35#include "llvm/IR/IntrinsicsWebAssembly.h"
42#define DEBUG_TYPE "wasm-lower"
47 auto MVTPtr = Subtarget->hasAddr64() ? MVT::i64 : MVT::i32;
61 Subtarget->hasAddr64() ? WebAssembly::SP64 : WebAssembly::SP32);
67 if (Subtarget->hasSIMD128()) {
75 if (Subtarget->hasFP16()) {
78 if (Subtarget->hasReferenceTypes()) {
81 if (Subtarget->hasExceptionHandling()) {
90 for (
auto T : {MVT::i32, MVT::i64, MVT::f32, MVT::f64}) {
94 if (Subtarget->hasSIMD128()) {
95 for (
auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64,
101 if (Subtarget->hasFP16()) {
105 if (Subtarget->hasReferenceTypes()) {
108 for (
auto T : {MVT::externref, MVT::funcref, MVT::Other}) {
129 for (
auto T : {MVT::f32, MVT::f64, MVT::v4f32, MVT::v2f64, MVT::v8f16}) {
130 if (!Subtarget->hasFP16() &&
T == MVT::v8f16) {
143 if (
MVT(
T).isVector())
157 if (
T != MVT::v8f16) {
170 for (
auto T : {MVT::i32, MVT::i64})
172 if (Subtarget->hasSIMD128())
173 for (
auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64})
177 if (Subtarget->hasWideArithmetic()) {
185 if (Subtarget->hasNontrappingFPToInt())
187 for (
auto T : {MVT::i32, MVT::i64})
190 if (Subtarget->hasRelaxedSIMD()) {
193 {MVT::v4f32, MVT::v2f64},
Legal);
196 if (Subtarget->hasSIMD128()) {
230 for (
auto T : {MVT::v16i8, MVT::v8i16})
234 for (
auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64})
238 for (
auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64,
242 if (Subtarget->hasFP16())
246 for (
auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64,
250 if (Subtarget->hasFP16())
254 for (
auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64,
262 for (
auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64})
267 for (
auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64,
275 for (
auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64,
282 for (
auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64})
287 for (
auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32})
297 for (
auto T : {MVT::v8i16, MVT::v4i32, MVT::v2i64})
303 for (
auto T : {MVT::v4f32, MVT::v2f64})
313 for (
auto T : {MVT::v2i64, MVT::v2f64})
319 if (Subtarget->hasFP16()) {
331 if (Subtarget->hasFP16()) {
335 if (Subtarget->hasRelaxedSIMD()) {
350 if (!Subtarget->hasSignExt()) {
352 auto Action = Subtarget->hasSIMD128() ?
Custom :
Expand;
353 for (
auto T : {MVT::i8, MVT::i16, MVT::i32})
369 for (
auto T : {MVT::i32, MVT::i64, MVT::f32, MVT::f64})
386 if (Subtarget->hasSIMD128()) {
387 for (
auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64, MVT::v4f32,
390 if (
MVT(
T) != MemT) {
429 return MVT::externref;
438 return MVT::externref;
445WebAssemblyTargetLowering::shouldExpandAtomicRMWInIR(
AtomicRMWInst *AI)
const {
461bool WebAssemblyTargetLowering::shouldScalarizeBinop(
SDValue VecOp)
const {
481FastISel *WebAssemblyTargetLowering::createFastISel(
486MVT WebAssemblyTargetLowering::getScalarShiftAmountTy(
const DataLayout & ,
497 "32-bit shift counts ought to be enough for anyone");
502 "Unable to represent scalar shift amount type");
512 bool IsUnsigned,
bool Int64,
513 bool Float64,
unsigned LoweredOpcode) {
519 unsigned Abs = Float64 ? WebAssembly::ABS_F64 : WebAssembly::ABS_F32;
520 unsigned FConst = Float64 ? WebAssembly::CONST_F64 : WebAssembly::CONST_F32;
521 unsigned LT = Float64 ? WebAssembly::LT_F64 : WebAssembly::LT_F32;
522 unsigned GE = Float64 ? WebAssembly::GE_F64 : WebAssembly::GE_F32;
523 unsigned IConst = Int64 ? WebAssembly::CONST_I64 : WebAssembly::CONST_I32;
524 unsigned Eqz = WebAssembly::EQZ_I32;
525 unsigned And = WebAssembly::AND_I32;
526 int64_t Limit = Int64 ?
INT64_MIN : INT32_MIN;
527 int64_t Substitute = IsUnsigned ? 0 : Limit;
528 double CmpVal = IsUnsigned ? -(double)Limit * 2.0 : -(double)Limit;
539 F->insert(It, FalseMBB);
540 F->insert(It, TrueMBB);
541 F->insert(It, DoneMBB);
544 DoneMBB->
splice(DoneMBB->
begin(), BB, std::next(
MI.getIterator()), BB->
end());
552 unsigned Tmp0, Tmp1, CmpReg, EqzReg, FalseReg, TrueReg;
553 Tmp0 =
MRI.createVirtualRegister(
MRI.getRegClass(InReg));
554 Tmp1 =
MRI.createVirtualRegister(
MRI.getRegClass(InReg));
555 CmpReg =
MRI.createVirtualRegister(&WebAssembly::I32RegClass);
556 EqzReg =
MRI.createVirtualRegister(&WebAssembly::I32RegClass);
557 FalseReg =
MRI.createVirtualRegister(
MRI.getRegClass(OutReg));
558 TrueReg =
MRI.createVirtualRegister(
MRI.getRegClass(OutReg));
560 MI.eraseFromParent();
574 Tmp1 =
MRI.createVirtualRegister(
MRI.getRegClass(InReg));
576 MRI.createVirtualRegister(&WebAssembly::I32RegClass);
577 Register AndReg =
MRI.createVirtualRegister(&WebAssembly::I32RegClass);
617 if (Def->getOpcode() == WebAssembly::CONST_I32 ||
618 Def->getOpcode() == WebAssembly::CONST_I64) {
619 if (Def->getOperand(1).getImm() == 0) {
621 MI.eraseFromParent();
625 unsigned MemoryCopy =
626 Int64 ? WebAssembly::MEMORY_COPY_A64 : WebAssembly::MEMORY_COPY_A32;
633 MI.eraseFromParent();
644 unsigned Eqz = Int64 ? WebAssembly::EQZ_I64 : WebAssembly::EQZ_I32;
645 unsigned MemoryCopy =
646 Int64 ? WebAssembly::MEMORY_COPY_A64 : WebAssembly::MEMORY_COPY_A32;
657 F->insert(It, TrueMBB);
658 F->insert(It, DoneMBB);
661 DoneMBB->
splice(DoneMBB->
begin(), BB, std::next(
MI.getIterator()), BB->
end());
671 EqzReg =
MRI.createVirtualRegister(&WebAssembly::I32RegClass);
674 MI.eraseFromParent();
708 if (Def->getOpcode() == WebAssembly::CONST_I32 ||
709 Def->getOpcode() == WebAssembly::CONST_I64) {
710 if (Def->getOperand(1).getImm() == 0) {
712 MI.eraseFromParent();
716 unsigned MemoryFill =
717 Int64 ? WebAssembly::MEMORY_FILL_A64 : WebAssembly::MEMORY_FILL_A32;
723 MI.eraseFromParent();
734 unsigned Eqz = Int64 ? WebAssembly::EQZ_I64 : WebAssembly::EQZ_I32;
735 unsigned MemoryFill =
736 Int64 ? WebAssembly::MEMORY_FILL_A64 : WebAssembly::MEMORY_FILL_A32;
747 F->insert(It, TrueMBB);
748 F->insert(It, DoneMBB);
751 DoneMBB->
splice(DoneMBB->
begin(), BB, std::next(
MI.getIterator()), BB->
end());
761 EqzReg =
MRI.createVirtualRegister(&WebAssembly::I32RegClass);
764 MI.eraseFromParent();
786 CallResults.
getOpcode() == WebAssembly::RET_CALL_RESULTS);
790 bool IsRetCall = CallResults.
getOpcode() == WebAssembly::RET_CALL_RESULTS;
792 bool IsFuncrefCall =
false;
798 IsFuncrefCall = (TRC == &WebAssembly::FUNCREFRegClass);
803 if (IsIndirect && IsRetCall) {
804 CallOp = WebAssembly::RET_CALL_INDIRECT;
805 }
else if (IsIndirect) {
806 CallOp = WebAssembly::CALL_INDIRECT;
807 }
else if (IsRetCall) {
808 CallOp = WebAssembly::RET_CALL;
810 CallOp = WebAssembly::CALL;
839 for (
auto Def : CallResults.
defs())
863 for (
auto Use : CallParams.
uses())
879 if (IsIndirect && IsFuncrefCall) {
891 BuildMI(MF,
DL,
TII.get(WebAssembly::REF_NULL_FUNCREF), RegFuncref);
895 BuildMI(MF,
DL,
TII.get(WebAssembly::TABLE_SET_FUNCREF))
907 const TargetInstrInfo &
TII = *Subtarget->getInstrInfo();
910 switch (
MI.getOpcode()) {
913 case WebAssembly::FP_TO_SINT_I32_F32:
915 WebAssembly::I32_TRUNC_S_F32);
916 case WebAssembly::FP_TO_UINT_I32_F32:
918 WebAssembly::I32_TRUNC_U_F32);
919 case WebAssembly::FP_TO_SINT_I64_F32:
921 WebAssembly::I64_TRUNC_S_F32);
922 case WebAssembly::FP_TO_UINT_I64_F32:
924 WebAssembly::I64_TRUNC_U_F32);
925 case WebAssembly::FP_TO_SINT_I32_F64:
927 WebAssembly::I32_TRUNC_S_F64);
928 case WebAssembly::FP_TO_UINT_I32_F64:
930 WebAssembly::I32_TRUNC_U_F64);
931 case WebAssembly::FP_TO_SINT_I64_F64:
933 WebAssembly::I64_TRUNC_S_F64);
934 case WebAssembly::FP_TO_UINT_I64_F64:
936 WebAssembly::I64_TRUNC_U_F64);
937 case WebAssembly::MEMCPY_A32:
939 case WebAssembly::MEMCPY_A64:
941 case WebAssembly::MEMSET_A32:
943 case WebAssembly::MEMSET_A64:
945 case WebAssembly::CALL_RESULTS:
946 case WebAssembly::RET_CALL_RESULTS:
951std::pair<unsigned, const TargetRegisterClass *>
952WebAssemblyTargetLowering::getRegForInlineAsmConstraint(
956 if (Constraint.
size() == 1) {
957 switch (Constraint[0]) {
959 assert(VT != MVT::iPTR &&
"Pointer MVT not expected here");
960 if (Subtarget->hasSIMD128() && VT.
