
1108 }
1109 }
1110 MachineBasicBlock &BB = *I.getParent();
1111 if (!IsGVInit) {
1112 SPIRVType *GVType = GR.getSPIRVTypeForVReg(GV);
1113 SPIRVType *GVPointeeType = GR.getPointeeType(GVType);
1114 SPIRVType *ResPointeeType = GR.getPointeeType(ResType);
1115 if (GVPointeeType && ResPointeeType && GVPointeeType != ResPointeeType) {
1116 // Build a new virtual register that is associated with the required
1117 // data type.
1118 Register NewVReg = MRI->createGenericVirtualRegister(MRI->getType(GV));
1119 MRI->setRegClass(NewVReg, MRI->getRegClass(GV));
1120 // Having a correctly typed base we are ready to build the actually
1121 // required GEP. It may not be a constant though, because all Operands
1122 // of OpSpecConstantOp is to originate from other const instructions,
1123 // and only the AccessChain named opcodes accept a global OpVariable
1124 // instruction. We can't use an AccessChain opcode because of the type
1125 // mismatch between result and base types.
1126 if (!GR.isBitcastCompatible(ResType, GVType))
1128 "incompatible result and operand types in a bitcast");
1129 Register ResTypeReg = GR.getSPIRVTypeID(ResType);
1130 MachineInstrBuilder MIB =
1131 BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpBitcast))
1132 .addDef(NewVReg)
1133 .addUse(ResTypeReg)
1134 .addUse(GV);
1135 return MIB.constrainAllUses(TII, TRI, RBI) &&
1136 BuildMI(BB, I, I.getDebugLoc(),
1137 TII.get(STI.isLogicalSPIRV()
1138 ? SPIRV::OpInBoundsAccessChain
1139 : SPIRV::OpInBoundsPtrAccessChain))
1140 .addDef(ResVReg)
1141 .addUse(ResTypeReg)
1142 .addUse(NewVReg)
1143 .addUse(I.getOperand(2).getReg())
1144 .constrainAllUses(TII, TRI, RBI);
1145 } else {
1146 return BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpSpecConstantOp))
1147 .addDef(ResVReg)
1148 .addUse(GR.getSPIRVTypeID(ResType))
1149 .addImm(
1150 static_cast<uint32_t>(SPIRV::Opcode::InBoundsPtrAccessChain))
1151 .addUse(GV)
1152 .addUse(I.getOperand(2).getReg())
1153 .constrainAllUses(TII, TRI, RBI);
1154 }
1155 }
1156 // It's possible to translate G_PTR_ADD to OpSpecConstantOp: either to
1157 // initialize a global variable with a constant expression (e.g., the test
1158 // case opencl/basic/progvar_prog_scope_init.ll), or for another use case
1159 Register Idx = buildZerosVal(GR.getOrCreateSPIRVIntegerType(32, I, TII), I);
1160 auto MIB = BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpSpecConstantOp))
1161 .addDef(ResVReg)
1162 .addUse(GR.getSPIRVTypeID(ResType))
1163 .addImm(static_cast<uint32_t>(
1164 SPIRV::Opcode::InBoundsPtrAccessChain))
1165 .addUse(GV)
1166 .addUse(Idx)
1167 .addUse(I.getOperand(2).getReg());
1168 return MIB.constrainAllUses(TII, TRI, RBI);
1169 }
1170
1171 case TargetOpcode::G_ATOMICRMW_OR:
1172 return selectAtomicRMW(ResVReg, ResType, I, SPIRV::OpAtomicOr);
1173 case TargetOpcode::G_ATOMICRMW_ADD:
1174 return selectAtomicRMW(ResVReg, ResType, I, SPIRV::OpAtomicIAdd);
1175 case TargetOpcode::G_ATOMICRMW_AND:
1176 return selectAtomicRMW(ResVReg, ResType, I, SPIRV::OpAtomicAnd);
1177 case TargetOpcode::G_ATOMICRMW_MAX:
1178 return selectAtomicRMW(ResVReg, ResType, I, SPIRV::OpAtomicSMax);
1179 case TargetOpcode::G_ATOMICRMW_MIN:
1180 return selectAtomicRMW(ResVReg, ResType, I, SPIRV::OpAtomicSMin);
1181 case TargetOpcode::G_ATOMICRMW_SUB:
1182 return selectAtomicRMW(ResVReg, ResType, I, SPIRV::OpAtomicISub);
1183 case TargetOpcode::G_ATOMICRMW_XOR:
1184 return selectAtomicRMW(ResVReg, ResType, I, SPIRV::OpAtomicXor);
1185 case TargetOpcode::G_ATOMICRMW_UMAX:
1186 return selectAtomicRMW(ResVReg, ResType, I, SPIRV::OpAtomicUMax);
1187 case TargetOpcode::G_ATOMICRMW_UMIN:
1188 return selectAtomicRMW(ResVReg, ResType, I, SPIRV::OpAtomicUMin);
1189 case TargetOpcode::G_ATOMICRMW_XCHG:
1190 return selectAtomicRMW(ResVReg, ResType, I, SPIRV::OpAtomicExchange);
1191 case TargetOpcode::G_ATOMIC_CMPXCHG:
1192 return selectAtomicCmpXchg(ResVReg, ResType, I);
1193
1194 case TargetOpcode::G_ATOMICRMW_FADD:
1195 return selectAtomicRMW(ResVReg, ResType, I, SPIRV::OpAtomicFAddEXT);
1196 case TargetOpcode::G_ATOMICRMW_FSUB:
1197 // Translate G_ATOMICRMW_FSUB to OpAtomicFAddEXT with negative value operand
1198 return selectAtomicRMW(ResVReg, ResType, I, SPIRV::OpAtomicFAddEXT,
1199 ResType->getOpcode() == SPIRV::OpTypeVector
1200 ? SPIRV::OpFNegateV
1201 : SPIRV::OpFNegate);
1202 case TargetOpcode::G_ATOMICRMW_FMIN:
1203 return selectAtomicRMW(ResVReg, ResType, I, SPIRV::OpAtomicFMinEXT);
1204 case TargetOpcode::G_ATOMICRMW_FMAX:
1205 return selectAtomicRMW(ResVReg, ResType, I, SPIRV::OpAtomicFMaxEXT);
1206
1207 case TargetOpcode::G_FENCE:
1208 return selectFence(I);
1209
1210 case TargetOpcode::G_STACKSAVE:
1211 return selectStackSave(ResVReg, ResType, I);
1212 case TargetOpcode::G_STACKRESTORE:
1213 return selectStackRestore(I);
1214
1215 case TargetOpcode::G_UNMERGE_VALUES:
1216 return selectUnmergeValues(I);
1217
1218 // Discard gen opcodes for intrinsics which we do not expect to actually
1219 // represent code after lowering or intrinsics which are not implemented but
1220 // should not crash when found in a customer's LLVM IR input.
1221 case TargetOpcode::G_TRAP:
1222 case TargetOpcode::G_UBSANTRAP:
1223 case TargetOpcode::DBG_LABEL:
1224 return true;
1225 case TargetOpcode::G_DEBUGTRAP:
1226 return selectDebugTrap(ResVReg, ResType, I);
1227
1228 default:
1229 return false;
1230 }
1231}
1232
1233bool SPIRVInstructionSelector::selectDebugTrap(Register ResVReg,
1234 const SPIRVType *ResType,
1235 MachineInstr &I) const {
1236 unsigned Opcode = SPIRV::OpNop;
1237 MachineBasicBlock &BB = *I.getParent();
1238 return BuildMI(BB, I, I.getDebugLoc(), TII.get(Opcode))
1239 .constrainAllUses(TII, TRI, RBI);
1240}
1241
1242bool SPIRVInstructionSelector::selectExtInst(Register ResVReg,
1243 const SPIRVType *ResType,
1244 MachineInstr &I,
1245 GL::GLSLExtInst GLInst) const {
1246 if (!STI.canUseExtInstSet(
1247 SPIRV::InstructionSet::InstructionSet::GLSL_std_450)) {
1248 std::string DiagMsg;
1249 raw_string_ostream OS(DiagMsg);
1250 I.print(OS, true, false, false, false);
1251 DiagMsg += " is only supported with the GLSL extended instruction set.\n";
1252 report_fatal_error(DiagMsg.c_str(), false);
1253 }
1254 return selectExtInst(ResVReg, ResType, I,
1255 {{SPIRV::InstructionSet::GLSL_std_450, GLInst}});
1256}
1257
1258bool SPIRVInstructionSelector::selectExtInst(Register ResVReg,
1259 const SPIRVType *ResType,
1260 MachineInstr &I,
1261 CL::OpenCLExtInst CLInst) const {
1262 return selectExtInst(ResVReg, ResType, I,
1263 {{SPIRV::InstructionSet::OpenCL_std, CLInst}});
1264}
1265
1266bool SPIRVInstructionSelector::selectExtInst(Register ResVReg,
1267 const SPIRVType *ResType,
1268 MachineInstr &I,
1269 CL::OpenCLExtInst CLInst,
1270 GL::GLSLExtInst GLInst) const {
1271 ExtInstList ExtInsts = {{SPIRV::InstructionSet::OpenCL_std, CLInst},
1272 {SPIRV::InstructionSet::GLSL_std_450, GLInst}};
1273 return selectExtInst(ResVReg, ResType, I, ExtInsts);
1274}
1275
1276bool SPIRVInstructionSelector::selectExtInst(Register ResVReg,
1277 const SPIRVType *ResType,
1278 MachineInstr &I,
1279 const ExtInstList &Insts) const {
1280
1281 for (const auto &Ex : Insts) {
1282 SPIRV::InstructionSet::InstructionSet Set = Ex.first;
1283 uint32_t Opcode = Ex.second;
1284 if (STI.canUseExtInstSet(Set)) {
1285 MachineBasicBlock &BB = *I.getParent();
1286 auto MIB = BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpExtInst))
1287 .addDef(ResVReg)
1288 .addUse(GR.getSPIRVTypeID(ResType))
1289 .addImm(static_cast<uint32_t>(Set))
1290 .addImm(Opcode)
1291 .setMIFlags(I.getFlags());
1292 const unsigned NumOps = I.getNumOperands();
1293 unsigned Index = 1;
1294 if (Index < NumOps &&
1295 I.getOperand(Index).getType() ==
1296 MachineOperand::MachineOperandType::MO_IntrinsicID)
1297 Index = 2;
1298 for (; Index < NumOps; ++Index)
1299 MIB.add(I.getOperand(Index));
1300 return MIB.constrainAllUses(TII, TRI, RBI);
1301 }
1302 }
1303 return false;
1304}
1305bool SPIRVInstructionSelector::selectExtInstForLRound(
1306 Register ResVReg, const SPIRVType *ResType, MachineInstr &I,
1307 CL::OpenCLExtInst CLInst, GL::GLSLExtInst GLInst) const {
1308 ExtInstList ExtInsts = {{SPIRV::InstructionSet::OpenCL_std, CLInst},
1309 {SPIRV::InstructionSet::GLSL_std_450, GLInst}};
1310 return selectExtInstForLRound(ResVReg, ResType, I, ExtInsts);
1311}
1312
1313bool SPIRVInstructionSelector::selectExtInstForLRound(
1314 Register ResVReg, const SPIRVType *ResType, MachineInstr &I,
1315 const ExtInstList &Insts) const {
1316 for (const auto &Ex : Insts) {
1317 SPIRV::InstructionSet::InstructionSet Set = Ex.first;
1318 uint32_t Opcode = Ex.second;
1319 if (STI.canUseExtInstSet(Set)) {
1320 MachineBasicBlock &BB = *I.getParent();
1321 auto MIB = BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpExtInst))
1322 .addDef(ResVReg)
1323 .addUse(GR.getSPIRVTypeID(ResType))
1324 .addImm(static_cast<uint32_t>(Set))
1325 .addImm(Opcode);
1326 const unsigned NumOps = I.getNumOperands();
1327 unsigned Index = 1;
1328 if (Index < NumOps &&
1329 I.getOperand(Index).getType() ==
1330 MachineOperand::MachineOperandType::MO_IntrinsicID)
1331 Index = 2;
1332 for (; Index < NumOps; ++Index)
1333 MIB.add(I.getOperand(Index));
1334 MIB.constrainAllUses(TII, TRI, RBI);
1335 return true;
1336 }
1337 }
1338 return false;
1339}
1340
1341bool SPIRVInstructionSelector::selectFrexp(Register ResVReg,
1342 const SPIRVType *ResType,
1343 MachineInstr &I) const {
1344 ExtInstList ExtInsts = {{SPIRV::InstructionSet::OpenCL_std, CL::frexp},
1345 {SPIRV::InstructionSet::GLSL_std_450, GL::Frexp}};
1346 for (const auto &Ex : ExtInsts) {
1347 SPIRV::InstructionSet::InstructionSet Set = Ex.first;
1348 uint32_t Opcode = Ex.second;
1349 if (!STI.canUseExtInstSet(Set))
1350 continue;
1351
1352 MachineIRBuilder MIRBuilder(I);
1353 SPIRVType *PointeeTy = GR.getSPIRVTypeForVReg(I.getOperand(1).getReg());
1355 PointeeTy, MIRBuilder, SPIRV::StorageClass::Function);
1356 Register PointerVReg =
1357 createVirtualRegister(PointerType, &GR, MRI, MRI->getMF());
1358
1359 auto It = getOpVariableMBBIt(I);
1360 auto MIB = BuildMI(*It->getParent(), It, It->getDebugLoc(),
1361 TII.get(SPIRV::OpVariable))
1362 .addDef(PointerVReg)
1363 .addUse(GR.getSPIRVTypeID(PointerType))
1364 .addImm(static_cast<uint32_t>(SPIRV::StorageClass::Function))
1365 .constrainAllUses(TII, TRI, RBI);
1366
1367 MIB = MIB &
1368 BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(SPIRV::OpExtInst))
1369 .addDef(ResVReg)
1370 .addUse(GR.getSPIRVTypeID(ResType))
1371 .addImm(static_cast<uint32_t>(Ex.first))
1372 .addImm(Opcode)
1373 .add(I.getOperand(2))
1374 .addUse(PointerVReg)
1375 .constrainAllUses(TII, TRI, RBI);
1376
1377 MIB = MIB &
1378 BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(SPIRV::OpLoad))
1379 .addDef(I.getOperand(1).getReg())
1380 .addUse(GR.getSPIRVTypeID(PointeeTy))
1381 .addUse(PointerVReg)
1382 .constrainAllUses(TII, TRI, RBI);
1383 return MIB;
1384 }
1385 return false;
1386}
1387
1388bool SPIRVInstructionSelector::selectOpWithSrcs(Register ResVReg,
1389 const SPIRVType *ResType,
1390 MachineInstr &I,
1391 std::vector<Register> Srcs,
1392 unsigned Opcode) const {
1393 auto MIB = BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(Opcode))
1394 .addDef(ResVReg)
1395 .addUse(GR.getSPIRVTypeID(ResType));
1396 for (Register SReg : Srcs) {
1397 MIB.addUse(SReg);
1398 }
1399 return MIB.constrainAllUses(TII, TRI, RBI);
1400}
1401
1402bool SPIRVInstructionSelector::selectUnOp(Register ResVReg,
1403 const SPIRVType *ResType,
1404 MachineInstr &I,
1405 unsigned Opcode) const {
1406 if (STI.isPhysicalSPIRV() && I.getOperand(1).isReg()) {
1407 Register SrcReg = I.getOperand(1).getReg();
1408 bool IsGV = false;
1410 MRI->def_instr_begin(SrcReg);
1411 DefIt != MRI->def_instr_end(); DefIt = std::next(DefIt)) {
1412 unsigned DefOpCode = DefIt->getOpcode();
1413 if (DefOpCode == SPIRV::ASSIGN_TYPE || DefOpCode == TargetOpcode::COPY) {
1414 // We need special handling to look through the type assignment or the
1415 // COPY pseudo-op and see if this is a constant or a global.
1416 if (auto *VRD = getVRegDef(*MRI, DefIt->getOperand(1).getReg()))
1417 DefOpCode = VRD->getOpcode();
1418 }
1419 if (DefOpCode == TargetOpcode::G_GLOBAL_VALUE ||
1420 DefOpCode == TargetOpcode::G_CONSTANT ||
1421 DefOpCode == SPIRV::OpVariable || DefOpCode == SPIRV::OpConstantI) {
1422 IsGV = true;
1423 break;
1424 }
1425 }
1426 if (IsGV) {
1427 uint32_t SpecOpcode = 0;
1428 switch (Opcode) {
1429 case SPIRV::OpConvertPtrToU:
1430 SpecOpcode = static_cast<uint32_t>(SPIRV::Opcode::ConvertPtrToU);
1431 break;
1432 case SPIRV::OpConvertUToPtr:
1433 SpecOpcode = static_cast<uint32_t>(SPIRV::Opcode::ConvertUToPtr);
1434 break;
1435 }
1436 if (SpecOpcode)
1437 return BuildMI(*I.getParent(), I, I.getDebugLoc(),
1438 TII.get(SPIRV::OpSpecConstantOp))
1439 .addDef(ResVReg)
1440 .addUse(GR.getSPIRVTypeID(ResType))
1441 .addImm(SpecOpcode)
1442 .addUse(SrcReg)
1443 .constrainAllUses(TII, TRI, RBI);
1444 }
1445 }
1446 return selectOpWithSrcs(ResVReg, ResType, I, {I.getOperand(1).getReg()},
1447 Opcode);
1448}
1449
1450bool SPIRVInstructionSelector::selectBitcast(Register ResVReg,
1451 const SPIRVType *ResType,
1452 MachineInstr &I) const {
1453 Register OpReg = I.getOperand(1).getReg();
1454 SPIRVType *OpType = OpReg.isValid() ? GR.getSPIRVTypeForVReg(OpReg) : nullptr;
1455 if (!GR.isBitcastCompatible(ResType, OpType))
1456 report_fatal_error("incompatible result and operand types in a bitcast");
1457 return selectUnOp(ResVReg, ResType, I, SPIRV::OpBitcast);
1458}
1459
1462 MachineIRBuilder &MIRBuilder,
1463 SPIRVGlobalRegistry &GR) {
1464 uint32_t SpvMemOp = static_cast<uint32_t>(SPIRV::MemoryOperand::None);
1465 if (MemOp->isVolatile())
1466 SpvMemOp |= static_cast<uint32_t>(SPIRV::MemoryOperand::Volatile);
1467 if (MemOp->isNonTemporal())
1468 SpvMemOp |= static_cast<uint32_t>(SPIRV::MemoryOperand::Nontemporal);
1469 if (MemOp->getAlign().value())
1470 SpvMemOp |= static_cast<uint32_t>(SPIRV::MemoryOperand::Aligned);
1471
1472 [[maybe_unused]] MachineInstr *AliasList = nullptr;
1473 [[maybe_unused]] MachineInstr *NoAliasList = nullptr;
1474 const SPIRVSubtarget *ST =
1475 static_cast<const SPIRVSubtarget *>(&MIRBuilder.getMF().getSubtarget());
1476 if (ST->canUseExtension(SPIRV::Extension::SPV_INTEL_memory_access_aliasing)) {
1477 if (auto *MD = MemOp->getAAInfo().Scope) {
1478 AliasList = GR.getOrAddMemAliasingINTELInst(MIRBuilder, MD);
1479 if (AliasList)
1480 SpvMemOp |=
1481 static_cast<uint32_t>(SPIRV::MemoryOperand::AliasScopeINTELMask);
1482 }
1483 if (auto *MD = MemOp->getAAInfo().NoAlias) {
1484 NoAliasList = GR.getOrAddMemAliasingINTELInst(MIRBuilder, MD);
1485 if (NoAliasList)
1486 SpvMemOp |=
1487 static_cast<uint32_t>(SPIRV::MemoryOperand::NoAliasINTELMask);
1488 }
1489 }
1490
1491 if (SpvMemOp != static_cast<uint32_t>(SPIRV::MemoryOperand::None)) {
1492 MIB.addImm(SpvMemOp);
1493 if (SpvMemOp & static_cast<uint32_t>(SPIRV::MemoryOperand::Aligned))
1494 MIB.addImm(MemOp->getAlign().value());
1495 if (AliasList)
1496 MIB.addUse(AliasList->getOperand(0).getReg());
1497 if (NoAliasList)
1498 MIB.addUse(NoAliasList->getOperand(0).getReg());
1499 }
1500}
1501
1503 uint32_t SpvMemOp = static_cast<uint32_t>(SPIRV::MemoryOperand::None);
1505 SpvMemOp |= static_cast<uint32_t>(SPIRV::MemoryOperand::Volatile);
1507 SpvMemOp |= static_cast<uint32_t>(SPIRV::MemoryOperand::Nontemporal);
1508
1509 if (SpvMemOp != static_cast<uint32_t>(SPIRV::MemoryOperand::None))
1510 MIB.addImm(SpvMemOp);
1511}
1512
1513bool SPIRVInstructionSelector::selectLoad(Register ResVReg,
1514 const SPIRVType *ResType,
1515 MachineInstr &I) const {
1516 unsigned OpOffset = isa<GIntrinsic>(I) ? 1 : 0;
1517 Register Ptr = I.getOperand(1 + OpOffset).getReg();
1518
1519 auto *PtrDef = getVRegDef(*MRI, Ptr);
1520 auto *IntPtrDef = dyn_cast<GIntrinsic>(PtrDef);
1521 if (IntPtrDef &&
1522 IntPtrDef->getIntrinsicID() == Intrinsic::spv_resource_getpointer) {
1523 Register HandleReg = IntPtrDef->getOperand(2).getReg();
1524 SPIRVType *HandleType = GR.getSPIRVTypeForVReg(HandleReg);
1525 if (HandleType->getOpcode() == SPIRV::OpTypeImage) {
1526 Register NewHandleReg =
1527 MRI->createVirtualRegister(MRI->getRegClass(HandleReg));
1528 auto *HandleDef = cast<GIntrinsic>(getVRegDef(*MRI, HandleReg));
1529 if (!loadHandleBeforePosition(NewHandleReg, HandleType, *HandleDef, I)) {
1530 return false;
1531 }
1532
1533 Register IdxReg = IntPtrDef->getOperand(3).getReg();
1534 return generateImageReadOrFetch(ResVReg, ResType, NewHandleReg, IdxReg,
1535 I.getDebugLoc(), I);
1536 }
1537 }
1538
1539 auto MIB = BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(SPIRV::OpLoad))
1540 .addDef(ResVReg)
1541 .addUse(GR.getSPIRVTypeID(ResType))
1542 .addUse(Ptr);
1543 if (!I.getNumMemOperands()) {
1544 assert(I.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS ||
1545 I.getOpcode() ==
1546 TargetOpcode::G_INTRINSIC_CONVERGENT_W_SIDE_EFFECTS);
1547 addMemoryOperands(I.getOperand(2 + OpOffset).getImm(), MIB);
1548 } else {
1549 MachineIRBuilder MIRBuilder(I);
1550 addMemoryOperands(*I.memoperands_begin(), MIB, MIRBuilder, GR);
1551 }
1552 return MIB.constrainAllUses(TII, TRI, RBI);
1553}
1554
1555bool SPIRVInstructionSelector::selectStore(MachineInstr &I) const {
1556 unsigned OpOffset = isa<GIntrinsic>(I) ? 1 : 0;
1557 Register StoreVal = I.getOperand(0 + OpOffset).getReg();
1558 Register Ptr = I.getOperand(1 + OpOffset).getReg();
1559
1560 auto *PtrDef = getVRegDef(*MRI, Ptr);
1561 auto *IntPtrDef = dyn_cast<GIntrinsic>(PtrDef);
1562 if (IntPtrDef &&
1563 IntPtrDef->getIntrinsicID() == Intrinsic::spv_resource_getpointer) {
1564 Register HandleReg = IntPtrDef->getOperand(2).getReg();
1565 Register NewHandleReg =
1566 MRI->createVirtualRegister(MRI->getRegClass(HandleReg));
1567 auto *HandleDef = cast<GIntrinsic>(getVRegDef(*MRI, HandleReg));
1568 SPIRVType *HandleType = GR.getSPIRVTypeForVReg(HandleReg);
1569 if (!loadHandleBeforePosition(NewHandleReg, HandleType, *HandleDef, I)) {
1570 return false;
1571 }
1572
1573 Register IdxReg = IntPtrDef->getOperand(3).getReg();
1574 if (HandleType->getOpcode() == SPIRV::OpTypeImage) {
1575 auto BMI = BuildMI(*I.getParent(), I, I.getDebugLoc(),
1576 TII.get(SPIRV::OpImageWrite))
1577 .addUse(NewHandleReg)
1578 .addUse(IdxReg)
1579 .addUse(StoreVal);
1580
1581 const llvm::Type *LLVMHandleType = GR.getTypeForSPIRVType(HandleType);
1582 if (sampledTypeIsSignedInteger(LLVMHandleType))
1583 BMI.addImm(0x1000); // SignExtend
1584
1585 return BMI.constrainAllUses(TII, TRI, RBI);
1586 }
1587 }
1588
1589 MachineBasicBlock &BB = *I.getParent();
1590 auto MIB = BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpStore))
1591 .addUse(Ptr)
1592 .addUse(StoreVal);
1593 if (!I.getNumMemOperands()) {
1594 assert(I.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS ||
1595 I.getOpcode() ==
1596 TargetOpcode::G_INTRINSIC_CONVERGENT_W_SIDE_EFFECTS);
1597 addMemoryOperands(I.getOperand(2 + OpOffset).getImm(), MIB);
1598 } else {
1599 MachineIRBuilder MIRBuilder(I);
1600 addMemoryOperands(*I.memoperands_begin(), MIB, MIRBuilder, GR);
1601 }
1602 return MIB.constrainAllUses(TII, TRI, RBI);
1603}
1604
1605bool SPIRVInstructionSelector::selectStackSave(Register ResVReg,
1606 const SPIRVType *ResType,
1607 MachineInstr &I) const {
1608 if (!STI.canUseExtension(SPIRV::Extension::SPV_INTEL_variable_length_array))
1610 "llvm.stacksave intrinsic: this instruction requires the following "
1611 "SPIR-V extension: SPV_INTEL_variable_length_array",
1612 false);
1613 MachineBasicBlock &BB = *I.getParent();
1614 return BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpSaveMemoryINTEL))
1615 .addDef(ResVReg)
1616 .addUse(GR.getSPIRVTypeID(ResType))
1617 .constrainAllUses(TII, TRI, RBI);
1618}
1619
1620bool SPIRVInstructionSelector::selectStackRestore(MachineInstr &I) const {
1621 if (!STI.canUseExtension(SPIRV::Extension::SPV_INTEL_variable_length_array))
1623 "llvm.stackrestore intrinsic: this instruction requires the following "
1624 "SPIR-V extension: SPV_INTEL_variable_length_array",
1625 false);
1626 if (!I.getOperand(0).isReg())
1627 return false;
1628 MachineBasicBlock &BB = *I.getParent();
1629 return BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpRestoreMemoryINTEL))
1630 .addUse(I.getOperand(0).getReg())
1631 .constrainAllUses(TII, TRI, RBI);
1632}
1633
1635SPIRVInstructionSelector::getOrCreateMemSetGlobal(MachineInstr &I) const {
1636 MachineIRBuilder MIRBuilder(I);
1637 assert(I.getOperand(1).isReg() && I.getOperand(2).isReg());
1638
1639 // TODO: check if we have such GV, add init, use buildGlobalVariable.
