28#include "llvm/IR/IntrinsicsLoongArch.h"
37#define DEBUG_TYPE "loongarch-isel-lowering"
42 cl::desc(
"Trap on integer division by zero."),
54 if (Subtarget.hasBasicF())
56 if (Subtarget.hasBasicD())
60 MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64, MVT::v4f32, MVT::v2f64};
62 MVT::v32i8, MVT::v16i16, MVT::v8i32, MVT::v4i64, MVT::v8f32, MVT::v4f64};
64 if (Subtarget.hasExtLSX())
68 if (Subtarget.hasExtLASX())
69 for (
MVT VT : LASXVTs)
169 if (Subtarget.hasBasicF()) {
193 if (!Subtarget.hasBasicD()) {
204 if (Subtarget.hasBasicD()) {
233 if (Subtarget.hasExtLSX()) {
248 for (
MVT VT : LSXVTs) {
261 for (
MVT VT : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64}) {
275 for (
MVT VT : {MVT::v16i8, MVT::v8i16, MVT::v4i32})
277 for (
MVT VT : {MVT::v8i16, MVT::v4i32, MVT::v2i64})
279 for (
MVT VT : {MVT::v4i32, MVT::v2i64}) {
283 for (
MVT VT : {MVT::v4f32, MVT::v2f64}) {
302 if (Subtarget.hasExtLASX()) {
303 for (
MVT VT : LASXVTs) {
317 for (
MVT VT : {MVT::v4i64, MVT::v8i32, MVT::v16i16, MVT::v32i8}) {
331 for (
MVT VT : {MVT::v32i8, MVT::v16i16, MVT::v8i32})
333 for (
MVT VT : {MVT::v16i16, MVT::v8i32, MVT::v4i64})
335 for (
MVT VT : {MVT::v8i32, MVT::v4i32, MVT::v4i64}) {
339 for (
MVT VT : {MVT::v8f32, MVT::v4f64}) {
360 if (Subtarget.hasExtLSX())
383 if (Subtarget.hasLAMCAS())
398 switch (
Op.getOpcode()) {
400 return lowerATOMIC_FENCE(
Op, DAG);
402 return lowerEH_DWARF_CFA(
Op, DAG);
404 return lowerGlobalAddress(
Op, DAG);
406 return lowerGlobalTLSAddress(
Op, DAG);
408 return lowerINTRINSIC_WO_CHAIN(
Op, DAG);
410 return lowerINTRINSIC_W_CHAIN(
Op, DAG);
412 return lowerINTRINSIC_VOID(
Op, DAG);
414 return lowerBlockAddress(
Op, DAG);
416 return lowerJumpTable(
Op, DAG);
418 return lowerShiftLeftParts(
Op, DAG);
420 return lowerShiftRightParts(
Op, DAG,
true);
422 return lowerShiftRightParts(
Op, DAG,
false);
424 return lowerConstantPool(
Op, DAG);
426 return lowerFP_TO_SINT(
Op, DAG);
428 return lowerBITCAST(
Op, DAG);
430 return lowerUINT_TO_FP(
Op, DAG);
432 return lowerSINT_TO_FP(
Op, DAG);
434 return lowerVASTART(
Op, DAG);
436 return lowerFRAMEADDR(
Op, DAG);
438 return lowerRETURNADDR(
Op, DAG);
440 return lowerWRITE_REGISTER(
Op, DAG);
442 return lowerINSERT_VECTOR_ELT(
Op, DAG);
444 return lowerEXTRACT_VECTOR_ELT(
Op, DAG);
446 return lowerBUILD_VECTOR(
Op, DAG);
448 return lowerVECTOR_SHUFFLE(
Op, DAG);
450 return lowerBITREVERSE(
Op, DAG);
457 EVT ResTy =
Op->getValueType(0);
468 for (
unsigned int i = 0; i < NewEltNum; i++) {
471 unsigned RevOp = (ResTy == MVT::v16i8 || ResTy == MVT::v32i8)
490 for (
unsigned int i = 0; i < NewEltNum; i++)
491 for (
int j = OrigEltNum / NewEltNum - 1; j >= 0; j--)
492 Mask.push_back(j + (OrigEltNum / NewEltNum) * i);
500template <
typename ValType>
503 unsigned CheckStride,
505 ValType ExpectedIndex,
unsigned ExpectedIndexStride) {
509 if (*
I != -1 && *
I != ExpectedIndex)
511 ExpectedIndex += ExpectedIndexStride;
515 for (
unsigned n = 0; n < CheckStride &&
I !=
End; ++n, ++
I)
534 for (
const auto &M : Mask) {
541 if (SplatIndex == -1)
544 assert(SplatIndex < (
int)Mask.size() &&
"Out of bounds mask index");
545 if (fitsRegularPattern<int>(Mask.begin(), 1, Mask.end(), SplatIndex, 0)) {
546 APInt Imm(64, SplatIndex);
580 int SubMask[4] = {-1, -1, -1, -1};
581 for (
unsigned i = 0; i < 4; ++i) {
582 for (
unsigned j = i; j < Mask.size(); j += 4) {
589 if (Idx < 0 || Idx >= 4)
595 if (SubMask[i] == -1)
599 else if (
Idx != -1 &&
Idx != SubMask[i])
606 for (
int i = 3; i >= 0; --i) {
607 int Idx = SubMask[i];
639 const auto &Begin = Mask.begin();
640 const auto &
End = Mask.end();
641 SDValue OriV1 = V1, OriV2 = V2;
643 if (fitsRegularPattern<int>(Begin, 2,
End, 0, 2))
645 else if (fitsRegularPattern<int>(Begin, 2,
End, Mask.size(), 2))
650 if (fitsRegularPattern<int>(Begin + 1, 2,
End, 0, 2))
652 else if (fitsRegularPattern<int>(Begin + 1, 2,
End, Mask.size(), 2))
679 const auto &Begin = Mask.begin();
680 const auto &
End = Mask.end();
681 SDValue OriV1 = V1, OriV2 = V2;
683 if (fitsRegularPattern<int>(Begin, 2,
End, 1, 2))
685 else if (fitsRegularPattern<int>(Begin, 2,
End, Mask.size() + 1, 2))
690 if (fitsRegularPattern<int>(Begin + 1, 2,
End, 1, 2))
692 else if (fitsRegularPattern<int>(Begin + 1, 2,
End, Mask.size() + 1, 2))
720 const auto &Begin = Mask.begin();
721 const auto &
End = Mask.end();
722 unsigned HalfSize = Mask.size() / 2;
723 SDValue OriV1 = V1, OriV2 = V2;
725 if (fitsRegularPattern<int>(Begin, 2,
End, HalfSize, 1))
727 else if (fitsRegularPattern<int>(Begin, 2,
End, Mask.size() + HalfSize, 1))
732 if (fitsRegularPattern<int>(Begin + 1, 2,
End, HalfSize, 1))
734 else if (fitsRegularPattern<int>(Begin + 1, 2,
End, Mask.size() + HalfSize,
763 const auto &Begin = Mask.begin();
764 const auto &
End = Mask.end();
765 SDValue OriV1 = V1, OriV2 = V2;
767 if (fitsRegularPattern<int>(Begin, 2,
End, 0, 1))
769 else if (fitsRegularPattern<int>(Begin, 2,
End, Mask.size(), 1))
774 if (fitsRegularPattern<int>(Begin + 1, 2,
End, 0, 1))
776 else if (fitsRegularPattern<int>(Begin + 1, 2,
End, Mask.size(), 1))
803 const auto &Begin = Mask.begin();
804 const auto &Mid = Mask.begin() + Mask.size() / 2;
805 const auto &
End = Mask.end();
806 SDValue OriV1 = V1, OriV2 = V2;
808 if (fitsRegularPattern<int>(Begin, 1, Mid, 0, 2))
810 else if (fitsRegularPattern<int>(Begin, 1, Mid, Mask.size(), 2))
815 if (fitsRegularPattern<int>(Mid, 1,
End, 0, 2))
817 else if (fitsRegularPattern<int>(Mid, 1,
End, Mask.size(), 2))
845 const auto &Begin = Mask.begin();
846 const auto &Mid = Mask.begin() + Mask.size() / 2;
847 const auto &
End = Mask.end();
848 SDValue OriV1 = V1, OriV2 = V2;
850 if (fitsRegularPattern<int>(Begin, 1, Mid, 1, 2))
852 else if (fitsRegularPattern<int>(Begin, 1, Mid, Mask.size() + 1, 2))
857 if (fitsRegularPattern<int>(Mid, 1,
End, 1, 2))
859 else if (fitsRegularPattern<int>(Mid, 1,
End, Mask.size() + 1, 2))
901 "Vector type is unsupported for lsx!");
903 "Two operands have different types!");
905 "Unexpected mask size for shuffle!");
906 assert(Mask.size() % 2 == 0 &&
"Expected even mask size.");
954 for (
const auto &M : Mask) {
961 if (SplatIndex == -1)
964 const auto &Begin = Mask.begin();
965 const auto &
End = Mask.end();
966 unsigned HalfSize = Mask.size() / 2;
968 assert(SplatIndex < (
int)Mask.size() &&
"Out of bounds mask index");
969 if (fitsRegularPattern<int>(Begin, 1,
End - HalfSize, SplatIndex, 0) &&
970 fitsRegularPattern<int>(Begin + HalfSize, 1,
End, SplatIndex + HalfSize,
972 APInt Imm(64, SplatIndex);
986 if (Mask.size() <= 4)
1010 const auto &Begin = Mask.begin();
1011 const auto &
End = Mask.end();
1012 unsigned HalfSize = Mask.size() / 2;
1013 unsigned LeftSize = HalfSize / 2;
1014 SDValue OriV1 = V1, OriV2 = V2;
1016 if (fitsRegularPattern<int>(Begin, 2,
End - HalfSize, HalfSize - LeftSize,
1018 fitsRegularPattern<int>(Begin + HalfSize, 2,
End, HalfSize + LeftSize, 1))
1020 else if (fitsRegularPattern<int>(Begin, 2,
End - HalfSize,
1021 Mask.size() + HalfSize - LeftSize, 1) &&
1022 fitsRegularPattern<int>(Begin + HalfSize, 2,
End,
1023 Mask.size() + HalfSize + LeftSize, 1))
1028 if (fitsRegularPattern<int>(Begin + 1, 2,
End - HalfSize, HalfSize - LeftSize,
1030 fitsRegularPattern<int>(Begin + 1 + HalfSize, 2,
End, HalfSize + LeftSize,
1033 else if (fitsRegularPattern<int>(Begin + 1, 2,
End - HalfSize,
1034 Mask.size() + HalfSize - LeftSize, 1) &&
1035 fitsRegularPattern<int>(Begin + 1 + HalfSize, 2,
End,
1036 Mask.size() + HalfSize + LeftSize, 1))
1049 const auto &Begin = Mask.begin();
1050 const auto &
End = Mask.end();
1051 unsigned HalfSize = Mask.size() / 2;
1052 SDValue OriV1 = V1, OriV2 = V2;
1054 if (fitsRegularPattern<int>(Begin, 2,
End - HalfSize, 0, 1) &&
1055 fitsRegularPattern<int>(Begin + HalfSize, 2,
End, HalfSize, 1))
1057 else if (fitsRegularPattern<int>(Begin, 2,
End - HalfSize, Mask.size(), 1) &&
1058 fitsRegularPattern<int>(Begin + HalfSize, 2,
End,
1059 Mask.size() + HalfSize, 1))
1064 if (fitsRegularPattern<int>(Begin + 1, 2,
End - HalfSize, 0, 1) &&
1065 fitsRegularPattern<int>(Begin + 1 + HalfSize, 2,
End, HalfSize, 1))
1067 else if (fitsRegularPattern<int>(Begin + 1, 2,
End - HalfSize, Mask.size(),
1069 fitsRegularPattern<int>(Begin + 1 + HalfSize, 2,
End,
1070 Mask.size() + HalfSize, 1))
1083 const auto &Begin = Mask.begin();
1084 const auto &LeftMid = Mask.begin() + Mask.size() / 4;
1085 const auto &Mid = Mask.begin() + Mask.size() / 2;
1086 const auto &RightMid = Mask.end() - Mask.size() / 4;
1087 const auto &
End = Mask.end();
1088 unsigned HalfSize = Mask.size() / 2;
1089 SDValue OriV1 = V1, OriV2 = V2;
1091 if (fitsRegularPattern<int>(Begin, 1, LeftMid, 0, 2) &&
1092 fitsRegularPattern<int>(Mid, 1, RightMid, HalfSize, 2))
1094 else if (fitsRegularPattern<int>(Begin, 1, LeftMid, Mask.size(), 2) &&
1095 fitsRegularPattern<int>(Mid, 1, RightMid, Mask.size() + HalfSize, 2))
1100 if (fitsRegularPattern<int>(LeftMid, 1, Mid, 0, 2) &&
1101 fitsRegularPattern<int>(RightMid, 1,
End, HalfSize, 2))
1103 else if (fitsRegularPattern<int>(LeftMid, 1, Mid, Mask.size(), 2) &&
1104 fitsRegularPattern<int>(RightMid, 1,
End, Mask.size() + HalfSize, 2))
1118 const auto &Begin = Mask.begin();
1119 const auto &LeftMid = Mask.begin() + Mask.size() / 4;
1120 const auto &Mid = Mask.begin() + Mask.size() / 2;
1121 const auto &RightMid = Mask.end() - Mask.size() / 4;
1122 const auto &
End = Mask.end();
1123 unsigned HalfSize = Mask.size() / 2;
1124 SDValue OriV1 = V1, OriV2 = V2;
1126 if (fitsRegularPattern<int>(Begin, 1, LeftMid, 1, 2) &&
1127 fitsRegularPattern<int>(Mid, 1, RightMid, HalfSize + 1, 2))
1129 else if (fitsRegularPattern<int>(Begin, 1, LeftMid, Mask.size() + 1, 2) &&
1130 fitsRegularPattern<int>(Mid, 1, RightMid, Mask.size() + HalfSize + 1,
1136 if (fitsRegularPattern<int>(LeftMid, 1, Mid, 1, 2) &&
1137 fitsRegularPattern<int>(RightMid, 1,
End, HalfSize + 1, 2))
1139 else if (fitsRegularPattern<int>(LeftMid, 1, Mid, Mask.size() + 1, 2) &&
1140 fitsRegularPattern<int>(RightMid, 1,
End, Mask.size() + HalfSize + 1,
1154 int MaskSize = Mask.size();
1155 int HalfSize = Mask.size() / 2;
1156 const auto &Begin = Mask.begin();
1157 const auto &Mid = Mask.begin() + HalfSize;
1158 const auto &
End = Mask.end();
1170 for (
auto it = Begin; it < Mid; it++) {
1173 else if ((*it >= 0 && *it < HalfSize) ||
1174 (*it >= MaskSize && *it <= MaskSize + HalfSize)) {
1175 int M = *it < HalfSize ? *it : *it - HalfSize;
1180 assert((
int)MaskAlloc.
size() == HalfSize &&
"xvshuf convert failed!");
1182 for (
auto it = Mid; it <
End; it++) {
1185 else if ((*it >= HalfSize && *it < MaskSize) ||
1186 (*it >= MaskSize + HalfSize && *it < MaskSize * 2)) {
1187 int M = *it < MaskSize ? *it - HalfSize : *it - MaskSize;
1192 assert((
int)MaskAlloc.
size() == MaskSize &&
"xvshuf convert failed!");
1223 enum HalfMaskType { HighLaneTy, LowLaneTy,
None };
1225 int MaskSize = Mask.size();
1226 int HalfSize = Mask.size() / 2;
1228 HalfMaskType preMask =
None, postMask =
None;
1230 if (std::all_of(Mask.begin(), Mask.begin() + HalfSize, [&](
int M) {
1231 return M < 0 || (M >= 0 && M < HalfSize) ||
1232 (M >= MaskSize && M < MaskSize + HalfSize);
1234 preMask = HighLaneTy;
1235 else if (std::all_of(Mask.begin(), Mask.begin() + HalfSize, [&](
int M) {
1236 return M < 0 || (M >= HalfSize && M < MaskSize) ||
1237 (M >= MaskSize + HalfSize && M < MaskSize * 2);
1239 preMask = LowLaneTy;
1241 if (std::all_of(Mask.begin() + HalfSize, Mask.end(), [&](
int M) {
1242 return M < 0 || (M >= 0 && M < HalfSize) ||
1243 (M >= MaskSize && M < MaskSize + HalfSize);
1245 postMask = HighLaneTy;
1246 else if (std::all_of(Mask.begin() + HalfSize, Mask.end(), [&](
int M) {
1247 return M < 0 || (M >= HalfSize && M < MaskSize) ||
1248 (M >= MaskSize + HalfSize && M < MaskSize * 2);
1250 postMask = LowLaneTy;
1258 if (preMask == HighLaneTy && postMask == LowLaneTy) {
1261 if (preMask == LowLaneTy && postMask == HighLaneTy) {
1267 if (!V2.isUndef()) {
1274 for (
auto it = Mask.begin(); it < Mask.begin() + HalfSize; it++) {
1275 *it = *it < 0 ? *it : *it - HalfSize;
1277 for (
auto it = Mask.begin() + HalfSize; it < Mask.end(); it++) {
1278 *it = *it < 0 ? *it : *it + HalfSize;
1280 }
else if (preMask == LowLaneTy && postMask == LowLaneTy) {
1286 if (!V2.isUndef()) {
1293 for (
auto it = Mask.begin(); it < Mask.begin() + HalfSize; it++) {
1294 *it = *it < 0 ? *it : *it - HalfSize;
1296 }
else if (preMask == HighLaneTy && postMask == HighLaneTy) {
1302 if (!V2.isUndef()) {
1309 for (
auto it = Mask.begin() + HalfSize; it < Mask.end(); it++) {
1310 *it = *it < 0 ? *it : *it + HalfSize;
1326 "Vector type is unsupported for lasx!");
1328 "Two operands have different types!");
1330 "Unexpected mask size for shuffle!");
1331 assert(Mask.size() % 2 == 0 &&
"Expected even mask size.");
1332 assert(Mask.size() >= 4 &&
"Mask size is less than 4.");
1377 MVT VT =
Op.getSimpleValueType();
1381 bool V1IsUndef = V1.
isUndef();
1382 bool V2IsUndef =
V2.isUndef();
1383 if (V1IsUndef && V2IsUndef)
1396 any_of(OrigMask, [NumElements](
int M) {
return M >= NumElements; })) {
1398 for (
int &M : NewMask)
1399 if (M >= NumElements)
1405 int MaskUpperLimit = OrigMask.
