LLVM 22.0.0git
HexagonInstrInfo.cpp
Go to the documentation of this file.
1//===- HexagonInstrInfo.cpp - Hexagon Instruction Information -------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file contains the Hexagon implementation of the TargetInstrInfo class.
10//
11//===----------------------------------------------------------------------===//
12
13#include "HexagonInstrInfo.h"
16#include "HexagonRegisterInfo.h"
17#include "HexagonSubtarget.h"
18#include "llvm/ADT/ArrayRef.h"
22#include "llvm/ADT/StringRef.h"
42#include "llvm/IR/DebugLoc.h"
44#include "llvm/MC/MCAsmInfo.h"
46#include "llvm/MC/MCInstrDesc.h"
50#include "llvm/Support/Debug.h"
55#include <cassert>
56#include <cctype>
57#include <cstdint>
58#include <cstring>
59#include <iterator>
60#include <optional>
61#include <string>
62#include <utility>
63
64using namespace llvm;
65
66#define DEBUG_TYPE "hexagon-instrinfo"
67
68#define GET_INSTRINFO_CTOR_DTOR
69#define GET_INSTRMAP_INFO
71#include "HexagonGenDFAPacketizer.inc"
72#include "HexagonGenInstrInfo.inc"
73
74cl::opt<bool> ScheduleInlineAsm("hexagon-sched-inline-asm", cl::Hidden,
75 cl::init(false), cl::desc("Do not consider inline-asm a scheduling/"
76 "packetization boundary."));
77
78static cl::opt<bool> EnableBranchPrediction("hexagon-enable-branch-prediction",
79 cl::Hidden, cl::init(true), cl::desc("Enable branch prediction"));
80
82 "disable-hexagon-nv-schedule", cl::Hidden,
83 cl::desc("Disable schedule adjustment for new value stores."));
84
86 "enable-timing-class-latency", cl::Hidden, cl::init(false),
87 cl::desc("Enable timing class latency"));
88
90 "enable-alu-forwarding", cl::Hidden, cl::init(true),
91 cl::desc("Enable vec alu forwarding"));
92
94 "enable-acc-forwarding", cl::Hidden, cl::init(true),
95 cl::desc("Enable vec acc forwarding"));
96
97static cl::opt<bool> BranchRelaxAsmLarge("branch-relax-asm-large",
98 cl::init(true), cl::Hidden,
99 cl::desc("branch relax asm"));
100
101static cl::opt<bool>
102 UseDFAHazardRec("dfa-hazard-rec", cl::init(true), cl::Hidden,
103 cl::desc("Use the DFA based hazard recognizer."));
104
105/// Constants for Hexagon instructions.
106const int Hexagon_MEMW_OFFSET_MAX = 4095;
107const int Hexagon_MEMW_OFFSET_MIN = -4096;
108const int Hexagon_MEMD_OFFSET_MAX = 8191;
109const int Hexagon_MEMD_OFFSET_MIN = -8192;
110const int Hexagon_MEMH_OFFSET_MAX = 2047;
111const int Hexagon_MEMH_OFFSET_MIN = -2048;
112const int Hexagon_MEMB_OFFSET_MAX = 1023;
113const int Hexagon_MEMB_OFFSET_MIN = -1024;
114const int Hexagon_ADDI_OFFSET_MAX = 32767;
115const int Hexagon_ADDI_OFFSET_MIN = -32768;
116
117// Pin the vtable to this file.
118void HexagonInstrInfo::anchor() {}
119
121 : HexagonGenInstrInfo(ST, RegInfo, Hexagon::ADJCALLSTACKDOWN,
122 Hexagon::ADJCALLSTACKUP),
123 RegInfo(ST.getHwMode()), Subtarget(ST) {}
124
125namespace llvm {
126namespace HexagonFUnits {
127 bool isSlot0Only(unsigned units);
128}
129}
130
132 return (Reg >= Hexagon::R0 && Reg <= Hexagon::R7) ||
133 (Reg >= Hexagon::R16 && Reg <= Hexagon::R23);
134}
135
137 return isIntRegForSubInst(HRI.getSubReg(Reg, Hexagon::isub_lo)) &&
138 isIntRegForSubInst(HRI.getSubReg(Reg, Hexagon::isub_hi));
139}
140
141/// Calculate number of instructions excluding the debug instructions.
144 unsigned Count = 0;
145 for (; MIB != MIE; ++MIB) {
146 if (!MIB->isDebugInstr())
147 ++Count;
148 }
149 return Count;
150}
151
152// Check if the A2_tfrsi instruction is cheap or not. If the operand has
153// to be constant-extendend it is not cheap since it occupies two slots
154// in a packet.
156 // Enable the following steps only at Os/Oz
157 if (!(MI.getMF()->getFunction().hasOptSize()))
158 return MI.isAsCheapAsAMove();
159
160 if (MI.getOpcode() == Hexagon::A2_tfrsi) {
161 auto Op = MI.getOperand(1);
162 // If the instruction has a global address as operand, it is not cheap
163 // since the operand will be constant extended.
164 if (Op.isGlobal())
165 return false;
166 // If the instruction has an operand of size > 16bits, its will be
167 // const-extended and hence, it is not cheap.
168 if (Op.isImm()) {
169 int64_t Imm = Op.getImm();
170 if (!isInt<16>(Imm))
171 return false;
172 }
173 }
174 return MI.isAsCheapAsAMove();
175}
176
177// Do not sink floating point instructions that updates USR register.
178// Example:
179// feclearexcept
180// F2_conv_w2sf
181// fetestexcept
182// MachineSink sinks F2_conv_w2sf and we are not able to catch exceptions.
183// TODO: On some of these floating point instructions, USR is marked as Use.
184// In reality, these instructions also Def the USR. If USR is marked as Def,
185// some of the assumptions in assembler packetization are broken.
187 // Assumption: A floating point instruction that reads the USR will write
188 // the USR as well.
189 if (isFloat(MI) && MI.hasRegisterImplicitUseOperand(Hexagon::USR))
190 return false;
191 return true;
192}
193
194/// Find the hardware loop instruction used to set-up the specified loop.
195/// On Hexagon, we have two instructions used to set-up the hardware loop
196/// (LOOP0, LOOP1) with corresponding endloop (ENDLOOP0, ENDLOOP1) instructions
197/// to indicate the end of a loop.
199 unsigned EndLoopOp, MachineBasicBlock *TargetBB,
201 unsigned LOOPi;
202 unsigned LOOPr;
203 if (EndLoopOp == Hexagon::ENDLOOP0) {
204 LOOPi = Hexagon::J2_loop0i;
205 LOOPr = Hexagon::J2_loop0r;
206 } else { // EndLoopOp == Hexagon::EndLOOP1
207 LOOPi = Hexagon::J2_loop1i;
208 LOOPr = Hexagon::J2_loop1r;
209 }
210
211 // The loop set-up instruction will be in a predecessor block
212 for (MachineBasicBlock *PB : BB->predecessors()) {
213 // If this has been visited, already skip it.
214 if (!Visited.insert(PB).second)
215 continue;
216 if (PB == BB)
217 continue;
218 for (MachineInstr &I : llvm::reverse(PB->instrs())) {
219 unsigned Opc = I.getOpcode();
220 if (Opc == LOOPi || Opc == LOOPr)
221 return &I;
222 // We've reached a different loop, which means the loop01 has been
223 // removed.
224 if (Opc == EndLoopOp && I.getOperand(0).getMBB() != TargetBB)
225 return nullptr;
226 }
227 // Check the predecessors for the LOOP instruction.
228 if (MachineInstr *Loop = findLoopInstr(PB, EndLoopOp, TargetBB, Visited))
229 return Loop;
230 }
231 return nullptr;
232}
233
234/// Gather register def/uses from MI.
235/// This treats possible (predicated) defs as actually happening ones
236/// (conservatively).
237static inline void parseOperands(const MachineInstr &MI,
239 Defs.clear();
240 Uses.clear();
241
242 for (const MachineOperand &MO : MI.operands()) {
243 if (!MO.isReg())
244 continue;
245
246 Register Reg = MO.getReg();
247 if (!Reg)
248 continue;
249
250 if (MO.isUse())
251 Uses.push_back(MO.getReg());
252
253 if (MO.isDef())
254 Defs.push_back(MO.getReg());
255 }
256}
257
258// Position dependent, so check twice for swap.
259static bool isDuplexPairMatch(unsigned Ga, unsigned Gb) {
260 switch (Ga) {
262 default:
263 return false;
265 return (Gb == HexagonII::HSIG_L1 || Gb == HexagonII::HSIG_A);
267 return (Gb == HexagonII::HSIG_L1 || Gb == HexagonII::HSIG_L2 ||
268 Gb == HexagonII::HSIG_A);
270 return (Gb == HexagonII::HSIG_L1 || Gb == HexagonII::HSIG_L2 ||
273 return (Gb == HexagonII::HSIG_L1 || Gb == HexagonII::HSIG_L2 ||
274 Gb == HexagonII::HSIG_S1 || Gb == HexagonII::HSIG_S2 ||
275 Gb == HexagonII::HSIG_A);
277 return (Gb == HexagonII::HSIG_A);
279 return (Gb == HexagonII::HSIG_Compound);
280 }
281 return false;
282}
283
284/// isLoadFromStackSlot - If the specified machine instruction is a direct
285/// load from a stack slot, return the virtual or physical register number of
286/// the destination along with the FrameIndex of the loaded stack slot. If
287/// not, return 0. This predicate must return 0 if the instruction has
288/// any side effects other than loading from the stack slot.
290 int &FrameIndex) const {
291 switch (MI.getOpcode()) {
292 default:
293 break;
294 case Hexagon::L2_loadri_io:
295 case Hexagon::L2_loadrd_io:
296 case Hexagon::V6_vL32b_ai:
297 case Hexagon::V6_vL32b_nt_ai:
298 case Hexagon::V6_vL32Ub_ai:
299 case Hexagon::LDriw_pred:
300 case Hexagon::LDriw_ctr:
301 case Hexagon::PS_vloadrq_ai:
302 case Hexagon::PS_vloadrw_ai:
303 case Hexagon::PS_vloadrw_nt_ai: {
304 const MachineOperand OpFI = MI.getOperand(1);
305 if (!OpFI.isFI())
306 return 0;
307 const MachineOperand OpOff = MI.getOperand(2);
308 if (!OpOff.isImm() || OpOff.getImm() != 0)
309 return 0;
310 FrameIndex = OpFI.getIndex();
311 return MI.getOperand(0).getReg();
312 }
313
314 case Hexagon::L2_ploadrit_io:
315 case Hexagon::L2_ploadrif_io:
316 case Hexagon::L2_ploadrdt_io:
317 case Hexagon::L2_ploadrdf_io: {
318 const MachineOperand OpFI = MI.getOperand(2);
319 if (!OpFI.isFI())
320 return 0;
321 const MachineOperand OpOff = MI.getOperand(3);
322 if (!OpOff.isImm() || OpOff.getImm() != 0)
323 return 0;
324 FrameIndex = OpFI.getIndex();
325 return MI.getOperand(0).getReg();
326 }
327 }
328
329 return 0;
330}
331
332/// isStoreToStackSlot - If the specified machine instruction is a direct
333/// store to a stack slot, return the virtual or physical register number of
334/// the source reg along with the FrameIndex of the loaded stack slot. If
335/// not, return 0. This predicate must return 0 if the instruction has
336/// any side effects other than storing to the stack slot.
338 int &FrameIndex) const {
339 switch (MI.getOpcode()) {
340 default:
341 break;
342 case Hexagon::S2_storerb_io:
343 case Hexagon::S2_storerh_io:
344 case Hexagon::S2_storeri_io:
345 case Hexagon::S2_storerd_io:
346 case Hexagon::V6_vS32b_ai:
347 case Hexagon::V6_vS32Ub_ai:
348 case Hexagon::STriw_pred:
349 case Hexagon::STriw_ctr:
350 case Hexagon::PS_vstorerq_ai:
351 case Hexagon::PS_vstorerw_ai: {
352 const MachineOperand &OpFI = MI.getOperand(0);
353 if (!OpFI.isFI())
354 return 0;
355 const MachineOperand &OpOff = MI.getOperand(1);
356 if (!OpOff.isImm() || OpOff.getImm() != 0)
357 return 0;
358 FrameIndex = OpFI.getIndex();
359 return MI.getOperand(2).getReg();
360 }
361
362 case Hexagon::S2_pstorerbt_io:
363 case Hexagon::S2_pstorerbf_io:
364 case Hexagon::S2_pstorerht_io:
365 case Hexagon::S2_pstorerhf_io:
366 case Hexagon::S2_pstorerit_io:
367 case Hexagon::S2_pstorerif_io:
368 case Hexagon::S2_pstorerdt_io:
369 case Hexagon::S2_pstorerdf_io: {
370 const MachineOperand &OpFI = MI.getOperand(1);
371 if (!OpFI.isFI())
372 return 0;
373 const MachineOperand &OpOff = MI.getOperand(2);
374 if (!OpOff.isImm() || OpOff.getImm() != 0)
375 return 0;
376 FrameIndex = OpFI.getIndex();
377 return MI.getOperand(3).getReg();
378 }
379 }
380
381 return 0;
382}
383
384/// This function checks if the instruction or bundle of instructions
385/// has load from stack slot and returns frameindex and machine memory
386/// operand of that instruction if true.
388 const MachineInstr &MI,
390 if (MI.isBundle()) {
391 const MachineBasicBlock *MBB = MI.getParent();
393 for (++MII; MII != MBB->instr_end() && MII->isInsideBundle(); ++MII)
395 return true;
396 return false;
397 }
398
400}
401
402/// This function checks if the instruction or bundle of instructions
403/// has store to stack slot and returns frameindex and machine memory
404/// operand of that instruction if true.
406 const MachineInstr &MI,
408 if (MI.isBundle()) {
409 const MachineBasicBlock *MBB = MI.getParent();
411 for (++MII; MII != MBB->instr_end() && MII->isInsideBundle(); ++MII)
413 return true;
414 return false;
415 }
416
418}
419
420/// This function can analyze one/two way branching only and should (mostly) be
421/// called by target independent side.
422/// First entry is always the opcode of the branching instruction, except when
423/// the Cond vector is supposed to be empty, e.g., when analyzeBranch fails, a
424/// BB with only unconditional jump. Subsequent entries depend upon the opcode,
425/// e.g. Jump_c p will have
426/// Cond[0] = Jump_c
427/// Cond[1] = p
428/// HW-loop ENDLOOP:
429/// Cond[0] = ENDLOOP
430/// Cond[1] = MBB
431/// New value jump:
432/// Cond[0] = Hexagon::CMPEQri_f_Jumpnv_t_V4 -- specific opcode
433/// Cond[1] = R
434/// Cond[2] = Imm
437 MachineBasicBlock *&FBB,
439 bool AllowModify) const {
440 TBB = nullptr;
441 FBB = nullptr;
442 Cond.clear();
443
444 // If the block has no terminators, it just falls into the block after it.
446 if (I == MBB.instr_begin())
447 return false;
448
449 // A basic block may looks like this:
450 //
451 // [ insn
452 // EH_LABEL
453 // insn
454 // insn
455 // insn
456 // EH_LABEL
457 // insn ]
458 //
459 // It has two succs but does not have a terminator
460 // Don't know how to handle it.
461 do {
462 --I;
463 if (I->isEHLabel())
464 // Don't analyze EH branches.
465 return true;
466 } while (I != MBB.instr_begin());
467
468 I = MBB.instr_end();
469 --I;
470
471 while (I->isDebugInstr()) {
472 if (I == MBB.instr_begin())
473 return false;
474 --I;
475 }
476
477 bool JumpToBlock = I->getOpcode() == Hexagon::J2_jump &&
478 I->getOperand(0).isMBB();
479 // Delete the J2_jump if it's equivalent to a fall-through.
480 if (AllowModify && JumpToBlock &&
481 MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) {
482 LLVM_DEBUG(dbgs() << "\nErasing the jump to successor block\n";);
483 I->eraseFromParent();
484 I = MBB.instr_end();
485 if (I == MBB.instr_begin())
486 return false;
487 --I;
488 }
489 if (!isUnpredicatedTerminator(*I))
490 return false;
491
492 // Get the last instruction in the block.
493 MachineInstr *LastInst = &*I;
494 MachineInstr *SecondLastInst = nullptr;
495 // Find one more terminator if present.
496 while (true) {
497 if (&*I != LastInst && !I->isBundle() && isUnpredicatedTerminator(*I)) {
498 if (!SecondLastInst)
499 SecondLastInst = &*I;
500 else
501 // This is a third branch.
502 return true;
503 }
504 if (I == MBB.instr_begin())
505 break;
506 --I;
507 }
508
509 int LastOpcode = LastInst->getOpcode();
510 int SecLastOpcode = SecondLastInst ? SecondLastInst->getOpcode() : 0;
511 // If the branch target is not a basic block, it could be a tail call.
512 // (It is, if the target is a function.)
513 if (LastOpcode == Hexagon::J2_jump && !LastInst->getOperand(0).isMBB())
514 return true;
515 if (SecLastOpcode == Hexagon::J2_jump &&
516 !SecondLastInst->getOperand(0).isMBB())
517 return true;
518
519 bool LastOpcodeHasJMP_c = PredOpcodeHasJMP_c(LastOpcode);
520 bool LastOpcodeHasNVJump = isNewValueJump(*LastInst);
521
522 if (LastOpcodeHasJMP_c && !LastInst->getOperand(1).isMBB())
523 return true;
524
525 // If there is only one terminator instruction, process it.
526 if (LastInst && !SecondLastInst) {
527 if (LastOpcode == Hexagon::J2_jump) {
528 TBB = LastInst->getOperand(0).getMBB();
529 return false;
530 }
531 if (isEndLoopN(LastOpcode)) {
532 TBB = LastInst->getOperand(0).getMBB();
533 Cond.push_back(MachineOperand::CreateImm(LastInst->getOpcode()));
534 Cond.push_back(LastInst->getOperand(0));
535 return false;
536 }
537 if (LastOpcodeHasJMP_c) {
538 TBB = LastInst->getOperand(1).getMBB();
539 Cond.push_back(MachineOperand::CreateImm(LastInst->getOpcode()));
540 Cond.push_back(LastInst->getOperand(0));
541 return false;
542 }
543 // Only supporting rr/ri versions of new-value jumps.
544 if (LastOpcodeHasNVJump && (LastInst->getNumExplicitOperands() == 3)) {
545 TBB = LastInst->getOperand(2).getMBB();
546 Cond.push_back(MachineOperand::CreateImm(LastInst->getOpcode()));
547 Cond.push_back(LastInst->getOperand(0));
548 Cond.push_back(LastInst->getOperand(1));
549 return false;
550 }
551 LLVM_DEBUG(dbgs() << "\nCant analyze " << printMBBReference(MBB)
552 << " with one jump\n";);
553 // Otherwise, don't know what this is.
554 return true;
555 }
556
557 bool SecLastOpcodeHasJMP_c = PredOpcodeHasJMP_c(SecLastOpcode);
558 bool SecLastOpcodeHasNVJump = isNewValueJump(*SecondLastInst);
559 if (SecLastOpcodeHasJMP_c && (LastOpcode == Hexagon::J2_jump)) {
560 if (!SecondLastInst->getOperand(1).isMBB())
561 return true;
562 TBB = SecondLastInst->getOperand(1).getMBB();
563 Cond.push_back(MachineOperand::CreateImm(SecondLastInst->getOpcode()));
564 Cond.push_back(SecondLastInst->getOperand(0));
565 FBB = LastInst->getOperand(0).getMBB();
566 return false;
567 }
568
569 // Only supporting rr/ri versions of new-value jumps.
570 if (SecLastOpcodeHasNVJump &&
571 (SecondLastInst->getNumExplicitOperands() == 3) &&
572 (LastOpcode == Hexagon::J2_jump)) {
573 TBB = SecondLastInst->getOperand(2).getMBB();
574 Cond.push_back(MachineOperand::CreateImm(SecondLastInst->getOpcode()));
575 Cond.push_back(SecondLastInst->getOperand(0));
576 Cond.push_back(SecondLastInst->getOperand(1));
577 FBB = LastInst->getOperand(0).getMBB();
578 return false;
579 }
580
581 // If the block ends with two Hexagon:JMPs, handle it. The second one is not
582 // executed, so remove it.
583 if (SecLastOpcode == Hexagon::J2_jump && LastOpcode == Hexagon::J2_jump) {
584 TBB = SecondLastInst->getOperand(0).getMBB();
585 I = LastInst->getIterator();
586 if (AllowModify)
587 I->eraseFromParent();
588 return false;
589 }
590
591 // If the block ends with an ENDLOOP, and J2_jump, handle it.
592 if (isEndLoopN(SecLastOpcode) && LastOpcode == Hexagon::J2_jump) {
593 TBB = SecondLastInst->getOperand(0).getMBB();
594 Cond.push_back(MachineOperand::CreateImm(SecondLastInst->getOpcode()));
595 Cond.push_back(SecondLastInst->getOperand(0));
596 FBB = LastInst->getOperand(0).getMBB();
597 return false;
598 }
599 LLVM_DEBUG(dbgs() << "\nCant analyze " << printMBBReference(MBB)
600 << " with two jumps";);
601 // Otherwise, can't handle this.
602 return true;
603}
604
606 int *BytesRemoved) const {
607 assert(!BytesRemoved && "code size not handled");
608
609 LLVM_DEBUG(dbgs() << "\nRemoving branches out of " << printMBBReference(MBB));
611 unsigned Count = 0;
612 while (I != MBB.begin()) {
613 --I;
614 if (I->isDebugInstr())
615 continue;
616 // Only removing branches from end of MBB.
617 if (!I->isBranch())
618 return Count;
619 if (Count && (I->getOpcode() == Hexagon::J2_jump))
620 llvm_unreachable("Malformed basic block: unconditional branch not last");
621 MBB.erase(&MBB.back());
622 I = MBB.end();
623 ++Count;
624 }
625 return Count;
626}
627
632 const DebugLoc &DL,
633 int *BytesAdded) const {
634 unsigned BOpc = Hexagon::J2_jump;
635 unsigned BccOpc = Hexagon::J2_jumpt;
636 assert(validateBranchCond(Cond) && "Invalid branching condition");
637 assert(TBB && "insertBranch must not be told to insert a fallthrough");
638 assert(!BytesAdded && "code size not handled");
639
640 // Check if reverseBranchCondition has asked to reverse this branch
641 // If we want to reverse the branch an odd number of times, we want
642 // J2_jumpf.
643 if (!Cond.empty() && Cond[0].isImm())
644 BccOpc = Cond[0].getImm();
645
646 if (!FBB) {
647 if (Cond.empty()) {
648 // Due to a bug in TailMerging/CFG Optimization, we need to add a
649 // special case handling of a predicated jump followed by an
650 // unconditional jump. If not, Tail Merging and CFG Optimization go
651 // into an infinite loop.
652 MachineBasicBlock *NewTBB, *NewFBB;
654 auto Term = MBB.getFirstTerminator();
655 if (Term != MBB.end() && isPredicated(*Term) &&
656 !analyzeBranch(MBB, NewTBB, NewFBB, Cond, false) &&
657 MachineFunction::iterator(NewTBB) == ++MBB.getIterator()) {
660 return insertBranch(MBB, TBB, nullptr, Cond, DL);
661 }
662 BuildMI(&MBB, DL, get(BOpc)).addMBB(TBB);
663 } else if (isEndLoopN(Cond[0].getImm())) {
664 int EndLoopOp = Cond[0].getImm();
665 assert(Cond[1].isMBB());
666 // Since we're adding an ENDLOOP, there better be a LOOP instruction.
667 // Check for it, and change the BB target if needed.
669 MachineInstr *Loop = findLoopInstr(TBB, EndLoopOp, Cond[1].getMBB(),
670 VisitedBBs);
671 assert(Loop != nullptr && "Inserting an ENDLOOP without a LOOP");
672 Loop->getOperand(0).setMBB(TBB);
673 // Add the ENDLOOP after the finding the LOOP0.
674 BuildMI(&MBB, DL, get(EndLoopOp)).addMBB(TBB);
675 } else if (isNewValueJump(Cond[0].getImm())) {
676 assert((Cond.size() == 3) && "Only supporting rr/ri version of nvjump");
677 // New value jump
678 // (ins IntRegs:$src1, IntRegs:$src2, brtarget:$offset)
679 // (ins IntRegs:$src1, u5Imm:$src2, brtarget:$offset)
680 unsigned Flags1 = getUndefRegState(Cond[1].isUndef());
681 LLVM_DEBUG(dbgs() << "\nInserting NVJump for "
683 if (Cond[2].isReg()) {
684 unsigned Flags2 = getUndefRegState(Cond[2].isUndef());
685 BuildMI(&MBB, DL, get(BccOpc)).addReg(Cond[1].getReg(), Flags1).
686 addReg(Cond[2].getReg(), Flags2).addMBB(TBB);
687 } else if(Cond[2].isImm()) {
688 BuildMI(&MBB, DL, get(BccOpc)).addReg(Cond[1].getReg(), Flags1).
689 addImm(Cond[2].getImm()).addMBB(TBB);
690 } else
691 llvm_unreachable("Invalid condition for branching");
692 } else {
693 assert((Cond.size() == 2) && "Malformed cond vector");
694 const MachineOperand &RO = Cond[1];
695 unsigned Flags = getUndefRegState(RO.isUndef());
696 BuildMI(&MBB, DL, get(BccOpc)).addReg(RO.getReg(), Flags).addMBB(TBB);
697 }
698 return 1;
699 }
700 assert((!Cond.empty()) &&
701 "Cond. cannot be empty when multiple branchings are required");
702 assert((!isNewValueJump(Cond[0].getImm())) &&
703 "NV-jump cannot be inserted with another branch");
704 // Special case for hardware loops. The condition is a basic block.
705 if (isEndLoopN(Cond[0].getImm())) {
706 int EndLoopOp = Cond[0].getImm();
707 assert(Cond[1].isMBB());
708 // Since we're adding an ENDLOOP, there better be a LOOP instruction.
709 // Check for it, and change the BB target if needed.
711 MachineInstr *Loop = findLoopInstr(TBB, EndLoopOp, Cond[1].getMBB(),
712 VisitedBBs);
713 assert(Loop != nullptr && "Inserting an ENDLOOP without a LOOP");
714 Loop->getOperand(0).setMBB(TBB);
715 // Add the ENDLOOP after the finding the LOOP0.
716 BuildMI(&MBB, DL, get(EndLoopOp)).addMBB(TBB);
717 } else {
718 const MachineOperand &RO = Cond[1];
719 unsigned Flags = getUndefRegState(RO.isUndef());
720 BuildMI(&MBB, DL, get(BccOpc)).addReg(RO.getReg(), Flags).addMBB(TBB);
721 }
722 BuildMI(&MBB, DL, get(BOpc)).addMBB(FBB);
723
724 return 2;
725}
726
727namespace {
728class HexagonPipelinerLoopInfo : public TargetInstrInfo::PipelinerLoopInfo {
729 MachineInstr *Loop, *EndLoop;
730 MachineFunction *MF;
731 const HexagonInstrInfo *TII;
732 int64_t TripCount;
733 Register LoopCount;
734 DebugLoc DL;
735
736public:
737 HexagonPipelinerLoopInfo(MachineInstr *Loop, MachineInstr *EndLoop)
738 : Loop(Loop), EndLoop(EndLoop), MF(Loop->getParent()->getParent()),
739 TII(MF->getSubtarget<HexagonSubtarget>().getInstrInfo()),
740 DL(Loop->getDebugLoc()) {
741 // Inspect the Loop instruction up-front, as it may be deleted when we call
742 // createTripCountGreaterCondition.
743 TripCount = Loop->getOpcode() == Hexagon::J2_loop0r
744 ? -1
745 : Loop->getOperand(1).getImm();
746 if (TripCount == -1)
747 LoopCount = Loop->getOperand(1).getReg();
748 }
749
750 bool shouldIgnoreForPipelining(const MachineInstr *MI) const override {
751 // Only ignore the terminator.
752 return MI == EndLoop;
753 }
754
755 std::optional<bool> createTripCountGreaterCondition(
756 int TC, MachineBasicBlock &MBB,
757 SmallVectorImpl<MachineOperand> &Cond) override {
758 if (TripCount == -1) {
759 // Check if we're done with the loop.
760 Register Done = TII->createVR(MF, MVT::i1);
761 MachineInstr *NewCmp = BuildMI(&MBB, DL,
762 TII->get(Hexagon::C2_cmpgtui), Done)
763 .addReg(LoopCount)
764 .addImm(TC);
765 Cond.push_back(MachineOperand::CreateImm(Hexagon::J2_jumpf));
766 Cond.push_back(NewCmp->getOperand(0));
767 return {};
768 }
769
770 return TripCount > TC;
771 }
772
773 void setPreheader(MachineBasicBlock *NewPreheader) override {
774 NewPreheader->splice(NewPreheader->getFirstTerminator(), Loop->getParent(),
775 Loop);
776 }
777
778 void adjustTripCount(int TripCountAdjust) override {
779 // If the loop trip count is a compile-time value, then just change the
780 // value.
781 if (Loop->getOpcode() == Hexagon::J2_loop0i ||
782 Loop->getOpcode() == Hexagon::J2_loop1i) {
783 int64_t TripCount = Loop->getOperand(1).getImm() + TripCountAdjust;
784 assert(TripCount > 0 && "Can't create an empty or negative loop!");
785 Loop->getOperand(1).setImm(TripCount);
786 return;
787 }
788
789 // The loop trip count is a run-time value. We generate code to subtract
790 // one from the trip count, and update the loop instruction.