1640 unsigned Num = getIConstVal(I.getOperand(2).getReg(), MRI);
1641 Function &CurFunction = GR.CurMF->getFunction();
1642 Type *LLVMArrTy =
1643 ArrayType::get(IntegerType::get(CurFunction.getContext(), 8), Num);
1644 GlobalVariable *GV = new GlobalVariable(*CurFunction.getParent(), LLVMArrTy,
1646 Constant::getNullValue(LLVMArrTy));
1647
1648 Type *ValTy = Type::getInt8Ty(I.getMF()->getFunction().getContext());
1649 Type *ArrTy = ArrayType::get(ValTy, Num);
1651 ArrTy, MIRBuilder, SPIRV::StorageClass::UniformConstant);
1652
1653 SPIRVType *SpvArrTy = GR.getOrCreateSPIRVType(
1654 ArrTy, MIRBuilder, SPIRV::AccessQualifier::None, false);
1655
1656 unsigned Val = getIConstVal(I.getOperand(1).getReg(), MRI);
1657 Register Const = GR.getOrCreateConstIntArray(Val, Num, I, SpvArrTy, TII);
1658
1659 Register VarReg = MRI->createGenericVirtualRegister(LLT::scalar(64));
1660 auto MIBVar =
1661 BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(SPIRV::OpVariable))
1662 .addDef(VarReg)
1663 .addUse(GR.getSPIRVTypeID(VarTy))
1664 .addImm(SPIRV::StorageClass::UniformConstant)
1665 .addUse(Const);
1666 if (!MIBVar.constrainAllUses(TII, TRI, RBI))
1667 return Register();
1668
1669 GR.add(GV, MIBVar);
1670 GR.addGlobalObject(GV, GR.CurMF, VarReg);
1671
1672 buildOpDecorate(VarReg, I, TII, SPIRV::Decoration::Constant, {});
1673 return VarReg;
1674}
1675
1676bool SPIRVInstructionSelector::selectCopyMemory(MachineInstr &I,
1677 Register SrcReg) const {
1678 MachineBasicBlock &BB = *I.getParent();
1679 Register DstReg = I.getOperand(0).getReg();
1680 SPIRVType *DstTy = GR.getSPIRVTypeForVReg(DstReg);
1681 SPIRVType *SrcTy = GR.getSPIRVTypeForVReg(SrcReg);
1682 if (GR.getPointeeType(DstTy) != GR.getPointeeType(SrcTy))
1683 report_fatal_error("OpCopyMemory requires operands to have the same type");
1684 uint64_t CopySize = getIConstVal(I.getOperand(2).getReg(), MRI);
1685 SPIRVType *PointeeTy = GR.getPointeeType(DstTy);
1686 const Type *LLVMPointeeTy = GR.getTypeForSPIRVType(PointeeTy);
1687 if (!LLVMPointeeTy)
1689 "Unable to determine pointee type size for OpCopyMemory");
1690 const DataLayout &DL = I.getMF()->getFunction().getDataLayout();
1691 if (CopySize != DL.getTypeStoreSize(const_cast<Type *>(LLVMPointeeTy)))
1693 "OpCopyMemory requires the size to match the pointee type size");
1694 auto MIB = BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpCopyMemory))
1695 .addUse(DstReg)
1696 .addUse(SrcReg);
1697 if (I.getNumMemOperands()) {
1698 MachineIRBuilder MIRBuilder(I);
1699 addMemoryOperands(*I.memoperands_begin(), MIB, MIRBuilder, GR);
1700 }
1701 return MIB.constrainAllUses(TII, TRI, RBI);
1702}
1703
1704bool SPIRVInstructionSelector::selectCopyMemorySized(MachineInstr &I,
1705 Register SrcReg) const {
1706 MachineBasicBlock &BB = *I.getParent();
1707 auto MIB = BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpCopyMemorySized))
1708 .addUse(I.getOperand(0).getReg())
1709 .addUse(SrcReg)
1710 .addUse(I.getOperand(2).getReg());
1711 if (I.getNumMemOperands()) {
1712 MachineIRBuilder MIRBuilder(I);
1713 addMemoryOperands(*I.memoperands_begin(), MIB, MIRBuilder, GR);
1714 }
1715 return MIB.constrainAllUses(TII, TRI, RBI);
1716}
1717
1718bool SPIRVInstructionSelector::selectMemOperation(Register ResVReg,
1719 MachineInstr &I) const {
1720 Register SrcReg = I.getOperand(1).getReg();
1721 bool Result = true;
1722 if (I.getOpcode() == TargetOpcode::G_MEMSET) {
1723 Register VarReg = getOrCreateMemSetGlobal(I);
1724 if (!VarReg.isValid())
1725 return false;
1726 Type *ValTy = Type::getInt8Ty(I.getMF()->getFunction().getContext());
1728 ValTy, I, SPIRV::StorageClass::UniformConstant);
1729 SrcReg = MRI->createGenericVirtualRegister(LLT::scalar(64));
1730 Result &= selectOpWithSrcs(SrcReg, SourceTy, I, {VarReg}, SPIRV::OpBitcast);
1731 }
1732 if (STI.isLogicalSPIRV()) {
1733 Result &= selectCopyMemory(I, SrcReg);
1734 } else {
1735 Result &= selectCopyMemorySized(I, SrcReg);
1736 }
1737 if (ResVReg.isValid() && ResVReg != I.getOperand(0).getReg())
1738 Result &= BuildCOPY(ResVReg, I.getOperand(0).getReg(), I);
1739 return Result;
1740}
1741
1742bool SPIRVInstructionSelector::selectAtomicRMW(Register ResVReg,
1743 const SPIRVType *ResType,
1744 MachineInstr &I,
1745 unsigned NewOpcode,
1746 unsigned NegateOpcode) const {
1747 bool Result = true;
1748 assert(I.hasOneMemOperand());
1749 const MachineMemOperand *MemOp = *I.memoperands_begin();
1750 uint32_t Scope = static_cast<uint32_t>(getMemScope(
1751 GR.CurMF->getFunction().getContext(), MemOp->getSyncScopeID()));
1752 auto ScopeConstant = buildI32Constant(Scope, I);
1753 Register ScopeReg = ScopeConstant.first;
1754 Result &= ScopeConstant.second;
1755
1756 Register Ptr = I.getOperand(1).getReg();
1757 // TODO: Changed as it's implemented in the translator. See test/atomicrmw.ll
1758 // auto ScSem =
1759 // getMemSemanticsForStorageClass(GR.getPointerStorageClass(Ptr));
1760 AtomicOrdering AO = MemOp->getSuccessOrdering();
1761 uint32_t MemSem = static_cast<uint32_t>(getMemSemantics(AO));
1762 auto MemSemConstant = buildI32Constant(MemSem /*| ScSem*/, I);
1763 Register MemSemReg = MemSemConstant.first;
1764 Result &= MemSemConstant.second;
1765
1766 Register ValueReg = I.getOperand(2).getReg();
1767 if (NegateOpcode != 0) {
1768 // Translation with negative value operand is requested
1769 Register TmpReg = createVirtualRegister(ResType, &GR, MRI, MRI->getMF());
1770 Result &= selectOpWithSrcs(TmpReg, ResType, I, {ValueReg}, NegateOpcode);
1771 ValueReg = TmpReg;
1772 }
1773
1774 return Result &&
1775 BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(NewOpcode))
1776 .addDef(ResVReg)
1777 .addUse(GR.getSPIRVTypeID(ResType))
1778 .addUse(Ptr)
1779 .addUse(ScopeReg)
1780 .addUse(MemSemReg)
1781 .addUse(ValueReg)
1782 .constrainAllUses(TII, TRI, RBI);
1783}
1784
1785bool SPIRVInstructionSelector::selectUnmergeValues(MachineInstr &I) const {
1786 unsigned ArgI = I.getNumOperands() - 1;
1787 Register SrcReg =
1788 I.getOperand(ArgI).isReg() ? I.getOperand(ArgI).getReg() : Register(0);
1789 SPIRVType *SrcType =
1790 SrcReg.isValid() ? GR.getSPIRVTypeForVReg(SrcReg) : nullptr;
1791 if (!SrcType || SrcType->getOpcode() != SPIRV::OpTypeVector)
1793 "cannot select G_UNMERGE_VALUES with a non-vector argument");
1794
1795 SPIRVType *ScalarType =
1796 GR.getSPIRVTypeForVReg(SrcType->getOperand(1).getReg());
1797 MachineBasicBlock &BB = *I.getParent();
1798 bool Res = false;
1799 unsigned CurrentIndex = 0;
1800 for (unsigned i = 0; i < I.getNumDefs(); ++i) {
1801 Register ResVReg = I.getOperand(i).getReg();
1802 SPIRVType *ResType = GR.getSPIRVTypeForVReg(ResVReg);
1803 if (!ResType) {
1804 LLT ResLLT = MRI->getType(ResVReg);
1805 assert(ResLLT.isValid());
1806 if (ResLLT.isVector()) {
1807 ResType = GR.getOrCreateSPIRVVectorType(
1808 ScalarType, ResLLT.getNumElements(), I, TII);
1809 } else {
1810 ResType = ScalarType;
1811 }
1812 MRI->setRegClass(ResVReg, GR.getRegClass(ResType));
1813 GR.assignSPIRVTypeToVReg(ResType, ResVReg, *GR.CurMF);
1814 }
1815
1816 if (ResType->getOpcode() == SPIRV::OpTypeVector) {
1817 Register UndefReg = GR.getOrCreateUndef(I, SrcType, TII);
1818 auto MIB =
1819 BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpVectorShuffle))
1820 .addDef(ResVReg)
1821 .addUse(GR.getSPIRVTypeID(ResType))
1822 .addUse(SrcReg)
1823 .addUse(UndefReg);
1824 unsigned NumElements = GR.getScalarOrVectorComponentCount(ResType);
1825 for (unsigned j = 0; j < NumElements; ++j) {
1826 MIB.addImm(CurrentIndex + j);
1827 }
1828 CurrentIndex += NumElements;
1829 Res |= MIB.constrainAllUses(TII, TRI, RBI);
1830 } else {
1831 auto MIB =
1832 BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpCompositeExtract))
1833 .addDef(ResVReg)
1834 .addUse(GR.getSPIRVTypeID(ResType))
1835 .addUse(SrcReg)
1836 .addImm(CurrentIndex);
1837 CurrentIndex++;
1838 Res |= MIB.constrainAllUses(TII, TRI, RBI);
1839 }
1840 }
1841 return Res;
1842}
1843
1844bool SPIRVInstructionSelector::selectFence(MachineInstr &I) const {
1845 AtomicOrdering AO = AtomicOrdering(I.getOperand(0).getImm());
1846 uint32_t MemSem = static_cast<uint32_t>(getMemSemantics(AO));
1847 auto MemSemConstant = buildI32Constant(MemSem, I);
1848 Register MemSemReg = MemSemConstant.first;
1849 bool Result = MemSemConstant.second;
1850 SyncScope::ID Ord = SyncScope::ID(I.getOperand(1).getImm());
1851 uint32_t Scope = static_cast<uint32_t>(
1852 getMemScope(GR.CurMF->getFunction().getContext(), Ord));
1853 auto ScopeConstant = buildI32Constant(Scope, I);
1854 Register ScopeReg = ScopeConstant.first;
1855 Result &= ScopeConstant.second;
1856 MachineBasicBlock &BB = *I.getParent();
1857 return Result &&
1858 BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpMemoryBarrier))
1859 .addUse(ScopeReg)
1860 .addUse(MemSemReg)
1861 .constrainAllUses(TII, TRI, RBI);
1862}
1863
1864bool SPIRVInstructionSelector::selectOverflowArith(Register ResVReg,
1865 const SPIRVType *ResType,
1866 MachineInstr &I,
1867 unsigned Opcode) const {
1868 Type *ResTy = nullptr;
1869 StringRef ResName;
1870 if (!GR.findValueAttrs(&I, ResTy, ResName))
1872 "Not enough info to select the arithmetic with overflow instruction");
1873 if (!ResTy || !ResTy->isStructTy())
1874 report_fatal_error("Expect struct type result for the arithmetic "
1875 "with overflow instruction");
1876 // "Result Type must be from OpTypeStruct. The struct must have two members,
1877 // and the two members must be the same type."
1878 Type *ResElemTy = cast<StructType>(ResTy)->getElementType(0);
1879 ResTy = StructType::get(ResElemTy, ResElemTy);
1880 // Build SPIR-V types and constant(s) if needed.
1881 MachineIRBuilder MIRBuilder(I);
1882 SPIRVType *StructType = GR.getOrCreateSPIRVType(
1883 ResTy, MIRBuilder, SPIRV::AccessQualifier::ReadWrite, false);
1884 assert(I.getNumDefs() > 1 && "Not enought operands");
1885 SPIRVType *BoolType = GR.getOrCreateSPIRVBoolType(I, TII);
1886 unsigned N = GR.getScalarOrVectorComponentCount(ResType);
1887 if (N > 1)
1888 BoolType = GR.getOrCreateSPIRVVectorType(BoolType, N, I, TII);
1889 Register BoolTypeReg = GR.getSPIRVTypeID(BoolType);
1890 Register ZeroReg = buildZerosVal(ResType, I);
1891 // A new virtual register to store the result struct.
1892 Register StructVReg = MRI->createGenericVirtualRegister(LLT::scalar(64));
1893 MRI->setRegClass(StructVReg, &SPIRV::IDRegClass);
1894 // Build the result name if needed.
1895 if (ResName.size() > 0)
1896 buildOpName(StructVReg, ResName, MIRBuilder);
1897 // Build the arithmetic with overflow instruction.
1898 MachineBasicBlock &BB = *I.getParent();
1899 auto MIB =
1900 BuildMI(BB, MIRBuilder.getInsertPt(), I.getDebugLoc(), TII.get(Opcode))
1901 .addDef(StructVReg)
1902 .addUse(GR.getSPIRVTypeID(StructType));
1903 for (unsigned i = I.getNumDefs(); i < I.getNumOperands(); ++i)
1904 MIB.addUse(I.getOperand(i).getReg());
1905 bool Result = MIB.constrainAllUses(TII, TRI, RBI);
1906 // Build instructions to extract fields of the instruction's result.
1907 // A new virtual register to store the higher part of the result struct.
1908 Register HigherVReg = MRI->createGenericVirtualRegister(LLT::scalar(64));
1909 MRI->setRegClass(HigherVReg, &SPIRV::iIDRegClass);
1910 for (unsigned i = 0; i < I.getNumDefs(); ++i) {
1911 auto MIB =
1912 BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpCompositeExtract))
1913 .addDef(i == 1 ? HigherVReg : I.getOperand(i).getReg())
1914 .addUse(GR.getSPIRVTypeID(ResType))
1915 .addUse(StructVReg)
1916 .addImm(i);
1917 Result &= MIB.constrainAllUses(TII, TRI, RBI);
1918 }
1919 // Build boolean value from the higher part.
1920 return Result && BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpINotEqual))
1921 .addDef(I.getOperand(1).getReg())
1922 .addUse(BoolTypeReg)
1923 .addUse(HigherVReg)
1924 .addUse(ZeroReg)
1925 .constrainAllUses(TII, TRI, RBI);
1926}
1927
1928bool SPIRVInstructionSelector::selectAtomicCmpXchg(Register ResVReg,
1929 const SPIRVType *ResType,
1930 MachineInstr &I) const {
1931 bool Result = true;
1932 Register ScopeReg;
1933 Register MemSemEqReg;
1934 Register MemSemNeqReg;
1935 Register Ptr = I.getOperand(2).getReg();
1936 if (!isa<GIntrinsic>(I)) {
1937 assert(I.hasOneMemOperand());
1938 const MachineMemOperand *MemOp = *I.memoperands_begin();
1939 unsigned Scope = static_cast<uint32_t>(getMemScope(
1940 GR.CurMF->getFunction().getContext(), MemOp->getSyncScopeID()));
1941 auto ScopeConstant = buildI32Constant(Scope, I);
1942 ScopeReg = ScopeConstant.first;
1943 Result &= ScopeConstant.second;
1944
1945 unsigned ScSem = static_cast<uint32_t>(
1947 AtomicOrdering AO = MemOp->getSuccessOrdering();
1948 unsigned MemSemEq = static_cast<uint32_t>(getMemSemantics(AO)) | ScSem;
1949 auto MemSemEqConstant = buildI32Constant(MemSemEq, I);
1950 MemSemEqReg = MemSemEqConstant.first;
1951 Result &= MemSemEqConstant.second;
1952 AtomicOrdering FO = MemOp->getFailureOrdering();
1953 unsigned MemSemNeq = static_cast<uint32_t>(getMemSemantics(FO)) | ScSem;
1954 if (MemSemEq == MemSemNeq)
1955 MemSemNeqReg = MemSemEqReg;
1956 else {
1957 auto MemSemNeqConstant = buildI32Constant(MemSemEq, I);
1958 MemSemNeqReg = MemSemNeqConstant.first;
1959 Result &= MemSemNeqConstant.second;
1960 }
1961 } else {
1962 ScopeReg = I.getOperand(5).getReg();
1963 MemSemEqReg = I.getOperand(6).getReg();
1964 MemSemNeqReg = I.getOperand(7).getReg();
1965 }
1966
1967 Register Cmp = I.getOperand(3).getReg();
1968 Register Val = I.getOperand(4).getReg();
1969 SPIRVType *SpvValTy = GR.getSPIRVTypeForVReg(Val);
1970 Register ACmpRes = createVirtualRegister(SpvValTy, &GR, MRI, *I.getMF());
1971 const DebugLoc &DL = I.getDebugLoc();
1972 Result &=
1973 BuildMI(*I.getParent(), I, DL, TII.get(SPIRV::OpAtomicCompareExchange))
1974 .addDef(ACmpRes)
1975 .addUse(GR.getSPIRVTypeID(SpvValTy))
1976 .addUse(Ptr)
1977 .addUse(ScopeReg)
1978 .addUse(MemSemEqReg)
1979 .addUse(MemSemNeqReg)
1980 .addUse(Val)
1981 .addUse(Cmp)
1982 .constrainAllUses(TII, TRI, RBI);
1983 SPIRVType *BoolTy = GR.getOrCreateSPIRVBoolType(I, TII);
1984 Register CmpSuccReg = createVirtualRegister(BoolTy, &GR, MRI, *I.getMF());
1985 Result &= BuildMI(*I.getParent(), I, DL, TII.get(SPIRV::OpIEqual))
1986 .addDef(CmpSuccReg)
1987 .addUse(GR.getSPIRVTypeID(BoolTy))
1988 .addUse(ACmpRes)
1989 .addUse(Cmp)
1990 .constrainAllUses(TII, TRI, RBI);
1991 Register TmpReg = createVirtualRegister(ResType, &GR, MRI, *I.getMF());
1992 Result &= BuildMI(*I.getParent(), I, DL, TII.get(SPIRV::OpCompositeInsert))
1993 .addDef(TmpReg)
1994 .addUse(GR.getSPIRVTypeID(ResType))
1995 .addUse(ACmpRes)
1996 .addUse(GR.getOrCreateUndef(I, ResType, TII))
1997 .addImm(0)
1998 .constrainAllUses(TII, TRI, RBI);
1999 return Result &&
2000 BuildMI(*I.getParent(), I, DL, TII.get(SPIRV::OpCompositeInsert))
2001 .addDef(ResVReg)
2002 .addUse(GR.getSPIRVTypeID(ResType))
2003 .addUse(CmpSuccReg)
2004 .addUse(TmpReg)
2005 .addImm(1)
2006 .constrainAllUses(TII, TRI, RBI);
2007}
2008
2009static bool isUSMStorageClass(SPIRV::StorageClass::StorageClass SC) {
2010 switch (SC) {
2011 case SPIRV::StorageClass::DeviceOnlyINTEL:
2012 case SPIRV::StorageClass::HostOnlyINTEL:
2013 return true;
2014 default:
2015 return false;
2016 }
2017}
2018
2019// Returns true ResVReg is referred only from global vars and OpName's.
2021 bool IsGRef = false;
2022 bool IsAllowedRefs =
2023 llvm::all_of(MRI->use_instructions(ResVReg), [&IsGRef](auto const &It) {
2024 unsigned Opcode = It.getOpcode();
2025 if (Opcode == SPIRV::OpConstantComposite ||
2026 Opcode == SPIRV::OpVariable ||
2027 isSpvIntrinsic(It, Intrinsic::spv_init_global))
2028 return IsGRef = true;
2029 return Opcode == SPIRV::OpName;
2030 });
2031 return IsAllowedRefs && IsGRef;
2032}
2033
2034Register SPIRVInstructionSelector::getUcharPtrTypeReg(
2035 MachineInstr &I, SPIRV::StorageClass::StorageClass SC) const {
2037 Type::getInt8Ty(I.getMF()->getFunction().getContext()), I, SC));
2038}
2039
2040MachineInstrBuilder
2041SPIRVInstructionSelector::buildSpecConstantOp(MachineInstr &I, Register Dest,
2042 Register Src, Register DestType,
2043 uint32_t Opcode) const {
2044 return BuildMI(*I.getParent(), I, I.getDebugLoc(),
2045 TII.get(SPIRV::OpSpecConstantOp))
2046 .addDef(Dest)
2047 .addUse(DestType)
2048 .addImm(Opcode)
2049 .addUse(Src);
2050}
2051
2052MachineInstrBuilder
2053SPIRVInstructionSelector::buildConstGenericPtr(MachineInstr &I, Register SrcPtr,
2054 SPIRVType *SrcPtrTy) const {
2055 SPIRVType *GenericPtrTy =
2056 GR.changePointerStorageClass(SrcPtrTy, SPIRV::StorageClass::Generic, I);
2057 Register Tmp = MRI->createVirtualRegister(&SPIRV::pIDRegClass);
2059 SPIRV::StorageClass::Generic),
2060 GR.getPointerSize()));
2061 MachineFunction *MF = I.getParent()->getParent();
2062 GR.assignSPIRVTypeToVReg(GenericPtrTy, Tmp, *MF);
2063 MachineInstrBuilder MIB = buildSpecConstantOp(
2064 I, Tmp, SrcPtr, GR.getSPIRVTypeID(GenericPtrTy),
2065 static_cast<uint32_t>(SPIRV::Opcode::PtrCastToGeneric));
2066 GR.add(MIB.getInstr(), MIB);
2067 return MIB;
2068}
2069
2070// In SPIR-V address space casting can only happen to and from the Generic
2071// storage class. We can also only cast Workgroup, CrossWorkgroup, or Function
2072// pointers to and from Generic pointers. As such, we can convert e.g. from
2073// Workgroup to Function by going via a Generic pointer as an intermediary. All
2074// other combinations can only be done by a bitcast, and are probably not safe.
2075bool SPIRVInstructionSelector::selectAddrSpaceCast(Register ResVReg,
2076 const SPIRVType *ResType,
2077 MachineInstr &I) const {
2078 MachineBasicBlock &BB = *I.getParent();
2079 const DebugLoc &DL = I.getDebugLoc();
2080
2081 Register SrcPtr = I.getOperand(1).getReg();
2082 SPIRVType *SrcPtrTy = GR.getSPIRVTypeForVReg(SrcPtr);
2083
2084 // don't generate a cast for a null that may be represented by OpTypeInt
2085 if (SrcPtrTy->getOpcode() != SPIRV::OpTypePointer ||
2086 ResType->getOpcode() != SPIRV::OpTypePointer)
2087 return BuildCOPY(ResVReg, SrcPtr, I);
2088
2089 SPIRV::StorageClass::StorageClass SrcSC = GR.getPointerStorageClass(SrcPtrTy);
2090 SPIRV::StorageClass::StorageClass DstSC = GR.getPointerStorageClass(ResType);
2091
2092 if (isASCastInGVar(MRI, ResVReg)) {
2093 // AddrSpaceCast uses within OpVariable and OpConstantComposite instructions
2094 // are expressed by OpSpecConstantOp with an Opcode.
2095 // TODO: maybe insert a check whether the Kernel capability was declared and
2096 // so PtrCastToGeneric/GenericCastToPtr are available.
2097 unsigned SpecOpcode =
2098 DstSC == SPIRV::StorageClass::Generic && isGenericCastablePtr(SrcSC)
2099 ? static_cast<uint32_t>(SPIRV::Opcode::PtrCastToGeneric)
2100 : (SrcSC == SPIRV::StorageClass::Generic &&
2102 ? static_cast<uint32_t>(SPIRV::Opcode::GenericCastToPtr)
2103 : 0);
2104 // TODO: OpConstantComposite expects i8*, so we are forced to forget a
2105 // correct value of ResType and use general i8* instead. Maybe this should
2106 // be addressed in the emit-intrinsic step to infer a correct
2107 // OpConstantComposite type.
2108 if (SpecOpcode) {
2109 return buildSpecConstantOp(I, ResVReg, SrcPtr,
2110 getUcharPtrTypeReg(I, DstSC), SpecOpcode)
2111 .constrainAllUses(TII, TRI, RBI);
2112 } else if (isGenericCastablePtr(SrcSC) && isGenericCastablePtr(DstSC)) {
2113 MachineInstrBuilder MIB = buildConstGenericPtr(I, SrcPtr, SrcPtrTy);
2114 return MIB.constrainAllUses(TII, TRI, RBI) &&
2115 buildSpecConstantOp(
2116 I, ResVReg, MIB->getOperand(0).getReg(),
2117 getUcharPtrTypeReg(I, DstSC),
2118 static_cast<uint32_t>(SPIRV::Opcode::GenericCastToPtr))
2119 .constrainAllUses(TII, TRI, RBI);
2120 }
2121 }
2122
2123 // don't generate a cast between identical storage classes
2124 if (SrcSC == DstSC)
2125 return BuildCOPY(ResVReg, SrcPtr, I);
2126
2127 if ((SrcSC == SPIRV::StorageClass::Function &&
2128 DstSC == SPIRV::StorageClass::Private) ||
2129 (DstSC == SPIRV::StorageClass::Function &&
2130 SrcSC == SPIRV::StorageClass::Private))
2131 return BuildCOPY(ResVReg, SrcPtr, I);
2132
2133 // Casting from an eligible pointer to Generic.
2134 if (DstSC == SPIRV::StorageClass::Generic && isGenericCastablePtr(SrcSC))
2135 return selectUnOp(ResVReg, ResType, I, SPIRV::OpPtrCastToGeneric);
2136 // Casting from Generic to an eligible pointer.
2137 if (SrcSC == SPIRV::StorageClass::Generic && isGenericCastablePtr(DstSC))
2138 return selectUnOp(ResVReg, ResType, I, SPIRV::OpGenericCastToPtr);
2139 // Casting between 2 eligible pointers using Generic as an intermediary.
2140 if (isGenericCastablePtr(SrcSC) && isGenericCastablePtr(DstSC)) {
2141 SPIRVType *GenericPtrTy =
2142 GR.changePointerStorageClass(SrcPtrTy, SPIRV::StorageClass::Generic, I);
2143 Register Tmp = createVirtualRegister(GenericPtrTy, &GR, MRI, MRI->getMF());
2144 bool Result = BuildMI(BB, I, DL, TII.get(SPIRV::OpPtrCastToGeneric))
2145 .addDef(Tmp)
2146 .addUse(GR.getSPIRVTypeID(GenericPtrTy))
2147 .addUse(SrcPtr)
2148 .constrainAllUses(TII, TRI, RBI);
2149 return Result && BuildMI(BB, I, DL, TII.get(SPIRV::OpGenericCastToPtr))
2150 .addDef(ResVReg)
2151 .addUse(GR.getSPIRVTypeID(ResType))
2152 .addUse(Tmp)
2153 .constrainAllUses(TII, TRI, RBI);
2154 }
2155
2156 // Check if instructions from the SPV_INTEL_usm_storage_classes extension may
2157 // be applied
2158 if (isUSMStorageClass(SrcSC) && DstSC == SPIRV::StorageClass::CrossWorkgroup)
2159 return selectUnOp(ResVReg, ResType, I,
2160 SPIRV::OpPtrCastToCrossWorkgroupINTEL);
2161 if (SrcSC == SPIRV::StorageClass::CrossWorkgroup && isUSMStorageClass(DstSC))
2162 return selectUnOp(ResVReg, ResType, I,
2163 SPIRV::OpCrossWorkgroupCastToPtrINTEL);
2164 if (isUSMStorageClass(SrcSC) && DstSC == SPIRV::StorageClass::Generic)
2165 return selectUnOp(ResVReg, ResType, I, SPIRV::OpPtrCastToGeneric);
2166 if (SrcSC == SPIRV::StorageClass::Generic && isUSMStorageClass(DstSC))
2167 return selectUnOp(ResVReg, ResType, I, SPIRV::OpGenericCastToPtr);
2168
2169 // Bitcast for pointers requires that the address spaces must match
2170 return false;
2171}
2172
2173static unsigned getFCmpOpcode(unsigned PredNum) {
2174 auto Pred = static_cast<CmpInst::Predicate>(PredNum);
2175 switch (Pred) {
2176 case CmpInst::FCMP_OEQ:
2177 return SPIRV::OpFOrdEqual;
2178 case CmpInst::FCMP_OGE:
2179 return SPIRV::OpFOrdGreaterThanEqual;
2180 case CmpInst::FCMP_OGT:
2181 return SPIRV::OpFOrdGreaterThan;
2182 case CmpInst::FCMP_OLE:
2183 return SPIRV::OpFOrdLessThanEqual;
2184 case CmpInst::FCMP_OLT:
2185 return SPIRV::OpFOrdLessThan;
2186 case CmpInst::FCMP_ONE:
2187 return SPIRV::OpFOrdNotEqual;
2188 case CmpInst::FCMP_ORD:
2189 return SPIRV::OpOrdered;
2190 case CmpInst::FCMP_UEQ:
2191 return SPIRV::OpFUnordEqual;
2192 case CmpInst::FCMP_UGE:
2193 return SPIRV::OpFUnordGreaterThanEqual;
2194 case CmpInst::FCMP_UGT:
2195 return SPIRV::OpFUnordGreaterThan;
2196 case CmpInst::FCMP_ULE:
2197 return SPIRV::OpFUnordLessThanEqual;
2198 case CmpInst::FCMP_ULT:
2199 return SPIRV::OpFUnordLessThan;
2200 case CmpInst::FCMP_UNE:
2201 return SPIRV::OpFUnordNotEqual;
2202 case CmpInst::FCMP_UNO:
2203 return SPIRV::OpUnordered;
2204 default:
2205 llvm_unreachable("Unknown predicate type for FCmp");
2206 }
2207}
2208
2209static unsigned getICmpOpcode(unsigned PredNum) {
2210 auto Pred = static_cast<CmpInst::Predicate>(PredNum);
2211 switch (Pred) {
2212 case CmpInst::ICMP_EQ:
2213 return SPIRV::OpIEqual;
2214 case CmpInst::ICMP_NE:
2215 return SPIRV::OpINotEqual;
2216 case CmpInst::ICMP_SGE:
2217 return SPIRV::OpSGreaterThanEqual;
2218 case CmpInst::ICMP_SGT:
2219 return SPIRV::OpSGreaterThan;
2220 case CmpInst::ICMP_SLE:
2221 return SPIRV::OpSLessThanEqual;
2222 case CmpInst::ICMP_SLT:
2223 return SPIRV::OpSLessThan;
2224 case CmpInst::ICMP_UGE:
2225 return SPIRV::OpUGreaterThanEqual;
2226 case CmpInst::ICMP_UGT:
2227 return SPIRV::OpUGreaterThan;
2228 case CmpInst::ICMP_ULE:
2229 return SPIRV::OpULessThanEqual;
2230 case CmpInst::ICMP_ULT:
2231 return SPIRV::OpULessThan;
2232 default:
2233 llvm_unreachable("Unknown predicate type for ICmp");
2234 }
2235}
2236
2237static unsigned getPtrCmpOpcode(unsigned Pred) {
2238 switch (static_cast<CmpInst::Predicate>(Pred)) {
2239 case CmpInst::ICMP_EQ:
2240 return SPIRV::OpPtrEqual;
2241 case CmpInst::ICMP_NE:
2242 return SPIRV::OpPtrNotEqual;
2243 default:
2244 llvm_unreachable("Unknown predicate type for pointer comparison");
2245 }
2246}
2247
2248// Return the logical operation, or abort if none exists.