size() * (V2IsUndef ? 1 : 2);
1406 (void)MaskUpperLimit;
1408 [&](
int M) {
return -1 <=
M &&
M < MaskUpperLimit; }) &&
1409 "Out of bounds shuffle index");
1424 if (isa<ConstantSDNode>(
Op))
1426 if (isa<ConstantFPSDNode>(
Op))
1441 EVT ResTy =
Op->getValueType(0);
1443 APInt SplatValue, SplatUndef;
1444 unsigned SplatBitSize;
1449 if ((!Subtarget.hasExtLSX() || !Is128Vec) &&
1450 (!Subtarget.hasExtLASX() || !Is256Vec))
1453 if (
Node->isConstantSplat(SplatValue, SplatUndef, SplatBitSize, HasAnyUndefs,
1455 SplatBitSize <= 64) {
1457 if (SplatBitSize != 8 && SplatBitSize != 16 && SplatBitSize != 32 &&
1463 switch (SplatBitSize) {
1467 ViaVecTy = Is128Vec ? MVT::v16i8 : MVT::v32i8;
1470 ViaVecTy = Is128Vec ? MVT::v8i16 : MVT::v16i16;
1473 ViaVecTy = Is128Vec ? MVT::v4i32 : MVT::v8i32;
1476 ViaVecTy = Is128Vec ? MVT::v2i64 : MVT::v4i64;
1484 if (ViaVecTy != ResTy)
1497 EVT ResTy =
Node->getValueType(0);
1503 for (
unsigned i = 0; i < NumElts; ++i) {
1505 Node->getOperand(i),
1515LoongArchTargetLowering::lowerEXTRACT_VECTOR_ELT(
SDValue Op,
1517 EVT VecTy =
Op->getOperand(0)->getValueType(0);
1522 if (isa<ConstantSDNode>(
Idx) &&
1523 (EltTy == MVT::i32 || EltTy == MVT::i64 || EltTy == MVT::f32 ||
1524 EltTy == MVT::f64 ||
Idx->getAsZExtVal() < NumElts / 2))
1531LoongArchTargetLowering::lowerINSERT_VECTOR_ELT(
SDValue Op,
1533 if (isa<ConstantSDNode>(
Op->getOperand(2)))
1557 if (Subtarget.
is64Bit() &&
Op.getOperand(2).getValueType() == MVT::i32) {
1559 "On LA64, only 64-bit registers can be written.");
1560 return Op.getOperand(0);
1563 if (!Subtarget.
is64Bit() &&
Op.getOperand(2).getValueType() == MVT::i64) {
1565 "On LA32, only 32-bit registers can be written.");
1566 return Op.getOperand(0);
1574 if (!isa<ConstantSDNode>(
Op.getOperand(0))) {
1576 "be a constant integer");
1583 EVT VT =
Op.getValueType();
1586 unsigned Depth =
Op.getConstantOperandVal(0);
1587 int GRLenInBytes = Subtarget.
getGRLen() / 8;
1590 int Offset = -(GRLenInBytes * 2);
1605 if (
Op.getConstantOperandVal(0) != 0) {
1607 "return address can only be determined for the current frame");
1641 const Value *SV = cast<SrcValueSDNode>(
Op.getOperand(2))->getValue();
1649 !Subtarget.hasBasicD() &&
"unexpected target features");
1654 auto *
C = dyn_cast<ConstantSDNode>(Op0.
getOperand(1));
1655 if (
C &&
C->getZExtValue() < UINT64_C(0xFFFFFFFF))
1665 dyn_cast<VTSDNode>(Op0.
getOperand(1))->getVT().bitsLT(MVT::i32))
1669 EVT RetVT =
Op.getValueType();
1671 MakeLibCallOptions CallOptions;
1672 CallOptions.setTypeListBeforeSoften(OpVT, RetVT,
true);
1675 std::tie(Result, Chain) =
1683 !Subtarget.hasBasicD() &&
"unexpected target features");
1690 dyn_cast<VTSDNode>(Op0.
getOperand(1))->getVT().bitsLE(MVT::i32))
1694 EVT RetVT =
Op.getValueType();
1696 MakeLibCallOptions CallOptions;
1697 CallOptions.setTypeListBeforeSoften(OpVT, RetVT,
true);
1700 std::tie(Result, Chain) =
1711 if (
Op.getValueType() == MVT::f32 && Op0.
getValueType() == MVT::i32 &&
1712 Subtarget.
is64Bit() && Subtarget.hasBasicF()) {
1728 if (
Op.getValueSizeInBits() > 32 && Subtarget.hasBasicF() &&
1729 !Subtarget.hasBasicD()) {
1753 N->getOffset(), Flags);
1761template <
class NodeTy>
1764 bool IsLocal)
const {
1775 assert(Subtarget.
is64Bit() &&
"Large code model requires LA64");
1827 return getAddr(cast<BlockAddressSDNode>(
Op), DAG,
1833 return getAddr(cast<JumpTableSDNode>(
Op), DAG,
1839 return getAddr(cast<ConstantPoolSDNode>(
Op), DAG,
1846 assert(
N->getOffset() == 0 &&
"unexpected offset in global node");
1850 if (GV->
isDSOLocal() && isa<GlobalVariable>(GV)) {
1851 if (
auto GCM = dyn_cast<GlobalVariable>(GV)->
getCodeModel())
1860 unsigned Opc,
bool UseGOT,
1878 if (Opc == LoongArch::PseudoLA_TLS_LE && !Large)
1919 Args.push_back(Entry);
1951LoongArchTargetLowering::lowerGlobalTLSAddress(
SDValue Op,
1958 assert((!Large || Subtarget.
is64Bit()) &&
"Large code model requires LA64");
1961 assert(
N->getOffset() == 0 &&
"unexpected offset in global node");
1975 return getDynamicTLSAddr(
N, DAG,
1976 Large ? LoongArch::PseudoLA_TLS_GD_LARGE
1977 : LoongArch::PseudoLA_TLS_GD,
1984 return getDynamicTLSAddr(
N, DAG,
1985 Large ? LoongArch::PseudoLA_TLS_LD_LARGE
1986 : LoongArch::PseudoLA_TLS_LD,
1991 return getStaticTLSAddr(
N, DAG,
1992 Large ? LoongArch::PseudoLA_TLS_IE_LARGE
1993 : LoongArch::PseudoLA_TLS_IE,
2000 return getStaticTLSAddr(
N, DAG, LoongArch::PseudoLA_TLS_LE,
2004 return getTLSDescAddr(
N, DAG,
2005 Large ? LoongArch::PseudoLA_TLS_DESC_LARGE
2006 : LoongArch::PseudoLA_TLS_DESC,
2010template <
unsigned N>
2013 auto *CImm = cast<ConstantSDNode>(
Op->getOperand(ImmOp));
2015 if ((IsSigned && !isInt<N>(CImm->getSExtValue())) ||
2016 (!IsSigned && !isUInt<N>(CImm->getZExtValue()))) {
2018 ": argument out of range.");
2025LoongArchTargetLowering::lowerINTRINSIC_WO_CHAIN(
SDValue Op,
2028 switch (
Op.getConstantOperandVal(0)) {
2031 case Intrinsic::thread_pointer: {
2035 case Intrinsic::loongarch_lsx_vpickve2gr_d:
2036 case Intrinsic::loongarch_lsx_vpickve2gr_du:
2037 case Intrinsic::loongarch_lsx_vreplvei_d:
2038 case Intrinsic::loongarch_lasx_xvrepl128vei_d:
2039 return checkIntrinsicImmArg<1>(
Op, 2, DAG);
2040 case Intrinsic::loongarch_lsx_vreplvei_w:
2041 case Intrinsic::loongarch_lasx_xvrepl128vei_w:
2042 case Intrinsic::loongarch_lasx_xvpickve2gr_d:
2043 case Intrinsic::loongarch_lasx_xvpickve2gr_du:
2044 case Intrinsic::loongarch_lasx_xvpickve_d:
2045 case Intrinsic::loongarch_lasx_xvpickve_d_f:
2046 return checkIntrinsicImmArg<2>(
Op, 2, DAG);
2047 case Intrinsic::loongarch_lasx_xvinsve0_d:
2048 return checkIntrinsicImmArg<2>(
Op, 3, DAG);
2049 case Intrinsic::loongarch_lsx_vsat_b:
2050 case Intrinsic::loongarch_lsx_vsat_bu:
2051 case Intrinsic::loongarch_lsx_vrotri_b:
2052 case Intrinsic::loongarch_lsx_vsllwil_h_b:
2053 case Intrinsic::loongarch_lsx_vsllwil_hu_bu:
2054 case Intrinsic::loongarch_lsx_vsrlri_b:
2055 case Intrinsic::loongarch_lsx_vsrari_b:
2056 case Intrinsic::loongarch_lsx_vreplvei_h:
2057 case Intrinsic::loongarch_lasx_xvsat_b:
2058 case Intrinsic::loongarch_lasx_xvsat_bu:
2059 case Intrinsic::loongarch_lasx_xvrotri_b:
2060 case Intrinsic::loongarch_lasx_xvsllwil_h_b:
2061 case Intrinsic::loongarch_lasx_xvsllwil_hu_bu:
2062 case Intrinsic::loongarch_lasx_xvsrlri_b:
2063 case Intrinsic::loongarch_lasx_xvsrari_b:
2064 case Intrinsic::loongarch_lasx_xvrepl128vei_h:
2065 case Intrinsic::loongarch_lasx_xvpickve_w:
2066 case Intrinsic::loongarch_lasx_xvpickve_w_f:
2067 return checkIntrinsicImmArg<3>(
Op, 2, DAG);
2068 case Intrinsic::loongarch_lasx_xvinsve0_w:
2069 return checkIntrinsicImmArg<3>(
Op, 3, DAG);
2070 case Intrinsic::loongarch_lsx_vsat_h:
2071 case Intrinsic::loongarch_lsx_vsat_hu:
2072 case Intrinsic::loongarch_lsx_vrotri_h:
2073 case Intrinsic::loongarch_lsx_vsllwil_w_h:
2074 case Intrinsic::loongarch_lsx_vsllwil_wu_hu:
2075 case Intrinsic::loongarch_lsx_vsrlri_h:
2076 case Intrinsic::loongarch_lsx_vsrari_h:
2077 case Intrinsic::loongarch_lsx_vreplvei_b:
2078 case Intrinsic::loongarch_lasx_xvsat_h:
2079 case Intrinsic::loongarch_lasx_xvsat_hu:
2080 case Intrinsic::loongarch_lasx_xvrotri_h:
2081 case Intrinsic::loongarch_lasx_xvsllwil_w_h:
2082 case Intrinsic::loongarch_lasx_xvsllwil_wu_hu:
2083 case Intrinsic::loongarch_lasx_xvsrlri_h:
2084 case Intrinsic::loongarch_lasx_xvsrari_h:
2085 case Intrinsic::loongarch_lasx_xvrepl128vei_b:
2086 return checkIntrinsicImmArg<4>(
Op, 2, DAG);
2087 case Intrinsic::loongarch_lsx_vsrlni_b_h:
2088 case Intrinsic::loongarch_lsx_vsrani_b_h:
2089 case Intrinsic::loongarch_lsx_vsrlrni_b_h:
2090 case Intrinsic::loongarch_lsx_vsrarni_b_h:
2091 case Intrinsic::loongarch_lsx_vssrlni_b_h:
2092 case Intrinsic::loongarch_lsx_vssrani_b_h:
2093 case Intrinsic::loongarch_lsx_vssrlni_bu_h:
2094 case Intrinsic::loongarch_lsx_vssrani_bu_h:
2095 case Intrinsic::loongarch_lsx_vssrlrni_b_h:
2096 case Intrinsic::loongarch_lsx_vssrarni_b_h:
2097 case Intrinsic::loongarch_lsx_vssrlrni_bu_h:
2098 case Intrinsic::loongarch_lsx_vssrarni_bu_h:
2099 case Intrinsic::loongarch_lasx_xvsrlni_b_h:
2100 case Intrinsic::loongarch_lasx_xvsrani_b_h:
2101 case Intrinsic::loongarch_lasx_xvsrlrni_b_h:
2102 case Intrinsic::loongarch_lasx_xvsrarni_b_h:
2103 case Intrinsic::loongarch_lasx_xvssrlni_b_h:
2104 case Intrinsic::loongarch_lasx_xvssrani_b_h:
2105 case Intrinsic::loongarch_lasx_xvssrlni_bu_h:
2106 case Intrinsic::loongarch_lasx_xvssrani_bu_h:
2107 case Intrinsic::loongarch_lasx_xvssrlrni_b_h:
2108 case Intrinsic::loongarch_lasx_xvssrarni_b_h:
2109 case Intrinsic::loongarch_lasx_xvssrlrni_bu_h:
2110 case Intrinsic::loongarch_lasx_xvssrarni_bu_h:
2111 return checkIntrinsicImmArg<4>(
Op, 3, DAG);
2112 case Intrinsic::loongarch_lsx_vsat_w:
2113 case Intrinsic::loongarch_lsx_vsat_wu:
2114 case Intrinsic::loongarch_lsx_vrotri_w:
2115 case Intrinsic::loongarch_lsx_vsllwil_d_w:
2116 case Intrinsic::loongarch_lsx_vsllwil_du_wu:
2117 case Intrinsic::loongarch_lsx_vsrlri_w:
2118 case Intrinsic::loongarch_lsx_vsrari_w:
2119 case Intrinsic::loongarch_lsx_vslei_bu:
2120 case Intrinsic::loongarch_lsx_vslei_hu:
2121 case Intrinsic::loongarch_lsx_vslei_wu:
2122 case Intrinsic::loongarch_lsx_vslei_du:
2123 case Intrinsic::loongarch_lsx_vslti_bu:
2124 case Intrinsic::loongarch_lsx_vslti_hu:
2125 case Intrinsic::loongarch_lsx_vslti_wu:
2126 case Intrinsic::loongarch_lsx_vslti_du:
2127 case Intrinsic::loongarch_lsx_vbsll_v:
2128 case Intrinsic::loongarch_lsx_vbsrl_v:
2129 case Intrinsic::loongarch_lasx_xvsat_w:
2130 case Intrinsic::loongarch_lasx_xvsat_wu:
2131 case Intrinsic::loongarch_lasx_xvrotri_w:
2132 case Intrinsic::loongarch_lasx_xvsllwil_d_w:
2133 case Intrinsic::loongarch_lasx_xvsllwil_du_wu:
2134 case Intrinsic::loongarch_lasx_xvsrlri_w:
2135 case Intrinsic::loongarch_lasx_xvsrari_w:
2136 case Intrinsic::loongarch_lasx_xvslei_bu:
2137 case Intrinsic::loongarch_lasx_xvslei_hu:
2138 case Intrinsic::loongarch_lasx_xvslei_wu:
2139 case Intrinsic::loongarch_lasx_xvslei_du:
2140 case Intrinsic::loongarch_lasx_xvslti_bu:
2141 case Intrinsic::loongarch_lasx_xvslti_hu:
2142 case Intrinsic::loongarch_lasx_xvslti_wu:
2143 case Intrinsic::loongarch_lasx_xvslti_du:
2144 case Intrinsic::loongarch_lasx_xvbsll_v:
2145 case Intrinsic::loongarch_lasx_xvbsrl_v:
2146 return checkIntrinsicImmArg<5>(
Op, 2, DAG);
2147 case Intrinsic::loongarch_lsx_vseqi_b:
2148 case Intrinsic::loongarch_lsx_vseqi_h:
2149 case Intrinsic::loongarch_lsx_vseqi_w:
2150 case Intrinsic::loongarch_lsx_vseqi_d:
2151 case Intrinsic::loongarch_lsx_vslei_b:
2152 case Intrinsic::loongarch_lsx_vslei_h:
2153 case Intrinsic::loongarch_lsx_vslei_w:
2154 case Intrinsic::loongarch_lsx_vslei_d:
2155 case Intrinsic::loongarch_lsx_vslti_b:
2156 case Intrinsic::loongarch_lsx_vslti_h:
2157 case Intrinsic::loongarch_lsx_vslti_w:
2158 case Intrinsic::loongarch_lsx_vslti_d:
2159 case Intrinsic::loongarch_lasx_xvseqi_b:
2160 case Intrinsic::loongarch_lasx_xvseqi_h:
2161 case Intrinsic::loongarch_lasx_xvseqi_w:
2162 case Intrinsic::loongarch_lasx_xvseqi_d:
2163 case Intrinsic::loongarch_lasx_xvslei_b:
2164 case Intrinsic::loongarch_lasx_xvslei_h:
2165 case Intrinsic::loongarch_lasx_xvslei_w:
2166 case Intrinsic::loongarch_lasx_xvslei_d:
2167 case Intrinsic::loongarch_lasx_xvslti_b:
2168 case Intrinsic::loongarch_lasx_xvslti_h:
2169 case Intrinsic::loongarch_lasx_xvslti_w:
2170 case Intrinsic::loongarch_lasx_xvslti_d:
2171 return checkIntrinsicImmArg<5>(
Op, 2, DAG,
true);
2172 case Intrinsic::loongarch_lsx_vsrlni_h_w:
2173 case Intrinsic::loongarch_lsx_vsrani_h_w:
2174 case Intrinsic::loongarch_lsx_vsrlrni_h_w:
2175 case Intrinsic::loongarch_lsx_vsrarni_h_w:
2176 case Intrinsic::loongarch_lsx_vssrlni_h_w:
2177 case Intrinsic::loongarch_lsx_vssrani_h_w:
2178 case Intrinsic::loongarch_lsx_vssrlni_hu_w:
2179 case Intrinsic::loongarch_lsx_vssrani_hu_w:
2180 case Intrinsic::loongarch_lsx_vssrlrni_h_w:
2181 case Intrinsic::loongarch_lsx_vssrarni_h_w:
2182 case Intrinsic::loongarch_lsx_vssrlrni_hu_w:
2183 case Intrinsic::loongarch_lsx_vssrarni_hu_w:
2184 case Intrinsic::loongarch_lsx_vfrstpi_b:
2185 case Intrinsic::loongarch_lsx_vfrstpi_h:
2186 case Intrinsic::loongarch_lasx_xvsrlni_h_w:
2187 case Intrinsic::loongarch_lasx_xvsrani_h_w:
2188 case Intrinsic::loongarch_lasx_xvsrlrni_h_w:
2189 case Intrinsic::loongarch_lasx_xvsrarni_h_w:
2190 case Intrinsic::loongarch_lasx_xvssrlni_h_w:
2191 case Intrinsic::loongarch_lasx_xvssrani_h_w:
2192 case Intrinsic::loongarch_lasx_xvssrlni_hu_w:
2193 case Intrinsic::loongarch_lasx_xvssrani_hu_w:
2194 case Intrinsic::loongarch_lasx_xvssrlrni_h_w:
2195 case Intrinsic::loongarch_lasx_xvssrarni_h_w:
2196 case Intrinsic::loongarch_lasx_xvssrlrni_hu_w:
2197 case Intrinsic::loongarch_lasx_xvssrarni_hu_w:
2198 case Intrinsic::loongarch_lasx_xvfrstpi_b:
2199 case Intrinsic::loongarch_lasx_xvfrstpi_h:
2200 return checkIntrinsicImmArg<5>(
Op, 3, DAG);
2201 case Intrinsic::loongarch_lsx_vsat_d:
2202 case Intrinsic::loongarch_lsx_vsat_du:
2203 case Intrinsic::loongarch_lsx_vrotri_d:
2204 case Intrinsic::loongarch_lsx_vsrlri_d:
2205 case Intrinsic::loongarch_lsx_vsrari_d:
2206 case Intrinsic::loongarch_lasx_xvsat_d:
2207 case Intrinsic::loongarch_lasx_xvsat_du:
2208 case Intrinsic::loongarch_lasx_xvrotri_d:
2209 case Intrinsic::loongarch_lasx_xvsrlri_d:
2210 case Intrinsic::loongarch_lasx_xvsrari_d:
2211 return checkIntrinsicImmArg<6>(
Op, 2, DAG);
2212 case Intrinsic::loongarch_lsx_vsrlni_w_d:
2213 case Intrinsic::loongarch_lsx_vsrani_w_d:
2214 case Intrinsic::loongarch_lsx_vsrlrni_w_d:
2215 case Intrinsic::loongarch_lsx_vsrarni_w_d:
2216 case Intrinsic::loongarch_lsx_vssrlni_w_d:
2217 case Intrinsic::loongarch_lsx_vssrani_w_d:
2218 case Intrinsic::loongarch_lsx_vssrlni_wu_d:
2219 case Intrinsic::loongarch_lsx_vssrani_wu_d:
2220 case Intrinsic::loongarch_lsx_vssrlrni_w_d:
2221 case Intrinsic::loongarch_lsx_vssrarni_w_d:
2222 case Intrinsic::loongarch_lsx_vssrlrni_wu_d:
2223 case Intrinsic::loongarch_lsx_vssrarni_wu_d:
2224 case Intrinsic::loongarch_lasx_xvsrlni_w_d:
2225 case Intrinsic::loongarch_lasx_xvsrani_w_d:
2226 case Intrinsic::loongarch_lasx_xvsrlrni_w_d:
2227 case Intrinsic::loongarch_lasx_xvsrarni_w_d:
2228 case Intrinsic::loongarch_lasx_xvssrlni_w_d:
2229 case Intrinsic::loongarch_lasx_xvssrani_w_d:
2230 case Intrinsic::loongarch_lasx_xvssrlni_wu_d:
2231 case Intrinsic::loongarch_lasx_xvssrani_wu_d:
2232 case Intrinsic::loongarch_lasx_xvssrlrni_w_d:
2233 case Intrinsic::loongarch_lasx_xvssrarni_w_d:
2234 case Intrinsic::loongarch_lasx_xvssrlrni_wu_d:
2235 case Intrinsic::loongarch_lasx_xvssrarni_wu_d:
2236 return checkIntrinsicImmArg<6>(
Op, 3, DAG);
2237 case Intrinsic::loongarch_lsx_vsrlni_d_q:
2238 case Intrinsic::loongarch_lsx_vsrani_d_q:
2239 case Intrinsic::loongarch_lsx_vsrlrni_d_q:
2240 case Intrinsic::loongarch_lsx_vsrarni_d_q:
2241 case Intrinsic::loongarch_lsx_vssrlni_d_q:
2242 case Intrinsic::loongarch_lsx_vssrani_d_q:
2243 case Intrinsic::loongarch_lsx_vssrlni_du_q:
2244 case Intrinsic::loongarch_lsx_vssrani_du_q:
2245 case Intrinsic::loongarch_lsx_vssrlrni_d_q:
2246 case Intrinsic::loongarch_lsx_vssrarni_d_q:
2247 case Intrinsic::loongarch_lsx_vssrlrni_du_q:
2248 case Intrinsic::loongarch_lsx_vssrarni_du_q:
2249 case Intrinsic::loongarch_lasx_xvsrlni_d_q:
2250 case Intrinsic::loongarch_lasx_xvsrani_d_q:
2251 case Intrinsic::loongarch_lasx_xvsrlrni_d_q:
2252 case Intrinsic::loongarch_lasx_xvsrarni_d_q:
2253 case Intrinsic::loongarch_lasx_xvssrlni_d_q:
2254 case Intrinsic::loongarch_lasx_xvssrani_d_q:
2255 case Intrinsic::loongarch_lasx_xvssrlni_du_q:
2256 case Intrinsic::loongarch_lasx_xvssrani_du_q:
2257 case Intrinsic::loongarch_lasx_xvssrlrni_d_q:
2258 case Intrinsic::loongarch_lasx_xvssrarni_d_q:
2259 case Intrinsic::loongarch_lasx_xvssrlrni_du_q:
2260 case Intrinsic::loongarch_lasx_xvssrarni_du_q:
2261 return checkIntrinsicImmArg<7>(
Op, 3, DAG);
2262 case Intrinsic::loongarch_lsx_vnori_b:
2263 case Intrinsic::loongarch_lsx_vshuf4i_b:
2264 case Intrinsic::loongarch_lsx_vshuf4i_h:
2265 case Intrinsic::loongarch_lsx_vshuf4i_w:
2266 case Intrinsic::loongarch_lasx_xvnori_b:
2267 case Intrinsic::loongarch_lasx_xvshuf4i_b:
2268 case Intrinsic::loongarch_lasx_xvshuf4i_h:
2269 case Intrinsic::loongarch_lasx_xvshuf4i_w:
2270 case Intrinsic::loongarch_lasx_xvpermi_d:
2271 return checkIntrinsicImmArg<8>(
Op, 2, DAG);
2272 case Intrinsic::loongarch_lsx_vshuf4i_d:
2273 case Intrinsic::loongarch_lsx_vpermi_w:
2274 case Intrinsic::loongarch_lsx_vbitseli_b:
2275 case Intrinsic::loongarch_lsx_vextrins_b:
2276 case Intrinsic::loongarch_lsx_vextrins_h:
2277 case Intrinsic::loongarch_lsx_vextrins_w:
2278 case Intrinsic::loongarch_lsx_vextrins_d:
2279 case Intrinsic::loongarch_lasx_xvshuf4i_d:
2280 case Intrinsic::loongarch_lasx_xvpermi_w:
2281 case Intrinsic::loongarch_lasx_xvpermi_q:
2282 case Intrinsic::loongarch_lasx_xvbitseli_b:
2283 case Intrinsic::loongarch_lasx_xvextrins_b:
2284 case Intrinsic::loongarch_lasx_xvextrins_h:
2285 case Intrinsic::loongarch_lasx_xvextrins_w:
2286 case Intrinsic::loongarch_lasx_xvextrins_d:
2287 return checkIntrinsicImmArg<8>(
Op, 3, DAG);
2288 case Intrinsic::loongarch_lsx_vrepli_b:
2289 case Intrinsic::loongarch_lsx_vrepli_h:
2290 case Intrinsic::loongarch_lsx_vrepli_w:
2291 case Intrinsic::loongarch_lsx_vrepli_d:
2292 case Intrinsic::loongarch_lasx_xvrepli_b:
2293 case Intrinsic::loongarch_lasx_xvrepli_h:
2294 case Intrinsic::loongarch_lasx_xvrepli_w:
2295 case Intrinsic::loongarch_lasx_xvrepli_d:
2296 return checkIntrinsicImmArg<10>(
Op, 1, DAG,
true);
2297 case Intrinsic::loongarch_lsx_vldi:
2298 case Intrinsic::loongarch_lasx_xvldi:
2299 return checkIntrinsicImmArg<13>(
Op, 1, DAG,
true);
2314LoongArchTargetLowering::lowerINTRINSIC_W_CHAIN(
SDValue Op,
2318 EVT VT =
Op.getValueType();
2320 const StringRef ErrorMsgOOR =
"argument out of range";
2321 const StringRef ErrorMsgReqLA64 =
"requires loongarch64";
2322 const StringRef ErrorMsgReqF =
"requires basic 'f' target feature";
2324 switch (
Op.getConstantOperandVal(1)) {
2327 case Intrinsic::loongarch_crc_w_b_w:
2328 case Intrinsic::loongarch_crc_w_h_w:
2329 case Intrinsic::loongarch_crc_w_w_w:
2330 case Intrinsic::loongarch_crc_w_d_w:
2331 case Intrinsic::loongarch_crcc_w_b_w:
2332 case Intrinsic::loongarch_crcc_w_h_w:
2333 case Intrinsic::loongarch_crcc_w_w_w:
2334 case Intrinsic::loongarch_crcc_w_d_w:
2336 case Intrinsic::loongarch_csrrd_w:
2337 case Intrinsic::loongarch_csrrd_d: {
2338 unsigned Imm =
Op.getConstantOperandVal(2);
2339 return !isUInt<14>(Imm)
2344 case Intrinsic::loongarch_csrwr_w:
2345 case Intrinsic::loongarch_csrwr_d: {
2346 unsigned Imm =
Op.getConstantOperandVal(3);
2347 return !isUInt<14>(Imm)
2350 {Chain,
Op.getOperand(2),
2353 case Intrinsic::loongarch_csrxchg_w:
2354 case Intrinsic::loongarch_csrxchg_d: {
2355 unsigned Imm =
Op.getConstantOperandVal(4);
2356 return !isUInt<14>(Imm)
2359 {Chain,
Op.getOperand(2),
Op.getOperand(3),
2362 case Intrinsic::loongarch_iocsrrd_d: {
2367#define IOCSRRD_CASE(NAME, NODE) \
2368 case Intrinsic::loongarch_##NAME: { \
2369 return DAG.getNode(LoongArchISD::NODE, DL, {GRLenVT, MVT::Other}, \
2370 {Chain, Op.getOperand(2)}); \
2376 case Intrinsic::loongarch_cpucfg: {
2378 {Chain,
Op.getOperand(2)});
2380 case Intrinsic::loongarch_lddir_d: {
2381 unsigned Imm =
Op.getConstantOperandVal(3);
2382 return !isUInt<8>(Imm)
2386 case Intrinsic::loongarch_movfcsr2gr: {
2387 if (!Subtarget.hasBasicF())
2389 unsigned Imm =
Op.getConstantOperandVal(2);
2390 return !isUInt<2>(Imm)
2395 case Intrinsic::loongarch_lsx_vld:
2396 case Intrinsic::loongarch_lsx_vldrepl_b:
2397 case Intrinsic::loongarch_lasx_xvld:
2398 case Intrinsic::loongarch_lasx_xvldrepl_b:
2399 return !isInt<12>(cast<ConstantSDNode>(
Op.getOperand(3))->getSExtValue())
2402 case Intrinsic::loongarch_lsx_vldrepl_h:
2403 case Intrinsic::loongarch_lasx_xvldrepl_h:
2404 return !isShiftedInt<11, 1>(
2405 cast<ConstantSDNode>(
Op.getOperand(3))->getSExtValue())
2407 Op,
"argument out of range or not a multiple of 2", DAG)
2409 case Intrinsic::loongarch_lsx_vldrepl_w:
2410 case Intrinsic::loongarch_lasx_xvldrepl_w:
2411 return !isShiftedInt<10, 2>(
2412 cast<ConstantSDNode>(
Op.getOperand(3))->getSExtValue())
2414 Op,
"argument out of range or not a multiple of 4", DAG)
2416 case Intrinsic::loongarch_lsx_vldrepl_d:
2417 case Intrinsic::loongarch_lasx_xvldrepl_d:
2418 return !isShiftedInt<9, 3>(
2419 cast<ConstantSDNode>(
Op.getOperand(3))->getSExtValue())
2421 Op,
"argument out of range or not a multiple of 8", DAG)
2432 return Op.getOperand(0);
2440 uint64_t IntrinsicEnum =
Op.getConstantOperandVal(1);
2442 const StringRef ErrorMsgOOR =
"argument out of range";
2443 const StringRef ErrorMsgReqLA64 =
"requires loongarch64";
2444 const StringRef ErrorMsgReqLA32 =
"requires loongarch32";
2445 const StringRef ErrorMsgReqF =
"requires basic 'f' target feature";
2447 switch (IntrinsicEnum) {
2451 case Intrinsic::loongarch_cacop_d:
2452 case Intrinsic::loongarch_cacop_w: {
2453 if (IntrinsicEnum == Intrinsic::loongarch_cacop_d && !Subtarget.
is64Bit())
2455 if (IntrinsicEnum == Intrinsic::loongarch_cacop_w && Subtarget.
is64Bit())
2459 int Imm2 = cast<ConstantSDNode>(
Op.getOperand(4))->getSExtValue();
2460 if (!isUInt<5>(Imm1) || !isInt<12>(Imm2))
2464 case Intrinsic::loongarch_dbar: {
2466 return !isUInt<15>(Imm)
2471 case Intrinsic::loongarch_ibar: {
2473 return !isUInt<15>(Imm)
2478 case Intrinsic::loongarch_break: {
2480 return !isUInt<15>(Imm)
2485 case Intrinsic::loongarch_movgr2fcsr: {
2486 if (!Subtarget.hasBasicF())
2489 return !isUInt<2>(Imm)
2496 case Intrinsic::loongarch_syscall: {
2498 return !isUInt<15>(Imm)
2503#define IOCSRWR_CASE(NAME, NODE) \
2504 case Intrinsic::loongarch_##NAME: { \
2505 SDValue Op3 = Op.getOperand(3); \
2506 return Subtarget.is64Bit() \
2507 ? DAG.getNode(LoongArchISD::NODE, DL, MVT::Other, Chain, \
2508 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op2), \
2509 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op3)) \
2510 : DAG.getNode(LoongArchISD::NODE, DL, MVT::Other, Chain, Op2, \
2517 case Intrinsic::loongarch_iocsrwr_d: {
2525#define ASRT_LE_GT_CASE(NAME) \
2526 case Intrinsic::loongarch_##NAME: { \
2527 return !Subtarget.is64Bit() \
2528 ? emitIntrinsicErrorMessage(Op, ErrorMsgReqLA64, DAG) \
2533#undef ASRT_LE_GT_CASE
2534 case Intrinsic::loongarch_ldpte_d: {
2535 unsigned Imm =
Op.getConstantOperandVal(3);
2541 case Intrinsic::loongarch_lsx_vst:
2542 case Intrinsic::loongarch_lasx_xvst:
2543 return !isInt<12>(cast<ConstantSDNode>(
Op.getOperand(4))->getSExtValue())
2546 case Intrinsic::loongarch_lasx_xvstelm_b:
2547 return (!isInt<8>(cast<ConstantSDNode>(
Op.getOperand(4))->getSExtValue()) ||
2548 !isUInt<5>(
Op.getConstantOperandVal(5)))
2551 case Intrinsic::loongarch_lsx_vstelm_b:
2552 return (!isInt<8>(cast<ConstantSDNode>(
Op.getOperand(4))->getSExtValue()) ||
2553 !isUInt<4>(
Op.getConstantOperandVal(5)))
2556 case Intrinsic::loongarch_lasx_xvstelm_h:
2557 return (!isShiftedInt<8, 1>(
2558 cast<ConstantSDNode>(
Op.getOperand(4))->getSExtValue()) ||
2559 !isUInt<4>(
Op.getConstantOperandVal(5)))
2561 Op,
"argument out of range or not a multiple of 2", DAG)
2563 case Intrinsic::loongarch_lsx_vstelm_h:
2564 return (!isShiftedInt<8, 1>(
2565 cast<ConstantSDNode>(
Op.getOperand(4))->getSExtValue()) ||
2566 !isUInt<3>(
Op.getConstantOperandVal(5)))
2568 Op,
"argument out of range or not a multiple of 2", DAG)
2570 case Intrinsic::loongarch_lasx_xvstelm_w:
2571 return (!isShiftedInt<8, 2>(
2572 cast<ConstantSDNode>(
Op.getOperand(4))->getSExtValue()) ||
2573 !isUInt<3>(
Op.getConstantOperandVal(5)))
2575 Op,
"argument out of range or not a multiple of 4", DAG)
2577 case Intrinsic::loongarch_lsx_vstelm_w:
2578 return (!isShiftedInt<8, 2>(
2579 cast<ConstantSDNode>(
Op.getOperand(4))->getSExtValue()) ||
2580 !isUInt<2>(
Op.getConstantOperandVal(5)))
2582 Op,
"argument out of range or not a multiple of 4", DAG)
2584 case Intrinsic::loongarch_lasx_xvstelm_d:
2585 return (!isShiftedInt<8, 3>(
2586 cast<ConstantSDNode>(
Op.getOperand(4))->getSExtValue()) ||
2587 !isUInt<2>(
Op.getConstantOperandVal(5)))
2589 Op,
"argument out of range or not a multiple of 8", DAG)
2591 case Intrinsic::loongarch_lsx_vstelm_d:
2592 return (!isShiftedInt<8, 3>(
2593 cast<ConstantSDNode>(
Op.getOperand(4))->getSExtValue()) ||
2594 !isUInt<1>(
Op.getConstantOperandVal(5)))
2596 Op,
"argument out of range or not a multiple of 8", DAG)
2607 EVT VT =
Lo.getValueType();
2648 EVT VT =
Lo.getValueType();
2740 NewOp0 = DAG.
getNode(ExtOpc,
DL, MVT::i64,
N->getOperand(0));
2741 NewRes = DAG.
getNode(WOpcode,
DL, MVT::i64, NewOp0);
2745 NewOp0 = DAG.
getNode(ExtOpc,
DL, MVT::i64,
N->getOperand(0));
2751 NewRes = DAG.
getNode(WOpcode,
DL, MVT::i64, NewOp0, NewOp1);
2778 StringRef ErrorMsg,
bool WithChain =
true) {
2783 Results.push_back(
N->getOperand(0));
2786template <
unsigned N>
2791 const StringRef ErrorMsgOOR =
"argument out of range";
2792 unsigned Imm =
Node->getConstantOperandVal(2);
2793 if (!isUInt<N>(Imm)) {
2826 switch (
N->getConstantOperandVal(0)) {
2829 case Intrinsic::loongarch_lsx_vpickve2gr_b:
2830 replaceVPICKVE2GRResults<4>(
N,
Results, DAG, Subtarget,
2833 case Intrinsic::loongarch_lsx_vpickve2gr_h:
2834 case Intrinsic::loongarch_lasx_xvpickve2gr_w:
2835 replaceVPICKVE2GRResults<3>(
N,
Results, DAG, Subtarget,
2838 case Intrinsic::loongarch_lsx_vpickve2gr_w:
2839 replaceVPICKVE2GRResults<2>(
N,
Results, DAG, Subtarget,
2842 case Intrinsic::loongarch_lsx_vpickve2gr_bu:
2843 replaceVPICKVE2GRResults<4>(
N,
Results, DAG, Subtarget,
2846 case Intrinsic::loongarch_lsx_vpickve2gr_hu:
2847 case Intrinsic::loongarch_lasx_xvpickve2gr_wu:
2848 replaceVPICKVE2GRResults<3>(
N,
Results, DAG, Subtarget,
2851 case Intrinsic::loongarch_lsx_vpickve2gr_wu:
2852 replaceVPICKVE2GRResults<2>(
N,
Results, DAG, Subtarget,
2855 case Intrinsic::loongarch_lsx_bz_b:
2856 case Intrinsic::loongarch_lsx_bz_h:
2857 case Intrinsic::loongarch_lsx_bz_w:
2858 case Intrinsic::loongarch_lsx_bz_d:
2859 case Intrinsic::loongarch_lasx_xbz_b:
2860 case Intrinsic::loongarch_lasx_xbz_h:
2861 case Intrinsic::loongarch_lasx_xbz_w:
2862 case Intrinsic::loongarch_lasx_xbz_d:
2866 case Intrinsic::loongarch_lsx_bz_v:
2867 case Intrinsic::loongarch_lasx_xbz_v:
2871 case Intrinsic::loongarch_lsx_bnz_b:
2872 case Intrinsic::loongarch_lsx_bnz_h:
2873 case Intrinsic::loongarch_lsx_bnz_w:
2874 case Intrinsic::loongarch_lsx_bnz_d:
2875 case Intrinsic::loongarch_lasx_xbnz_b:
2876 case Intrinsic::loongarch_lasx_xbnz_h:
2877 case Intrinsic::loongarch_lasx_xbnz_w:
2878 case Intrinsic::loongarch_lasx_xbnz_d:
2882 case Intrinsic::loongarch_lsx_bnz_v:
2883 case Intrinsic::loongarch_lasx_xbnz_v:
2893 EVT VT =
N->getValueType(0);
2894 switch (
N->getOpcode()) {
2900 "Unexpected custom legalisation");
2908 "Unexpected custom legalisation");
2910 Subtarget.hasDiv32() && VT == MVT::i32
2918 "Unexpected custom legalisation");
2927 "Unexpected custom legalisation");
2932 "Unexpected custom legalisation");
2937 if (Src.getValueType() == MVT::f16)
2948 EVT OpVT = Src.getValueType();
2952 std::tie(Result, Chain) =
2959 EVT SrcVT = Src.getValueType();
2960 if (VT == MVT::i32 && SrcVT == MVT::f32 && Subtarget.