isVector()) {
962 return std::make_pair(0U, &WebAssembly::V128RegClass);
966 return std::make_pair(0U, &WebAssembly::I32RegClass);
968 return std::make_pair(0U, &WebAssembly::I64RegClass);
973 return std::make_pair(0U, &WebAssembly::F32RegClass);
975 return std::make_pair(0U, &WebAssembly::F64RegClass);
989bool WebAssemblyTargetLowering::isCheapToSpeculateCttz(
Type *Ty)
const {
994bool WebAssemblyTargetLowering::isCheapToSpeculateCtlz(
Type *Ty)
const {
999bool WebAssemblyTargetLowering::isLegalAddressingMode(
const DataLayout &
DL,
1001 Type *Ty,
unsigned AS,
1006 if (AM.BaseOffs < 0)
1017bool WebAssemblyTargetLowering::allowsMisalignedMemoryAccesses(
1031bool WebAssemblyTargetLowering::isIntDivCheap(
EVT VT,
1032 AttributeList Attr)
const {
1038bool WebAssemblyTargetLowering::isVectorLoadExtDesirable(
SDValue ExtVal)
const {
1041 return (ExtT == MVT::v8i16 && MemT == MVT::v8i8) ||
1042 (ExtT == MVT::v4i32 && MemT == MVT::v4i16) ||
1043 (ExtT == MVT::v2i64 && MemT == MVT::v2i32);
1046bool WebAssemblyTargetLowering::isOffsetFoldingLegal(
1049 const GlobalValue *GV = GA->
getGlobal();
1053EVT WebAssemblyTargetLowering::getSetCCResultType(
const DataLayout &
DL,
1066bool WebAssemblyTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &
Info,
1070 switch (Intrinsic) {
1071 case Intrinsic::wasm_memory_atomic_notify:
1073 Info.memVT = MVT::i32;
1074 Info.ptrVal =
I.getArgOperand(0);
1085 case Intrinsic::wasm_memory_atomic_wait32:
1087 Info.memVT = MVT::i32;
1088 Info.ptrVal =
I.getArgOperand(0);
1093 case Intrinsic::wasm_memory_atomic_wait64:
1095 Info.memVT = MVT::i64;
1096 Info.ptrVal =
I.getArgOperand(0);
1101 case Intrinsic::wasm_loadf16_f32:
1103 Info.memVT = MVT::f16;
1104 Info.ptrVal =
I.getArgOperand(0);
1109 case Intrinsic::wasm_storef16_f32:
1111 Info.memVT = MVT::f16;
1112 Info.ptrVal =
I.getArgOperand(1);
1122void WebAssemblyTargetLowering::computeKnownBitsForTargetNode(
1125 switch (
Op.getOpcode()) {
1129 unsigned IntNo =
Op.getConstantOperandVal(0);
1133 case Intrinsic::wasm_bitmask: {
1135 EVT VT =
Op.getOperand(1).getSimpleValueType();
1138 Known.
Zero |= ZeroMask;
1144 case WebAssemblyISD::EXTEND_LOW_U:
1145 case WebAssemblyISD::EXTEND_HIGH_U: {
1150 if (VT == MVT::v8i8 || VT == MVT::v16i8) {
1154 }
else if (VT == MVT::v4i16 || VT == MVT::v8i16) {
1158 }
else if (VT == MVT::v2i32 || VT == MVT::v4i32) {
1168 case WebAssemblyISD::I64_ADD128:
1169 if (
Op.getResNo() == 1) {
1180WebAssemblyTargetLowering::getPreferredVectorAction(
MVT VT)
const {
1186 if (EltVT == MVT::i8 || EltVT == MVT::i16 || EltVT == MVT::i32 ||
1187 EltVT == MVT::i64 || EltVT == MVT::f32 || EltVT == MVT::f64)
1194bool WebAssemblyTargetLowering::isFMAFasterThanFMulAndFAdd(
1196 if (!Subtarget->hasFP16() || !VT.
isVector())
1206bool WebAssemblyTargetLowering::shouldSimplifyDemandedVectorElts(
1207 SDValue Op,
const TargetLoweringOpt &TLO)
const {
1260WebAssemblyTargetLowering::LowerCall(CallLoweringInfo &CLI,
1262 SelectionDAG &DAG = CLI.DAG;
1272 "WebAssembly doesn't support language-specific or target-specific "
1273 "calling conventions yet");
1274 if (CLI.IsPatchPoint)
1275 fail(
DL, DAG,
"WebAssembly doesn't support patch point yet");
1277 if (CLI.IsTailCall) {
1278 auto NoTail = [&](
const char *Msg) {
1279 if (CLI.CB && CLI.CB->isMustTailCall())
1281 CLI.IsTailCall =
false;
1284 if (!Subtarget->hasTailCall())
1285 NoTail(
"WebAssembly 'tail-call' feature not enabled");
1289 NoTail(
"WebAssembly does not support varargs tail calls");
1294 Type *RetTy =
F.getReturnType();
1299 bool TypesMatch = CallerRetTys.
size() == CalleeRetTys.
size() &&
1300 std::equal(CallerRetTys.
begin(), CallerRetTys.
end(),
1301 CalleeRetTys.
begin());
1303 NoTail(
"WebAssembly tail call requires caller and callee return types to "
1308 for (
auto &Arg : CLI.CB->args()) {
1309 Value *Val = Arg.get();
1314 Src =
GEP->getPointerOperand();
1321 "WebAssembly does not support tail calling with stack arguments");
1328 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
1329 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
1330 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
1336 Outs[0].Flags.isSRet()) {
1341 bool HasSwiftSelfArg =
false;
1342 bool HasSwiftErrorArg =
false;
1343 unsigned NumFixedArgs = 0;
1344 for (
unsigned I = 0;
I < Outs.
size(); ++
I) {
1345 const ISD::OutputArg &Out = Outs[
I];
1350 fail(
DL, DAG,
"WebAssembly hasn't implemented nest arguments");
1352 fail(
DL, DAG,
"WebAssembly hasn't implemented inalloca arguments");
1354 fail(
DL, DAG,
"WebAssembly hasn't implemented cons regs arguments");
1356 fail(
DL, DAG,
"WebAssembly hasn't implemented cons regs last arguments");
1365 Chain = DAG.
getMemcpy(Chain,
DL, FINode, OutVal, SizeNode,
1368 nullptr, std::nullopt, MachinePointerInfo(),
1369 MachinePointerInfo());
1376 bool IsVarArg = CLI.IsVarArg;
1385 if (!HasSwiftSelfArg) {
1387 ISD::ArgFlagsTy
Flags;
1388 Flags.setSwiftSelf();
1389 ISD::OutputArg Arg(Flags, PtrVT, EVT(PtrVT), PtrTy, 0, 0);
1390 CLI.Outs.push_back(Arg);
1392 CLI.OutVals.push_back(ArgVal);
1394 if (!HasSwiftErrorArg) {
1396 ISD::ArgFlagsTy
Flags;
1397 Flags.setSwiftError();
1398 ISD::OutputArg Arg(Flags, PtrVT, EVT(PtrVT), PtrTy, 0, 0);
1399 CLI.Outs.push_back(Arg);
1401 CLI.OutVals.push_back(ArgVal);
1407 CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.
getContext());
1412 for (
unsigned I = NumFixedArgs;
I < Outs.
size(); ++
I) {
1413 const ISD::OutputArg &Out = Outs[
I];
1416 assert(VT != MVT::iPTR &&
"Legalized args should be concrete");
1421 CCInfo.AllocateStack(Layout.getTypeAllocSize(Ty), Alignment);
1428 unsigned NumBytes = CCInfo.getAlignedCallFrameSize();
1431 if (IsVarArg && NumBytes) {
1434 MaybeAlign StackAlign = Layout.getStackAlignment();
1435 assert(StackAlign &&
"data layout string is missing stack alignment");
1441 assert(ArgLocs[ValNo].getValNo() == ValNo &&
1442 "ArgLocs should remain in order and only hold varargs args");
1443 unsigned Offset = ArgLocs[ValNo++].getLocMemOffset();
1451 if (!Chains.
empty())
1453 }
else if (IsVarArg) {
1471 Ops.push_back(Chain);
1472 Ops.push_back(Callee);
1477 IsVarArg ? OutVals.
begin() + NumFixedArgs : OutVals.
end());
1480 Ops.push_back(FINode);
1483 for (
const auto &In : Ins) {
1484 assert(!
In.Flags.isByVal() &&
"byval is not valid for return values");
1485 assert(!
In.Flags.isNest() &&
"nest is not valid for return values");
1486 if (
In.Flags.isInAlloca())
1487 fail(
DL, DAG,
"WebAssembly hasn't implemented inalloca return values");
1488 if (
In.Flags.isInConsecutiveRegs())
1489 fail(
DL, DAG,
"WebAssembly hasn't implemented cons regs return values");
1490 if (
In.Flags.isInConsecutiveRegsLast())
1492 "WebAssembly hasn't implemented cons regs last return values");
1501 CLI.CB->getCalledOperand()->getType())) {
1516 WebAssemblyISD::TABLE_SET,
DL, DAG.
getVTList(MVT::Other), TableSetOps,
1521 CLI.CB->getCalledOperand()->getPointerAlignment(DAG.
getDataLayout()),
1527 if (CLI.IsTailCall) {
1529 SDVTList NodeTys = DAG.
getVTList(MVT::Other, MVT::Glue);
1534 SDVTList InTyList = DAG.
getVTList(InTys);
1537 for (
size_t I = 0;
I < Ins.size(); ++
I)
1544bool WebAssemblyTargetLowering::CanLowerReturn(
1547 const Type *RetTy)
const {
1552SDValue WebAssemblyTargetLowering::LowerReturn(
1558 "MVP WebAssembly can only return up to one value");
1560 fail(
DL, DAG,
"WebAssembly doesn't support non-C calling conventions");
1563 RetOps.append(OutVals.
begin(), OutVals.
end());
1564 Chain = DAG.
getNode(WebAssemblyISD::RETURN,
DL, MVT::Other, RetOps);
1567 for (
const ISD::OutputArg &Out : Outs) {
1572 fail(
DL, DAG,
"WebAssembly hasn't implemented inalloca results");
1574 fail(
DL, DAG,
"WebAssembly hasn't implemented cons regs results");
1576 fail(
DL, DAG,
"WebAssembly hasn't implemented cons regs last results");
1582SDValue WebAssemblyTargetLowering::LowerFormalArguments(
1587 fail(
DL, DAG,
"WebAssembly doesn't support non-C calling conventions");
1590 auto *MFI = MF.
getInfo<WebAssemblyFunctionInfo>();
1596 bool HasSwiftErrorArg =
false;
1597 bool HasSwiftSelfArg =
false;
1598 for (
const ISD::InputArg &In : Ins) {
1599 HasSwiftSelfArg |=
In.Flags.isSwiftSelf();
1600 HasSwiftErrorArg |=
In.Flags.isSwiftError();
1601 if (
In.Flags.isInAlloca())
1602 fail(
DL, DAG,
"WebAssembly hasn't implemented inalloca arguments");
1603 if (
In.Flags.isNest())
1604 fail(
DL, DAG,
"WebAssembly hasn't implemented nest arguments");
1605 if (
In.Flags.isInConsecutiveRegs())
1606 fail(
DL, DAG,
"WebAssembly hasn't implemented cons regs arguments");
1607 if (
In.Flags.isInConsecutiveRegsLast())
1608 fail(
DL, DAG,
"WebAssembly hasn't implemented cons regs last arguments");
1617 MFI->addParam(
In.VT);
1626 if (!HasSwiftSelfArg) {
1627 MFI->addParam(PtrVT);
1629 if (!HasSwiftErrorArg) {
1630 MFI->addParam(PtrVT);
1639 MFI->setVarargBufferVreg(VarargVreg);
1641 Chain,
DL, VarargVreg,
1642 DAG.
getNode(WebAssemblyISD::ARGUMENT,
DL, PtrVT,
1644 MFI->addParam(PtrVT);
1656 assert(MFI->getParams().size() == Params.