2249static unsigned getBoolCmpOpcode(unsigned PredNum) {
2250 auto Pred = static_cast<CmpInst::Predicate>(PredNum);
2251 switch (Pred) {
2252 case CmpInst::ICMP_EQ:
2253 return SPIRV::OpLogicalEqual;
2254 case CmpInst::ICMP_NE:
2255 return SPIRV::OpLogicalNotEqual;
2256 default:
2257 llvm_unreachable("Unknown predicate type for Bool comparison");
2258 }
2259}
2260
2261static APFloat getZeroFP(const Type *LLVMFloatTy) {
2262 if (!LLVMFloatTy)
2264 switch (LLVMFloatTy->getScalarType()->getTypeID()) {
2265 case Type::HalfTyID:
2267 default:
2268 case Type::FloatTyID:
2270 case Type::DoubleTyID:
2272 }
2273}
2274
2275static APFloat getOneFP(const Type *LLVMFloatTy) {
2276 if (!LLVMFloatTy)
2278 switch (LLVMFloatTy->getScalarType()->getTypeID()) {
2279 case Type::HalfTyID:
2281 default:
2282 case Type::FloatTyID:
2284 case Type::DoubleTyID:
2286 }
2287}
2288
2289bool SPIRVInstructionSelector::selectAnyOrAll(Register ResVReg,
2290 const SPIRVType *ResType,
2291 MachineInstr &I,
2292 unsigned OpAnyOrAll) const {
2293 assert(I.getNumOperands() == 3);
2294 assert(I.getOperand(2).isReg());
2295 MachineBasicBlock &BB = *I.getParent();
2296 Register InputRegister = I.getOperand(2).getReg();
2297 SPIRVType *InputType = GR.getSPIRVTypeForVReg(InputRegister);
2298
2299 if (!InputType)
2300 report_fatal_error("Input Type could not be determined.");
2301
2302 bool IsBoolTy = GR.isScalarOrVectorOfType(InputRegister, SPIRV::OpTypeBool);
2303 bool IsVectorTy = InputType->getOpcode() == SPIRV::OpTypeVector;
2304 if (IsBoolTy && !IsVectorTy) {
2305 assert(ResVReg == I.getOperand(0).getReg());
2306 return BuildCOPY(ResVReg, InputRegister, I);
2307 }
2308
2309 bool IsFloatTy = GR.isScalarOrVectorOfType(InputRegister, SPIRV::OpTypeFloat);
2310 unsigned SpirvNotEqualId =
2311 IsFloatTy ? SPIRV::OpFOrdNotEqual : SPIRV::OpINotEqual;
2312 SPIRVType *SpvBoolScalarTy = GR.getOrCreateSPIRVBoolType(I, TII);
2313 SPIRVType *SpvBoolTy = SpvBoolScalarTy;
2314 Register NotEqualReg = ResVReg;
2315
2316 if (IsVectorTy) {
2317 NotEqualReg =
2318 IsBoolTy ? InputRegister
2319 : createVirtualRegister(SpvBoolTy, &GR, MRI, MRI->getMF());
2320 const unsigned NumElts = InputType->getOperand(2).getImm();
2321 SpvBoolTy = GR.getOrCreateSPIRVVectorType(SpvBoolTy, NumElts, I, TII);
2322 }
2323
2324 bool Result = true;
2325 if (!IsBoolTy) {
2326 Register ConstZeroReg =
2327 IsFloatTy ? buildZerosValF(InputType, I) : buildZerosVal(InputType, I);
2328
2329 Result &= BuildMI(BB, I, I.getDebugLoc(), TII.get(SpirvNotEqualId))
2330 .addDef(NotEqualReg)
2331 .addUse(GR.getSPIRVTypeID(SpvBoolTy))
2332 .addUse(InputRegister)
2333 .addUse(ConstZeroReg)
2334 .constrainAllUses(TII, TRI, RBI);
2335 }
2336
2337 if (!IsVectorTy)
2338 return Result;
2339
2340 return Result && BuildMI(BB, I, I.getDebugLoc(), TII.get(OpAnyOrAll))
2341 .addDef(ResVReg)
2342 .addUse(GR.getSPIRVTypeID(SpvBoolScalarTy))
2343 .addUse(NotEqualReg)
2344 .constrainAllUses(TII, TRI, RBI);
2345}
2346
2347bool SPIRVInstructionSelector::selectAll(Register ResVReg,
2348 const SPIRVType *ResType,
2349 MachineInstr &I) const {
2350 return selectAnyOrAll(ResVReg, ResType, I, SPIRV::OpAll);
2351}
2352
2353bool SPIRVInstructionSelector::selectAny(Register ResVReg,
2354 const SPIRVType *ResType,
2355 MachineInstr &I) const {
2356 return selectAnyOrAll(ResVReg, ResType, I, SPIRV::OpAny);
2357}
2358
2359// Select the OpDot instruction for the given float dot
2360bool SPIRVInstructionSelector::selectFloatDot(Register ResVReg,
2361 const SPIRVType *ResType,
2362 MachineInstr &I) const {
2363 assert(I.getNumOperands() == 4);
2364 assert(I.getOperand(2).isReg());
2365 assert(I.getOperand(3).isReg());
2366
2367 [[maybe_unused]] SPIRVType *VecType =
2368 GR.getSPIRVTypeForVReg(I.getOperand(2).getReg());
2369
2370 assert(VecType->getOpcode() == SPIRV::OpTypeVector &&
2371 GR.getScalarOrVectorComponentCount(VecType) > 1 &&
2372 "dot product requires a vector of at least 2 components");
2373
2374 [[maybe_unused]] SPIRVType *EltType =
2375 GR.getSPIRVTypeForVReg(VecType->getOperand(1).getReg());
2376
2377 assert(EltType->getOpcode() == SPIRV::OpTypeFloat);
2378
2379 MachineBasicBlock &BB = *I.getParent();
2380 return BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpDot))
2381 .addDef(ResVReg)
2382 .addUse(GR.getSPIRVTypeID(ResType))
2383 .addUse(I.getOperand(2).getReg())
2384 .addUse(I.getOperand(3).getReg())
2385 .constrainAllUses(TII, TRI, RBI);
2386}
2387
2388bool SPIRVInstructionSelector::selectIntegerDot(Register ResVReg,
2389 const SPIRVType *ResType,
2390 MachineInstr &I,
2391 bool Signed) const {
2392 assert(I.getNumOperands() == 4);
2393 assert(I.getOperand(2).isReg());
2394 assert(I.getOperand(3).isReg());
2395 MachineBasicBlock &BB = *I.getParent();
2396
2397 auto DotOp = Signed ? SPIRV::OpSDot : SPIRV::OpUDot;
2398 return BuildMI(BB, I, I.getDebugLoc(), TII.get(DotOp))
2399 .addDef(ResVReg)
2400 .addUse(GR.getSPIRVTypeID(ResType))
2401 .addUse(I.getOperand(2).getReg())
2402 .addUse(I.getOperand(3).getReg())
2403 .constrainAllUses(TII, TRI, RBI);
2404}
2405
2406// Since pre-1.6 SPIRV has no integer dot implementation,
2407// expand by piecewise multiplying and adding the results
2408bool SPIRVInstructionSelector::selectIntegerDotExpansion(
2409 Register ResVReg, const SPIRVType *ResType, MachineInstr &I) const {
2410 assert(I.getNumOperands() == 4);
2411 assert(I.getOperand(2).isReg());
2412 assert(I.getOperand(3).isReg());
2413 MachineBasicBlock &BB = *I.getParent();
2414
2415 // Multiply the vectors, then sum the results
2416 Register Vec0 = I.getOperand(2).getReg();
2417 Register Vec1 = I.getOperand(3).getReg();
2418 Register TmpVec = MRI->createVirtualRegister(GR.getRegClass(ResType));
2419 SPIRVType *VecType = GR.getSPIRVTypeForVReg(Vec0);
2420
2421 bool Result = BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpIMulV))
2422 .addDef(TmpVec)
2423 .addUse(GR.getSPIRVTypeID(VecType))
2424 .addUse(Vec0)
2425 .addUse(Vec1)
2426 .constrainAllUses(TII, TRI, RBI);
2427
2428 assert(VecType->getOpcode() == SPIRV::OpTypeVector &&
2429 GR.getScalarOrVectorComponentCount(VecType) > 1 &&
2430 "dot product requires a vector of at least 2 components");
2431
2432 Register Res = MRI->createVirtualRegister(GR.getRegClass(ResType));
2433 Result &= BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpCompositeExtract))
2434 .addDef(Res)
2435 .addUse(GR.getSPIRVTypeID(ResType))
2436 .addUse(TmpVec)
2437 .addImm(0)
2438 .constrainAllUses(TII, TRI, RBI);
2439
2440 for (unsigned i = 1; i < GR.getScalarOrVectorComponentCount(VecType); i++) {
2441 Register Elt = MRI->createVirtualRegister(GR.getRegClass(ResType));
2442
2443 Result &=
2444 BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpCompositeExtract))
2445 .addDef(Elt)
2446 .addUse(GR.getSPIRVTypeID(ResType))
2447 .addUse(TmpVec)
2448 .addImm(i)
2449 .constrainAllUses(TII, TRI, RBI);
2450
2451 Register Sum = i < GR.getScalarOrVectorComponentCount(VecType) - 1
2452 ? MRI->createVirtualRegister(GR.getRegClass(ResType))
2453 : ResVReg;
2454
2455 Result &= BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpIAddS))
2456 .addDef(Sum)
2457 .addUse(GR.getSPIRVTypeID(ResType))
2458 .addUse(Res)
2459 .addUse(Elt)
2460 .constrainAllUses(TII, TRI, RBI);
2461 Res = Sum;
2462 }
2463
2464 return Result;
2465}
2466
2467bool SPIRVInstructionSelector::selectOpIsInf(Register ResVReg,
2468 const SPIRVType *ResType,
2469 MachineInstr &I) const {
2470 MachineBasicBlock &BB = *I.getParent();
2471 return BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpIsInf))
2472 .addDef(ResVReg)
2473 .addUse(GR.getSPIRVTypeID(ResType))
2474 .addUse(I.getOperand(2).getReg())
2475 .constrainAllUses(TII, TRI, RBI);
2476}
2477
2478bool SPIRVInstructionSelector::selectOpIsNan(Register ResVReg,
2479 const SPIRVType *ResType,
2480 MachineInstr &I) const {
2481 MachineBasicBlock &BB = *I.getParent();
2482 return BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpIsNan))
2483 .addDef(ResVReg)
2484 .addUse(GR.getSPIRVTypeID(ResType))
2485 .addUse(I.getOperand(2).getReg())
2486 .constrainAllUses(TII, TRI, RBI);
2487}
2488
2489template <bool Signed>
2490bool SPIRVInstructionSelector::selectDot4AddPacked(Register ResVReg,
2491 const SPIRVType *ResType,
2492 MachineInstr &I) const {
2493 assert(I.getNumOperands() == 5);
2494 assert(I.getOperand(2).isReg());
2495 assert(I.getOperand(3).isReg());
2496 assert(I.getOperand(4).isReg());
2497 MachineBasicBlock &BB = *I.getParent();
2498
2499 Register Acc = I.getOperand(2).getReg();
2500 Register X = I.getOperand(3).getReg();
2501 Register Y = I.getOperand(4).getReg();
2502
2503 auto DotOp = Signed ? SPIRV::OpSDot : SPIRV::OpUDot;
2504 Register Dot = MRI->createVirtualRegister(GR.getRegClass(ResType));
2505 bool Result = BuildMI(BB, I, I.getDebugLoc(), TII.get(DotOp))
2506 .addDef(Dot)
2507 .addUse(GR.getSPIRVTypeID(ResType))
2508 .addUse(X)
2509 .addUse(Y)
2510 .constrainAllUses(TII, TRI, RBI);
2511
2512 return Result && BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpIAddS))
2513 .addDef(ResVReg)
2514 .addUse(GR.getSPIRVTypeID(ResType))
2515 .addUse(Dot)
2516 .addUse(Acc)
2517 .constrainAllUses(TII, TRI, RBI);
2518}
2519
2520// Since pre-1.6 SPIRV has no DotProductInput4x8BitPacked implementation,
2521// extract the elements of the packed inputs, multiply them and add the result
2522// to the accumulator.
2523template <bool Signed>
2524bool SPIRVInstructionSelector::selectDot4AddPackedExpansion(
2525 Register ResVReg, const SPIRVType *ResType, MachineInstr &I) const {
2526 assert(I.getNumOperands() == 5);
2527 assert(I.getOperand(2).isReg());
2528 assert(I.getOperand(3).isReg());
2529 assert(I.getOperand(4).isReg());
2530 MachineBasicBlock &BB = *I.getParent();
2531
2532 bool Result = true;
2533
2534 Register Acc = I.getOperand(2).getReg();
2535 Register X = I.getOperand(3).getReg();
2536 Register Y = I.getOperand(4).getReg();
2537
2538 SPIRVType *EltType = GR.getOrCreateSPIRVIntegerType(8, I, TII);
2539 auto ExtractOp =
2540 Signed ? SPIRV::OpBitFieldSExtract : SPIRV::OpBitFieldUExtract;
2541
2542 bool ZeroAsNull = !STI.isShader();
2543 // Extract the i8 element, multiply and add it to the accumulator
2544 for (unsigned i = 0; i < 4; i++) {
2545 // A[i]
2546 Register AElt = MRI->createVirtualRegister(&SPIRV::IDRegClass);
2547 Result &=
2548 BuildMI(BB, I, I.getDebugLoc(), TII.get(ExtractOp))
2549 .addDef(AElt)
2550 .addUse(GR.getSPIRVTypeID(ResType))
2551 .addUse(X)
2552 .addUse(GR.getOrCreateConstInt(i * 8, I, EltType, TII, ZeroAsNull))
2553 .addUse(GR.getOrCreateConstInt(8, I, EltType, TII, ZeroAsNull))
2554 .constrainAllUses(TII, TRI, RBI);
2555
2556 // B[i]
2557 Register BElt = MRI->createVirtualRegister(&SPIRV::IDRegClass);
2558 Result &=
2559 BuildMI(BB, I, I.getDebugLoc(), TII.get(ExtractOp))
2560 .addDef(BElt)
2561 .addUse(GR.getSPIRVTypeID(ResType))
2562 .addUse(Y)
2563 .addUse(GR.getOrCreateConstInt(i * 8, I, EltType, TII, ZeroAsNull))
2564 .addUse(GR.getOrCreateConstInt(8, I, EltType, TII, ZeroAsNull))
2565 .constrainAllUses(TII, TRI, RBI);
2566
2567 // A[i] * B[i]
2568 Register Mul = MRI->createVirtualRegister(&SPIRV::IDRegClass);
2569 Result &= BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpIMulS))
2570 .addDef(Mul)
2571 .addUse(GR.getSPIRVTypeID(ResType))
2572 .addUse(AElt)
2573 .addUse(BElt)
2574 .constrainAllUses(TII, TRI, RBI);
2575
2576 // Discard 24 highest-bits so that stored i32 register is i8 equivalent
2577 Register MaskMul = MRI->createVirtualRegister(&SPIRV::IDRegClass);
2578 Result &=
2579 BuildMI(BB, I, I.getDebugLoc(), TII.get(ExtractOp))
2580 .addDef(MaskMul)
2581 .addUse(GR.getSPIRVTypeID(ResType))
2582 .addUse(Mul)
2583 .addUse(GR.getOrCreateConstInt(0, I, EltType, TII, ZeroAsNull))
2584 .addUse(GR.getOrCreateConstInt(8, I, EltType, TII, ZeroAsNull))
2585 .constrainAllUses(TII, TRI, RBI);
2586
2587 // Acc = Acc + A[i] * B[i]
2588 Register Sum =
2589 i < 3 ? MRI->createVirtualRegister(&SPIRV::IDRegClass) : ResVReg;
2590 Result &= BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpIAddS))
2591 .addDef(Sum)
2592 .addUse(GR.getSPIRVTypeID(ResType))
2593 .addUse(Acc)
2594 .addUse(MaskMul)
2595 .constrainAllUses(TII, TRI, RBI);
2596
2597 Acc = Sum;
2598 }
2599
2600 return Result;
2601}
2602
2603/// Transform saturate(x) to clamp(x, 0.0f, 1.0f) as SPIRV
2604/// does not have a saturate builtin.
2605bool SPIRVInstructionSelector::selectSaturate(Register ResVReg,
2606 const SPIRVType *ResType,
2607 MachineInstr &I) const {
2608 assert(I.getNumOperands() == 3);
2609 assert(I.getOperand(2).isReg());
2610 MachineBasicBlock &BB = *I.getParent();
2611 Register VZero = buildZerosValF(ResType, I);
2612 Register VOne = buildOnesValF(ResType, I);
2613
2614 return BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpExtInst))
2615 .addDef(ResVReg)
2616 .addUse(GR.getSPIRVTypeID(ResType))
2617 .addImm(static_cast<uint32_t>(SPIRV::InstructionSet::GLSL_std_450))
2618 .addImm(GL::FClamp)
2619 .addUse(I.getOperand(2).getReg())
2620 .addUse(VZero)
2621 .addUse(VOne)
2622 .constrainAllUses(TII, TRI, RBI);
2623}
2624
2625bool SPIRVInstructionSelector::selectSign(Register ResVReg,
2626 const SPIRVType *ResType,
2627 MachineInstr &I) const {
2628 assert(I.getNumOperands() == 3);
2629 assert(I.getOperand(2).isReg());
2630 MachineBasicBlock &BB = *I.getParent();
2631 Register InputRegister = I.getOperand(2).getReg();
2632 SPIRVType *InputType = GR.getSPIRVTypeForVReg(InputRegister);
2633 auto &DL = I.getDebugLoc();
2634
2635 if (!InputType)
2636 report_fatal_error("Input Type could not be determined.");
2637
2638 bool IsFloatTy = GR.isScalarOrVectorOfType(InputRegister, SPIRV::OpTypeFloat);
2639
2640 unsigned SignBitWidth = GR.getScalarOrVectorBitWidth(InputType);
2641 unsigned ResBitWidth = GR.getScalarOrVectorBitWidth(ResType);
2642
2643 bool NeedsConversion = IsFloatTy || SignBitWidth != ResBitWidth;
2644
2645 auto SignOpcode = IsFloatTy ? GL::FSign : GL::SSign;
2646 Register SignReg = NeedsConversion
2647 ? MRI->createVirtualRegister(&SPIRV::IDRegClass)
2648 : ResVReg;
2649
2650 bool Result =
2651 BuildMI(BB, I, DL, TII.get(SPIRV::OpExtInst))
2652 .addDef(SignReg)
2653 .addUse(GR.getSPIRVTypeID(InputType))
2654 .addImm(static_cast<uint32_t>(SPIRV::InstructionSet::GLSL_std_450))
2655 .addImm(SignOpcode)
2656 .addUse(InputRegister)
2657 .constrainAllUses(TII, TRI, RBI);
2658
2659 if (NeedsConversion) {
2660 auto ConvertOpcode = IsFloatTy ? SPIRV::OpConvertFToS : SPIRV::OpSConvert;
2661 Result &= BuildMI(*I.getParent(), I, DL, TII.get(ConvertOpcode))
2662 .addDef(ResVReg)
2663 .addUse(GR.getSPIRVTypeID(ResType))
2664 .addUse(SignReg)
2665 .constrainAllUses(TII, TRI, RBI);
2666 }
2667
2668 return Result;
2669}
2670
2671bool SPIRVInstructionSelector::selectWaveOpInst(Register ResVReg,
2672 const SPIRVType *ResType,
2673 MachineInstr &I,
2674 unsigned Opcode) const {
2675 MachineBasicBlock &BB = *I.getParent();
2676 SPIRVType *IntTy = GR.getOrCreateSPIRVIntegerType(32, I, TII);
2677
2678 auto BMI = BuildMI(BB, I, I.getDebugLoc(), TII.get(Opcode))
2679 .addDef(ResVReg)
2680 .addUse(GR.getSPIRVTypeID(ResType))
2681 .addUse(GR.getOrCreateConstInt(SPIRV::Scope::Subgroup, I,
2682 IntTy, TII, !STI.isShader()));
2683
2684 for (unsigned J = 2; J < I.getNumOperands(); J++) {
2685 BMI.addUse(I.getOperand(J).getReg());
2686 }
2687
2688 return BMI.constrainAllUses(TII, TRI, RBI);
2689}
2690
2691bool SPIRVInstructionSelector::selectWaveActiveCountBits(
2692 Register ResVReg, const SPIRVType *ResType, MachineInstr &I) const {
2693
2694 SPIRVType *IntTy = GR.getOrCreateSPIRVIntegerType(32, I, TII);
2695 SPIRVType *BallotType = GR.getOrCreateSPIRVVectorType(IntTy, 4, I, TII);
2696 Register BallotReg = MRI->createVirtualRegister(GR.getRegClass(BallotType));
2697 bool Result = selectWaveOpInst(BallotReg, BallotType, I,
2698 SPIRV::OpGroupNonUniformBallot);
2699
2700 MachineBasicBlock &BB = *I.getParent();
2701 Result &= BuildMI(BB, I, I.getDebugLoc(),
2702 TII.get(SPIRV::OpGroupNonUniformBallotBitCount))
2703 .addDef(ResVReg)
2704 .addUse(GR.getSPIRVTypeID(ResType))
2705 .addUse(GR.getOrCreateConstInt(SPIRV::Scope::Subgroup, I, IntTy,
2706 TII, !STI.isShader()))
2707 .addImm(SPIRV::GroupOperation::Reduce)
2708 .addUse(BallotReg)
2709 .constrainAllUses(TII, TRI, RBI);
2710
2711 return Result;
2712}
2713
2714bool SPIRVInstructionSelector::selectWaveReduceMax(Register ResVReg,
2715 const SPIRVType *ResType,
2716 MachineInstr &I,
2717 bool IsUnsigned) const {
2718 assert(I.getNumOperands() == 3);
2719 assert(I.getOperand(2).isReg());
2720 MachineBasicBlock &BB = *I.getParent();
2721 Register InputRegister = I.getOperand(2).getReg();
2722 SPIRVType *InputType = GR.getSPIRVTypeForVReg(InputRegister);
2723
2724 if (!InputType)
2725 report_fatal_error("Input Type could not be determined.");
2726
2727 SPIRVType *IntTy = GR.getOrCreateSPIRVIntegerType(32, I, TII);
2728 // Retreive the operation to use based on input type
2729 bool IsFloatTy = GR.isScalarOrVectorOfType(InputRegister, SPIRV::OpTypeFloat);
2730 auto IntegerOpcodeType =
2731 IsUnsigned ? SPIRV::OpGroupNonUniformUMax : SPIRV::OpGroupNonUniformSMax;
2732 auto Opcode = IsFloatTy ? SPIRV::OpGroupNonUniformFMax : IntegerOpcodeType;
2733 return BuildMI(BB, I, I.getDebugLoc(), TII.get(Opcode))
2734 .addDef(ResVReg)
2735 .addUse(GR.getSPIRVTypeID(ResType))
2736 .addUse(GR.getOrCreateConstInt(SPIRV::Scope::Subgroup, I, IntTy, TII,
2737 !STI.isShader()))
2738 .addImm(SPIRV::GroupOperation::Reduce)
2739 .addUse(I.getOperand(2).getReg())
2740 .constrainAllUses(TII, TRI, RBI);
2741}
2742
2743bool SPIRVInstructionSelector::selectWaveReduceMin(Register ResVReg,
2744 const SPIRVType *ResType,
2745 MachineInstr &I,
2746 bool IsUnsigned) const {
2747 assert(I.getNumOperands() == 3);
2748 assert(I.getOperand(2).isReg());
2749 MachineBasicBlock &BB = *I.getParent();
2750 Register InputRegister = I.getOperand(2).getReg();
2751 SPIRVType *InputType = GR.getSPIRVTypeForVReg(InputRegister);
2752
2753 if (!InputType)
2754 report_fatal_error("Input Type could not be determined.");
2755
2756 SPIRVType *IntTy = GR.getOrCreateSPIRVIntegerType(32, I, TII);
2757 // Retreive the operation to use based on input type
2758 bool IsFloatTy = GR.isScalarOrVectorOfType(InputRegister, SPIRV::OpTypeFloat);
2759 auto IntegerOpcodeType =
2760 IsUnsigned ? SPIRV::OpGroupNonUniformUMin : SPIRV::OpGroupNonUniformSMin;
2761 auto Opcode = IsFloatTy ? SPIRV::OpGroupNonUniformFMin : IntegerOpcodeType;
2762 return BuildMI(BB, I, I.getDebugLoc(), TII.get(Opcode))
2763 .addDef(ResVReg)
2764 .addUse(GR.getSPIRVTypeID(ResType))
2765 .addUse(GR.getOrCreateConstInt(SPIRV::Scope::Subgroup, I, IntTy, TII,
2766 !STI.isShader()))
2767 .addImm(SPIRV::GroupOperation::Reduce)
2768 .addUse(I.getOperand(2).getReg())
2769 .constrainAllUses(TII, TRI, RBI);
2770}
2771
2772bool SPIRVInstructionSelector::selectWaveReduceSum(Register ResVReg,
2773 const SPIRVType *ResType,
2774 MachineInstr &I) const {
2775 assert(I.getNumOperands() == 3);
2776 assert(I.getOperand(2).isReg());
2777 MachineBasicBlock &BB = *I.getParent();
2778 Register InputRegister = I.getOperand(2).getReg();
2779 SPIRVType *InputType = GR.getSPIRVTypeForVReg(InputRegister);
2780
2781 if (!InputType)
2782 report_fatal_error("Input Type could not be determined.");
2783
2784 SPIRVType *IntTy = GR.getOrCreateSPIRVIntegerType(32, I, TII);
2785 // Retreive the operation to use based on input type
2786 bool IsFloatTy = GR.isScalarOrVectorOfType(InputRegister, SPIRV::OpTypeFloat);
2787 auto Opcode =
2788 IsFloatTy ? SPIRV::OpGroupNonUniformFAdd : SPIRV::OpGroupNonUniformIAdd;
2789 return BuildMI(BB, I, I.getDebugLoc(), TII.get(Opcode))
2790 .addDef(ResVReg)
2791 .addUse(GR.getSPIRVTypeID(ResType))
2792 .addUse(GR.getOrCreateConstInt(SPIRV::Scope::Subgroup, I, IntTy, TII,
2793 !STI.isShader()))
2794 .addImm(SPIRV::GroupOperation::Reduce)
2795 .addUse(I.getOperand(2).getReg());
2796}
2797
2798bool SPIRVInstructionSelector::selectBitreverse(Register ResVReg,
2799 const SPIRVType *ResType,
2800 MachineInstr &I) const {
2801 MachineBasicBlock &BB = *I.getParent();
2802 return BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpBitReverse))
2803 .addDef(ResVReg)
2804 .addUse(GR.getSPIRVTypeID(ResType))
2805 .addUse(I.getOperand(1).getReg())
2806 .constrainAllUses(TII, TRI, RBI);
2807}
2808
2809bool SPIRVInstructionSelector::selectFreeze(Register ResVReg,
2810 const SPIRVType *ResType,
2811 MachineInstr &I) const {
2812 // There is no way to implement `freeze` correctly without support on SPIR-V
2813 // standard side, but we may at least address a simple (static) case when
2814 // undef/poison value presence is obvious. The main benefit of even
2815 // incomplete `freeze` support is preventing of translation from crashing due
2816 // to lack of support on legalization and instruction selection steps.