is64Bit() &&
2961 Subtarget.hasBasicF()) {
2970 "Unexpected custom legalisation");
2973 TLI.expandFP_TO_UINT(
N, Tmp1, Tmp2, DAG);
2979 assert((VT == MVT::i16 || VT == MVT::i32) &&
2980 "Unexpected custom legalization");
3001 assert((VT == MVT::i8 || (VT == MVT::i32 && Subtarget.
is64Bit())) &&
3002 "Unexpected custom legalization");
3022 "Unexpected custom legalisation");
3030 const StringRef ErrorMsgOOR =
"argument out of range";
3031 const StringRef ErrorMsgReqLA64 =
"requires loongarch64";
3032 const StringRef ErrorMsgReqF =
"requires basic 'f' target feature";
3034 switch (
N->getConstantOperandVal(1)) {
3037 case Intrinsic::loongarch_movfcsr2gr: {
3038 if (!Subtarget.hasBasicF()) {
3043 if (!isUInt<2>(Imm)) {
3055#define CRC_CASE_EXT_BINARYOP(NAME, NODE) \
3056 case Intrinsic::loongarch_##NAME: { \
3057 SDValue NODE = DAG.getNode( \
3058 LoongArchISD::NODE, DL, {MVT::i64, MVT::Other}, \
3059 {Chain, DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op2), \
3060 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(3))}); \
3061 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, NODE.getValue(0))); \
3062 Results.push_back(NODE.getValue(1)); \
3071#undef CRC_CASE_EXT_BINARYOP
3073#define CRC_CASE_EXT_UNARYOP(NAME, NODE) \
3074 case Intrinsic::loongarch_##NAME: { \
3075 SDValue NODE = DAG.getNode( \
3076 LoongArchISD::NODE, DL, {MVT::i64, MVT::Other}, \
3078 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(3))}); \
3079 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, NODE.getValue(0))); \
3080 Results.push_back(NODE.getValue(1)); \
3085#undef CRC_CASE_EXT_UNARYOP
3086#define CSR_CASE(ID) \
3087 case Intrinsic::loongarch_##ID: { \
3088 if (!Subtarget.is64Bit()) \
3089 emitErrorAndReplaceIntrinsicResults(N, Results, DAG, ErrorMsgReqLA64); \
3097 case Intrinsic::loongarch_csrrd_w: {
3099 if (!isUInt<14>(Imm)) {
3111 case Intrinsic::loongarch_csrwr_w: {
3112 unsigned Imm =
N->getConstantOperandVal(3);
3113 if (!isUInt<14>(Imm)) {
3126 case Intrinsic::loongarch_csrxchg_w: {
3127 unsigned Imm =
N->getConstantOperandVal(4);
3128 if (!isUInt<14>(Imm)) {
3142#define IOCSRRD_CASE(NAME, NODE) \
3143 case Intrinsic::loongarch_##NAME: { \
3144 SDValue IOCSRRDResults = \
3145 DAG.getNode(LoongArchISD::NODE, DL, {MVT::i64, MVT::Other}, \
3146 {Chain, DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op2)}); \
3147 Results.push_back( \
3148 DAG.getNode(ISD::TRUNCATE, DL, VT, IOCSRRDResults.getValue(0))); \
3149 Results.push_back(IOCSRRDResults.getValue(1)); \
3156 case Intrinsic::loongarch_cpucfg: {
3165 case Intrinsic::loongarch_lddir_d: {
3178 "On LA64, only 64-bit registers can be read.");
3181 "On LA32, only 32-bit registers can be read.");
3183 Results.push_back(
N->getOperand(0));
3194 OpVT == MVT::f64 ? RTLIB::LROUND_F64 : RTLIB::LROUND_F32;
3211 SDValue FirstOperand =
N->getOperand(0);
3212 SDValue SecondOperand =
N->getOperand(1);
3213 unsigned FirstOperandOpc = FirstOperand.
getOpcode();
3214 EVT ValTy =
N->getValueType(0);
3217 unsigned SMIdx, SMLen;
3223 if (!(CN = dyn_cast<ConstantSDNode>(SecondOperand)) ||
3234 if (!(CN = dyn_cast<ConstantSDNode>(FirstOperand.
getOperand(1))))
3275 NewOperand = FirstOperand;
3278 msb = lsb + SMLen - 1;
3282 if (FirstOperandOpc ==
ISD::SRA || FirstOperandOpc ==
ISD::SRL || lsb == 0)
3303 SDValue FirstOperand =
N->getOperand(0);
3305 EVT ValTy =
N->getValueType(0);
3308 unsigned MaskIdx, MaskLen;
3314 !(CN = dyn_cast<ConstantSDNode>(FirstOperand.
getOperand(1))) ||
3319 if (!(CN = dyn_cast<ConstantSDNode>(
N->getOperand(1))))
3323 if (MaskIdx <= Shamt && Shamt <= MaskIdx + MaskLen - 1)
3336 EVT ValTy =
N->getValueType(0);
3337 SDValue N0 =
N->getOperand(0), N1 =
N->getOperand(1);
3341 unsigned MaskIdx0, MaskLen0, MaskIdx1, MaskLen1;
3343 bool SwapAndRetried =
false;
3348 if (ValBits != 32 && ValBits != 64)
3358 (CN0 = dyn_cast<ConstantSDNode>(N0.
getOperand(1))) &&
3361 (CN1 = dyn_cast<ConstantSDNode>(N1.getOperand(1))) &&
3363 MaskIdx0 == MaskIdx1 && MaskLen0 == MaskLen1 &&
3364 (CN1 = dyn_cast<ConstantSDNode>(N1.getOperand(0).getOperand(1))) &&
3366 (MaskIdx0 + MaskLen0 <= ValBits)) {
3380 (CN0 = dyn_cast<ConstantSDNode>(N0.
getOperand(1))) &&
3383 (CN1 = dyn_cast<ConstantSDNode>(N1.getOperand(1))) &&
3385 (CN1 = dyn_cast<ConstantSDNode>(N1.getOperand(0).getOperand(1))) &&
3387 MaskLen0 == MaskLen1 && MaskIdx1 == 0 &&
3388 (MaskIdx0 + MaskLen0 <= ValBits)) {
3403 (CN0 = dyn_cast<ConstantSDNode>(N0.
getOperand(1))) &&
3405 (MaskIdx0 + MaskLen0 <= 64) &&
3406 (CN1 = dyn_cast<ConstantSDNode>(N1->getOperand(1))) &&
3413 ? (MaskIdx0 + (MaskLen0 & 31) - 1)
3414 : (MaskIdx0 + MaskLen0 - 1),
3426 (CN0 = dyn_cast<ConstantSDNode>(N0.
getOperand(1))) &&
3428 MaskIdx0 == 0 && (CN1 = dyn_cast<ConstantSDNode>(N1.getOperand(1))) &&
3430 (MaskIdx0 + MaskLen0 <= ValBits)) {
3445 (CN0 = dyn_cast<ConstantSDNode>(N0.
getOperand(1))) &&
3447 (CN1 = dyn_cast<ConstantSDNode>(N1)) &&
3453 DAG.
getConstant(ValBits == 32 ? (MaskIdx0 + (MaskLen0 & 31) - 1)
3454 : (MaskIdx0 + MaskLen0 - 1),
3469 unsigned MaskIdx, MaskLen;
3470 if (N1.getOpcode() ==
ISD::SHL && N1.getOperand(0).getOpcode() ==
ISD::AND &&
3471 (CNMask = dyn_cast<ConstantSDNode>(N1.getOperand(0).getOperand(1))) &&
3473 MaskIdx == 0 && (CNShamt = dyn_cast<ConstantSDNode>(N1.getOperand(1))) &&
3495 (CNMask = dyn_cast<ConstantSDNode>(N1.getOperand(1))) &&
3497 N1.getOperand(0).getOpcode() ==
ISD::SHL &&
3498 (CNShamt = dyn_cast<ConstantSDNode>(N1.getOperand(0).getOperand(1))) &&
3511 if (!SwapAndRetried) {
3513 SwapAndRetried =
true;
3517 SwapAndRetried =
false;
3529 (CNMask = dyn_cast<ConstantSDNode>(N1.getOperand(1))) &&
3543 if (!SwapAndRetried) {
3545 SwapAndRetried =
true;
3555 switch (V.getNode()->getOpcode()) {
3557 LoadSDNode *LoadNode = cast<LoadSDNode>(V.getNode());
3566 VTSDNode *TypeNode = cast<VTSDNode>(V.getNode()->getOperand(1));
3567 if ((TypeNode->
getVT() == MVT::i8) || (TypeNode->
getVT() == MVT::i16)) {
3574 VTSDNode *TypeNode = cast<VTSDNode>(V.getNode()->getOperand(1));
3575 if ((TypeNode->
getVT() == MVT::i8) || (TypeNode->
getVT() == MVT::i16)) {
3652 SDNode *AndNode =
N->getOperand(0).getNode();
3660 SDValue CmpInputValue =
N->getOperand(1);
3668 CN = dyn_cast<ConstantSDNode>(CmpInputValue);
3671 AndInputValue1 = AndInputValue1.
getOperand(0);
3675 if (AndInputValue2 != CmpInputValue)
3708 TruncInputValue1, TruncInputValue2);
3730template <
unsigned N>
3734 bool IsSigned =
false) {
3736 auto *CImm = cast<ConstantSDNode>(
Node->getOperand(ImmOp));
3738 if ((IsSigned && !isInt<N>(CImm->getSExtValue())) ||
3739 (!IsSigned && !isUInt<N>(CImm->getZExtValue()))) {
3741 ": argument out of range.");
3747template <
unsigned N>
3751 EVT ResTy =
Node->getValueType(0);
3752 auto *CImm = cast<ConstantSDNode>(
Node->getOperand(ImmOp));
3755 if ((IsSigned && !isInt<N>(CImm->getSExtValue())) ||
3756 (!IsSigned && !isUInt<N>(CImm->getZExtValue()))) {
3758 ": argument out of range.");
3763 IsSigned ? CImm->getSExtValue() : CImm->getZExtValue(), IsSigned),
3769 EVT ResTy =
Node->getValueType(0);
3777 EVT ResTy =
Node->getValueType(0);
3786template <
unsigned N>
3789 EVT ResTy =
Node->getValueType(0);
3790 auto *CImm = cast<ConstantSDNode>(
Node->getOperand(2));
3792 if (!isUInt<N>(CImm->getZExtValue())) {
3794 ": argument out of range.");
3804template <
unsigned N>
3807 EVT ResTy =
Node->getValueType(0);
3808 auto *CImm = cast<ConstantSDNode>(
Node->getOperand(2));
3810 if (!isUInt<N>(CImm->getZExtValue())) {
3812 ": argument out of range.");
3821template <
unsigned N>
3824 EVT ResTy =
Node->getValueType(0);
3825 auto *CImm = cast<ConstantSDNode>(
Node->getOperand(2));
3827 if (!isUInt<N>(CImm->getZExtValue())) {
3829 ": argument out of range.");
3843 switch (
N->getConstantOperandVal(0)) {
3846 case Intrinsic::loongarch_lsx_vadd_b:
3847 case Intrinsic::loongarch_lsx_vadd_h:
3848 case Intrinsic::loongarch_lsx_vadd_w:
3849 case Intrinsic::loongarch_lsx_vadd_d:
3850 case Intrinsic::loongarch_lasx_xvadd_b:
3851 case Intrinsic::loongarch_lasx_xvadd_h:
3852 case Intrinsic::loongarch_lasx_xvadd_w:
3853 case Intrinsic::loongarch_lasx_xvadd_d:
3856 case Intrinsic::loongarch_lsx_vaddi_bu:
3857 case Intrinsic::loongarch_lsx_vaddi_hu:
3858 case Intrinsic::loongarch_lsx_vaddi_wu:
3859 case Intrinsic::loongarch_lsx_vaddi_du:
3860 case Intrinsic::loongarch_lasx_xvaddi_bu:
3861 case Intrinsic::loongarch_lasx_xvaddi_hu:
3862 case Intrinsic::loongarch_lasx_xvaddi_wu:
3863 case Intrinsic::loongarch_lasx_xvaddi_du:
3865 lowerVectorSplatImm<5>(
N, 2, DAG));
3866 case Intrinsic::loongarch_lsx_vsub_b:
3867 case Intrinsic::loongarch_lsx_vsub_h:
3868 case Intrinsic::loongarch_lsx_vsub_w:
3869 case Intrinsic::loongarch_lsx_vsub_d:
3870 case Intrinsic::loongarch_lasx_xvsub_b:
3871 case Intrinsic::loongarch_lasx_xvsub_h:
3872 case Intrinsic::loongarch_lasx_xvsub_w:
3873 case Intrinsic::loongarch_lasx_xvsub_d:
3876 case Intrinsic::loongarch_lsx_vsubi_bu:
3877 case Intrinsic::loongarch_lsx_vsubi_hu:
3878 case Intrinsic::loongarch_lsx_vsubi_wu:
3879 case Intrinsic::loongarch_lsx_vsubi_du:
3880 case Intrinsic::loongarch_lasx_xvsubi_bu:
3881 case Intrinsic::loongarch_lasx_xvsubi_hu:
3882 case Intrinsic::loongarch_lasx_xvsubi_wu:
3883 case Intrinsic::loongarch_lasx_xvsubi_du:
3885 lowerVectorSplatImm<5>(
N, 2, DAG));
3886 case Intrinsic::loongarch_lsx_vneg_b:
3887 case Intrinsic::loongarch_lsx_vneg_h:
3888 case Intrinsic::loongarch_lsx_vneg_w:
3889 case Intrinsic::loongarch_lsx_vneg_d:
3890 case Intrinsic::loongarch_lasx_xvneg_b:
3891 case Intrinsic::loongarch_lasx_xvneg_h:
3892 case Intrinsic::loongarch_lasx_xvneg_w:
3893 case Intrinsic::loongarch_lasx_xvneg_d:
3897 APInt(
N->getValueType(0).getScalarType().getSizeInBits(), 0,
3899 SDLoc(
N),
N->getValueType(0)),
3901 case Intrinsic::loongarch_lsx_vmax_b:
3902 case Intrinsic::loongarch_lsx_vmax_h:
3903 case Intrinsic::loongarch_lsx_vmax_w:
3904 case Intrinsic::loongarch_lsx_vmax_d:
3905 case Intrinsic::loongarch_lasx_xvmax_b:
3906 case Intrinsic::loongarch_lasx_xvmax_h:
3907 case Intrinsic::loongarch_lasx_xvmax_w:
3908 case Intrinsic::loongarch_lasx_xvmax_d:
3911 case Intrinsic::loongarch_lsx_vmax_bu:
3912 case Intrinsic::loongarch_lsx_vmax_hu:
3913 case Intrinsic::loongarch_lsx_vmax_wu:
3914 case Intrinsic::loongarch_lsx_vmax_du:
3915 case Intrinsic::loongarch_lasx_xvmax_bu:
3916 case Intrinsic::loongarch_lasx_xvmax_hu:
3917 case Intrinsic::loongarch_lasx_xvmax_wu:
3918 case Intrinsic::loongarch_lasx_xvmax_du:
3921 case Intrinsic::loongarch_lsx_vmaxi_b:
3922 case Intrinsic::loongarch_lsx_vmaxi_h:
3923 case Intrinsic::loongarch_lsx_vmaxi_w:
3924 case Intrinsic::loongarch_lsx_vmaxi_d:
3925 case Intrinsic::loongarch_lasx_xvmaxi_b:
3926 case Intrinsic::loongarch_lasx_xvmaxi_h:
3927 case Intrinsic::loongarch_lasx_xvmaxi_w:
3928 case Intrinsic::loongarch_lasx_xvmaxi_d:
3930 lowerVectorSplatImm<5>(
N, 2, DAG,
true));
3931 case Intrinsic::loongarch_lsx_vmaxi_bu:
3932 case Intrinsic::loongarch_lsx_vmaxi_hu:
3933 case Intrinsic::loongarch_lsx_vmaxi_wu:
3934 case Intrinsic::loongarch_lsx_vmaxi_du:
3935 case Intrinsic::loongarch_lasx_xvmaxi_bu:
3936 case Intrinsic::loongarch_lasx_xvmaxi_hu:
3937 case Intrinsic::loongarch_lasx_xvmaxi_wu:
3938 case Intrinsic::loongarch_lasx_xvmaxi_du:
3940 lowerVectorSplatImm<5>(
N, 2, DAG));
3941 case Intrinsic::loongarch_lsx_vmin_b:
3942 case Intrinsic::loongarch_lsx_vmin_h:
3943 case Intrinsic::loongarch_lsx_vmin_w:
3944 case Intrinsic::loongarch_lsx_vmin_d:
3945 case Intrinsic::loongarch_lasx_xvmin_b:
3946 case Intrinsic::loongarch_lasx_xvmin_h:
3947 case Intrinsic::loongarch_lasx_xvmin_w:
3948 case Intrinsic::loongarch_lasx_xvmin_d:
3951 case Intrinsic::loongarch_lsx_vmin_bu:
3952 case Intrinsic::loongarch_lsx_vmin_hu:
3953 case Intrinsic::loongarch_lsx_vmin_wu:
3954 case Intrinsic::loongarch_lsx_vmin_du:
3955 case Intrinsic::loongarch_lasx_xvmin_bu:
3956 case Intrinsic::loongarch_lasx_xvmin_hu:
3957 case Intrinsic::loongarch_lasx_xvmin_wu:
3958 case Intrinsic::loongarch_lasx_xvmin_du:
3961 case Intrinsic::loongarch_lsx_vmini_b:
3962 case Intrinsic::loongarch_lsx_vmini_h:
3963 case Intrinsic::loongarch_lsx_vmini_w:
3964 case Intrinsic::loongarch_lsx_vmini_d:
3965 case Intrinsic::loongarch_lasx_xvmini_b:
3966 case Intrinsic::loongarch_lasx_xvmini_h:
3967 case Intrinsic::loongarch_lasx_xvmini_w:
3968 case Intrinsic::loongarch_lasx_xvmini_d:
3970 lowerVectorSplatImm<5>(
N, 2, DAG,
true));
3971 case Intrinsic::loongarch_lsx_vmini_bu:
3972 case Intrinsic::loongarch_lsx_vmini_hu:
3973 case Intrinsic::loongarch_lsx_vmini_wu:
3974 case Intrinsic::loongarch_lsx_vmini_du:
3975 case Intrinsic::loongarch_lasx_xvmini_bu:
3976 case Intrinsic::loongarch_lasx_xvmini_hu:
3977 case Intrinsic::loongarch_lasx_xvmini_wu:
3978 case Intrinsic::loongarch_lasx_xvmini_du:
3980 lowerVectorSplatImm<5>(
N, 2, DAG));
3981 case Intrinsic::loongarch_lsx_vmul_b:
3982 case Intrinsic::loongarch_lsx_vmul_h:
3983 case Intrinsic::loongarch_lsx_vmul_w:
3984 case Intrinsic::loongarch_lsx_vmul_d:
3985 case Intrinsic::loongarch_lasx_xvmul_b:
3986 case Intrinsic::loongarch_lasx_xvmul_h:
3987 case Intrinsic::loongarch_lasx_xvmul_w:
3988 case Intrinsic::loongarch_lasx_xvmul_d:
3991 case Intrinsic::loongarch_lsx_vmadd_b:
3992 case Intrinsic::loongarch_lsx_vmadd_h:
3993 case Intrinsic::loongarch_lsx_vmadd_w:
3994 case Intrinsic::loongarch_lsx_vmadd_d:
3995 case Intrinsic::loongarch_lasx_xvmadd_b:
3996 case Intrinsic::loongarch_lasx_xvmadd_h:
3997 case Intrinsic::loongarch_lasx_xvmadd_w:
3998 case Intrinsic::loongarch_lasx_xvmadd_d: {
3999 EVT ResTy =
N->getValueType(0);
4004 case Intrinsic::loongarch_lsx_vmsub_b:
4005 case Intrinsic::loongarch_lsx_vmsub_h:
4006 case Intrinsic::loongarch_lsx_vmsub_w:
4007 case Intrinsic::loongarch_lsx_vmsub_d:
4008 case Intrinsic::loongarch_lasx_xvmsub_b:
4009 case Intrinsic::loongarch_lasx_xvmsub_h:
4010 case Intrinsic::loongarch_lasx_xvmsub_w:
4011 case Intrinsic::loongarch_lasx_xvmsub_d: {
4012 EVT ResTy =
N->getValueType(0);
4017 case Intrinsic::loongarch_lsx_vdiv_b:
4018 case Intrinsic::loongarch_lsx_vdiv_h:
4019 case Intrinsic::loongarch_lsx_vdiv_w:
4020 case Intrinsic::loongarch_lsx_vdiv_d:
4021 case Intrinsic::loongarch_lasx_xvdiv_b:
4022 case Intrinsic::loongarch_lasx_xvdiv_h:
4023 case Intrinsic::loongarch_lasx_xvdiv_w:
4024 case Intrinsic::loongarch_lasx_xvdiv_d:
4027 case Intrinsic::loongarch_lsx_vdiv_bu:
4028 case Intrinsic::loongarch_lsx_vdiv_hu:
4029 case Intrinsic::loongarch_lsx_vdiv_wu:
4030 case Intrinsic::loongarch_lsx_vdiv_du:
4031 case Intrinsic::loongarch_lasx_xvdiv_bu:
4032 case Intrinsic::loongarch_lasx_xvdiv_hu:
4033 case Intrinsic::loongarch_lasx_xvdiv_wu:
4034 case Intrinsic::loongarch_lasx_xvdiv_du:
4037 case Intrinsic::loongarch_lsx_vmod_b:
4038 case Intrinsic::loongarch_lsx_vmod_h:
4039 case Intrinsic::loongarch_lsx_vmod_w:
4040 case Intrinsic::loongarch_lsx_vmod_d:
4041 case Intrinsic::loongarch_lasx_xvmod_b:
4042 case Intrinsic::loongarch_lasx_xvmod_h:
4043 case Intrinsic::loongarch_lasx_xvmod_w:
4044 case Intrinsic::loongarch_lasx_xvmod_d:
4047 case Intrinsic::loongarch_lsx_vmod_bu:
4048 case Intrinsic::loongarch_lsx_vmod_hu:
4049 case Intrinsic::loongarch_lsx_vmod_wu:
4050 case Intrinsic::loongarch_lsx_vmod_du:
4051 case Intrinsic::loongarch_lasx_xvmod_bu:
4052 case Intrinsic::loongarch_lasx_xvmod_hu:
4053 case Intrinsic::loongarch_lasx_xvmod_wu:
4054 case Intrinsic::loongarch_lasx_xvmod_du:
4057 case Intrinsic::loongarch_lsx_vand_v:
4058 case Intrinsic::loongarch_lasx_xvand_v:
4061 case Intrinsic::loongarch_lsx_vor_v:
4062 case Intrinsic::loongarch_lasx_xvor_v:
4065 case Intrinsic::loongarch_lsx_vxor_v:
4066 case Intrinsic::loongarch_lasx_xvxor_v:
4069 case Intrinsic::loongarch_lsx_vnor_v:
4070 case Intrinsic::loongarch_lasx_xvnor_v: {
4075 case Intrinsic::loongarch_lsx_vandi_b:
4076 case Intrinsic::loongarch_lasx_xvandi_b:
4078 lowerVectorSplatImm<8>(
N, 2, DAG));
4079 case Intrinsic::loongarch_lsx_vori_b:
4080 case Intrinsic::loongarch_lasx_xvori_b:
4082 lowerVectorSplatImm<8>(
N, 2, DAG));
4083 case Intrinsic::loongarch_lsx_vxori_b:
4084 case Intrinsic::loongarch_lasx_xvxori_b:
4086 lowerVectorSplatImm<8>(
N, 2, DAG));
4087 case Intrinsic::loongarch_lsx_vsll_b:
4088 case Intrinsic::loongarch_lsx_vsll_h:
4089 case Intrinsic::loongarch_lsx_vsll_w:
4090 case Intrinsic::loongarch_lsx_vsll_d:
4091 case Intrinsic::loongarch_lasx_xvsll_b:
4092 case Intrinsic::loongarch_lasx_xvsll_h:
4093 case Intrinsic::loongarch_lasx_xvsll_w:
4094 case Intrinsic::loongarch_lasx_xvsll_d:
4097 case Intrinsic::loongarch_lsx_vslli_b:
4098 case Intrinsic::loongarch_lasx_xvslli_b:
4100 lowerVectorSplatImm<3>(
N, 2, DAG));
4101 case Intrinsic::loongarch_lsx_vslli_h:
4102 case Intrinsic::loongarch_lasx_xvslli_h:
4104 lowerVectorSplatImm<4>(
N, 2, DAG));
4105 case Intrinsic::loongarch_lsx_vslli_w:
4106 case Intrinsic::loongarch_lasx_xvslli_w:
4108 lowerVectorSplatImm<5>(
N, 2, DAG));
4109 case Intrinsic::loongarch_lsx_vslli_d:
4110 case Intrinsic::loongarch_lasx_xvslli_d:
4112 lowerVectorSplatImm<6>(
N, 2, DAG));
4113 case Intrinsic::loongarch_lsx_vsrl_b:
4114 case Intrinsic::loongarch_lsx_vsrl_h:
4115 case Intrinsic::loongarch_lsx_vsrl_w:
4116 case Intrinsic::loongarch_lsx_vsrl_d:
4117 case Intrinsic::loongarch_lasx_xvsrl_b:
4118 case Intrinsic::loongarch_lasx_xvsrl_h:
4119 case Intrinsic::loongarch_lasx_xvsrl_w:
4120 case Intrinsic::loongarch_lasx_xvsrl_d:
4123 case Intrinsic::loongarch_lsx_vsrli_b:
4124 case Intrinsic::loongarch_lasx_xvsrli_b:
4126 lowerVectorSplatImm<3>(
N, 2, DAG));
4127 case Intrinsic::loongarch_lsx_vsrli_h:
4128 case Intrinsic::loongarch_lasx_xvsrli_h:
4130 lowerVectorSplatImm<4>(
N, 2, DAG));
4131 case Intrinsic::loongarch_lsx_vsrli_w:
4132 case Intrinsic::loongarch_lasx_xvsrli_w:
4134 lowerVectorSplatImm<5>(
N, 2, DAG));
4135 case Intrinsic::loongarch_lsx_vsrli_d:
4136 case Intrinsic::loongarch_lasx_xvsrli_d:
4138 lowerVectorSplatImm<6>(
N, 2, DAG));
4139 case Intrinsic::loongarch_lsx_vsra_b:
4140 case Intrinsic::loongarch_lsx_vsra_h:
4141 case Intrinsic::loongarch_lsx_vsra_w:
4142 case Intrinsic::loongarch_lsx_vsra_d:
4143 case Intrinsic::loongarch_lasx_xvsra_b:
4144 case Intrinsic::loongarch_lasx_xvsra_h:
4145 case Intrinsic::loongarch_lasx_xvsra_w:
4146 case Intrinsic::loongarch_lasx_xvsra_d:
4149 case Intrinsic::loongarch_lsx_vsrai_b:
4150 case Intrinsic::loongarch_lasx_xvsrai_b:
4152 lowerVectorSplatImm<3>(
N, 2, DAG));
4153 case Intrinsic::loongarch_lsx_vsrai_h:
4154 case Intrinsic::loongarch_lasx_xvsrai_h:
4156 lowerVectorSplatImm<4>(
N, 2, DAG));
4157 case Intrinsic::loongarch_lsx_vsrai_w:
4158 case Intrinsic::loongarch_lasx_xvsrai_w:
4160 lowerVectorSplatImm<5>(
N, 2, DAG));
4161 case Intrinsic::loongarch_lsx_vsrai_d:
4162 case Intrinsic::loongarch_lasx_xvsrai_d:
4164 lowerVectorSplatImm<6>(
N, 2, DAG));
4165 case Intrinsic::loongarch_lsx_vclz_b:
4166 case Intrinsic::loongarch_lsx_vclz_h:
4167 case Intrinsic::loongarch_lsx_vclz_w:
4168 case Intrinsic::loongarch_lsx_vclz_d:
4169 case Intrinsic::loongarch_lasx_xvclz_b:
4170 case Intrinsic::loongarch_lasx_xvclz_h:
4171 case Intrinsic::loongarch_lasx_xvclz_w:
4172 case Intrinsic::loongarch_lasx_xvclz_d:
4174 case Intrinsic::loongarch_lsx_vpcnt_b:
4175 case Intrinsic::loongarch_lsx_vpcnt_h:
4176 case Intrinsic::loongarch_lsx_vpcnt_w:
4177 case Intrinsic::loongarch_lsx_vpcnt_d:
4178 case Intrinsic::loongarch_lasx_xvpcnt_b:
4179 case Intrinsic::loongarch_lasx_xvpcnt_h:
4180 case Intrinsic::loongarch_lasx_xvpcnt_w:
4181 case Intrinsic::loongarch_lasx_xvpcnt_d:
4183 case Intrinsic::loongarch_lsx_vbitclr_b:
4184 case Intrinsic::loongarch_lsx_vbitclr_h:
4185 case Intrinsic::loongarch_lsx_vbitclr_w:
4186 case Intrinsic::loongarch_lsx_vbitclr_d:
4187 case Intrinsic::loongarch_lasx_xvbitclr_b:
4188 case Intrinsic::loongarch_lasx_xvbitclr_h:
4189 case Intrinsic::loongarch_lasx_xvbitclr_w:
4190 case Intrinsic::loongarch_lasx_xvbitclr_d:
4192 case Intrinsic::loongarch_lsx_vbitclri_b:
4193 case Intrinsic::loongarch_lasx_xvbitclri_b:
4194 return lowerVectorBitClearImm<3>(
N, DAG);
4195 case Intrinsic::loongarch_lsx_vbitclri_h:
4196 case Intrinsic::loongarch_lasx_xvbitclri_h:
4197 return lowerVectorBitClearImm<4>(
N, DAG);
4198 case Intrinsic::loongarch_lsx_vbitclri_w:
4199 case Intrinsic::loongarch_lasx_xvbitclri_w:
4200 return lowerVectorBitClearImm<5>(
N, DAG);
4201 case Intrinsic::loongarch_lsx_vbitclri_d:
4202 case Intrinsic::loongarch_lasx_xvbitclri_d:
4203 return lowerVectorBitClearImm<6>(
N, DAG);
4204 case Intrinsic::loongarch_lsx_vbitset_b:
4205 case Intrinsic::loongarch_lsx_vbitset_h:
4206 case Intrinsic::loongarch_lsx_vbitset_w:
4207 case Intrinsic::loongarch_lsx_vbitset_d:
4208 case Intrinsic::loongarch_lasx_xvbitset_b:
4209 case Intrinsic::loongarch_lasx_xvbitset_h:
4210 case Intrinsic::loongarch_lasx_xvbitset_w:
4211 case Intrinsic::loongarch_lasx_xvbitset_d: {
4212 EVT VecTy =
N->getValueType(0);
4218 case Intrinsic::loongarch_lsx_vbitseti_b:
4219 case Intrinsic::loongarch_lasx_xvbitseti_b:
4220 return lowerVectorBitSetImm<3>(
N, DAG);
4221 case Intrinsic::loongarch_lsx_vbitseti_h:
4222 case Intrinsic::loongarch_lasx_xvbitseti_h:
4223 return lowerVectorBitSetImm<4>(
N, DAG);
4224 case Intrinsic::loongarch_lsx_vbitseti_w:
4225 case Intrinsic::loongarch_lasx_xvbitseti_w:
4226 return lowerVectorBitSetImm<5>(
N, DAG);
4227 case Intrinsic::loongarch_lsx_vbitseti_d:
4228 case Intrinsic::loongarch_lasx_xvbitseti_d:
4229 return lowerVectorBitSetImm<6>(
N, DAG);
4230 case Intrinsic::loongarch_lsx_vbitrev_b:
4231 case Intrinsic::loongarch_lsx_vbitrev_h:
4232 case Intrinsic::loongarch_lsx_vbitrev_w:
4233 case Intrinsic::loongarch_lsx_vbitrev_d:
4234 case Intrinsic::loongarch_lasx_xvbitrev_b:
4235 case Intrinsic::loongarch_lasx_xvbitrev_h:
4236 case Intrinsic::loongarch_lasx_xvbitrev_w:
4237 case Intrinsic::loongarch_lasx_xvbitrev_d: {
4238 EVT VecTy =
N->getValueType(0);
4244 case Intrinsic::loongarch_lsx_vbitrevi_b:
4245 case Intrinsic::loongarch_lasx_xvbitrevi_b:
4246 return lowerVectorBitRevImm<3>(
N, DAG);
4247 case Intrinsic::loongarch_lsx_vbitrevi_h:
4248 case Intrinsic::loongarch_lasx_xvbitrevi_h:
4249 return lowerVectorBitRevImm<4>(
N, DAG);
4250 case Intrinsic::loongarch_lsx_vbitrevi_w:
4251 case Intrinsic::loongarch_lasx_xvbitrevi_w:
4252 return lowerVectorBitRevImm<5>(
N, DAG);
4253 case Intrinsic::loongarch_lsx_vbitrevi_d:
4254 case Intrinsic::loongarch_lasx_xvbitrevi_d:
4255 return lowerVectorBitRevImm<6>(
N, DAG);
4256 case Intrinsic::loongarch_lsx_vfadd_s:
4257 case Intrinsic::loongarch_lsx_vfadd_d:
4258 case Intrinsic::loongarch_lasx_xvfadd_s:
4259 case Intrinsic::loongarch_lasx_xvfadd_d:
4262 case Intrinsic::loongarch_lsx_vfsub_s:
4263 case Intrinsic::loongarch_lsx_vfsub_d:
4264 case Intrinsic::loongarch_lasx_xvfsub_s:
4265 case Intrinsic::loongarch_lasx_xvfsub_d:
4268 case Intrinsic::loongarch_lsx_vfmul_s:
4269 case Intrinsic::loongarch_lsx_vfmul_d:
4270 case Intrinsic::loongarch_lasx_xvfmul_s:
4271 case Intrinsic::loongarch_lasx_xvfmul_d:
4274 case Intrinsic::loongarch_lsx_vfdiv_s:
4275 case Intrinsic::loongarch_lsx_vfdiv_d:
4276 case Intrinsic::loongarch_lasx_xvfdiv_s:
4277 case Intrinsic::loongarch_lasx_xvfdiv_d:
4280 case Intrinsic::loongarch_lsx_vfmadd_s:
4281 case Intrinsic::loongarch_lsx_vfmadd_d:
4282 case Intrinsic::loongarch_lasx_xvfmadd_s:
4283 case Intrinsic::loongarch_lasx_xvfmadd_d:
4285 N->getOperand(2),
N->getOperand(3));
4286 case Intrinsic::loongarch_lsx_vinsgr2vr_b:
4288 N->getOperand(1),
N->getOperand(2),
4289 legalizeIntrinsicImmArg<4>(
N, 3, DAG, Subtarget));
4290 case Intrinsic::loongarch_lsx_vinsgr2vr_h:
4291 case Intrinsic::loongarch_lasx_xvinsgr2vr_w:
4293 N->getOperand(1),
N->getOperand(2),
4294 legalizeIntrinsicImmArg<3>(
N, 3, DAG, Subtarget));
4295 case Intrinsic::loongarch_lsx_vinsgr2vr_w:
4296 case Intrinsic::loongarch_lasx_xvinsgr2vr_d:
4298 N->getOperand(1),
N->getOperand(2),
4299 legalizeIntrinsicImmArg<2>(
N, 3, DAG, Subtarget));
4300 case Intrinsic::loongarch_lsx_vinsgr2vr_d:
4302 N->getOperand(1),
N->getOperand(2),
4303 legalizeIntrinsicImmArg<1>(
N, 3, DAG, Subtarget));
4304 case Intrinsic::loongarch_lsx_vreplgr2vr_b:
4305 case Intrinsic::loongarch_lsx_vreplgr2vr_h:
4306 case Intrinsic::loongarch_lsx_vreplgr2vr_w:
4307 case Intrinsic::loongarch_lsx_vreplgr2vr_d:
4308 case Intrinsic::loongarch_lasx_xvreplgr2vr_b:
4309 case Intrinsic::loongarch_lasx_xvreplgr2vr_h:
4310 case Intrinsic::loongarch_lasx_xvreplgr2vr_w:
4311 case Intrinsic::loongarch_lasx_xvreplgr2vr_d:
4315 case Intrinsic::loongarch_lsx_vreplve_b:
4316 case Intrinsic::loongarch_lsx_vreplve_h:
4317 case Intrinsic::loongarch_lsx_vreplve_w:
4318 case Intrinsic::loongarch_lsx_vreplve_d:
4319 case Intrinsic::loongarch_lasx_xvreplve_b:
4320 case Intrinsic::loongarch_lasx_xvreplve_h:
4321 case Intrinsic::loongarch_lasx_xvreplve_w:
4322 case Intrinsic::loongarch_lasx_xvreplve_d:
4334 switch (
N->getOpcode()) {
4371 MF->
insert(It, BreakMBB);
4375 SinkMBB->splice(SinkMBB->end(),
MBB, std::next(
MI.getIterator()),
MBB->
end());
4376 SinkMBB->transferSuccessorsAndUpdatePHIs(
MBB);
4394 BreakMBB->addSuccessor(SinkMBB);
4406 switch (
MI.getOpcode()) {
4409 case LoongArch::PseudoVBZ:
4410 CondOpc = LoongArch::VSETEQZ_V;
4412 case LoongArch::PseudoVBZ_B:
4413 CondOpc = LoongArch::VSETANYEQZ_B;
4415 case LoongArch::PseudoVBZ_H:
4416 CondOpc = LoongArch::VSETANYEQZ_H;
4418 case LoongArch::PseudoVBZ_W:
4419 CondOpc = LoongArch::VSETANYEQZ_W;
4421 case LoongArch::PseudoVBZ_D:
4422 CondOpc = LoongArch::VSETANYEQZ_D;
4424 case LoongArch::PseudoVBNZ:
4425 CondOpc = LoongArch::VSETNEZ_V;
4427 case LoongArch::PseudoVBNZ_B:
4428 CondOpc = LoongArch::VSETALLNEZ_B;
4430 case LoongArch::PseudoVBNZ_H:
4431 CondOpc = LoongArch::VSETALLNEZ_H;
4433 case LoongArch::PseudoVBNZ_W:
4434 CondOpc = LoongArch::VSETALLNEZ_W;
4436 case LoongArch::PseudoVBNZ_D:
4437 CondOpc = LoongArch::VSETALLNEZ_D;
4439 case LoongArch::PseudoXVBZ:
4440 CondOpc = LoongArch::XVSETEQZ_V;
4442 case LoongArch::PseudoXVBZ_B:
4443 CondOpc = LoongArch::XVSETANYEQZ_B;
4445 case LoongArch::PseudoXVBZ_H:
4446 CondOpc = LoongArch::XVSETANYEQZ_H;
4448 case LoongArch::PseudoXVBZ_W:
4449 CondOpc = LoongArch::XVSETANYEQZ_W;
4451 case LoongArch::PseudoXVBZ_D:
4452 CondOpc = LoongArch::XVSETANYEQZ_D;
4454 case LoongArch::PseudoXVBNZ:
4455 CondOpc = LoongArch::XVSETNEZ_V;
4457 case LoongArch::PseudoXVBNZ_B:
4458 CondOpc = LoongArch::XVSETALLNEZ_B;
4460 case LoongArch::PseudoXVBNZ_H:
4461 CondOpc = LoongArch::XVSETALLNEZ_H;
4463 case LoongArch::PseudoXVBNZ_W:
4464 CondOpc = LoongArch::XVSETALLNEZ_W;
4466 case LoongArch::PseudoXVBNZ_D:
4467 CondOpc = LoongArch::XVSETALLNEZ_D;
4482 F->insert(It, FalseBB);
4483 F->insert(It, TrueBB);
4484 F->insert(It, SinkBB);
4487 SinkBB->
splice(SinkBB->
end(), BB, std::next(
MI.getIterator()), BB->
end());
4491 Register FCC =
MRI.createVirtualRegister(&LoongArch::CFRRegClass);
4500 Register RD1 =
MRI.createVirtualRegister(&LoongArch::GPRRegClass);
4508 Register RD2 =
MRI.createVirtualRegister(&LoongArch::GPRRegClass);
4516 MI.getOperand(0).getReg())
4523 MI.eraseFromParent();
4532 switch (
MI.getOpcode()) {
4535 case LoongArch::PseudoXVINSGR2VR_B:
4537 InsOp = LoongArch::VINSGR2VR_B;
4539 case LoongArch::PseudoXVINSGR2VR_H:
4541 InsOp = LoongArch::VINSGR2VR_H;
4553 unsigned Idx =
MI.getOperand(3).getImm();
4556 if (
Idx >= HalfSize) {
4557 ScratchReg1 =
MRI.createVirtualRegister(RC);
4558 BuildMI(*BB,
MI,
DL,
TII->get(LoongArch::XVPERMI_Q), ScratchReg1)
4564 Register ScratchSubReg1 =
MRI.createVirtualRegister(SubRC);
4565 Register ScratchSubReg2 =
MRI.createVirtualRegister(SubRC);
4567 .