791 Register LoopCount = Loop->getOperand(1).getReg();
792 Register NewLoopCount = TII->createVR(MF, MVT::i32);
793 BuildMI(*Loop->getParent(), Loop, Loop->getDebugLoc(),
794 TII->get(Hexagon::A2_addi), NewLoopCount)
795 .addReg(LoopCount)
796 .addImm(TripCountAdjust);
797 Loop->getOperand(1).setReg(NewLoopCount);
798 }
799
800 void disposed(LiveIntervals *LIS) override {
801 if (LIS)
802 LIS->RemoveMachineInstrFromMaps(*Loop);
803 Loop->eraseFromParent();
804 }
805};
806} // namespace
807
808std::unique_ptr<TargetInstrInfo::PipelinerLoopInfo>
810 // We really "analyze" only hardware loops right now.
812
813 if (I != LoopBB->end() && isEndLoopN(I->getOpcode())) {
815 MachineInstr *LoopInst = findLoopInstr(
816 LoopBB, I->getOpcode(), I->getOperand(0).getMBB(), VisitedBBs);
817 if (LoopInst)
818 return std::make_unique<HexagonPipelinerLoopInfo>(LoopInst, &*I);
819 }
820 return nullptr;
821}
822
824 unsigned NumCycles, unsigned ExtraPredCycles,
825 BranchProbability Probability) const {
826 return nonDbgBBSize(&MBB) <= 3;
827}
828
830 unsigned NumTCycles, unsigned ExtraTCycles, MachineBasicBlock &FMBB,
831 unsigned NumFCycles, unsigned ExtraFCycles, BranchProbability Probability)
832 const {
833 return nonDbgBBSize(&TMBB) <= 3 && nonDbgBBSize(&FMBB) <= 3;
834}
835
837 unsigned NumInstrs, BranchProbability Probability) const {
838 return NumInstrs <= 4;
839}
840
841static void getLiveInRegsAt(LivePhysRegs &Regs, const MachineInstr &MI) {
843 const MachineBasicBlock &B = *MI.getParent();
844 Regs.addLiveIns(B);
845 auto E = MachineBasicBlock::const_iterator(MI.getIterator());
846 for (auto I = B.begin(); I != E; ++I) {
847 Clobbers.clear();
848 Regs.stepForward(*I, Clobbers);
849 }
850}
851
852static void getLiveOutRegsAt(LivePhysRegs &Regs, const MachineInstr &MI) {
853 const MachineBasicBlock &B = *MI.getParent();
854 Regs.addLiveOuts(B);
855 auto E = ++MachineBasicBlock::const_iterator(MI.getIterator()).getReverse();
856 for (auto I = B.rbegin(); I != E; ++I)
857 Regs.stepBackward(*I);
858}
859
862 const DebugLoc &DL, Register DestReg,
863 Register SrcReg, bool KillSrc,
864 bool RenamableDest,
865 bool RenamableSrc) const {
866 const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo();
867 unsigned KillFlag = getKillRegState(KillSrc);
868
869 if (Hexagon::IntRegsRegClass.contains(SrcReg, DestReg)) {
870 BuildMI(MBB, I, DL, get(Hexagon::A2_tfr), DestReg)
871 .addReg(SrcReg, KillFlag);
872 return;
873 }
874 if (Hexagon::DoubleRegsRegClass.contains(SrcReg, DestReg)) {
875 BuildMI(MBB, I, DL, get(Hexagon::A2_tfrp), DestReg)
876 .addReg(SrcReg, KillFlag);
877 return;
878 }
879 if (Hexagon::PredRegsRegClass.contains(SrcReg, DestReg)) {
880 // Map Pd = Ps to Pd = or(Ps, Ps).
881 BuildMI(MBB, I, DL, get(Hexagon::C2_or), DestReg)
882 .addReg(SrcReg).addReg(SrcReg, KillFlag);
883 return;
884 }
885 if (Hexagon::CtrRegsRegClass.contains(DestReg) &&
886 Hexagon::IntRegsRegClass.contains(SrcReg)) {
887 BuildMI(MBB, I, DL, get(Hexagon::A2_tfrrcr), DestReg)
888 .addReg(SrcReg, KillFlag);
889 return;
890 }
891 if (Hexagon::IntRegsRegClass.contains(DestReg) &&
892 Hexagon::CtrRegsRegClass.contains(SrcReg)) {
893 BuildMI(MBB, I, DL, get(Hexagon::A2_tfrcrr), DestReg)
894 .addReg(SrcReg, KillFlag);
895 return;
896 }
897 if (Hexagon::ModRegsRegClass.contains(DestReg) &&
898 Hexagon::IntRegsRegClass.contains(SrcReg)) {
899 BuildMI(MBB, I, DL, get(Hexagon::A2_tfrrcr), DestReg)
900 .addReg(SrcReg, KillFlag);
901 return;
902 }
903 if (Hexagon::PredRegsRegClass.contains(SrcReg) &&
904 Hexagon::IntRegsRegClass.contains(DestReg)) {
905 BuildMI(MBB, I, DL, get(Hexagon::C2_tfrpr), DestReg)
906 .addReg(SrcReg, KillFlag);
907 return;
908 }
909 if (Hexagon::IntRegsRegClass.contains(SrcReg) &&
910 Hexagon::PredRegsRegClass.contains(DestReg)) {
911 BuildMI(MBB, I, DL, get(Hexagon::C2_tfrrp), DestReg)
912 .addReg(SrcReg, KillFlag);
913 return;
914 }
915 if (Hexagon::PredRegsRegClass.contains(SrcReg) &&
916 Hexagon::IntRegsRegClass.contains(DestReg)) {
917 BuildMI(MBB, I, DL, get(Hexagon::C2_tfrpr), DestReg)
918 .addReg(SrcReg, KillFlag);
919 return;
920 }
921 if (Hexagon::HvxVRRegClass.contains(SrcReg, DestReg)) {
922 BuildMI(MBB, I, DL, get(Hexagon::V6_vassign), DestReg).
923 addReg(SrcReg, KillFlag);
924 return;
925 }
926 if (Hexagon::HvxWRRegClass.contains(SrcReg, DestReg)) {
927 LivePhysRegs LiveAtMI(HRI);
928 getLiveInRegsAt(LiveAtMI, *I);
929 Register SrcLo = HRI.getSubReg(SrcReg, Hexagon::vsub_lo);
930 Register SrcHi = HRI.getSubReg(SrcReg, Hexagon::vsub_hi);
931 unsigned UndefLo = getUndefRegState(!LiveAtMI.contains(SrcLo));
932 unsigned UndefHi = getUndefRegState(!LiveAtMI.contains(SrcHi));
933 BuildMI(MBB, I, DL, get(Hexagon::V6_vcombine), DestReg)
934 .addReg(SrcHi, KillFlag | UndefHi)
935 .addReg(SrcLo, KillFlag | UndefLo);
936 return;
937 }
938 if (Hexagon::HvxQRRegClass.contains(SrcReg, DestReg)) {
939 BuildMI(MBB, I, DL, get(Hexagon::V6_pred_and), DestReg)
940 .addReg(SrcReg)
941 .addReg(SrcReg, KillFlag);
942 return;
943 }
944 if (Hexagon::HvxQRRegClass.contains(SrcReg) &&
945 Hexagon::HvxVRRegClass.contains(DestReg)) {
946 llvm_unreachable("Unimplemented pred to vec");
947 return;
948 }
949 if (Hexagon::HvxQRRegClass.contains(DestReg) &&
950 Hexagon::HvxVRRegClass.contains(SrcReg)) {
951 llvm_unreachable("Unimplemented vec to pred");
952 return;
953 }
954
955#ifndef NDEBUG
956 // Show the invalid registers to ease debugging.
957 dbgs() << "Invalid registers for copy in " << printMBBReference(MBB) << ": "
958 << printReg(DestReg, &HRI) << " = " << printReg(SrcReg, &HRI) << '\n';
959#endif
960 llvm_unreachable("Unimplemented");
961}
962
965 Register SrcReg, bool isKill, int FI,
966 const TargetRegisterClass *RC,
967 Register VReg,
968 MachineInstr::MIFlag Flags) const {
969 DebugLoc DL = MBB.findDebugLoc(I);
970 MachineFunction &MF = *MBB.getParent();
971 MachineFrameInfo &MFI = MF.getFrameInfo();
972 unsigned KillFlag = getKillRegState(isKill);
973
976 MFI.getObjectSize(FI), MFI.getObjectAlign(FI));
977
978 if (Hexagon::IntRegsRegClass.hasSubClassEq(RC)) {
979 BuildMI(MBB, I, DL, get(Hexagon::S2_storeri_io))
980 .addFrameIndex(FI).addImm(0)
981 .addReg(SrcReg, KillFlag).addMemOperand(MMO);
982 } else if (Hexagon::DoubleRegsRegClass.hasSubClassEq(RC)) {
983 BuildMI(MBB, I, DL, get(Hexagon::S2_storerd_io))
984 .addFrameIndex(FI).addImm(0)
985 .addReg(SrcReg, KillFlag).addMemOperand(MMO);
986 } else if (Hexagon::PredRegsRegClass.hasSubClassEq(RC)) {
987 BuildMI(MBB, I, DL, get(Hexagon::STriw_pred))
988 .addFrameIndex(FI).addImm(0)
989 .addReg(SrcReg, KillFlag).addMemOperand(MMO);
990 } else if (Hexagon::ModRegsRegClass.hasSubClassEq(RC)) {
991 BuildMI(MBB, I, DL, get(Hexagon::STriw_ctr))
992 .addFrameIndex(FI).addImm(0)
993 .addReg(SrcReg, KillFlag).addMemOperand(MMO);
994 } else if (Hexagon::HvxQRRegClass.hasSubClassEq(RC)) {
995 BuildMI(MBB, I, DL, get(Hexagon::PS_vstorerq_ai))
996 .addFrameIndex(FI).addImm(0)
997 .addReg(SrcReg, KillFlag).addMemOperand(MMO);
998 } else if (Hexagon::HvxVRRegClass.hasSubClassEq(RC)) {
999 BuildMI(MBB, I, DL, get(Hexagon::PS_vstorerv_ai))
1000 .addFrameIndex(FI).addImm(0)
1001 .addReg(SrcReg, KillFlag).addMemOperand(MMO);
1002 } else if (Hexagon::HvxWRRegClass.hasSubClassEq(RC)) {
1003 BuildMI(MBB, I, DL, get(Hexagon::PS_vstorerw_ai))
1004 .addFrameIndex(FI).addImm(0)
1005 .addReg(SrcReg, KillFlag).addMemOperand(MMO);
1006 } else {
1007 llvm_unreachable("Unimplemented");
1008 }
1009}
1010
1013 Register DestReg, int FI,
1014 const TargetRegisterClass *RC,
1015 Register VReg,
1016 MachineInstr::MIFlag Flags) const {
1017 DebugLoc DL = MBB.findDebugLoc(I);
1018 MachineFunction &MF = *MBB.getParent();
1019 MachineFrameInfo &MFI = MF.getFrameInfo();
1020
1023 MFI.getObjectSize(FI), MFI.getObjectAlign(FI));
1024
1025 if (Hexagon::IntRegsRegClass.hasSubClassEq(RC)) {
1026 BuildMI(MBB, I, DL, get(Hexagon::L2_loadri_io), DestReg)
1027 .addFrameIndex(FI).addImm(0).addMemOperand(MMO);
1028 } else if (Hexagon::DoubleRegsRegClass.hasSubClassEq(RC)) {
1029 BuildMI(MBB, I, DL, get(Hexagon::L2_loadrd_io), DestReg)
1030 .addFrameIndex(FI).addImm(0).addMemOperand(MMO);
1031 } else if (Hexagon::PredRegsRegClass.hasSubClassEq(RC)) {
1032 BuildMI(MBB, I, DL, get(Hexagon::LDriw_pred), DestReg)
1033 .addFrameIndex(FI).addImm(0).addMemOperand(MMO);
1034 } else if (Hexagon::ModRegsRegClass.hasSubClassEq(RC)) {
1035 BuildMI(MBB, I, DL, get(Hexagon::LDriw_ctr), DestReg)
1036 .addFrameIndex(FI).addImm(0).addMemOperand(MMO);
1037 } else if (Hexagon::HvxQRRegClass.hasSubClassEq(RC)) {
1038 BuildMI(MBB, I, DL, get(Hexagon::PS_vloadrq_ai), DestReg)
1039 .addFrameIndex(FI).addImm(0).addMemOperand(MMO);
1040 } else if (Hexagon::HvxVRRegClass.hasSubClassEq(RC)) {
1041 BuildMI(MBB, I, DL, get(Hexagon::PS_vloadrv_ai), DestReg)
1042 .addFrameIndex(FI).addImm(0).addMemOperand(MMO);
1043 } else if (Hexagon::HvxWRRegClass.hasSubClassEq(RC)) {
1044 BuildMI(MBB, I, DL, get(Hexagon::PS_vloadrw_ai), DestReg)
1045 .addFrameIndex(FI).addImm(0).addMemOperand(MMO);
1046 } else {
1047 llvm_unreachable("Can't store this register to stack slot");
1048 }
1049}
1050
1051/// expandPostRAPseudo - This function is called for all pseudo instructions
1052/// that remain after register allocation. Many pseudo instructions are
1053/// created to help register allocation. This is the place to convert them
1054/// into real instructions. The target can edit MI in place, or it can insert
1055/// new instructions and erase MI. The function should return true if
1056/// anything was changed.
1058 MachineBasicBlock &MBB = *MI.getParent();
1059 MachineFunction &MF = *MBB.getParent();
1061 const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo();
1062 LivePhysRegs LiveIn(HRI), LiveOut(HRI);
1063 DebugLoc DL = MI.getDebugLoc();
1064 unsigned Opc = MI.getOpcode();
1065
1066 auto RealCirc = [&](unsigned Opc, bool HasImm, unsigned MxOp) {
1067 Register Mx = MI.getOperand(MxOp).getReg();
1068 Register CSx = (Mx == Hexagon::M0 ? Hexagon::CS0 : Hexagon::CS1);
1069 BuildMI(MBB, MI, DL, get(Hexagon::A2_tfrrcr), CSx)
1070 .add(MI.getOperand((HasImm ? 5 : 4)));
1071 auto MIB = BuildMI(MBB, MI, DL, get(Opc)).add(MI.getOperand(0))
1072 .add(MI.getOperand(1)).add(MI.getOperand(2)).add(MI.getOperand(3));
1073 if (HasImm)
1074 MIB.add(MI.getOperand(4));
1075 MIB.addReg(CSx, RegState::Implicit);
1076 MBB.erase(MI);
1077 return true;
1078 };
1079
1080 auto UseAligned = [&](const MachineInstr &MI, Align NeedAlign) {
1081 if (MI.memoperands().empty())
1082 return false;
1083 return all_of(MI.memoperands(), [NeedAlign](const MachineMemOperand *MMO) {
1084 return MMO->getAlign() >= NeedAlign;
1085 });
1086 };
1087
1088 switch (Opc) {
1089 case Hexagon::PS_call_instrprof_custom: {
1090 auto Op0 = MI.getOperand(0);
1091 assert(Op0.isGlobal() &&
1092 "First operand must be a global containing handler name.");
1093 const GlobalValue *NameVar = Op0.getGlobal();
1094 const GlobalVariable *GV = dyn_cast<GlobalVariable>(NameVar);
1095 auto *Arr = cast<ConstantDataArray>(GV->getInitializer());
1096 StringRef NameStr = Arr->isCString() ? Arr->getAsCString() : Arr->getAsString();
1097
1098 MachineOperand &Op1 = MI.getOperand(1);
1099 // Set R0 with the imm value to be passed to the custom profiling handler.
1100 BuildMI(MBB, MI, DL, get(Hexagon::A2_tfrsi), Hexagon::R0)
1101 .addImm(Op1.getImm());
1102 // The call to the custom handler is being treated as a special one as the
1103 // callee is responsible for saving and restoring all the registers
1104 // (including caller saved registers) it needs to modify. This is
1105 // done to reduce the impact of instrumentation on the code being
1106 // instrumented/profiled.
1107 // NOTE: R14, R15 and R28 are reserved for PLT handling. These registers
1108 // are in the Def list of the Hexagon::PS_call_instrprof_custom and
1109 // therefore will be handled appropriately duing register allocation.
1110
1111 // TODO: It may be a good idea to add a separate pseudo instruction for
1112 // static relocation which doesn't need to reserve r14, r15 and r28.
1113
1114 auto MIB = BuildMI(MBB, MI, DL, get(Hexagon::J2_call))
1116 .addDef(Hexagon::R29, RegState::ImplicitDefine)
1117 .addDef(Hexagon::R30, RegState::ImplicitDefine)
1118 .addDef(Hexagon::R14, RegState::ImplicitDefine)
1119 .addDef(Hexagon::R15, RegState::ImplicitDefine)
1120 .addDef(Hexagon::R28, RegState::ImplicitDefine);
1121 const char *cstr = MF.createExternalSymbolName(NameStr);
1122 MIB.addExternalSymbol(cstr);
1123 MBB.erase(MI);
1124 return true;
1125 }
1126 case TargetOpcode::COPY: {
1127 MachineOperand &MD = MI.getOperand(0);
1128 MachineOperand &MS = MI.getOperand(1);
1129 MachineBasicBlock::iterator MBBI = MI.getIterator();
1130 if (MD.getReg() != MS.getReg() && !MS.isUndef()) {
1131 copyPhysReg(MBB, MI, DL, MD.getReg(), MS.getReg(), MS.isKill());
1132 std::prev(MBBI)->copyImplicitOps(*MBB.getParent(), MI);
1133 }
1134 MBB.erase(MBBI);
1135 return true;
1136 }
1137 case Hexagon::PS_aligna:
1138 BuildMI(MBB, MI, DL, get(Hexagon::A2_andir), MI.getOperand(0).getReg())
1139 .addReg(HRI.getFrameRegister())
1140 .addImm(-MI.getOperand(1).getImm());
1141 MBB.erase(MI);
1142 return true;
1143 case Hexagon::V6_vassignp: {
1144 Register SrcReg = MI.getOperand(1).getReg();
1145 Register DstReg = MI.getOperand(0).getReg();
1146 Register SrcLo = HRI.getSubReg(SrcReg, Hexagon::vsub_lo);
1147 Register SrcHi = HRI.getSubReg(SrcReg, Hexagon::vsub_hi);
1148 getLiveInRegsAt(LiveIn, MI);
1149 unsigned UndefLo = getUndefRegState(!LiveIn.contains(SrcLo));
1150 unsigned UndefHi = getUndefRegState(!LiveIn.contains(SrcHi));
1151 unsigned Kill = getKillRegState(MI.getOperand(1).isKill());
1152 BuildMI(MBB, MI, DL, get(Hexagon::V6_vcombine), DstReg)
1153 .addReg(SrcHi, UndefHi)
1154 .addReg(SrcLo, Kill | UndefLo);
1155 MBB.erase(MI);
1156 return true;
1157 }
1158 case Hexagon::V6_lo: {
1159 Register SrcReg = MI.getOperand(1).getReg();
1160 Register DstReg = MI.getOperand(0).getReg();
1161 Register SrcSubLo = HRI.getSubReg(SrcReg, Hexagon::vsub_lo);
1162 copyPhysReg(MBB, MI, DL, DstReg, SrcSubLo, MI.getOperand(1).isKill());
1163 MBB.erase(MI);
1164 MRI.clearKillFlags(SrcSubLo);
1165 return true;
1166 }
1167 case Hexagon::V6_hi: {
1168 Register SrcReg = MI.getOperand(1).getReg();
1169 Register DstReg = MI.getOperand(0).getReg();
1170 Register SrcSubHi = HRI.getSubReg(SrcReg, Hexagon::vsub_hi);
1171 copyPhysReg(MBB, MI, DL, DstReg, SrcSubHi, MI.getOperand(1).isKill());
1172 MBB.erase(MI);
1173 MRI.clearKillFlags(SrcSubHi);
1174 return true;
1175 }
1176 case Hexagon::PS_vloadrv_ai: {
1177 Register DstReg = MI.getOperand(0).getReg();
1178 const MachineOperand &BaseOp = MI.getOperand(1);
1179 assert(BaseOp.getSubReg() == 0);
1180 int Offset = MI.getOperand(2).getImm();
1181 Align NeedAlign = HRI.getSpillAlign(Hexagon::HvxVRRegClass);
1182 unsigned NewOpc = UseAligned(MI, NeedAlign) ? Hexagon::V6_vL32b_ai
1183 : Hexagon::V6_vL32Ub_ai;
1184 BuildMI(MBB, MI, DL, get(NewOpc), DstReg)
1185 .addReg(BaseOp.getReg(), getRegState(BaseOp))
1186 .addImm(Offset)
1187 .cloneMemRefs(MI);
1188 MBB.erase(MI);
1189 return true;
1190 }
1191 case Hexagon::PS_vloadrw_ai: {
1192 Register DstReg = MI.getOperand(0).getReg();
1193 const MachineOperand &BaseOp = MI.getOperand(1);
1194 assert(BaseOp.getSubReg() == 0);
1195 int Offset = MI.getOperand(2).getImm();
1196 unsigned VecOffset = HRI.getSpillSize(Hexagon::HvxVRRegClass);
1197 Align NeedAlign = HRI.getSpillAlign(Hexagon::HvxVRRegClass);
1198 unsigned NewOpc = UseAligned(MI, NeedAlign) ? Hexagon::V6_vL32b_ai
1199 : Hexagon::V6_vL32Ub_ai;
1200 BuildMI(MBB, MI, DL, get(NewOpc),
1201 HRI.getSubReg(DstReg, Hexagon::vsub_lo))
1202 .addReg(BaseOp.getReg(), getRegState(BaseOp) & ~RegState::Kill)
1203 .addImm(Offset)
1204 .cloneMemRefs(MI);
1205 BuildMI(MBB, MI, DL, get(NewOpc),
1206 HRI.getSubReg(DstReg, Hexagon::vsub_hi))
1207 .addReg(BaseOp.getReg(), getRegState(BaseOp))
1208 .addImm(Offset + VecOffset)
1209 .cloneMemRefs(MI);
1210 MBB.erase(MI);
1211 return true;
1212 }
1213 case Hexagon::PS_vstorerv_ai: {
1214 const MachineOperand &SrcOp = MI.getOperand(2);
1215 assert(SrcOp.getSubReg() == 0);
1216 const MachineOperand &BaseOp = MI.getOperand(0);
1217 assert(BaseOp.getSubReg() == 0);
1218 int Offset = MI.getOperand(1).getImm();
1219 Align NeedAlign = HRI.getSpillAlign(Hexagon::HvxVRRegClass);
1220 unsigned NewOpc = UseAligned(MI, NeedAlign) ? Hexagon::V6_vS32b_ai
1221 : Hexagon::V6_vS32Ub_ai;
1222 BuildMI(MBB, MI, DL, get(NewOpc))
1223 .addReg(BaseOp.getReg(), getRegState(BaseOp))
1224 .addImm(Offset)
1226 .cloneMemRefs(MI);
1227 MBB.erase(MI);
1228 return true;
1229 }
1230 case Hexagon::PS_vstorerw_ai: {
1231 Register SrcReg = MI.getOperand(2).getReg();
1232 const MachineOperand &BaseOp = MI.getOperand(0);
1233 assert(BaseOp.getSubReg() == 0);
1234 int Offset = MI.getOperand(1).getImm();
1235 unsigned VecOffset = HRI.getSpillSize(Hexagon::HvxVRRegClass);
1236 Align NeedAlign = HRI.getSpillAlign(Hexagon::HvxVRRegClass);
1237 unsigned NewOpc = UseAligned(MI, NeedAlign) ? Hexagon::V6_vS32b_ai
1238 : Hexagon::V6_vS32Ub_ai;
1239 BuildMI(MBB, MI, DL, get(NewOpc))
1240 .addReg(BaseOp.getReg(), getRegState(BaseOp) & ~RegState::Kill)
1241 .addImm(Offset)
1242 .addReg(HRI.getSubReg(SrcReg, Hexagon::vsub_lo))
1243 .cloneMemRefs(MI);
1244 BuildMI(MBB, MI, DL, get(NewOpc))
1245 .addReg(BaseOp.getReg(), getRegState(BaseOp))
1246 .addImm(Offset + VecOffset)
1247 .addReg(HRI.getSubReg(SrcReg, Hexagon::vsub_hi))
1248 .cloneMemRefs(MI);
1249 MBB.erase(MI);
1250 return true;
1251 }
1252 case Hexagon::PS_true: {
1253 Register Reg = MI.getOperand(0).getReg();
1254 BuildMI(MBB, MI, DL, get(Hexagon::C2_orn), Reg)
1255 .addReg(Reg, RegState::Undef)
1256 .addReg(Reg, RegState::Undef);
1257 MBB.erase(MI);
1258 return true;
1259 }
1260 case Hexagon::PS_false: {
1261 Register Reg = MI.getOperand(0).getReg();
1262 BuildMI(MBB, MI, DL, get(Hexagon::C2_andn), Reg)
1263 .addReg(Reg, RegState::Undef)
1264 .addReg(Reg, RegState::Undef);
1265 MBB.erase(MI);
1266 return true;
1267 }
1268 case Hexagon::PS_qtrue: {
1269 BuildMI(MBB, MI, DL, get(Hexagon::V6_veqw), MI.getOperand(0).getReg())
1270 .addReg(Hexagon::V0, RegState::Undef)
1271 .addReg(Hexagon::V0, RegState::Undef);
1272 MBB.erase(MI);
1273 return true;
1274 }
1275 case Hexagon::PS_qfalse: {
1276 BuildMI(MBB, MI, DL, get(Hexagon::V6_vgtw), MI.getOperand(0).getReg())
1277 .addReg(Hexagon::V0, RegState::Undef)
1278 .addReg(Hexagon::V0, RegState::Undef);
1279 MBB.erase(MI);
1280 return true;
1281 }
1282 case Hexagon::PS_vdd0: {
1283 Register Vd = MI.getOperand(0).getReg();
1284 BuildMI(MBB, MI, DL, get(Hexagon::V6_vsubw_dv), Vd)
1286 .addReg(Vd, RegState::Undef);
1287 MBB.erase(MI);
1288 return true;
1289 }
1290 case Hexagon::PS_vmulw: {
1291 // Expand a 64-bit vector multiply into 2 32-bit scalar multiplies.
1292 Register DstReg = MI.getOperand(0).getReg();
1293 Register Src1Reg = MI.getOperand(1).getReg();
1294 Register Src2Reg = MI.getOperand(2).getReg();
1295 Register Src1SubHi = HRI.getSubReg(Src1Reg, Hexagon::isub_hi);
1296 Register Src1SubLo = HRI.getSubReg(Src1Reg, Hexagon::isub_lo);
1297 Register Src2SubHi = HRI.getSubReg(Src2Reg, Hexagon::isub_hi);
1298 Register Src2SubLo = HRI.getSubReg(Src2Reg, Hexagon::isub_lo);
1299 BuildMI(MBB, MI, MI.getDebugLoc(), get(Hexagon::M2_mpyi),
1300 HRI.getSubReg(DstReg, Hexagon::isub_hi))
1301 .addReg(Src1SubHi)
1302 .addReg(Src2SubHi);
1303 BuildMI(MBB, MI, MI.getDebugLoc(), get(Hexagon::M2_mpyi),
1304 HRI.getSubReg(DstReg, Hexagon::isub_lo))
1305 .addReg(Src1SubLo)
1306 .addReg(Src2SubLo);
1307 MBB.erase(MI);
1308 MRI.clearKillFlags(Src1SubHi);
1309 MRI.clearKillFlags(Src1SubLo);
1310 MRI.clearKillFlags(Src2SubHi);
1311 MRI.clearKillFlags(Src2SubLo);
1312 return true;
1313 }
1314 case Hexagon::PS_vmulw_acc: {
1315 // Expand 64-bit vector multiply with addition into 2 scalar multiplies.