2817 if (!I.getOperand(0).isReg() || !I.getOperand(1).isReg())
2818 return false;
2819 Register OpReg = I.getOperand(1).getReg();
2820 if (MachineInstr *Def = MRI->getVRegDef(OpReg)) {
2821 if (Def->getOpcode() == TargetOpcode::COPY)
2822 Def = MRI->getVRegDef(Def->getOperand(1).getReg());
2823 Register Reg;
2824 switch (Def->getOpcode()) {
2825 case SPIRV::ASSIGN_TYPE:
2826 if (MachineInstr *AssignToDef =
2827 MRI->getVRegDef(Def->getOperand(1).getReg())) {
2828 if (AssignToDef->getOpcode() == TargetOpcode::G_IMPLICIT_DEF)
2829 Reg = Def->getOperand(2).getReg();
2830 }
2831 break;
2832 case SPIRV::OpUndef:
2833 Reg = Def->getOperand(1).getReg();
2834 break;
2835 }
2836 unsigned DestOpCode;
2837 if (Reg.isValid()) {
2838 DestOpCode = SPIRV::OpConstantNull;
2839 } else {
2840 DestOpCode = TargetOpcode::COPY;
2841 Reg = OpReg;
2842 }
2843 return BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(DestOpCode))
2844 .addDef(I.getOperand(0).getReg())
2845 .addUse(Reg)
2846 .constrainAllUses(TII, TRI, RBI);
2847 }
2848 return false;
2849}
2850
2851bool SPIRVInstructionSelector::selectBuildVector(Register ResVReg,
2852 const SPIRVType *ResType,
2853 MachineInstr &I) const {
2854 unsigned N = 0;
2855 if (ResType->getOpcode() == SPIRV::OpTypeVector)
2856 N = GR.getScalarOrVectorComponentCount(ResType);
2857 else if (ResType->getOpcode() == SPIRV::OpTypeArray)
2858 N = getArrayComponentCount(MRI, ResType);
2859 else
2860 report_fatal_error("Cannot select G_BUILD_VECTOR with a non-vector result");
2861 if (I.getNumExplicitOperands() - I.getNumExplicitDefs() != N)
2862 report_fatal_error("G_BUILD_VECTOR and the result type are inconsistent");
2863
2864 // check if we may construct a constant vector
2865 bool IsConst = true;
2866 for (unsigned i = I.getNumExplicitDefs();
2867 i < I.getNumExplicitOperands() && IsConst; ++i)
2868 if (!isConstReg(MRI, I.getOperand(i).getReg()))
2869 IsConst = false;
2870
2871 if (!IsConst && N < 2)
2873 "There must be at least two constituent operands in a vector");
2874
2875 MRI->setRegClass(ResVReg, GR.getRegClass(ResType));
2876 auto MIB = BuildMI(*I.getParent(), I, I.getDebugLoc(),
2877 TII.get(IsConst ? SPIRV::OpConstantComposite
2878 : SPIRV::OpCompositeConstruct))
2879 .addDef(ResVReg)
2880 .addUse(GR.getSPIRVTypeID(ResType));
2881 for (unsigned i = I.getNumExplicitDefs(); i < I.getNumExplicitOperands(); ++i)
2882 MIB.addUse(I.getOperand(i).getReg());
2883 return MIB.constrainAllUses(TII, TRI, RBI);
2884}
2885
2886bool SPIRVInstructionSelector::selectSplatVector(Register ResVReg,
2887 const SPIRVType *ResType,
2888 MachineInstr &I) const {
2889 unsigned N = 0;
2890 if (ResType->getOpcode() == SPIRV::OpTypeVector)
2891 N = GR.getScalarOrVectorComponentCount(ResType);
2892 else if (ResType->getOpcode() == SPIRV::OpTypeArray)
2893 N = getArrayComponentCount(MRI, ResType);
2894 else
2895 report_fatal_error("Cannot select G_SPLAT_VECTOR with a non-vector result");
2896
2897 unsigned OpIdx = I.getNumExplicitDefs();
2898 if (!I.getOperand(OpIdx).isReg())
2899 report_fatal_error("Unexpected argument in G_SPLAT_VECTOR");
2900
2901 // check if we may construct a constant vector
2902 Register OpReg = I.getOperand(OpIdx).getReg();
2903 bool IsConst = isConstReg(MRI, OpReg);
2904
2905 if (!IsConst && N < 2)
2907 "There must be at least two constituent operands in a vector");
2908
2909 MRI->setRegClass(ResVReg, GR.getRegClass(ResType));
2910 auto MIB = BuildMI(*I.getParent(), I, I.getDebugLoc(),
2911 TII.get(IsConst ? SPIRV::OpConstantComposite
2912 : SPIRV::OpCompositeConstruct))
2913 .addDef(ResVReg)
2914 .addUse(GR.getSPIRVTypeID(ResType));
2915 for (unsigned i = 0; i < N; ++i)
2916 MIB.addUse(OpReg);
2917 return MIB.constrainAllUses(TII, TRI, RBI);
2918}
2919
2920bool SPIRVInstructionSelector::selectDiscard(Register ResVReg,
2921 const SPIRVType *ResType,
2922 MachineInstr &I) const {
2923
2924 unsigned Opcode;
2925
2926 if (STI.canUseExtension(
2927 SPIRV::Extension::SPV_EXT_demote_to_helper_invocation) ||
2928 STI.isAtLeastSPIRVVer(llvm::VersionTuple(1, 6))) {
2929 Opcode = SPIRV::OpDemoteToHelperInvocation;
2930 } else {
2931 Opcode = SPIRV::OpKill;
2932 // OpKill must be the last operation of any basic block.
2933 if (MachineInstr *NextI = I.getNextNode()) {
2934 GR.invalidateMachineInstr(NextI);
2935 NextI->removeFromParent();
2936 }
2937 }
2938
2939 MachineBasicBlock &BB = *I.getParent();
2940 return BuildMI(BB, I, I.getDebugLoc(), TII.get(Opcode))
2941 .constrainAllUses(TII, TRI, RBI);
2942}
2943
2944bool SPIRVInstructionSelector::selectCmp(Register ResVReg,
2945 const SPIRVType *ResType,
2946 unsigned CmpOpc,
2947 MachineInstr &I) const {
2948 Register Cmp0 = I.getOperand(2).getReg();
2949 Register Cmp1 = I.getOperand(3).getReg();
2950 assert(GR.getSPIRVTypeForVReg(Cmp0)->getOpcode() ==
2951 GR.getSPIRVTypeForVReg(Cmp1)->getOpcode() &&
2952 "CMP operands should have the same type");
2953 return BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(CmpOpc))
2954 .addDef(ResVReg)
2955 .addUse(GR.getSPIRVTypeID(ResType))
2956 .addUse(Cmp0)
2957 .addUse(Cmp1)
2958 .setMIFlags(I.getFlags())
2959 .constrainAllUses(TII, TRI, RBI);
2960}
2961
2962bool SPIRVInstructionSelector::selectICmp(Register ResVReg,
2963 const SPIRVType *ResType,
2964 MachineInstr &I) const {
2965 auto Pred = I.getOperand(1).getPredicate();
2966 unsigned CmpOpc;
2967
2968 Register CmpOperand = I.getOperand(2).getReg();
2969 if (GR.isScalarOfType(CmpOperand, SPIRV::OpTypePointer))
2970 CmpOpc = getPtrCmpOpcode(Pred);
2971 else if (GR.isScalarOrVectorOfType(CmpOperand, SPIRV::OpTypeBool))
2972 CmpOpc = getBoolCmpOpcode(Pred);
2973 else
2974 CmpOpc = getICmpOpcode(Pred);
2975 return selectCmp(ResVReg, ResType, CmpOpc, I);
2976}
2977
2978std::pair<Register, bool>
2979SPIRVInstructionSelector::buildI32Constant(uint32_t Val, MachineInstr &I,
2980 const SPIRVType *ResType) const {
2981 Type *LLVMTy = IntegerType::get(GR.CurMF->getFunction().getContext(), 32);
2982 const SPIRVType *SpvI32Ty =
2983 ResType ? ResType : GR.getOrCreateSPIRVIntegerType(32, I, TII);
2984 // Find a constant in DT or build a new one.
2985 auto ConstInt = ConstantInt::get(LLVMTy, Val);
2986 Register NewReg = GR.find(ConstInt, GR.CurMF);
2987 bool Result = true;
2988 if (!NewReg.isValid()) {
2989 NewReg = MRI->createGenericVirtualRegister(LLT::scalar(64));
2990 MachineBasicBlock &BB = *I.getParent();
2991 MachineInstr *MI =
2992 Val == 0
2993 ? BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpConstantNull))
2994 .addDef(NewReg)
2995 .addUse(GR.getSPIRVTypeID(SpvI32Ty))
2996 : BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpConstantI))
2997 .addDef(NewReg)
2998 .addUse(GR.getSPIRVTypeID(SpvI32Ty))
2999 .addImm(APInt(32, Val).getZExtValue());
3001 GR.add(ConstInt, MI);
3002 }
3003 return {NewReg, Result};
3004}
3005
3006bool SPIRVInstructionSelector::selectFCmp(Register ResVReg,
3007 const SPIRVType *ResType,
3008 MachineInstr &I) const {
3009 unsigned CmpOp = getFCmpOpcode(I.getOperand(1).getPredicate());
3010 return selectCmp(ResVReg, ResType, CmpOp, I);
3011}
3012
3013Register SPIRVInstructionSelector::buildZerosVal(const SPIRVType *ResType,
3014 MachineInstr &I) const {
3015 // OpenCL uses nulls for Zero. In HLSL we don't use null constants.
3016 bool ZeroAsNull = !STI.isShader();
3017 if (ResType->getOpcode() == SPIRV::OpTypeVector)
3018 return GR.getOrCreateConstVector(0UL, I, ResType, TII, ZeroAsNull);
3019 return GR.getOrCreateConstInt(0, I, ResType, TII, ZeroAsNull);
3020}
3021
3022Register SPIRVInstructionSelector::buildZerosValF(const SPIRVType *ResType,
3023 MachineInstr &I) const {
3024 // OpenCL uses nulls for Zero. In HLSL we don't use null constants.
3025 bool ZeroAsNull = !STI.isShader();
3026 APFloat VZero = getZeroFP(GR.getTypeForSPIRVType(ResType));
3027 if (ResType->getOpcode() == SPIRV::OpTypeVector)
3028 return GR.getOrCreateConstVector(VZero, I, ResType, TII, ZeroAsNull);
3029 return GR.getOrCreateConstFP(VZero, I, ResType, TII, ZeroAsNull);
3030}
3031
3032Register SPIRVInstructionSelector::buildOnesValF(const SPIRVType *ResType,
3033 MachineInstr &I) const {
3034 // OpenCL uses nulls for Zero. In HLSL we don't use null constants.
3035 bool ZeroAsNull = !STI.isShader();
3036 APFloat VOne = getOneFP(GR.getTypeForSPIRVType(ResType));
3037 if (ResType->getOpcode() == SPIRV::OpTypeVector)
3038 return GR.getOrCreateConstVector(VOne, I, ResType, TII, ZeroAsNull);
3039 return GR.getOrCreateConstFP(VOne, I, ResType, TII, ZeroAsNull);
3040}
3041
3042Register SPIRVInstructionSelector::buildOnesVal(bool AllOnes,
3043 const SPIRVType *ResType,
3044 MachineInstr &I) const {
3045 unsigned BitWidth = GR.getScalarOrVectorBitWidth(ResType);
3046 APInt One =
3047 AllOnes ? APInt::getAllOnes(BitWidth) : APInt::getOneBitSet(BitWidth, 0);
3048 if (ResType->getOpcode() == SPIRV::OpTypeVector)
3049 return GR.getOrCreateConstVector(One.getZExtValue(), I, ResType, TII);
3050 return GR.getOrCreateConstInt(One.getZExtValue(), I, ResType, TII);
3051}
3052
3053bool SPIRVInstructionSelector::selectSelect(Register ResVReg,
3054 const SPIRVType *ResType,
3055 MachineInstr &I) const {
3056 Register SelectFirstArg = I.getOperand(2).getReg();
3057 Register SelectSecondArg = I.getOperand(3).getReg();
3058 assert(ResType == GR.getSPIRVTypeForVReg(SelectFirstArg) &&
3059 ResType == GR.getSPIRVTypeForVReg(SelectSecondArg));
3060
3061 bool IsFloatTy =
3062 GR.isScalarOrVectorOfType(SelectFirstArg, SPIRV::OpTypeFloat);
3063 bool IsPtrTy =
3064 GR.isScalarOrVectorOfType(SelectFirstArg, SPIRV::OpTypePointer);
3065 bool IsVectorTy = GR.getSPIRVTypeForVReg(SelectFirstArg)->getOpcode() ==
3066 SPIRV::OpTypeVector;
3067
3068 bool IsScalarBool =
3069 GR.isScalarOfType(I.getOperand(1).getReg(), SPIRV::OpTypeBool);
3070 unsigned Opcode;
3071 if (IsVectorTy) {
3072 if (IsFloatTy) {
3073 Opcode = IsScalarBool ? SPIRV::OpSelectVFSCond : SPIRV::OpSelectVFVCond;
3074 } else if (IsPtrTy) {
3075 Opcode = IsScalarBool ? SPIRV::OpSelectVPSCond : SPIRV::OpSelectVPVCond;
3076 } else {
3077 Opcode = IsScalarBool ? SPIRV::OpSelectVISCond : SPIRV::OpSelectVIVCond;
3078 }
3079 } else {
3080 if (IsFloatTy) {
3081 Opcode = IsScalarBool ? SPIRV::OpSelectSFSCond : SPIRV::OpSelectVFVCond;
3082 } else if (IsPtrTy) {
3083 Opcode = IsScalarBool ? SPIRV::OpSelectSPSCond : SPIRV::OpSelectVPVCond;
3084 } else {
3085 Opcode = IsScalarBool ? SPIRV::OpSelectSISCond : SPIRV::OpSelectVIVCond;
3086 }
3087 }
3088 return BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(Opcode))
3089 .addDef(ResVReg)
3090 .addUse(GR.getSPIRVTypeID(ResType))
3091 .addUse(I.getOperand(1).getReg())
3092 .addUse(SelectFirstArg)
3093 .addUse(SelectSecondArg)
3094 .constrainAllUses(TII, TRI, RBI);
3095}
3096
3097bool SPIRVInstructionSelector::selectSelectDefaultArgs(Register ResVReg,
3098 const SPIRVType *ResType,
3099 MachineInstr &I,
3100 bool IsSigned) const {
3101 // To extend a bool, we need to use OpSelect between constants.
3102 Register ZeroReg = buildZerosVal(ResType, I);
3103 Register OneReg = buildOnesVal(IsSigned, ResType, I);
3104 bool IsScalarBool =
3105 GR.isScalarOfType(I.getOperand(1).getReg(), SPIRV::OpTypeBool);
3106 unsigned Opcode =
3107 IsScalarBool ? SPIRV::OpSelectSISCond : SPIRV::OpSelectVIVCond;
3108 return BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(Opcode))
3109 .addDef(ResVReg)
3110 .addUse(GR.getSPIRVTypeID(ResType))
3111 .addUse(I.getOperand(1).getReg())
3112 .addUse(OneReg)
3113 .addUse(ZeroReg)
3114 .constrainAllUses(TII, TRI, RBI);
3115}
3116
3117bool SPIRVInstructionSelector::selectIToF(Register ResVReg,
3118 const SPIRVType *ResType,
3119 MachineInstr &I, bool IsSigned,
3120 unsigned Opcode) const {
3121 Register SrcReg = I.getOperand(1).getReg();
3122 // We can convert bool value directly to float type without OpConvert*ToF,
3123 // however the translator generates OpSelect+OpConvert*ToF, so we do the same.
3124 if (GR.isScalarOrVectorOfType(I.getOperand(1).getReg(), SPIRV::OpTypeBool)) {
3125 unsigned BitWidth = GR.getScalarOrVectorBitWidth(ResType);
3127 if (ResType->getOpcode() == SPIRV::OpTypeVector) {
3128 const unsigned NumElts = ResType->getOperand(2).getImm();
3129 TmpType = GR.getOrCreateSPIRVVectorType(TmpType, NumElts, I, TII);
3130 }
3131 SrcReg = createVirtualRegister(TmpType, &GR, MRI, MRI->getMF());
3132 selectSelectDefaultArgs(SrcReg, TmpType, I, false);
3133 }
3134 return selectOpWithSrcs(ResVReg, ResType, I, {SrcReg}, Opcode);
3135}
3136
3137bool SPIRVInstructionSelector::selectExt(Register ResVReg,
3138 const SPIRVType *ResType,
3139 MachineInstr &I, bool IsSigned) const {
3140 Register SrcReg = I.getOperand(1).getReg();
3141 if (GR.isScalarOrVectorOfType(SrcReg, SPIRV::OpTypeBool))
3142 return selectSelectDefaultArgs(ResVReg, ResType, I, IsSigned);
3143
3144 SPIRVType *SrcType = GR.getSPIRVTypeForVReg(SrcReg);
3145 if (SrcType == ResType)
3146 return BuildCOPY(ResVReg, SrcReg, I);
3147
3148 unsigned Opcode = IsSigned ? SPIRV::OpSConvert : SPIRV::OpUConvert;
3149 return selectUnOp(ResVReg, ResType, I, Opcode);
3150}
3151
3152bool SPIRVInstructionSelector::selectSUCmp(Register ResVReg,
3153 const SPIRVType *ResType,
3154 MachineInstr &I,
3155 bool IsSigned) const {
3156 MachineIRBuilder MIRBuilder(I);
3157 MachineRegisterInfo *MRI = MIRBuilder.getMRI();
3158 MachineBasicBlock &BB = *I.getParent();
3159 // Ensure we have bool.
3160 SPIRVType *BoolType = GR.getOrCreateSPIRVBoolType(I, TII);
3161 unsigned N = GR.getScalarOrVectorComponentCount(ResType);
3162 if (N > 1)
3163 BoolType = GR.getOrCreateSPIRVVectorType(BoolType, N, I, TII);
3164 Register BoolTypeReg = GR.getSPIRVTypeID(BoolType);
3165 // Build less-than-equal and less-than.
3166 // TODO: replace with one-liner createVirtualRegister() from
3167 // llvm/lib/Target/SPIRV/SPIRVUtils.cpp when PR #116609 is merged.
3168 Register IsLessEqReg = MRI->createVirtualRegister(GR.getRegClass(ResType));
3169 MRI->setType(IsLessEqReg, LLT::scalar(64));
3170 GR.assignSPIRVTypeToVReg(ResType, IsLessEqReg, MIRBuilder.getMF());
3171 bool Result = BuildMI(BB, I, I.getDebugLoc(),
3172 TII.get(IsSigned ? SPIRV::OpSLessThanEqual
3173 : SPIRV::OpULessThanEqual))
3174 .addDef(IsLessEqReg)
3175 .addUse(BoolTypeReg)
3176 .addUse(I.getOperand(1).getReg())
3177 .addUse(I.getOperand(2).getReg())
3178 .constrainAllUses(TII, TRI, RBI);
3179 Register IsLessReg = MRI->createVirtualRegister(GR.getRegClass(ResType));
3180 MRI->setType(IsLessReg, LLT::scalar(64));
3181 GR.assignSPIRVTypeToVReg(ResType, IsLessReg, MIRBuilder.getMF());
3182 Result &= BuildMI(BB, I, I.getDebugLoc(),
3183 TII.get(IsSigned ? SPIRV::OpSLessThan : SPIRV::OpULessThan))
3184 .addDef(IsLessReg)
3185 .addUse(BoolTypeReg)
3186 .addUse(I.getOperand(1).getReg())
3187 .addUse(I.getOperand(2).getReg())
3188 .constrainAllUses(TII, TRI, RBI);
3189 // Build selects.
3190 Register ResTypeReg = GR.getSPIRVTypeID(ResType);
3191 Register NegOneOrZeroReg =
3192 MRI->createVirtualRegister(GR.getRegClass(ResType));
3193 MRI->setType(NegOneOrZeroReg, LLT::scalar(64));
3194 GR.assignSPIRVTypeToVReg(ResType, NegOneOrZeroReg, MIRBuilder.getMF());
3195 unsigned SelectOpcode =
3196 N > 1 ? SPIRV::OpSelectVIVCond : SPIRV::OpSelectSISCond;
3197 Result &= BuildMI(BB, I, I.getDebugLoc(), TII.get(SelectOpcode))
3198 .addDef(NegOneOrZeroReg)
3199 .addUse(ResTypeReg)
3200 .addUse(IsLessReg)
3201 .addUse(buildOnesVal(true, ResType, I)) // -1
3202 .addUse(buildZerosVal(ResType, I))
3203 .constrainAllUses(TII, TRI, RBI);
3204 return Result & BuildMI(BB, I, I.getDebugLoc(), TII.get(SelectOpcode))
3205 .addDef(ResVReg)
3206 .addUse(ResTypeReg)
3207 .addUse(IsLessEqReg)
3208 .addUse(NegOneOrZeroReg) // -1 or 0
3209 .addUse(buildOnesVal(false, ResType, I))
3210 .constrainAllUses(TII, TRI, RBI);
3211}
3212
3213bool SPIRVInstructionSelector::selectIntToBool(Register IntReg,
3214 Register ResVReg,
3215 MachineInstr &I,
3216 const SPIRVType *IntTy,
3217 const SPIRVType *BoolTy) const {
3218 // To truncate to a bool, we use OpBitwiseAnd 1 and OpINotEqual to zero.
3219 Register BitIntReg = createVirtualRegister(IntTy, &GR, MRI, MRI->getMF());
3220 bool IsVectorTy = IntTy->getOpcode() == SPIRV::OpTypeVector;
3221 unsigned Opcode = IsVectorTy ? SPIRV::OpBitwiseAndV : SPIRV::OpBitwiseAndS;
3222 Register Zero = buildZerosVal(IntTy, I);
3223 Register One = buildOnesVal(false, IntTy, I);
3224 MachineBasicBlock &BB = *I.getParent();
3225 bool Result = BuildMI(BB, I, I.getDebugLoc(), TII.get(Opcode))
3226 .addDef(BitIntReg)
3227 .addUse(GR.getSPIRVTypeID(IntTy))
3228 .addUse(IntReg)
3229 .addUse(One)
3230 .constrainAllUses(TII, TRI, RBI);
3231 return Result && BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpINotEqual))
3232 .addDef(ResVReg)
3233 .addUse(GR.getSPIRVTypeID(BoolTy))
3234 .addUse(BitIntReg)
3235 .addUse(Zero)
3236 .constrainAllUses(TII, TRI, RBI);
3237}
3238
3239bool SPIRVInstructionSelector::selectTrunc(Register ResVReg,
3240 const SPIRVType *ResType,
3241 MachineInstr &I) const {
3242 Register IntReg = I.getOperand(1).getReg();
3243 const SPIRVType *ArgType = GR.getSPIRVTypeForVReg(IntReg);
3244 if (GR.isScalarOrVectorOfType(ResVReg, SPIRV::OpTypeBool))
3245 return selectIntToBool(IntReg, ResVReg, I, ArgType, ResType);
3246 if (ArgType == ResType)
3247 return BuildCOPY(ResVReg, IntReg, I);
3248 bool IsSigned = GR.isScalarOrVectorSigned(ResType);
3249 unsigned Opcode = IsSigned ? SPIRV::OpSConvert : SPIRV::OpUConvert;
3250 return selectUnOp(ResVReg, ResType, I, Opcode);
3251}
3252
3253bool SPIRVInstructionSelector::selectConst(Register ResVReg,
3254 const SPIRVType *ResType,
3255 MachineInstr &I) const {
3256 unsigned Opcode = I.getOpcode();
3257 unsigned TpOpcode = ResType->getOpcode();
3258 Register Reg;
3259 if (TpOpcode == SPIRV::OpTypePointer || TpOpcode == SPIRV::OpTypeEvent) {
3260 assert(Opcode == TargetOpcode::G_CONSTANT &&
3261 I.getOperand(1).getCImm()->isZero());
3262 MachineBasicBlock &DepMBB = I.getMF()->front();
3263 MachineIRBuilder MIRBuilder(DepMBB, DepMBB.getFirstNonPHI());
3264 Reg = GR.getOrCreateConstNullPtr(MIRBuilder, ResType);
3265 } else if (Opcode == TargetOpcode::G_FCONSTANT) {
3266 Reg = GR.getOrCreateConstFP(I.getOperand(1).getFPImm()->getValue(), I,
3267 ResType, TII, !STI.isShader());
3268 } else {
3269 Reg = GR.getOrCreateConstInt(I.getOperand(1).getCImm()->getZExtValue(), I,
3270 ResType, TII, !STI.isShader());
3271 }
3272 return Reg == ResVReg ? true : BuildCOPY(ResVReg, Reg, I);
3273}
3274
3275bool SPIRVInstructionSelector::selectOpUndef(Register ResVReg,
3276 const SPIRVType *ResType,
3277 MachineInstr &I) const {
3278 return BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(SPIRV::OpUndef))
3279 .addDef(ResVReg)
3280 .addUse(GR.getSPIRVTypeID(ResType))
3281 .constrainAllUses(TII, TRI, RBI);
3282}
3283
3284bool SPIRVInstructionSelector::selectInsertVal(Register ResVReg,
3285 const SPIRVType *ResType,
3286 MachineInstr &I) const {
3287 MachineBasicBlock &BB = *I.getParent();
3288 auto MIB = BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpCompositeInsert))
3289 .addDef(ResVReg)
3290 .addUse(GR.getSPIRVTypeID(ResType))
3291 // object to insert
3292 .addUse(I.getOperand(3).getReg())
3293 // composite to insert into
3294 .addUse(I.getOperand(2).getReg());
3295 for (unsigned i = 4; i < I.getNumOperands(); i++)
3296 MIB.addImm(foldImm(I.getOperand(i), MRI));
3297 return MIB.constrainAllUses(TII, TRI, RBI);
3298}
3299
3300bool SPIRVInstructionSelector::selectExtractVal(Register ResVReg,
3301 const SPIRVType *ResType,
3302 MachineInstr &I) const {
3303 Type *MaybeResTy = nullptr;
3304 StringRef ResName;
3305 if (GR.findValueAttrs(&I, MaybeResTy, ResName) &&
3306 MaybeResTy != GR.getTypeForSPIRVType(ResType)) {
3307 assert(!MaybeResTy ||
3308 MaybeResTy->isAggregateType() &&
3309 "Expected aggregate type for extractv instruction");
3310 ResType = GR.getOrCreateSPIRVType(MaybeResTy, I,
3311 SPIRV::AccessQualifier::ReadWrite, false);
3312 GR.assignSPIRVTypeToVReg(ResType, ResVReg, *I.getMF());
3313 }
3314 MachineBasicBlock &BB = *I.getParent();
3315 auto MIB = BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpCompositeExtract))
3316 .addDef(ResVReg)
3317 .addUse(GR.getSPIRVTypeID(ResType))
3318 .addUse(I.getOperand(2).getReg());
3319 for (unsigned i = 3; i < I.getNumOperands(); i++)
3320 MIB.addImm(foldImm(I.getOperand(i), MRI));
3321 return MIB.constrainAllUses(TII, TRI, RBI);
3322}
3323
3324bool SPIRVInstructionSelector::selectInsertElt(Register ResVReg,
3325 const SPIRVType *ResType,
3326 MachineInstr &I) const {
3327 if (getImm(I.getOperand(4), MRI))
3328 return selectInsertVal(ResVReg, ResType, I);
3329 MachineBasicBlock &BB = *I.getParent();
3330 return BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpVectorInsertDynamic))
3331 .addDef(ResVReg)
3332 .addUse(GR.getSPIRVTypeID(ResType))
3333 .addUse(I.getOperand(2).getReg())
3334 .addUse(I.getOperand(3).getReg())
3335 .addUse(I.getOperand(4).getReg())
3336 .constrainAllUses(TII, TRI, RBI);
3337}
3338
3339bool SPIRVInstructionSelector::selectExtractElt(Register ResVReg,
3340 const SPIRVType *ResType,
3341 MachineInstr &I) const {
3342 if (getImm(I.getOperand(3), MRI))
3343 return selectExtractVal(ResVReg, ResType, I);
3344 MachineBasicBlock &BB = *I.getParent();
3345 return BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpVectorExtractDynamic))
3346 .addDef(ResVReg)
3347 .addUse(GR.getSPIRVTypeID(ResType))
3348 .addUse(I.getOperand(2).getReg())
3349 .addUse(I.getOperand(3).getReg())
3350 .constrainAllUses(TII, TRI, RBI);
3351}
3352
3353bool SPIRVInstructionSelector::selectGEP(Register ResVReg,
3354 const SPIRVType *ResType,
3355 MachineInstr &I) const {
3356 const bool IsGEPInBounds = I.getOperand(2).getImm();
3357
3358 // OpAccessChain could be used for OpenCL, but the SPIRV-LLVM Translator only
3359 // relies on PtrAccessChain, so we'll try not to deviate. For Vulkan however,
3360 // we have to use Op[InBounds]AccessChain.