addReg(ScratchReg1, 0, LoongArch::sub_128);
4574 if (
Idx >= HalfSize)
4575 ScratchReg2 =
MRI.createVirtualRegister(RC);
4577 BuildMI(*BB,
MI,
DL,
TII->get(LoongArch::SUBREG_TO_REG), ScratchReg2)
4580 .
addImm(LoongArch::sub_128);
4582 if (
Idx >= HalfSize)
4588 MI.eraseFromParent();
4595 assert(Subtarget.hasExtLSX());
4602 Register ScratchReg1 =
MRI.createVirtualRegister(RC);
4603 Register ScratchReg2 =
MRI.createVirtualRegister(RC);
4604 Register ScratchReg3 =
MRI.createVirtualRegister(RC);
4608 TII->get(Subtarget.
is64Bit() ? LoongArch::VINSGR2VR_D
4609 : LoongArch::VINSGR2VR_W),
4616 TII->get(Subtarget.
is64Bit() ? LoongArch::VPCNT_D : LoongArch::VPCNT_W),
4620 TII->get(Subtarget.
is64Bit() ? LoongArch::VPICKVE2GR_D
4621 : LoongArch::VPICKVE2GR_W),
4626 MI.eraseFromParent();
4635 switch (
MI.getOpcode()) {
4638 case LoongArch::DIV_W:
4639 case LoongArch::DIV_WU:
4640 case LoongArch::MOD_W:
4641 case LoongArch::MOD_WU:
4642 case LoongArch::DIV_D:
4643 case LoongArch::DIV_DU:
4644 case LoongArch::MOD_D:
4645 case LoongArch::MOD_DU:
4648 case LoongArch::WRFCSR: {
4650 LoongArch::FCSR0 +
MI.getOperand(0).getImm())
4651 .
addReg(
MI.getOperand(1).getReg());
4652 MI.eraseFromParent();
4655 case LoongArch::RDFCSR: {
4658 MI.getOperand(0).getReg())
4659 .
addReg(LoongArch::FCSR0 +
MI.getOperand(1).getImm());
4661 MI.eraseFromParent();
4664 case LoongArch::PseudoVBZ:
4665 case LoongArch::PseudoVBZ_B:
4666 case LoongArch::PseudoVBZ_H:
4667 case LoongArch::PseudoVBZ_W:
4668 case LoongArch::PseudoVBZ_D:
4669 case LoongArch::PseudoVBNZ:
4670 case LoongArch::PseudoVBNZ_B:
4671 case LoongArch::PseudoVBNZ_H:
4672 case LoongArch::PseudoVBNZ_W:
4673 case LoongArch::PseudoVBNZ_D:
4674 case LoongArch::PseudoXVBZ:
4675 case LoongArch::PseudoXVBZ_B:
4676 case LoongArch::PseudoXVBZ_H:
4677 case LoongArch::PseudoXVBZ_W:
4678 case LoongArch::PseudoXVBZ_D:
4679 case LoongArch::PseudoXVBNZ:
4680 case LoongArch::PseudoXVBNZ_B:
4681 case LoongArch::PseudoXVBNZ_H:
4682 case LoongArch::PseudoXVBNZ_W:
4683 case LoongArch::PseudoXVBNZ_D:
4685 case LoongArch::PseudoXVINSGR2VR_B:
4686 case LoongArch::PseudoXVINSGR2VR_H:
4688 case LoongArch::PseudoCTPOP:
4690 case TargetOpcode::STATEPOINT:
4696 MI.addOperand(*
MI.getMF(),
4698 LoongArch::R1,
true,
4709 unsigned *
Fast)
const {
4710 if (!Subtarget.hasUAL())
4724#define NODE_NAME_CASE(node) \
4725 case LoongArchISD::node: \
4726 return "LoongArchISD::" #node;
4806#undef NODE_NAME_CASE
4819 LoongArch::R7, LoongArch::R8, LoongArch::R9,
4820 LoongArch::R10, LoongArch::R11};
4824 LoongArch::F3, LoongArch::F4, LoongArch::F5,
4825 LoongArch::F6, LoongArch::F7};
4828 LoongArch::F0_64, LoongArch::F1_64, LoongArch::F2_64, LoongArch::F3_64,
4829 LoongArch::F4_64, LoongArch::F5_64, LoongArch::F6_64, LoongArch::F7_64};
4832 LoongArch::VR3, LoongArch::VR4, LoongArch::VR5,
4833 LoongArch::VR6, LoongArch::VR7};
4836 LoongArch::XR3, LoongArch::XR4, LoongArch::XR5,
4837 LoongArch::XR6, LoongArch::XR7};
4843 unsigned ValNo2,
MVT ValVT2,
MVT LocVT2,
4845 unsigned GRLenInBytes = GRLen / 8;
4878 unsigned ValNo,
MVT ValVT,
4880 CCState &State,
bool IsFixed,
bool IsRet,
4882 unsigned GRLen =
DL.getLargestLegalIntTypeSizeInBits();
4883 assert((GRLen == 32 || GRLen == 64) &&
"Unspport GRLen");
4884 MVT GRLenVT = GRLen == 32 ? MVT::i32 : MVT::i64;
4889 if (IsRet && ValNo > 1)
4893 bool UseGPRForFloat =
true;
4903 UseGPRForFloat = !IsFixed;
4912 UseGPRForFloat =
true;
4914 if (UseGPRForFloat && ValVT == MVT::f32) {
4917 }
else if (UseGPRForFloat && GRLen == 64 && ValVT == MVT::f64) {
4920 }
else if (UseGPRForFloat && GRLen == 32 && ValVT == MVT::f64) {
4931 unsigned TwoGRLenInBytes = (2 * GRLen) / 8;
4933 DL.getTypeAllocSize(OrigTy) == TwoGRLenInBytes) {
4936 if (RegIdx != std::size(
ArgGPRs) && RegIdx % 2 == 1)
4945 "PendingLocs and PendingArgFlags out of sync");
4963 PendingLocs.
size() <= 2) {
4964 assert(PendingLocs.
size() == 2 &&
"Unexpected PendingLocs.size()");
4969 PendingLocs.
clear();
4970 PendingArgFlags.
clear();
4977 unsigned StoreSizeBytes = GRLen / 8;
4980 if (ValVT == MVT::f32 && !UseGPRForFloat)
4982 else if (ValVT == MVT::f64 && !UseGPRForFloat)
4996 if (!PendingLocs.
empty()) {
4998 assert(PendingLocs.
size() > 2 &&
"Unexpected PendingLocs.size()");
4999 for (
auto &It : PendingLocs) {
5001 It.convertToReg(Reg);
5006 PendingLocs.clear();
5007 PendingArgFlags.
clear();
5010 assert((!UseGPRForFloat || LocVT == GRLenVT) &&
5011 "Expected an GRLenVT at this stage");
5028void LoongArchTargetLowering::analyzeInputArgs(
5031 LoongArchCCAssignFn Fn)
const {
5033 for (
unsigned i = 0, e =
Ins.size(); i != e; ++i) {
5035 Type *ArgTy =
nullptr;
5037 ArgTy = FType->getReturnType();
5038 else if (Ins[i].isOrigArg())
5039 ArgTy = FType->getParamType(Ins[i].getOrigArgIndex());
5043 CCInfo,
true, IsRet, ArgTy)) {
5044 LLVM_DEBUG(
dbgs() <<
"InputArg #" << i <<
" has unhandled type " << ArgVT
5051void LoongArchTargetLowering::analyzeOutputArgs(
5054 CallLoweringInfo *CLI, LoongArchCCAssignFn Fn)
const {
5055 for (
unsigned i = 0, e = Outs.
size(); i != e; ++i) {
5056 MVT ArgVT = Outs[i].VT;
5057 Type *OrigTy = CLI ? CLI->getArgs()[Outs[i].OrigArgIndex].Ty :
nullptr;
5061 CCInfo, Outs[i].IsFixed, IsRet, OrigTy)) {
5062 LLVM_DEBUG(
dbgs() <<
"OutputArg #" << i <<
" has unhandled type " << ArgVT
5103 if (In.isOrigArg()) {
5108 if ((
BitWidth <= 32 && In.Flags.isSExt()) ||
5109 (
BitWidth < 32 && In.Flags.isZExt())) {
5169 if (LocVT == MVT::i32 || LocVT == MVT::i64) {
5173 LoongArch::R23, LoongArch::R24, LoongArch::R25,
5174 LoongArch::R26, LoongArch::R27, LoongArch::R28,
5175 LoongArch::R29, LoongArch::R30, LoongArch::R31};
5182 if (LocVT == MVT::f32) {
5185 static const MCPhysReg FPR32List[] = {LoongArch::F24, LoongArch::F25,
5186 LoongArch::F26, LoongArch::F27};
5193 if (LocVT == MVT::f64) {
5196 static const MCPhysReg FPR64List[] = {LoongArch::F28_64, LoongArch::F29_64,
5197 LoongArch::F30_64, LoongArch::F31_64};
5226 "GHC calling convention requires the F and D extensions");
5231 unsigned GRLenInBytes = Subtarget.
getGRLen() / 8;
5233 std::vector<SDValue> OutChains;
5242 analyzeInputArgs(MF, CCInfo, Ins,
false,
CC_LoongArch);
5244 for (
unsigned i = 0, e = ArgLocs.
size(); i != e; ++i) {
5256 unsigned ArgIndex = Ins[i].OrigArgIndex;
5257 unsigned ArgPartOffset = Ins[i].PartOffset;
5258 assert(ArgPartOffset == 0);
5259 while (i + 1 != e && Ins[i + 1].OrigArgIndex == ArgIndex) {
5261 unsigned PartOffset = Ins[i + 1].PartOffset - ArgPartOffset;
5284 int VaArgOffset, VarArgsSaveSize;
5290 VarArgsSaveSize = 0;
5292 VarArgsSaveSize = GRLenInBytes * (ArgRegs.
size() -
Idx);
5293 VaArgOffset = -VarArgsSaveSize;
5299 LoongArchFI->setVarArgsFrameIndex(FI);
5307 VarArgsSaveSize += GRLenInBytes;
5312 for (
unsigned I =
Idx;
I < ArgRegs.
size();
5313 ++
I, VaArgOffset += GRLenInBytes) {
5321 cast<StoreSDNode>(Store.getNode())
5323 ->setValue((
Value *)
nullptr);
5324 OutChains.push_back(Store);
5326 LoongArchFI->setVarArgsSaveSize(VarArgsSaveSize);
5331 if (!OutChains.empty()) {
5332 OutChains.push_back(Chain);
5347 if (
N->getNumValues() != 1)
5349 if (!
N->hasNUsesOfValue(1, 0))
5352 SDNode *Copy = *
N->user_begin();
5358 if (Copy->getGluedNode())
5362 bool HasRet =
false;
5363 for (
SDNode *Node : Copy->users()) {
5372 Chain = Copy->getOperand(0);
5377bool LoongArchTargetLowering::isEligibleForTailCallOptimization(
5381 auto CalleeCC = CLI.CallConv;
5382 auto &Outs = CLI.Outs;
5384 auto CallerCC = Caller.getCallingConv();
5391 for (
auto &VA : ArgLocs)
5397 auto IsCallerStructRet = Caller.hasStructRetAttr();
5398 auto IsCalleeStructRet = Outs.
empty() ?
false : Outs[0].Flags.isSRet();
5399 if (IsCallerStructRet || IsCalleeStructRet)
5403 for (
auto &Arg : Outs)
5404 if (Arg.Flags.isByVal())
5409 const uint32_t *CallerPreserved =
TRI->getCallPreservedMask(MF, CallerCC);
5410 if (CalleeCC != CallerCC) {
5411 const uint32_t *CalleePreserved =
TRI->getCallPreservedMask(MF, CalleeCC);
5412 if (!
TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved))
5450 analyzeOutputArgs(MF, ArgCCInfo, Outs,
false, &CLI,
CC_LoongArch);
5454 IsTailCall = isEligibleForTailCallOptimization(ArgCCInfo, CLI, MF, ArgLocs);
5460 "site marked musttail");
5467 for (
unsigned i = 0, e = Outs.
size(); i != e; ++i) {
5469 if (!Flags.isByVal())
5473 unsigned Size = Flags.getByValSize();
5474 Align Alignment = Flags.getNonZeroByValAlign();
5481 Chain = DAG.
getMemcpy(Chain,
DL, FIPtr, Arg, SizeNode, Alignment,
5483 false,
nullptr, std::nullopt,
5495 for (
unsigned i = 0, j = 0, e = ArgLocs.
size(); i != e; ++i) {
5497 SDValue ArgValue = OutVals[i];
5510 unsigned ArgIndex = Outs[i].OrigArgIndex;
5511 unsigned ArgPartOffset = Outs[i].PartOffset;
5512 assert(ArgPartOffset == 0);
5517 while (i + 1 != e && Outs[i + 1].OrigArgIndex == ArgIndex) {
5518 SDValue PartValue = OutVals[i + 1];
5519 unsigned PartOffset = Outs[i + 1].PartOffset - ArgPartOffset;
5529 int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
5533 for (
const auto &Part : Parts) {
5534 SDValue PartValue = Part.first;
5535 SDValue PartOffset = Part.second;
5542 ArgValue = SpillSlot;
5548 if (Flags.isByVal())
5549 ArgValue = ByValArgs[j++];
5556 assert(!IsTailCall &&
"Tail call not allowed if stack is used "
5557 "for passing parameters");
5560 if (!StackPtr.getNode())
5573 if (!MemOpChains.
empty())
5579 for (
auto &Reg : RegsToPass) {
5580 Chain = DAG.
getCopyToReg(Chain,
DL, Reg.first, Reg.second, Glue);
5607 for (
auto &Reg : RegsToPass)
5613 const uint32_t *Mask =
TRI->getCallPreservedMask(MF, CallConv);
5614 assert(Mask &&
"Missing call preserved mask for calling convention");
5632 assert(Subtarget.
is64Bit() &&
"Medium code model requires LA64");
5636 assert(Subtarget.
is64Bit() &&
"Large code model requires LA64");
5659 analyzeInputArgs(MF, RetCCInfo, Ins,
true,
CC_LoongArch);
5662 for (
auto &VA : RVLocs) {
5683 CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context);
5685 for (
unsigned i = 0, e = Outs.
size(); i != e; ++i) {
5689 Outs[i].Flags, CCInfo,
true,
true,
5716 for (
unsigned i = 0, e = RVLocs.