1316 Register DstReg = MI.getOperand(0).getReg();
1317 Register Src1Reg = MI.getOperand(1).getReg();
1318 Register Src2Reg = MI.getOperand(2).getReg();
1319 Register Src3Reg = MI.getOperand(3).getReg();
1320 Register Src1SubHi = HRI.getSubReg(Src1Reg, Hexagon::isub_hi);
1321 Register Src1SubLo = HRI.getSubReg(Src1Reg, Hexagon::isub_lo);
1322 Register Src2SubHi = HRI.getSubReg(Src2Reg, Hexagon::isub_hi);
1323 Register Src2SubLo = HRI.getSubReg(Src2Reg, Hexagon::isub_lo);
1324 Register Src3SubHi = HRI.getSubReg(Src3Reg, Hexagon::isub_hi);
1325 Register Src3SubLo = HRI.getSubReg(Src3Reg, Hexagon::isub_lo);
1326 BuildMI(MBB, MI, MI.getDebugLoc(), get(Hexagon::M2_maci),
1327 HRI.getSubReg(DstReg, Hexagon::isub_hi))
1328 .addReg(Src1SubHi)
1329 .addReg(Src2SubHi)
1330 .addReg(Src3SubHi);
1331 BuildMI(MBB, MI, MI.getDebugLoc(), get(Hexagon::M2_maci),
1332 HRI.getSubReg(DstReg, Hexagon::isub_lo))
1333 .addReg(Src1SubLo)
1334 .addReg(Src2SubLo)
1335 .addReg(Src3SubLo);
1336 MBB.erase(MI);
1337 MRI.clearKillFlags(Src1SubHi);
1338 MRI.clearKillFlags(Src1SubLo);
1339 MRI.clearKillFlags(Src2SubHi);
1340 MRI.clearKillFlags(Src2SubLo);
1341 MRI.clearKillFlags(Src3SubHi);
1342 MRI.clearKillFlags(Src3SubLo);
1343 return true;
1344 }
1345 case Hexagon::PS_pselect: {
1346 const MachineOperand &Op0 = MI.getOperand(0);
1347 const MachineOperand &Op1 = MI.getOperand(1);
1348 const MachineOperand &Op2 = MI.getOperand(2);
1349 const MachineOperand &Op3 = MI.getOperand(3);
1350 Register Rd = Op0.getReg();
1351 Register Pu = Op1.getReg();
1352 Register Rs = Op2.getReg();
1353 Register Rt = Op3.getReg();
1354 DebugLoc DL = MI.getDebugLoc();
1355 unsigned K1 = getKillRegState(Op1.isKill());
1356 unsigned K2 = getKillRegState(Op2.isKill());
1357 unsigned K3 = getKillRegState(Op3.isKill());
1358 if (Rd != Rs)
1359 BuildMI(MBB, MI, DL, get(Hexagon::A2_tfrpt), Rd)
1360 .addReg(Pu, (Rd == Rt) ? K1 : 0)
1361 .addReg(Rs, K2);
1362 if (Rd != Rt)
1363 BuildMI(MBB, MI, DL, get(Hexagon::A2_tfrpf), Rd)
1364 .addReg(Pu, K1)
1365 .addReg(Rt, K3);
1366 MBB.erase(MI);
1367 return true;
1368 }
1369 case Hexagon::PS_vselect: {
1370 const MachineOperand &Op0 = MI.getOperand(0);
1371 const MachineOperand &Op1 = MI.getOperand(1);
1372 const MachineOperand &Op2 = MI.getOperand(2);
1373 const MachineOperand &Op3 = MI.getOperand(3);
1374 getLiveOutRegsAt(LiveOut, MI);
1375 bool IsDestLive = !LiveOut.available(MRI, Op0.getReg());
1376 Register PReg = Op1.getReg();
1377 assert(Op1.getSubReg() == 0);
1378 unsigned PState = getRegState(Op1);
1379
1380 if (Op0.getReg() != Op2.getReg()) {
1381 unsigned S = Op0.getReg() != Op3.getReg() ? PState & ~RegState::Kill
1382 : PState;
1383 auto T = BuildMI(MBB, MI, DL, get(Hexagon::V6_vcmov))
1384 .add(Op0)
1385 .addReg(PReg, S)
1386 .add(Op2);
1387 if (IsDestLive)
1388 T.addReg(Op0.getReg(), RegState::Implicit);
1389 IsDestLive = true;
1390 }
1391 if (Op0.getReg() != Op3.getReg()) {
1392 auto T = BuildMI(MBB, MI, DL, get(Hexagon::V6_vncmov))
1393 .add(Op0)
1394 .addReg(PReg, PState)
1395 .add(Op3);
1396 if (IsDestLive)
1397 T.addReg(Op0.getReg(), RegState::Implicit);
1398 }
1399 MBB.erase(MI);
1400 return true;
1401 }
1402 case Hexagon::PS_wselect: {
1403 MachineOperand &Op0 = MI.getOperand(0);
1404 MachineOperand &Op1 = MI.getOperand(1);
1405 MachineOperand &Op2 = MI.getOperand(2);
1406 MachineOperand &Op3 = MI.getOperand(3);
1407 getLiveOutRegsAt(LiveOut, MI);
1408 bool IsDestLive = !LiveOut.available(MRI, Op0.getReg());
1409 Register PReg = Op1.getReg();
1410 assert(Op1.getSubReg() == 0);
1411 unsigned PState = getRegState(Op1);
1412
1413 if (Op0.getReg() != Op2.getReg()) {
1414 unsigned S = Op0.getReg() != Op3.getReg() ? PState & ~RegState::Kill
1415 : PState;
1416 Register SrcLo = HRI.getSubReg(Op2.getReg(), Hexagon::vsub_lo);
1417 Register SrcHi = HRI.getSubReg(Op2.getReg(), Hexagon::vsub_hi);
1418 auto T = BuildMI(MBB, MI, DL, get(Hexagon::V6_vccombine))
1419 .add(Op0)
1420 .addReg(PReg, S)
1421 .addReg(SrcHi)
1422 .addReg(SrcLo);
1423 if (IsDestLive)
1424 T.addReg(Op0.getReg(), RegState::Implicit);
1425 IsDestLive = true;
1426 }
1427 if (Op0.getReg() != Op3.getReg()) {
1428 Register SrcLo = HRI.getSubReg(Op3.getReg(), Hexagon::vsub_lo);
1429 Register SrcHi = HRI.getSubReg(Op3.getReg(), Hexagon::vsub_hi);
1430 auto T = BuildMI(MBB, MI, DL, get(Hexagon::V6_vnccombine))
1431 .add(Op0)
1432 .addReg(PReg, PState)
1433 .addReg(SrcHi)
1434 .addReg(SrcLo);
1435 if (IsDestLive)
1436 T.addReg(Op0.getReg(), RegState::Implicit);
1437 }
1438 MBB.erase(MI);
1439 return true;
1440 }
1441
1442 case Hexagon::PS_crash: {
1443 // Generate a misaligned load that is guaranteed to cause a crash.
1444 class CrashPseudoSourceValue : public PseudoSourceValue {
1445 public:
1446 CrashPseudoSourceValue(const TargetMachine &TM)
1447 : PseudoSourceValue(TargetCustom, TM) {}
1448
1449 bool isConstant(const MachineFrameInfo *) const override {
1450 return false;
1451 }
1452 bool isAliased(const MachineFrameInfo *) const override {
1453 return false;
1454 }
1455 bool mayAlias(const MachineFrameInfo *) const override {
1456 return false;
1457 }
1458 void printCustom(raw_ostream &OS) const override {
1459 OS << "MisalignedCrash";
1460 }
1461 };
1462
1463 static const CrashPseudoSourceValue CrashPSV(MF.getTarget());
1465 MachinePointerInfo(&CrashPSV),
1467 Align(1));
1468 BuildMI(MBB, MI, DL, get(Hexagon::PS_loadrdabs), Hexagon::D13)
1469 .addImm(0xBADC0FEE) // Misaligned load.
1470 .addMemOperand(MMO);
1471 MBB.erase(MI);
1472 return true;
1473 }
1474
1475 case Hexagon::PS_tailcall_i:
1476 MI.setDesc(get(Hexagon::J2_jump));
1477 return true;
1478 case Hexagon::PS_tailcall_r:
1479 case Hexagon::PS_jmpret:
1480 MI.setDesc(get(Hexagon::J2_jumpr));
1481 return true;
1482 case Hexagon::PS_jmprett:
1483 MI.setDesc(get(Hexagon::J2_jumprt));
1484 return true;
1485 case Hexagon::PS_jmpretf:
1486 MI.setDesc(get(Hexagon::J2_jumprf));
1487 return true;
1488 case Hexagon::PS_jmprettnewpt:
1489 MI.setDesc(get(Hexagon::J2_jumprtnewpt));
1490 return true;
1491 case Hexagon::PS_jmpretfnewpt:
1492 MI.setDesc(get(Hexagon::J2_jumprfnewpt));
1493 return true;
1494 case Hexagon::PS_jmprettnew:
1495 MI.setDesc(get(Hexagon::J2_jumprtnew));
1496 return true;
1497 case Hexagon::PS_jmpretfnew:
1498 MI.setDesc(get(Hexagon::J2_jumprfnew));
1499 return true;
1500
1501 case Hexagon::PS_loadrub_pci:
1502 return RealCirc(Hexagon::L2_loadrub_pci, /*HasImm*/true, /*MxOp*/4);
1503 case Hexagon::PS_loadrb_pci:
1504 return RealCirc(Hexagon::L2_loadrb_pci, /*HasImm*/true, /*MxOp*/4);
1505 case Hexagon::PS_loadruh_pci:
1506 return RealCirc(Hexagon::L2_loadruh_pci, /*HasImm*/true, /*MxOp*/4);
1507 case Hexagon::PS_loadrh_pci:
1508 return RealCirc(Hexagon::L2_loadrh_pci, /*HasImm*/true, /*MxOp*/4);
1509 case Hexagon::PS_loadri_pci:
1510 return RealCirc(Hexagon::L2_loadri_pci, /*HasImm*/true, /*MxOp*/4);
1511 case Hexagon::PS_loadrd_pci:
1512 return RealCirc(Hexagon::L2_loadrd_pci, /*HasImm*/true, /*MxOp*/4);
1513 case Hexagon::PS_loadrub_pcr:
1514 return RealCirc(Hexagon::L2_loadrub_pcr, /*HasImm*/false, /*MxOp*/3);
1515 case Hexagon::PS_loadrb_pcr:
1516 return RealCirc(Hexagon::L2_loadrb_pcr, /*HasImm*/false, /*MxOp*/3);
1517 case Hexagon::PS_loadruh_pcr:
1518 return RealCirc(Hexagon::L2_loadruh_pcr, /*HasImm*/false, /*MxOp*/3);
1519 case Hexagon::PS_loadrh_pcr:
1520 return RealCirc(Hexagon::L2_loadrh_pcr, /*HasImm*/false, /*MxOp*/3);
1521 case Hexagon::PS_loadri_pcr:
1522 return RealCirc(Hexagon::L2_loadri_pcr, /*HasImm*/false, /*MxOp*/3);
1523 case Hexagon::PS_loadrd_pcr:
1524 return RealCirc(Hexagon::L2_loadrd_pcr, /*HasImm*/false, /*MxOp*/3);
1525 case Hexagon::PS_storerb_pci:
1526 return RealCirc(Hexagon::S2_storerb_pci, /*HasImm*/true, /*MxOp*/3);
1527 case Hexagon::PS_storerh_pci:
1528 return RealCirc(Hexagon::S2_storerh_pci, /*HasImm*/true, /*MxOp*/3);
1529 case Hexagon::PS_storerf_pci:
1530 return RealCirc(Hexagon::S2_storerf_pci, /*HasImm*/true, /*MxOp*/3);
1531 case Hexagon::PS_storeri_pci:
1532 return RealCirc(Hexagon::S2_storeri_pci, /*HasImm*/true, /*MxOp*/3);
1533 case Hexagon::PS_storerd_pci:
1534 return RealCirc(Hexagon::S2_storerd_pci, /*HasImm*/true, /*MxOp*/3);
1535 case Hexagon::PS_storerb_pcr:
1536 return RealCirc(Hexagon::S2_storerb_pcr, /*HasImm*/false, /*MxOp*/2);
1537 case Hexagon::PS_storerh_pcr:
1538 return RealCirc(Hexagon::S2_storerh_pcr, /*HasImm*/false, /*MxOp*/2);
1539 case Hexagon::PS_storerf_pcr:
1540 return RealCirc(Hexagon::S2_storerf_pcr, /*HasImm*/false, /*MxOp*/2);
1541 case Hexagon::PS_storeri_pcr:
1542 return RealCirc(Hexagon::S2_storeri_pcr, /*HasImm*/false, /*MxOp*/2);
1543 case Hexagon::PS_storerd_pcr:
1544 return RealCirc(Hexagon::S2_storerd_pcr, /*HasImm*/false, /*MxOp*/2);
1545 }
1546
1547 return false;
1548}
1549
1552 MachineBasicBlock &MBB = *MI.getParent();
1553 const DebugLoc &DL = MI.getDebugLoc();
1554 unsigned Opc = MI.getOpcode();
1556
1557 switch (Opc) {
1558 case Hexagon::V6_vgather_vscatter_mh_pseudo:
1559 // This is mainly a place holder. It will be extended.
1560 First = BuildMI(MBB, MI, DL, get(Hexagon::V6_vgathermh))
1561 .add(MI.getOperand(2))
1562 .add(MI.getOperand(3))
1563 .add(MI.getOperand(4));
1564 BuildMI(MBB, MI, DL, get(Hexagon::V6_vscattermh))
1565 .add(MI.getOperand(2))
1566 .add(MI.getOperand(3))
1567 .add(MI.getOperand(4))
1568 .addReg(Hexagon::VTMP);
1569 MBB.erase(MI);
1570 return First.getInstrIterator();
1571 case Hexagon::V6_vgathermh_pseudo:
1572 First = BuildMI(MBB, MI, DL, get(Hexagon::V6_vgathermh))
1573 .add(MI.getOperand(2))
1574 .add(MI.getOperand(3))
1575 .add(MI.getOperand(4));
1576 BuildMI(MBB, MI, DL, get(Hexagon::V6_vS32b_new_ai))
1577 .add(MI.getOperand(0))
1578 .addImm(MI.getOperand(1).getImm())
1579 .addReg(Hexagon::VTMP);
1580 MBB.erase(MI);
1581 return First.getInstrIterator();
1582
1583 case Hexagon::V6_vgathermw_pseudo:
1584 First = BuildMI(MBB, MI, DL, get(Hexagon::V6_vgathermw))
1585 .add(MI.getOperand(2))
1586 .add(MI.getOperand(3))
1587 .add(MI.getOperand(4));
1588 BuildMI(MBB, MI, DL, get(Hexagon::V6_vS32b_new_ai))
1589 .add(MI.getOperand(0))
1590 .addImm(MI.getOperand(1).getImm())
1591 .addReg(Hexagon::VTMP);
1592 MBB.erase(MI);
1593 return First.getInstrIterator();
1594
1595 case Hexagon::V6_vgathermhw_pseudo:
1596 First = BuildMI(MBB, MI, DL, get(Hexagon::V6_vgathermhw))
1597 .add(MI.getOperand(2))
1598 .add(MI.getOperand(3))
1599 .add(MI.getOperand(4));
1600 BuildMI(MBB, MI, DL, get(Hexagon::V6_vS32b_new_ai))
1601 .add(MI.getOperand(0))
1602 .addImm(MI.getOperand(1).getImm())
1603 .addReg(Hexagon::VTMP);
1604 MBB.erase(MI);
1605 return First.getInstrIterator();
1606
1607 case Hexagon::V6_vgathermhq_pseudo:
1608 First = BuildMI(MBB, MI, DL, get(Hexagon::V6_vgathermhq))
1609 .add(MI.getOperand(2))
1610 .add(MI.getOperand(3))
1611 .add(MI.getOperand(4))
1612 .add(MI.getOperand(5));
1613 BuildMI(MBB, MI, DL, get(Hexagon::V6_vS32b_new_ai))
1614 .add(MI.getOperand(0))
1615 .addImm(MI.getOperand(1).getImm())
1616 .addReg(Hexagon::VTMP);
1617 MBB.erase(MI);
1618 return First.getInstrIterator();
1619
1620 case Hexagon::V6_vgathermwq_pseudo:
1621 First = BuildMI(MBB, MI, DL, get(Hexagon::V6_vgathermwq))
1622 .add(MI.getOperand(2))
1623 .add(MI.getOperand(3))
1624 .add(MI.getOperand(4))
1625 .add(MI.getOperand(5));
1626 BuildMI(MBB, MI, DL, get(Hexagon::V6_vS32b_new_ai))
1627 .add(MI.getOperand(0))
1628 .addImm(MI.getOperand(1).getImm())
1629 .addReg(Hexagon::VTMP);
1630 MBB.erase(MI);
1631 return First.getInstrIterator();
1632
1633 case Hexagon::V6_vgathermhwq_pseudo:
1634 First = BuildMI(MBB, MI, DL, get(Hexagon::V6_vgathermhwq))
1635 .add(MI.getOperand(2))
1636 .add(MI.getOperand(3))
1637 .add(MI.getOperand(4))
1638 .add(MI.getOperand(5));
1639 BuildMI(MBB, MI, DL, get(Hexagon::V6_vS32b_new_ai))
1640 .add(MI.getOperand(0))
1641 .addImm(MI.getOperand(1).getImm())
1642 .addReg(Hexagon::VTMP);
1643 MBB.erase(MI);
1644 return First.getInstrIterator();
1645 }
1646
1647 return MI.getIterator();
1648}
1649
1650// We indicate that we want to reverse the branch by
1651// inserting the reversed branching opcode.
1654 if (Cond.empty())
1655 return true;
1656 assert(Cond[0].isImm() && "First entry in the cond vector not imm-val");
1657 unsigned opcode = Cond[0].getImm();
1658 //unsigned temp;
1659 assert(get(opcode).isBranch() && "Should be a branching condition.");
1660 if (isEndLoopN(opcode))
1661 return true;
1662 unsigned NewOpcode = getInvertedPredicatedOpcode(opcode);
1663 Cond[0].setImm(NewOpcode);
1664 return false;
1665}
1666
1672
1676
1677// Returns true if an instruction is predicated irrespective of the predicate
1678// sense. For example, all of the following will return true.
1679// if (p0) R1 = add(R2, R3)
1680// if (!p0) R1 = add(R2, R3)
1681// if (p0.new) R1 = add(R2, R3)
1682// if (!p0.new) R1 = add(R2, R3)
1683// Note: New-value stores are not included here as in the current
1684// implementation, we don't need to check their predicate sense.
1686 const uint64_t F = MI.getDesc().TSFlags;
1688}
1689
1692 if (Cond.empty() || isNewValueJump(Cond[0].getImm()) ||
1693 isEndLoopN(Cond[0].getImm())) {
1694 LLVM_DEBUG(dbgs() << "\nCannot predicate:"; MI.dump(););
1695 return false;
1696 }
1697 int Opc = MI.getOpcode();
1698 assert (isPredicable(MI) && "Expected predicable instruction");
1699 bool invertJump = predOpcodeHasNot(Cond);
1700
1701 // We have to predicate MI "in place", i.e. after this function returns,
1702 // MI will need to be transformed into a predicated form. To avoid com-
1703 // plicated manipulations with the operands (handling tied operands,
1704 // etc.), build a new temporary instruction, then overwrite MI with it.
1705
1706 MachineBasicBlock &B = *MI.getParent();
1707 DebugLoc DL = MI.getDebugLoc();
1708 unsigned PredOpc = getCondOpcode(Opc, invertJump);
1709 MachineInstrBuilder T = BuildMI(B, MI, DL, get(PredOpc));
1710 unsigned NOp = 0, NumOps = MI.getNumOperands();
1711 while (NOp < NumOps) {
1712 MachineOperand &Op = MI.getOperand(NOp);
1713 if (!Op.isReg() || !Op.isDef() || Op.isImplicit())
1714 break;
1715 T.add(Op);
1716 NOp++;
1717 }
1718
1719 Register PredReg;
1720 unsigned PredRegPos, PredRegFlags;
1721 bool GotPredReg = getPredReg(Cond, PredReg, PredRegPos, PredRegFlags);
1722 (void)GotPredReg;
1723 assert(GotPredReg);
1724 T.addReg(PredReg, PredRegFlags);
1725 while (NOp < NumOps)
1726 T.add(MI.getOperand(NOp++));
1727
1728 MI.setDesc(get(PredOpc));
1729 while (unsigned n = MI.getNumOperands())
1730 MI.removeOperand(n-1);
1731 for (unsigned i = 0, n = T->getNumOperands(); i < n; ++i)
1732 MI.addOperand(T->getOperand(i));
1733
1734 MachineBasicBlock::instr_iterator TI = T->getIterator();
1735 B.erase(TI);
1736
1737 MachineRegisterInfo &MRI = B.getParent()->getRegInfo();
1738 MRI.clearKillFlags(PredReg);
1739 return true;
1740}
1741
1743 ArrayRef<MachineOperand> Pred2) const {
1744 // TODO: Fix this
1745 return false;
1746}
1747
1749 std::vector<MachineOperand> &Pred,
1750 bool SkipDead) const {
1751 const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo();
1752
1753 for (const MachineOperand &MO : MI.operands()) {
1754 if (MO.isReg()) {
1755 if (!MO.isDef())
1756 continue;
1757 const TargetRegisterClass* RC = HRI.getMinimalPhysRegClass(MO.getReg());
1758 if (RC == &Hexagon::PredRegsRegClass) {
1759 Pred.push_back(MO);
1760 return true;
1761 }
1762 continue;
1763 } else if (MO.isRegMask()) {
1764 for (Register PR : Hexagon::PredRegsRegClass) {
1765 if (!MI.modifiesRegister(PR, &HRI))
1766 continue;
1767 Pred.push_back(MO);
1768 return true;
1769 }
1770 }
1771 }
1772 return false;
1773}
1774
1776 if (!MI.getDesc().isPredicable())
1777 return false;
1778
1779 if (MI.isCall() || isTailCall(MI)) {
1780 if (!Subtarget.usePredicatedCalls())
1781 return false;
1782 }
1783
1784 // HVX loads are not predicable on v60, but are on v62.
1785 if (!Subtarget.hasV62Ops()) {
1786 switch (MI.getOpcode()) {
1787 case Hexagon::V6_vL32b_ai:
1788 case Hexagon::V6_vL32b_pi:
1789 case Hexagon::V6_vL32b_ppu:
1790 case Hexagon::V6_vL32b_cur_ai:
1791 case Hexagon::V6_vL32b_cur_pi:
1792 case Hexagon::V6_vL32b_cur_ppu:
1793 case Hexagon::V6_vL32b_nt_ai:
1794 case Hexagon::V6_vL32b_nt_pi:
1795 case Hexagon::V6_vL32b_nt_ppu:
1796 case Hexagon::V6_vL32b_tmp_ai:
1797 case Hexagon::V6_vL32b_tmp_pi:
1798 case Hexagon::V6_vL32b_tmp_ppu:
1799 case Hexagon::V6_vL32b_nt_cur_ai:
1800 case Hexagon::V6_vL32b_nt_cur_pi:
1801 case Hexagon::V6_vL32b_nt_cur_ppu:
1802 case Hexagon::V6_vL32b_nt_tmp_ai:
1803 case Hexagon::V6_vL32b_nt_tmp_pi:
1804 case Hexagon::V6_vL32b_nt_tmp_ppu:
1805 return false;
1806 }
1807 }
1808 return true;
1809}
1810
1812 const MachineBasicBlock *MBB,
1813 const MachineFunction &MF) const {
1814 // Debug info is never a scheduling boundary. It's necessary to be explicit
1815 // due to the special treatment of IT instructions below, otherwise a
1816 // dbg_value followed by an IT will result in the IT instruction being
1817 // considered a scheduling hazard, which is wrong. It should be the actual
1818 // instruction preceding the dbg_value instruction(s), just like it is
1819 // when debug info is not present.
1820 if (MI.isDebugInstr())
1821 return false;
1822
1823 // Throwing call is a boundary.
1824 if (MI.isCall()) {
1825 // Don't mess around with no return calls.
1826 if (doesNotReturn(MI))
1827 return true;
1828 // If any of the block's successors is a landing pad, this could be a
1829 // throwing call.
1830 for (auto *I : MBB->successors())
1831 if (I->isEHPad())
1832 return true;
1833 }
1834
1835 // Terminators and labels can't be scheduled around.
1836 if (MI.getDesc().isTerminator() || MI.isPosition())
1837 return true;
1838
1839 // INLINEASM_BR can jump to another block
1840 if (MI.getOpcode() == TargetOpcode::INLINEASM_BR)
1841 return true;
1842
1843 if (MI.isInlineAsm() && !ScheduleInlineAsm)
1844 return true;
1845
1846 return false;
1847}
1848
1849/// Measure the specified inline asm to determine an approximation of its
1850/// length.
1851/// Comments (which run till the next SeparatorString or newline) do not
1852/// count as an instruction.
1853/// Any other non-whitespace text is considered an instruction, with
1854/// multiple instructions separated by SeparatorString or newlines.
1855/// Variable-length instructions are not handled here; this function
1856/// may be overloaded in the target code to do that.
1857/// Hexagon counts the number of ##'s and adjust for that many
1858/// constant exenders.
1860 const MCAsmInfo &MAI,
1861 const TargetSubtargetInfo *STI) const {
1862 StringRef AStr(Str);
1863 // Count the number of instructions in the asm.
1864 bool atInsnStart = true;
1865 unsigned Length = 0;
1866 const unsigned MaxInstLength = MAI.getMaxInstLength(STI);
1867 for (; *Str; ++Str) {
1868 if (*Str == '\n' || strncmp(Str, MAI.getSeparatorString(),
1869 strlen(MAI.getSeparatorString())) == 0)
1870 atInsnStart = true;
1871 if (atInsnStart && !isSpace(static_cast<unsigned char>(*Str))) {
1872 Length += MaxInstLength;
1873 atInsnStart = false;
1874 }
1875 if (atInsnStart && strncmp(Str, MAI.getCommentString().data(),
1876 MAI.getCommentString().size()) == 0)
1877 atInsnStart = false;
1878 }
1879
1880 // Add to size number of constant extenders seen * 4.
1881 StringRef Occ("##");
1882 Length += AStr.count(Occ)*4;
1883 return Length;
1884}
1885
1893
1894/// For a comparison instruction, return the source registers in
1895/// \p SrcReg and \p SrcReg2 if having two register operands, and the value it
1896/// compares against in CmpValue. Return true if the comparison instruction
1897/// can be analyzed.
1899 Register &SrcReg2, int64_t &Mask,
1900 int64_t &Value) const {
1901 unsigned Opc = MI.getOpcode();
1902
1903 // Set mask and the first source register.
1904 switch (Opc) {
1905 case Hexagon::C2_cmpeq:
1906 case Hexagon::C2_cmpeqp:
1907 case Hexagon::C2_cmpgt:
1908 case Hexagon::C2_cmpgtp:
1909 case Hexagon::C2_cmpgtu:
1910 case Hexagon::C2_cmpgtup:
1911 case Hexagon::C4_cmpneq:
1912 case Hexagon::C4_cmplte:
1913 case Hexagon::C4_cmplteu:
1914 case Hexagon::C2_cmpeqi:
1915 case Hexagon::C2_cmpgti:
1916 case Hexagon::C2_cmpgtui:
1917 case Hexagon::C4_cmpneqi:
1918 case Hexagon::C4_cmplteui:
1919 case Hexagon::C4_cmpltei:
1920 SrcReg = MI.getOperand(1).getReg();
1921 Mask = ~0;
1922 break;
1923 case Hexagon::A4_cmpbeq:
1924 case Hexagon::A4_cmpbgt:
1925 case Hexagon::A4_cmpbgtu:
1926 case Hexagon::A4_cmpbeqi:
1927 case Hexagon::A4_cmpbgti:
1928 case Hexagon::A4_cmpbgtui:
1929 SrcReg = MI.getOperand(1).getReg();
1930 Mask = 0xFF;
1931 break;
1932 case Hexagon::A4_cmpheq:
1933 case Hexagon::A4_cmphgt:
1934 case Hexagon::A4_cmphgtu:
1935 case Hexagon::A4_cmpheqi:
1936 case Hexagon::A4_cmphgti:
1937 case Hexagon::A4_cmphgtui:
1938 SrcReg = MI.getOperand(1).getReg();
1939 Mask = 0xFFFF;
1940 break;
1941 }
1942
1943 // Set the value/second source register.
1944 switch (Opc) {
1945 case Hexagon::C2_cmpeq:
1946 case Hexagon::C2_cmpeqp:
1947 case Hexagon::C2_cmpgt:
1948 case Hexagon::C2_cmpgtp:
1949 case Hexagon::C2_cmpgtu:
1950 case Hexagon::C2_cmpgtup:
1951 case Hexagon::A4_cmpbeq:
1952 case Hexagon::A4_cmpbgt:
1953 case Hexagon::A4_cmpbgtu:
1954 case Hexagon::A4_cmpheq:
1955 case Hexagon::A4_cmphgt:
1956 case Hexagon::A4_cmphgtu:
1957 case Hexagon::C4_cmpneq:
1958 case Hexagon::C4_cmplte:
1959 case Hexagon::C4_cmplteu:
1960 SrcReg2 = MI.getOperand(2).getReg();
1961 Value = 0;
1962 return true;
1963
1964 case Hexagon::C2_cmpeqi:
1965 case Hexagon::C2_cmpgtui:
1966 case Hexagon::C2_cmpgti:
1967 case Hexagon::C4_cmpneqi:
1968 case Hexagon::C4_cmplteui:
1969 case Hexagon::C4_cmpltei:
1970 case Hexagon::A4_cmpbeqi:
1971 case Hexagon::A4_cmpbgti:
1972 case Hexagon::A4_cmpbgtui:
1973 case Hexagon::A4_cmpheqi:
1974 case Hexagon::A4_cmphgti:
1975 case Hexagon::A4_cmphgtui: {
1976 SrcReg2 = 0;
1977 const MachineOperand &Op2 = MI.getOperand(2);
1978 if (!Op2.isImm())
1979 return false;
1980 Value = MI.getOperand(2).getImm();
1981 return true;
1982 }
1983 }
1984
1985 return false;
1986}
1987
1989 const MachineInstr &MI,
1990 unsigned *PredCost) const {
1991 return getInstrTimingClassLatency(ItinData, MI);
1992}
1993
1995 const TargetSubtargetInfo &STI) const {
1997 return static_cast<const HexagonSubtarget&>(STI).createDFAPacketizer(II);
1998}
1999
2000// Inspired by this pair:
2001// %r13 = L2_loadri_io %r29, 136; mem:LD4[FixedStack0]
2002// S2_storeri_io %r29, 132, killed %r1; flags: mem:ST4[FixedStack1]
2003// Currently AA considers the addresses in these instructions to be aliasing.
2005 const MachineInstr &MIa, const MachineInstr &MIb) const {
2008 return false;
2009
2010 // Instructions that are pure loads, not loads and stores like memops are not
2011 // dependent.
2012 if (MIa.mayLoad() && !isMemOp(MIa) && MIb.mayLoad() && !isMemOp(MIb))
2013 return true;
2014
2015 // Get the base register in MIa.
2016 unsigned BasePosA, OffsetPosA;
2017 if (!getBaseAndOffsetPosition(MIa, BasePosA, OffsetPosA))
2018 return false;
2019 const MachineOperand &BaseA = MIa.getOperand(BasePosA);
2020 Register BaseRegA = BaseA.getReg();
2021 unsigned BaseSubA = BaseA.getSubReg();
2022
2023 // Get the base register in MIb.
2024 unsigned BasePosB, OffsetPosB;
2025 if (!getBaseAndOffsetPosition(MIb, BasePosB, OffsetPosB))
2026 return false;
2027 const MachineOperand &BaseB = MIb.getOperand(BasePosB);
2028 Register BaseRegB = BaseB.getReg();
2029 unsigned BaseSubB = BaseB.getSubReg();
2030
2031 if (BaseRegA != BaseRegB || BaseSubA != BaseSubB)
2032 return false;
2033
2034 // Get the access sizes.