3361 const unsigned Opcode = STI.isLogicalSPIRV()
3362 ? (IsGEPInBounds ? SPIRV::OpInBoundsAccessChain
3363 : SPIRV::OpAccessChain)
3364 : (IsGEPInBounds ? SPIRV::OpInBoundsPtrAccessChain
3365 : SPIRV::OpPtrAccessChain);
3366
3367 auto Res = BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(Opcode))
3368 .addDef(ResVReg)
3369 .addUse(GR.getSPIRVTypeID(ResType))
3370 // Object to get a pointer to.
3371 .addUse(I.getOperand(3).getReg());
3372 assert(
3373 (Opcode == SPIRV::OpPtrAccessChain ||
3374 Opcode == SPIRV::OpInBoundsPtrAccessChain ||
3375 (getImm(I.getOperand(4), MRI) && foldImm(I.getOperand(4), MRI) == 0)) &&
3376 "Cannot translate GEP to OpAccessChain. First index must be 0.");
3377
3378 // Adding indices.
3379 const unsigned StartingIndex =
3380 (Opcode == SPIRV::OpAccessChain || Opcode == SPIRV::OpInBoundsAccessChain)
3381 ? 5
3382 : 4;
3383 for (unsigned i = StartingIndex; i < I.getNumExplicitOperands(); ++i)
3384 Res.addUse(I.getOperand(i).getReg());
3385 return Res.constrainAllUses(TII, TRI, RBI);
3386}
3387
3388// Maybe wrap a value into OpSpecConstantOp
3389bool SPIRVInstructionSelector::wrapIntoSpecConstantOp(
3390 MachineInstr &I, SmallVector<Register> &CompositeArgs) const {
3391 bool Result = true;
3392 unsigned Lim = I.getNumExplicitOperands();
3393 for (unsigned i = I.getNumExplicitDefs() + 1; i < Lim; ++i) {
3394 Register OpReg = I.getOperand(i).getReg();
3395 MachineInstr *OpDefine = MRI->getVRegDef(OpReg);
3396 SPIRVType *OpType = GR.getSPIRVTypeForVReg(OpReg);
3397 SmallPtrSet<SPIRVType *, 4> Visited;
3398 if (!OpDefine || !OpType || isConstReg(MRI, OpDefine, Visited) ||
3399 OpDefine->getOpcode() == TargetOpcode::G_ADDRSPACE_CAST ||
3400 OpDefine->getOpcode() == TargetOpcode::G_INTTOPTR ||
3401 GR.isAggregateType(OpType)) {
3402 // The case of G_ADDRSPACE_CAST inside spv_const_composite() is processed
3403 // by selectAddrSpaceCast(), and G_INTTOPTR is processed by selectUnOp()
3404 CompositeArgs.push_back(OpReg);
3405 continue;
3406 }
3407 MachineFunction *MF = I.getMF();
3408 Register WrapReg = GR.find(OpDefine, MF);
3409 if (WrapReg.isValid()) {
3410 CompositeArgs.push_back(WrapReg);
3411 continue;
3412 }
3413 // Create a new register for the wrapper
3414 WrapReg = MRI->createVirtualRegister(GR.getRegClass(OpType));
3415 CompositeArgs.push_back(WrapReg);
3416 // Decorate the wrapper register and generate a new instruction
3417 MRI->setType(WrapReg, LLT::pointer(0, 64));
3418 GR.assignSPIRVTypeToVReg(OpType, WrapReg, *MF);
3419 auto MIB = BuildMI(*I.getParent(), I, I.getDebugLoc(),
3420 TII.get(SPIRV::OpSpecConstantOp))
3421 .addDef(WrapReg)
3422 .addUse(GR.getSPIRVTypeID(OpType))
3423 .addImm(static_cast<uint32_t>(SPIRV::Opcode::Bitcast))
3424 .addUse(OpReg);
3425 GR.add(OpDefine, MIB);
3426 Result = MIB.constrainAllUses(TII, TRI, RBI);
3427 if (!Result)
3428 break;
3429 }
3430 return Result;
3431}
3432
3433bool SPIRVInstructionSelector::selectDerivativeInst(
3434 Register ResVReg, const SPIRVType *ResType, MachineInstr &I,
3435 const unsigned DPdOpCode) const {
3436 // TODO: This should check specifically for Fragment Execution Model, but STI
3437 // doesn't provide that information yet. See #167562
3438 errorIfInstrOutsideShader(I);
3439
3440 // If the arg/result types are half then we need to wrap the instr in
3441 // conversions to float
3442 // This case occurs because a half arg/result is legal in HLSL but not spirv.
3443 Register SrcReg = I.getOperand(2).getReg();
3444 SPIRVType *SrcType = GR.getSPIRVTypeForVReg(SrcReg);
3445 unsigned BitWidth = std::min(GR.getScalarOrVectorBitWidth(SrcType),
3446 GR.getScalarOrVectorBitWidth(ResType));
3447 if (BitWidth == 32)
3448 return BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(DPdOpCode))
3449 .addDef(ResVReg)
3450 .addUse(GR.getSPIRVTypeID(ResType))
3451 .addUse(I.getOperand(2).getReg());
3452
3453 MachineIRBuilder MIRBuilder(I);
3454 unsigned componentCount = GR.getScalarOrVectorComponentCount(SrcType);
3455 SPIRVType *F32ConvertTy = GR.getOrCreateSPIRVFloatType(32, I, TII);
3456 if (componentCount != 1)
3457 F32ConvertTy = GR.getOrCreateSPIRVVectorType(F32ConvertTy, componentCount,
3458 MIRBuilder, false);
3459
3460 const TargetRegisterClass *RegClass = GR.getRegClass(SrcType);
3461 Register ConvertToVReg = MRI->createVirtualRegister(RegClass);
3462 Register DpdOpVReg = MRI->createVirtualRegister(RegClass);
3463
3464 bool Result =
3465 BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(SPIRV::OpFConvert))
3466 .addDef(ConvertToVReg)
3467 .addUse(GR.getSPIRVTypeID(F32ConvertTy))
3468 .addUse(SrcReg)
3469 .constrainAllUses(TII, TRI, RBI);
3470 Result &= BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(DPdOpCode))
3471 .addDef(DpdOpVReg)
3472 .addUse(GR.getSPIRVTypeID(F32ConvertTy))
3473 .addUse(ConvertToVReg)
3474 .constrainAllUses(TII, TRI, RBI);
3475 Result &=
3476 BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(SPIRV::OpFConvert))
3477 .addDef(ResVReg)
3478 .addUse(GR.getSPIRVTypeID(ResType))
3479 .addUse(DpdOpVReg)
3480 .constrainAllUses(TII, TRI, RBI);
3481 return Result;
3482}
3483
3484bool SPIRVInstructionSelector::selectIntrinsic(Register ResVReg,
3485 const SPIRVType *ResType,
3486 MachineInstr &I) const {
3487 MachineBasicBlock &BB = *I.getParent();
3488 Intrinsic::ID IID = cast<GIntrinsic>(I).getIntrinsicID();
3489 switch (IID) {
3490 case Intrinsic::spv_load:
3491 return selectLoad(ResVReg, ResType, I);
3492 case Intrinsic::spv_store:
3493 return selectStore(I);
3494 case Intrinsic::spv_extractv:
3495 return selectExtractVal(ResVReg, ResType, I);
3496 case Intrinsic::spv_insertv:
3497 return selectInsertVal(ResVReg, ResType, I);
3498 case Intrinsic::spv_extractelt:
3499 return selectExtractElt(ResVReg, ResType, I);
3500 case Intrinsic::spv_insertelt:
3501 return selectInsertElt(ResVReg, ResType, I);
3502 case Intrinsic::spv_gep:
3503 return selectGEP(ResVReg, ResType, I);
3504 case Intrinsic::spv_bitcast: {
3505 Register OpReg = I.getOperand(2).getReg();
3506 SPIRVType *OpType =
3507 OpReg.isValid() ? GR.getSPIRVTypeForVReg(OpReg) : nullptr;
3508 if (!GR.isBitcastCompatible(ResType, OpType))
3509 report_fatal_error("incompatible result and operand types in a bitcast");
3510 return selectOpWithSrcs(ResVReg, ResType, I, {OpReg}, SPIRV::OpBitcast);
3511 }
3512 case Intrinsic::spv_unref_global:
3513 case Intrinsic::spv_init_global: {
3514 MachineInstr *MI = MRI->getVRegDef(I.getOperand(1).getReg());
3515 MachineInstr *Init = I.getNumExplicitOperands() > 2
3516 ? MRI->getVRegDef(I.getOperand(2).getReg())
3517 : nullptr;
3518 assert(MI);
3519 Register GVarVReg = MI->getOperand(0).getReg();
3520 bool Res = selectGlobalValue(GVarVReg, *MI, Init);
3521 // We violate SSA form by inserting OpVariable and still having a gMIR
3522 // instruction %vreg = G_GLOBAL_VALUE @gvar. We need to fix this by erasing
3523 // the duplicated definition.
3524 if (MI->getOpcode() == TargetOpcode::G_GLOBAL_VALUE) {
3526 MI->removeFromParent();
3527 }
3528 return Res;
3529 }
3530 case Intrinsic::spv_undef: {
3531 auto MIB = BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpUndef))
3532 .addDef(ResVReg)
3533 .addUse(GR.getSPIRVTypeID(ResType));
3534 return MIB.constrainAllUses(TII, TRI, RBI);
3535 }
3536 case Intrinsic::spv_const_composite: {
3537 // If no values are attached, the composite is null constant.
3538 bool IsNull = I.getNumExplicitDefs() + 1 == I.getNumExplicitOperands();
3539 SmallVector<Register> CompositeArgs;
3540 MRI->setRegClass(ResVReg, GR.getRegClass(ResType));
3541
3542 // skip type MD node we already used when generated assign.type for this
3543 if (!IsNull) {
3544 if (!wrapIntoSpecConstantOp(I, CompositeArgs))
3545 return false;
3546 MachineIRBuilder MIR(I);
3547 SmallVector<MachineInstr *, 4> Instructions = createContinuedInstructions(
3548 MIR, SPIRV::OpConstantComposite, 3,
3549 SPIRV::OpConstantCompositeContinuedINTEL, CompositeArgs, ResVReg,
3550 GR.getSPIRVTypeID(ResType));
3551 for (auto *Instr : Instructions) {
3552 Instr->setDebugLoc(I.getDebugLoc());
3553 if (!constrainSelectedInstRegOperands(*Instr, TII, TRI, RBI))
3554 return false;
3555 }
3556 return true;
3557 } else {
3558 auto MIB = BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpConstantNull))
3559 .addDef(ResVReg)
3560 .addUse(GR.getSPIRVTypeID(ResType));
3561 return MIB.constrainAllUses(TII, TRI, RBI);
3562 }
3563 }
3564 case Intrinsic::spv_assign_name: {
3565 auto MIB = BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpName));
3566 MIB.addUse(I.getOperand(I.getNumExplicitDefs() + 1).getReg());
3567 for (unsigned i = I.getNumExplicitDefs() + 2;
3568 i < I.getNumExplicitOperands(); ++i) {
3569 MIB.addImm(I.getOperand(i).getImm());
3570 }
3571 return MIB.constrainAllUses(TII, TRI, RBI);
3572 }
3573 case Intrinsic::spv_switch: {
3574 auto MIB = BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpSwitch));
3575 for (unsigned i = 1; i < I.getNumExplicitOperands(); ++i) {
3576 if (I.getOperand(i).isReg())
3577 MIB.addReg(I.getOperand(i).getReg());
3578 else if (I.getOperand(i).isCImm())
3579 addNumImm(I.getOperand(i).getCImm()->getValue(), MIB);
3580 else if (I.getOperand(i).isMBB())
3581 MIB.addMBB(I.getOperand(i).getMBB());
3582 else
3583 llvm_unreachable("Unexpected OpSwitch operand");
3584 }
3585 return MIB.constrainAllUses(TII, TRI, RBI);
3586 }
3587 case Intrinsic::spv_loop_merge: {
3588 auto MIB = BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpLoopMerge));
3589 for (unsigned i = 1; i < I.getNumExplicitOperands(); ++i) {
3590 if (I.getOperand(i).isMBB())
3591 MIB.addMBB(I.getOperand(i).getMBB());
3592 else
3593 MIB.addImm(foldImm(I.getOperand(i), MRI));
3594 }
3595 return MIB.constrainAllUses(TII, TRI, RBI);
3596 }
3597 case Intrinsic::spv_selection_merge: {
3598 auto MIB =
3599 BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpSelectionMerge));
3600 assert(I.getOperand(1).isMBB() &&
3601 "operand 1 to spv_selection_merge must be a basic block");
3602 MIB.addMBB(I.getOperand(1).getMBB());
3603 MIB.addImm(getSelectionOperandForImm(I.getOperand(2).getImm()));
3604 return MIB.constrainAllUses(TII, TRI, RBI);
3605 }
3606 case Intrinsic::spv_cmpxchg:
3607 return selectAtomicCmpXchg(ResVReg, ResType, I);
3608 case Intrinsic::spv_unreachable:
3609 return BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpUnreachable))
3610 .constrainAllUses(TII, TRI, RBI);
3611 case Intrinsic::spv_alloca:
3612 return selectFrameIndex(ResVReg, ResType, I);
3613 case Intrinsic::spv_alloca_array:
3614 return selectAllocaArray(ResVReg, ResType, I);
3615 case Intrinsic::spv_assume:
3616 if (STI.canUseExtension(SPIRV::Extension::SPV_KHR_expect_assume))
3617 return BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpAssumeTrueKHR))
3618 .addUse(I.getOperand(1).getReg())
3619 .constrainAllUses(TII, TRI, RBI);
3620 break;
3621 case Intrinsic::spv_expect:
3622 if (STI.canUseExtension(SPIRV::Extension::SPV_KHR_expect_assume))
3623 return BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpExpectKHR))
3624 .addDef(ResVReg)
3625 .addUse(GR.getSPIRVTypeID(ResType))
3626 .addUse(I.getOperand(2).getReg())
3627 .addUse(I.getOperand(3).getReg())
3628 .constrainAllUses(TII, TRI, RBI);
3629 break;
3630 case Intrinsic::arithmetic_fence:
3631 if (STI.canUseExtension(SPIRV::Extension::SPV_EXT_arithmetic_fence))
3632 return BuildMI(BB, I, I.getDebugLoc(),
3633 TII.get(SPIRV::OpArithmeticFenceEXT))
3634 .addDef(ResVReg)
3635 .addUse(GR.getSPIRVTypeID(ResType))
3636 .addUse(I.getOperand(2).getReg())
3637 .constrainAllUses(TII, TRI, RBI);
3638 else
3639 return BuildCOPY(ResVReg, I.getOperand(2).getReg(), I);
3640 break;
3641 case Intrinsic::spv_thread_id:
3642 // The HLSL SV_DispatchThreadID semantic is lowered to llvm.spv.thread.id
3643 // intrinsic in LLVM IR for SPIR-V backend.
3644 //
3645 // In SPIR-V backend, llvm.spv.thread.id is now correctly translated to a
3646 // `GlobalInvocationId` builtin variable
3647 return loadVec3BuiltinInputID(SPIRV::BuiltIn::GlobalInvocationId, ResVReg,
3648 ResType, I);
3649 case Intrinsic::spv_thread_id_in_group:
3650 // The HLSL SV_GroupThreadId semantic is lowered to
3651 // llvm.spv.thread.id.in.group intrinsic in LLVM IR for SPIR-V backend.
3652 //
3653 // In SPIR-V backend, llvm.spv.thread.id.in.group is now correctly
3654 // translated to a `LocalInvocationId` builtin variable
3655 return loadVec3BuiltinInputID(SPIRV::BuiltIn::LocalInvocationId, ResVReg,
3656 ResType, I);
3657 case Intrinsic::spv_group_id:
3658 // The HLSL SV_GroupId semantic is lowered to
3659 // llvm.spv.group.id intrinsic in LLVM IR for SPIR-V backend.
3660 //
3661 // In SPIR-V backend, llvm.spv.group.id is now translated to a `WorkgroupId`
3662 // builtin variable
3663 return loadVec3BuiltinInputID(SPIRV::BuiltIn::WorkgroupId, ResVReg, ResType,
3664 I);
3665 case Intrinsic::spv_flattened_thread_id_in_group:
3666 // The HLSL SV_GroupIndex semantic is lowered to
3667 // llvm.spv.flattened.thread.id.in.group() intrinsic in LLVM IR for SPIR-V
3668 // backend.
3669 //
3670 // In SPIR-V backend, llvm.spv.flattened.thread.id.in.group is translated to
3671 // a `LocalInvocationIndex` builtin variable
3672 return loadBuiltinInputID(SPIRV::BuiltIn::LocalInvocationIndex, ResVReg,
3673 ResType, I);
3674 case Intrinsic::spv_workgroup_size:
3675 return loadVec3BuiltinInputID(SPIRV::BuiltIn::WorkgroupSize, ResVReg,
3676 ResType, I);
3677 case Intrinsic::spv_global_size:
3678 return loadVec3BuiltinInputID(SPIRV::BuiltIn::GlobalSize, ResVReg, ResType,
3679 I);
3680 case Intrinsic::spv_global_offset:
3681 return loadVec3BuiltinInputID(SPIRV::BuiltIn::GlobalOffset, ResVReg,
3682 ResType, I);
3683 case Intrinsic::spv_num_workgroups:
3684 return loadVec3BuiltinInputID(SPIRV::BuiltIn::NumWorkgroups, ResVReg,
3685 ResType, I);
3686 case Intrinsic::spv_subgroup_size:
3687 return loadBuiltinInputID(SPIRV::BuiltIn::SubgroupSize, ResVReg, ResType,
3688 I);
3689 case Intrinsic::spv_num_subgroups:
3690 return loadBuiltinInputID(SPIRV::BuiltIn::NumSubgroups, ResVReg, ResType,
3691 I);
3692 case Intrinsic::spv_subgroup_id:
3693 return loadBuiltinInputID(SPIRV::BuiltIn::SubgroupId, ResVReg, ResType, I);
3694 case Intrinsic::spv_subgroup_local_invocation_id:
3695 return loadBuiltinInputID(SPIRV::BuiltIn::SubgroupLocalInvocationId,
3696 ResVReg, ResType, I);
3697 case Intrinsic::spv_subgroup_max_size:
3698 return loadBuiltinInputID(SPIRV::BuiltIn::SubgroupMaxSize, ResVReg, ResType,
3699 I);
3700 case Intrinsic::spv_fdot:
3701 return selectFloatDot(ResVReg, ResType, I);
3702 case Intrinsic::spv_udot:
3703 case Intrinsic::spv_sdot:
3704 if (STI.canUseExtension(SPIRV::Extension::SPV_KHR_integer_dot_product) ||
3705 STI.isAtLeastSPIRVVer(VersionTuple(1, 6)))
3706 return selectIntegerDot(ResVReg, ResType, I,
3707 /*Signed=*/IID == Intrinsic::spv_sdot);
3708 return selectIntegerDotExpansion(ResVReg, ResType, I);
3709 case Intrinsic::spv_dot4add_i8packed:
3710 if (STI.canUseExtension(SPIRV::Extension::SPV_KHR_integer_dot_product) ||
3711 STI.isAtLeastSPIRVVer(VersionTuple(1, 6)))
3712 return selectDot4AddPacked<true>(ResVReg, ResType, I);
3713 return selectDot4AddPackedExpansion<true>(ResVReg, ResType, I);
3714 case Intrinsic::spv_dot4add_u8packed:
3715 if (STI.canUseExtension(SPIRV::Extension::SPV_KHR_integer_dot_product) ||
3716 STI.isAtLeastSPIRVVer(VersionTuple(1, 6)))
3717 return selectDot4AddPacked<false>(ResVReg, ResType, I);
3718 return selectDot4AddPackedExpansion<false>(ResVReg, ResType, I);
3719 case Intrinsic::spv_all:
3720 return selectAll(ResVReg, ResType, I);
3721 case Intrinsic::spv_any:
3722 return selectAny(ResVReg, ResType, I);
3723 case Intrinsic::spv_cross:
3724 return selectExtInst(ResVReg, ResType, I, CL::cross, GL::Cross);
3725 case Intrinsic::spv_distance:
3726 return selectExtInst(ResVReg, ResType, I, CL::distance, GL::Distance);
3727 case Intrinsic::spv_lerp:
3728 return selectExtInst(ResVReg, ResType, I, CL::mix, GL::FMix);
3729 case Intrinsic::spv_length:
3730 return selectExtInst(ResVReg, ResType, I, CL::length, GL::Length);
3731 case Intrinsic::spv_degrees:
3732 return selectExtInst(ResVReg, ResType, I, CL::degrees, GL::Degrees);
3733 case Intrinsic::spv_faceforward:
3734 return selectExtInst(ResVReg, ResType, I, GL::FaceForward);
3735 case Intrinsic::spv_frac:
3736 return selectExtInst(ResVReg, ResType, I, CL::fract, GL::Fract);
3737 case Intrinsic::spv_isinf:
3738 return selectOpIsInf(ResVReg, ResType, I);
3739 case Intrinsic::spv_isnan:
3740 return selectOpIsNan(ResVReg, ResType, I);
3741 case Intrinsic::spv_normalize:
3742 return selectExtInst(ResVReg, ResType, I, CL::normalize, GL::Normalize);
3743 case Intrinsic::spv_refract:
3744 return selectExtInst(ResVReg, ResType, I, GL::Refract);
3745 case Intrinsic::spv_reflect:
3746 return selectExtInst(ResVReg, ResType, I, GL::Reflect);
3747 case Intrinsic::spv_rsqrt:
3748 return selectExtInst(ResVReg, ResType, I, CL::rsqrt, GL::InverseSqrt);
3749 case Intrinsic::spv_sign:
3750 return selectSign(ResVReg, ResType, I);
3751 case Intrinsic::spv_smoothstep:
3752 return selectExtInst(ResVReg, ResType, I, CL::smoothstep, GL::SmoothStep);
3753 case Intrinsic::spv_firstbituhigh: // There is no CL equivalent of FindUMsb
3754 return selectFirstBitHigh(ResVReg, ResType, I, /*IsSigned=*/false);
3755 case Intrinsic::spv_firstbitshigh: // There is no CL equivalent of FindSMsb
3756 return selectFirstBitHigh(ResVReg, ResType, I, /*IsSigned=*/true);
3757 case Intrinsic::spv_firstbitlow: // There is no CL equivlent of FindILsb
3758 return selectFirstBitLow(ResVReg, ResType, I);
3759 case Intrinsic::spv_group_memory_barrier_with_group_sync: {
3760 bool Result = true;
3761 auto MemSemConstant =
3762 buildI32Constant(SPIRV::MemorySemantics::SequentiallyConsistent, I);
3763 Register MemSemReg = MemSemConstant.first;
3764 Result &= MemSemConstant.second;
3765 auto ScopeConstant = buildI32Constant(SPIRV::Scope::Workgroup, I);
3766 Register ScopeReg = ScopeConstant.first;
3767 Result &= ScopeConstant.second;
3768 MachineBasicBlock &BB = *I.getParent();
3769 return Result &&
3770 BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpControlBarrier))
3771 .addUse(ScopeReg)
3772 .addUse(ScopeReg)
3773 .addUse(MemSemReg)
3774 .constrainAllUses(TII, TRI, RBI);
3775 }
3776 case Intrinsic::spv_generic_cast_to_ptr_explicit: {
3777 Register PtrReg = I.getOperand(I.getNumExplicitDefs() + 1).getReg();
3778 SPIRV::StorageClass::StorageClass ResSC =
3779 GR.getPointerStorageClass(ResType);
3780 if (!isGenericCastablePtr(ResSC))
3781 report_fatal_error("The target storage class is not castable from the "
3782 "Generic storage class");
3783 return BuildMI(BB, I, I.getDebugLoc(),
3784 TII.get(SPIRV::OpGenericCastToPtrExplicit))
3785 .addDef(ResVReg)
3786 .addUse(GR.getSPIRVTypeID(ResType))
3787 .addUse(PtrReg)
3788 .addImm(ResSC)
3789 .constrainAllUses(TII, TRI, RBI);
3790 }
3791 case Intrinsic::spv_lifetime_start:
3792 case Intrinsic::spv_lifetime_end: {
3793 unsigned Op = IID == Intrinsic::spv_lifetime_start ? SPIRV::OpLifetimeStart
3794 : SPIRV::OpLifetimeStop;
3795 int64_t Size = I.getOperand(I.getNumExplicitDefs() + 1).getImm();
3796 Register PtrReg = I.getOperand(I.getNumExplicitDefs() + 2).getReg();
3797 if (Size == -1)
3798 Size = 0;
3799 return BuildMI(BB, I, I.getDebugLoc(), TII.get(Op))
3800 .addUse(PtrReg)
3801 .addImm(Size)
3802 .constrainAllUses(TII, TRI, RBI);
3803 }
3804 case Intrinsic::spv_saturate:
3805 return selectSaturate(ResVReg, ResType, I);
3806 case Intrinsic::spv_nclamp:
3807 return selectExtInst(ResVReg, ResType, I, CL::fclamp, GL::NClamp);
3808 case Intrinsic::spv_uclamp:
3809 return selectExtInst(ResVReg, ResType, I, CL::u_clamp, GL::UClamp);
3810 case Intrinsic::spv_sclamp:
3811 return selectExtInst(ResVReg, ResType, I, CL::s_clamp, GL::SClamp);
3812 case Intrinsic::spv_wave_active_countbits:
3813 return selectWaveActiveCountBits(ResVReg, ResType, I);
3814 case Intrinsic::spv_wave_all:
3815 return selectWaveOpInst(ResVReg, ResType, I, SPIRV::OpGroupNonUniformAll);
3816 case Intrinsic::spv_wave_any:
3817 return selectWaveOpInst(ResVReg, ResType, I, SPIRV::OpGroupNonUniformAny);
3818 case Intrinsic::spv_wave_ballot:
3819 return selectWaveOpInst(ResVReg, ResType, I,
3820 SPIRV::OpGroupNonUniformBallot);
3821 case Intrinsic::spv_wave_is_first_lane:
3822 return selectWaveOpInst(ResVReg, ResType, I, SPIRV::OpGroupNonUniformElect);
3823 case Intrinsic::spv_wave_reduce_umax:
3824 return selectWaveReduceMax(ResVReg, ResType, I, /*IsUnsigned*/ true);
3825 case Intrinsic::spv_wave_reduce_max:
3826 return selectWaveReduceMax(ResVReg, ResType, I, /*IsUnsigned*/ false);
3827 case Intrinsic::spv_wave_reduce_umin:
3828 return selectWaveReduceMin(ResVReg, ResType, I, /*IsUnsigned*/ true);
3829 case Intrinsic::spv_wave_reduce_min:
3830 return selectWaveReduceMin(ResVReg, ResType, I, /*IsUnsigned*/ false);
3831 case Intrinsic::spv_wave_reduce_sum:
3832 return selectWaveReduceSum(ResVReg, ResType, I);
3833 case Intrinsic::spv_wave_readlane:
3834 return selectWaveOpInst(ResVReg, ResType, I,
3835 SPIRV::OpGroupNonUniformShuffle);
3836 case Intrinsic::spv_step:
3837 return selectExtInst(ResVReg, ResType, I, CL::step, GL::Step);
3838 case Intrinsic::spv_radians:
3839 return selectExtInst(ResVReg, ResType, I, CL::radians, GL::Radians);
3840 // Discard intrinsics which we do not expect to actually represent code after
3841 // lowering or intrinsics which are not implemented but should not crash when
3842 // found in a customer's LLVM IR input.