size(); i < e; ++i) {
5740 if (!Subtarget.hasExtLSX())
5743 if (VT == MVT::f32) {
5744 uint64_t masked = Imm.bitcastToAPInt().getZExtValue() & 0x7e07ffff;
5745 return (masked == 0x3e000000 || masked == 0x40000000);
5748 if (VT == MVT::f64) {
5749 uint64_t masked = Imm.bitcastToAPInt().getZExtValue() & 0x7fc0ffffffffffff;
5750 return (masked == 0x3fc0000000000000 || masked == 0x4000000000000000);
5756bool LoongArchTargetLowering::isFPImmLegal(
const APFloat &Imm,
EVT VT,
5757 bool ForCodeSize)
const {
5759 if (VT == MVT::f32 && !Subtarget.hasBasicF())
5761 if (VT == MVT::f64 && !Subtarget.hasBasicD())
5763 return (Imm.isZero() || Imm.isExactlyValue(1.0) ||
isFPImmVLDILegal(Imm, VT));
5774bool LoongArchTargetLowering::shouldInsertFencesForAtomic(
5777 return isa<LoadInst>(
I) || isa<StoreInst>(
I);
5779 if (isa<LoadInst>(
I))
5784 Type *Ty =
I->getOperand(0)->getType();
5803 return Y.getValueType().isScalarInteger() && !isa<ConstantSDNode>(
Y);
5809 unsigned Intrinsic)
const {
5810 switch (Intrinsic) {
5813 case Intrinsic::loongarch_masked_atomicrmw_xchg_i32:
5814 case Intrinsic::loongarch_masked_atomicrmw_add_i32:
5815 case Intrinsic::loongarch_masked_atomicrmw_sub_i32:
5816 case Intrinsic::loongarch_masked_atomicrmw_nand_i32:
5818 Info.memVT = MVT::i32;
5819 Info.ptrVal =
I.getArgOperand(0);
5838 "Unable to expand");
5839 unsigned MinWordSize = 4;
5852 Intrinsic::ptrmask, {PtrTy, IntTy},
5853 {
Addr, ConstantInt::get(IntTy, ~(
uint64_t)(MinWordSize - 1))},
nullptr,
5857 Value *PtrLSB = Builder.
CreateAnd(AddrInt, MinWordSize - 1,
"PtrLSB");
5859 ShiftAmt = Builder.
CreateTrunc(ShiftAmt, WordType,
"ShiftAmt");
5861 ConstantInt::get(WordType,
5865 Value *ValOperand_Shifted =
5867 ShiftAmt,
"ValOperand_Shifted");
5870 NewOperand = Builder.
CreateOr(ValOperand_Shifted, Inv_Mask,
"AndOperand");
5872 NewOperand = ValOperand_Shifted;
5898 if (Subtarget.hasLAM_BH() && Subtarget.
is64Bit() &&
5906 if (Subtarget.hasLAMCAS()) {
5928 return Intrinsic::loongarch_masked_atomicrmw_xchg_i64;
5930 return Intrinsic::loongarch_masked_atomicrmw_add_i64;
5932 return Intrinsic::loongarch_masked_atomicrmw_sub_i64;
5934 return Intrinsic::loongarch_masked_atomicrmw_nand_i64;
5936 return Intrinsic::loongarch_masked_atomicrmw_umax_i64;
5938 return Intrinsic::loongarch_masked_atomicrmw_umin_i64;
5940 return Intrinsic::loongarch_masked_atomicrmw_max_i64;
5942 return Intrinsic::loongarch_masked_atomicrmw_min_i64;
5952 return Intrinsic::loongarch_masked_atomicrmw_xchg_i32;
5954 return Intrinsic::loongarch_masked_atomicrmw_add_i32;
5956 return Intrinsic::loongarch_masked_atomicrmw_sub_i32;
5958 return Intrinsic::loongarch_masked_atomicrmw_nand_i32;
5970 if (Subtarget.hasLAMCAS())
5983 Value *FailureOrdering =
5987 Intrinsic::ID CmpXchgIntrID = Intrinsic::loongarch_masked_cmpxchg_i64;
5993 CmpXchgIntrID, Tys, {AlignedAddr, CmpVal, NewVal, Mask, FailureOrdering});
6017 unsigned GRLen = Subtarget.
getGRLen();
6046 {AlignedAddr, Incr, Mask, SextShamt, Ordering});
6049 Builder.
CreateCall(LlwOpScwLoop, {AlignedAddr, Incr, Mask, Ordering});
6076 const Constant *PersonalityFn)
const {
6077 return LoongArch::R4;
6081 const Constant *PersonalityFn)
const {
6082 return LoongArch::R5;
6093 int RefinementSteps = VT.
getScalarType() == MVT::f64 ? 2 : 1;
6094 return RefinementSteps;
6099 int &RefinementSteps,
6100 bool &UseOneConstNR,
6101 bool Reciprocal)
const {
6102 if (Subtarget.hasFrecipe()) {
6106 if (VT == MVT::f32 || (VT == MVT::f64 && Subtarget.hasBasicD()) ||
6107 (VT == MVT::v4f32 && Subtarget.hasExtLSX()) ||
6108 (VT == MVT::v2f64 && Subtarget.hasExtLSX()) ||
6109 (VT == MVT::v8f32 && Subtarget.hasExtLASX()) ||
6110 (VT == MVT::v4f64 && Subtarget.hasExtLASX())) {
6129 int &RefinementSteps)
const {
6130 if (Subtarget.hasFrecipe()) {
6134 if (VT == MVT::f32 || (VT == MVT::f64 && Subtarget.hasBasicD()) ||
6135 (VT == MVT::v4f32 && Subtarget.hasExtLSX()) ||
6136 (VT == MVT::v2f64 && Subtarget.hasExtLSX()) ||
6137 (VT == MVT::v8f32 && Subtarget.hasExtLASX()) ||
6138 (VT == MVT::v4f64 && Subtarget.hasExtLASX())) {
6155LoongArchTargetLowering::getConstraintType(
StringRef Constraint)
const {
6173 if (Constraint.
size() == 1) {
6174 switch (Constraint[0]) {
6189 if (Constraint ==
"ZC" || Constraint ==
"ZB")
6205std::pair<unsigned, const TargetRegisterClass *>
6206LoongArchTargetLowering::getRegForInlineAsmConstraint(
6210 if (Constraint.
size() == 1) {
6211 switch (Constraint[0]) {
6216 return std::make_pair(0U, &LoongArch::GPRRegClass);
6218 if (Subtarget.hasBasicF() && VT == MVT::f32)
6219 return std::make_pair(0U, &LoongArch::FPR32RegClass);
6220 if (Subtarget.hasBasicD() && VT == MVT::f64)
6221 return std::make_pair(0U, &LoongArch::FPR64RegClass);
6222 if (Subtarget.hasExtLSX() &&
6223 TRI->isTypeLegalForClass(LoongArch::LSX128RegClass, VT))
6224 return std::make_pair(0U, &LoongArch::LSX128RegClass);
6225 if (Subtarget.hasExtLASX() &&
6226 TRI->isTypeLegalForClass(LoongArch::LASX256RegClass, VT))
6227 return std::make_pair(0U, &LoongArch::LASX256RegClass);
6247 bool IsFP = Constraint[2] ==
'f';
6248 std::pair<StringRef, StringRef> Temp = Constraint.
split(
'$');
6249 std::pair<unsigned, const TargetRegisterClass *>
R;
6251 TRI, join_items(
"", Temp.first, Temp.second), VT);
6254 unsigned RegNo =
R.first;
6255 if (LoongArch::F0 <= RegNo && RegNo <= LoongArch::F31) {
6256 if (Subtarget.hasBasicD() && (VT == MVT::f64 || VT == MVT::Other)) {
6257 unsigned DReg = RegNo - LoongArch::F0 + LoongArch::F0_64;
6258 return std::make_pair(DReg, &LoongArch::FPR64RegClass);
6268void LoongArchTargetLowering::LowerAsmOperandForConstraint(
6272 if (Constraint.
size() == 1) {
6273 switch (Constraint[0]) {
6276 if (
auto *
C = dyn_cast<ConstantSDNode>(
Op)) {
6278 if (isInt<16>(CVal))
6285 if (
auto *
C = dyn_cast<ConstantSDNode>(
Op)) {
6287 if (isInt<12>(CVal))
6294 if (
auto *
C = dyn_cast<ConstantSDNode>(
Op))
6295 if (
C->getZExtValue() == 0)
6301 if (
auto *
C = dyn_cast<ConstantSDNode>(
Op)) {
6303 if (isUInt<12>(CVal))
6315#define GET_REGISTER_MATCHER
6316#include "LoongArchGenAsmMatcher.inc"
6322 std::string NewRegName =
Name.second.str();
6324 if (Reg == LoongArch::NoRegister)
6326 if (Reg == LoongArch::NoRegister)
6330 if (!ReservedRegs.
test(Reg))
6346 if (
auto *ConstNode = dyn_cast<ConstantSDNode>(
C.getNode())) {
6347 const APInt &Imm = ConstNode->getAPIntValue();
6349 if ((Imm + 1).isPowerOf2() || (Imm - 1).isPowerOf2() ||
6350 (1 - Imm).isPowerOf2() || (-1 - Imm).isPowerOf2())
6353 if (ConstNode->hasOneUse() &&
6354 ((Imm - 2).isPowerOf2() || (Imm - 4).isPowerOf2() ||
6355 (Imm - 8).isPowerOf2() || (Imm - 16).isPowerOf2()))
6361 if (ConstNode->hasOneUse() && !(Imm.sge(-2048) && Imm.sle(4095))) {
6362 unsigned Shifts = Imm.countr_zero();
6368 APInt ImmPop = Imm.ashr(Shifts);
6369 if (ImmPop == 3 || ImmPop == 5 || ImmPop == 9 || ImmPop == 17)
6373 APInt ImmSmall =
APInt(Imm.getBitWidth(), 1ULL << Shifts,
true);
6374 if ((Imm - ImmSmall).isPowerOf2() || (Imm + ImmSmall).isPowerOf2() ||
6375 (ImmSmall - Imm).isPowerOf2())
6385 Type *Ty,
unsigned AS,
6401 !(isShiftedInt<14, 2>(AM.
BaseOffs) && Subtarget.hasUAL()))
6428 return isInt<12>(Imm);
6432 return isInt<12>(Imm);
6439 if (
auto *LD = dyn_cast<LoadSDNode>(Val)) {
6440 EVT MemVT = LD->getMemoryVT();
6441 if ((MemVT == MVT::i8 || MemVT == MVT::i16) &&
6452 return Subtarget.
is64Bit() && SrcVT == MVT::i32 && DstVT == MVT::i64;
6461 if (
Y.getValueType().isVector())
6464 return !isa<ConstantSDNode>(
Y);
6473 Type *Ty,
bool IsSigned)
const {
6494 Align &PrefAlign)
const {
6495 if (!isa<MemIntrinsic>(CI))
6500 PrefAlign =
Align(8);
6503 PrefAlign =
Align(4);
unsigned const MachineRegisterInfo * MRI
static MCRegister MatchRegisterName(StringRef Name)
static bool checkValueWidth(SDValue V, unsigned width, ISD::LoadExtType &ExtType)
static SDValue performORCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, const AArch64Subtarget *Subtarget, const AArch64TargetLowering &TLI)
static SDValue performANDCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI)
static SDValue performSETCCCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, SelectionDAG &DAG)
static msgpack::DocNode getNode(msgpack::DocNode DN, msgpack::Type Type, MCValue Val)
#define NODE_NAME_CASE(node)
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
static MCRegister MatchRegisterAltName(StringRef Name)
Maps from the set of all alternative registernames to a register number.
Function Alias Analysis Results
static uint64_t getConstant(const Value *IndexValue)
static SDValue getTargetNode(GlobalAddressSDNode *N, const SDLoc &DL, EVT Ty, SelectionDAG &DAG, unsigned Flags)
Analysis containing CSE Info
static SDValue convertValVTToLocVT(SelectionDAG &DAG, SDValue Val, const CCValAssign &VA, const SDLoc &DL)
static SDValue unpackFromMemLoc(SelectionDAG &DAG, SDValue Chain, const CCValAssign &VA, const SDLoc &DL)
static SDValue convertLocVTToValVT(SelectionDAG &DAG, SDValue Val, const CCValAssign &VA, const SDLoc &DL)
static SDValue unpackFromRegLoc(const CSKYSubtarget &Subtarget, SelectionDAG &DAG, SDValue Chain, const CCValAssign &VA, const SDLoc &DL)
Returns the sub type a function will return at a given Idx Should correspond to the result type of an ExtractValue instruction executed with just that one unsigned Idx
const HexagonInstrInfo * TII
static SDValue performINTRINSIC_WO_CHAINCombine(SDNode *N, SelectionDAG &DAG, TargetLowering::DAGCombinerInfo &DCI, const LoongArchSubtarget &Subtarget)
static SDValue lowerVECTOR_SHUFFLE_VREPLVEI(const SDLoc &DL, ArrayRef< int > Mask, MVT VT, SDValue V1, SDValue V2, SelectionDAG &DAG)
Lower VECTOR_SHUFFLE into VREPLVEI (if possible).
const MCPhysReg ArgFPR32s[]
static SDValue lowerVECTOR_SHUFFLE_VSHUF4I(const SDLoc &DL, ArrayRef< int > Mask, MVT VT, SDValue V1, SDValue V2, SelectionDAG &DAG)
Lower VECTOR_SHUFFLE into VSHUF4I (if possible).
static SDValue lowerVECTOR_SHUFFLE_VPICKEV(const SDLoc &DL, ArrayRef< int > Mask, MVT VT, SDValue V1, SDValue V2, SelectionDAG &DAG)
Lower VECTOR_SHUFFLE into VPICKEV (if possible).
static SDValue lowerVECTOR_SHUFFLE_XVPICKOD(const SDLoc &DL, ArrayRef< int > Mask, MVT VT, SDValue V1, SDValue V2, SelectionDAG &DAG)
Lower VECTOR_SHUFFLE into XVPICKOD (if possible).
static bool fitsRegularPattern(typename SmallVectorImpl< ValType >::const_iterator Begin, unsigned CheckStride, typename SmallVectorImpl< ValType >::const_iterator End, ValType ExpectedIndex, unsigned ExpectedIndexStride)
Determine whether a range fits a regular pattern of values.
static void canonicalizeShuffleVectorByLane(const SDLoc &DL, MutableArrayRef< int > Mask, MVT VT, SDValue &V1, SDValue &V2, SelectionDAG &DAG)
Shuffle vectors by lane to generate more optimized instructions.
static SDValue emitIntrinsicErrorMessage(SDValue Op, StringRef ErrorMsg, SelectionDAG &DAG)
static cl::opt< bool > ZeroDivCheck("loongarch-check-zero-division", cl::Hidden, cl::desc("Trap on integer division by zero."), cl::init(false))
static SDValue lower256BitShuffle(const SDLoc &DL, ArrayRef< int > Mask, MVT VT, SDValue V1, SDValue V2, SelectionDAG &DAG)
Dispatching routine to lower various 256-bit LoongArch vector shuffles.
static int getEstimateRefinementSteps(EVT VT, const LoongArchSubtarget &Subtarget)
static void emitErrorAndReplaceIntrinsicResults(SDNode *N, SmallVectorImpl< SDValue > &Results, SelectionDAG &DAG, StringRef ErrorMsg, bool WithChain=true)
static SDValue checkIntrinsicImmArg(SDValue Op, unsigned ImmOp, SelectionDAG &DAG, bool IsSigned=false)
static SDValue lowerVECTOR_SHUFFLE_XVSHUF4I(const SDLoc &DL, ArrayRef< int > Mask, MVT VT, SDValue V1, SDValue V2, SelectionDAG &DAG)
Lower VECTOR_SHUFFLE into XVSHUF4I (if possible).
static SDValue lowerVECTOR_SHUFFLE_VILVH(const SDLoc &DL, ArrayRef< int > Mask, MVT VT, SDValue V1, SDValue V2, SelectionDAG &DAG)
Lower VECTOR_SHUFFLE into VILVH (if possible).
static Align getPrefTypeAlign(EVT VT, SelectionDAG &DAG)
static bool CC_LoongArch(const DataLayout &DL, LoongArchABI::ABI ABI, unsigned ValNo, MVT ValVT, CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags, CCState &State, bool IsFixed, bool IsRet, Type *OrigTy)
static SDValue performSRLCombine(SDNode *N, SelectionDAG &DAG, TargetLowering::DAGCombinerInfo &DCI, const LoongArchSubtarget &Subtarget)
static SDValue lowerVectorBitSetImm(SDNode *Node, SelectionDAG &DAG)
static SDValue lowerVECTOR_SHUFFLE_XVPACKOD(const SDLoc &DL, ArrayRef< int > Mask, MVT VT, SDValue V1, SDValue V2, SelectionDAG &DAG)
Lower VECTOR_SHUFFLE into XVPACKOD (if possible).
#define CRC_CASE_EXT_BINARYOP(NAME, NODE)
static SDValue lowerVectorBitRevImm(SDNode *Node, SelectionDAG &DAG)
static SDValue truncateVecElts(SDNode *Node, SelectionDAG &DAG)
static MachineBasicBlock * insertDivByZeroTrap(MachineInstr &MI, MachineBasicBlock *MBB)
static SDValue customLegalizeToWOpWithSExt(SDNode *N, SelectionDAG &DAG)
static SDValue lowerVectorBitClear(SDNode *Node, SelectionDAG &DAG)
static bool CC_LoongArch_GHC(unsigned ValNo, MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags, CCState &State)
static SDValue lowerVECTOR_SHUFFLE_VPACKEV(const SDLoc &DL, ArrayRef< int > Mask, MVT VT, SDValue V1, SDValue V2, SelectionDAG &DAG)
Lower VECTOR_SHUFFLE into VPACKEV (if possible).
static void replaceVPICKVE2GRResults(SDNode *Node, SmallVectorImpl< SDValue > &Results, SelectionDAG &DAG, const LoongArchSubtarget &Subtarget, unsigned ResOp)
static SDValue legalizeIntrinsicImmArg(SDNode *Node, unsigned ImmOp, SelectionDAG &DAG, const LoongArchSubtarget &Subtarget, bool IsSigned=false)
static SDValue emitIntrinsicWithChainErrorMessage(SDValue Op, StringRef ErrorMsg, SelectionDAG &DAG)
static bool CC_LoongArchAssign2GRLen(unsigned GRLen, CCState &State, CCValAssign VA1, ISD::ArgFlagsTy ArgFlags1, unsigned ValNo2, MVT ValVT2, MVT LocVT2, ISD::ArgFlagsTy ArgFlags2)
const MCPhysReg ArgFPR64s[]
static MachineBasicBlock * emitPseudoCTPOP(MachineInstr &MI, MachineBasicBlock *BB, const LoongArchSubtarget &Subtarget)
#define IOCSRWR_CASE(NAME, NODE)
#define CRC_CASE_EXT_UNARYOP(NAME, NODE)
static SDValue lowerVECTOR_SHUFFLE_VPACKOD(const SDLoc &DL, ArrayRef< int > Mask, MVT VT, SDValue V1, SDValue V2, SelectionDAG &DAG)
Lower VECTOR_SHUFFLE into VPACKOD (if possible).
static MachineBasicBlock * emitPseudoXVINSGR2VR(MachineInstr &MI, MachineBasicBlock *BB, const LoongArchSubtarget &Subtarget)
static SDValue lowerVectorSplatImm(SDNode *Node, unsigned ImmOp, SelectionDAG &DAG, bool IsSigned=false)
const MCPhysReg ArgGPRs[]
static SDValue lowerVECTOR_SHUFFLE_XVILVL(const SDLoc &DL, ArrayRef< int > Mask, MVT VT, SDValue V1, SDValue V2, SelectionDAG &DAG)
Lower VECTOR_SHUFFLE into XVILVL (if possible).