2035 unsigned SizeA = getMemAccessSize(MIa);
2036 unsigned SizeB = getMemAccessSize(MIb);
2037
2038 // Get the offsets. Handle immediates only for now.
2039 const MachineOperand &OffA = MIa.getOperand(OffsetPosA);
2040 const MachineOperand &OffB = MIb.getOperand(OffsetPosB);
2041 if (!MIa.getOperand(OffsetPosA).isImm() ||
2042 !MIb.getOperand(OffsetPosB).isImm())
2043 return false;
2044 int OffsetA = isPostIncrement(MIa) ? 0 : OffA.getImm();
2045 int OffsetB = isPostIncrement(MIb) ? 0 : OffB.getImm();
2046
2047 // This is a mem access with the same base register and known offsets from it.
2048 // Reason about it.
2049 if (OffsetA > OffsetB) {
2050 uint64_t OffDiff = (uint64_t)((int64_t)OffsetA - (int64_t)OffsetB);
2051 return SizeB <= OffDiff;
2052 }
2053 if (OffsetA < OffsetB) {
2054 uint64_t OffDiff = (uint64_t)((int64_t)OffsetB - (int64_t)OffsetA);
2055 return SizeA <= OffDiff;
2056 }
2057
2058 return false;
2059}
2060
2061/// If the instruction is an increment of a constant value, return the amount.
2063 int &Value) const {
2064 if (isPostIncrement(MI)) {
2065 unsigned BasePos = 0, OffsetPos = 0;
2066 if (!getBaseAndOffsetPosition(MI, BasePos, OffsetPos))
2067 return false;
2068 const MachineOperand &OffsetOp = MI.getOperand(OffsetPos);
2069 if (OffsetOp.isImm()) {
2070 Value = OffsetOp.getImm();
2071 return true;
2072 }
2073 } else if (MI.getOpcode() == Hexagon::A2_addi) {
2074 const MachineOperand &AddOp = MI.getOperand(2);
2075 if (AddOp.isImm()) {
2076 Value = AddOp.getImm();
2077 return true;
2078 }
2079 }
2080
2081 return false;
2082}
2083
2084std::pair<unsigned, unsigned>
2086 return std::make_pair(TF & ~HexagonII::MO_Bitmasks,
2088}
2089
2092 using namespace HexagonII;
2093
2094 static const std::pair<unsigned, const char*> Flags[] = {
2095 {MO_PCREL, "hexagon-pcrel"},
2096 {MO_GOT, "hexagon-got"},
2097 {MO_LO16, "hexagon-lo16"},
2098 {MO_HI16, "hexagon-hi16"},
2099 {MO_GPREL, "hexagon-gprel"},
2100 {MO_GDGOT, "hexagon-gdgot"},
2101 {MO_GDPLT, "hexagon-gdplt"},
2102 {MO_IE, "hexagon-ie"},
2103 {MO_IEGOT, "hexagon-iegot"},
2104 {MO_TPREL, "hexagon-tprel"}
2105 };
2106 return ArrayRef(Flags);
2107}
2108
2111 using namespace HexagonII;
2112
2113 static const std::pair<unsigned, const char*> Flags[] = {
2114 {HMOTF_ConstExtended, "hexagon-ext"}
2115 };
2116 return ArrayRef(Flags);
2117}
2118
2121 const TargetRegisterClass *TRC;
2122 if (VT == MVT::i1) {
2123 TRC = &Hexagon::PredRegsRegClass;
2124 } else if (VT == MVT::i32 || VT == MVT::f32) {
2125 TRC = &Hexagon::IntRegsRegClass;
2126 } else if (VT == MVT::i64 || VT == MVT::f64) {
2127 TRC = &Hexagon::DoubleRegsRegClass;
2128 } else {
2129 llvm_unreachable("Cannot handle this register class");
2130 }
2131
2132 Register NewReg = MRI.createVirtualRegister(TRC);
2133 return NewReg;
2134}
2135
2139
2141 const uint64_t F = MI.getDesc().TSFlags;
2143}
2144
2148
2150 return !isTC1(MI) && !isTC2Early(MI) && !MI.getDesc().mayLoad() &&
2151 !MI.getDesc().mayStore() &&
2152 MI.getDesc().getOpcode() != Hexagon::S2_allocframe &&
2153 MI.getDesc().getOpcode() != Hexagon::L2_deallocframe &&
2154 !isMemOp(MI) && !MI.isBranch() && !MI.isReturn() && !MI.isCall();
2155}
2156
2157// Return true if the instruction is a compound branch instruction.
2159 return getType(MI) == HexagonII::TypeCJ && MI.isBranch();
2160}
2161
2162// TODO: In order to have isExtendable for fpimm/f32Ext, we need to handle
2163// isFPImm and later getFPImm as well.
2165 const uint64_t F = MI.getDesc().TSFlags;
2167 if (isExtended) // Instruction must be extended.
2168 return true;
2169
2170 unsigned isExtendable =
2172 if (!isExtendable)
2173 return false;
2174
2175 if (MI.isCall())
2176 return false;
2177
2178 short ExtOpNum = getCExtOpNum(MI);
2179 const MachineOperand &MO = MI.getOperand(ExtOpNum);
2180 // Use MO operand flags to determine if MO
2181 // has the HMOTF_ConstExtended flag set.
2183 return true;
2184 // If this is a Machine BB address we are talking about, and it is
2185 // not marked as extended, say so.
2186 if (MO.isMBB())
2187 return false;
2188
2189 // We could be using an instruction with an extendable immediate and shoehorn
2190 // a global address into it. If it is a global address it will be constant
2191 // extended. We do this for COMBINE.
2192 if (MO.isGlobal() || MO.isSymbol() || MO.isBlockAddress() ||
2193 MO.isJTI() || MO.isCPI() || MO.isFPImm())
2194 return true;
2195
2196 // If the extendable operand is not 'Immediate' type, the instruction should
2197 // have 'isExtended' flag set.
2198 assert(MO.isImm() && "Extendable operand must be Immediate type");
2199
2200 int64_t Value = MO.getImm();
2202 int32_t SValue = Value;
2203 int32_t MinValue = getMinValue(MI);
2204 int32_t MaxValue = getMaxValue(MI);
2205 return SValue < MinValue || SValue > MaxValue;
2206 }
2207 uint32_t UValue = Value;
2208 uint32_t MinValue = getMinValue(MI);
2209 uint32_t MaxValue = getMaxValue(MI);
2210 return UValue < MinValue || UValue > MaxValue;
2211}
2212
2214 switch (MI.getOpcode()) {
2215 case Hexagon::L4_return:
2216 case Hexagon::L4_return_t:
2217 case Hexagon::L4_return_f:
2218 case Hexagon::L4_return_tnew_pnt:
2219 case Hexagon::L4_return_fnew_pnt:
2220 case Hexagon::L4_return_tnew_pt:
2221 case Hexagon::L4_return_fnew_pt:
2222 return true;
2223 }
2224 return false;
2225}
2226
2227// Return true when ConsMI uses a register defined by ProdMI.
2229 const MachineInstr &ConsMI) const {
2230 if (!ProdMI.getDesc().getNumDefs())
2231 return false;
2232 const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo();
2233
2238
2239 parseOperands(ProdMI, DefsA, UsesA);
2240 parseOperands(ConsMI, DefsB, UsesB);
2241
2242 for (auto &RegA : DefsA)
2243 for (auto &RegB : UsesB) {
2244 // True data dependency.
2245 if (RegA == RegB)
2246 return true;
2247
2248 if (RegA.isPhysical() && llvm::is_contained(HRI.subregs(RegA), RegB))
2249 return true;
2250
2251 if (RegB.isPhysical() && llvm::is_contained(HRI.subregs(RegB), RegA))
2252 return true;
2253 }
2254
2255 return false;
2256}
2257
2258// Returns true if the instruction is already a .cur.
2260 switch (MI.getOpcode()) {
2261 case Hexagon::V6_vL32b_cur_pi:
2262 case Hexagon::V6_vL32b_cur_ai:
2263 return true;
2264 }
2265 return false;
2266}
2267
2268// Returns true, if any one of the operands is a dot new
2269// insn, whether it is predicated dot new or register dot new.
2272 return true;
2273
2274 return false;
2275}
2276
2277/// Symmetrical. See if these two instructions are fit for duplex pair.
2279 const MachineInstr &MIb) const {
2282 return (isDuplexPairMatch(MIaG, MIbG) || isDuplexPairMatch(MIbG, MIaG));
2283}
2284
2285bool HexagonInstrInfo::isEndLoopN(unsigned Opcode) const {
2286 return (Opcode == Hexagon::ENDLOOP0 ||
2287 Opcode == Hexagon::ENDLOOP1);
2288}
2289
2290bool HexagonInstrInfo::isExpr(unsigned OpType) const {
2291 switch(OpType) {
2298 return true;
2299 default:
2300 return false;
2301 }
2302}
2303
2305 const MCInstrDesc &MID = MI.getDesc();
2306 const uint64_t F = MID.TSFlags;
2308 return true;
2309
2310 // TODO: This is largely obsolete now. Will need to be removed
2311 // in consecutive patches.
2312 switch (MI.getOpcode()) {
2313 // PS_fi and PS_fia remain special cases.
2314 case Hexagon::PS_fi:
2315 case Hexagon::PS_fia:
2316 return true;
2317 default:
2318 return false;
2319 }
2320 return false;
2321}
2322
2323// This returns true in two cases:
2324// - The OP code itself indicates that this is an extended instruction.
2325// - One of MOs has been marked with HMOTF_ConstExtended flag.
2327 // First check if this is permanently extended op code.
2328 const uint64_t F = MI.getDesc().TSFlags;
2330 return true;
2331 // Use MO operand flags to determine if one of MI's operands
2332 // has HMOTF_ConstExtended flag set.
2333 for (const MachineOperand &MO : MI.operands())
2334 if (MO.getTargetFlags() & HexagonII::HMOTF_ConstExtended)
2335 return true;
2336 return false;
2337}
2338
2340 unsigned Opcode = MI.getOpcode();
2341 const uint64_t F = get(Opcode).TSFlags;
2342 return (F >> HexagonII::FPPos) & HexagonII::FPMask;
2343}
2344
2345// No V60 HVX VMEM with A_INDIRECT.
2347 const MachineInstr &J) const {
2348 if (!isHVXVec(I))
2349 return false;
2350 if (!I.mayLoad() && !I.mayStore())
2351 return false;
2352 return J.isIndirectBranch() || isIndirectCall(J) || isIndirectL4Return(J);
2353}
2354
2356 switch (MI.getOpcode()) {
2357 case Hexagon::J2_callr:
2358 case Hexagon::J2_callrf:
2359 case Hexagon::J2_callrt:
2360 case Hexagon::PS_call_nr:
2361 return true;
2362 }
2363 return false;
2364}
2365
2367 switch (MI.getOpcode()) {
2368 case Hexagon::L4_return:
2369 case Hexagon::L4_return_t:
2370 case Hexagon::L4_return_f:
2371 case Hexagon::L4_return_fnew_pnt:
2372 case Hexagon::L4_return_fnew_pt:
2373 case Hexagon::L4_return_tnew_pnt:
2374 case Hexagon::L4_return_tnew_pt:
2375 return true;
2376 }
2377 return false;
2378}
2379
2381 switch (MI.getOpcode()) {
2382 case Hexagon::J2_jumpr:
2383 case Hexagon::J2_jumprt:
2384 case Hexagon::J2_jumprf:
2385 case Hexagon::J2_jumprtnewpt:
2386 case Hexagon::J2_jumprfnewpt:
2387 case Hexagon::J2_jumprtnew:
2388 case Hexagon::J2_jumprfnew:
2389 return true;
2390 }
2391 return false;
2392}
2393
2394// Return true if a given MI can accommodate given offset.
2395// Use abs estimate as oppose to the exact number.
2396// TODO: This will need to be changed to use MC level
2397// definition of instruction extendable field size.
2399 unsigned offset) const {
2400 // This selection of jump instructions matches to that what
2401 // analyzeBranch can parse, plus NVJ.
2402 if (isNewValueJump(MI)) // r9:2
2403 return isInt<11>(offset);
2404
2405 switch (MI.getOpcode()) {
2406 // Still missing Jump to address condition on register value.
2407 default:
2408 return false;
2409 case Hexagon::J2_jump: // bits<24> dst; // r22:2
2410 case Hexagon::J2_call:
2411 case Hexagon::PS_call_nr:
2412 return isInt<24>(offset);
2413 case Hexagon::J2_jumpt: //bits<17> dst; // r15:2
2414 case Hexagon::J2_jumpf:
2415 case Hexagon::J2_jumptnew:
2416 case Hexagon::J2_jumptnewpt:
2417 case Hexagon::J2_jumpfnew:
2418 case Hexagon::J2_jumpfnewpt:
2419 case Hexagon::J2_callt:
2420 case Hexagon::J2_callf:
2421 return isInt<17>(offset);
2422 case Hexagon::J2_loop0i:
2423 case Hexagon::J2_loop0iext:
2424 case Hexagon::J2_loop0r:
2425 case Hexagon::J2_loop0rext:
2426 case Hexagon::J2_loop1i:
2427 case Hexagon::J2_loop1iext:
2428 case Hexagon::J2_loop1r:
2429 case Hexagon::J2_loop1rext:
2430 return isInt<9>(offset);
2431 // TODO: Add all the compound branches here. Can we do this in Relation model?
2432 case Hexagon::J4_cmpeqi_tp0_jump_nt:
2433 case Hexagon::J4_cmpeqi_tp1_jump_nt:
2434 case Hexagon::J4_cmpeqn1_tp0_jump_nt:
2435 case Hexagon::J4_cmpeqn1_tp1_jump_nt:
2436 return isInt<11>(offset);
2437 }
2438}
2439
2441 // Instructions with iclass A_CVI_VX and attribute A_CVI_LATE uses a multiply
2442 // resource, but all operands can be received late like an ALU instruction.
2444}
2445
2447 unsigned Opcode = MI.getOpcode();
2448 return Opcode == Hexagon::J2_loop0i ||
2449 Opcode == Hexagon::J2_loop0r ||
2450 Opcode == Hexagon::J2_loop0iext ||
2451 Opcode == Hexagon::J2_loop0rext ||
2452 Opcode == Hexagon::J2_loop1i ||
2453 Opcode == Hexagon::J2_loop1r ||
2454 Opcode == Hexagon::J2_loop1iext ||
2455 Opcode == Hexagon::J2_loop1rext;
2456}
2457
2459 switch (MI.getOpcode()) {
2460 default: return false;
2461 case Hexagon::L4_iadd_memopw_io:
2462 case Hexagon::L4_isub_memopw_io:
2463 case Hexagon::L4_add_memopw_io:
2464 case Hexagon::L4_sub_memopw_io:
2465 case Hexagon::L4_and_memopw_io:
2466 case Hexagon::L4_or_memopw_io:
2467 case Hexagon::L4_iadd_memoph_io:
2468 case Hexagon::L4_isub_memoph_io:
2469 case Hexagon::L4_add_memoph_io:
2470 case Hexagon::L4_sub_memoph_io:
2471 case Hexagon::L4_and_memoph_io:
2472 case Hexagon::L4_or_memoph_io:
2473 case Hexagon::L4_iadd_memopb_io:
2474 case Hexagon::L4_isub_memopb_io:
2475 case Hexagon::L4_add_memopb_io:
2476 case Hexagon::L4_sub_memopb_io:
2477 case Hexagon::L4_and_memopb_io:
2478 case Hexagon::L4_or_memopb_io:
2479 case Hexagon::L4_ior_memopb_io:
2480 case Hexagon::L4_ior_memoph_io:
2481 case Hexagon::L4_ior_memopw_io:
2482 case Hexagon::L4_iand_memopb_io:
2483 case Hexagon::L4_iand_memoph_io:
2484 case Hexagon::L4_iand_memopw_io:
2485 return true;
2486 }
2487 return false;
2488}
2489
2491 const uint64_t F = MI.getDesc().TSFlags;
2493}
2494
2495bool HexagonInstrInfo::isNewValue(unsigned Opcode) const {
2496 const uint64_t F = get(Opcode).TSFlags;
2498}
2499
2503
2505 return isNewValue(MI) && MI.isBranch();
2506}
2507
2508bool HexagonInstrInfo::isNewValueJump(unsigned Opcode) const {
2509 return isNewValue(Opcode) && get(Opcode).isBranch() && isPredicated(Opcode);
2510}
2511
2513 const uint64_t F = MI.getDesc().TSFlags;
2515}
2516
2517bool HexagonInstrInfo::isNewValueStore(unsigned Opcode) const {
2518 const uint64_t F = get(Opcode).TSFlags;
2520}
2521
2522// Returns true if a particular operand is extendable for an instruction.
2524 unsigned OperandNum) const {
2525 const uint64_t F = MI.getDesc().TSFlags;
2527 == OperandNum;
2528}
2529
2531 const uint64_t F = MI.getDesc().TSFlags;
2534}
2535
2536bool HexagonInstrInfo::isPredicatedNew(unsigned Opcode) const {
2537 const uint64_t F = get(Opcode).TSFlags;
2538 assert(isPredicated(Opcode));
2540}
2541
2543 const uint64_t F = MI.getDesc().TSFlags;
2544 return !((F >> HexagonII::PredicatedFalsePos) &
2546}
2547
2548bool HexagonInstrInfo::isPredicatedTrue(unsigned Opcode) const {
2549 const uint64_t F = get(Opcode).TSFlags;
2550 // Make sure that the instruction is predicated.
2552 return !((F >> HexagonII::PredicatedFalsePos) &
2554}
2555
2556bool HexagonInstrInfo::isPredicated(unsigned Opcode) const {
2557 const uint64_t F = get(Opcode).TSFlags;
2559}
2560
2561bool HexagonInstrInfo::isPredicateLate(unsigned Opcode) const {
2562 const uint64_t F = get(Opcode).TSFlags;
2564}
2565
2566bool HexagonInstrInfo::isPredictedTaken(unsigned Opcode) const {
2567 const uint64_t F = get(Opcode).TSFlags;
2568 assert(get(Opcode).isBranch() &&
2569 (isPredicatedNew(Opcode) || isNewValue(Opcode)));
2571}
2572
2574 return MI.getOpcode() == Hexagon::SAVE_REGISTERS_CALL_V4 ||
2575 MI.getOpcode() == Hexagon::SAVE_REGISTERS_CALL_V4_EXT ||
2576 MI.getOpcode() == Hexagon::SAVE_REGISTERS_CALL_V4_PIC ||
2577 MI.getOpcode() == Hexagon::SAVE_REGISTERS_CALL_V4_EXT_PIC;
2578}
2579
2581 switch (MI.getOpcode()) {
2582 // Byte
2583 case Hexagon::L2_loadrb_io:
2584 case Hexagon::L4_loadrb_ur:
2585 case Hexagon::L4_loadrb_ap:
2586 case Hexagon::L2_loadrb_pr:
2587 case Hexagon::L2_loadrb_pbr:
2588 case Hexagon::L2_loadrb_pi:
2589 case Hexagon::L2_loadrb_pci:
2590 case Hexagon::L2_loadrb_pcr:
2591 case Hexagon::L2_loadbsw2_io:
2592 case Hexagon::L4_loadbsw2_ur:
2593 case Hexagon::L4_loadbsw2_ap:
2594 case Hexagon::L2_loadbsw2_pr:
2595 case Hexagon::L2_loadbsw2_pbr:
2596 case Hexagon::L2_loadbsw2_pi:
2597 case Hexagon::L2_loadbsw2_pci:
2598 case Hexagon::L2_loadbsw2_pcr:
2599 case Hexagon::L2_loadbsw4_io:
2600 case Hexagon::L4_loadbsw4_ur:
2601 case Hexagon::L4_loadbsw4_ap:
2602 case Hexagon::L2_loadbsw4_pr:
2603 case Hexagon::L2_loadbsw4_pbr:
2604 case Hexagon::L2_loadbsw4_pi:
2605 case Hexagon::L2_loadbsw4_pci:
2606 case Hexagon::L2_loadbsw4_pcr:
2607 case Hexagon::L4_loadrb_rr:
2608 case Hexagon::L2_ploadrbt_io:
2609 case Hexagon::L2_ploadrbt_pi:
2610 case Hexagon::L2_ploadrbf_io:
2611 case Hexagon::L2_ploadrbf_pi:
2612 case Hexagon::L2_ploadrbtnew_io:
2613 case Hexagon::L2_ploadrbfnew_io:
2614 case Hexagon::L4_ploadrbt_rr:
2615 case Hexagon::L4_ploadrbf_rr:
2616 case Hexagon::L4_ploadrbtnew_rr:
2617 case Hexagon::L4_ploadrbfnew_rr:
2618 case Hexagon::L2_ploadrbtnew_pi:
2619 case Hexagon::L2_ploadrbfnew_pi:
2620 case Hexagon::L4_ploadrbt_abs:
2621 case Hexagon::L4_ploadrbf_abs:
2622 case Hexagon::L4_ploadrbtnew_abs:
2623 case Hexagon::L4_ploadrbfnew_abs:
2624 case Hexagon::L2_loadrbgp:
2625 // Half
2626 case Hexagon::L2_loadrh_io:
2627 case Hexagon::L4_loadrh_ur:
2628 case Hexagon::L4_loadrh_ap:
2629 case Hexagon::L2_loadrh_pr:
2630 case Hexagon::L2_loadrh_pbr:
2631 case Hexagon::L2_loadrh_pi:
2632 case Hexagon::L2_loadrh_pci:
2633 case Hexagon::L2_loadrh_pcr:
2634 case Hexagon::L4_loadrh_rr:
2635 case Hexagon::L2_ploadrht_io:
2636 case Hexagon::L2_ploadrht_pi:
2637 case Hexagon::L2_ploadrhf_io:
2638 case Hexagon::L2_ploadrhf_pi:
2639 case Hexagon::L2_ploadrhtnew_io:
2640 case Hexagon::L2_ploadrhfnew_io:
2641 case Hexagon::L4_ploadrht_rr:
2642 case Hexagon::L4_ploadrhf_rr:
2643 case Hexagon::L4_ploadrhtnew_rr:
2644 case Hexagon::L4_ploadrhfnew_rr:
2645 case Hexagon::L2_ploadrhtnew_pi:
2646 case Hexagon::L2_ploadrhfnew_pi:
2647 case Hexagon::L4_ploadrht_abs:
2648 case Hexagon::L4_ploadrhf_abs:
2649 case Hexagon::L4_ploadrhtnew_abs:
2650 case Hexagon::L4_ploadrhfnew_abs:
2651 case Hexagon::L2_loadrhgp:
2652 return true;
2653 default:
2654 return false;
2655 }
2656}
2657
2659 const uint64_t F = MI.getDesc().TSFlags;
2661}
2662
2664 switch (MI.getOpcode()) {
2665 case Hexagon::STriw_pred:
2666 case Hexagon::LDriw_pred:
2667 return true;
2668 default:
2669 return false;
2670 }
2671}
2672
2674 if (!MI.isBranch())
2675 return false;
2676
2677 for (auto &Op : MI.operands())
2678 if (Op.isGlobal() || Op.isSymbol())
2679 return true;
2680 return false;
2681}
2682
2683// Returns true when SU has a timing class TC1.
2685 unsigned SchedClass = MI.getDesc().getSchedClass();
2686 return is_TC1(SchedClass);
2687}
2688
2690 unsigned SchedClass = MI.getDesc().getSchedClass();
2691 return is_TC2(SchedClass);
2692}
2693
2695 unsigned SchedClass = MI.getDesc().getSchedClass();
2696 return is_TC2early(SchedClass);
2697}
2698
2700 unsigned SchedClass = MI.getDesc().getSchedClass();
2701 return is_TC4x(SchedClass);
2702}
2703
2704// Schedule this ASAP.
2706 const MachineInstr &MI2) const {
2707 if (mayBeCurLoad(MI1)) {
2708 // if (result of SU is used in Next) return true;
2709 Register DstReg = MI1.getOperand(0).getReg();
2710 int N = MI2.getNumOperands();
2711 for (int I = 0; I < N; I++)
2712 if (MI2.getOperand(I).isReg() && DstReg == MI2.getOperand(I).getReg())
2713 return true;
2714 }
2715 if (mayBeNewStore(MI2))
2716 if (MI2.getOpcode() == Hexagon::V6_vS32b_pi)
2717 if (MI1.getOperand(0).isReg() && MI2.getOperand(3).isReg() &&
2718 MI1.getOperand(0).getReg() == MI2.getOperand(3).getReg())
2719 return true;
2720 return false;
2721}
2722
2724 const uint64_t V = getType(MI);
2726}
2727
2728// Check if the Offset is a valid auto-inc imm by Load/Store Type.
2730 int Size = VT.getSizeInBits() / 8;
2731 if (Offset % Size != 0)
2732 return false;
2733 int Count = Offset / Size;
2734
2735 switch (VT.getSimpleVT().SimpleTy) {
2736 // For scalars the auto-inc is s4
2737 case MVT::i8:
2738 case MVT::i16:
2739 case MVT::i32:
2740 case MVT::i64:
2741 case MVT::f32:
2742 case MVT::f64:
2743 case MVT::v2i16:
2744 case MVT::v2i32:
2745 case MVT::v4i8:
2746 case MVT::v4i16:
2747 case MVT::v8i8:
2748 return isInt<4>(Count);
2749 // For HVX vectors the auto-inc is s3
2750 case MVT::v64i8:
2751 case MVT::v32i16:
2752 case MVT::v16i32:
2753 case MVT::v8i64:
2754 case MVT::v128i8:
2755 case MVT::v64i16:
2756 case MVT::v32i32:
2757 case MVT::v16i64:
2758 return isInt<3>(Count);
2759 default:
2760 break;
2761 }
2762
2763 llvm_unreachable("Not an valid type!");
2764}
2765
2766bool HexagonInstrInfo::isValidOffset(unsigned Opcode, int Offset,
2767 const TargetRegisterInfo *TRI, bool Extend) const {
2768 // This function is to check whether the "Offset" is in the correct range of
2769 // the given "Opcode". If "Offset" is not in the correct range, "A2_addi" is
2770 // inserted to calculate the final address. Due to this reason, the function
2771 // assumes that the "Offset" has correct alignment.
2772 // We used to assert if the offset was not properly aligned, however,
2773 // there are cases where a misaligned pointer recast can cause this
2774 // problem, and we need to allow for it. The front end warns of such
2775 // misaligns with respect to load size.
2776 switch (Opcode) {
2777 case Hexagon::PS_vstorerq_ai:
2778 case Hexagon::PS_vstorerv_ai:
2779 case Hexagon::PS_vstorerw_ai:
2780 case Hexagon::PS_vstorerw_nt_ai:
2781 case Hexagon::PS_vloadrq_ai:
2782 case Hexagon::PS_vloadrv_ai:
2783 case Hexagon::PS_vloadrw_ai:
2784 case Hexagon::PS_vloadrw_nt_ai:
2785 case Hexagon::V6_vL32b_ai:
2786 case Hexagon::V6_vS32b_ai:
2787 case Hexagon::V6_vS32b_pred_ai:
2788 case Hexagon::V6_vS32b_npred_ai:
2789 case Hexagon::V6_vS32b_qpred_ai:
2790 case Hexagon::V6_vS32b_nqpred_ai:
2791 case Hexagon::V6_vS32b_new_ai:
2792 case Hexagon::V6_vS32b_new_pred_ai:
2793 case Hexagon::V6_vS32b_new_npred_ai:
2794 case Hexagon::V6_vS32b_nt_pred_ai:
2795 case Hexagon::V6_vS32b_nt_npred_ai:
2796 case Hexagon::V6_vS32b_nt_new_ai:
2797 case Hexagon::V6_vS32b_nt_new_pred_ai:
2798 case Hexagon::V6_vS32b_nt_new_npred_ai:
2799 case Hexagon::V6_vS32b_nt_qpred_ai:
2800 case Hexagon::V6_vS32b_nt_nqpred_ai:
2801 case Hexagon::V6_vL32b_nt_ai:
2802 case Hexagon::V6_vS32b_nt_ai:
2803 case Hexagon::V6_vL32Ub_ai:
2804 case Hexagon::V6_vS32Ub_ai:
2805 case Hexagon::V6_vL32b_cur_ai:
2806 case Hexagon::V6_vL32b_tmp_ai:
2807 case Hexagon::V6_vL32b_pred_ai:
2808 case Hexagon::V6_vL32b_npred_ai:
2809 case Hexagon::V6_vL32b_cur_pred_ai:
2810 case Hexagon::V6_vL32b_cur_npred_ai:
2811 case Hexagon::V6_vL32b_tmp_pred_ai:
2812 case Hexagon::V6_vL32b_tmp_npred_ai:
2813 case Hexagon::V6_vL32b_nt_cur_ai:
2814 case Hexagon::V6_vL32b_nt_tmp_ai:
2815 case Hexagon::V6_vL32b_nt_pred_ai:
2816 case Hexagon::V6_vL32b_nt_npred_ai:
2817 case Hexagon::V6_vL32b_nt_cur_pred_ai:
2818 case Hexagon::V6_vL32b_nt_cur_npred_ai:
2819 case Hexagon::V6_vL32b_nt_tmp_pred_ai:
2820 case Hexagon::V6_vL32b_nt_tmp_npred_ai:
2821 case Hexagon::V6_vS32Ub_npred_ai:
2822 case Hexagon::V6_vgathermh_pseudo:
2823 case Hexagon::V6_vgather_vscatter_mh_pseudo:
2824 case Hexagon::V6_vgathermw_pseudo:
2825 case Hexagon::V6_vgathermhw_pseudo:
2826 case Hexagon::V6_vgathermhq_pseudo:
2827 case Hexagon::V6_vgathermwq_pseudo:
2828 case Hexagon::V6_vgathermhwq_pseudo: {
2829 unsigned VectorSize = TRI->getSpillSize(Hexagon::HvxVRRegClass);
2830 assert(isPowerOf2_32(VectorSize));
2831 if (Offset & (VectorSize-1))
2832 return false;
2833 return isInt<4>(Offset >> Log2_32(VectorSize));
2834 }
2835
2836 case Hexagon::J2_loop0i:
2837 case Hexagon::J2_loop1i:
2838 return isUInt<10>(Offset);
2839
2840 case Hexagon::S4_storeirb_io:
2841 case Hexagon::S4_storeirbt_io:
2842 case Hexagon::S4_storeirbf_io:
2843 return isUInt<6>(Offset);
2844
2845 case Hexagon::S4_storeirh_io:
2846 case Hexagon::S4_storeirht_io:
2847 case Hexagon::S4_storeirhf_io:
2848 return isShiftedUInt<6,1>(Offset);
2849
2850 case Hexagon::S4_storeiri_io:
2851 case Hexagon::S4_storeirit_io:
2852 case Hexagon::S4_storeirif_io:
2853 return isShiftedUInt<6,2>(Offset);
2854 // Handle these two compare instructions that are not extendable.