size() &&
1657 std::equal(MFI->getParams().begin(), MFI->getParams().end(),
1663void WebAssemblyTargetLowering::ReplaceNodeResults(
1665 switch (
N->getOpcode()) {
1679 Results.push_back(Replace128Op(
N, DAG));
1683 "ReplaceNodeResults not implemented for this op for WebAssembly!");
1694 switch (
Op.getOpcode()) {
1699 return LowerFrameIndex(
Op, DAG);
1701 return LowerGlobalAddress(
Op, DAG);
1703 return LowerGlobalTLSAddress(
Op, DAG);
1705 return LowerExternalSymbol(
Op, DAG);
1707 return LowerJumpTable(
Op, DAG);
1709 return LowerBR_JT(
Op, DAG);
1711 return LowerVASTART(
Op, DAG);
1714 fail(
DL, DAG,
"WebAssembly hasn't implemented computed gotos");
1717 return LowerRETURNADDR(
Op, DAG);
1719 return LowerFRAMEADDR(
Op, DAG);
1721 return LowerCopyToReg(
Op, DAG);
1724 return LowerAccessVectorElement(
Op, DAG);
1728 return LowerIntrinsic(
Op, DAG);
1730 return LowerSIGN_EXTEND_INREG(
Op, DAG);
1734 return LowerEXTEND_VECTOR_INREG(
Op, DAG);
1736 return LowerBUILD_VECTOR(
Op, DAG);
1738 return LowerVECTOR_SHUFFLE(
Op, DAG);
1740 return LowerSETCC(
Op, DAG);
1744 return LowerShift(
Op, DAG);
1747 return LowerFP_TO_INT_SAT(
Op, DAG);
1749 return LowerLoad(
Op, DAG);
1751 return LowerStore(
Op, DAG);
1760 return LowerMUL_LOHI(
Op, DAG);
1762 return LowerUADDO(
Op, DAG);
1777 return std::nullopt;
1796 SDVTList Tys = DAG.
getVTList(MVT::Other);
1808 SDVTList Tys = DAG.
getVTList(MVT::Other);
1810 return DAG.
getNode(WebAssemblyISD::LOCAL_SET,
DL, Tys,
Ops);
1815 "Encountered an unlowerable store to the wasm_var address space",
1831 "unexpected offset when loading from webassembly global",
false);
1842 "unexpected offset when loading from webassembly local",
false);
1846 return DAG.
getNode(WebAssemblyISD::LOCAL_GET,
DL, {LocalVT, MVT::Other},
1852 "Encountered an unlowerable load from the wasm_var address space",
1860 assert(Subtarget->hasWideArithmetic());
1861 assert(
Op.getValueType() == MVT::i64);
1864 switch (
Op.getOpcode()) {
1866 Opcode = WebAssemblyISD::I64_MUL_WIDE_U;
1869 Opcode = WebAssemblyISD::I64_MUL_WIDE_S;
1890 assert(Subtarget->hasWideArithmetic());
1891 assert(
Op.getValueType() == MVT::i64);
1898 DAG.
getNode(WebAssemblyISD::I64_ADD128,
DL,
1908 assert(Subtarget->hasWideArithmetic());
1909 assert(
N->getValueType(0) == MVT::i128);
1912 switch (
N->getOpcode()) {
1914 Opcode = WebAssemblyISD::I64_ADD128;
1917 Opcode = WebAssemblyISD::I64_SUB128;
1932 LHS_0, LHS_1, RHS_0, RHS_1);
1949 EVT VT = Src.getValueType();
1951 : WebAssembly::COPY_I64,
1954 return Op.getNode()->getNumValues() == 1
1973 if (!Subtarget->getTargetTriple().isOSEmscripten()) {
1975 "Non-Emscripten WebAssembly hasn't implemented "
1976 "__builtin_return_address");
1980 unsigned Depth =
Op.getConstantOperandVal(0);
1982 return makeLibCall(DAG, RTLIB::RETURN_ADDRESS,
Op.getValueType(),
1983 {DAG.getConstant(Depth, DL, MVT::i32)}, CallOptions,
DL)
1992 if (
Op.getConstantOperandVal(0) > 0)
1996 EVT VT =
Op.getValueType();
2003WebAssemblyTargetLowering::LowerGlobalTLSAddress(
SDValue Op,
2009 if (!MF.
getSubtarget<WebAssemblySubtarget>().hasBulkMemory())
2013 const GlobalValue *GV = GA->
getGlobal();
2018 auto model = Subtarget->getTargetTriple().isOSEmscripten()
2033 auto GlobalGet = PtrVT == MVT::i64 ? WebAssembly::GLOBAL_GET_I64
2034 : WebAssembly::GLOBAL_GET_I32;
2045 DAG.
getNode(WebAssemblyISD::WrapperREL,
DL, PtrVT, TLSOffset);
2052 EVT VT =
Op.getValueType();
2053 return DAG.
getNode(WebAssemblyISD::Wrapper,
DL, VT,
2063 EVT VT =
Op.getValueType();
2065 "Unexpected target flags on generic GlobalAddressSDNode");
2067 fail(
DL, DAG,
"Invalid address space for WebAssembly target");
2070 const GlobalValue *GV = GA->
getGlobal();
2078 const char *BaseName;
2087 DAG.
getNode(WebAssemblyISD::Wrapper,
DL, PtrVT,
2091 WebAssemblyISD::WrapperREL,
DL, VT,
2100 return DAG.
getNode(WebAssemblyISD::Wrapper,
DL, VT,
2106WebAssemblyTargetLowering::LowerExternalSymbol(
SDValue Op,
2110 EVT VT =
Op.getValueType();
2111 assert(ES->getTargetFlags() == 0 &&
2112 "Unexpected target flags on generic ExternalSymbolSDNode");
2113 return DAG.
getNode(WebAssemblyISD::Wrapper,
DL, VT,
2136 Ops.push_back(Chain);
2137 Ops.push_back(Index);
2143 for (
auto *
MBB : MBBs)
2150 return DAG.
getNode(WebAssemblyISD::BR_TABLE,
DL, MVT::Other,
Ops);
2162 MFI->getVarargBufferVreg(), PtrVT);
2163 return DAG.
getStore(
Op.getOperand(0),
DL, ArgN,
Op.getOperand(1),
2164 MachinePointerInfo(SV));
2171 switch (
Op.getOpcode()) {
2174 IntNo =
Op.getConstantOperandVal(1);
2177 IntNo =
Op.getConstantOperandVal(0);
2188 case Intrinsic::wasm_lsda: {
2197 DAG.
getNode(WebAssemblyISD::Wrapper,
DL, PtrVT,
2200 DAG.
getNode(WebAssemblyISD::WrapperREL,
DL, PtrVT, Node);
2204 return DAG.
getNode(WebAssemblyISD::Wrapper,
DL, PtrVT, Node);
2207 case Intrinsic::wasm_shuffle: {
2213 while (
OpIdx < 18) {
2222 return DAG.
getNode(WebAssemblyISD::SHUFFLE,
DL,
Op.getValueType(),
Ops);
2225 case Intrinsic::thread_pointer: {
2227 auto GlobalGet = PtrVT == MVT::i64 ? WebAssembly::GLOBAL_GET_I64
2228 : WebAssembly::GLOBAL_GET_I32;
2239WebAssemblyTargetLowering::LowerSIGN_EXTEND_INREG(
SDValue Op,
2249 assert(!Subtarget->hasSignExt() && Subtarget->hasSIMD128());
2253 const SDValue &Extract =
Op.getOperand(0);
2257 MVT ExtractedLaneT =
2261 if (ExtractedVecT == VecT)
2268 unsigned IndexVal =
Index->getAsZExtVal();
2286 assert((UserOpc == WebAssemblyISD::EXTEND_LOW_U ||
2287 UserOpc == WebAssemblyISD::EXTEND_LOW_S) &&
2288 "expected extend_low");
2293 size_t FirstIdx = Mask.size() / 2;
2294 for (
size_t i = 0; i < Mask.size() / 2; ++i) {
2295 if (Mask[i] !=
static_cast<int>(FirstIdx + i)) {
2301 unsigned Opc = UserOpc == WebAssemblyISD::EXTEND_LOW_S
2302 ? WebAssemblyISD::EXTEND_HIGH_S
2303 : WebAssemblyISD::EXTEND_HIGH_U;
2304 return DAG.
getNode(
Opc,
DL, VT, Shuffle->getOperand(0));
2308WebAssemblyTargetLowering::LowerEXTEND_VECTOR_INREG(
SDValue Op,
2311 EVT VT =
Op.getValueType();
2313 EVT SrcVT = Src.getValueType();
2320 "Unexpected extension factor.");
2323 if (Scale != 2 && Scale != 4 && Scale != 8)
2327 switch (
Op.getOpcode()) {
2332 Ext = WebAssemblyISD::EXTEND_LOW_U;
2335 Ext = WebAssemblyISD::EXTEND_LOW_S;
2346 while (Scale != 1) {
2360 if (
Op.getValueType() != MVT::v2f64)
2364 unsigned &Index) ->
bool {
2365 switch (
Op.getOpcode()) {
2367 Opcode = WebAssemblyISD::CONVERT_LOW_S;
2370 Opcode = WebAssemblyISD::CONVERT_LOW_U;
2373 Opcode = WebAssemblyISD::PROMOTE_LOW;
2379 auto ExtractVector =
Op.getOperand(0);
2386 SrcVec = ExtractVector.getOperand(0);
2387 Index = ExtractVector.getConstantOperandVal(1);
2391 unsigned LHSOpcode, RHSOpcode, LHSIndex, RHSIndex;
2393 if (!GetConvertedLane(
Op.getOperand(0), LHSOpcode, LHSSrcVec, LHSIndex) ||
2394 !GetConvertedLane(
Op.getOperand(1), RHSOpcode, RHSSrcVec, RHSIndex))
2397 if (LHSOpcode != RHSOpcode)
2401 switch (LHSOpcode) {
2402 case WebAssemblyISD::CONVERT_LOW_S:
2403 case WebAssemblyISD::CONVERT_LOW_U:
2404 ExpectedSrcVT = MVT::v4i32;
2406 case WebAssemblyISD::PROMOTE_LOW:
2407 ExpectedSrcVT = MVT::v4f32;
2413 auto Src = LHSSrcVec;
2414 if (LHSIndex != 0 || RHSIndex != 1 || LHSSrcVec != RHSSrcVec) {
2417 ExpectedSrcVT,
DL, LHSSrcVec, RHSSrcVec,
2418 {
static_cast<int>(LHSIndex),
static_cast<int>(RHSIndex) + 4, -1, -1});
2420 return DAG.
getNode(LHSOpcode,
DL, MVT::v2f64, Src);
2425 MVT VT =
Op.getSimpleValueType();
2426 if (VT == MVT::v8f16) {
2441 const EVT VecT =
Op.getValueType();
2442 const EVT LaneT =
Op.getOperand(0).getValueType();
2444 bool CanSwizzle = VecT == MVT::v16i8;
2465 auto GetSwizzleSrcs = [](
size_t I,
const SDValue &Lane) {
2469 const SDValue &SwizzleSrc = Lane->getOperand(0);
2470 const SDValue &IndexExt = Lane->getOperand(1);
2480 Index->getConstantOperandVal(1) !=
I)
2482 return std::make_pair(SwizzleSrc, SwizzleIndices);
2489 auto GetShuffleSrc = [&](
const SDValue &Lane) {
2494 if (Lane->getOperand(0).getValueType().getVectorNumElements() >
2497 return Lane->getOperand(0);
2500 using ValueEntry = std::pair<SDValue, size_t>;
2503 using SwizzleEntry = std::pair<std::pair<SDValue, SDValue>,
size_t>;
2506 using ShuffleEntry = std::pair<SDValue, size_t>;
2509 auto AddCount = [](
auto &Counts,
const auto &Val) {
2512 if (CountIt == Counts.end()) {
2513 Counts.emplace_back(Val, 1);
2519 auto GetMostCommon = [](
auto &Counts) {
2521 assert(CommonIt != Counts.end() &&
"Unexpected all-undef build_vector");
2525 size_t NumConstantLanes = 0;
2528 for (
size_t I = 0;
I < Lanes; ++
I) {
2533 AddCount(SplatValueCounts, Lane);
2537 if (
auto ShuffleSrc = GetShuffleSrc(Lane))
2538 AddCount(ShuffleCounts, ShuffleSrc);
2540 auto SwizzleSrcs = GetSwizzleSrcs(
I, Lane);
2541 if (SwizzleSrcs.first)
2542 AddCount(SwizzleCounts, SwizzleSrcs);
2547 size_t NumSplatLanes;
2548 std::tie(SplatValue, NumSplatLanes) = GetMostCommon(SplatValueCounts);
2552 size_t NumSwizzleLanes = 0;
2553 if (SwizzleCounts.