3843 case Intrinsic::instrprof_increment:
3844 case Intrinsic::instrprof_increment_step:
3845 case Intrinsic::instrprof_value_profile:
3846 break;
3847 // Discard internal intrinsics.
3848 case Intrinsic::spv_value_md:
3849 break;
3850 case Intrinsic::spv_resource_handlefrombinding: {
3851 return selectHandleFromBinding(ResVReg, ResType, I);
3852 }
3853 case Intrinsic::spv_resource_counterhandlefrombinding:
3854 return selectCounterHandleFromBinding(ResVReg, ResType, I);
3855 case Intrinsic::spv_resource_updatecounter:
3856 return selectUpdateCounter(ResVReg, ResType, I);
3857 case Intrinsic::spv_resource_store_typedbuffer: {
3858 return selectImageWriteIntrinsic(I);
3859 }
3860 case Intrinsic::spv_resource_load_typedbuffer: {
3861 return selectReadImageIntrinsic(ResVReg, ResType, I);
3862 }
3863 case Intrinsic::spv_resource_getpointer: {
3864 return selectResourceGetPointer(ResVReg, ResType, I);
3865 }
3866 case Intrinsic::spv_pushconstant_getpointer: {
3867 return selectPushConstantGetPointer(ResVReg, ResType, I);
3868 }
3869 case Intrinsic::spv_discard: {
3870 return selectDiscard(ResVReg, ResType, I);
3871 }
3872 case Intrinsic::spv_resource_nonuniformindex: {
3873 return selectResourceNonUniformIndex(ResVReg, ResType, I);
3874 }
3875 case Intrinsic::spv_unpackhalf2x16: {
3876 return selectExtInst(ResVReg, ResType, I, GL::UnpackHalf2x16);
3877 }
3878 case Intrinsic::spv_ddx:
3879 return selectDerivativeInst(ResVReg, ResType, I, SPIRV::OpDPdx);
3880 case Intrinsic::spv_ddy:
3881 return selectDerivativeInst(ResVReg, ResType, I, SPIRV::OpDPdy);
3882 case Intrinsic::spv_ddx_coarse:
3883 return selectDerivativeInst(ResVReg, ResType, I, SPIRV::OpDPdxCoarse);
3884 case Intrinsic::spv_ddy_coarse:
3885 return selectDerivativeInst(ResVReg, ResType, I, SPIRV::OpDPdyCoarse);
3886 case Intrinsic::spv_ddx_fine:
3887 return selectDerivativeInst(ResVReg, ResType, I, SPIRV::OpDPdxFine);
3888 case Intrinsic::spv_ddy_fine:
3889 return selectDerivativeInst(ResVReg, ResType, I, SPIRV::OpDPdyFine);
3890 case Intrinsic::spv_fwidth:
3891 return selectDerivativeInst(ResVReg, ResType, I, SPIRV::OpFwidth);
3892 default: {
3893 std::string DiagMsg;
3894 raw_string_ostream OS(DiagMsg);
3895 I.print(OS);
3896 DiagMsg = "Intrinsic selection not implemented: " + DiagMsg;
3897 report_fatal_error(DiagMsg.c_str(), false);
3898 }
3899 }
3900 return true;
3901}
3902
3903bool SPIRVInstructionSelector::selectHandleFromBinding(Register &ResVReg,
3904 const SPIRVType *ResType,
3905 MachineInstr &I) const {
3906 // The images need to be loaded in the same basic block as their use. We defer
3907 // loading the image to the intrinsic that uses it.
3908 if (ResType->getOpcode() == SPIRV::OpTypeImage)
3909 return true;
3910
3911 return loadHandleBeforePosition(ResVReg, GR.getSPIRVTypeForVReg(ResVReg),
3912 *cast<GIntrinsic>(&I), I);
3913}
3914
3915bool SPIRVInstructionSelector::selectCounterHandleFromBinding(
3916 Register &ResVReg, const SPIRVType *ResType, MachineInstr &I) const {
3917 auto &Intr = cast<GIntrinsic>(I);
3918 assert(Intr.getIntrinsicID() ==
3919 Intrinsic::spv_resource_counterhandlefrombinding);
3920
3921 // Extract information from the intrinsic call.
3922 Register MainHandleReg = Intr.getOperand(2).getReg();
3923 auto *MainHandleDef = cast<GIntrinsic>(getVRegDef(*MRI, MainHandleReg));
3924 assert(MainHandleDef->getIntrinsicID() ==
3925 Intrinsic::spv_resource_handlefrombinding);
3926
3927 uint32_t Set = getIConstVal(Intr.getOperand(4).getReg(), MRI);
3928 uint32_t Binding = getIConstVal(Intr.getOperand(3).getReg(), MRI);
3929 uint32_t ArraySize = getIConstVal(MainHandleDef->getOperand(4).getReg(), MRI);
3930 Register IndexReg = MainHandleDef->getOperand(5).getReg();
3931 std::string CounterName =
3932 getStringValueFromReg(MainHandleDef->getOperand(6).getReg(), *MRI) +
3933 ".counter";
3934
3935 // Create the counter variable.
3936 MachineIRBuilder MIRBuilder(I);
3937 Register CounterVarReg = buildPointerToResource(
3938 GR.getPointeeType(ResType), GR.getPointerStorageClass(ResType), Set,
3939 Binding, ArraySize, IndexReg, CounterName, MIRBuilder);
3940
3941 return BuildCOPY(ResVReg, CounterVarReg, I);
3942}
3943
3944bool SPIRVInstructionSelector::selectUpdateCounter(Register &ResVReg,
3945 const SPIRVType *ResType,
3946 MachineInstr &I) const {
3947 auto &Intr = cast<GIntrinsic>(I);
3948 assert(Intr.getIntrinsicID() == Intrinsic::spv_resource_updatecounter);
3949
3950 Register CounterHandleReg = Intr.getOperand(2).getReg();
3951 Register IncrReg = Intr.getOperand(3).getReg();
3952
3953 // The counter handle is a pointer to the counter variable (which is a struct
3954 // containing an i32). We need to get a pointer to that i32 member to do the
3955 // atomic operation.
3956#ifndef NDEBUG
3957 SPIRVType *CounterVarType = GR.getSPIRVTypeForVReg(CounterHandleReg);
3958 SPIRVType *CounterVarPointeeType = GR.getPointeeType(CounterVarType);
3959 assert(CounterVarPointeeType &&
3960 CounterVarPointeeType->getOpcode() == SPIRV::OpTypeStruct &&
3961 "Counter variable must be a struct");
3962 assert(GR.getPointerStorageClass(CounterVarType) ==
3963 SPIRV::StorageClass::StorageBuffer &&
3964 "Counter variable must be in the storage buffer storage class");
3965 assert(CounterVarPointeeType->getNumOperands() == 2 &&
3966 "Counter variable must have exactly 1 member in the struct");
3967 const SPIRVType *MemberType =
3968 GR.getSPIRVTypeForVReg(CounterVarPointeeType->getOperand(1).getReg());
3969 assert(MemberType->getOpcode() == SPIRV::OpTypeInt &&
3970 "Counter variable struct must have a single i32 member");
3971#endif
3972
3973 // The struct has a single i32 member.
3974 MachineIRBuilder MIRBuilder(I);
3975 const Type *LLVMIntType =
3976 Type::getInt32Ty(I.getMF()->getFunction().getContext());
3977
3978 SPIRVType *IntPtrType = GR.getOrCreateSPIRVPointerType(
3979 LLVMIntType, MIRBuilder, SPIRV::StorageClass::StorageBuffer);
3980
3981 auto Zero = buildI32Constant(0, I);
3982 if (!Zero.second)
3983 return false;
3984
3985 Register PtrToCounter =
3986 MRI->createVirtualRegister(GR.getRegClass(IntPtrType));
3987 if (!BuildMI(*I.getParent(), I, I.getDebugLoc(),
3988 TII.get(SPIRV::OpAccessChain))
3989 .addDef(PtrToCounter)
3990 .addUse(GR.getSPIRVTypeID(IntPtrType))
3991 .addUse(CounterHandleReg)
3992 .addUse(Zero.first)
3993 .constrainAllUses(TII, TRI, RBI)) {
3994 return false;
3995 }
3996
3997 // For UAV/SSBO counters, the scope is Device. The counter variable is not
3998 // used as a flag. So the memory semantics can be None.
3999 auto Scope = buildI32Constant(SPIRV::Scope::Device, I);
4000 if (!Scope.second)
4001 return false;
4002 auto Semantics = buildI32Constant(SPIRV::MemorySemantics::None, I);
4003 if (!Semantics.second)
4004 return false;
4005
4006 int64_t IncrVal = getIConstValSext(IncrReg, MRI);
4007 auto Incr = buildI32Constant(static_cast<uint32_t>(IncrVal), I);
4008 if (!Incr.second)
4009 return false;
4010
4011 Register AtomicRes = MRI->createVirtualRegister(GR.getRegClass(ResType));
4012 if (!BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(SPIRV::OpAtomicIAdd))
4013 .addDef(AtomicRes)
4014 .addUse(GR.getSPIRVTypeID(ResType))
4015 .addUse(PtrToCounter)
4016 .addUse(Scope.first)
4017 .addUse(Semantics.first)
4018 .addUse(Incr.first)
4019 .constrainAllUses(TII, TRI, RBI)) {
4020 return false;
4021 }
4022 if (IncrVal >= 0) {
4023 return BuildCOPY(ResVReg, AtomicRes, I);
4024 }
4025
4026 // In HLSL, IncrementCounter returns the value *before* the increment, while
4027 // DecrementCounter returns the value *after* the decrement. Both are lowered
4028 // to the same atomic intrinsic which returns the value *before* the
4029 // operation. So for decrements (negative IncrVal), we must subtract the
4030 // increment value from the result to get the post-decrement value.
4031 return BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(SPIRV::OpIAddS))
4032 .addDef(ResVReg)
4033 .addUse(GR.getSPIRVTypeID(ResType))
4034 .addUse(AtomicRes)
4035 .addUse(Incr.first)
4036 .constrainAllUses(TII, TRI, RBI);
4037}
4038bool SPIRVInstructionSelector::selectReadImageIntrinsic(
4039 Register &ResVReg, const SPIRVType *ResType, MachineInstr &I) const {
4040
4041 // If the load of the image is in a different basic block, then
4042 // this will generate invalid code. A proper solution is to move
4043 // the OpLoad from selectHandleFromBinding here. However, to do
4044 // that we will need to change the return type of the intrinsic.
4045 // We will do that when we can, but for now trying to move forward with other
4046 // issues.
4047 Register ImageReg = I.getOperand(2).getReg();
4048 auto *ImageDef = cast<GIntrinsic>(getVRegDef(*MRI, ImageReg));
4049 Register NewImageReg = MRI->createVirtualRegister(MRI->getRegClass(ImageReg));
4050 if (!loadHandleBeforePosition(NewImageReg, GR.getSPIRVTypeForVReg(ImageReg),
4051 *ImageDef, I)) {
4052 return false;
4053 }
4054
4055 Register IdxReg = I.getOperand(3).getReg();
4056 DebugLoc Loc = I.getDebugLoc();
4057 MachineInstr &Pos = I;
4058
4059 return generateImageReadOrFetch(ResVReg, ResType, NewImageReg, IdxReg, Loc,
4060 Pos);
4061}
4062
4063bool SPIRVInstructionSelector::generateImageReadOrFetch(
4064 Register &ResVReg, const SPIRVType *ResType, Register ImageReg,
4065 Register IdxReg, DebugLoc Loc, MachineInstr &Pos) const {
4066 SPIRVType *ImageType = GR.getSPIRVTypeForVReg(ImageReg);
4067 assert(ImageType && ImageType->getOpcode() == SPIRV::OpTypeImage &&
4068 "ImageReg is not an image type.");
4069
4070 bool IsSignedInteger =
4071 sampledTypeIsSignedInteger(GR.getTypeForSPIRVType(ImageType));
4072 // Check if the "sampled" operand of the image type is 1.
4073 // https://registry.khronos.org/SPIR-V/specs/unified1/SPIRV.html#OpImageFetch
4074 auto SampledOp = ImageType->getOperand(6);
4075 bool IsFetch = (SampledOp.getImm() == 1);
4076
4077 uint64_t ResultSize = GR.getScalarOrVectorComponentCount(ResType);
4078 if (ResultSize == 4) {
4079 auto BMI =
4080 BuildMI(*Pos.getParent(), Pos, Loc,
4081 TII.get(IsFetch ? SPIRV::OpImageFetch : SPIRV::OpImageRead))
4082 .addDef(ResVReg)
4083 .addUse(GR.getSPIRVTypeID(ResType))
4084 .addUse(ImageReg)
4085 .addUse(IdxReg);
4086
4087 if (IsSignedInteger)
4088 BMI.addImm(0x1000); // SignExtend
4089 return BMI.constrainAllUses(TII, TRI, RBI);
4090 }
4091
4092 SPIRVType *ReadType = widenTypeToVec4(ResType, Pos);
4093 Register ReadReg = MRI->createVirtualRegister(GR.getRegClass(ReadType));
4094 auto BMI =
4095 BuildMI(*Pos.getParent(), Pos, Loc,
4096 TII.get(IsFetch ? SPIRV::OpImageFetch : SPIRV::OpImageRead))
4097 .addDef(ReadReg)
4098 .addUse(GR.getSPIRVTypeID(ReadType))
4099 .addUse(ImageReg)
4100 .addUse(IdxReg);
4101 if (IsSignedInteger)
4102 BMI.addImm(0x1000); // SignExtend
4103 bool Succeed = BMI.constrainAllUses(TII, TRI, RBI);
4104 if (!Succeed)
4105 return false;
4106
4107 if (ResultSize == 1) {
4108 return BuildMI(*Pos.getParent(), Pos, Loc,
4109 TII.get(SPIRV::OpCompositeExtract))
4110 .addDef(ResVReg)
4111 .addUse(GR.getSPIRVTypeID(ResType))
4112 .addUse(ReadReg)
4113 .addImm(0)
4114 .constrainAllUses(TII, TRI, RBI);
4115 }
4116 return extractSubvector(ResVReg, ResType, ReadReg, Pos);
4117}
4118
4119bool SPIRVInstructionSelector::selectResourceGetPointer(
4120 Register &ResVReg, const SPIRVType *ResType, MachineInstr &I) const {
4121 Register ResourcePtr = I.getOperand(2).getReg();
4122 SPIRVType *RegType = GR.getSPIRVTypeForVReg(ResourcePtr, I.getMF());
4123 if (RegType->getOpcode() == SPIRV::OpTypeImage) {
4124 // For texel buffers, the index into the image is part of the OpImageRead or
4125 // OpImageWrite instructions. So we will do nothing in this case. This
4126 // intrinsic will be combined with the load or store when selecting the load
4127 // or store.
4128 return true;
4129 }
4130
4131 assert(ResType->getOpcode() == SPIRV::OpTypePointer);
4132 MachineIRBuilder MIRBuilder(I);
4133
4134 Register IndexReg = I.getOperand(3).getReg();
4135 Register ZeroReg =
4136 buildZerosVal(GR.getOrCreateSPIRVIntegerType(32, I, TII), I);
4137 return BuildMI(*I.getParent(), I, I.getDebugLoc(),
4138 TII.get(SPIRV::OpAccessChain))
4139 .addDef(ResVReg)
4140 .addUse(GR.getSPIRVTypeID(ResType))
4141 .addUse(ResourcePtr)
4142 .addUse(ZeroReg)
4143 .addUse(IndexReg)
4144 .constrainAllUses(TII, TRI, RBI);
4145}
4146
4147bool SPIRVInstructionSelector::selectPushConstantGetPointer(
4148 Register &ResVReg, const SPIRVType *ResType, MachineInstr &I) const {
4149 MRI->replaceRegWith(ResVReg, I.getOperand(2).getReg());
4150 return true;
4151}
4152
4153bool SPIRVInstructionSelector::selectResourceNonUniformIndex(
4154 Register &ResVReg, const SPIRVType *ResType, MachineInstr &I) const {
4155 Register ObjReg = I.getOperand(2).getReg();
4156 if (!BuildCOPY(ResVReg, ObjReg, I))
4157 return false;
4158
4159 buildOpDecorate(ResVReg, I, TII, SPIRV::Decoration::NonUniformEXT, {});
4160 // Check for the registers that use the index marked as non-uniform
4161 // and recursively mark them as non-uniform.
4162 // Per the spec, it's necessary that the final argument used for
4163 // load/store/sample/atomic must be decorated, so we need to propagate the
4164 // decoration through access chains and copies.
4165 // https://docs.vulkan.org/samples/latest/samples/extensions/descriptor_indexing/README.html#_when_to_use_non_uniform_indexing_qualifier
4166 decorateUsesAsNonUniform(ResVReg);
4167 return true;
4168}
4169
4170void SPIRVInstructionSelector::decorateUsesAsNonUniform(
4171 Register &NonUniformReg) const {
4172 llvm::SmallVector<Register> WorkList = {NonUniformReg};
4173 while (WorkList.size() > 0) {
4174 Register CurrentReg = WorkList.back();
4175 WorkList.pop_back();
4176
4177 bool IsDecorated = false;
4178 for (MachineInstr &Use : MRI->use_instructions(CurrentReg)) {
4179 if (Use.getOpcode() == SPIRV::OpDecorate &&
4180 Use.getOperand(1).getImm() == SPIRV::Decoration::NonUniformEXT) {
4181 IsDecorated = true;
4182 continue;
4183 }
4184 // Check if the instruction has the result register and add it to the
4185 // worklist.
4186 if (Use.getOperand(0).isReg() && Use.getOperand(0).isDef()) {
4187 Register ResultReg = Use.getOperand(0).getReg();
4188 if (ResultReg == CurrentReg)
4189 continue;
4190 WorkList.push_back(ResultReg);
4191 }
4192 }
4193
4194 if (!IsDecorated) {
4195 buildOpDecorate(CurrentReg, *MRI->getVRegDef(CurrentReg), TII,
4196 SPIRV::Decoration::NonUniformEXT, {});
4197 }
4198 }
4199}
4200
4201bool SPIRVInstructionSelector::extractSubvector(
4202 Register &ResVReg, const SPIRVType *ResType, Register &ReadReg,
4203 MachineInstr &InsertionPoint) const {
4204 SPIRVType *InputType = GR.getResultType(ReadReg);
4205 [[maybe_unused]] uint64_t InputSize =
4206 GR.getScalarOrVectorComponentCount(InputType);
4207 uint64_t ResultSize = GR.getScalarOrVectorComponentCount(ResType);
4208 assert(InputSize > 1 && "The input must be a vector.");
4209 assert(ResultSize > 1 && "The result must be a vector.");
4210 assert(ResultSize < InputSize &&
4211 "Cannot extract more element than there are in the input.");
4212 SmallVector<Register> ComponentRegisters;
4213 SPIRVType *ScalarType = GR.getScalarOrVectorComponentType(ResType);
4214 const TargetRegisterClass *ScalarRegClass = GR.getRegClass(ScalarType);
4215 for (uint64_t I = 0; I < ResultSize; I++) {
4216 Register ComponentReg = MRI->createVirtualRegister(ScalarRegClass);
4217 bool Succeed = BuildMI(*InsertionPoint.getParent(), InsertionPoint,
4218 InsertionPoint.getDebugLoc(),
4219 TII.get(SPIRV::OpCompositeExtract))
4220 .addDef(ComponentReg)
4221 .addUse(ScalarType->getOperand(0).getReg())
4222 .addUse(ReadReg)
4223 .addImm(I)
4224 .constrainAllUses(TII, TRI, RBI);
4225 if (!Succeed)
4226 return false;
4227 ComponentRegisters.emplace_back(ComponentReg);
4228 }
4229
4230 MachineInstrBuilder MIB = BuildMI(*InsertionPoint.getParent(), InsertionPoint,
4231 InsertionPoint.getDebugLoc(),
4232 TII.get(SPIRV::OpCompositeConstruct))
4233 .addDef(ResVReg)
4234 .addUse(GR.getSPIRVTypeID(ResType));
4235
4236 for (Register ComponentReg : ComponentRegisters)
4237 MIB.addUse(ComponentReg);
4238 return MIB.constrainAllUses(TII, TRI, RBI);
4239}
4240
4241bool SPIRVInstructionSelector::selectImageWriteIntrinsic(
4242 MachineInstr &I) const {
4243 // If the load of the image is in a different basic block, then
4244 // this will generate invalid code. A proper solution is to move
4245 // the OpLoad from selectHandleFromBinding here. However, to do
4246 // that we will need to change the return type of the intrinsic.
4247 // We will do that when we can, but for now trying to move forward with other
4248 // issues.
4249 Register ImageReg = I.getOperand(1).getReg();
4250 auto *ImageDef = cast<GIntrinsic>(getVRegDef(*MRI, ImageReg));
4251 Register NewImageReg = MRI->createVirtualRegister(MRI->getRegClass(ImageReg));
4252 if (!loadHandleBeforePosition(NewImageReg, GR.getSPIRVTypeForVReg(ImageReg),
4253 *ImageDef, I)) {
4254 return false;
4255 }
4256
4257 Register CoordinateReg = I.getOperand(2).getReg();
4258 Register DataReg = I.getOperand(3).getReg();
4259 assert(GR.getResultType(DataReg)->getOpcode() == SPIRV::OpTypeVector);
4261 return BuildMI(*I.getParent(), I, I.getDebugLoc(),
4262 TII.get(SPIRV::OpImageWrite))
4263 .addUse(NewImageReg)
4264 .addUse(CoordinateReg)
4265 .addUse(DataReg)
4266 .constrainAllUses(TII, TRI, RBI);
4267}
4268
4269Register SPIRVInstructionSelector::buildPointerToResource(
4270 const SPIRVType *SpirvResType, SPIRV::StorageClass::StorageClass SC,
4271 uint32_t Set, uint32_t Binding, uint32_t ArraySize, Register IndexReg,
4272 StringRef Name, MachineIRBuilder MIRBuilder) const {
4273 const Type *ResType = GR.getTypeForSPIRVType(SpirvResType);
4274 if (ArraySize == 1) {
4275 SPIRVType *PtrType =
4276 GR.getOrCreateSPIRVPointerType(ResType, MIRBuilder, SC);
4277 assert(GR.getPointeeType(PtrType) == SpirvResType &&
4278 "SpirvResType did not have an explicit layout.");
4279 return GR.getOrCreateGlobalVariableWithBinding(PtrType, Set, Binding, Name,
4280 MIRBuilder);
4281 }
4282
4283 const Type *VarType = ArrayType::get(const_cast<Type *>(ResType), ArraySize);
4284 SPIRVType *VarPointerType =
4285 GR.getOrCreateSPIRVPointerType(VarType, MIRBuilder, SC);
4287 VarPointerType, Set, Binding, Name, MIRBuilder);
4288
4289 SPIRVType *ResPointerType =
4290 GR.getOrCreateSPIRVPointerType(ResType, MIRBuilder, SC);
4291 Register AcReg = MRI->createVirtualRegister(GR.getRegClass(ResPointerType));
4292
4293 MIRBuilder.buildInstr(SPIRV::OpAccessChain)
4294 .addDef(AcReg)
4295 .addUse(GR.getSPIRVTypeID(ResPointerType))
4296 .addUse(VarReg)
4297 .addUse(IndexReg);
4298
4299 return AcReg;
4300}
4301
4302bool SPIRVInstructionSelector::selectFirstBitSet16(
4303 Register ResVReg, const SPIRVType *ResType, MachineInstr &I,
4304 unsigned ExtendOpcode, unsigned BitSetOpcode) const {
4305 Register ExtReg = MRI->createVirtualRegister(GR.getRegClass(ResType));
4306 bool Result = selectOpWithSrcs(ExtReg, ResType, I, {I.getOperand(2).getReg()},
4307 ExtendOpcode);
4308
4309 return Result &&
4310 selectFirstBitSet32(ResVReg, ResType, I, ExtReg, BitSetOpcode);
4311}
4312
4313bool SPIRVInstructionSelector::selectFirstBitSet32(
4314 Register ResVReg, const SPIRVType *ResType, MachineInstr &I,
4315 Register SrcReg, unsigned BitSetOpcode) const {
4316 return BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(SPIRV::OpExtInst))
4317 .addDef(ResVReg)
4318 .addUse(GR.getSPIRVTypeID(ResType))
4319 .addImm(static_cast<uint32_t>(SPIRV::InstructionSet::GLSL_std_450))
4320 .addImm(BitSetOpcode)
4321 .addUse(SrcReg)
4322 .constrainAllUses(TII, TRI, RBI);
4323}
4324
4325bool SPIRVInstructionSelector::selectFirstBitSet64Overflow(
4326 Register ResVReg, const SPIRVType *ResType, MachineInstr &I,
4327 Register SrcReg, unsigned BitSetOpcode, bool SwapPrimarySide) const {
4328
4329 // SPIR-V allow vectors of size 2,3,4 only. Calling with a larger vectors
4330 // requires creating a param register and return register with an invalid
4331 // vector size. If that is resolved, then this function can be used for
4332 // vectors of any component size.
4333 unsigned ComponentCount = GR.getScalarOrVectorComponentCount(ResType);
4334 assert(ComponentCount < 5 && "Vec 5+ will generate invalid SPIR-V ops");
4335
4336 MachineIRBuilder MIRBuilder(I);
4338 SPIRVType *I64Type = GR.getOrCreateSPIRVIntegerType(64, MIRBuilder);
4339 SPIRVType *I64x2Type =
4340 GR.getOrCreateSPIRVVectorType(I64Type, 2, MIRBuilder, false);
4341 SPIRVType *Vec2ResType =
4342 GR.getOrCreateSPIRVVectorType(BaseType, 2, MIRBuilder, false);
4343
4344 std::vector<Register> PartialRegs;
4345
4346 // Loops 0, 2, 4, ... but stops one loop early when ComponentCount is odd
4347 unsigned CurrentComponent = 0;
4348 for (; CurrentComponent + 1 < ComponentCount; CurrentComponent += 2) {
4349 // This register holds the firstbitX result for each of the i64x2 vectors
4350 // extracted from SrcReg
4351 Register BitSetResult =
4352 MRI->createVirtualRegister(GR.getRegClass(I64x2Type));
4353
4354 auto MIB = BuildMI(*I.getParent(), I, I.getDebugLoc(),
4355 TII.get(SPIRV::OpVectorShuffle))
4356 .addDef(BitSetResult)
4357 .addUse(GR.getSPIRVTypeID(I64x2Type))
4358 .addUse(SrcReg)
4359 .addUse(SrcReg)
4360 .addImm(CurrentComponent)
4361 .addImm(CurrentComponent + 1);
4362
4363 if (!MIB.constrainAllUses(TII, TRI, RBI))
4364 return false;
4365
4366 Register SubVecBitSetReg =
4367 MRI->createVirtualRegister(GR.getRegClass(Vec2ResType));
4368
4369 if (!selectFirstBitSet64(SubVecBitSetReg, Vec2ResType, I, BitSetResult,
4370 BitSetOpcode, SwapPrimarySide))
4371 return false;
4372
4373 PartialRegs.push_back(SubVecBitSetReg);
4374 }
4375
4376 // On odd component counts we need to handle one more component
4377 if (CurrentComponent != ComponentCount) {
4378 bool ZeroAsNull = !STI.isShader();
4379 Register FinalElemReg = MRI->createVirtualRegister(GR.getRegClass(I64Type));
4380 Register ConstIntLastIdx = GR.getOrCreateConstInt(
4381 ComponentCount - 1, I, BaseType, TII, ZeroAsNull);
4382
4383 if (!selectOpWithSrcs(FinalElemReg, I64Type, I, {SrcReg, ConstIntLastIdx},
4384 SPIRV::OpVectorExtractDynamic))
4385 return false;
4386
4387 Register FinalElemBitSetReg =
4388 MRI->createVirtualRegister(GR.getRegClass(BaseType));
4389
4390 if (!selectFirstBitSet64(FinalElemBitSetReg, BaseType, I, FinalElemReg,
4391 BitSetOpcode, SwapPrimarySide))
4392 return false;
4393
4394 PartialRegs.push_back(FinalElemBitSetReg);
4395 }
4396
4397 // Join all the resulting registers back into the return type in order
4398 // (ie i32x2, i32x2, i32x1 -> i32x5)
4399 return selectOpWithSrcs(ResVReg, ResType, I, std::move(PartialRegs),
4400 SPIRV::OpCompositeConstruct);
4401}
4402
4403bool SPIRVInstructionSelector::selectFirstBitSet64(
4404 Register ResVReg, const SPIRVType *ResType, MachineInstr &I,
4405 Register SrcReg, unsigned BitSetOpcode, bool SwapPrimarySide) const {
4406 unsigned ComponentCount = GR.getScalarOrVectorComponentCount(ResType);
4408 bool ZeroAsNull = !STI.isShader();
4409 Register ConstIntZero =
4410 GR.getOrCreateConstInt(0, I, BaseType, TII, ZeroAsNull);
4411 Register ConstIntOne =
4412 GR.getOrCreateConstInt(1, I, BaseType, TII, ZeroAsNull);
4413
4414 // SPIRV doesn't support vectors with more than 4 components. Since the
4415 // algoritm below converts i64 -> i32x2 and i64x4 -> i32x8 it can only
4416 // operate on vectors with 2 or less components. When largers vectors are
4417 // seen. Split them, recurse, then recombine them.