2855 case Hexagon::A4_cmpbeqi:
2856 return isUInt<8>(Offset);
2857 case Hexagon::A4_cmpbgti:
2858 return isInt<8>(Offset);
2859 }
2860
2861 if (Extend)
2862 return true;
2863
2864 switch (Opcode) {
2865 case Hexagon::L2_loadri_io:
2866 case Hexagon::S2_storeri_io:
2867 return (Offset >= Hexagon_MEMW_OFFSET_MIN) &&
2869
2870 case Hexagon::L2_loadrd_io:
2871 case Hexagon::S2_storerd_io:
2872 return (Offset >= Hexagon_MEMD_OFFSET_MIN) &&
2874
2875 case Hexagon::L2_loadrh_io:
2876 case Hexagon::L2_loadruh_io:
2877 case Hexagon::S2_storerh_io:
2878 case Hexagon::S2_storerf_io:
2879 return (Offset >= Hexagon_MEMH_OFFSET_MIN) &&
2881
2882 case Hexagon::L2_loadrb_io:
2883 case Hexagon::L2_loadrub_io:
2884 case Hexagon::S2_storerb_io:
2885 return (Offset >= Hexagon_MEMB_OFFSET_MIN) &&
2887
2888 case Hexagon::A2_addi:
2889 return (Offset >= Hexagon_ADDI_OFFSET_MIN) &&
2891
2892 case Hexagon::L4_iadd_memopw_io:
2893 case Hexagon::L4_isub_memopw_io:
2894 case Hexagon::L4_add_memopw_io:
2895 case Hexagon::L4_sub_memopw_io:
2896 case Hexagon::L4_iand_memopw_io:
2897 case Hexagon::L4_ior_memopw_io:
2898 case Hexagon::L4_and_memopw_io:
2899 case Hexagon::L4_or_memopw_io:
2900 return (0 <= Offset && Offset <= 255);
2901
2902 case Hexagon::L4_iadd_memoph_io:
2903 case Hexagon::L4_isub_memoph_io:
2904 case Hexagon::L4_add_memoph_io:
2905 case Hexagon::L4_sub_memoph_io:
2906 case Hexagon::L4_iand_memoph_io:
2907 case Hexagon::L4_ior_memoph_io:
2908 case Hexagon::L4_and_memoph_io:
2909 case Hexagon::L4_or_memoph_io:
2910 return (0 <= Offset && Offset <= 127);
2911
2912 case Hexagon::L4_iadd_memopb_io:
2913 case Hexagon::L4_isub_memopb_io:
2914 case Hexagon::L4_add_memopb_io:
2915 case Hexagon::L4_sub_memopb_io:
2916 case Hexagon::L4_iand_memopb_io:
2917 case Hexagon::L4_ior_memopb_io:
2918 case Hexagon::L4_and_memopb_io:
2919 case Hexagon::L4_or_memopb_io:
2920 return (0 <= Offset && Offset <= 63);
2921
2922 // LDriw_xxx and STriw_xxx are pseudo operations, so it has to take offset of
2923 // any size. Later pass knows how to handle it.
2924 case Hexagon::STriw_pred:
2925 case Hexagon::LDriw_pred:
2926 case Hexagon::STriw_ctr:
2927 case Hexagon::LDriw_ctr:
2928 return true;
2929
2930 case Hexagon::PS_fi:
2931 case Hexagon::PS_fia:
2932 case Hexagon::INLINEASM:
2933 return true;
2934
2935 case Hexagon::L2_ploadrbt_io:
2936 case Hexagon::L2_ploadrbf_io:
2937 case Hexagon::L2_ploadrubt_io:
2938 case Hexagon::L2_ploadrubf_io:
2939 case Hexagon::S2_pstorerbt_io:
2940 case Hexagon::S2_pstorerbf_io:
2941 return isUInt<6>(Offset);
2942
2943 case Hexagon::L2_ploadrht_io:
2944 case Hexagon::L2_ploadrhf_io:
2945 case Hexagon::L2_ploadruht_io:
2946 case Hexagon::L2_ploadruhf_io:
2947 case Hexagon::S2_pstorerht_io:
2948 case Hexagon::S2_pstorerhf_io:
2949 return isShiftedUInt<6,1>(Offset);
2950
2951 case Hexagon::L2_ploadrit_io:
2952 case Hexagon::L2_ploadrif_io:
2953 case Hexagon::S2_pstorerit_io:
2954 case Hexagon::S2_pstorerif_io:
2955 return isShiftedUInt<6,2>(Offset);
2956
2957 case Hexagon::L2_ploadrdt_io:
2958 case Hexagon::L2_ploadrdf_io:
2959 case Hexagon::S2_pstorerdt_io:
2960 case Hexagon::S2_pstorerdf_io:
2961 return isShiftedUInt<6,3>(Offset);
2962
2963 case Hexagon::L2_loadbsw2_io:
2964 case Hexagon::L2_loadbzw2_io:
2965 return isShiftedInt<11,1>(Offset);
2966
2967 case Hexagon::L2_loadbsw4_io:
2968 case Hexagon::L2_loadbzw4_io:
2969 return isShiftedInt<11,2>(Offset);
2970 } // switch
2971
2972 dbgs() << "Failed Opcode is : " << Opcode << " (" << getName(Opcode)
2973 << ")\n";
2974 llvm_unreachable("No offset range is defined for this opcode. "
2975 "Please define it in the above switch statement!");
2976}
2977
2979 return isHVXVec(MI) && isAccumulator(MI);
2980}
2981
2983 const uint64_t F = get(MI.getOpcode()).TSFlags;
2985 return
2986 V == HexagonII::TypeCVI_VA ||
2988}
2989
2991 const MachineInstr &ConsMI) const {
2992 if (EnableACCForwarding && isVecAcc(ProdMI) && isVecAcc(ConsMI))
2993 return true;
2994
2995 if (EnableALUForwarding && (isVecALU(ConsMI) || isLateSourceInstr(ConsMI)))
2996 return true;
2997
2998 if (mayBeNewStore(ConsMI))
2999 return true;
3000
3001 return false;
3002}
3003
3005 switch (MI.getOpcode()) {
3006 // Byte
3007 case Hexagon::L2_loadrub_io:
3008 case Hexagon::L4_loadrub_ur:
3009 case Hexagon::L4_loadrub_ap:
3010 case Hexagon::L2_loadrub_pr:
3011 case Hexagon::L2_loadrub_pbr:
3012 case Hexagon::L2_loadrub_pi:
3013 case Hexagon::L2_loadrub_pci:
3014 case Hexagon::L2_loadrub_pcr:
3015 case Hexagon::L2_loadbzw2_io:
3016 case Hexagon::L4_loadbzw2_ur:
3017 case Hexagon::L4_loadbzw2_ap:
3018 case Hexagon::L2_loadbzw2_pr:
3019 case Hexagon::L2_loadbzw2_pbr:
3020 case Hexagon::L2_loadbzw2_pi:
3021 case Hexagon::L2_loadbzw2_pci:
3022 case Hexagon::L2_loadbzw2_pcr:
3023 case Hexagon::L2_loadbzw4_io:
3024 case Hexagon::L4_loadbzw4_ur:
3025 case Hexagon::L4_loadbzw4_ap:
3026 case Hexagon::L2_loadbzw4_pr:
3027 case Hexagon::L2_loadbzw4_pbr:
3028 case Hexagon::L2_loadbzw4_pi:
3029 case Hexagon::L2_loadbzw4_pci:
3030 case Hexagon::L2_loadbzw4_pcr:
3031 case Hexagon::L4_loadrub_rr:
3032 case Hexagon::L2_ploadrubt_io:
3033 case Hexagon::L2_ploadrubt_pi:
3034 case Hexagon::L2_ploadrubf_io:
3035 case Hexagon::L2_ploadrubf_pi:
3036 case Hexagon::L2_ploadrubtnew_io:
3037 case Hexagon::L2_ploadrubfnew_io:
3038 case Hexagon::L4_ploadrubt_rr:
3039 case Hexagon::L4_ploadrubf_rr:
3040 case Hexagon::L4_ploadrubtnew_rr:
3041 case Hexagon::L4_ploadrubfnew_rr:
3042 case Hexagon::L2_ploadrubtnew_pi:
3043 case Hexagon::L2_ploadrubfnew_pi:
3044 case Hexagon::L4_ploadrubt_abs:
3045 case Hexagon::L4_ploadrubf_abs:
3046 case Hexagon::L4_ploadrubtnew_abs:
3047 case Hexagon::L4_ploadrubfnew_abs:
3048 case Hexagon::L2_loadrubgp:
3049 // Half
3050 case Hexagon::L2_loadruh_io:
3051 case Hexagon::L4_loadruh_ur:
3052 case Hexagon::L4_loadruh_ap:
3053 case Hexagon::L2_loadruh_pr:
3054 case Hexagon::L2_loadruh_pbr:
3055 case Hexagon::L2_loadruh_pi:
3056 case Hexagon::L2_loadruh_pci:
3057 case Hexagon::L2_loadruh_pcr:
3058 case Hexagon::L4_loadruh_rr:
3059 case Hexagon::L2_ploadruht_io:
3060 case Hexagon::L2_ploadruht_pi:
3061 case Hexagon::L2_ploadruhf_io:
3062 case Hexagon::L2_ploadruhf_pi:
3063 case Hexagon::L2_ploadruhtnew_io:
3064 case Hexagon::L2_ploadruhfnew_io:
3065 case Hexagon::L4_ploadruht_rr:
3066 case Hexagon::L4_ploadruhf_rr:
3067 case Hexagon::L4_ploadruhtnew_rr:
3068 case Hexagon::L4_ploadruhfnew_rr:
3069 case Hexagon::L2_ploadruhtnew_pi:
3070 case Hexagon::L2_ploadruhfnew_pi:
3071 case Hexagon::L4_ploadruht_abs:
3072 case Hexagon::L4_ploadruhf_abs:
3073 case Hexagon::L4_ploadruhtnew_abs:
3074 case Hexagon::L4_ploadruhfnew_abs:
3075 case Hexagon::L2_loadruhgp:
3076 return true;
3077 default:
3078 return false;
3079 }
3080}
3081
3082// Add latency to instruction.
3084 const MachineInstr &MI2) const {
3085 if (isHVXVec(MI1) && isHVXVec(MI2))
3086 if (!isVecUsableNextPacket(MI1, MI2))
3087 return true;
3088 return false;
3089}
3090
3091/// Get the base register and byte offset of a load/store instr.
3094 int64_t &Offset, bool &OffsetIsScalable, LocationSize &Width,
3095 const TargetRegisterInfo *TRI) const {
3096 OffsetIsScalable = false;
3097 const MachineOperand *BaseOp = getBaseAndOffset(LdSt, Offset, Width);
3098 if (!BaseOp || !BaseOp->isReg())
3099 return false;
3100 BaseOps.push_back(BaseOp);
3101 return true;
3102}
3103
3104/// Can these instructions execute at the same time in a bundle.
3106 const MachineInstr &Second) const {
3107 if (Second.mayStore() && First.getOpcode() == Hexagon::S2_allocframe) {
3108 const MachineOperand &Op = Second.getOperand(0);
3109 if (Op.isReg() && Op.isUse() && Op.getReg() == Hexagon::R29)
3110 return true;
3111 }
3113 return false;
3114 if (mayBeNewStore(Second)) {
3115 // Make sure the definition of the first instruction is the value being
3116 // stored.
3117 const MachineOperand &Stored =
3118 Second.getOperand(Second.getNumOperands() - 1);
3119 if (!Stored.isReg())
3120 return false;
3121 for (unsigned i = 0, e = First.getNumOperands(); i < e; ++i) {
3122 const MachineOperand &Op = First.getOperand(i);
3123 if (Op.isReg() && Op.isDef() && Op.getReg() == Stored.getReg())
3124 return true;
3125 }
3126 }
3127 return false;
3128}
3129
3131 unsigned Opc = CallMI.getOpcode();
3132 return Opc == Hexagon::PS_call_nr || Opc == Hexagon::PS_callr_nr;
3133}
3134
3136 for (auto &I : *B)
3137 if (I.isEHLabel())
3138 return true;
3139 return false;
3140}
3141
3142// Returns true if an instruction can be converted into a non-extended
3143// equivalent instruction.
3145 short NonExtOpcode;
3146 // Check if the instruction has a register form that uses register in place
3147 // of the extended operand, if so return that as the non-extended form.
3148 if (Hexagon::getRegForm(MI.getOpcode()) >= 0)
3149 return true;
3150
3151 if (MI.getDesc().mayLoad() || MI.getDesc().mayStore()) {
3152 // Check addressing mode and retrieve non-ext equivalent instruction.
3153
3154 switch (getAddrMode(MI)) {
3156 // Load/store with absolute addressing mode can be converted into
3157 // base+offset mode.
3158 NonExtOpcode = Hexagon::changeAddrMode_abs_io(MI.getOpcode());
3159 break;
3161 // Load/store with base+offset addressing mode can be converted into
3162 // base+register offset addressing mode. However left shift operand should
3163 // be set to 0.
3164 NonExtOpcode = Hexagon::changeAddrMode_io_rr(MI.getOpcode());
3165 break;
3167 NonExtOpcode = Hexagon::changeAddrMode_ur_rr(MI.getOpcode());
3168 break;
3169 default:
3170 return false;
3171 }
3172 if (NonExtOpcode < 0)
3173 return false;
3174 return true;
3175 }
3176 return false;
3177}
3178
3180 return Hexagon::getRealHWInstr(MI.getOpcode(),
3181 Hexagon::InstrType_Pseudo) >= 0;
3182}
3183
3185 const {
3186 MachineBasicBlock::const_iterator I = B->getFirstTerminator(), E = B->end();
3187 while (I != E) {
3188 if (I->isBarrier())
3189 return true;
3190 ++I;
3191 }
3192 return false;
3193}
3194
3195// Returns true, if a LD insn can be promoted to a cur load.
3197 const uint64_t F = MI.getDesc().TSFlags;
3199 Subtarget.hasV60Ops();
3200}
3201
3202// Returns true, if a ST insn can be promoted to a new-value store.
3204 if (MI.mayStore() && !Subtarget.useNewValueStores())
3205 return false;
3206
3207 const uint64_t F = MI.getDesc().TSFlags;
3209}
3210
3212 const MachineInstr &ConsMI) const {
3213 // There is no stall when ProdMI is not a V60 vector.
3214 if (!isHVXVec(ProdMI))
3215 return false;
3216
3217 // There is no stall when ProdMI and ConsMI are not dependent.
3218 if (!isDependent(ProdMI, ConsMI))
3219 return false;
3220
3221 // When Forward Scheduling is enabled, there is no stall if ProdMI and ConsMI
3222 // are scheduled in consecutive packets.
3223 if (isVecUsableNextPacket(ProdMI, ConsMI))
3224 return false;
3225
3226 return true;
3227}
3228
3231 // There is no stall when I is not a V60 vector.
3232 if (!isHVXVec(MI))
3233 return false;
3234
3236 MachineBasicBlock::const_instr_iterator MIE = MII->getParent()->instr_end();
3237
3238 if (!MII->isBundle())
3239 return producesStall(*MII, MI);
3240
3241 for (++MII; MII != MIE && MII->isInsideBundle(); ++MII) {
3242 const MachineInstr &J = *MII;
3243 if (producesStall(J, MI))
3244 return true;
3245 }
3246 return false;
3247}
3248
3250 Register PredReg) const {
3251 for (const MachineOperand &MO : MI.operands()) {
3252 // Predicate register must be explicitly defined.
3253 if (MO.isRegMask() && MO.clobbersPhysReg(PredReg))
3254 return false;
3255 if (MO.isReg() && MO.isDef() && MO.isImplicit() && (MO.getReg() == PredReg))
3256 return false;
3257 }
3258
3259 // Instruction that produce late predicate cannot be used as sources of
3260 // dot-new.
3261 switch (MI.getOpcode()) {
3262 case Hexagon::A4_addp_c:
3263 case Hexagon::A4_subp_c:
3264 case Hexagon::A4_tlbmatch:
3265 case Hexagon::A5_ACS:
3266 case Hexagon::F2_sfinvsqrta:
3267 case Hexagon::F2_sfrecipa:
3268 case Hexagon::J2_endloop0:
3269 case Hexagon::J2_endloop01:
3270 case Hexagon::J2_ploop1si:
3271 case Hexagon::J2_ploop1sr:
3272 case Hexagon::J2_ploop2si:
3273 case Hexagon::J2_ploop2sr:
3274 case Hexagon::J2_ploop3si:
3275 case Hexagon::J2_ploop3sr:
3276 case Hexagon::S2_cabacdecbin:
3277 case Hexagon::S2_storew_locked:
3278 case Hexagon::S4_stored_locked:
3279 return false;
3280 }
3281 return true;
3282}
3283
3284bool HexagonInstrInfo::PredOpcodeHasJMP_c(unsigned Opcode) const {
3285 return Opcode == Hexagon::J2_jumpt ||
3286 Opcode == Hexagon::J2_jumptpt ||
3287 Opcode == Hexagon::J2_jumpf ||
3288 Opcode == Hexagon::J2_jumpfpt ||
3289 Opcode == Hexagon::J2_jumptnew ||
3290 Opcode == Hexagon::J2_jumpfnew ||
3291 Opcode == Hexagon::J2_jumptnewpt ||
3292 Opcode == Hexagon::J2_jumpfnewpt;
3293}
3294
3296 if (Cond.empty() || !isPredicated(Cond[0].getImm()))
3297 return false;
3298 return !isPredicatedTrue(Cond[0].getImm());
3299}
3300
3302 const uint64_t F = MI.getDesc().TSFlags;
3304}
3305
3306// Returns the base register in a memory access (load/store). The offset is
3307// returned in Offset and the access size is returned in AccessSize.
3308// If the base operand has a subregister or the offset field does not contain
3309// an immediate value, return nullptr.
3312 LocationSize &AccessSize) const {
3313 // Return if it is not a base+offset type instruction or a MemOp.
3317 return nullptr;
3318
3320
3321 unsigned BasePos = 0, OffsetPos = 0;
3322 if (!getBaseAndOffsetPosition(MI, BasePos, OffsetPos))
3323 return nullptr;
3324
3325 // Post increment updates its EA after the mem access,
3326 // so we need to treat its offset as zero.
3327 if (isPostIncrement(MI)) {
3328 Offset = 0;
3329 } else {
3330 const MachineOperand &OffsetOp = MI.getOperand(OffsetPos);
3331 if (!OffsetOp.isImm())
3332 return nullptr;
3333 Offset = OffsetOp.getImm();
3334 }
3335
3336 const MachineOperand &BaseOp = MI.getOperand(BasePos);
3337 if (BaseOp.getSubReg() != 0)
3338 return nullptr;
3339 return &const_cast<MachineOperand&>(BaseOp);
3340}
3341
3342/// Return the position of the base and offset operands for this instruction.
3344 unsigned &BasePos, unsigned &OffsetPos) const {
3346 return false;
3347
3348 // Deal with memops first.
3349 if (isMemOp(MI)) {
3350 BasePos = 0;
3351 OffsetPos = 1;
3352 } else if (MI.mayStore()) {
3353 BasePos = 0;
3354 OffsetPos = 1;
3355 } else if (MI.mayLoad()) {
3356 BasePos = 1;
3357 OffsetPos = 2;
3358 } else
3359 return false;
3360
3361 if (isPredicated(MI)) {
3362 BasePos++;
3363 OffsetPos++;
3364 }
3365 if (isPostIncrement(MI)) {
3366 BasePos++;
3367 OffsetPos++;
3368 }
3369
3370 if (!MI.getOperand(BasePos).isReg() || !MI.getOperand(OffsetPos).isImm())
3371 return false;
3372
3373 return true;
3374}
3375
3376// Inserts branching instructions in reverse order of their occurrence.
3377// e.g. jump_t t1 (i1)
3378// jump t2 (i2)
3379// Jumpers = {i2, i1}
3381 MachineBasicBlock& MBB) const {
3383 // If the block has no terminators, it just falls into the block after it.
3385 if (I == MBB.instr_begin())
3386 return Jumpers;
3387
3388 // A basic block may looks like this:
3389 //
3390 // [ insn
3391 // EH_LABEL
3392 // insn
3393 // insn
3394 // insn
3395 // EH_LABEL
3396 // insn ]
3397 //
3398 // It has two succs but does not have a terminator
3399 // Don't know how to handle it.
3400 do {
3401 --I;
3402 if (I->isEHLabel())
3403 return Jumpers;
3404 } while (I != MBB.instr_begin());
3405
3406 I = MBB.instr_end();
3407 --I;
3408
3409 while (I->isDebugInstr()) {
3410 if (I == MBB.instr_begin())
3411 return Jumpers;
3412 --I;
3413 }
3414 if (!isUnpredicatedTerminator(*I))
3415 return Jumpers;
3416
3417 // Get the last instruction in the block.
3418 MachineInstr *LastInst = &*I;
3419 Jumpers.push_back(LastInst);
3420 MachineInstr *SecondLastInst = nullptr;
3421 // Find one more terminator if present.
3422 do {
3423 if (&*I != LastInst && !I->isBundle() && isUnpredicatedTerminator(*I)) {
3424 if (!SecondLastInst) {
3425 SecondLastInst = &*I;
3426 Jumpers.push_back(SecondLastInst);
3427 } else // This is a third branch.
3428 return Jumpers;
3429 }
3430 if (I == MBB.instr_begin())
3431 break;
3432 --I;
3433 } while (true);
3434 return Jumpers;
3435}
3436
3437// Returns Operand Index for the constant extended instruction.
3439 const uint64_t F = MI.getDesc().TSFlags;
3441}
3442
3443// See if instruction could potentially be a duplex candidate.
3444// If so, return its group. Zero otherwise.
3446 const MachineInstr &MI) const {
3447 Register DstReg, SrcReg, Src1Reg, Src2Reg;
3448
3449 switch (MI.getOpcode()) {
3450 default:
3451 return HexagonII::HCG_None;
3452 //
3453 // Compound pairs.
3454 // "p0=cmp.eq(Rs16,Rt16); if (p0.new) jump:nt #r9:2"
3455 // "Rd16=#U6 ; jump #r9:2"
3456 // "Rd16=Rs16 ; jump #r9:2"
3457 //
3458 case Hexagon::C2_cmpeq:
3459 case Hexagon::C2_cmpgt:
3460 case Hexagon::C2_cmpgtu:
3461 DstReg = MI.getOperand(0).getReg();
3462 Src1Reg = MI.getOperand(1).getReg();
3463 Src2Reg = MI.getOperand(2).getReg();
3464 if (Hexagon::PredRegsRegClass.contains(DstReg) &&
3465 (Hexagon::P0 == DstReg || Hexagon::P1 == DstReg) &&
3466 isIntRegForSubInst(Src1Reg) && isIntRegForSubInst(Src2Reg))
3467 return HexagonII::HCG_A;
3468 break;
3469 case Hexagon::C2_cmpeqi:
3470 case Hexagon::C2_cmpgti:
3471 case Hexagon::C2_cmpgtui:
3472 // P0 = cmp.eq(Rs,#u2)
3473 DstReg = MI.getOperand(0).getReg();
3474 SrcReg = MI.getOperand(1).getReg();
3475 if (Hexagon::PredRegsRegClass.contains(DstReg) &&
3476 (Hexagon::P0 == DstReg || Hexagon::P1 == DstReg) &&
3477 isIntRegForSubInst(SrcReg) && MI.getOperand(2).isImm() &&
3478 ((isUInt<5>(MI.getOperand(2).getImm())) ||
3479 (MI.getOperand(2).getImm() == -1)))
3480 return HexagonII::HCG_A;
3481 break;
3482 case Hexagon::A2_tfr:
3483 // Rd = Rs
3484 DstReg = MI.getOperand(0).getReg();
3485 SrcReg = MI.getOperand(1).getReg();
3486 if (isIntRegForSubInst(DstReg) && isIntRegForSubInst(SrcReg))
3487 return HexagonII::HCG_A;
3488 break;
3489 case Hexagon::A2_tfrsi:
3490 // Rd = #u6
3491 // Do not test for #u6 size since the const is getting extended
3492 // regardless and compound could be formed.
3493 DstReg = MI.getOperand(0).getReg();
3494 if (isIntRegForSubInst(DstReg))
3495 return HexagonII::HCG_A;
3496 break;
3497 case Hexagon::S2_tstbit_i:
3498 DstReg = MI.getOperand(0).getReg();
3499 Src1Reg = MI.getOperand(1).getReg();
3500 if (Hexagon::PredRegsRegClass.contains(DstReg) &&
3501 (Hexagon::P0 == DstReg || Hexagon::P1 == DstReg) &&
3502 MI.getOperand(2).isImm() &&
3503 isIntRegForSubInst(Src1Reg) && (MI.getOperand(2).getImm() == 0))
3504 return HexagonII::HCG_A;
3505 break;
3506 // The fact that .new form is used pretty much guarantees
3507 // that predicate register will match. Nevertheless,
3508 // there could be some false positives without additional
3509 // checking.
3510 case Hexagon::J2_jumptnew:
3511 case Hexagon::J2_jumpfnew:
3512 case Hexagon::J2_jumptnewpt:
3513 case Hexagon::J2_jumpfnewpt:
3514 Src1Reg = MI.getOperand(0).getReg();
3515 if (Hexagon::PredRegsRegClass.contains(Src1Reg) &&
3516 (Hexagon::P0 == Src1Reg || Hexagon::P1 == Src1Reg))
3517 return HexagonII::HCG_B;
3518 break;
3519 // Transfer and jump:
3520 // Rd=#U6 ; jump #r9:2
3521 // Rd=Rs ; jump #r9:2
3522 // Do not test for jump range here.
3523 case Hexagon::J2_jump:
3524 case Hexagon::RESTORE_DEALLOC_RET_JMP_V4:
3525 case Hexagon::RESTORE_DEALLOC_RET_JMP_V4_PIC:
3526 return HexagonII::HCG_C;
3527 }
3528
3529 return HexagonII::HCG_None;
3530}
3531
3532// Returns -1 when there is no opcode found.
3534 const MachineInstr &GB) const {
3537 if ((GA.getOpcode() != Hexagon::C2_cmpeqi) ||
3538 (GB.getOpcode() != Hexagon::J2_jumptnew))
3539 return -1u;
3540 Register DestReg = GA.getOperand(0).getReg();
3541 if (!GB.readsRegister(DestReg, /*TRI=*/nullptr))
3542 return -1u;
3543 if (DestReg != Hexagon::P0 && DestReg != Hexagon::P1)
3544 return -1u;
3545 // The value compared against must be either u5 or -1.
3546 const MachineOperand &CmpOp = GA.getOperand(2);
3547 if (!CmpOp.isImm())
3548 return -1u;
3549 int V = CmpOp.getImm();
3550 if (V == -1)
3551 return DestReg == Hexagon::P0 ? Hexagon::J4_cmpeqn1_tp0_jump_nt
3552 : Hexagon::J4_cmpeqn1_tp1_jump_nt;
3553 if (!isUInt<5>(V))
3554 return -1u;
3555 return DestReg == Hexagon::P0 ? Hexagon::J4_cmpeqi_tp0_jump_nt
3556 : Hexagon::J4_cmpeqi_tp1_jump_nt;
3557}
3558
3559// Returns -1 if there is no opcode found.
3561 bool ForBigCore) const {
3562 // Static table to switch the opcodes across Tiny Core and Big Core.
3563 // dup_ opcodes are Big core opcodes.
3564 // NOTE: There are special instructions that need to handled later.
3565 // L4_return* instructions, they will only occupy SLOT0 (on big core too).
3566 // PS_jmpret - This pseudo translates to J2_jumpr which occupies only SLOT2.
3567 // The compiler need to base the root instruction to L6_return_map_to_raw
3568 // which can go any slot.