size())
2554 std::forward_as_tuple(std::tie(SwizzleSrc, SwizzleIndices),
2555 NumSwizzleLanes) = GetMostCommon(SwizzleCounts);
2559 SDValue ShuffleSrc1, ShuffleSrc2;
2560 size_t NumShuffleLanes = 0;
2561 if (ShuffleCounts.
size()) {
2562 std::tie(ShuffleSrc1, NumShuffleLanes) = GetMostCommon(ShuffleCounts);
2564 [&](
const auto &Pair) {
return Pair.first == ShuffleSrc1; });
2566 if (ShuffleCounts.
size()) {
2567 size_t AdditionalShuffleLanes;
2568 std::tie(ShuffleSrc2, AdditionalShuffleLanes) =
2569 GetMostCommon(ShuffleCounts);
2570 NumShuffleLanes += AdditionalShuffleLanes;
2575 std::function<bool(
size_t,
const SDValue &)> IsLaneConstructed;
2578 if (NumSwizzleLanes >= NumShuffleLanes &&
2579 NumSwizzleLanes >= NumConstantLanes && NumSwizzleLanes >= NumSplatLanes) {
2582 auto Swizzled = std::make_pair(SwizzleSrc, SwizzleIndices);
2583 IsLaneConstructed = [&, Swizzled](
size_t I,
const SDValue &Lane) {
2584 return Swizzled == GetSwizzleSrcs(
I, Lane);
2586 }
else if (NumShuffleLanes >= NumConstantLanes &&
2587 NumShuffleLanes >= NumSplatLanes) {
2597 assert(LaneSize > DestLaneSize);
2598 Scale1 = LaneSize / DestLaneSize;
2604 assert(LaneSize > DestLaneSize);
2605 Scale2 = LaneSize / DestLaneSize;
2610 assert(DestLaneCount <= 16);
2611 for (
size_t I = 0;
I < DestLaneCount; ++
I) {
2613 SDValue Src = GetShuffleSrc(Lane);
2614 if (Src == ShuffleSrc1) {
2616 }
else if (Src && Src == ShuffleSrc2) {
2622 ArrayRef<int> MaskRef(Mask, DestLaneCount);
2624 IsLaneConstructed = [&](size_t,
const SDValue &Lane) {
2625 auto Src = GetShuffleSrc(Lane);
2626 return Src == ShuffleSrc1 || (Src && Src == ShuffleSrc2);
2628 }
else if (NumConstantLanes >= NumSplatLanes) {
2630 for (
const SDValue &Lane :
Op->op_values()) {
2636 uint64_t LaneBits = 128 / Lanes;
2639 Const->getAPIntValue().trunc(LaneBits).getZExtValue(),
2640 SDLoc(Lane), LaneT));
2656 if (NumSplatLanes == 1 &&
Op->getOperand(0) == SplatValue &&
2657 (DestLaneSize == 32 || DestLaneSize == 64)) {
2664 IsLaneConstructed = [&SplatValue](
size_t _,
const SDValue &Lane) {
2665 return Lane == SplatValue;
2670 assert(IsLaneConstructed);
2673 for (
size_t I = 0;
I < Lanes; ++
I) {
2675 if (!Lane.
isUndef() && !IsLaneConstructed(
I, Lane))
2684WebAssemblyTargetLowering::LowerVECTOR_SHUFFLE(
SDValue Op,
2688 MVT VecType =
Op.getOperand(0).getSimpleValueType();
2699 for (
int M : Mask) {
2700 for (
size_t J = 0; J < LaneBytes; ++J) {
2704 uint64_t ByteIndex =
M == -1 ? J : (uint64_t)M * LaneBytes + J;
2709 return DAG.
getNode(WebAssemblyISD::SHUFFLE,
DL,
Op.getValueType(),
Ops);
2717 assert(
Op->getOperand(0)->getSimpleValueType(0) == MVT::v2i64);
2722 auto MakeLane = [&](
unsigned I) {
2728 {MakeLane(0), MakeLane(1)});
2732WebAssemblyTargetLowering::LowerAccessVectorElement(
SDValue Op,
2749 EVT LaneT =
Op.getSimpleValueType().getVectorElementType();
2751 if (LaneT.
bitsGE(MVT::i32))
2755 size_t NumLanes =
Op.getSimpleValueType().getVectorNumElements();
2757 unsigned ShiftOpcode =
Op.getOpcode();
2763 for (
size_t i = 0; i < NumLanes; ++i) {
2766 SDValue ShiftedValue = ShiftedElements[i];
2771 DAG.
getNode(ShiftOpcode,
DL, MVT::i32, ShiftedValue, MaskedShiftValue));
2781 assert(
Op.getSimpleValueType().isVector());
2783 uint64_t LaneBits =
Op.getValueType().getScalarSizeInBits();
2784 auto ShiftVal =
Op.getOperand(1);
2787 auto SkipImpliedMask = [](
SDValue MaskOp, uint64_t MaskBits) {
2798 MaskVal == MaskBits)
2805 if (ConstantRHS && ConstantRHS->getAPIntValue() == MaskBits)
2813 ShiftVal = SkipImpliedMask(ShiftVal, LaneBits - 1);
2819 ShiftVal = SkipImpliedMask(ShiftVal, LaneBits - 1);
2824 switch (
Op.getOpcode()) {
2826 Opcode = WebAssemblyISD::VEC_SHL;
2829 Opcode = WebAssemblyISD::VEC_SHR_S;
2832 Opcode = WebAssemblyISD::VEC_SHR_U;
2838 return DAG.
getNode(Opcode,
DL,
Op.getValueType(),
Op.getOperand(0), ShiftVal);
2843 EVT ResT =
Op.getValueType();
2846 if ((ResT == MVT::i32 || ResT == MVT::i64) &&
2847 (SatVT == MVT::i32 || SatVT == MVT::i64))
2850 if (ResT == MVT::v4i32 && SatVT == MVT::i32)
2853 if (ResT == MVT::v8i16 && SatVT == MVT::i16)
2864 auto &DAG = DCI.
DAG;
2871 SDValue Bitcast =
N->getOperand(0);
2874 if (!
N->getOperand(1).isUndef())
2876 SDValue CastOp = Bitcast.getOperand(0);
2878 EVT DstType = Bitcast.getValueType();
2879 if (!SrcType.is128BitVector() ||
2880 SrcType.getVectorNumElements() != DstType.getVectorNumElements())
2883 SrcType,
SDLoc(
N), CastOp, DAG.
getUNDEF(SrcType), Shuffle->getMask());
2893 auto &DAG = DCI.
DAG;
2897 EVT InVT =
N->getOperand(0)->getValueType(0);
2898 EVT ResVT =
N->getValueType(0);
2900 if (ResVT == MVT::v4f32 && (InVT == MVT::v4i16 || InVT == MVT::v4i8))
2902 else if (ResVT == MVT::v2f64 && (InVT == MVT::v2i16 || InVT == MVT::v2i8))
2916 auto &DAG = DCI.
DAG;
2920 EVT VT =
N->getValueType(0);
2934 auto &DAG = DCI.
DAG;
2940 auto Extract =
N->getOperand(0);
2945 if (IndexNode ==
nullptr)
2947 auto Index = IndexNode->getZExtValue();
2951 EVT ResVT =
N->getValueType(0);
2952 if (ResVT == MVT::v8i16) {
2954 Source.getValueType() != MVT::v16i8 || (Index != 0 && Index != 8))
2956 }
else if (ResVT == MVT::v4i32) {
2958 Source.getValueType() != MVT::v8i16 || (Index != 0 && Index != 4))
2960 }
else if (ResVT == MVT::v2i64) {
2962 Source.getValueType() != MVT::v4i32 || (Index != 0 && Index != 2))
2969 bool IsLow = Index == 0;
2971 unsigned Op = IsSext ? (IsLow ? WebAssemblyISD::EXTEND_LOW_S
2972 : WebAssemblyISD::EXTEND_HIGH_S)
2973 : (IsLow ? WebAssemblyISD::EXTEND_LOW_U
2974 : WebAssemblyISD::EXTEND_HIGH_U);
2981 auto &DAG = DCI.
DAG;
2983 auto GetWasmConversionOp = [](
unsigned Op) {
2986 return WebAssemblyISD::TRUNC_SAT_ZERO_S;
2988 return WebAssemblyISD::TRUNC_SAT_ZERO_U;
2990 return WebAssemblyISD::DEMOTE_ZERO;
2995 auto IsZeroSplat = [](
SDValue SplatVal) {
2997 APInt SplatValue, SplatUndef;
2998 unsigned SplatBitSize;
3003 Splat->isConstantSplat(SplatValue, SplatUndef, SplatBitSize,
3021 EVT ExpectedConversionType;
3024 switch (ConversionOp) {
3028 ExpectedConversionType = MVT::v2i32;
3032 ExpectedConversionType = MVT::v2f32;
3038 if (
N->getValueType(0) != ResVT)
3041 if (
Conversion.getValueType() != ExpectedConversionType)
3045 if (Source.getValueType() != MVT::v2f64)
3048 if (!IsZeroSplat(
N->getOperand(1)) ||
3049 N->getOperand(1).getValueType() != ExpectedConversionType)
3052 unsigned Op = GetWasmConversionOp(ConversionOp);
3068 auto ConversionOp =
N->getOpcode();
3069 switch (ConversionOp) {
3081 if (
N->getValueType(0) != ResVT)
3084 auto Concat =
N->getOperand(0);
3085 if (
Concat.getValueType() != MVT::v4f64)
3088 auto Source =
Concat.getOperand(0);
3089 if (Source.getValueType() != MVT::v2f64)
3092 if (!IsZeroSplat(
Concat.getOperand(1)) ||
3093 Concat.getOperand(1).getValueType() != MVT::v2f64)
3096 unsigned Op = GetWasmConversionOp(ConversionOp);
3102 const SDLoc &
DL,
unsigned VectorWidth) {
3110 unsigned ElemsPerChunk = VectorWidth / ElVT.
getSizeInBits();
3115 IdxVal &= ~(ElemsPerChunk - 1);
3120 Vec->
ops().slice(IdxVal, ElemsPerChunk));
3132 EVT SrcVT = In.getValueType();
3150 EVT InVT = MVT::i16, OutVT = MVT::i8;
3155 unsigned SubSizeInBits = SrcSizeInBits / 2;
3157 OutVT =
EVT::getVectorVT(Ctx, OutVT, SubSizeInBits / OutVT.getSizeInBits());
3183 auto &DAG = DCI.
DAG;
3186 EVT InVT = In.getValueType();
3190 EVT OutVT =
N->getValueType(0);
3197 if (!((InSVT == MVT::i16 || InSVT == MVT::i32 || InSVT == MVT::i64) &&
3198 (OutSVT == MVT::i8 || OutSVT == MVT::i16) && OutVT.
is128BitVector()))
3211 auto &DAG = DCI.