4418 if (ComponentCount > 2) {
4419 return selectFirstBitSet64Overflow(ResVReg, ResType, I, SrcReg,
4420 BitSetOpcode, SwapPrimarySide);
4421 }
4422
4423 // 1. Split int64 into 2 pieces using a bitcast
4424 MachineIRBuilder MIRBuilder(I);
4425 SPIRVType *PostCastType = GR.getOrCreateSPIRVVectorType(
4426 BaseType, 2 * ComponentCount, MIRBuilder, false);
4427 Register BitcastReg =
4428 MRI->createVirtualRegister(GR.getRegClass(PostCastType));
4429
4430 if (!selectOpWithSrcs(BitcastReg, PostCastType, I, {SrcReg},
4431 SPIRV::OpBitcast))
4432 return false;
4433
4434 // 2. Find the first set bit from the primary side for all the pieces in #1
4435 Register FBSReg = MRI->createVirtualRegister(GR.getRegClass(PostCastType));
4436 if (!selectFirstBitSet32(FBSReg, PostCastType, I, BitcastReg, BitSetOpcode))
4437 return false;
4438
4439 // 3. Split result vector into high bits and low bits
4440 Register HighReg = MRI->createVirtualRegister(GR.getRegClass(ResType));
4441 Register LowReg = MRI->createVirtualRegister(GR.getRegClass(ResType));
4442
4443 bool IsScalarRes = ResType->getOpcode() != SPIRV::OpTypeVector;
4444 if (IsScalarRes) {
4445 // if scalar do a vector extract
4446 if (!selectOpWithSrcs(HighReg, ResType, I, {FBSReg, ConstIntZero},
4447 SPIRV::OpVectorExtractDynamic))
4448 return false;
4449 if (!selectOpWithSrcs(LowReg, ResType, I, {FBSReg, ConstIntOne},
4450 SPIRV::OpVectorExtractDynamic))
4451 return false;
4452 } else {
4453 // if vector do a shufflevector
4454 auto MIB = BuildMI(*I.getParent(), I, I.getDebugLoc(),
4455 TII.get(SPIRV::OpVectorShuffle))
4456 .addDef(HighReg)
4457 .addUse(GR.getSPIRVTypeID(ResType))
4458 .addUse(FBSReg)
4459 // Per the spec, repeat the vector if only one vec is needed
4460 .addUse(FBSReg);
4461
4462 // high bits are stored in even indexes. Extract them from FBSReg
4463 for (unsigned J = 0; J < ComponentCount * 2; J += 2) {
4464 MIB.addImm(J);
4465 }
4466
4467 if (!MIB.constrainAllUses(TII, TRI, RBI))
4468 return false;
4469
4470 MIB = BuildMI(*I.getParent(), I, I.getDebugLoc(),
4471 TII.get(SPIRV::OpVectorShuffle))
4472 .addDef(LowReg)
4473 .addUse(GR.getSPIRVTypeID(ResType))
4474 .addUse(FBSReg)
4475 // Per the spec, repeat the vector if only one vec is needed
4476 .addUse(FBSReg);
4477
4478 // low bits are stored in odd indexes. Extract them from FBSReg
4479 for (unsigned J = 1; J < ComponentCount * 2; J += 2) {
4480 MIB.addImm(J);
4481 }
4482 if (!MIB.constrainAllUses(TII, TRI, RBI))
4483 return false;
4484 }
4485
4486 // 4. Check the result. When primary bits == -1 use secondary, otherwise use
4487 // primary
4488 SPIRVType *BoolType = GR.getOrCreateSPIRVBoolType(I, TII);
4489 Register NegOneReg;
4490 Register Reg0;
4491 Register Reg32;
4492 unsigned SelectOp;
4493 unsigned AddOp;
4494
4495 if (IsScalarRes) {
4496 NegOneReg =
4497 GR.getOrCreateConstInt((unsigned)-1, I, ResType, TII, ZeroAsNull);
4498 Reg0 = GR.getOrCreateConstInt(0, I, ResType, TII, ZeroAsNull);
4499 Reg32 = GR.getOrCreateConstInt(32, I, ResType, TII, ZeroAsNull);
4500 SelectOp = SPIRV::OpSelectSISCond;
4501 AddOp = SPIRV::OpIAddS;
4502 } else {
4503 BoolType = GR.getOrCreateSPIRVVectorType(BoolType, ComponentCount,
4504 MIRBuilder, false);
4505 NegOneReg =
4506 GR.getOrCreateConstVector((unsigned)-1, I, ResType, TII, ZeroAsNull);
4507 Reg0 = GR.getOrCreateConstVector(0, I, ResType, TII, ZeroAsNull);
4508 Reg32 = GR.getOrCreateConstVector(32, I, ResType, TII, ZeroAsNull);
4509 SelectOp = SPIRV::OpSelectVIVCond;
4510 AddOp = SPIRV::OpIAddV;
4511 }
4512
4513 Register PrimaryReg = HighReg;
4514 Register SecondaryReg = LowReg;
4515 Register PrimaryShiftReg = Reg32;
4516 Register SecondaryShiftReg = Reg0;
4517
4518 // By default the emitted opcodes check for the set bit from the MSB side.
4519 // Setting SwapPrimarySide checks the set bit from the LSB side
4520 if (SwapPrimarySide) {
4521 PrimaryReg = LowReg;
4522 SecondaryReg = HighReg;
4523 PrimaryShiftReg = Reg0;
4524 SecondaryShiftReg = Reg32;
4525 }
4526
4527 // Check if the primary bits are == -1
4528 Register BReg = MRI->createVirtualRegister(GR.getRegClass(BoolType));
4529 if (!selectOpWithSrcs(BReg, BoolType, I, {PrimaryReg, NegOneReg},
4530 SPIRV::OpIEqual))
4531 return false;
4532
4533 // Select secondary bits if true in BReg, otherwise primary bits
4534 Register TmpReg = MRI->createVirtualRegister(GR.getRegClass(ResType));
4535 if (!selectOpWithSrcs(TmpReg, ResType, I, {BReg, SecondaryReg, PrimaryReg},
4536 SelectOp))
4537 return false;
4538
4539 // 5. Add 32 when high bits are used, otherwise 0 for low bits
4540 Register ValReg = MRI->createVirtualRegister(GR.getRegClass(ResType));
4541 if (!selectOpWithSrcs(ValReg, ResType, I,
4542 {BReg, SecondaryShiftReg, PrimaryShiftReg}, SelectOp))
4543 return false;
4544
4545 return selectOpWithSrcs(ResVReg, ResType, I, {ValReg, TmpReg}, AddOp);
4546}
4547
4548bool SPIRVInstructionSelector::selectFirstBitHigh(Register ResVReg,
4549 const SPIRVType *ResType,
4550 MachineInstr &I,
4551 bool IsSigned) const {
4552 // FindUMsb and FindSMsb intrinsics only support 32 bit integers
4553 Register OpReg = I.getOperand(2).getReg();
4554 SPIRVType *OpType = GR.getSPIRVTypeForVReg(OpReg);
4555 // zero or sign extend
4556 unsigned ExtendOpcode = IsSigned ? SPIRV::OpSConvert : SPIRV::OpUConvert;
4557 unsigned BitSetOpcode = IsSigned ? GL::FindSMsb : GL::FindUMsb;
4558
4559 switch (GR.getScalarOrVectorBitWidth(OpType)) {
4560 case 16:
4561 return selectFirstBitSet16(ResVReg, ResType, I, ExtendOpcode, BitSetOpcode);
4562 case 32:
4563 return selectFirstBitSet32(ResVReg, ResType, I, OpReg, BitSetOpcode);
4564 case 64:
4565 return selectFirstBitSet64(ResVReg, ResType, I, OpReg, BitSetOpcode,
4566 /*SwapPrimarySide=*/false);
4567 default:
4569 "spv_firstbituhigh and spv_firstbitshigh only support 16,32,64 bits.");
4570 }
4571}
4572
4573bool SPIRVInstructionSelector::selectFirstBitLow(Register ResVReg,
4574 const SPIRVType *ResType,
4575 MachineInstr &I) const {
4576 // FindILsb intrinsic only supports 32 bit integers
4577 Register OpReg = I.getOperand(2).getReg();
4578 SPIRVType *OpType = GR.getSPIRVTypeForVReg(OpReg);
4579 // OpUConvert treats the operand bits as an unsigned i16 and zero extends it
4580 // to an unsigned i32. As this leaves all the least significant bits unchanged
4581 // so the first set bit from the LSB side doesn't change.
4582 unsigned ExtendOpcode = SPIRV::OpUConvert;
4583 unsigned BitSetOpcode = GL::FindILsb;
4584
4585 switch (GR.getScalarOrVectorBitWidth(OpType)) {
4586 case 16:
4587 return selectFirstBitSet16(ResVReg, ResType, I, ExtendOpcode, BitSetOpcode);
4588 case 32:
4589 return selectFirstBitSet32(ResVReg, ResType, I, OpReg, BitSetOpcode);
4590 case 64:
4591 return selectFirstBitSet64(ResVReg, ResType, I, OpReg, BitSetOpcode,
4592 /*SwapPrimarySide=*/true);
4593 default:
4594 report_fatal_error("spv_firstbitlow only supports 16,32,64 bits.");
4595 }
4596}
4597
4598bool SPIRVInstructionSelector::selectAllocaArray(Register ResVReg,
4599 const SPIRVType *ResType,
4600 MachineInstr &I) const {
4601 // there was an allocation size parameter to the allocation instruction
4602 // that is not 1
4603 MachineBasicBlock &BB = *I.getParent();
4604 bool Res = BuildMI(BB, I, I.getDebugLoc(),
4605 TII.get(SPIRV::OpVariableLengthArrayINTEL))
4606 .addDef(ResVReg)
4607 .addUse(GR.getSPIRVTypeID(ResType))
4608 .addUse(I.getOperand(2).getReg())
4609 .constrainAllUses(TII, TRI, RBI);
4610 if (!STI.isShader()) {
4611 unsigned Alignment = I.getOperand(3).getImm();
4612 buildOpDecorate(ResVReg, I, TII, SPIRV::Decoration::Alignment, {Alignment});
4613 }
4614 return Res;
4615}
4616
4617bool SPIRVInstructionSelector::selectFrameIndex(Register ResVReg,
4618 const SPIRVType *ResType,
4619 MachineInstr &I) const {
4620 // Change order of instructions if needed: all OpVariable instructions in a
4621 // function must be the first instructions in the first block
4622 auto It = getOpVariableMBBIt(I);
4623 bool Res = BuildMI(*It->getParent(), It, It->getDebugLoc(),
4624 TII.get(SPIRV::OpVariable))
4625 .addDef(ResVReg)
4626 .addUse(GR.getSPIRVTypeID(ResType))
4627 .addImm(static_cast<uint32_t>(SPIRV::StorageClass::Function))
4628 .constrainAllUses(TII, TRI, RBI);
4629 if (!STI.isShader()) {
4630 unsigned Alignment = I.getOperand(2).getImm();
4631 buildOpDecorate(ResVReg, *It, TII, SPIRV::Decoration::Alignment,
4632 {Alignment});
4633 }
4634 return Res;
4635}
4636
4637bool SPIRVInstructionSelector::selectBranch(MachineInstr &I) const {
4638 // InstructionSelector walks backwards through the instructions. We can use
4639 // both a G_BR and a G_BRCOND to create an OpBranchConditional. We hit G_BR
4640 // first, so can generate an OpBranchConditional here. If there is no
4641 // G_BRCOND, we just use OpBranch for a regular unconditional branch.
4642 const MachineInstr *PrevI = I.getPrevNode();
4643 MachineBasicBlock &MBB = *I.getParent();
4644 if (PrevI != nullptr && PrevI->getOpcode() == TargetOpcode::G_BRCOND) {
4645 return BuildMI(MBB, I, I.getDebugLoc(), TII.get(SPIRV::OpBranchConditional))
4646 .addUse(PrevI->getOperand(0).getReg())
4647 .addMBB(PrevI->getOperand(1).getMBB())
4648 .addMBB(I.getOperand(0).getMBB())
4649 .constrainAllUses(TII, TRI, RBI);
4650 }
4651 return BuildMI(MBB, I, I.getDebugLoc(), TII.get(SPIRV::OpBranch))
4652 .addMBB(I.getOperand(0).getMBB())
4653 .constrainAllUses(TII, TRI, RBI);
4654}
4655
4656bool SPIRVInstructionSelector::selectBranchCond(MachineInstr &I) const {
4657 // InstructionSelector walks backwards through the instructions. For an
4658 // explicit conditional branch with no fallthrough, we use both a G_BR and a
4659 // G_BRCOND to create an OpBranchConditional. We should hit G_BR first, and
4660 // generate the OpBranchConditional in selectBranch above.
4661 //
4662 // If an OpBranchConditional has been generated, we simply return, as the work
4663 // is alread done. If there is no OpBranchConditional, LLVM must be relying on
4664 // implicit fallthrough to the next basic block, so we need to create an
4665 // OpBranchConditional with an explicit "false" argument pointing to the next
4666 // basic block that LLVM would fall through to.
4667 const MachineInstr *NextI = I.getNextNode();
4668 // Check if this has already been successfully selected.
4669 if (NextI != nullptr && NextI->getOpcode() == SPIRV::OpBranchConditional)
4670 return true;
4671 // Must be relying on implicit block fallthrough, so generate an
4672 // OpBranchConditional with the "next" basic block as the "false" target.
4673 MachineBasicBlock &MBB = *I.getParent();
4674 unsigned NextMBBNum = MBB.getNextNode()->getNumber();
4675 MachineBasicBlock *NextMBB = I.getMF()->getBlockNumbered(NextMBBNum);
4676 return BuildMI(MBB, I, I.getDebugLoc(), TII.get(SPIRV::OpBranchConditional))
4677 .addUse(I.getOperand(0).getReg())
4678 .addMBB(I.getOperand(1).getMBB())
4679 .addMBB(NextMBB)
4680 .constrainAllUses(TII, TRI, RBI);
4681}
4682
4683bool SPIRVInstructionSelector::selectPhi(Register ResVReg,
4684 const SPIRVType *ResType,
4685 MachineInstr &I) const {
4686 auto MIB = BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(SPIRV::OpPhi))
4687 .addDef(ResVReg)
4688 .addUse(GR.getSPIRVTypeID(ResType));
4689 const unsigned NumOps = I.getNumOperands();
4690 for (unsigned i = 1; i < NumOps; i += 2) {
4691 MIB.addUse(I.getOperand(i + 0).getReg());
4692 MIB.addMBB(I.getOperand(i + 1).getMBB());
4693 }
4694 bool Res = MIB.constrainAllUses(TII, TRI, RBI);
4695 MIB->setDesc(TII.get(TargetOpcode::PHI));
4696 MIB->removeOperand(1);
4697 return Res;
4698}
4699
4700bool SPIRVInstructionSelector::selectGlobalValue(
4701 Register ResVReg, MachineInstr &I, const MachineInstr *Init) const {
4702 // FIXME: don't use MachineIRBuilder here, replace it with BuildMI.
4703 MachineIRBuilder MIRBuilder(I);
4704 const GlobalValue *GV = I.getOperand(1).getGlobal();
4706
4707 std::string GlobalIdent;
4708 if (!GV->hasName()) {
4709 unsigned &ID = UnnamedGlobalIDs[GV];
4710 if (ID == 0)
4711 ID = UnnamedGlobalIDs.size();
4712 GlobalIdent = "__unnamed_" + Twine(ID).str();
4713 } else {
4714 GlobalIdent = GV->getName();
4715 }
4716
4717 // Behaviour of functions as operands depends on availability of the
4718 // corresponding extension (SPV_INTEL_function_pointers):
4719 // - If there is an extension to operate with functions as operands:
4720 // We create a proper constant operand and evaluate a correct type for a
4721 // function pointer.
4722 // - Without the required extension:
4723 // We have functions as operands in tests with blocks of instruction e.g. in
4724 // transcoding/global_block.ll. These operands are not used and should be
4725 // substituted by zero constants. Their type is expected to be always
4726 // OpTypePointer Function %uchar.
4727 if (isa<Function>(GV)) {
4728 const Constant *ConstVal = GV;
4729 MachineBasicBlock &BB = *I.getParent();
4730 Register NewReg = GR.find(ConstVal, GR.CurMF);
4731 if (!NewReg.isValid()) {
4732 Register NewReg = ResVReg;
4733 const Function *GVFun =
4734 STI.canUseExtension(SPIRV::Extension::SPV_INTEL_function_pointers)
4735 ? dyn_cast<Function>(GV)
4736 : nullptr;
4738 GVType, I,
4739 GVFun ? SPIRV::StorageClass::CodeSectionINTEL
4741 if (GVFun) {
4742 // References to a function via function pointers generate virtual
4743 // registers without a definition. We will resolve it later, during
4744 // module analysis stage.
4745 Register ResTypeReg = GR.getSPIRVTypeID(ResType);
4746 MachineRegisterInfo *MRI = MIRBuilder.getMRI();
4747 Register FuncVReg =
4748 MRI->createGenericVirtualRegister(GR.getRegType(ResType));
4749 MRI->setRegClass(FuncVReg, &SPIRV::pIDRegClass);
4750 MachineInstrBuilder MIB1 =
4751 BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpUndef))
4752 .addDef(FuncVReg)
4753 .addUse(ResTypeReg);
4754 MachineInstrBuilder MIB2 =
4755 BuildMI(BB, I, I.getDebugLoc(),
4756 TII.get(SPIRV::OpConstantFunctionPointerINTEL))
4757 .addDef(NewReg)
4758 .addUse(ResTypeReg)
4759 .addUse(FuncVReg);
4760 GR.add(ConstVal, MIB2);
4761 // mapping the function pointer to the used Function
4762 GR.recordFunctionPointer(&MIB2.getInstr()->getOperand(2), GVFun);
4763 return MIB1.constrainAllUses(TII, TRI, RBI) &&
4764 MIB2.constrainAllUses(TII, TRI, RBI);
4765 }
4766 MachineInstrBuilder MIB3 =
4767 BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpConstantNull))
4768 .addDef(NewReg)
4769 .addUse(GR.getSPIRVTypeID(ResType));
4770 GR.add(ConstVal, MIB3);
4771 return MIB3.constrainAllUses(TII, TRI, RBI);
4772 }
4773 assert(NewReg != ResVReg);
4774 return BuildCOPY(ResVReg, NewReg, I);
4775 }
4777 assert(GlobalVar->getName() != "llvm.global.annotations");
4778
4779 // Skip empty declaration for GVs with initializers till we get the decl with
4780 // passed initializer.
4781 if (hasInitializer(GlobalVar) && !Init)
4782 return true;
4783
4784 const std::optional<SPIRV::LinkageType::LinkageType> LnkType =
4785 getSpirvLinkageTypeFor(STI, *GV);
4786
4787 const unsigned AddrSpace = GV->getAddressSpace();
4788 SPIRV::StorageClass::StorageClass StorageClass =
4789 addressSpaceToStorageClass(AddrSpace, STI);
4790 SPIRVType *ResType = GR.getOrCreateSPIRVPointerType(GVType, I, StorageClass);
4792 ResVReg, ResType, GlobalIdent, GV, StorageClass, Init,
4793 GlobalVar->isConstant(), LnkType, MIRBuilder, true);
4794 return Reg.isValid();
4795}
4796
4797bool SPIRVInstructionSelector::selectLog10(Register ResVReg,
4798 const SPIRVType *ResType,
4799 MachineInstr &I) const {
4800 if (STI.canUseExtInstSet(SPIRV::InstructionSet::OpenCL_std)) {
4801 return selectExtInst(ResVReg, ResType, I, CL::log10);
4802 }
4803
4804 // There is no log10 instruction in the GLSL Extended Instruction set, so it
4805 // is implemented as:
4806 // log10(x) = log2(x) * (1 / log2(10))
4807 // = log2(x) * 0.30103
4808
4809 MachineIRBuilder MIRBuilder(I);
4810 MachineBasicBlock &BB = *I.getParent();
4811
4812 // Build log2(x).
4813 Register VarReg = MRI->createVirtualRegister(GR.getRegClass(ResType));
4814 bool Result =
4815 BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpExtInst))
4816 .addDef(VarReg)
4817 .addUse(GR.getSPIRVTypeID(ResType))
4818 .addImm(static_cast<uint32_t>(SPIRV::InstructionSet::GLSL_std_450))
4819 .addImm(GL::Log2)
4820 .add(I.getOperand(1))
4821 .constrainAllUses(TII, TRI, RBI);
4822
4823 // Build 0.30103.
4824 assert(ResType->getOpcode() == SPIRV::OpTypeVector ||
4825 ResType->getOpcode() == SPIRV::OpTypeFloat);
4826 // TODO: Add matrix implementation once supported by the HLSL frontend.
4827 const SPIRVType *SpirvScalarType =
4828 ResType->getOpcode() == SPIRV::OpTypeVector
4829 ? GR.getSPIRVTypeForVReg(ResType->getOperand(1).getReg())
4830 : ResType;
4831 Register ScaleReg =
4832 GR.buildConstantFP(APFloat(0.30103f), MIRBuilder, SpirvScalarType);
4833
4834 // Multiply log2(x) by 0.30103 to get log10(x) result.
4835 auto Opcode = ResType->getOpcode() == SPIRV::OpTypeVector
4836 ? SPIRV::OpVectorTimesScalar
4837 : SPIRV::OpFMulS;
4838 return Result && BuildMI(BB, I, I.getDebugLoc(), TII.get(Opcode))
4839 .addDef(ResVReg)
4840 .addUse(GR.getSPIRVTypeID(ResType))
4841 .addUse(VarReg)
4842 .addUse(ScaleReg)
4843 .constrainAllUses(TII, TRI, RBI);
4844}
4845
4846bool SPIRVInstructionSelector::selectModf(Register ResVReg,
4847 const SPIRVType *ResType,
4848 MachineInstr &I) const {
4849 // llvm.modf has a single arg --the number to be decomposed-- and returns a
4850 // struct { restype, restype }, while OpenCLLIB::modf has two args --the
4851 // number to be decomposed and a pointer--, returns the fractional part and
4852 // the integral part is stored in the pointer argument. Therefore, we can't
4853 // use directly the OpenCLLIB::modf intrinsic. However, we can do some
4854 // scaffolding to make it work. The idea is to create an alloca instruction
4855 // to get a ptr, pass this ptr to OpenCL::modf, and then load the value
4856 // from this ptr to place it in the struct. llvm.modf returns the fractional
4857 // part as the first element of the result, and the integral part as the
4858 // second element of the result.
4859
4860 // At this point, the return type is not a struct anymore, but rather two
4861 // independent elements of SPIRVResType. We can get each independent element
4862 // from I.getDefs() or I.getOperands().
4863 if (STI.canUseExtInstSet(SPIRV::InstructionSet::OpenCL_std)) {
4864 MachineIRBuilder MIRBuilder(I);
4865 // Get pointer type for alloca variable.
4866 const SPIRVType *PtrType = GR.getOrCreateSPIRVPointerType(
4867 ResType, MIRBuilder, SPIRV::StorageClass::Function);
4868 // Create new register for the pointer type of alloca variable.
4869 Register PtrTyReg =
4870 MIRBuilder.getMRI()->createVirtualRegister(&SPIRV::iIDRegClass);
4871 MIRBuilder.getMRI()->setType(
4872 PtrTyReg,
4873 LLT::pointer(storageClassToAddressSpace(SPIRV::StorageClass::Function),
4874 GR.getPointerSize()));
4875
4876 // Assign SPIR-V type of the pointer type of the alloca variable to the
4877 // new register.
4878 GR.assignSPIRVTypeToVReg(PtrType, PtrTyReg, MIRBuilder.getMF());
4879 MachineBasicBlock &EntryBB = I.getMF()->front();
4882 auto AllocaMIB =
4883 BuildMI(EntryBB, VarPos, I.getDebugLoc(), TII.get(SPIRV::OpVariable))
4884 .addDef(PtrTyReg)
4885 .addUse(GR.getSPIRVTypeID(PtrType))
4886 .addImm(static_cast<uint32_t>(SPIRV::StorageClass::Function));
4887 Register Variable = AllocaMIB->getOperand(0).getReg();
4888
4889 MachineBasicBlock &BB = *I.getParent();
4890 // Create the OpenCLLIB::modf instruction.
4891 auto MIB =
4892 BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpExtInst))
4893 .addDef(ResVReg)
4894 .addUse(GR.getSPIRVTypeID(ResType))
4895 .addImm(static_cast<uint32_t>(SPIRV::InstructionSet::OpenCL_std))
4896 .addImm(CL::modf)
4897 .setMIFlags(I.getFlags())
4898 .add(I.getOperand(I.getNumExplicitDefs())) // Floating point value.
4899 .addUse(Variable); // Pointer to integral part.
4900 // Assign the integral part stored in the ptr to the second element of the
4901 // result.
4902 Register IntegralPartReg = I.getOperand(1).getReg();
4903 if (IntegralPartReg.isValid()) {
4904 // Load the value from the pointer to integral part.
4905 auto LoadMIB = BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpLoad))
4906 .addDef(IntegralPartReg)
4907 .addUse(GR.getSPIRVTypeID(ResType))
4908 .addUse(Variable);
4909 return LoadMIB.constrainAllUses(TII, TRI, RBI);
4910 }
4911
4912 return MIB.constrainAllUses(TII, TRI, RBI);
4913 } else if (STI.canUseExtInstSet(SPIRV::InstructionSet::GLSL_std_450)) {
4914 assert(false && "GLSL::Modf is deprecated.");
4915 // FIXME: GL::Modf is deprecated, use Modfstruct instead.
4916 return false;
4917 }
4918 return false;
4919}
4920
4921// Generate the instructions to load 3-element vector builtin input
4922// IDs/Indices.
4923// Like: GlobalInvocationId, LocalInvocationId, etc....
4924
4925bool SPIRVInstructionSelector::loadVec3BuiltinInputID(
4926 SPIRV::BuiltIn::BuiltIn BuiltInValue, Register ResVReg,
4927 const SPIRVType *ResType, MachineInstr &I) const {
4928 MachineIRBuilder MIRBuilder(I);
4929 const SPIRVType *Vec3Ty =
4930 GR.getOrCreateSPIRVVectorType(ResType, 3, MIRBuilder, false);
4931 const SPIRVType *PtrType = GR.getOrCreateSPIRVPointerType(
4932 Vec3Ty, MIRBuilder, SPIRV::StorageClass::Input);
4933
4934 // Create new register for the input ID builtin variable.
4935 Register NewRegister =
4936 MIRBuilder.getMRI()->createVirtualRegister(&SPIRV::iIDRegClass);
4937 MIRBuilder.getMRI()->setType(NewRegister, LLT::pointer(0, 64));
4938 GR.assignSPIRVTypeToVReg(PtrType, NewRegister, MIRBuilder.getMF());
4939
4940 // Build global variable with the necessary decorations for the input ID
4941 // builtin variable.
4943 NewRegister, PtrType, getLinkStringForBuiltIn(BuiltInValue), nullptr,
4944 SPIRV::StorageClass::Input, nullptr, true, std::nullopt, MIRBuilder,
4945 false);
4946
4947 // Create new register for loading value.
4948 MachineRegisterInfo *MRI = MIRBuilder.getMRI();
4949 Register LoadedRegister = MRI->createVirtualRegister(&SPIRV::iIDRegClass);
4950 MIRBuilder.getMRI()->setType(LoadedRegister, LLT::pointer(0, 64));
4951 GR.assignSPIRVTypeToVReg(Vec3Ty, LoadedRegister, MIRBuilder.getMF());
4952
4953 // Load v3uint value from the global variable.
4954 bool Result =
4955 BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(SPIRV::OpLoad))
4956 .addDef(LoadedRegister)
4957 .addUse(GR.getSPIRVTypeID(Vec3Ty))
4958 .addUse(Variable);
4959
4960 // Get the input ID index. Expecting operand is a constant immediate value,
4961 // wrapped in a type assignment.
4962 assert(I.getOperand(2).isReg());
4963 const uint32_t ThreadId = foldImm(I.getOperand(2), MRI);
4964
4965 // Extract the input ID from the loaded vector value.