3569 static const std::map<unsigned, unsigned> DupMap = {
3570 {Hexagon::A2_add, Hexagon::dup_A2_add},
3571 {Hexagon::A2_addi, Hexagon::dup_A2_addi},
3572 {Hexagon::A2_andir, Hexagon::dup_A2_andir},
3573 {Hexagon::A2_combineii, Hexagon::dup_A2_combineii},
3574 {Hexagon::A2_sxtb, Hexagon::dup_A2_sxtb},
3575 {Hexagon::A2_sxth, Hexagon::dup_A2_sxth},
3576 {Hexagon::A2_tfr, Hexagon::dup_A2_tfr},
3577 {Hexagon::A2_tfrsi, Hexagon::dup_A2_tfrsi},
3578 {Hexagon::A2_zxtb, Hexagon::dup_A2_zxtb},
3579 {Hexagon::A2_zxth, Hexagon::dup_A2_zxth},
3580 {Hexagon::A4_combineii, Hexagon::dup_A4_combineii},
3581 {Hexagon::A4_combineir, Hexagon::dup_A4_combineir},
3582 {Hexagon::A4_combineri, Hexagon::dup_A4_combineri},
3583 {Hexagon::C2_cmoveif, Hexagon::dup_C2_cmoveif},
3584 {Hexagon::C2_cmoveit, Hexagon::dup_C2_cmoveit},
3585 {Hexagon::C2_cmovenewif, Hexagon::dup_C2_cmovenewif},
3586 {Hexagon::C2_cmovenewit, Hexagon::dup_C2_cmovenewit},
3587 {Hexagon::C2_cmpeqi, Hexagon::dup_C2_cmpeqi},
3588 {Hexagon::L2_deallocframe, Hexagon::dup_L2_deallocframe},
3589 {Hexagon::L2_loadrb_io, Hexagon::dup_L2_loadrb_io},
3590 {Hexagon::L2_loadrd_io, Hexagon::dup_L2_loadrd_io},
3591 {Hexagon::L2_loadrh_io, Hexagon::dup_L2_loadrh_io},
3592 {Hexagon::L2_loadri_io, Hexagon::dup_L2_loadri_io},
3593 {Hexagon::L2_loadrub_io, Hexagon::dup_L2_loadrub_io},
3594 {Hexagon::L2_loadruh_io, Hexagon::dup_L2_loadruh_io},
3595 {Hexagon::S2_allocframe, Hexagon::dup_S2_allocframe},
3596 {Hexagon::S2_storerb_io, Hexagon::dup_S2_storerb_io},
3597 {Hexagon::S2_storerd_io, Hexagon::dup_S2_storerd_io},
3598 {Hexagon::S2_storerh_io, Hexagon::dup_S2_storerh_io},
3599 {Hexagon::S2_storeri_io, Hexagon::dup_S2_storeri_io},
3600 {Hexagon::S4_storeirb_io, Hexagon::dup_S4_storeirb_io},
3601 {Hexagon::S4_storeiri_io, Hexagon::dup_S4_storeiri_io},
3602 };
3603 unsigned OpNum = MI.getOpcode();
3604 // Conversion to Big core.
3605 if (ForBigCore) {
3606 auto Iter = DupMap.find(OpNum);
3607 if (Iter != DupMap.end())
3608 return Iter->second;
3609 } else { // Conversion to Tiny core.
3610 for (const auto &Iter : DupMap)
3611 if (Iter.second == OpNum)
3612 return Iter.first;
3613 }
3614 return -1;
3615}
3616
3617int HexagonInstrInfo::getCondOpcode(int Opc, bool invertPredicate) const {
3618 enum Hexagon::PredSense inPredSense;
3619 inPredSense = invertPredicate ? Hexagon::PredSense_false :
3620 Hexagon::PredSense_true;
3621 int CondOpcode = Hexagon::getPredOpcode(Opc, inPredSense);
3622 if (CondOpcode >= 0) // Valid Conditional opcode/instruction
3623 return CondOpcode;
3624
3625 llvm_unreachable("Unexpected predicable instruction");
3626}
3627
3628// Return the cur value instruction for a given store.
3630 switch (MI.getOpcode()) {
3631 default: llvm_unreachable("Unknown .cur type");
3632 case Hexagon::V6_vL32b_pi:
3633 return Hexagon::V6_vL32b_cur_pi;
3634 case Hexagon::V6_vL32b_ai:
3635 return Hexagon::V6_vL32b_cur_ai;
3636 case Hexagon::V6_vL32b_nt_pi:
3637 return Hexagon::V6_vL32b_nt_cur_pi;
3638 case Hexagon::V6_vL32b_nt_ai:
3639 return Hexagon::V6_vL32b_nt_cur_ai;
3640 case Hexagon::V6_vL32b_ppu:
3641 return Hexagon::V6_vL32b_cur_ppu;
3642 case Hexagon::V6_vL32b_nt_ppu:
3643 return Hexagon::V6_vL32b_nt_cur_ppu;
3644 }
3645 return 0;
3646}
3647
3648// Return the regular version of the .cur instruction.
3650 switch (MI.getOpcode()) {
3651 default: llvm_unreachable("Unknown .cur type");
3652 case Hexagon::V6_vL32b_cur_pi:
3653 return Hexagon::V6_vL32b_pi;
3654 case Hexagon::V6_vL32b_cur_ai:
3655 return Hexagon::V6_vL32b_ai;
3656 case Hexagon::V6_vL32b_nt_cur_pi:
3657 return Hexagon::V6_vL32b_nt_pi;
3658 case Hexagon::V6_vL32b_nt_cur_ai:
3659 return Hexagon::V6_vL32b_nt_ai;
3660 case Hexagon::V6_vL32b_cur_ppu:
3661 return Hexagon::V6_vL32b_ppu;
3662 case Hexagon::V6_vL32b_nt_cur_ppu:
3663 return Hexagon::V6_vL32b_nt_ppu;
3664 }
3665 return 0;
3666}
3667
3668// The diagram below shows the steps involved in the conversion of a predicated
3669// store instruction to its .new predicated new-value form.
3670//
3671// Note: It doesn't include conditional new-value stores as they can't be
3672// converted to .new predicate.
3673//
3674// p.new NV store [ if(p0.new)memw(R0+#0)=R2.new ]
3675// ^ ^
3676// / \ (not OK. it will cause new-value store to be
3677// / X conditional on p0.new while R2 producer is
3678// / \ on p0)
3679// / \.
3680// p.new store p.old NV store
3681// [if(p0.new)memw(R0+#0)=R2] [if(p0)memw(R0+#0)=R2.new]
3682// ^ ^
3683// \ /
3684// \ /
3685// \ /
3686// p.old store
3687// [if (p0)memw(R0+#0)=R2]
3688//
3689// The following set of instructions further explains the scenario where
3690// conditional new-value store becomes invalid when promoted to .new predicate
3691// form.
3692//
3693// { 1) if (p0) r0 = add(r1, r2)
3694// 2) p0 = cmp.eq(r3, #0) }
3695//
3696// 3) if (p0) memb(r1+#0) = r0 --> this instruction can't be grouped with
3697// the first two instructions because in instr 1, r0 is conditional on old value
3698// of p0 but its use in instr 3 is conditional on p0 modified by instr 2 which
3699// is not valid for new-value stores.
3700// Predicated new value stores (i.e. if (p0) memw(..)=r0.new) are excluded
3701// from the "Conditional Store" list. Because a predicated new value store
3702// would NOT be promoted to a double dot new store. See diagram below:
3703// This function returns yes for those stores that are predicated but not
3704// yet promoted to predicate dot new instructions.
3705//
3706// +---------------------+
3707// /-----| if (p0) memw(..)=r0 |---------\~
3708// || +---------------------+ ||
3709// promote || /\ /\ || promote
3710// || /||\ /||\ ||
3711// \||/ demote || \||/
3712// \/ || || \/
3713// +-------------------------+ || +-------------------------+
3714// | if (p0.new) memw(..)=r0 | || | if (p0) memw(..)=r0.new |
3715// +-------------------------+ || +-------------------------+
3716// || || ||
3717// || demote \||/
3718// promote || \/ NOT possible
3719// || || /\~
3720// \||/ || /||\~
3721// \/ || ||
3722// +-----------------------------+
3723// | if (p0.new) memw(..)=r0.new |
3724// +-----------------------------+
3725// Double Dot New Store
3726//
3727// Returns the most basic instruction for the .new predicated instructions and
3728// new-value stores.
3729// For example, all of the following instructions will be converted back to the
3730// same instruction:
3731// 1) if (p0.new) memw(R0+#0) = R1.new --->
3732// 2) if (p0) memw(R0+#0)= R1.new -------> if (p0) memw(R0+#0) = R1
3733// 3) if (p0.new) memw(R0+#0) = R1 --->
3734//
3735// To understand the translation of instruction 1 to its original form, consider
3736// a packet with 3 instructions.
3737// { p0 = cmp.eq(R0,R1)
3738// if (p0.new) R2 = add(R3, R4)
3739// R5 = add (R3, R1)
3740// }
3741// if (p0) memw(R5+#0) = R2 <--- trying to include it in the previous packet
3742//
3743// This instruction can be part of the previous packet only if both p0 and R2
3744// are promoted to .new values. This promotion happens in steps, first
3745// predicate register is promoted to .new and in the next iteration R2 is
3746// promoted. Therefore, in case of dependence check failure (due to R5) during
3747// next iteration, it should be converted back to its most basic form.
3748
3749// Return the new value instruction for a given store.
3751 int NVOpcode = Hexagon::getNewValueOpcode(MI.getOpcode());
3752 if (NVOpcode >= 0) // Valid new-value store instruction.
3753 return NVOpcode;
3754
3755 switch (MI.getOpcode()) {
3756 default:
3757 report_fatal_error(Twine("Unknown .new type: ") +
3758 std::to_string(MI.getOpcode()));
3759 case Hexagon::S4_storerb_ur:
3760 return Hexagon::S4_storerbnew_ur;
3761
3762 case Hexagon::S2_storerb_pci:
3763 return Hexagon::S2_storerb_pci;
3764
3765 case Hexagon::S2_storeri_pci:
3766 return Hexagon::S2_storeri_pci;
3767
3768 case Hexagon::S2_storerh_pci:
3769 return Hexagon::S2_storerh_pci;
3770
3771 case Hexagon::S2_storerd_pci:
3772 return Hexagon::S2_storerd_pci;
3773
3774 case Hexagon::S2_storerf_pci:
3775 return Hexagon::S2_storerf_pci;
3776
3777 case Hexagon::V6_vS32b_ai:
3778 return Hexagon::V6_vS32b_new_ai;
3779
3780 case Hexagon::V6_vS32b_pi:
3781 return Hexagon::V6_vS32b_new_pi;
3782 }
3783 return 0;
3784}
3785
3786// Returns the opcode to use when converting MI, which is a conditional jump,
3787// into a conditional instruction which uses the .new value of the predicate.
3788// We also use branch probabilities to add a hint to the jump.
3789// If MBPI is null, all edges will be treated as equally likely for the
3790// purposes of establishing a predication hint.
3792 const MachineBranchProbabilityInfo *MBPI) const {
3793 // We assume that block can have at most two successors.
3794 const MachineBasicBlock *Src = MI.getParent();
3795 const MachineOperand &BrTarget = MI.getOperand(1);
3796 bool Taken = false;
3797 const BranchProbability OneHalf(1, 2);
3798
3799 auto getEdgeProbability = [MBPI] (const MachineBasicBlock *Src,
3800 const MachineBasicBlock *Dst) {
3801 if (MBPI)
3802 return MBPI->getEdgeProbability(Src, Dst);
3803 return BranchProbability(1, Src->succ_size());
3804 };
3805
3806 if (BrTarget.isMBB()) {
3807 const MachineBasicBlock *Dst = BrTarget.getMBB();
3808 Taken = getEdgeProbability(Src, Dst) >= OneHalf;
3809 } else {
3810 // The branch target is not a basic block (most likely a function).
3811 // Since BPI only gives probabilities for targets that are basic blocks,
3812 // try to identify another target of this branch (potentially a fall-
3813 // -through) and check the probability of that target.
3814 //
3815 // The only handled branch combinations are:
3816 // - one conditional branch,
3817 // - one conditional branch followed by one unconditional branch.
3818 // Otherwise, assume not-taken.
3819 assert(MI.isConditionalBranch());
3820 const MachineBasicBlock &B = *MI.getParent();
3821 bool SawCond = false, Bad = false;
3822 for (const MachineInstr &I : B) {
3823 if (!I.isBranch())
3824 continue;
3825 if (I.isConditionalBranch()) {
3826 SawCond = true;
3827 if (&I != &MI) {
3828 Bad = true;
3829 break;
3830 }
3831 }
3832 if (I.isUnconditionalBranch() && !SawCond) {
3833 Bad = true;
3834 break;
3835 }
3836 }
3837 if (!Bad) {
3839 MachineBasicBlock::const_instr_iterator NextIt = std::next(It);
3840 if (NextIt == B.instr_end()) {
3841 // If this branch is the last, look for the fall-through block.
3842 for (const MachineBasicBlock *SB : B.successors()) {
3843 if (!B.isLayoutSuccessor(SB))
3844 continue;
3845 Taken = getEdgeProbability(Src, SB) < OneHalf;
3846 break;
3847 }
3848 } else {
3849 assert(NextIt->isUnconditionalBranch());
3850 // Find the first MBB operand and assume it's the target.
3851 const MachineBasicBlock *BT = nullptr;
3852 for (const MachineOperand &Op : NextIt->operands()) {
3853 if (!Op.isMBB())
3854 continue;
3855 BT = Op.getMBB();
3856 break;
3857 }
3858 Taken = BT && getEdgeProbability(Src, BT) < OneHalf;
3859 }
3860 } // if (!Bad)
3861 }
3862
3863 // The Taken flag should be set to something reasonable by this point.
3864
3865 switch (MI.getOpcode()) {
3866 case Hexagon::J2_jumpt:
3867 return Taken ? Hexagon::J2_jumptnewpt : Hexagon::J2_jumptnew;
3868 case Hexagon::J2_jumpf:
3869 return Taken ? Hexagon::J2_jumpfnewpt : Hexagon::J2_jumpfnew;
3870
3871 default:
3872 llvm_unreachable("Unexpected jump instruction.");
3873 }
3874}
3875
3876// Return .new predicate version for an instruction.
3878 const MachineBranchProbabilityInfo *MBPI) const {
3879 switch (MI.getOpcode()) {
3880 // Conditional Jumps
3881 case Hexagon::J2_jumpt:
3882 case Hexagon::J2_jumpf:
3883 return getDotNewPredJumpOp(MI, MBPI);
3884 }
3885
3886 int NewOpcode = Hexagon::getPredNewOpcode(MI.getOpcode());
3887 if (NewOpcode >= 0)
3888 return NewOpcode;
3889 return 0;
3890}
3891
3893 int NewOp = MI.getOpcode();
3894 if (isPredicated(NewOp) && isPredicatedNew(NewOp)) { // Get predicate old form
3895 NewOp = Hexagon::getPredOldOpcode(NewOp);
3896 // All Hexagon architectures have prediction bits on dot-new branches,
3897 // but only Hexagon V60+ has prediction bits on dot-old ones. Make sure
3898 // to pick the right opcode when converting back to dot-old.
3899 if (!Subtarget.hasFeature(Hexagon::ArchV60)) {
3900 switch (NewOp) {
3901 case Hexagon::J2_jumptpt:
3902 NewOp = Hexagon::J2_jumpt;
3903 break;
3904 case Hexagon::J2_jumpfpt:
3905 NewOp = Hexagon::J2_jumpf;
3906 break;
3907 case Hexagon::J2_jumprtpt:
3908 NewOp = Hexagon::J2_jumprt;
3909 break;
3910 case Hexagon::J2_jumprfpt:
3911 NewOp = Hexagon::J2_jumprf;
3912 break;
3913 }
3914 }
3915 assert(NewOp >= 0 &&
3916 "Couldn't change predicate new instruction to its old form.");
3917 }
3918
3919 if (isNewValueStore(NewOp)) { // Convert into non-new-value format
3920 NewOp = Hexagon::getNonNVStore(NewOp);
3921 assert(NewOp >= 0 && "Couldn't change new-value store to its old form.");
3922 }
3923
3924 if (Subtarget.hasV60Ops())
3925 return NewOp;
3926
3927 // Subtargets prior to V60 didn't support 'taken' forms of predicated jumps.
3928 switch (NewOp) {
3929 case Hexagon::J2_jumpfpt:
3930 return Hexagon::J2_jumpf;
3931 case Hexagon::J2_jumptpt:
3932 return Hexagon::J2_jumpt;
3933 case Hexagon::J2_jumprfpt:
3934 return Hexagon::J2_jumprf;
3935 case Hexagon::J2_jumprtpt:
3936 return Hexagon::J2_jumprt;
3937 }
3938 return NewOp;
3939}
3940
3941// See if instruction could potentially be a duplex candidate.
3942// If so, return its group. Zero otherwise.
3944 const MachineInstr &MI) const {
3945 Register DstReg, SrcReg, Src1Reg, Src2Reg;
3946 const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo();
3947
3948 switch (MI.getOpcode()) {
3949 default:
3950 return HexagonII::HSIG_None;
3951 //
3952 // Group L1:
3953 //
3954 // Rd = memw(Rs+#u4:2)
3955 // Rd = memub(Rs+#u4:0)
3956 case Hexagon::L2_loadri_io:
3957 case Hexagon::dup_L2_loadri_io:
3958 DstReg = MI.getOperand(0).getReg();
3959 SrcReg = MI.getOperand(1).getReg();
3960 // Special case this one from Group L2.
3961 // Rd = memw(r29+#u5:2)
3962 if (isIntRegForSubInst(DstReg)) {
3963 if (Hexagon::IntRegsRegClass.contains(SrcReg) &&
3964 HRI.getStackRegister() == SrcReg &&
3965 MI.getOperand(2).isImm() &&
3966 isShiftedUInt<5,2>(MI.getOperand(2).getImm()))
3967 return HexagonII::HSIG_L2;
3968 // Rd = memw(Rs+#u4:2)
3969 if (isIntRegForSubInst(SrcReg) &&
3970 (MI.getOperand(2).isImm() &&
3971 isShiftedUInt<4,2>(MI.getOperand(2).getImm())))
3972 return HexagonII::HSIG_L1;
3973 }
3974 break;
3975 case Hexagon::L2_loadrub_io:
3976 case Hexagon::dup_L2_loadrub_io:
3977 // Rd = memub(Rs+#u4:0)
3978 DstReg = MI.getOperand(0).getReg();
3979 SrcReg = MI.getOperand(1).getReg();
3980 if (isIntRegForSubInst(DstReg) && isIntRegForSubInst(SrcReg) &&
3981 MI.getOperand(2).isImm() && isUInt<4>(MI.getOperand(2).getImm()))
3982 return HexagonII::HSIG_L1;
3983 break;
3984 //
3985 // Group L2:
3986 //
3987 // Rd = memh/memuh(Rs+#u3:1)
3988 // Rd = memb(Rs+#u3:0)
3989 // Rd = memw(r29+#u5:2) - Handled above.
3990 // Rdd = memd(r29+#u5:3)
3991 // deallocframe
3992 // [if ([!]p0[.new])] dealloc_return
3993 // [if ([!]p0[.new])] jumpr r31
3994 case Hexagon::L2_loadrh_io:
3995 case Hexagon::L2_loadruh_io:
3996 case Hexagon::dup_L2_loadrh_io:
3997 case Hexagon::dup_L2_loadruh_io:
3998 // Rd = memh/memuh(Rs+#u3:1)
3999 DstReg = MI.getOperand(0).getReg();
4000 SrcReg = MI.getOperand(1).getReg();
4001 if (isIntRegForSubInst(DstReg) && isIntRegForSubInst(SrcReg) &&
4002 MI.getOperand(2).isImm() &&
4003 isShiftedUInt<3,1>(MI.getOperand(2).getImm()))
4004 return HexagonII::HSIG_L2;
4005 break;
4006 case Hexagon::L2_loadrb_io:
4007 case Hexagon::dup_L2_loadrb_io:
4008 // Rd = memb(Rs+#u3:0)
4009 DstReg = MI.getOperand(0).getReg();
4010 SrcReg = MI.getOperand(1).getReg();
4011 if (isIntRegForSubInst(DstReg) && isIntRegForSubInst(SrcReg) &&
4012 MI.getOperand(2).isImm() &&
4013 isUInt<3>(MI.getOperand(2).getImm()))
4014 return HexagonII::HSIG_L2;
4015 break;
4016 case Hexagon::L2_loadrd_io:
4017 case Hexagon::dup_L2_loadrd_io:
4018 // Rdd = memd(r29+#u5:3)
4019 DstReg = MI.getOperand(0).getReg();
4020 SrcReg = MI.getOperand(1).getReg();
4021 if (isDblRegForSubInst(DstReg, HRI) &&
4022 Hexagon::IntRegsRegClass.contains(SrcReg) &&
4023 HRI.getStackRegister() == SrcReg &&
4024 MI.getOperand(2).isImm() &&
4025 isShiftedUInt<5,3>(MI.getOperand(2).getImm()))
4026 return HexagonII::HSIG_L2;
4027 break;
4028 // dealloc_return is not documented in Hexagon Manual, but marked
4029 // with A_SUBINSN attribute in iset_v4classic.py.
4030 case Hexagon::RESTORE_DEALLOC_RET_JMP_V4:
4031 case Hexagon::RESTORE_DEALLOC_RET_JMP_V4_PIC:
4032 case Hexagon::L4_return:
4033 case Hexagon::L2_deallocframe:
4034 case Hexagon::dup_L2_deallocframe:
4035 return HexagonII::HSIG_L2;
4036 case Hexagon::EH_RETURN_JMPR:
4037 case Hexagon::PS_jmpret:
4038 case Hexagon::SL2_jumpr31:
4039 // jumpr r31
4040 // Actual form JMPR implicit-def %pc, implicit %r31, implicit internal %r0
4041 DstReg = MI.getOperand(0).getReg();
4042 if (Hexagon::IntRegsRegClass.contains(DstReg) && (Hexagon::R31 == DstReg))
4043 return HexagonII::HSIG_L2;
4044 break;
4045 case Hexagon::PS_jmprett:
4046 case Hexagon::PS_jmpretf:
4047 case Hexagon::PS_jmprettnewpt:
4048 case Hexagon::PS_jmpretfnewpt:
4049 case Hexagon::PS_jmprettnew:
4050 case Hexagon::PS_jmpretfnew:
4051 case Hexagon::SL2_jumpr31_t:
4052 case Hexagon::SL2_jumpr31_f:
4053 case Hexagon::SL2_jumpr31_tnew:
4054 case Hexagon::SL2_jumpr31_fnew:
4055 DstReg = MI.getOperand(1).getReg();
4056 SrcReg = MI.getOperand(0).getReg();
4057 // [if ([!]p0[.new])] jumpr r31
4058 if ((Hexagon::PredRegsRegClass.contains(SrcReg) &&
4059 (Hexagon::P0 == SrcReg)) &&
4060 (Hexagon::IntRegsRegClass.contains(DstReg) && (Hexagon::R31 == DstReg)))
4061 return HexagonII::HSIG_L2;
4062 break;
4063 case Hexagon::L4_return_t:
4064 case Hexagon::L4_return_f:
4065 case Hexagon::L4_return_tnew_pnt:
4066 case Hexagon::L4_return_fnew_pnt:
4067 case Hexagon::L4_return_tnew_pt:
4068 case Hexagon::L4_return_fnew_pt:
4069 // [if ([!]p0[.new])] dealloc_return
4070 SrcReg = MI.getOperand(0).getReg();
4071 if (Hexagon::PredRegsRegClass.contains(SrcReg) && (Hexagon::P0 == SrcReg))
4072 return HexagonII::HSIG_L2;
4073 break;
4074 //
4075 // Group S1:
4076 //
4077 // memw(Rs+#u4:2) = Rt
4078 // memb(Rs+#u4:0) = Rt
4079 case Hexagon::S2_storeri_io:
4080 case Hexagon::dup_S2_storeri_io:
4081 // Special case this one from Group S2.
4082 // memw(r29+#u5:2) = Rt
4083 Src1Reg = MI.getOperand(0).getReg();
4084 Src2Reg = MI.getOperand(2).getReg();
4085 if (Hexagon::IntRegsRegClass.contains(Src1Reg) &&
4086 isIntRegForSubInst(Src2Reg) &&
4087 HRI.getStackRegister() == Src1Reg && MI.getOperand(1).isImm() &&
4088 isShiftedUInt<5,2>(MI.getOperand(1).getImm()))
4089 return HexagonII::HSIG_S2;
4090 // memw(Rs+#u4:2) = Rt
4091 if (isIntRegForSubInst(Src1Reg) && isIntRegForSubInst(Src2Reg) &&
4092 MI.getOperand(1).isImm() &&
4093 isShiftedUInt<4,2>(MI.getOperand(1).getImm()))
4094 return HexagonII::HSIG_S1;
4095 break;
4096 case Hexagon::S2_storerb_io:
4097 case Hexagon::dup_S2_storerb_io:
4098 // memb(Rs+#u4:0) = Rt
4099 Src1Reg = MI.getOperand(0).getReg();
4100 Src2Reg = MI.getOperand(2).getReg();
4101 if (isIntRegForSubInst(Src1Reg) && isIntRegForSubInst(Src2Reg) &&
4102 MI.getOperand(1).isImm() && isUInt<4>(MI.getOperand(1).getImm()))
4103 return HexagonII::HSIG_S1;
4104 break;
4105 //
4106 // Group S2:
4107 //
4108 // memh(Rs+#u3:1) = Rt
4109 // memw(r29+#u5:2) = Rt
4110 // memd(r29+#s6:3) = Rtt
4111 // memw(Rs+#u4:2) = #U1
4112 // memb(Rs+#u4) = #U1
4113 // allocframe(#u5:3)
4114 case Hexagon::S2_storerh_io:
4115 case Hexagon::dup_S2_storerh_io:
4116 // memh(Rs+#u3:1) = Rt
4117 Src1Reg = MI.getOperand(0).getReg();
4118 Src2Reg = MI.getOperand(2).getReg();
4119 if (isIntRegForSubInst(Src1Reg) && isIntRegForSubInst(Src2Reg) &&
4120 MI.getOperand(1).isImm() &&
4121 isShiftedUInt<3,1>(MI.getOperand(1).getImm()))
4122 return HexagonII::HSIG_S1;
4123 break;
4124 case Hexagon::S2_storerd_io:
4125 case Hexagon::dup_S2_storerd_io:
4126 // memd(r29+#s6:3) = Rtt
4127 Src1Reg = MI.getOperand(0).getReg();
4128 Src2Reg = MI.getOperand(2).getReg();
4129 if (isDblRegForSubInst(Src2Reg, HRI) &&
4130 Hexagon::IntRegsRegClass.contains(Src1Reg) &&
4131 HRI.getStackRegister() == Src1Reg && MI.getOperand(1).isImm() &&
4132 isShiftedInt<6,3>(MI.getOperand(1).getImm()))
4133 return HexagonII::HSIG_S2;
4134 break;
4135 case Hexagon::S4_storeiri_io:
4136 case Hexagon::dup_S4_storeiri_io:
4137 // memw(Rs+#u4:2) = #U1
4138 Src1Reg = MI.getOperand(0).getReg();
4139 if (isIntRegForSubInst(Src1Reg) && MI.getOperand(1).isImm() &&
4140 isShiftedUInt<4,2>(MI.getOperand(1).getImm()) &&
4141 MI.getOperand(2).isImm() && isUInt<1>(MI.getOperand(2).getImm()))
4142 return HexagonII::HSIG_S2;
4143 break;
4144 case Hexagon::S4_storeirb_io:
4145 case Hexagon::dup_S4_storeirb_io:
4146 // memb(Rs+#u4) = #U1
4147 Src1Reg = MI.getOperand(0).getReg();
4148 if (isIntRegForSubInst(Src1Reg) &&
4149 MI.getOperand(1).isImm() && isUInt<4>(MI.getOperand(1).getImm()) &&
4150 MI.getOperand(2).isImm() && isUInt<1>(MI.getOperand(2).getImm()))
4151 return HexagonII::HSIG_S2;
4152 break;
4153 case Hexagon::S2_allocframe:
4154 case Hexagon::dup_S2_allocframe:
4155 if (MI.getOperand(2).isImm() &&
4156 isShiftedUInt<5,3>(MI.getOperand(2).getImm()))
4157 return HexagonII::HSIG_S1;
4158 break;
4159 //
4160 // Group A:
4161 //
4162 // Rx = add(Rx,#s7)
4163 // Rd = Rs
4164 // Rd = #u6
4165 // Rd = #-1
4166 // if ([!]P0[.new]) Rd = #0
4167 // Rd = add(r29,#u6:2)
4168 // Rx = add(Rx,Rs)
4169 // P0 = cmp.eq(Rs,#u2)
4170 // Rdd = combine(#0,Rs)
4171 // Rdd = combine(Rs,#0)
4172 // Rdd = combine(#u2,#U2)
4173 // Rd = add(Rs,#1)
4174 // Rd = add(Rs,#-1)
4175 // Rd = sxth/sxtb/zxtb/zxth(Rs)
4176 // Rd = and(Rs,#1)
4177 case Hexagon::A2_addi:
4178 case Hexagon::dup_A2_addi:
4179 DstReg = MI.getOperand(0).getReg();
4180 SrcReg = MI.getOperand(1).getReg();
4181 if (isIntRegForSubInst(DstReg)) {
4182 // Rd = add(r29,#u6:2)
4183 if (Hexagon::IntRegsRegClass.contains(SrcReg) &&
4184 HRI.getStackRegister() == SrcReg && MI.getOperand(2).isImm() &&
4185 isShiftedUInt<6,2>(MI.getOperand(2).getImm()))
4186 return HexagonII::HSIG_A;
4187 // Rx = add(Rx,#s7)
4188 if ((DstReg == SrcReg) && MI.getOperand(2).isImm() &&
4189 isInt<7>(MI.getOperand(2).getImm()))
4190 return HexagonII::HSIG_A;
4191 // Rd = add(Rs,#1)
4192 // Rd = add(Rs,#-1)
4193 if (isIntRegForSubInst(SrcReg) && MI.getOperand(2).isImm() &&
4194 ((MI.getOperand(2).getImm() == 1) ||
4195 (MI.getOperand(2).getImm() == -1)))
4196 return HexagonII::HSIG_A;
4197 }
4198 break;
4199 case Hexagon::A2_add:
4200 case Hexagon::dup_A2_add:
4201 // Rx = add(Rx,Rs)
4202 DstReg = MI.getOperand(0).getReg();
4203 Src1Reg = MI.getOperand(1).getReg();
4204 Src2Reg = MI.getOperand(2).getReg();
4205 if (isIntRegForSubInst(DstReg) && (DstReg == Src1Reg) &&
4206 isIntRegForSubInst(Src2Reg))
4207 return HexagonII::HSIG_A;
4208 break;
4209 case Hexagon::A2_andir:
4210 case Hexagon::dup_A2_andir:
4211 // Same as zxtb.