DAG;
3214 EVT VT =
N->getValueType(0);
3215 EVT SrcVT = Src.getValueType();
3226 if (NumElts == 2 || NumElts == 4 || NumElts == 8 || NumElts == 16) {
3229 {DAG.getConstant(Intrinsic::wasm_bitmask, DL, MVT::i32),
3230 DAG.getSExtOrTrunc(N->getOperand(0), DL,
3231 SrcVT.changeVectorElementType(
3232 *DAG.getContext(), Width))}),
3237 if (NumElts == 32 || NumElts == 64) {
3263 MVT ReturnType = VectorsToShuffle.
size() == 2 ? MVT::i32 : MVT::i64;
3266 for (
SDValue V : VectorsToShuffle) {
3267 ReturningInteger = DAG.
getNode(
3276 return ReturningInteger;
3291 if (
N->getNumOperands() < 2 ||
3295 EVT LT =
LHS.getValueType();
3296 if (LT.getScalarSizeInBits() > 128 / LT.getVectorNumElements())
3299 auto CombineSetCC = [&
N, &DAG](Intrinsic::WASMIntrinsics InPre,
3301 Intrinsic::WASMIntrinsics InPost) {
3302 if (
N->getConstantOperandVal(0) != InPre)
3313 {DAG.getConstant(InPost, DL, MVT::i32), LHS}),
3316 Ret = DAG.
getNOT(
DL, Ret, MVT::i1);
3321 Intrinsic::wasm_alltrue))
3324 Intrinsic::wasm_anytrue))
3327 Intrinsic::wasm_anytrue))
3330 Intrinsic::wasm_alltrue))
3336template <
int MatchRHS,
ISD::CondCode MatchCond,
bool RequiresNegate,
3351 {DAG.getConstant(Intrin, DL, MVT::i32),
3352 DAG.getSExtOrTrunc(LHS->getOperand(0), DL, VecVT)}),
3355 Ret = DAG.
getNOT(
DL, Ret, MVT::i1);
3368 EVT VT =
N->getValueType(0);
3369 EVT OpVT =
X.getValueType();
3373 Attribute::NoImplicitFloat))
3379 !Subtarget->
hasSIMD128() || !isIntEqualitySetCC(CC))
3383 auto IsVectorBitCastCheap = [](
SDValue X) {
3388 if (!IsVectorBitCastCheap(
X) || !IsVectorBitCastCheap(
Y))
3398 : Intrinsic::wasm_anytrue,
3412 EVT VT =
N->getValueType(0);
3423 EVT FromVT =
LHS->getOperand(0).getValueType();
3428 if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
3434 auto &DAG = DCI.
DAG;
3465 EVT VT =
N->getValueType(0);
3466 if (VT != MVT::v8i32 && VT != MVT::v16i32)
3472 if (
LHS.getOpcode() !=
RHS.getOpcode())
3479 if (
LHS->getOperand(0).getValueType() !=
RHS->getOperand(0).getValueType())
3482 EVT FromVT =
LHS->getOperand(0).getValueType();
3484 if (EltTy != MVT::i8)
3512 unsigned ExtendLowOpc =
3513 IsSigned ? WebAssemblyISD::EXTEND_LOW_S : WebAssemblyISD::EXTEND_LOW_U;
3514 unsigned ExtendHighOpc =
3515 IsSigned ? WebAssemblyISD::EXTEND_HIGH_S : WebAssemblyISD::EXTEND_HIGH_U;
3517 auto GetExtendLow = [&DAG, &
DL, &ExtendLowOpc](
EVT VT,
SDValue Op) {
3524 if (NumElts == 16) {
3525 SDValue LowLHS = GetExtendLow(MVT::v8i16, ExtendInLHS);
3526 SDValue LowRHS = GetExtendLow(MVT::v8i16, ExtendInRHS);
3532 GetExtendLow(MVT::v4i32, MulLow),
3534 GetExtendLow(MVT::v4i32, MulHigh),
3543 SDValue Lo = GetExtendLow(MVT::v4i32, MulLow);
3553 EVT VT =
N->getValueType(0);
3570 EVT MulVT = MVT::v8i16;
3572 if (VT == MVT::v8i8) {
3578 DAG.
getNode(WebAssemblyISD::EXTEND_LOW_U,
DL, MulVT, PromotedLHS);
3580 DAG.
getNode(WebAssemblyISD::EXTEND_LOW_U,
DL, MulVT, PromotedRHS);
3585 MVT::v16i8,
DL, MulLow, DAG.
getUNDEF(MVT::v16i8),
3586 {0, 2, 4, 6, 8, 10, 12, 14, -1, -1, -1, -1, -1, -1, -1, -1});
3589 assert(VT == MVT::v16i8 &&
"Expected v16i8");
3593 DAG.
getNode(WebAssemblyISD::EXTEND_HIGH_U,
DL, MulVT,
LHS);
3595 DAG.
getNode(WebAssemblyISD::EXTEND_HIGH_U,
DL, MulVT,
RHS);
3604 VT,
DL, MulLow, MulHigh,
3605 {0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30});
3613 EVT InVT = In.getValueType();
3618 if (NumElems < RequiredNumElems) {
3625 EVT OutVT =
N->getValueType(0);
3630 if (OutElTy != MVT::i8 && OutElTy != MVT::i16)
3637 EVT FPVT =
N->getOperand(0)->getValueType(0);
3655 EVT NarrowedVT = OutElTy == MVT::i8 ? MVT::v16i8 : MVT::v8i16;
3668WebAssemblyTargetLowering::PerformDAGCombine(
SDNode *
N,
3669 DAGCombinerInfo &DCI)
const {
3670 switch (
N->getOpcode()) {
unsigned const MachineRegisterInfo * MRI
static SDValue performMulCombine(SDNode *N, SelectionDAG &DAG, TargetLowering::DAGCombinerInfo &DCI, const AArch64Subtarget *Subtarget)
static SDValue performTruncateCombine(SDNode *N, SelectionDAG &DAG, TargetLowering::DAGCombinerInfo &DCI)
static SDValue performSETCCCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, SelectionDAG &DAG)
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
Function Alias Analysis false
Function Alias Analysis Results
static void fail(const SDLoc &DL, SelectionDAG &DAG, const Twine &Msg, SDValue Val={})
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
Analysis containing CSE Info
const HexagonInstrInfo * TII
const AbstractManglingParser< Derived, Alloc >::OperatorInfo AbstractManglingParser< Derived, Alloc >::Ops[]
Register const TargetRegisterInfo * TRI
Promote Memory to Register
MachineInstr unsigned OpIdx
static SDValue performVECTOR_SHUFFLECombine(SDNode *N, SelectionDAG &DAG, const RISCVSubtarget &Subtarget, const RISCVTargetLowering &TLI)
static SDValue combineVectorSizedSetCCEquality(EVT VT, SDValue X, SDValue Y, ISD::CondCode CC, const SDLoc &DL, SelectionDAG &DAG, const RISCVSubtarget &Subtarget)
Try to map an integer comparison with size > XLEN to vector instructions before type legalization spl...
const SmallVectorImpl< MachineOperand > & Cond
Contains matchers for matching SelectionDAG nodes and values.
static TableGen::Emitter::Opt Y("gen-skeleton-entry", EmitSkeleton, "Generate example skeleton entry")
static TableGen::Emitter::OptClass< SkeletonEmitter > X("gen-skeleton-class", "Generate example skeleton class")
static MachineBasicBlock * LowerFPToInt(MachineInstr &MI, DebugLoc DL, MachineBasicBlock *BB, const TargetInstrInfo &TII, bool IsUnsigned, bool Int64, bool Float64, unsigned LoweredOpcode)
static bool callingConvSupported(CallingConv::ID CallConv)
static SDValue TryWideExtMulCombine(SDNode *N, SelectionDAG &DAG)
static MachineBasicBlock * LowerMemcpy(MachineInstr &MI, DebugLoc DL, MachineBasicBlock *BB, const TargetInstrInfo &TII, bool Int64)
static std::optional< unsigned > IsWebAssemblyLocal(SDValue Op, SelectionDAG &DAG)
static SDValue performVectorExtendCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI)
static SDValue performVectorNonNegToFPCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI)
static SDValue unrollVectorShift(SDValue Op, SelectionDAG &DAG)
static SDValue performAnyAllCombine(SDNode *N, SelectionDAG &DAG)
static MachineBasicBlock * LowerCallResults(MachineInstr &CallResults, DebugLoc DL, MachineBasicBlock *BB, const WebAssemblySubtarget *Subtarget, const TargetInstrInfo &TII)
static SDValue TryMatchTrue(SDNode *N, EVT VecVT, SelectionDAG &DAG)
static SDValue GetExtendHigh(SDValue Op, unsigned UserOpc, EVT VT, SelectionDAG &DAG)
SDValue performConvertFPCombine(SDNode *N, SelectionDAG &DAG)
static SDValue performVectorTruncZeroCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI)
static bool IsWebAssemblyGlobal(SDValue Op)
static MachineBasicBlock * LowerMemset(MachineInstr &MI, DebugLoc DL, MachineBasicBlock *BB, const TargetInstrInfo &TII, bool Int64)
SDValue DoubleVectorWidth(SDValue In, unsigned RequiredNumElems, SelectionDAG &DAG)
static SDValue performVectorExtendToFPCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI)
Convert ({u,s}itofp vec) --> ({u,s}itofp ({s,z}ext vec)) so it doesn't get split up into scalar instr...
static SDValue LowerConvertLow(SDValue Op, SelectionDAG &DAG)
static SDValue extractSubVector(SDValue Vec, unsigned IdxVal, SelectionDAG &DAG, const SDLoc &DL, unsigned VectorWidth)
static SDValue performBitcastCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI)
static SDValue truncateVectorWithNARROW(EVT DstVT, SDValue In, const SDLoc &DL, SelectionDAG &DAG)
This file defines the interfaces that WebAssembly uses to lower LLVM code into a selection DAG.
This file provides WebAssembly-specific target descriptions.
This file declares WebAssembly-specific per-machine-function information.
This file declares the WebAssembly-specific subclass of TargetSubtarget.
This file declares the WebAssembly-specific subclass of TargetMachine.
This file contains the declaration of the WebAssembly-specific type parsing utility functions.
This file contains the declaration of the WebAssembly-specific utility functions.
static constexpr int Concat[]
Class for arbitrary precision integers.
void setBitsFrom(unsigned loBit)
Set the top bits starting from loBit.
static APInt getLowBitsSet(unsigned numBits, unsigned loBitsSet)
Constructs an APInt value that has the bottom loBitsSet bits set.
static APInt getHighBitsSet(unsigned numBits, unsigned hiBitsSet)
Constructs an APInt value that has the top hiBitsSet bits set.
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
an instruction that atomically reads a memory location, combines it with another value,...
BinOp getOperation() const
LLVM Basic Block Representation.
static CCValAssign getMem(unsigned ValNo, MVT ValVT, int64_t Offset, MVT LocVT, LocInfo HTP, bool IsCustom=false)
Base class for all callable instructions (InvokeInst and CallInst) Holds everything related to callin...
uint64_t getNumOperands() const
A parsed version of the target data layout string in and methods for querying it.
Diagnostic information for unsupported feature in backend.
This is a fast-path instruction selection class that generates poor code and doesn't support illegal ...
FunctionLoweringInfo - This contains information that is global to a function that is used when lower...
FunctionType * getFunctionType() const
Returns the FunctionType for me.
LLVMContext & getContext() const
getContext - Return a reference to the LLVMContext associated with this function.
bool hasFnAttribute(Attribute::AttrKind Kind) const
Return true if the function has the attribute.
int64_t getOffset() const
LLVM_ABI unsigned getAddressSpace() const
unsigned getTargetFlags() const
const GlobalValue * getGlobal() const
ThreadLocalMode getThreadLocalMode() const
Type * getValueType() const
unsigned getTargetFlags() const
This is an important class for using LLVM in a threaded context.