4966 MachineBasicBlock &BB = *I.getParent();
4967 auto MIB = BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpCompositeExtract))
4968 .addDef(ResVReg)
4969 .addUse(GR.getSPIRVTypeID(ResType))
4970 .addUse(LoadedRegister)
4971 .addImm(ThreadId);
4972 return Result && MIB.constrainAllUses(TII, TRI, RBI);
4973}
4974
4975// Generate the instructions to load 32-bit integer builtin input IDs/Indices.
4976// Like LocalInvocationIndex
4977bool SPIRVInstructionSelector::loadBuiltinInputID(
4978 SPIRV::BuiltIn::BuiltIn BuiltInValue, Register ResVReg,
4979 const SPIRVType *ResType, MachineInstr &I) const {
4980 MachineIRBuilder MIRBuilder(I);
4981 const SPIRVType *PtrType = GR.getOrCreateSPIRVPointerType(
4982 ResType, MIRBuilder, SPIRV::StorageClass::Input);
4983
4984 // Create new register for the input ID builtin variable.
4985 Register NewRegister =
4986 MIRBuilder.getMRI()->createVirtualRegister(GR.getRegClass(PtrType));
4987 MIRBuilder.getMRI()->setType(
4988 NewRegister,
4989 LLT::pointer(storageClassToAddressSpace(SPIRV::StorageClass::Input),
4990 GR.getPointerSize()));
4991 GR.assignSPIRVTypeToVReg(PtrType, NewRegister, MIRBuilder.getMF());
4992
4993 // Build global variable with the necessary decorations for the input ID
4994 // builtin variable.
4996 NewRegister, PtrType, getLinkStringForBuiltIn(BuiltInValue), nullptr,
4997 SPIRV::StorageClass::Input, nullptr, true, std::nullopt, MIRBuilder,
4998 false);
4999
5000 // Load uint value from the global variable.
5001 auto MIB = BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(SPIRV::OpLoad))
5002 .addDef(ResVReg)
5003 .addUse(GR.getSPIRVTypeID(ResType))
5004 .addUse(Variable);
5005
5006 return MIB.constrainAllUses(TII, TRI, RBI);
5007}
5008
5009SPIRVType *SPIRVInstructionSelector::widenTypeToVec4(const SPIRVType *Type,
5010 MachineInstr &I) const {
5011 MachineIRBuilder MIRBuilder(I);
5012 if (Type->getOpcode() != SPIRV::OpTypeVector)
5013 return GR.getOrCreateSPIRVVectorType(Type, 4, MIRBuilder, false);
5014
5015 uint64_t VectorSize = Type->getOperand(2).getImm();
5016 if (VectorSize == 4)
5017 return Type;
5018
5019 Register ScalarTypeReg = Type->getOperand(1).getReg();
5020 const SPIRVType *ScalarType = GR.getSPIRVTypeForVReg(ScalarTypeReg);
5021 return GR.getOrCreateSPIRVVectorType(ScalarType, 4, MIRBuilder, false);
5022}
5023
5024bool SPIRVInstructionSelector::loadHandleBeforePosition(
5025 Register &HandleReg, const SPIRVType *ResType, GIntrinsic &HandleDef,
5026 MachineInstr &Pos) const {
5027
5028 assert(HandleDef.getIntrinsicID() ==
5029 Intrinsic::spv_resource_handlefrombinding);
5030 uint32_t Set = foldImm(HandleDef.getOperand(2), MRI);
5031 uint32_t Binding = foldImm(HandleDef.getOperand(3), MRI);
5032 uint32_t ArraySize = foldImm(HandleDef.getOperand(4), MRI);
5033 Register IndexReg = HandleDef.getOperand(5).getReg();
5034 std::string Name =
5035 getStringValueFromReg(HandleDef.getOperand(6).getReg(), *MRI);
5036
5037 bool IsStructuredBuffer = ResType->getOpcode() == SPIRV::OpTypePointer;
5038 MachineIRBuilder MIRBuilder(HandleDef);
5039 SPIRVType *VarType = ResType;
5040 SPIRV::StorageClass::StorageClass SC = SPIRV::StorageClass::UniformConstant;
5041
5042 if (IsStructuredBuffer) {
5043 VarType = GR.getPointeeType(ResType);
5044 SC = GR.getPointerStorageClass(ResType);
5045 }
5046
5047 Register VarReg = buildPointerToResource(VarType, SC, Set, Binding, ArraySize,
5048 IndexReg, Name, MIRBuilder);
5049
5050 // The handle for the buffer is the pointer to the resource. For an image, the
5051 // handle is the image object. So images get an extra load.
5052 uint32_t LoadOpcode =
5053 IsStructuredBuffer ? SPIRV::OpCopyObject : SPIRV::OpLoad;
5054 GR.assignSPIRVTypeToVReg(ResType, HandleReg, *Pos.getMF());
5055 return BuildMI(*Pos.getParent(), Pos, HandleDef.getDebugLoc(),
5056 TII.get(LoadOpcode))
5057 .addDef(HandleReg)
5058 .addUse(GR.getSPIRVTypeID(ResType))
5059 .addUse(VarReg)
5060 .constrainAllUses(TII, TRI, RBI);
5061}
5062
5063void SPIRVInstructionSelector::errorIfInstrOutsideShader(
5064 MachineInstr &I) const {
5065 if (!STI.isShader()) {
5066 std::string DiagMsg;
5067 raw_string_ostream OS(DiagMsg);
5068 I.print(OS, true, false, false, false);
5069 DiagMsg += " is only supported in shaders.\n";
5070 report_fatal_error(DiagMsg.c_str(), false);
5071 }
5072}
5073
5074namespace llvm {
5075InstructionSelector *
5077 const SPIRVSubtarget &Subtarget,
5078 const RegisterBankInfo &RBI) {
5079 return new SPIRVInstructionSelector(TM, Subtarget, RBI);
5080}
5081} // namespace llvm
unsigned const MachineRegisterInfo * MRI
MachineInstrBuilder & UseMI
#define GET_GLOBALISEL_PREDICATES_INIT
#define GET_GLOBALISEL_TEMPORARIES_INIT
@ Generic
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
This file declares a class to represent arbitrary precision floating point values and provide a varie...
static bool selectUnmergeValues(MachineInstrBuilder &MIB, const ARMBaseInstrInfo &TII, MachineRegisterInfo &MRI, const TargetRegisterInfo &TRI, const RegisterBankInfo &RBI)
MachineBasicBlock & MBB
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
basic Basic Alias true
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
DXIL Resource Implicit Binding
#define DEBUG_TYPE
Declares convenience wrapper classes for interpreting MachineInstr instances as specific generic oper...
const HexagonInstrInfo * TII
IRTranslator LLVM IR MI
LLVMTypeRef LLVMIntType(unsigned NumBits)
Definition Core.cpp:705
const size_t AbstractManglingParser< Derived, Alloc >::NumOps
#define I(x, y, z)
Definition MD5.cpp:57
Register Reg
Register const TargetRegisterInfo * TRI
Promote Memory to Register
Definition Mem2Reg.cpp:110
MachineInstr unsigned OpIdx
uint64_t IntrinsicInst * II
static StringRef getName(Value *V)
static unsigned getFCmpOpcode(CmpInst::Predicate Pred, unsigned Size)
static APFloat getOneFP(const Type *LLVMFloatTy)
static bool isUSMStorageClass(SPIRV::StorageClass::StorageClass SC)
static bool isASCastInGVar(MachineRegisterInfo *MRI, Register ResVReg)
static bool mayApplyGenericSelection(unsigned Opcode)
static APFloat getZeroFP(const Type *LLVMFloatTy)
std::vector< std::pair< SPIRV::InstructionSet::InstructionSet, uint32_t > > ExtInstList
static bool intrinsicHasSideEffects(Intrinsic::ID ID)
static unsigned getBoolCmpOpcode(unsigned PredNum)
static unsigned getICmpOpcode(unsigned PredNum)
static bool isOpcodeWithNoSideEffects(unsigned Opcode)
static void addMemoryOperands(MachineMemOperand *MemOp, MachineInstrBuilder &MIB, MachineIRBuilder &MIRBuilder, SPIRVGlobalRegistry &GR)
static bool isConstReg(MachineRegisterInfo *MRI, MachineInstr *OpDef, SmallPtrSet< SPIRVType *, 4 > &Visited)
static unsigned getPtrCmpOpcode(unsigned Pred)
bool isDead(const MachineInstr &MI, const MachineRegisterInfo &MRI)
spirv structurize SPIRV
BaseType
A given derived pointer can have multiple base pointers through phi/selects.
This file contains some functions that are useful when dealing with strings.
#define LLVM_DEBUG(...)
Definition Debug.h:114
static TableGen::Emitter::Opt Y("gen-skeleton-entry", EmitSkeleton, "Generate example skeleton entry")
static TableGen::Emitter::OptClass< SkeletonEmitter > X("gen-skeleton-class", "Generate example skeleton class")
BinaryOperator * Mul
static const fltSemantics & IEEEsingle()
Definition APFloat.h:296
static const fltSemantics & IEEEdouble()
Definition APFloat.h:297
static const fltSemantics & IEEEhalf()
Definition APFloat.h:294
static APFloat getOne(const fltSemantics &Sem, bool Negative=false)
Factory for Positive and Negative One.
Definition APFloat.h:1070
static APFloat getZero(const fltSemantics &Sem, bool Negative=false)
Factory for Positive and Negative Zero.
Definition APFloat.h:1061
static APInt getAllOnes(unsigned numBits)
Return an APInt of a specified width with all bits set.
Definition APInt.h:235
uint64_t getZExtValue() const
Get zero extended value.
Definition APInt.h:1541
BlockFrequencyInfo pass uses BlockFrequencyInfoImpl implementation to estimate IR basic block frequen...
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
Definition InstrTypes.h:676
@ FCMP_OEQ
0 0 0 1 True if ordered and equal
Definition InstrTypes.h:679
@ ICMP_SLT
signed less than
Definition InstrTypes.h:705
@ ICMP_SLE
signed less or equal
Definition InstrTypes.h:706
@ FCMP_OLT
0 1 0 0 True if ordered and less than
Definition InstrTypes.h:682
@ FCMP_ULE
1 1 0 1 True if unordered, less than, or equal
Definition InstrTypes.h:691
@ FCMP_OGT
0 0 1 0 True if ordered and greater than
Definition InstrTypes.h:680
@ FCMP_OGE
0 0 1 1 True if ordered and greater than or equal
Definition InstrTypes.h:681
@ ICMP_UGE
unsigned greater or equal
Definition InstrTypes.h:700
@ ICMP_UGT
unsigned greater than
Definition InstrTypes.h:699
@ ICMP_SGT
signed greater than
Definition InstrTypes.h:703
@ FCMP_ULT
1 1 0 0 True if unordered or less than
Definition InstrTypes.h:690
@ FCMP_ONE
0 1 1 0 True if ordered and operands are unequal
Definition InstrTypes.h:684
@ FCMP_UEQ
1 0 0 1 True if unordered or equal
Definition InstrTypes.h:687
@ ICMP_ULT
unsigned less than
Definition InstrTypes.h:701
@ FCMP_UGT
1 0 1 0 True if unordered or greater than
Definition InstrTypes.h:688
@ FCMP_OLE
0 1 0 1 True if ordered and less than or equal
Definition InstrTypes.h:683
@ FCMP_ORD
0 1 1 1 True if ordered (no nans)
Definition InstrTypes.h:685
@ ICMP_NE
not equal
Definition InstrTypes.h:698
@ ICMP_SGE
signed greater or equal
Definition InstrTypes.h:704
@ FCMP_UNE
1 1 1 0 True if unordered or not equal
Definition InstrTypes.h:692
@ ICMP_ULE
unsigned less or equal
Definition InstrTypes.h:702
@ FCMP_UGE
1 0 1 1 True if unordered, greater than, or equal
Definition InstrTypes.h:689
@ FCMP_UNO
1 0 0 0 True if unordered: isnan(X) | isnan(Y)
Definition InstrTypes.h:686
static LLVM_ABI Constant * getNullValue(Type *Ty)
Constructor to create a '0' constant of arbitrary type.
A debug info location.
Definition DebugLoc.h:123
LLVMContext & getContext() const
getContext - Return a reference to the LLVMContext associated with this function.
Definition Function.cpp:359
Represents a call to an intrinsic.
Intrinsic::ID getIntrinsicID() const
unsigned getAddressSpace() const
Module * getParent()
Get the module that this global value is contained inside of...
@ InternalLinkage
Rename collisions when linking (static functions).
Definition GlobalValue.h:60
static LLVM_ABI IntegerType * get(LLVMContext &C, unsigned NumBits)
This static method is the primary way of constructing an IntegerType.
Definition Type.cpp:318
constexpr bool isScalar() const
static constexpr LLT scalar(unsigned SizeInBits)
Get a low-level scalar or aggregate "bag of bits".
constexpr bool isValid() const
constexpr uint16_t getNumElements() const
Returns the number of elements in a vector LLT.
constexpr bool isVector() const
static constexpr LLT pointer(unsigned AddressSpace, unsigned SizeInBits)
Get a low-level pointer in the given address space.
constexpr bool isPointer() const
static constexpr LLT fixed_vector(unsigned NumElements, unsigned ScalarSizeInBits)
Get a low-level fixed-width vector of some number of elements and element width.
int getNumber() const
MachineBasicBlocks are uniquely numbered at the function level, unless they're not in a MachineFuncti...
LLVM_ABI iterator getFirstNonPHI()
Returns a pointer to the first instruction in this block that is not a PHINode instruction.
const MachineFunction * getParent() const
Return the MachineFunction containing this basic block.
MachineInstrBundleIterator< MachineInstr > iterator
MachineRegisterInfo & getRegInfo()
getRegInfo - Return information about the registers currently in use.
Function & getFunction()
Return the LLVM function that this machine code represents.
Helper class to build MachineInstr.
MachineInstrBuilder buildInstr(unsigned Opcode)
Build and insert <empty> = Opcode <empty>.
MachineFunction & getMF()
Getter for the function we currently build.
MachineRegisterInfo * getMRI()
Getter for MRI.
const MachineInstrBuilder & addImm(int64_t Val) const
Add a new immediate operand.
const MachineInstrBuilder & add(const MachineOperand &MO) const
const MachineInstrBuilder & addReg(Register RegNo, unsigned flags=0, unsigned SubReg=0) const
Add a new virtual register operand.
bool constrainAllUses(const TargetInstrInfo &TII, const TargetRegisterInfo &TRI, const RegisterBankInfo &RBI) const
const MachineInstrBuilder & addMBB(MachineBasicBlock *MBB, unsigned TargetFlags=0) const
const MachineInstrBuilder & addUse(Register RegNo, unsigned Flags=0, unsigned SubReg=0) const
Add a virtual register use operand.
const MachineInstrBuilder & setMIFlags(unsigned Flags) const
MachineInstr * getInstr() const
If conversion operators fail, use this method to get the MachineInstr explicitly.
const MachineInstrBuilder & addDef(Register RegNo, unsigned Flags=0, unsigned SubReg=0) const
Add a virtual register definition operand.
Representation of each machine instruction.
unsigned getOpcode() const
Returns the opcode of this MachineInstr.
const MachineBasicBlock * getParent() const
unsigned getNumOperands() const
Retuns the total number of operands.
LLVM_ABI void setDesc(const MCInstrDesc &TID)
Replace the instruction descriptor (thus opcode) of the current instruction with a new one.
LLVM_ABI unsigned getNumExplicitDefs() const
Returns the number of non-implicit definitions.
LLVM_ABI const MachineFunction * getMF() const
Return the function that contains the basic block that this instruction belongs to.
const DebugLoc & getDebugLoc() const
Returns the debug location id of this MachineInstr.
LLVM_ABI void removeOperand(unsigned OpNo)
Erase an operand from an instruction, leaving it with one fewer operand than it started with.
const MachineOperand & getOperand(unsigned i) const
A description of a memory reference used in the backend.
@ MOVolatile
The memory access is volatile.
@ MONonTemporal
The memory access is non-temporal.
int64_t getImm() const
bool isReg() const
isReg - Tests if this is a MO_Register operand.
MachineBasicBlock * getMBB() const
Register getReg() const
getReg - Returns the register number.
MachineRegisterInfo - Keep track of information for virtual and physical registers,...
defusechain_instr_iterator< true, false, false, true > use_instr_iterator
use_instr_iterator/use_instr_begin/use_instr_end - Walk all uses of the specified register,...
defusechain_instr_iterator< false, true, false, true > def_instr_iterator
def_instr_iterator/def_instr_begin/def_instr_end - Walk all defs of the specified register,...
LLVM_ABI Register createVirtualRegister(const TargetRegisterClass *RegClass, StringRef Name="")
createVirtualRegister - Create and return a new virtual register in the function with the specified r...
LLVM_ABI void setType(Register VReg, LLT Ty)
Set the low-level type of VReg to Ty.
Analysis providing profile information.
Holds all the information related to register banks.
Wrapper class representing virtual and physical registers.
Definition Register.h:20
constexpr bool isValid() const
Definition Register.h:112
constexpr bool isPhysical() const
Return true if the specified register number is in the physical register namespace.
Definition Register.h:83
SPIRVType * getSPIRVTypeForVReg(Register VReg, const MachineFunction *MF=nullptr) const
Register getOrCreateConstInt(uint64_t Val, MachineInstr &I, SPIRVType *SpvType, const SPIRVInstrInfo &TII, bool ZeroAsNull=true)
SPIRVType * getResultType(Register VReg, MachineFunction *MF=nullptr)
SPIRVType * getOrCreateSPIRVBoolType(MachineIRBuilder &MIRBuilder, bool EmitIR)
MachineInstr * getOrAddMemAliasingINTELInst(MachineIRBuilder &MIRBuilder, const MDNode *AliasingListMD)
void assignSPIRVTypeToVReg(SPIRVType *Type, Register VReg, const MachineFunction &MF)
Register getOrCreateUndef(MachineInstr &I, SPIRVType *SpvType, const SPIRVInstrInfo &TII)
Register buildGlobalVariable(Register Reg, SPIRVType *BaseType, StringRef Name, const GlobalValue *GV, SPIRV::StorageClass::StorageClass Storage, const MachineInstr *Init, bool IsConst, const std::optional< SPIRV::LinkageType::LinkageType > &LinkageType, MachineIRBuilder &MIRBuilder, bool IsInstSelector)
SPIRVType * changePointerStorageClass(SPIRVType *PtrType, SPIRV::StorageClass::StorageClass SC, MachineInstr &I)
const Type * getTypeForSPIRVType(const SPIRVType *Ty) const
bool isBitcastCompatible(const SPIRVType *Type1, const SPIRVType *Type2) const
unsigned getScalarOrVectorComponentCount(Register VReg) const
SPIRVType * getOrCreateSPIRVFloatType(unsigned BitWidth, MachineInstr &I, const SPIRVInstrInfo &TII)
bool isScalarOrVectorSigned(const SPIRVType *Type) const
Register getOrCreateGlobalVariableWithBinding(const SPIRVType *VarType, uint32_t Set, uint32_t Binding, StringRef Name, MachineIRBuilder &MIRBuilder)
SPIRVType * getOrCreateSPIRVType(const Type *Type, MachineInstr &I, SPIRV::AccessQualifier::AccessQualifier AQ, bool EmitIR)
SPIRVType * getOrCreateSPIRVPointerType(const Type *BaseType, MachineIRBuilder &MIRBuilder, SPIRV::StorageClass::StorageClass SC)
Register buildConstantFP(APFloat Val, MachineIRBuilder &MIRBuilder, SPIRVType *SpvType=nullptr)
SPIRVType * getPointeeType(SPIRVType *PtrType)
void invalidateMachineInstr(MachineInstr *MI)
Register getSPIRVTypeID(const SPIRVType *SpirvType) const
bool isScalarOfType(Register VReg, unsigned TypeOpcode) const
bool findValueAttrs(const MachineInstr *Key, Type *&Ty, StringRef &Name)
void addGlobalObject(const Value *V, const MachineFunction *MF, Register R)
SPIRVType * getScalarOrVectorComponentType(Register VReg) const
void recordFunctionPointer(const MachineOperand *MO, const Function *F)
bool isAggregateType(SPIRVType *Type) const
const TargetRegisterClass * getRegClass(SPIRVType *SpvType) const
SPIRVType * getOrCreateSPIRVVectorType(SPIRVType *BaseType, unsigned NumElements, MachineIRBuilder &MIRBuilder, bool EmitIR)
bool isScalarOrVectorOfType(Register VReg, unsigned TypeOpcode) const
Register getOrCreateConstIntArray(uint64_t Val, size_t Num, MachineInstr &I, SPIRVType *SpvType, const SPIRVInstrInfo &TII)
MachineFunction * setCurrentFunc(MachineFunction &MF)
Register getOrCreateConstVector(uint64_t Val, MachineInstr &I, SPIRVType *SpvType, const SPIRVInstrInfo &TII, bool ZeroAsNull=true)
SPIRVType * getOrCreateSPIRVIntegerType(unsigned BitWidth, MachineIRBuilder &MIRBuilder)
Type * getDeducedGlobalValueType(const GlobalValue *Global)
LLT getRegType(SPIRVType *SpvType) const
SPIRV::StorageClass::StorageClass getPointerStorageClass(Register VReg) const
Register getOrCreateConstFP(APFloat Val, MachineInstr &I, SPIRVType *SpvType, const SPIRVInstrInfo &TII, bool ZeroAsNull=true)
Register getOrCreateConstNullPtr(MachineIRBuilder &MIRBuilder, SPIRVType *SpvType)
unsigned getScalarOrVectorBitWidth(const SPIRVType *Type) const
const SPIRVType * retrieveScalarOrVectorIntType(const SPIRVType *Type) const
bool erase(const MachineInstr *MI)
bool add(SPIRV::IRHandle Handle, const MachineInstr *MI)
Register find(SPIRV::IRHandle Handle, const MachineFunction *MF)
bool isPhysicalSPIRV() const
bool isAtLeastSPIRVVer(VersionTuple VerToCompareTo) const
bool canUseExtInstSet(SPIRV::InstructionSet::InstructionSet E) const
bool isLogicalSPIRV() const
bool canUseExtension(SPIRV::Extension::Extension E) const
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
bool contains(ConstPtrType Ptr) const
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
reference emplace_back(ArgTypes &&... Args)
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
StringRef - Represent a constant reference to a string, i.e.
Definition StringRef.h:55
constexpr size_t size() const
size - Get the string size.
Definition StringRef.h:146
static LLVM_ABI StructType * get(LLVMContext &Context, ArrayRef< Type * > Elements, bool isPacked=false)
This static method is the primary way to create a literal StructType.
Definition Type.cpp:413
The instances of the Type class are immutable: once they are created, they are never changed.
Definition Type.h:45
@ HalfTyID
16-bit floating point type
Definition Type.h:56
@ FloatTyID
32-bit floating point type
Definition Type.h:58
@ DoubleTyID
64-bit floating point type
Definition Type.h:59
Type * getScalarType() const
If this is a vector type, return the element type, otherwise return 'this'.
Definition Type.h:352
bool isStructTy() const
True if this is an instance of StructType.
Definition Type.h:261
bool isAggregateType() const
Return true if the type is an aggregate type.
Definition Type.h:304
TypeID getTypeID() const
Return the type id for the type.
Definition Type.h:136
Value * getOperand(unsigned i) const
Definition User.h:233
bool hasName() const
Definition Value.h:262
LLVM_ABI StringRef getName() const
Return a constant reference to the value's name.
Definition Value.cpp:322
NodeTy * getNextNode()
Get the next node, or nullptr for the list tail.
Definition ilist_node.h:348
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
constexpr char IsConst[]
Key for Kernel::Arg::Metadata::mIsConst.
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
Definition CallingConv.h:24
NodeAddr< DefNode * > Def
Definition RDFGraph.h:384
NodeAddr< InstrNode * > Instr
Definition RDFGraph.h:389
NodeAddr< UseNode * > Use
Definition RDFGraph.h:385
This is an optimization pass for GlobalISel generic memory operations.
Definition Types.h:26
void buildOpName(Register Target, const StringRef &Name, MachineIRBuilder &MIRBuilder)
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1737
int64_t getIConstValSext(Register ConstReg, const MachineRegisterInfo *MRI)
MachineInstrBuilder BuildMI(MachineFunction &MF, const MIMetadata &MIMD, const MCInstrDesc &MCID)
Builder interface. Specify how to create the initial instruction itself.
bool isTypeFoldingSupported(unsigned Opcode)
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:643
void addNumImm(const APInt &Imm, MachineInstrBuilder &MIB)
LLVM_ABI void salvageDebugInfo(const MachineRegisterInfo &MRI, MachineInstr &MI)
Assuming the instruction MI is going to be deleted, attempt to salvage debug users of MI by writing t...
Definition Utils.cpp:1731
LLVM_ABI bool constrainSelectedInstRegOperands(MachineInstr &I, const TargetInstrInfo &TII, const TargetRegisterInfo &TRI, const RegisterBankInfo &RBI)
Mutate the newly-selected instruction I to constrain its (possibly generic) virtual register operands...
Definition Utils.cpp:155
bool isPreISelGenericOpcode(unsigned Opcode)
Check whether the given Opcode is a generic opcode that is not supposed to appear after ISel.
unsigned getArrayComponentCount(const MachineRegisterInfo *MRI, const MachineInstr *ResType)
uint64_t getIConstVal(Register ConstReg, const MachineRegisterInfo *MRI)
SmallVector< MachineInstr *, 4 > createContinuedInstructions(MachineIRBuilder &MIRBuilder, unsigned Opcode, unsigned MinWC, unsigned ContinuedOpcode, ArrayRef< Register > Args, Register ReturnRegister, Register TypeID)
SPIRV::MemorySemantics::MemorySemantics getMemSemanticsForStorageClass(SPIRV::StorageClass::StorageClass SC)
constexpr unsigned storageClassToAddressSpace(SPIRV::StorageClass::StorageClass SC)
Definition SPIRVUtils.h:244
MachineBasicBlock::iterator getFirstValidInstructionInsertPoint(MachineBasicBlock &BB)
void buildOpDecorate(Register Reg, MachineIRBuilder &MIRBuilder, SPIRV::Decoration::Decoration Dec, const std::vector< uint32_t > &DecArgs, StringRef StrImm)
MachineBasicBlock::iterator getOpVariableMBBIt(MachineInstr &I)
Register createVirtualRegister(SPIRVType *SpvType, SPIRVGlobalRegistry *GR, MachineRegisterInfo *MRI, const MachineFunction &MF)
MachineInstr * getImm(const MachineOperand &MO, const MachineRegisterInfo *MRI)
Type * toTypedPointer(Type *Ty)
Definition SPIRVUtils.h:458
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition Debug.cpp:207
LLVM_ABI void report_fatal_error(Error Err, bool gen_crash_diag=true)
Definition Error.cpp:167
const MachineInstr SPIRVType
constexpr bool isGenericCastablePtr(SPIRV::StorageClass::StorageClass SC)
Definition SPIRVUtils.h:229
class LLVM_GSL_OWNER SmallVector
Forward declaration of SmallVector so that calculateSmallVectorDefaultInlinedElements can reference s...
MachineInstr * passCopy(MachineInstr *Def, const MachineRegisterInfo *MRI)
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
Definition Casting.h:547
std::optional< SPIRV::LinkageType::LinkageType > getSpirvLinkageTypeFor(const SPIRVSubtarget &ST, const GlobalValue &GV)
LLVM_ABI raw_fd_ostream & errs()
This returns a reference to a raw_ostream for standard error.
SPIRV::StorageClass::StorageClass addressSpaceToStorageClass(unsigned AddrSpace, const SPIRVSubtarget &STI)
AtomicOrdering
Atomic ordering for LLVM's memory model.
SPIRV::Scope::Scope getMemScope(LLVMContext &Ctx, SyncScope::ID Id)
InstructionSelector * createSPIRVInstructionSelector(const SPIRVTargetMachine &TM, const SPIRVSubtarget &Subtarget, const RegisterBankInfo &RBI)
std::string getStringValueFromReg(Register Reg, MachineRegisterInfo &MRI)
int64_t foldImm(const MachineOperand &MO, const MachineRegisterInfo *MRI)
DWARFExpression::Operation Op
constexpr unsigned BitWidth
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:559
bool hasInitializer(const GlobalVariable *GV)
Definition SPIRVUtils.h:346
MachineInstr * getVRegDef(MachineRegisterInfo &MRI, Register Reg)
SPIRV::MemorySemantics::MemorySemantics getMemSemantics(AtomicOrdering Ord)
std::string getLinkStringForBuiltIn(SPIRV::BuiltIn::BuiltIn BuiltInValue)
LLVM_ABI bool isTriviallyDead(const MachineInstr &MI, const MachineRegisterInfo &MRI)
Check whether an instruction MI is dead: it only defines dead virtual registers, and doesn't have oth...
Definition Utils.cpp:222
#define N