4212 // Rd16=and(Rs16,#255)
4213 // Rd16=and(Rs16,#1)
4214 DstReg = MI.getOperand(0).getReg();
4215 SrcReg = MI.getOperand(1).getReg();
4216 if (isIntRegForSubInst(DstReg) && isIntRegForSubInst(SrcReg) &&
4217 MI.getOperand(2).isImm() &&
4218 ((MI.getOperand(2).getImm() == 1) ||
4219 (MI.getOperand(2).getImm() == 255)))
4220 return HexagonII::HSIG_A;
4221 break;
4222 case Hexagon::A2_tfr:
4223 case Hexagon::dup_A2_tfr:
4224 // Rd = Rs
4225 DstReg = MI.getOperand(0).getReg();
4226 SrcReg = MI.getOperand(1).getReg();
4227 if (isIntRegForSubInst(DstReg) && isIntRegForSubInst(SrcReg))
4228 return HexagonII::HSIG_A;
4229 break;
4230 case Hexagon::A2_tfrsi:
4231 case Hexagon::dup_A2_tfrsi:
4232 // Rd = #u6
4233 // Do not test for #u6 size since the const is getting extended
4234 // regardless and compound could be formed.
4235 // Rd = #-1
4236 DstReg = MI.getOperand(0).getReg();
4237 if (isIntRegForSubInst(DstReg))
4238 return HexagonII::HSIG_A;
4239 break;
4240 case Hexagon::C2_cmoveit:
4241 case Hexagon::C2_cmovenewit:
4242 case Hexagon::C2_cmoveif:
4243 case Hexagon::C2_cmovenewif:
4244 case Hexagon::dup_C2_cmoveit:
4245 case Hexagon::dup_C2_cmovenewit:
4246 case Hexagon::dup_C2_cmoveif:
4247 case Hexagon::dup_C2_cmovenewif:
4248 // if ([!]P0[.new]) Rd = #0
4249 // Actual form:
4250 // %r16 = C2_cmovenewit internal %p0, 0, implicit undef %r16;
4251 DstReg = MI.getOperand(0).getReg();
4252 SrcReg = MI.getOperand(1).getReg();
4253 if (isIntRegForSubInst(DstReg) &&
4254 Hexagon::PredRegsRegClass.contains(SrcReg) && Hexagon::P0 == SrcReg &&
4255 MI.getOperand(2).isImm() && MI.getOperand(2).getImm() == 0)
4256 return HexagonII::HSIG_A;
4257 break;
4258 case Hexagon::C2_cmpeqi:
4259 case Hexagon::dup_C2_cmpeqi:
4260 // P0 = cmp.eq(Rs,#u2)
4261 DstReg = MI.getOperand(0).getReg();
4262 SrcReg = MI.getOperand(1).getReg();
4263 if (Hexagon::PredRegsRegClass.contains(DstReg) &&
4264 Hexagon::P0 == DstReg && isIntRegForSubInst(SrcReg) &&
4265 MI.getOperand(2).isImm() && isUInt<2>(MI.getOperand(2).getImm()))
4266 return HexagonII::HSIG_A;
4267 break;
4268 case Hexagon::A2_combineii:
4269 case Hexagon::A4_combineii:
4270 case Hexagon::dup_A2_combineii:
4271 case Hexagon::dup_A4_combineii:
4272 // Rdd = combine(#u2,#U2)
4273 DstReg = MI.getOperand(0).getReg();
4274 if (isDblRegForSubInst(DstReg, HRI) &&
4275 ((MI.getOperand(1).isImm() && isUInt<2>(MI.getOperand(1).getImm())) ||
4276 (MI.getOperand(1).isGlobal() &&
4277 isUInt<2>(MI.getOperand(1).getOffset()))) &&
4278 ((MI.getOperand(2).isImm() && isUInt<2>(MI.getOperand(2).getImm())) ||
4279 (MI.getOperand(2).isGlobal() &&
4280 isUInt<2>(MI.getOperand(2).getOffset()))))
4281 return HexagonII::HSIG_A;
4282 break;
4283 case Hexagon::A4_combineri:
4284 case Hexagon::dup_A4_combineri:
4285 // Rdd = combine(Rs,#0)
4286 // Rdd = combine(Rs,#0)
4287 DstReg = MI.getOperand(0).getReg();
4288 SrcReg = MI.getOperand(1).getReg();
4289 if (isDblRegForSubInst(DstReg, HRI) && isIntRegForSubInst(SrcReg) &&
4290 ((MI.getOperand(2).isImm() && MI.getOperand(2).getImm() == 0) ||
4291 (MI.getOperand(2).isGlobal() && MI.getOperand(2).getOffset() == 0)))
4292 return HexagonII::HSIG_A;
4293 break;
4294 case Hexagon::A4_combineir:
4295 case Hexagon::dup_A4_combineir:
4296 // Rdd = combine(#0,Rs)
4297 DstReg = MI.getOperand(0).getReg();
4298 SrcReg = MI.getOperand(2).getReg();
4299 if (isDblRegForSubInst(DstReg, HRI) && isIntRegForSubInst(SrcReg) &&
4300 ((MI.getOperand(1).isImm() && MI.getOperand(1).getImm() == 0) ||
4301 (MI.getOperand(1).isGlobal() && MI.getOperand(1).getOffset() == 0)))
4302 return HexagonII::HSIG_A;
4303 break;
4304 case Hexagon::A2_sxtb:
4305 case Hexagon::A2_sxth:
4306 case Hexagon::A2_zxtb:
4307 case Hexagon::A2_zxth:
4308 case Hexagon::dup_A2_sxtb:
4309 case Hexagon::dup_A2_sxth:
4310 case Hexagon::dup_A2_zxtb:
4311 case Hexagon::dup_A2_zxth:
4312 // Rd = sxth/sxtb/zxtb/zxth(Rs)
4313 DstReg = MI.getOperand(0).getReg();
4314 SrcReg = MI.getOperand(1).getReg();
4315 if (isIntRegForSubInst(DstReg) && isIntRegForSubInst(SrcReg))
4316 return HexagonII::HSIG_A;
4317 break;
4318 }
4319
4320 return HexagonII::HSIG_None;
4321}
4322
4324 return Hexagon::getRealHWInstr(MI.getOpcode(), Hexagon::InstrType_Real);
4325}
4326
4328 const InstrItineraryData *ItinData, const MachineInstr &MI) const {
4329 // Default to one cycle for no itinerary. However, an "empty" itinerary may
4330 // still have a MinLatency property, which getStageLatency checks.
4331 if (!ItinData)
4332 return getInstrLatency(ItinData, MI);
4333
4334 if (MI.isTransient())
4335 return 0;
4336 return ItinData->getStageLatency(MI.getDesc().getSchedClass());
4337}
4338
4339/// getOperandLatency - Compute and return the use operand latency of a given
4340/// pair of def and use.
4341/// In most cases, the static scheduling itinerary was enough to determine the
4342/// operand latency. But it may not be possible for instructions with variable
4343/// number of defs / uses.
4344///
4345/// This is a raw interface to the itinerary that may be directly overridden by
4346/// a target. Use computeOperandLatency to get the best estimate of latency.
4348 const InstrItineraryData *ItinData, const MachineInstr &DefMI,
4349 unsigned DefIdx, const MachineInstr &UseMI, unsigned UseIdx) const {
4350 const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo();
4351
4352 // Get DefIdx and UseIdx for super registers.
4353 const MachineOperand &DefMO = DefMI.getOperand(DefIdx);
4354
4355 if (DefMO.isReg() && DefMO.getReg().isPhysical()) {
4356 if (DefMO.isImplicit()) {
4357 for (MCPhysReg SR : HRI.superregs(DefMO.getReg())) {
4358 int Idx = DefMI.findRegisterDefOperandIdx(SR, &HRI, false, false);
4359 if (Idx != -1) {
4360 DefIdx = Idx;
4361 break;
4362 }
4363 }
4364 }
4365
4366 const MachineOperand &UseMO = UseMI.getOperand(UseIdx);
4367 if (UseMO.isImplicit()) {
4368 for (MCPhysReg SR : HRI.superregs(UseMO.getReg())) {
4369 int Idx = UseMI.findRegisterUseOperandIdx(SR, &HRI, false);
4370 if (Idx != -1) {
4371 UseIdx = Idx;
4372 break;
4373 }
4374 }
4375 }
4376 }
4377
4378 std::optional<unsigned> Latency = TargetInstrInfo::getOperandLatency(
4379 ItinData, DefMI, DefIdx, UseMI, UseIdx);
4380 if (Latency == 0)
4381 // We should never have 0 cycle latency between two instructions unless
4382 // they can be packetized together. However, this decision can't be made
4383 // here.
4384 Latency = 1;
4385 return Latency;
4386}
4387
4388// inverts the predication logic.
4389// p -> NotP
4390// NotP -> P
4393 if (Cond.empty())
4394 return false;
4395 unsigned Opc = getInvertedPredicatedOpcode(Cond[0].getImm());
4396 Cond[0].setImm(Opc);
4397 return true;
4398}
4399
4401 int InvPredOpcode;
4402 InvPredOpcode = isPredicatedTrue(Opc) ? Hexagon::getFalsePredOpcode(Opc)
4403 : Hexagon::getTruePredOpcode(Opc);
4404 if (InvPredOpcode >= 0) // Valid instruction with the inverted predicate.
4405 return InvPredOpcode;
4406
4407 llvm_unreachable("Unexpected predicated instruction");
4408}
4409
4410// Returns the max value that doesn't need to be extended.
4412 const uint64_t F = MI.getDesc().TSFlags;
4413 unsigned isSigned = (F >> HexagonII::ExtentSignedPos)
4415 unsigned bits = (F >> HexagonII::ExtentBitsPos)
4417
4418 if (isSigned) // if value is signed
4419 return ~(-1U << (bits - 1));
4420 else
4421 return ~(-1U << bits);
4422}
4423
4424
4426 switch (MI.getOpcode()) {
4427 case Hexagon::L2_loadrbgp:
4428 case Hexagon::L2_loadrdgp:
4429 case Hexagon::L2_loadrhgp:
4430 case Hexagon::L2_loadrigp:
4431 case Hexagon::L2_loadrubgp:
4432 case Hexagon::L2_loadruhgp:
4433 case Hexagon::S2_storerbgp:
4434 case Hexagon::S2_storerbnewgp:
4435 case Hexagon::S2_storerhgp:
4436 case Hexagon::S2_storerhnewgp:
4437 case Hexagon::S2_storerigp:
4438 case Hexagon::S2_storerinewgp:
4439 case Hexagon::S2_storerdgp:
4440 case Hexagon::S2_storerfgp:
4441 return true;
4442 }
4443 const uint64_t F = MI.getDesc().TSFlags;
4444 unsigned addrMode =
4446 // Disallow any base+offset instruction. The assembler does not yet reorder
4447 // based up any zero offset instruction.
4448 return (addrMode == HexagonII::BaseRegOffset ||
4449 addrMode == HexagonII::BaseImmOffset ||
4450 addrMode == HexagonII::BaseLongOffset);
4451}
4452
4454 // Workaround for the Global Scheduler. Sometimes, it creates
4455 // A4_ext as a Pseudo instruction and calls this function to see if
4456 // it can be added to an existing bundle. Since the instruction doesn't
4457 // belong to any BB yet, we can't use getUnits API.
4458 if (MI.getOpcode() == Hexagon::A4_ext)
4459 return false;
4460
4461 unsigned FuncUnits = getUnits(MI);
4462 return HexagonFUnits::isSlot0Only(FuncUnits);
4463}
4464
4466 const uint64_t F = MI.getDesc().TSFlags;
4469}
4470
4472 bool ToBigInstrs) const {
4473 int Opcode = -1;
4474 if (ToBigInstrs) { // To BigCore Instr.
4475 // Check if the instruction can form a Duplex.
4476 if (getDuplexCandidateGroup(*MII))
4477 // Get the opcode marked "dup_*" tag.
4478 Opcode = getDuplexOpcode(*MII, ToBigInstrs);
4479 } else // To TinyCore Instr.
4480 Opcode = getDuplexOpcode(*MII, ToBigInstrs);
4481
4482 // Change the opcode of the instruction.
4483 if (Opcode >= 0)
4484 MII->setDesc(get(Opcode));
4485}
4486
4487// This function is used to translate instructions to facilitate generating
4488// Duplexes on TinyCore.
4490 bool ToBigInstrs) const {
4491 for (auto &MB : MF)
4492 for (MachineBasicBlock::instr_iterator Instr = MB.instr_begin(),
4493 End = MB.instr_end();
4494 Instr != End; ++Instr)
4495 changeDuplexOpcode(Instr, ToBigInstrs);
4496}
4497
4498// This is a specialized form of above function.
4500 MachineBasicBlock::instr_iterator MII, bool ToBigInstrs) const {
4501 MachineBasicBlock *MBB = MII->getParent();
4502 while ((MII != MBB->instr_end()) && MII->isInsideBundle()) {
4503 changeDuplexOpcode(MII, ToBigInstrs);
4504 ++MII;
4505 }
4506}
4507
4509 using namespace HexagonII;
4510
4511 const uint64_t F = MI.getDesc().TSFlags;
4512 unsigned S = (F >> MemAccessSizePos) & MemAccesSizeMask;
4513 unsigned Size = getMemAccessSizeInBytes(MemAccessSize(S));
4514 if (Size != 0)
4515 return Size;
4516 // Y2_dcfetchbo is special
4517 if (MI.getOpcode() == Hexagon::Y2_dcfetchbo)
4519
4520 // Handle vector access sizes.
4521 const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo();
4522 switch (S) {
4524 return HRI.getSpillSize(Hexagon::HvxVRRegClass);
4525 default:
4526 llvm_unreachable("Unexpected instruction");
4527 }
4528}
4529
4530// Returns the min value that doesn't need to be extended.
4532 const uint64_t F = MI.getDesc().TSFlags;
4533 unsigned isSigned = (F >> HexagonII::ExtentSignedPos)
4535 unsigned bits = (F >> HexagonII::ExtentBitsPos)
4537
4538 if (isSigned) // if value is signed
4539 return -1U << (bits - 1);
4540 else
4541 return 0;
4542}
4543
4544// Returns opcode of the non-extended equivalent instruction.
4546 // Check if the instruction has a register form that uses register in place
4547 // of the extended operand, if so return that as the non-extended form.
4548 short NonExtOpcode = Hexagon::getRegForm(MI.getOpcode());
4549 if (NonExtOpcode >= 0)
4550 return NonExtOpcode;
4551
4552 if (MI.getDesc().mayLoad() || MI.getDesc().mayStore()) {
4553 // Check addressing mode and retrieve non-ext equivalent instruction.
4554 switch (getAddrMode(MI)) {
4556 return Hexagon::changeAddrMode_abs_io(MI.getOpcode());
4558 return Hexagon::changeAddrMode_io_rr(MI.getOpcode());
4560 return Hexagon::changeAddrMode_ur_rr(MI.getOpcode());
4561
4562 default:
4563 return -1;
4564 }
4565 }
4566 return -1;
4567}
4568
4570 Register &PredReg, unsigned &PredRegPos, unsigned &PredRegFlags) const {
4571 if (Cond.empty())
4572 return false;
4573 assert(Cond.size() == 2);
4574 if (isNewValueJump(Cond[0].getImm()) || Cond[1].isMBB()) {
4575 LLVM_DEBUG(dbgs() << "No predregs for new-value jumps/endloop");
4576 return false;
4577 }
4578 PredReg = Cond[1].getReg();
4579 PredRegPos = 1;
4580 // See IfConversion.cpp why we add RegState::Implicit | RegState::Undef
4581 PredRegFlags = 0;
4582 if (Cond[1].isImplicit())
4583 PredRegFlags = RegState::Implicit;
4584 if (Cond[1].isUndef())
4585 PredRegFlags |= RegState::Undef;
4586 return true;
4587}
4588
4590 return Hexagon::getRealHWInstr(MI.getOpcode(), Hexagon::InstrType_Pseudo);
4591}
4592
4594 return Hexagon::getRegForm(MI.getOpcode());
4595}
4596
4597// Return the number of bytes required to encode the instruction.
4598// Hexagon instructions are fixed length, 4 bytes, unless they
4599// use a constant extender, which requires another 4 bytes.
4600// For debug instructions and prolog labels, return 0.
4602 if (MI.isDebugInstr() || MI.isPosition())
4603 return 0;
4604
4605 unsigned Size = MI.getDesc().getSize();
4606 if (!Size)
4607 // Assume the default insn size in case it cannot be determined
4608 // for whatever reason.
4610
4613
4614 // Try and compute number of instructions in asm.
4615 if (BranchRelaxAsmLarge && MI.getOpcode() == Hexagon::INLINEASM) {
4616 const MachineBasicBlock &MBB = *MI.getParent();
4617 const MachineFunction *MF = MBB.getParent();
4618 const MCAsmInfo *MAI = MF->getTarget().getMCAsmInfo();
4619
4620 // Count the number of register definitions to find the asm string.
4621 unsigned NumDefs = 0;
4622 for (; MI.getOperand(NumDefs).isReg() && MI.getOperand(NumDefs).isDef();
4623 ++NumDefs)
4624 assert(NumDefs != MI.getNumOperands()-2 && "No asm string?");
4625
4626 assert(MI.getOperand(NumDefs).isSymbol() && "No asm string?");
4627 // Disassemble the AsmStr and approximate number of instructions.
4628 const char *AsmStr = MI.getOperand(NumDefs).getSymbolName();
4629 Size = getInlineAsmLength(AsmStr, *MAI);
4630 }
4631
4632 return Size;
4633}
4634
4636 const uint64_t F = MI.getDesc().TSFlags;
4638}
4639
4641 const InstrItineraryData &II = *Subtarget.getInstrItineraryData();
4642 const InstrStage &IS = *II.beginStage(MI.getDesc().getSchedClass());
4643
4644 return IS.getUnits();
4645}
4646
4647// Calculate size of the basic block without debug instructions.
4649 return nonDbgMICount(BB->instr_begin(), BB->instr_end());
4650}
4651
4653 MachineBasicBlock::const_iterator BundleHead) const {
4654 assert(BundleHead->isBundle() && "Not a bundle header");
4655 auto MII = BundleHead.getInstrIterator();
4656 // Skip the bundle header.
4657 return nonDbgMICount(++MII, getBundleEnd(BundleHead.getInstrIterator()));
4658}
4659
4660/// immediateExtend - Changes the instruction in place to one using an immediate
4661/// extender.
4664 "Instruction must be extendable");
4665 // Find which operand is extendable.
4666 short ExtOpNum = getCExtOpNum(MI);
4667 MachineOperand &MO = MI.getOperand(ExtOpNum);
4668 // This needs to be something we understand.
4669 assert((MO.isMBB() || MO.isImm()) &&
4670 "Branch with unknown extendable field type");
4671 // Mark given operand as extended.
4673}
4674
4676 MachineInstr &MI, MachineBasicBlock *NewTarget) const {
4677 LLVM_DEBUG(dbgs() << "\n[invertAndChangeJumpTarget] to "
4678 << printMBBReference(*NewTarget);
4679 MI.dump(););
4680 assert(MI.isBranch());
4681 unsigned NewOpcode = getInvertedPredicatedOpcode(MI.getOpcode());
4682 int TargetPos = MI.getNumOperands() - 1;
4683 // In general branch target is the last operand,
4684 // but some implicit defs added at the end might change it.
4685 while ((TargetPos > -1) && !MI.getOperand(TargetPos).isMBB())
4686 --TargetPos;
4687 assert((TargetPos >= 0) && MI.getOperand(TargetPos).isMBB());
4688 MI.getOperand(TargetPos).setMBB(NewTarget);
4690 NewOpcode = reversePrediction(NewOpcode);
4691 }
4692 MI.setDesc(get(NewOpcode));
4693 return true;
4694}
4695
4697 /* +++ The code below is used to generate complete set of Hexagon Insn +++ */
4699 MachineBasicBlock &B = *A;
4701 DebugLoc DL = I->getDebugLoc();
4702 MachineInstr *NewMI;
4703
4704 for (unsigned insn = TargetOpcode::GENERIC_OP_END+1;
4705 insn < Hexagon::INSTRUCTION_LIST_END; ++insn) {
4706 NewMI = BuildMI(B, I, DL, get(insn));
4707 LLVM_DEBUG(dbgs() << "\n"
4708 << getName(NewMI->getOpcode())
4709 << " Class: " << NewMI->getDesc().getSchedClass());
4710 NewMI->eraseFromParent();
4711 }
4712 /* --- The code above is used to generate complete set of Hexagon Insn --- */
4713}
4714
4715// inverts the predication logic.
4716// p -> NotP
4717// NotP -> P
4719 LLVM_DEBUG(dbgs() << "\nTrying to reverse pred. sense of:"; MI.dump());
4720 MI.setDesc(get(getInvertedPredicatedOpcode(MI.getOpcode())));
4721 return true;
4722}
4723
4724// Reverse the branch prediction.
4725unsigned HexagonInstrInfo::reversePrediction(unsigned Opcode) const {
4726 int PredRevOpcode = -1;
4727 if (isPredictedTaken(Opcode))
4728 PredRevOpcode = Hexagon::notTakenBranchPrediction(Opcode);
4729 else
4730 PredRevOpcode = Hexagon::takenBranchPrediction(Opcode);
4731 assert(PredRevOpcode > 0);
4732 return PredRevOpcode;
4733}
4734
4735// TODO: Add more rigorous validation.
4737 const {
4738 return Cond.empty() || (Cond[0].isImm() && (Cond.size() != 1));
4739}
4740
4743 assert(MIB->isBundle());
4744 MachineOperand &Operand = MIB->getOperand(0);
4745 if (Operand.isImm())
4746 Operand.setImm(Operand.getImm() | memShufDisabledMask);
4747 else
4748 MIB->addOperand(MachineOperand::CreateImm(memShufDisabledMask));
4749}
4750
4752 assert(MIB.isBundle());
4753 const MachineOperand &Operand = MIB.getOperand(0);
4754 return (Operand.isImm() && (Operand.getImm() & memShufDisabledMask) != 0);
4755}
4756
4758 return (MI->getOpcode() == Hexagon::V6_vmpy_qf16_hf ||
4759 MI->getOpcode() == Hexagon::V6_vmpy_qf16_mix_hf ||
4760 MI->getOpcode() == Hexagon::V6_vmpy_qf32_hf ||
4761 MI->getOpcode() == Hexagon::V6_vmpy_qf32_mix_hf ||
4762 MI->getOpcode() == Hexagon::V6_vmpy_qf32_sf ||
4763 MI->getOpcode() == Hexagon::V6_vmpy_qf16_mix_hf ||
4764 MI->getOpcode() == Hexagon::V6_vmpy_qf16 ||
4765 MI->getOpcode() == Hexagon::V6_vmpy_qf32_mix_hf ||
4766 MI->getOpcode() == Hexagon::V6_vmpy_qf32_qf16 ||
4767 MI->getOpcode() == Hexagon::V6_vmpy_qf32);
4768}
4769
4770// Addressing mode relations.
4772 return Opc >= 0 ? Hexagon::changeAddrMode_abs_io(Opc) : Opc;
4773}
4774
4776 return Opc >= 0 ? Hexagon::changeAddrMode_io_abs(Opc) : Opc;
4777}
4778
4780 return Opc >= 0 ? Hexagon::changeAddrMode_io_pi(Opc) : Opc;
4781}
4782
4784 return Opc >= 0 ? Hexagon::changeAddrMode_io_rr(Opc) : Opc;
4785}
4786
4788 return Opc >= 0 ? Hexagon::changeAddrMode_pi_io(Opc) : Opc;
4789}
4790
4792 return Opc >= 0 ? Hexagon::changeAddrMode_rr_io(Opc) : Opc;
4793}
4794
4796 return Opc >= 0 ? Hexagon::changeAddrMode_rr_ur(Opc) : Opc;
4797}
4798
4800 return Opc >= 0 ? Hexagon::changeAddrMode_ur_rr(Opc) : Opc;
4801}
4802
4804 static const MCInst Nop = MCInstBuilder(Hexagon::A2_nop);
4805
4806 return MCInstBuilder(Hexagon::BUNDLE)
4807 .addImm(0)
4808 .addInst(&Nop);
4809}
unsigned const MachineRegisterInfo * MRI
MachineInstrBuilder & UseMI
MachineInstrBuilder MachineInstrBuilder & DefMI
static bool mayAlias(MachineInstr &MIa, SmallVectorImpl< MachineInstr * > &MemInsns, AliasAnalysis *AA)
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
static bool isConstant(const MachineInstr &MI)
MachineBasicBlock & MBB
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
MachineBasicBlock MachineBasicBlock::iterator MBBI
static const Function * getParent(const Value *V)
BitTracker BT
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
DXIL Forward Handle Accesses
static bool isSigned(unsigned int Opcode)
const HexagonInstrInfo * TII
static cl::opt< bool > DisableNVSchedule("disable-hexagon-nv-schedule", cl::Hidden, cl::desc("Disable schedule adjustment for new value stores."))
const int Hexagon_MEMH_OFFSET_MAX
const int Hexagon_MEMB_OFFSET_MAX
const int Hexagon_MEMH_OFFSET_MIN
const int Hexagon_MEMD_OFFSET_MAX
static cl::opt< bool > EnableTimingClassLatency("enable-timing-class-latency", cl::Hidden, cl::init(false), cl::desc("Enable timing class latency"))
const int Hexagon_MEMD_OFFSET_MIN
const int Hexagon_ADDI_OFFSET_MAX
static cl::opt< bool > EnableACCForwarding("enable-acc-forwarding", cl::Hidden, cl::init(true), cl::desc("Enable vec acc forwarding"))
static void getLiveInRegsAt(LivePhysRegs &Regs, const MachineInstr &MI)
const int Hexagon_MEMW_OFFSET_MAX
Constants for Hexagon instructions.
const int Hexagon_MEMW_OFFSET_MIN
cl::opt< bool > ScheduleInlineAsm("hexagon-sched-inline-asm", cl::Hidden, cl::init(false), cl::desc("Do not consider inline-asm a scheduling/" "packetization boundary."))
const int Hexagon_ADDI_OFFSET_MIN
static cl::opt< bool > BranchRelaxAsmLarge("branch-relax-asm-large", cl::init(true), cl::Hidden, cl::desc("branch relax asm"))
static void parseOperands(const MachineInstr &MI, SmallVectorImpl< Register > &Defs, SmallVectorImpl< Register > &Uses)
Gather register def/uses from MI.
static cl::opt< bool > EnableALUForwarding("enable-alu-forwarding", cl::Hidden, cl::init(true), cl::desc("Enable vec alu forwarding"))
const int Hexagon_MEMB_OFFSET_MIN
static unsigned nonDbgMICount(MachineBasicBlock::const_instr_iterator MIB, MachineBasicBlock::const_instr_iterator MIE)
Calculate number of instructions excluding the debug instructions.
static cl::opt< bool > EnableBranchPrediction("hexagon-enable-branch-prediction", cl::Hidden, cl::init(true), cl::desc("Enable branch prediction"))
static bool isDblRegForSubInst(Register Reg, const HexagonRegisterInfo &HRI)
static void getLiveOutRegsAt(LivePhysRegs &Regs, const MachineInstr &MI)
static cl::opt< bool > UseDFAHazardRec("dfa-hazard-rec", cl::init(true), cl::Hidden, cl::desc("Use the DFA based hazard recognizer."))
static bool isIntRegForSubInst(Register Reg)
static bool isDuplexPairMatch(unsigned Ga, unsigned Gb)
#define HEXAGON_INSTR_SIZE
IRTranslator LLVM IR MI
std::pair< Instruction::BinaryOps, Value * > OffsetOp
Find all possible pairs (BinOp, RHS) that BinOp V, RHS can be simplified.
const size_t AbstractManglingParser< Derived, Alloc >::NumOps
This file implements the LivePhysRegs utility for tracking liveness of physical registers.
#define F(x, y, z)
Definition MD5.cpp:54
#define I(x, y, z)
Definition MD5.cpp:57
static DebugLoc getDebugLoc(MachineBasicBlock::instr_iterator FirstMI, MachineBasicBlock::instr_iterator LastMI)
Return the first DebugLoc that has line number information, given a range of instructions.
static bool isUndef(const MachineInstr &MI)
Register Reg
Register const TargetRegisterInfo * TRI
Promote Memory to Register
Definition Mem2Reg.cpp:110
#define T
static unsigned getReg(const MCDisassembler *D, unsigned RC, unsigned RegNo)
static bool isReg(const MCInst &MI, unsigned OpNo)
uint64_t IntrinsicInst * II
if(PassOpts->AAPipeline)
PassBuilder PB(Machine, PassOpts->PTO, std::nullopt, &PIC)
static StringRef getName(Value *V)
static bool isBranch(unsigned Opcode)
const SmallVectorImpl< MachineOperand > MachineBasicBlock * TBB
const SmallVectorImpl< MachineOperand > & Cond
Remove Loads Into Fake Uses
static bool contains(SmallPtrSetImpl< ConstantExpr * > &Cache, ConstantExpr *Expr, Constant *C)
Definition Value.cpp:480
This file defines the SmallPtrSet class.
This file defines the SmallVector class.
This file contains some functions that are useful when dealing with strings.
#define LLVM_DEBUG(...)
Definition Debug.h:114
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Definition ArrayRef.h:41
A debug info location.