LLVM_ABI void diagnose(const DiagnosticInfo &DI)
Report a message to the currently installed diagnostic handler.
const SDValue & getBasePtr() const
const SDValue & getOffset() const
Describe properties that are true of each instruction in the target description file.
bool is128BitVector() const
Return true if this is a 128-bit vector type.
@ INVALID_SIMPLE_VALUE_TYPE
static auto integer_fixedlen_vector_valuetypes()
MVT changeVectorElementType(MVT EltVT) const
Return a VT for a vector type whose attributes match ourselves with the exception of the element type...
unsigned getVectorNumElements() const
bool isVector() const
Return true if this is a vector value type.
bool isInteger() const
Return true if this is an integer or a vector integer type.
static auto integer_valuetypes()
TypeSize getSizeInBits() const
Returns the size of the specified MVT in bits.
static auto fixedlen_vector_valuetypes()
bool isFixedLengthVector() const
static MVT getVectorVT(MVT VT, unsigned NumElements)
MVT getVectorElementType() const
bool isFloatingPoint() const
Return true if this is a FP or a vector FP type.
static MVT getIntegerVT(unsigned BitWidth)
LLVM_ABI void transferSuccessorsAndUpdatePHIs(MachineBasicBlock *FromMBB)
Transfers all the successors, as in transferSuccessors, and update PHI operands in the successor bloc...
LLVM_ABI instr_iterator insert(instr_iterator I, MachineInstr *M)
Insert MI into the instruction list before I, possibly inside a bundle.
const BasicBlock * getBasicBlock() const
Return the LLVM basic block that this instance corresponded to originally.
LLVM_ABI void addSuccessor(MachineBasicBlock *Succ, BranchProbability Prob=BranchProbability::getUnknown())
Add Succ as a successor of this MachineBasicBlock.
const MachineFunction * getParent() const
Return the MachineFunction containing this basic block.
iterator insertAfter(iterator I, MachineInstr *MI)
Insert MI into the instruction list after I.
void splice(iterator Where, MachineBasicBlock *Other, iterator From)
Take an instruction from MBB 'Other' at the position From, and insert it into this MBB right before '...
LLVM_ABI int CreateStackObject(uint64_t Size, Align Alignment, bool isSpillSlot, const AllocaInst *Alloca=nullptr, uint8_t ID=0)
Create a new statically sized stack object, returning a nonnegative identifier to represent it.
void setFrameAddressIsTaken(bool T)
unsigned getFunctionNumber() const
getFunctionNumber - Return a unique ID for the current function.
const TargetSubtargetInfo & getSubtarget() const
getSubtarget - Return the subtarget for which this machine code is being compiled.
MachineFrameInfo & getFrameInfo()
getFrameInfo - Return the frame info object for the current function.
const char * createExternalSymbolName(StringRef Name)
Allocate a string and populate it with the given external symbol name.
MCContext & getContext() const
MachineRegisterInfo & getRegInfo()
getRegInfo - Return information about the registers currently in use.
const DataLayout & getDataLayout() const
Return the DataLayout attached to the Module associated to this MF.
Function & getFunction()
Return the LLVM function that this machine code represents.
BasicBlockListType::iterator iterator
Ty * getInfo()
getInfo - Keep track of various per-function pieces of information for backends that would like to do...
const MachineJumpTableInfo * getJumpTableInfo() const
getJumpTableInfo - Return the jump table info object for the current function.
const MachineInstrBuilder & addImm(int64_t Val) const
Add a new immediate operand.
const MachineInstrBuilder & add(const MachineOperand &MO) const
const MachineInstrBuilder & addSym(MCSymbol *Sym, unsigned char TargetFlags=0) const
const MachineInstrBuilder & addReg(Register RegNo, unsigned flags=0, unsigned SubReg=0) const
Add a new virtual register operand.
const MachineInstrBuilder & addFPImm(const ConstantFP *Val) const
const MachineInstrBuilder & addMBB(MachineBasicBlock *MBB, unsigned TargetFlags=0) const
MachineInstr * getInstr() const
If conversion operators fail, use this method to get the MachineInstr explicitly.
Representation of each machine instruction.
mop_range defs()
Returns all explicit operands that are register definitions.
unsigned getOpcode() const
Returns the opcode of this MachineInstr.
LLVM_ABI void addOperand(MachineFunction &MF, const MachineOperand &Op)
Add the specified operand to the instruction.
mop_range uses()
Returns all operands which may be register uses.
LLVM_ABI void eraseFromParent()
Unlink 'this' from the containing basic block and delete it.
LLVM_ABI void removeOperand(unsigned OpNo)
Erase an operand from an instruction, leaving it with one fewer operand than it started with.
const MachineOperand & getOperand(unsigned i) const
const std::vector< MachineJumpTableEntry > & getJumpTables() const
Flags
Flags values. These may be or'd together.
@ MOVolatile
The memory access is volatile.
@ MOLoad
The memory access reads data.
@ MOStore
The memory access writes data.
MachineOperand class - Representation of each machine instruction operand.
bool isReg() const
isReg - Tests if this is a MO_Register operand.
void setIsKill(bool Val=true)
Register getReg() const
getReg - Returns the register number.
bool isFI() const
isFI - Tests if this is a MO_FrameIndex operand.
MachineRegisterInfo - Keep track of information for virtual and physical registers,...
LLVM_ABI Register createVirtualRegister(const TargetRegisterClass *RegClass, StringRef Name="")
createVirtualRegister - Create and return a new virtual register in the function with the specified r...
void addLiveIn(MCRegister Reg, Register vreg=Register())
addLiveIn - Add the specified register as a live-in.
unsigned getAddressSpace() const
Return the address space for the associated pointer.
MachineMemOperand * getMemOperand() const
Return a MachineMemOperand object describing the memory reference performed by operation.
const SDValue & getChain() const
EVT getMemoryVT() const
Return the type of the in-memory value.
static PointerType * getUnqual(Type *ElementType)
This constructs a pointer to an object of the specified type in the default address space (address sp...
Wrapper class representing virtual and physical registers.
Wrapper class for IR location info (IR ordering and DebugLoc) to be passed into SDNode creation funct...
Represents one node in the SelectionDAG.
ArrayRef< SDUse > ops() const
unsigned getOpcode() const
Return the SelectionDAG opcode value for this node.
uint64_t getAsZExtVal() const
Helper method returns the zero-extended integer value of a ConstantSDNode.
const SDValue & getOperand(unsigned Num) const
uint64_t getConstantOperandVal(unsigned Num) const
Helper method returns the integer value of a ConstantSDNode operand.
EVT getValueType(unsigned ResNo) const
Return the type of a specified result.
Unlike LLVM values, Selection DAG nodes may return multiple values as the result of a computation.
SDNode * getNode() const
get the SDNode which holds the desired result
SDValue getValue(unsigned R) const
EVT getValueType() const
Return the ValueType of the referenced return value.
const SDValue & getOperand(unsigned i) const
MVT getSimpleValueType() const
Return the simple ValueType of the referenced return value.
unsigned getOpcode() const
This is used to represent a portion of an LLVM function in a low-level Data Dependence DAG representa...
SDValue getTargetGlobalAddress(const GlobalValue *GV, const SDLoc &DL, EVT VT, int64_t offset=0, unsigned TargetFlags=0)
SDValue getCopyToReg(SDValue Chain, const SDLoc &dl, Register Reg, SDValue N)
LLVM_ABI SDValue getMergeValues(ArrayRef< SDValue > Ops, const SDLoc &dl)
Create a MERGE_VALUES node from the given operands.
LLVM_ABI SDVTList getVTList(EVT VT)
Return an SDVTList that represents the list of values specified.
LLVM_ABI SDValue getShiftAmountConstant(uint64_t Val, EVT VT, const SDLoc &DL)
LLVM_ABI SDValue getSplatValue(SDValue V, bool LegalTypes=false)
If V is a splat vector, return its scalar source operand by extracting that element from the source v...
LLVM_ABI MachineSDNode * getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT)
These are used for target selectors to create a new node with specified return type(s),...
LLVM_ABI void ExtractVectorElements(SDValue Op, SmallVectorImpl< SDValue > &Args, unsigned Start=0, unsigned Count=0, EVT EltVT=EVT())
Append the extracted elements from Start to Count out of the vector Op in Args.
SDValue getSetCC(const SDLoc &DL, EVT VT, SDValue LHS, SDValue RHS, ISD::CondCode Cond, SDValue Chain=SDValue(), bool IsSignaling=false)
Helper function to make it easier to build SetCC's if you just have an ISD::CondCode instead of an SD...
LLVM_ABI SDValue UnrollVectorOp(SDNode *N, unsigned ResNE=0)
Utility function used by legalize and lowering to "unroll" a vector operation by splitting out the sc...
LLVM_ABI SDValue getConstantFP(double Val, const SDLoc &DL, EVT VT, bool isTarget=false)
Create a ConstantFPSDNode wrapping a constant value.
LLVM_ABI SDValue getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef< SDValue > Ops, EVT MemVT, MachinePointerInfo PtrInfo, Align Alignment, MachineMemOperand::Flags Flags=MachineMemOperand::MOLoad|MachineMemOperand::MOStore, LocationSize Size=LocationSize::precise(0), const AAMDNodes &AAInfo=AAMDNodes())
Creates a MemIntrinsicNode that may produce a result and takes a list of operands.
LLVM_ABI SDValue getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst, SDValue Src, SDValue Size, Align Alignment, bool isVol, bool AlwaysInline, const CallInst *CI, std::optional< bool > OverrideTailCall, MachinePointerInfo DstPtrInfo, MachinePointerInfo SrcPtrInfo, const AAMDNodes &AAInfo=AAMDNodes(), BatchAAResults *BatchAA=nullptr)
LLVM_ABI SDValue getNOT(const SDLoc &DL, SDValue Val, EVT VT)
Create a bitwise NOT operation as (XOR Val, -1).
SDValue getTargetJumpTable(int JTI, EVT VT, unsigned TargetFlags=0)
SDValue getUNDEF(EVT VT)
Return an UNDEF node. UNDEF does not have a useful SDLoc.
SDValue getBuildVector(EVT VT, const SDLoc &DL, ArrayRef< SDValue > Ops)
Return an ISD::BUILD_VECTOR node.
LLVM_ABI SDValue getBitcast(EVT VT, SDValue V)
Return a bitcast using the SDLoc of the value operand, and casting to the provided type.
SDValue getCopyFromReg(SDValue Chain, const SDLoc &dl, Register Reg, EVT VT)
const DataLayout & getDataLayout() const
SDValue getTargetFrameIndex(int FI, EVT VT)
LLVM_ABI SDValue getConstant(uint64_t Val, const SDLoc &DL, EVT VT, bool isTarget=false, bool isOpaque=false)
Create a ConstantSDNode wrapping a constant value.
LLVM_ABI SDValue getStore(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr, MachinePointerInfo PtrInfo, Align Alignment, MachineMemOperand::Flags MMOFlags=MachineMemOperand::MONone, const AAMDNodes &AAInfo=AAMDNodes())
Helper function to build ISD::STORE nodes.
LLVM_ABI bool SignBitIsZero(SDValue Op, unsigned Depth=0) const
Return true if the sign bit of Op is known to be zero.
LLVM_ABI SDValue getBasicBlock(MachineBasicBlock *MBB)
const TargetMachine & getTarget() const
LLVM_ABI SDValue getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of integer type, to the integer type VT, by either any-extending or truncat...