Definition DebugLoc.h:124
const Constant * getInitializer() const
getInitializer - Return the initializer for this global variable.
short getEquivalentHWInstr(const MachineInstr &MI) const
int getDuplexOpcode(const MachineInstr &MI, bool ForBigCore=true) const
unsigned removeBranch(MachineBasicBlock &MBB, int *BytesRemoved=nullptr) const override
Remove the branching code at the end of the specific MBB.
bool isPredicated(const MachineInstr &MI) const override
Returns true if the instruction is already predicated.
bool isHVXMemWithAIndirect(const MachineInstr &I, const MachineInstr &J) const
short changeAddrMode_abs_io(short Opc) const
bool isRestrictNoSlot1Store(const MachineInstr &MI) const
short getRegForm(const MachineInstr &MI) const
bool isVecALU(const MachineInstr &MI) const
bool isCompoundBranchInstr(const MachineInstr &MI) const
bool isDuplexPair(const MachineInstr &MIa, const MachineInstr &MIb) const
Symmetrical. See if these two instructions are fit for duplex pair.
bool isJumpR(const MachineInstr &MI) const
ScheduleHazardRecognizer * CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II, const ScheduleDAG *DAG) const override
Allocate and return a hazard recognizer to use for this target when scheduling the machine instructio...
std::pair< unsigned, unsigned > decomposeMachineOperandsTargetFlags(unsigned TF) const override
Decompose the machine operand's target flags into two values - the direct target flag value and any o...
bool producesStall(const MachineInstr &ProdMI, const MachineInstr &ConsMI) const
bool invertAndChangeJumpTarget(MachineInstr &MI, MachineBasicBlock *NewTarget) const
void storeRegToStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, Register SrcReg, bool isKill, int FrameIndex, const TargetRegisterClass *RC, Register VReg, MachineInstr::MIFlag Flags=MachineInstr::NoFlags) const override
Store the specified register of the given register class to the specified stack frame index.
bool isPredictedTaken(unsigned Opcode) const
bool isSaveCalleeSavedRegsCall(const MachineInstr &MI) const
Register isLoadFromStackSlot(const MachineInstr &MI, int &FrameIndex) const override
TargetInstrInfo overrides.
unsigned nonDbgBundleSize(MachineBasicBlock::const_iterator BundleHead) const
int getDotNewPredOp(const MachineInstr &MI, const MachineBranchProbabilityInfo *MBPI) const
bool ClobbersPredicate(MachineInstr &MI, std::vector< MachineOperand > &Pred, bool SkipDead) const override
If the specified instruction defines any predicate or condition code register(s) used for predication...
unsigned getInvertedPredicatedOpcode(const int Opc) const
bool isPureSlot0(const MachineInstr &MI) const
bool doesNotReturn(const MachineInstr &CallMI) const
HexagonII::SubInstructionGroup getDuplexCandidateGroup(const MachineInstr &MI) const
bool analyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB, MachineBasicBlock *&FBB, SmallVectorImpl< MachineOperand > &Cond, bool AllowModify) const override
Analyze the branching code at the end of MBB, returning true if it cannot be understood (e....
bool getPredReg(ArrayRef< MachineOperand > Cond, Register &PredReg, unsigned &PredRegPos, unsigned &PredRegFlags) const
bool isPredicatedNew(const MachineInstr &MI) const
bool isSignExtendingLoad(const MachineInstr &MI) const
bool isVecAcc(const MachineInstr &MI) const
bool reversePredSense(MachineInstr &MI) const
bool isQFPMul(const MachineInstr *MF) const
unsigned getAddrMode(const MachineInstr &MI) const
MCInst getNop() const override
bool isJumpWithinBranchRange(const MachineInstr &MI, unsigned offset) const
bool mayBeNewStore(const MachineInstr &MI) const
bool isOperandExtended(const MachineInstr &MI, unsigned OperandNum) const
bool canExecuteInBundle(const MachineInstr &First, const MachineInstr &Second) const
Can these instructions execute at the same time in a bundle.
std::optional< unsigned > getOperandLatency(const InstrItineraryData *ItinData, const MachineInstr &DefMI, unsigned DefIdx, const MachineInstr &UseMI, unsigned UseIdx) const override
getOperandLatency - Compute and return the use operand latency of a given pair of def and use.
bool isAddrModeWithOffset(const MachineInstr &MI) const
bool getMemOperandsWithOffsetWidth(const MachineInstr &LdSt, SmallVectorImpl< const MachineOperand * > &BaseOps, int64_t &Offset, bool &OffsetIsScalable, LocationSize &Width, const TargetRegisterInfo *TRI) const override
Get the base register and byte offset of a load/store instr.
bool isValidOffset(unsigned Opcode, int Offset, const TargetRegisterInfo *TRI, bool Extend=true) const
bool isBaseImmOffset(const MachineInstr &MI) const
bool isAbsoluteSet(const MachineInstr &MI) const
short changeAddrMode_io_pi(short Opc) const
void copyPhysReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator I, const DebugLoc &DL, Register DestReg, Register SrcReg, bool KillSrc, bool RenamableDest=false, bool RenamableSrc=false) const override
Emit instructions to copy a pair of physical registers.
short changeAddrMode_pi_io(short Opc) const
bool analyzeCompare(const MachineInstr &MI, Register &SrcReg, Register &SrcReg2, int64_t &Mask, int64_t &Value) const override
For a comparison instruction, return the source registers in SrcReg and SrcReg2 if having two registe...
bool reverseBranchCondition(SmallVectorImpl< MachineOperand > &Cond) const override
Reverses the branch condition of the specified condition list, returning false on success and true if...
std::unique_ptr< PipelinerLoopInfo > analyzeLoopForPipelining(MachineBasicBlock *LoopBB) const override
Analyze loop L, which must be a single-basic-block loop, and if the conditions can be understood enou...
bool isLoopN(const MachineInstr &MI) const
bool isSpillPredRegOp(const MachineInstr &MI) const
bool hasStoreToStackSlot(const MachineInstr &MI, SmallVectorImpl< const MachineMemOperand * > &Accesses) const override
Check if the instruction or the bundle of instructions has store to stack slots.
ArrayRef< std::pair< unsigned, const char * > > getSerializableDirectMachineOperandTargetFlags() const override
Return an array that contains the direct target flag values and their names.
bool isIndirectCall(const MachineInstr &MI) const
short changeAddrMode_ur_rr(short Opc) const
bool isValidAutoIncImm(const EVT VT, const int Offset) const
bool hasNonExtEquivalent(const MachineInstr &MI) const
bool isConstExtended(const MachineInstr &MI) const
bool getIncrementValue(const MachineInstr &MI, int &Value) const override
If the instruction is an increment of a constant value, return the amount.
int getCondOpcode(int Opc, bool sense) const
MachineInstr * findLoopInstr(MachineBasicBlock *BB, unsigned EndLoopOp, MachineBasicBlock *TargetBB, SmallPtrSet< MachineBasicBlock *, 8 > &Visited) const
Find the hardware loop instruction used to set-up the specified loop.
unsigned getInstrTimingClassLatency(const InstrItineraryData *ItinData, const MachineInstr &MI) const
bool isAccumulator(const MachineInstr &MI) const
unsigned insertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB, MachineBasicBlock *FBB, ArrayRef< MachineOperand > Cond, const DebugLoc &DL, int *BytesAdded=nullptr) const override
Insert branch code into the end of the specified MachineBasicBlock.
unsigned getInstrLatency(const InstrItineraryData *ItinData, const MachineInstr &MI, unsigned *PredCost=nullptr) const override
Compute the instruction latency of a given instruction.
bool PredOpcodeHasJMP_c(unsigned Opcode) const
void loadRegFromStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, Register DestReg, int FrameIndex, const TargetRegisterClass *RC, Register VReg, MachineInstr::MIFlag Flags=MachineInstr::NoFlags) const override
Load the specified register of the given register class from the specified stack frame index.
bool isNewValue(const MachineInstr &MI) const
Register createVR(MachineFunction *MF, MVT VT) const
HexagonInstrInfo specifics.
bool isDotCurInst(const MachineInstr &MI) const
bool validateBranchCond(const ArrayRef< MachineOperand > &Cond) const
bool isExtended(const MachineInstr &MI) const
bool isProfitableToIfCvt(MachineBasicBlock &MBB, unsigned NumCycles, unsigned ExtraPredCycles, BranchProbability Probability) const override
Return true if it's profitable to predicate instructions with accumulated instruction latency of "Num...
bool isAsCheapAsAMove(const MachineInstr &MI) const override
int getMaxValue(const MachineInstr &MI) const
bool isPredicateLate(unsigned Opcode) const
short changeAddrMode_rr_ur(short Opc) const
bool hasPseudoInstrPair(const MachineInstr &MI) const
bool isNewValueInst(const MachineInstr &MI) const
unsigned getInlineAsmLength(const char *Str, const MCAsmInfo &MAI, const TargetSubtargetInfo *STI=nullptr) const override
Measure the specified inline asm to determine an approximation of its length.
bool areMemAccessesTriviallyDisjoint(const MachineInstr &MIa, const MachineInstr &MIb) const override
int getNonDotCurOp(const MachineInstr &MI) const
bool isIndirectL4Return(const MachineInstr &MI) const
unsigned reversePrediction(unsigned Opcode) const
ArrayRef< std::pair< unsigned, const char * > > getSerializableBitmaskMachineOperandTargetFlags() const override
Return an array that contains the bitmask target flag values and their names.
InstrStage::FuncUnits getUnits(const MachineInstr &MI) const
unsigned getMemAccessSize(const MachineInstr &MI) const
bool predOpcodeHasNot(ArrayRef< MachineOperand > Cond) const
bool isComplex(const MachineInstr &MI) const
bool isPostIncrement(const MachineInstr &MI) const override
Return true for post-incremented instructions.
void setBundleNoShuf(MachineBasicBlock::instr_iterator MIB) const
MachineBasicBlock::instr_iterator expandVGatherPseudo(MachineInstr &MI) const
int getDotNewOp(const MachineInstr &MI) const
void changeDuplexOpcode(MachineBasicBlock::instr_iterator MII, bool ToBigInstrs) const
bool isMemOp(const MachineInstr &MI) const
int getDotOldOp(const MachineInstr &MI) const
short getPseudoInstrPair(const MachineInstr &MI) const
bool hasUncondBranch(const MachineBasicBlock *B) const
short getNonExtOpcode(const MachineInstr &MI) const
bool isTailCall(const MachineInstr &MI) const override
void insertNoop(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI) const override
Insert a noop into the instruction stream at the specified point.
bool isDeallocRet(const MachineInstr &MI) const
HexagonInstrInfo(const HexagonSubtarget &ST)
unsigned getCExtOpNum(const MachineInstr &MI) const
bool isSolo(const MachineInstr &MI) const
DFAPacketizer * CreateTargetScheduleState(const TargetSubtargetInfo &STI) const override
Create machine specific model for scheduling.
bool isLateSourceInstr(const MachineInstr &MI) const
bool isDotNewInst(const MachineInstr &MI) const
void translateInstrsForDup(MachineFunction &MF, bool ToBigInstrs=true) const
bool isTC1(const MachineInstr &MI) const
bool isSchedulingBoundary(const MachineInstr &MI, const MachineBasicBlock *MBB, const MachineFunction &MF) const override
Test if the given instruction should be considered a scheduling boundary.
bool predCanBeUsedAsDotNew(const MachineInstr &MI, Register PredReg) const
unsigned getSize(const MachineInstr &MI) const
bool isProfitableToDupForIfCvt(MachineBasicBlock &MBB, unsigned NumCycles, BranchProbability Probability) const override
Return true if it's profitable for if-converter to duplicate instructions of specified accumulated in...
short changeAddrMode_io_abs(short Opc) const
int getDotCurOp(const MachineInstr &MI) const
bool expandPostRAPseudo(MachineInstr &MI) const override
This function is called for all pseudo instructions that remain after register allocation.
bool isExpr(unsigned OpType) const
void genAllInsnTimingClasses(MachineFunction &MF) const
bool isTC2Early(const MachineInstr &MI) const
bool hasEHLabel(const MachineBasicBlock *B) const
bool shouldSink(const MachineInstr &MI) const override
bool isZeroExtendingLoad(const MachineInstr &MI) const
short changeAddrMode_rr_io(short Opc) const
bool isHVXVec(const MachineInstr &MI) const
bool isDependent(const MachineInstr &ProdMI, const MachineInstr &ConsMI) const
short changeAddrMode_io_rr(short Opc) const
bool SubsumesPredicate(ArrayRef< MachineOperand > Pred1, ArrayRef< MachineOperand > Pred2) const override
Returns true if the first specified predicate subsumes the second, e.g.
bool mayBeCurLoad(const MachineInstr &MI) const
bool getBundleNoShuf(const MachineInstr &MIB) const
bool isNewValueJump(const MachineInstr &MI) const
bool isTC4x(const MachineInstr &MI) const
bool PredicateInstruction(MachineInstr &MI, ArrayRef< MachineOperand > Cond) const override
Convert the instruction into a predicated instruction.
bool isFloat(const MachineInstr &MI) const
bool isToBeScheduledASAP(const MachineInstr &MI1, const MachineInstr &MI2) const
MachineOperand * getBaseAndOffset(const MachineInstr &MI, int64_t &Offset, LocationSize &AccessSize) const
bool getInvertedPredSense(SmallVectorImpl< MachineOperand > &Cond) const
unsigned nonDbgBBSize(const MachineBasicBlock *BB) const
getInstrTimingClassLatency - Compute the instruction latency of a given instruction using Timing Clas...
uint64_t getType(const MachineInstr &MI) const
bool isEndLoopN(unsigned Opcode) const
bool getBaseAndOffsetPosition(const MachineInstr &MI, unsigned &BasePos, unsigned &OffsetPos) const override
For instructions with a base and offset, return the position of the base register and offset operands...
bool isPredicable(const MachineInstr &MI) const override
Return true if the specified instruction can be predicated.
bool isExtendable(const MachineInstr &MI) const
void immediateExtend(MachineInstr &MI) const
immediateExtend - Changes the instruction in place to one using an immediate extender.
HexagonII::CompoundGroup getCompoundCandidateGroup(const MachineInstr &MI) const
bool hasLoadFromStackSlot(const MachineInstr &MI, SmallVectorImpl< const MachineMemOperand * > &Accesses) const override
Check if the instruction or the bundle of instructions has load from stack slots.
SmallVector< MachineInstr *, 2 > getBranchingInstrs(MachineBasicBlock &MBB) const
bool isPredicatedTrue(const MachineInstr &MI) const
bool isNewValueStore(const MachineInstr &MI) const
int getMinValue(const MachineInstr &MI) const
bool isVecUsableNextPacket(const MachineInstr &ProdMI, const MachineInstr &ConsMI) const
unsigned getCompoundOpcode(const MachineInstr &GA, const MachineInstr &GB) const
bool addLatencyToSchedule(const MachineInstr &MI1, const MachineInstr &MI2) const
Register isStoreToStackSlot(const MachineInstr &MI, int &FrameIndex) const override
If the specified machine instruction is a direct store to a stack slot, return the virtual or physica...
int getDotNewPredJumpOp(const MachineInstr &MI, const MachineBranchProbabilityInfo *MBPI) const
bool isTC2(const MachineInstr &MI) const
Register getFrameRegister(const MachineFunction &MF) const override
Itinerary data supplied by a subtarget to be used by a target.
unsigned getStageLatency(unsigned ItinClassIndx) const
Return the total stage latency of the given class.
void RemoveMachineInstrFromMaps(MachineInstr &MI)
A set of physical registers with utility functions to track liveness when walking backward/forward th...
void stepForward(const MachineInstr &MI, SmallVectorImpl< std::pair< MCPhysReg, const MachineOperand * > > &Clobbers)
Simulates liveness when stepping forward over an instruction(bundle).
void stepBackward(const MachineInstr &MI)
Simulates liveness when stepping backwards over an instruction(bundle).
void addLiveIns(const MachineBasicBlock &MBB)
Adds all live-in registers of basic block MBB.
bool available(const MachineRegisterInfo &MRI, MCRegister Reg) const
Returns true if register Reg and no aliasing register is in the set.
void addLiveOuts(const MachineBasicBlock &MBB)
Adds all live-out registers of basic block MBB.
bool contains(MCRegister Reg) const
Returns true if register Reg is contained in the set.
static LocationSize precise(uint64_t Value)
Represents a single loop in the control flow graph.
Definition LoopInfo.h:40
This class is intended to be used as a base class for asm properties and features specific to the tar...
Definition MCAsmInfo.h:64
virtual unsigned getMaxInstLength(const MCSubtargetInfo *STI=nullptr) const
Returns the maximum possible encoded instruction size in bytes.
Definition MCAsmInfo.h:527
StringRef getCommentString() const
Definition MCAsmInfo.h:538
const char * getSeparatorString() const
Definition MCAsmInfo.h:533
MCInstBuilder & addInst(const MCInst *Val)
Add a new MCInst operand.
MCInstBuilder & addImm(int64_t Val)
Add a new integer immediate operand.
Instances of this class represent a single low-level machine instruction.
Definition MCInst.h:188
Describe properties that are true of each instruction in the target description file.
unsigned getSchedClass() const
Return the scheduling class for this instruction.
unsigned getNumDefs() const
Return the number of MachineOperands that are register definitions.
Machine Value Type.
SimpleValueType SimpleTy
MachineInstrBundleIterator< const MachineInstr > const_iterator
LLVM_ABI iterator getFirstTerminator()
Returns an iterator to the first terminator instruction of this basic block.
Instructions::iterator instr_iterator
Instructions::const_iterator const_instr_iterator
iterator_range< pred_iterator > predecessors()
void splice(iterator Where, MachineBasicBlock *Other, iterator From)
Take an instruction from MBB 'Other' at the position From, and insert it into this MBB right before '...
MachineInstrBundleIterator< MachineInstr > iterator
BranchProbability getEdgeProbability(const MachineBasicBlock *Src, const MachineBasicBlock *Dst) const
The MachineFrameInfo class represents an abstract stack frame until prolog/epilog code is inserted.
Align getObjectAlign(int ObjectIdx) const
Return the alignment of the specified stack object.
int64_t getObjectSize(int ObjectIdx) const
Return the size of the specified object.
MachineMemOperand * getMachineMemOperand(MachinePointerInfo PtrInfo, MachineMemOperand::Flags f, LLT MemTy, Align base_alignment, const AAMDNodes &AAInfo=AAMDNodes(), const MDNode *Ranges=nullptr, SyncScope::ID SSID=SyncScope::System, AtomicOrdering Ordering=AtomicOrdering::NotAtomic, AtomicOrdering FailureOrdering=AtomicOrdering::NotAtomic)
getMachineMemOperand - Allocate a new MachineMemOperand.
MachineFrameInfo & getFrameInfo()
getFrameInfo - Return the frame info object for the current function.
const char * createExternalSymbolName(StringRef Name)
Allocate a string and populate it with the given external symbol name.
MachineRegisterInfo & getRegInfo()
getRegInfo - Return information about the registers currently in use.
BasicBlockListType::iterator iterator
const TargetMachine & getTarget() const
getTarget - Return the target machine this machine code is compiled with
const MachineInstrBuilder & addImm(int64_t Val) const
Add a new immediate operand.
const MachineInstrBuilder & add(const MachineOperand &MO) const
const MachineInstrBuilder & addFrameIndex(int Idx) const
const MachineInstrBuilder & addReg(Register RegNo, unsigned flags=0, unsigned SubReg=0) const
Add a new virtual register operand.
const MachineInstrBuilder & addMBB(MachineBasicBlock *MBB, unsigned TargetFlags=0) const
const MachineInstrBuilder & cloneMemRefs(const MachineInstr &OtherMI) const
const MachineInstrBuilder & addUse(Register RegNo, unsigned Flags=0, unsigned SubReg=0) const
Add a virtual register use operand.
const MachineInstrBuilder & addMemOperand(MachineMemOperand *MMO) const
const MachineInstrBuilder & addDef(Register RegNo, unsigned Flags=0, unsigned SubReg=0) const
Add a virtual register definition operand.
reverse_iterator getReverse() const
Get a reverse iterator to the same node.
Representation of each machine instruction.
unsigned getOpcode() const
Returns the opcode of this MachineInstr.
const MachineBasicBlock * getParent() const
bool readsRegister(Register Reg, const TargetRegisterInfo *TRI) const
Return true if the MachineInstr reads the specified register.
bool isBundle() const
unsigned getNumOperands() const
Retuns the total number of operands.
LLVM_ABI unsigned getNumExplicitOperands() const
Returns the number of non-implicit operands.
bool mayLoad(QueryType Type=AnyInBundle) const
Return true if this instruction could possibly read memory.
const MCInstrDesc & getDesc() const
Returns the target instruction descriptor of this MachineInstr.
LLVM_ABI bool hasUnmodeledSideEffects() const
Return true if this instruction has side effects that are not modeled by mayLoad / mayStore,...
LLVM_ABI bool hasOrderedMemoryRef() const
Return true if this instruction may have an ordered or volatile memory reference, or if the informati...
bool mayStore(QueryType Type=AnyInBundle) const
Return true if this instruction could possibly modify memory.
const DebugLoc & getDebugLoc() const
Returns the debug location id of this MachineInstr.
LLVM_ABI void eraseFromParent()
Unlink 'this' from the containing basic block and delete it.
const MachineOperand & getOperand(unsigned i) const
bool isIndirectBranch(QueryType Type=AnyInBundle) const
Return true if this is an indirect branch, such as a branch through a register.
A description of a memory reference used in the backend.
@ MOVolatile
The memory access is volatile.
@ MOLoad
The memory access reads data.
@ MOStore
The memory access writes data.
MachineOperand class - Representation of each machine instruction operand.
unsigned getSubReg() const
void setImm(int64_t immVal)
int64_t getImm() const
bool isReg() const
isReg - Tests if this is a MO_Register operand.
MachineBasicBlock * getMBB() const
bool isCPI() const
isCPI - Tests if this is a MO_ConstantPoolIndex operand.
LLVM_ABI void setReg(Register Reg)
Change the register this operand corresponds to.
bool isImm() const
isImm - Tests if this is a MO_Immediate operand.
bool isSymbol() const
isSymbol - Tests if this is a MO_ExternalSymbol operand.
bool isJTI() const
isJTI - Tests if this is a MO_JumpTableIndex operand.
unsigned getTargetFlags() const
static MachineOperand CreateImm(int64_t Val)
bool isGlobal() const
isGlobal - Tests if this is a MO_GlobalAddress operand.
bool isBlockAddress() const
isBlockAddress - Tests if this is a MO_BlockAddress operand.
Register getReg() const
getReg - Returns the register number.
void addTargetFlag(unsigned F)
bool isFI() const
isFI - Tests if this is a MO_FrameIndex operand.
@ MO_ConstantPoolIndex
Address of indexed Constant in Constant Pool.
@ MO_GlobalAddress
Address of a global value.
@ MO_BlockAddress
Address of a basic block.
@ MO_MachineBasicBlock
MachineBasicBlock reference.
@ MO_ExternalSymbol
Name of external global symbol.
@ MO_JumpTableIndex
Address of indexed Jump Table for switch.
bool isFPImm() const
isFPImm - Tests if this is a MO_FPImmediate operand.
bool isMBB() const
isMBB - Tests if this is a MO_MachineBasicBlock operand.
MachineRegisterInfo - Keep track of information for virtual and physical registers,...
Special value supplied for machine level alias analysis.
Wrapper class representing virtual and physical registers.
Definition Register.h:20
constexpr bool isPhysical() const
Return true if the specified register number is in the physical register namespace.
Definition Register.h:83
HazardRecognizer - This determines whether or not an instruction can be issued this cycle,...
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
Register getReg() const
StringRef - Represent a constant reference to a string, i.e.
Definition StringRef.h:55
constexpr size_t size() const
size - Get the string size.
Definition StringRef.h:146
constexpr const char * data() const
data - Get a pointer to the start of the string (which may not be null terminated).
Definition StringRef.h:140
size_t count(char C) const
Return the number of occurrences of C in the string.
Definition StringRef.h:453
Object returned by analyzeLoopForPipelining.
virtual ScheduleHazardRecognizer * CreateTargetPostRAHazardRecognizer(const InstrItineraryData *, const ScheduleDAG *DAG) const
Allocate and return a hazard recognizer to use for this target when scheduling the machine instructio...
virtual bool hasStoreToStackSlot(const MachineInstr &MI, SmallVectorImpl< const MachineMemOperand * > &Accesses) const
If the specified machine instruction has a store to a stack slot, return true along with the FrameInd...
virtual std::optional< unsigned > getOperandLatency(const InstrItineraryData *ItinData, SDNode *DefNode, unsigned DefIdx, SDNode *UseNode, unsigned UseIdx) const
virtual bool hasLoadFromStackSlot(const MachineInstr &MI, SmallVectorImpl< const MachineMemOperand * > &Accesses) const
If the specified machine instruction has a load from a stack slot, return true along with the FrameIn...
Primary interface to the complete machine description for the target machine.
const MCAsmInfo * getMCAsmInfo() const
Return target specific asm information.
TargetRegisterInfo base class - We assume that the target defines a static array of TargetRegisterDes...
TargetSubtargetInfo - Generic base class for all target subtargets.
virtual const InstrItineraryData * getInstrItineraryData() const
getInstrItineraryData - Returns instruction itinerary data for the target or specific subtarget.
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
Definition Twine.h:82
LLVM Value Representation.
Definition Value.h:75
self_iterator getIterator()
Definition ilist_node.h:123
This class implements an extremely fast bulk output stream that can only output to a stream.
Definition raw_ostream.h:53
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
bool isSlot0Only(unsigned units)
HexagonII - This namespace holds all of the target specific flags that instruction info tracks.
unsigned const TypeCVI_LAST
unsigned const TypeCVI_FIRST
@ Implicit
Not emitted register (e.g. carry, or temporary result).
@ InternalRead
Register reads a value that is defined inside the same instruction or bundle.
@ Kill
The last use of a register.
@ Undef
Value of the register doesn't matter.
initializer< Ty > init(const Ty &Val)
This is an optimization pass for GlobalISel generic memory operations.
@ Offset
Definition DWP.cpp:477
@ Length
Definition DWP.cpp:477
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1725
MachineInstrBuilder BuildMI(MachineFunction &MF, const MIMetadata &MIMD, const MCInstrDesc &MCID)
Builder interface. Specify how to create the initial instruction itself.
constexpr bool isInt(int64_t x)
Checks if an integer fits into the given bit width.
Definition MathExtras.h:165
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:643
@ Done
Definition Threading.h:60
bool is_TC1(unsigned SchedClass)
unsigned Log2_32(uint32_t Value)
Return the floor log base 2 of the specified value, -1 if the value is zero.
Definition MathExtras.h:331
auto reverse(ContainerTy &&C)
Definition STLExtras.h:406
MachineInstr * getImm(const MachineOperand &MO, const MachineRegisterInfo *MRI)
constexpr bool isPowerOf2_32(uint32_t Value)
Return true if the argument is a power of two > 0.
Definition MathExtras.h:279
decltype(auto) get(const PointerIntPair< PointerTy, IntBits, IntType, PtrTraits, Info > &Pair)
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition Debug.cpp:207
LLVM_ABI void report_fatal_error(Error Err, bool gen_crash_diag=true)
Definition Error.cpp:167
MachineBasicBlock::instr_iterator getBundleEnd(MachineBasicBlock::instr_iterator I)
Returns an iterator pointing beyond the bundle containing I.
FunctionAddr VTableAddr Count
Definition InstrProf.h:139
constexpr bool isUInt(uint64_t x)
Checks if an unsigned integer fits into the given bit width.
Definition MathExtras.h:189
@ First
Helpers to iterate all locations in the MemoryEffectsBase class.
Definition ModRef.h:71
bool is_TC2(unsigned SchedClass)
unsigned getUndefRegState(bool B)
unsigned getRegState(const MachineOperand &RegOp)
Get all register state flags from machine operand RegOp.
bool is_TC2early(unsigned SchedClass)
unsigned getKillRegState(bool B)
uint16_t MCPhysReg
An unsigned integer type large enough to represent all physical registers, but not necessarily virtua...
Definition MCRegister.h:21
DWARFExpression::Operation Op
ArrayRef(const T &OneElt) -> ArrayRef< T >
constexpr bool isShiftedInt(int64_t x)
Checks if a signed integer is an N bit number shifted left by S.
Definition MathExtras.h:182
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:559
bool is_contained(R &&Range, const E &Element)
Returns true if Element is found in Range.
Definition STLExtras.h:1897
bool isSpace(char C)
Checks whether character C is whitespace in the "C" locale.
LLVM_ABI Printable printReg(Register Reg, const TargetRegisterInfo *TRI=nullptr, unsigned SubIdx=0, const MachineRegisterInfo *MRI=nullptr)
Prints virtual and physical registers with or without a TRI instance.
constexpr bool isShiftedUInt(uint64_t x)
Checks if a unsigned integer is an N bit number shifted left by S.
Definition MathExtras.h:198
LLVM_ABI Printable printMBBReference(const MachineBasicBlock &MBB)
Prints a machine basic block reference.
bool is_TC4x(unsigned SchedClass)
#define N
This struct is a compact representation of a valid (non-zero power of two) alignment.
Definition Alignment.h:39
Extended Value Type.
Definition ValueTypes.h:35
TypeSize getSizeInBits() const
Return the size of the specified value type in bits.
Definition ValueTypes.h:373
MVT getSimpleVT() const
Return the SimpleValueType held in the specified simple EVT.
Definition ValueTypes.h:316
These values represent a non-pipelined step in the execution of an instruction.
uint64_t FuncUnits
Bitmask representing a set of functional units.
FuncUnits getUnits() const
Returns the choice of FUs.
This class contains a discriminated union of information about pointers in memory operands,...
static LLVM_ABI MachinePointerInfo getFixedStack(MachineFunction &MF, int FI, int64_t Offset=0)
Return a MachinePointerInfo record that refers to the specified FrameIndex.