LLVM_ABI SDValue getIntPtrConstant(uint64_t Val, const SDLoc &DL, bool isTarget=false)
LLVM_ABI SDValue getValueType(EVT)
LLVM_ABI SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, ArrayRef< SDUse > Ops)
Gets or creates the specified node.
SDValue getTargetConstant(uint64_t Val, const SDLoc &DL, EVT VT, bool isOpaque=false)
MachineFunction & getMachineFunction() const
SDValue getPOISON(EVT VT)
Return a POISON node. POISON does not have a useful SDLoc.
SDValue getSplatBuildVector(EVT VT, const SDLoc &DL, SDValue Op)
Return a splat ISD::BUILD_VECTOR node, consisting of Op splatted to all elements.
LLVM_ABI SDValue getFrameIndex(int FI, EVT VT, bool isTarget=false)
LLVM_ABI SDValue getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of integer type, to the integer type VT, by either zero-extending or trunca...
LLVMContext * getContext() const
LLVM_ABI SDValue getTargetExternalSymbol(const char *Sym, EVT VT, unsigned TargetFlags=0)
LLVM_ABI SDValue getMCSymbol(MCSymbol *Sym, EVT VT)
SDValue getEntryNode() const
Return the token chain corresponding to the entry of the function.
LLVM_ABI SDValue getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1, SDValue N2, ArrayRef< int > Mask)
Return an ISD::VECTOR_SHUFFLE node.
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
const SDValue & getBasePtr() const
const SDValue & getOffset() const
const SDValue & getValue() const
StringRef - Represent a constant reference to a string, i.e.
constexpr size_t size() const
size - Get the string size.
TargetInstrInfo - Interface to description of machine instruction set.
Provides information about what library functions are available for the current target.
void setBooleanVectorContents(BooleanContent Ty)
Specify how the target extends the result of a vector boolean value from a vector of i1 to a wider ty...
void setOperationAction(unsigned Op, MVT VT, LegalizeAction Action)
Indicate that the specified operation does not work with the specified type and indicate what to do a...
virtual const TargetRegisterClass * getRegClassFor(MVT VT, bool isDivergent=false) const
Return the register class that should be used for the specified value type.
const TargetMachine & getTargetMachine() const
unsigned MaxLoadsPerMemcmp
Specify maximum number of load instructions per memcmp call.
LegalizeTypeAction
This enum indicates whether a types are legal for a target, and if not, what action should be used to...
void setMaxAtomicSizeInBitsSupported(unsigned SizeInBits)
Set the maximum atomic operation size supported by the backend.
virtual TargetLoweringBase::LegalizeTypeAction getPreferredVectorAction(MVT VT) const
Return the preferred vector type legalization action.
void setBooleanContents(BooleanContent Ty)
Specify how the target extends the result of integer and floating point boolean values from i1 to a w...
void computeRegisterProperties(const TargetRegisterInfo *TRI)
Once all of the register classes are added, this allows us to compute derived properties we expose.
void addRegisterClass(MVT VT, const TargetRegisterClass *RC)
Add the specified register class as an available regclass for the specified value type.
virtual MVT getPointerTy(const DataLayout &DL, uint32_t AS=0) const
Return the pointer type for the given address space, defaults to the pointer type from the data layou...
void setMinimumJumpTableEntries(unsigned Val)
Indicate the minimum number of blocks to generate jump tables.
void setPartialReduceMLAAction(unsigned Opc, MVT AccVT, MVT InputVT, LegalizeAction Action)
Indicate how a PARTIAL_REDUCE_U/SMLA node with Acc type AccVT and Input type InputVT should be treate...
void setTruncStoreAction(MVT ValVT, MVT MemVT, LegalizeAction Action)
Indicate that the specified truncating store does not work with the specified type and indicate what ...
@ ZeroOrOneBooleanContent
@ ZeroOrNegativeOneBooleanContent
unsigned MaxLoadsPerMemcmpOptSize
Likewise for functions with the OptSize attribute.
virtual bool isBinOp(unsigned Opcode) const
Return true if the node is a math/logic binary operator.
void setStackPointerRegisterToSaveRestore(Register R)
If set to a physical register, this specifies the register that llvm.savestack/llvm....
AtomicExpansionKind
Enum that specifies what an atomic load/AtomicRMWInst is expanded to, if at all.
void setCondCodeAction(ArrayRef< ISD::CondCode > CCs, MVT VT, LegalizeAction Action)
Indicate that the specified condition code is or isn't supported on the target and indicate what to d...
void setTargetDAGCombine(ArrayRef< ISD::NodeType > NTs)
Targets should invoke this method for each target independent node that they want to provide a custom...
void setLoadExtAction(unsigned ExtType, MVT ValVT, MVT MemVT, LegalizeAction Action)
Indicate that the specified load with extension does not work with the specified type and indicate wh...
virtual MVT getPointerMemTy(const DataLayout &DL, uint32_t AS=0) const
Return the in-memory pointer type for the given address space, defaults to the pointer type from the ...
void setSchedulingPreference(Sched::Preference Pref)
Specify the target scheduling preference.
bool isOperationLegalOrCustomOrPromote(unsigned Op, EVT VT, bool LegalOnly=false) const
Return true if the specified operation is legal on this target or can be made legal with custom lower...
bool isPositionIndependent() const
virtual std::pair< unsigned, const TargetRegisterClass * > getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const
Given a physical register constraint (e.g.
TargetLowering(const TargetLowering &)=delete
virtual bool isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const
Return true if folding a constant offset with the given GlobalAddress is legal.
std::pair< SDValue, SDValue > makeLibCall(SelectionDAG &DAG, RTLIB::LibcallImpl LibcallImpl, EVT RetVT, ArrayRef< SDValue > Ops, MakeLibCallOptions CallOptions, const SDLoc &dl, SDValue Chain=SDValue()) const
Returns a pair of (return value, chain).
Primary interface to the complete machine description for the target machine.
TargetRegisterInfo base class - We assume that the target defines a static array of TargetRegisterDes...
The instances of the Type class are immutable: once they are created, they are never changed.
bool isFunctionTy() const
True if this is an instance of FunctionType.
static LLVM_ABI Type * getDoubleTy(LLVMContext &C)
static LLVM_ABI Type * getFloatTy(LLVMContext &C)
A Use represents the edge between a Value definition and its users.
LLVM_ABI const Value * stripPointerCastsAndAliases() const
Strip off pointer casts, all-zero GEPs, address space casts, and aliases.
static std::optional< unsigned > getLocalForStackObject(MachineFunction &MF, int FrameIndex)
bool hasCallIndirectOverlong() const
bool hasReferenceTypes() const
WebAssemblyTargetLowering(const TargetMachine &TM, const WebAssemblySubtarget &STI)
MVT getPointerTy(const DataLayout &DL, uint32_t AS=0) const override
Return the pointer type for the given address space, defaults to the pointer type from the data layou...
MVT getPointerMemTy(const DataLayout &DL, uint32_t AS=0) const override
Return the in-memory pointer type for the given address space, defaults to the pointer type from the ...
self_iterator getIterator()
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
constexpr char Align[]
Key for Kernel::Arg::Metadata::mAlign.
constexpr std::underlying_type_t< E > Mask()
Get a bitmask with 1s in all places up to the high-order bit of E's largest value.
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
@ Swift
Calling convention for Swift.
@ PreserveMost
Used for runtime calls that preserves most registers.
@ CXX_FAST_TLS
Used for access functions.
@ WASM_EmscriptenInvoke
For emscripten __invoke_* functions.
@ Cold
Attempts to make code in the caller as efficient as possible under the assumption that the call is no...
@ PreserveAll
Used for runtime calls that preserves (almost) all registers.
@ Fast
Attempts to make calls as fast as possible (e.g.
@ C
The default llvm calling convention, compatible with C.
@ SETCC
SetCC operator - This evaluates to a true value iff the condition is true.
@ STACKRESTORE
STACKRESTORE has two operands, an input chain and a pointer to restore to it returns an output chain.
@ STACKSAVE
STACKSAVE - STACKSAVE has one operand, an input chain.
@ PARTIAL_REDUCE_SMLA
PARTIAL_REDUCE_[U|S]MLA(Accumulator, Input1, Input2) The partial reduction nodes sign or zero extend ...
@ SMUL_LOHI
SMUL_LOHI/UMUL_LOHI - Multiply two integers of type iN, producing a signed/unsigned value of type i[2...
@ BSWAP
Byte Swap and Counting operators.
@ VAEND
VAEND, VASTART - VAEND and VASTART have three operands: an input chain, pointer, and a SRCVALUE.
@ ADDC
Carry-setting nodes for multiple precision addition and subtraction.
@ ADD
Simple integer binary arithmetic operators.
@ LOAD
LOAD and STORE have token chains as their first operand, then the same operands as an LLVM load/store...
@ FMA
FMA - Perform a * b + c with no intermediate rounding step.
@ INTRINSIC_VOID
OUTCHAIN = INTRINSIC_VOID(INCHAIN, INTRINSICID, arg1, arg2, ...) This node represents a target intrin...
@ SINT_TO_FP
[SU]INT_TO_FP - These operators convert integers (whose interpreted sign depends on the first letter)...
@ CONCAT_VECTORS
CONCAT_VECTORS(VECTOR0, VECTOR1, ...) - Given a number of values of vector type with the same length ...
@ ABS
ABS - Determine the unsigned absolute value of a signed integer value of the same bitwidth.
@ SIGN_EXTEND_VECTOR_INREG
SIGN_EXTEND_VECTOR_INREG(Vector) - This operator represents an in-register sign-extension of the low ...
@ SDIVREM
SDIVREM/UDIVREM - Divide two integers and produce both a quotient and remainder result.
@ FP16_TO_FP
FP16_TO_FP, FP_TO_FP16 - These operators are used to perform promotions and truncation for half-preci...
@ FMULADD
FMULADD - Performs a * b + c, with, or without, intermediate rounding.
@ BITCAST
BITCAST - This operator converts between integer, vector and FP values, as if the value was stored to...
@ BUILD_PAIR
BUILD_PAIR - This is the opposite of EXTRACT_ELEMENT in some ways.
@ BUILTIN_OP_END
BUILTIN_OP_END - This must be the last enum value in this list.
@ SIGN_EXTEND
Conversion operators.
@ SCALAR_TO_VECTOR
SCALAR_TO_VECTOR(VAL) - This represents the operation of loading a scalar value into element 0 of the...
@ FSINCOS
FSINCOS - Compute both fsin and fcos as a single operation.
@ BR_CC
BR_CC - Conditional branch.
@ BRIND
BRIND - Indirect branch.
@ BR_JT
BR_JT - Jumptable branch.
@ SSUBSAT
RESULT = [US]SUBSAT(LHS, RHS) - Perform saturation subtraction on 2 integers with the same bit width ...
@ EXTRACT_ELEMENT
EXTRACT_ELEMENT - This is used to get the lower or upper (determined by a Constant,...
@ SPLAT_VECTOR
SPLAT_VECTOR(VAL) - Returns a vector with the scalar value VAL duplicated in all lanes.
@ VACOPY
VACOPY - VACOPY has 5 operands: an input chain, a destination pointer, a source pointer,...
@ MULHU
MULHU/MULHS - Multiply high - Multiply two integers of type iN, producing an unsigned/signed value of...
@ SHL
Shift and rotation operations.
@ VECTOR_SHUFFLE
VECTOR_SHUFFLE(VEC1, VEC2) - Returns a vector, of the same type as VEC1/VEC2.
@ EXTRACT_SUBVECTOR
EXTRACT_SUBVECTOR(VECTOR, IDX) - Returns a subvector from VECTOR.
@ EXTRACT_VECTOR_ELT
EXTRACT_VECTOR_ELT(VECTOR, IDX) - Returns a single element from VECTOR identified by the (potentially...
@ CopyToReg
CopyToReg - This node has three operands: a chain, a register number to set to this value,...
@ ZERO_EXTEND
ZERO_EXTEND - Used for integer types, zeroing the new bits.
@ DEBUGTRAP
DEBUGTRAP - Trap intended to get the attention of a debugger.
@ SELECT_CC
Select with condition operator - This selects between a true value and a false value (ops #2 and #3) ...
@ FMINNUM
FMINNUM/FMAXNUM - Perform floating-point minimum maximum on two values, following IEEE-754 definition...
@ DYNAMIC_STACKALLOC
DYNAMIC_STACKALLOC - Allocate some number of bytes on the stack aligned to a specified boundary.
@ ANY_EXTEND_VECTOR_INREG
ANY_EXTEND_VECTOR_INREG(Vector) - This operator represents an in-register any-extension of the low la...
@ SIGN_EXTEND_INREG
SIGN_EXTEND_INREG - This operator atomically performs a SHL/SRA pair to sign extend a small value in ...
@ SMIN
[US]{MIN/MAX} - Binary minimum or maximum of signed or unsigned integers.
@ FP_EXTEND
X = FP_EXTEND(Y) - Extend a smaller FP type into a larger FP type.
@ FRAMEADDR
FRAMEADDR, RETURNADDR - These nodes represent llvm.frameaddress and llvm.returnaddress on the DAG.
@ FMINIMUM
FMINIMUM/FMAXIMUM - NaN-propagating minimum/maximum that also treat -0.0 as less than 0....
@ FP_TO_SINT
FP_TO_[US]INT - Convert a floating point value to a signed or unsigned integer.
@ TargetConstant
TargetConstant* - Like Constant*, but the DAG does not do any folding, simplification,...
@ AND
Bitwise operators - logical and, logical or, logical xor.
@ TRAP
TRAP - Trapping instruction.
@ INTRINSIC_WO_CHAIN
RESULT = INTRINSIC_WO_CHAIN(INTRINSICID, arg1, arg2, ...) This node represents a target intrinsic fun...
@ ADDE
Carry-using nodes for multiple precision addition and subtraction.
@ INSERT_VECTOR_ELT
INSERT_VECTOR_ELT(VECTOR, VAL, IDX) - Returns VECTOR with the element at IDX replaced with VAL.
@ TokenFactor
TokenFactor - This node takes multiple tokens as input and produces a single token result.
@ FP_ROUND
X = FP_ROUND(Y, TRUNC) - Rounding 'Y' from a larger floating point type down to the precision of the ...
@ CLEAR_CACHE
llvm.clear_cache intrinsic Operands: Input Chain, Start Addres, End Address Outputs: Output Chain
@ ZERO_EXTEND_VECTOR_INREG
ZERO_EXTEND_VECTOR_INREG(Vector) - This operator represents an in-register zero-extension of the low ...
@ FP_TO_SINT_SAT
FP_TO_[US]INT_SAT - Convert floating point value in operand 0 to a signed or unsigned scalar integer ...
@ TRUNCATE
TRUNCATE - Completely drop the high bits.
@ VAARG
VAARG - VAARG has four operands: an input chain, a pointer, a SRCVALUE, and the alignment.
@ SHL_PARTS
SHL_PARTS/SRA_PARTS/SRL_PARTS - These operators are used for expanded integer shift operations.
@ FCOPYSIGN
FCOPYSIGN(X, Y) - Return the value of X with the sign of Y.
@ SADDSAT
RESULT = [US]ADDSAT(LHS, RHS) - Perform saturation addition on 2 integers with the same bit width (W)...
@ FMINIMUMNUM
FMINIMUMNUM/FMAXIMUMNUM - minimumnum/maximumnum that is same with FMINNUM_IEEE and FMAXNUM_IEEE besid...
@ INTRINSIC_W_CHAIN
RESULT,OUTCHAIN = INTRINSIC_W_CHAIN(INCHAIN, INTRINSICID, arg1, ...) This node represents a target in...
@ BUILD_VECTOR
BUILD_VECTOR(ELT0, ELT1, ELT2, ELT3,...) - Return a fixed-width vector with the specified,...
LLVM_ABI bool isConstantSplatVector(const SDNode *N, APInt &SplatValue)
Node predicates.
CondCode
ISD::CondCode enum - These are ordered carefully to make the bitfields below work out,...
This namespace contains an enum with a value for every intrinsic/builtin function known by LLVM.
OperandFlags
These are flags set on operands, but should be considered private, all access should go through the M...
CastOperator_match< OpTy, Instruction::BitCast > m_BitCast(const OpTy &Op)
Matches BitCast.
class_match< Value > m_Value()
Match an arbitrary value and ignore it.
is_zero m_Zero()
Match any null constant or a vector with all elements equal to 0.
bool sd_match(SDNode *N, const SelectionDAG *DAG, Pattern &&P)
CondCode_match m_SpecificCondCode(ISD::CondCode CC)
Match a conditional code SDNode with a specific ISD::CondCode.
CondCode_match m_CondCode()
Match any conditional code SDNode.
TernaryOpc_match< T0_P, T1_P, T2_P, true, false > m_c_SetCC(const T0_P &LHS, const T1_P &RHS, const T2_P &CC)
MCSymbolWasm * getOrCreateFunctionTableSymbol(MCContext &Ctx, const WebAssemblySubtarget *Subtarget)
Returns the __indirect_function_table, for use in call_indirect and in function bitcasts.
@ WASM_ADDRESS_SPACE_EXTERNREF
@ WASM_ADDRESS_SPACE_FUNCREF
bool isWebAssemblyFuncrefType(const Type *Ty)
Return true if this is a WebAssembly Funcref Type.
bool isWebAssemblyTableType(const Type *Ty)
Return true if the table represents a WebAssembly table type.
MCSymbolWasm * getOrCreateFuncrefCallTableSymbol(MCContext &Ctx, const WebAssemblySubtarget *Subtarget)
Returns the __funcref_call_table, for use in funcref calls when lowered to table.set + call_indirect.
FastISel * createFastISel(FunctionLoweringInfo &funcInfo, const TargetLibraryInfo *libInfo)
bool isValidAddressSpace(unsigned AS)
bool canLowerReturn(size_t ResultSize, const WebAssemblySubtarget *Subtarget)
Returns true if the function's return value(s) can be lowered directly, i.e., not indirectly via a po...
bool isWasmVarAddressSpace(unsigned AS)
NodeAddr< NodeBase * > Node
This is an optimization pass for GlobalISel generic memory operations.
auto drop_begin(T &&RangeOrContainer, size_t N=1)
Return a range covering RangeOrContainer with the first N elements excluded.
unsigned Log2_32_Ceil(uint32_t Value)
Return the ceil log base 2 of the specified value, 32 if the value is zero.
FunctionAddr VTableAddr Value
void computeSignatureVTs(const FunctionType *Ty, const Function *TargetFunc, const Function &ContextFunc, const TargetMachine &TM, SmallVectorImpl< MVT > &Params, SmallVectorImpl< MVT > &Results)
auto size(R &&Range, std::enable_if_t< std::is_base_of< std::random_access_iterator_tag, typename std::iterator_traits< decltype(Range.begin())>::iterator_category >::value, void > *=nullptr)
Get the size of a range.
MachineInstrBuilder BuildMI(MachineFunction &MF, const MIMetadata &MIMD, const MCInstrDesc &MCID)
Builder interface. Specify how to create the initial instruction itself.
LLVM_ABI bool isNullConstant(SDValue V)
Returns true if V is a constant integer zero.
LLVM_ABI SDValue peekThroughBitcasts(SDValue V)
Return the non-bitcasted source operand of V if it exists.
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
constexpr bool isPowerOf2_32(uint32_t Value)
Return true if the argument is a power of two > 0.
decltype(auto) get(const PointerIntPair< PointerTy, IntBits, IntType, PtrTraits, Info > &Pair)
LLVM_ABI void report_fatal_error(Error Err, bool gen_crash_diag=true)
class LLVM_GSL_OWNER SmallVector
Forward declaration of SmallVector so that calculateSmallVectorDefaultInlinedElements can reference s...
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
DWARFExpression::Operation Op
auto max_element(R &&Range)
Provide wrappers to std::max_element which take ranges instead of having to pass begin/end explicitly...
constexpr unsigned BitWidth
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
auto find_if(R &&Range, UnaryPredicate P)
Provide wrappers to std::find_if which take ranges instead of having to pass begin/end explicitly.
void erase_if(Container &C, UnaryPredicate P)
Provide a container algorithm similar to C++ Library Fundamentals v2's erase_if which is equivalent t...
void computeLegalValueVTs(const WebAssemblyTargetLowering &TLI, LLVMContext &Ctx, const DataLayout &DL, Type *Ty, SmallVectorImpl< MVT > &ValueVTs)
constexpr uint64_t NextPowerOf2(uint64_t A)
Returns the next power of two (in 64-bits) that is strictly greater than A.
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
This struct is a compact representation of a valid (non-zero power of two) alignment.
EVT changeVectorElementTypeToInteger() const
Return a vector with the same number of elements as this vector, but with the element type converted ...
bool isSimple() const
Test if the given EVT is simple (as opposed to being extended).
static EVT getVectorVT(LLVMContext &Context, EVT VT, unsigned NumElements, bool IsScalable=false)
Returns the EVT that represents a vector NumElements in length, where each element is of type VT.
bool isFloatingPoint() const
Return true if this is a FP or a vector FP type.
TypeSize getSizeInBits() const
Return the size of the specified value type in bits.
bool isByteSized() const
Return true if the bit size is a multiple of 8.
uint64_t getScalarSizeInBits() const
EVT changeVectorElementType(LLVMContext &Context, EVT EltVT) const
Return a VT for a vector type whose attributes match ourselves with the exception of the element type...
MVT getSimpleVT() const
Return the SimpleValueType held in the specified simple EVT.
bool is128BitVector() const
Return true if this is a 128-bit vector type.
static EVT getIntegerVT(LLVMContext &Context, unsigned BitWidth)
Returns the EVT that represents an integer with the given number of bits.
uint64_t getFixedSizeInBits() const
Return the size of the specified fixed width value type in bits.
EVT widenIntegerVectorElementType(LLVMContext &Context) const
Return a VT for an integer vector type with the size of the elements doubled.
bool isFixedLengthVector() const
bool isVector() const
Return true if this is a vector value type.
EVT getScalarType() const
If this is a vector type, return the element type, otherwise return this.
bool bitsGE(EVT VT) const
Return true if this has no less bits than VT.
bool is256BitVector() const
Return true if this is a 256-bit vector type.
LLVM_ABI Type * getTypeForEVT(LLVMContext &Context) const
This method returns an LLVM type corresponding to the specified EVT.
EVT getVectorElementType() const
Given a vector type, return the type of each element.
bool isScalarInteger() const
Return true if this is an integer, but not a vector.
unsigned getVectorNumElements() const
Given a vector type, return the number of elements it contains.
EVT getHalfNumVectorElementsVT(LLVMContext &Context) const
bool isInConsecutiveRegs() const
Align getNonZeroOrigAlign() const
bool isSwiftError() const
unsigned getByValSize() const
bool isInConsecutiveRegsLast() const
Align getNonZeroByValAlign() const
unsigned getBitWidth() const
Get the bit width of this value.
static LLVM_ABI MachinePointerInfo getFixedStack(MachineFunction &MF, int FI, int64_t Offset=0)
Return a MachinePointerInfo record that refers to the specified FrameIndex.
These are IR-level optimization flags that may be propagated to SDNodes.
bool isBeforeLegalize() const
This structure is used to pass arguments to makeLibCall function.