static SDValue customLegalizeToWOp(SDNode *N, SelectionDAG &DAG, int NumOp, unsigned ExtOpc=ISD::ANY_EXTEND)
static void replaceVecCondBranchResults(SDNode *N, SmallVectorImpl< SDValue > &Results, SelectionDAG &DAG, const LoongArchSubtarget &Subtarget, unsigned ResOp)
#define ASRT_LE_GT_CASE(NAME)
static bool isConstantOrUndef(const SDValue Op)
static SDValue lowerVECTOR_SHUFFLE_XVPACKEV(const SDLoc &DL, ArrayRef< int > Mask, MVT VT, SDValue V1, SDValue V2, SelectionDAG &DAG)
Lower VECTOR_SHUFFLE into XVPACKEV (if possible).
static MachineBasicBlock * emitVecCondBranchPseudo(MachineInstr &MI, MachineBasicBlock *BB, const LoongArchSubtarget &Subtarget)
static SDValue lowerVECTOR_SHUFFLE_XVILVH(const SDLoc &DL, ArrayRef< int > Mask, MVT VT, SDValue V1, SDValue V2, SelectionDAG &DAG)
Lower VECTOR_SHUFFLE into XVILVH (if possible).
static SDValue lowerVECTOR_SHUFFLE_XVSHUF(const SDLoc &DL, ArrayRef< int > Mask, MVT VT, SDValue V1, SDValue V2, SelectionDAG &DAG)
Lower VECTOR_SHUFFLE into XVSHUF (if possible).
static SDValue performBITREV_WCombine(SDNode *N, SelectionDAG &DAG, TargetLowering::DAGCombinerInfo &DCI, const LoongArchSubtarget &Subtarget)
#define IOCSRRD_CASE(NAME, NODE)
static SDValue lower128BitShuffle(const SDLoc &DL, ArrayRef< int > Mask, MVT VT, SDValue V1, SDValue V2, SelectionDAG &DAG)
Dispatching routine to lower various 128-bit LoongArch vector shuffles.
static SDValue lowerVECTOR_SHUFFLE_XVPICKEV(const SDLoc &DL, ArrayRef< int > Mask, MVT VT, SDValue V1, SDValue V2, SelectionDAG &DAG)
Lower VECTOR_SHUFFLE into XVPICKEV (if possible).
static SDValue lowerVECTOR_SHUFFLE_VILVL(const SDLoc &DL, ArrayRef< int > Mask, MVT VT, SDValue V1, SDValue V2, SelectionDAG &DAG)
Lower VECTOR_SHUFFLE into VILVL (if possible).
static SDValue lowerVectorBitClearImm(SDNode *Node, SelectionDAG &DAG)
static bool isConstantOrUndefBUILD_VECTOR(const BuildVectorSDNode *Op)
static void replaceINTRINSIC_WO_CHAINResults(SDNode *N, SmallVectorImpl< SDValue > &Results, SelectionDAG &DAG, const LoongArchSubtarget &Subtarget)
static SDValue lowerVECTOR_SHUFFLE_XVREPLVEI(const SDLoc &DL, ArrayRef< int > Mask, MVT VT, SDValue V1, SDValue V2, SelectionDAG &DAG)
Lower VECTOR_SHUFFLE into XVREPLVEI (if possible).
static SDValue lowerVECTOR_SHUFFLE_VPICKOD(const SDLoc &DL, ArrayRef< int > Mask, MVT VT, SDValue V1, SDValue V2, SelectionDAG &DAG)
Lower VECTOR_SHUFFLE into VPICKOD (if possible).
static Intrinsic::ID getIntrinsicForMaskedAtomicRMWBinOp(unsigned GRLen, AtomicRMWInst::BinOp BinOp)
static SDValue lowerVECTOR_SHUFFLE_VSHUF(const SDLoc &DL, ArrayRef< int > Mask, MVT VT, SDValue V1, SDValue V2, SelectionDAG &DAG)
Lower VECTOR_SHUFFLE into VSHUF.
static LoongArchISD::NodeType getLoongArchWOpcode(unsigned Opcode)
unsigned const TargetRegisterInfo * TRI
static GCMetadataPrinterRegistry::Add< OcamlGCMetadataPrinter > Y("ocaml", "ocaml 3.10-compatible collector")
static CodeModel::Model getCodeModel(const PPCSubtarget &S, const TargetMachine &TM, const MachineOperand &MO)
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
This file defines the 'Statistic' class, which is designed to be an easy way to expose various metric...
#define STATISTIC(VARNAME, DESC)
Class for arbitrary precision integers.
bool isSubsetOf(const APInt &RHS) const
This operation checks that all bits set in this APInt are also set in RHS.
This class represents an incoming formal argument to a Function.
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
size_t size() const
size - Get the array size.
An instruction that atomically checks whether a specified value is in a memory location,...
Value * getCompareOperand()
AtomicOrdering getFailureOrdering() const
Returns the failure ordering constraint of this cmpxchg instruction.
an instruction that atomically reads a memory location, combines it with another value,...
Align getAlign() const
Return the alignment of the memory that is being allocated by the instruction.
BinOp
This enumeration lists the possible modifications atomicrmw can make.
@ USubCond
Subtract only if no unsigned overflow.
@ Min
*p = old <signed v ? old : v
@ USubSat
*p = usub.sat(old, v) usub.sat matches the behavior of llvm.usub.sat.
@ UIncWrap
Increment one up to a maximum value.
@ Max
*p = old >signed v ? old : v
@ UMin
*p = old <unsigned v ? old : v
@ UMax
*p = old >unsigned v ? old : v
@ UDecWrap
Decrement one until a minimum value or zero.
Value * getPointerOperand()
bool isFloatingPointOperation() const
BinOp getOperation() const
SyncScope::ID getSyncScopeID() const
Returns the synchronization scope ID of this rmw instruction.
AtomicOrdering getOrdering() const
Returns the ordering constraint of this rmw instruction.
LLVM Basic Block Representation.
bool test(unsigned Idx) const
A "pseudo-class" with methods for operating on BUILD_VECTORs.
CCState - This class holds information needed while lowering arguments and return values.
unsigned getFirstUnallocated(ArrayRef< MCPhysReg > Regs) const
getFirstUnallocated - Return the index of the first unallocated register in the set,...
SmallVectorImpl< ISD::ArgFlagsTy > & getPendingArgFlags()
MCRegister AllocateReg(MCPhysReg Reg)
AllocateReg - Attempt to allocate one register.
int64_t AllocateStack(unsigned Size, Align Alignment)
AllocateStack - Allocate a chunk of stack space with the specified size and alignment.
void AnalyzeCallOperands(const SmallVectorImpl< ISD::OutputArg > &Outs, CCAssignFn Fn)
AnalyzeCallOperands - Analyze the outgoing arguments to a call, incorporating info about the passed v...
uint64_t getStackSize() const
Returns the size of the currently allocated portion of the stack.
SmallVectorImpl< CCValAssign > & getPendingLocs()
void AnalyzeFormalArguments(const SmallVectorImpl< ISD::InputArg > &Ins, CCAssignFn Fn)
AnalyzeFormalArguments - Analyze an array of argument values, incorporating info about the formals in...
void addLoc(const CCValAssign &V)
CCValAssign - Represent assignment of one arg/retval to a location.
static CCValAssign getPending(unsigned ValNo, MVT ValVT, MVT LocVT, LocInfo HTP, unsigned ExtraInfo=0)
Register getLocReg() const
LocInfo getLocInfo() const
static CCValAssign getReg(unsigned ValNo, MVT ValVT, MCRegister Reg, MVT LocVT, LocInfo HTP, bool IsCustom=false)
static CCValAssign getMem(unsigned ValNo, MVT ValVT, int64_t Offset, MVT LocVT, LocInfo HTP, bool IsCustom=false)
int64_t getLocMemOffset() const
unsigned getValNo() const
bool isMustTailCall() const
Tests if this call site must be tail call optimized.
This class represents a function call, abstracting a target machine's calling convention.
This is the shared class of boolean and integer constants.
bool isMinusOne() const
This function will return true iff every bit in this constant is set to true.
bool isZero() const
This is just a convenience method to make client code smaller for a common code.
uint64_t getZExtValue() const
int64_t getSExtValue() const
This is an important base class in LLVM.
This class represents an Operation in the Expression.
uint64_t getNumOperands() const
A parsed version of the target data layout string in and methods for querying it.
unsigned getPointerSizeInBits(unsigned AS=0) const
Layout pointer size, in bits FIXME: The defaults need to be removed once all of the backends/clients ...
Align getPrefTypeAlign(Type *Ty) const
Returns the preferred stack/global alignment for the specified type.
FunctionType * getFunctionType() const
Returns the FunctionType for me.
CallingConv::ID getCallingConv() const
getCallingConv()/setCallingConv(CC) - These method get and set the calling convention of this functio...
Argument * getArg(unsigned i) const
Common base class shared among various IRBuilders.
Value * CreateSExt(Value *V, Type *DestTy, const Twine &Name="")
Value * CreateLShr(Value *LHS, Value *RHS, const Twine &Name="", bool isExact=false)
IntegerType * getInt32Ty()
Fetch the type representing a 32-bit integer.
IntegerType * getInt64Ty()
Fetch the type representing a 64-bit integer.
CallInst * CreateIntrinsic(Intrinsic::ID ID, ArrayRef< Type * > Types, ArrayRef< Value * > Args, FMFSource FMFSource={}, const Twine &Name="")
Create a call to intrinsic ID with Args, mangled using Types.
Value * CreateNot(Value *V, const Twine &Name="")
Value * CreateSub(Value *LHS, Value *RHS, const Twine &Name="", bool HasNUW=false, bool HasNSW=false)
Value * CreateBitCast(Value *V, Type *DestTy, const Twine &Name="")
ConstantInt * getIntN(unsigned N, uint64_t C)
Get a constant N-bit value, zero extended or truncated from a 64-bit value.
Value * CreateShl(Value *LHS, Value *RHS, const Twine &Name="", bool HasNUW=false, bool HasNSW=false)
Value * CreateZExt(Value *V, Type *DestTy, const Twine &Name="", bool IsNonNeg=false)
LLVMContext & getContext() const
Value * CreateAnd(Value *LHS, Value *RHS, const Twine &Name="")
Value * CreatePtrToInt(Value *V, Type *DestTy, const Twine &Name="")
CallInst * CreateCall(FunctionType *FTy, Value *Callee, ArrayRef< Value * > Args={}, const Twine &Name="", MDNode *FPMathTag=nullptr)
AtomicRMWInst * CreateAtomicRMW(AtomicRMWInst::BinOp Op, Value *Ptr, Value *Val, MaybeAlign Align, AtomicOrdering Ordering, SyncScope::ID SSID=SyncScope::System)
Value * CreateTrunc(Value *V, Type *DestTy, const Twine &Name="", bool IsNUW=false, bool IsNSW=false)
Value * CreateOr(Value *LHS, Value *RHS, const Twine &Name="")
This provides a uniform API for creating instructions and inserting them into a basic block: either a...
const Module * getModule() const
Return the module owning the function this instruction belongs to or nullptr it the function does not...
InstListType::iterator eraseFromParent()
This method unlinks 'this' from the containing basic block and deletes it.
const DataLayout & getDataLayout() const
Get the data layout of the module this instruction belongs to.
Class to represent integer types.
This is an important class for using LLVM in a threaded context.
void emitError(const Instruction *I, const Twine &ErrorStr)
emitError - Emit an error message to the currently installed error handler with optional location inf...
This class is used to represent ISD::LOAD nodes.
ISD::LoadExtType getExtensionType() const
Return whether this is a plain node, or one of the varieties of value-extending loads.
LoongArchMachineFunctionInfo - This class is derived from MachineFunctionInfo and contains private Lo...
void addSExt32Register(Register Reg)
const LoongArchRegisterInfo * getRegisterInfo() const override
const LoongArchInstrInfo * getInstrInfo() const override
unsigned getMaxBytesForAlignment() const
Align getPrefFunctionAlignment() const
unsigned getGRLen() const
Align getPrefLoopAlignment() const
bool isUsedByReturnOnly(SDNode *N, SDValue &Chain) const override
Return true if result of the specified node is used by a return node only.
SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const override
This method will be invoked for all target nodes and for any target-independent nodes that the target...
SDValue getSqrtEstimate(SDValue Operand, SelectionDAG &DAG, int Enabled, int &RefinementSteps, bool &UseOneConstNR, bool Reciprocal) const override
Hooks for building estimates in place of slower divisions and square roots.
bool isLegalICmpImmediate(int64_t Imm) const override
Return true if the specified immediate is legal icmp immediate, that is the target has icmp instructi...
TargetLowering::AtomicExpansionKind shouldExpandAtomicCmpXchgInIR(AtomicCmpXchgInst *CI) const override
Returns how the given atomic cmpxchg should be expanded by the IR-level AtomicExpand pass.
Value * emitMaskedAtomicCmpXchgIntrinsic(IRBuilderBase &Builder, AtomicCmpXchgInst *CI, Value *AlignedAddr, Value *CmpVal, Value *NewVal, Value *Mask, AtomicOrdering Ord) const override
Perform a masked cmpxchg using a target-specific intrinsic.
EVT getSetCCResultType(const DataLayout &DL, LLVMContext &Context, EVT VT) const override
Return the ValueType of the result of SETCC operations.
bool isFMAFasterThanFMulAndFAdd(const MachineFunction &MF, EVT VT) const override
Return true if an FMA operation is faster than a pair of fmul and fadd instructions.
SDValue LowerCall(TargetLowering::CallLoweringInfo &CLI, SmallVectorImpl< SDValue > &InVals) const override
This hook must be implemented to lower calls into the specified DAG.
bool decomposeMulByConstant(LLVMContext &Context, EVT VT, SDValue C) const override
Return true if it is profitable to transform an integer multiplication-by-constant into simpler opera...
bool isSExtCheaperThanZExt(EVT SrcVT, EVT DstVT) const override
Return true if sign-extension from FromTy to ToTy is cheaper than zero-extension.
TargetLowering::AtomicExpansionKind shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const override
Returns how the IR-level AtomicExpand pass should expand the given AtomicRMW, if at all.
bool allowsMisalignedMemoryAccesses(EVT VT, unsigned AddrSpace=0, Align Alignment=Align(1), MachineMemOperand::Flags Flags=MachineMemOperand::MONone, unsigned *Fast=nullptr) const override
Determine if the target supports unaligned memory accesses.
bool isCheapToSpeculateCtlz(Type *Ty) const override
Return true if it is cheap to speculate a call to intrinsic ctlz.
SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const override
This callback is invoked for operations that are unsupported by the target, which are registered to u...
bool shouldAlignPointerArgs(CallInst *CI, unsigned &MinSize, Align &PrefAlign) const override
Return true if the pointer arguments to CI should be aligned by aligning the object whose address is ...
Value * emitMaskedAtomicRMWIntrinsic(IRBuilderBase &Builder, AtomicRMWInst *AI, Value *AlignedAddr, Value *Incr, Value *Mask, Value *ShiftAmt, AtomicOrdering Ord) const override
Perform a masked atomicrmw using a target-specific intrinsic.
bool isZExtFree(SDValue Val, EVT VT2) const override
Return true if zero-extending the specific node Val to type VT2 is free (either because it's implicit...
Register getExceptionPointerRegister(const Constant *PersonalityFn) const override
If a physical register, this returns the register that receives the exception address on entry to an ...
bool signExtendConstant(const ConstantInt *CI) const override
Return true if this constant should be sign extended when promoting to a larger type.
const char * getTargetNodeName(unsigned Opcode) const override
This method returns the name of a target specific DAG node.
bool getTgtMemIntrinsic(IntrinsicInfo &Info, const CallInst &I, MachineFunction &MF, unsigned Intrinsic) const override
Given an intrinsic, checks if on the target the intrinsic will need to map to a MemIntrinsicNode (tou...
bool isLegalAddImmediate(int64_t Imm) const override
Return true if the specified immediate is legal add immediate, that is the target has add instruction...
bool isCheapToSpeculateCttz(Type *Ty) const override
Return true if it is cheap to speculate a call to intrinsic cttz.
bool isLegalAddressingMode(const DataLayout &DL, const AddrMode &AM, Type *Ty, unsigned AS, Instruction *I=nullptr) const override
Return true if the addressing mode represented by AM is legal for this target, for a load/store of th...
bool shouldSignExtendTypeInLibCall(Type *Ty, bool IsSigned) const override
Returns true if arguments should be sign-extended in lib calls.
bool isFPImmVLDILegal(const APFloat &Imm, EVT VT) const
bool shouldExtendTypeInLibCall(EVT Type) const override
Returns true if arguments should be extended in lib calls.
Register getRegisterByName(const char *RegName, LLT VT, const MachineFunction &MF) const override
Return the register ID of the name passed in.
bool hasAndNot(SDValue Y) const override
Return true if the target has a bitwise and-not operation: X = ~A & B This can be used to simplify se...
bool isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const override
Return true if folding a constant offset with the given GlobalAddress is legal.
Register getExceptionSelectorRegister(const Constant *PersonalityFn) const override
If a physical register, this returns the register that receives the exception typeid on entry to a la...
void ReplaceNodeResults(SDNode *N, SmallVectorImpl< SDValue > &Results, SelectionDAG &DAG) const override
This callback is invoked when a node result type is illegal for the target, and the operation was reg...
void emitExpandAtomicRMW(AtomicRMWInst *AI) const override
Perform a atomicrmw expansion using a target-specific way.
ISD::NodeType getExtendForAtomicCmpSwapArg() const override
Returns how the platform's atomic compare and swap expects its comparison value to be extended (ZERO_...
LoongArchTargetLowering(const TargetMachine &TM, const LoongArchSubtarget &STI)
SDValue LowerReturn(SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, const SmallVectorImpl< ISD::OutputArg > &Outs, const SmallVectorImpl< SDValue > &OutVals, const SDLoc &DL, SelectionDAG &DAG) const override
This hook must be implemented to lower outgoing return values, described by the Outs array,...
bool hasAndNotCompare(SDValue Y) const override
Return true if the target should transform: (X & Y) == Y —> (~X & Y) == 0 (X & Y) !...
SDValue getRecipEstimate(SDValue Operand, SelectionDAG &DAG, int Enabled, int &RefinementSteps) const override
Return a reciprocal estimate value for the input operand.
bool CanLowerReturn(CallingConv::ID CallConv, MachineFunction &MF, bool IsVarArg, const SmallVectorImpl< ISD::OutputArg > &Outs, LLVMContext &Context, const Type *RetTy) const override
This hook should be implemented to check whether the return values described by the Outs array can fi...
SDValue LowerFormalArguments(SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, const SmallVectorImpl< ISD::InputArg > &Ins, const SDLoc &DL, SelectionDAG &DAG, SmallVectorImpl< SDValue > &InVals) const override
This hook must be implemented to lower the incoming (formal) arguments, described by the Ins array,...
bool mayBeEmittedAsTailCall(const CallInst *CI) const override
Return true if the target may be able emit the call instruction as a tail call.
Wrapper class representing physical registers. Should be passed by value.
bool hasFeature(unsigned Feature) const
bool is128BitVector() const
Return true if this is a 128-bit vector type.
unsigned getVectorNumElements() const
bool isVector() const
Return true if this is a vector value type.
static auto fixedlen_vector_valuetypes()
bool is256BitVector() const
Return true if this is a 256-bit vector type.
bool isScalarInteger() const
Return true if this is an integer, not including vectors.
bool isFloatingPoint() const
Return true if this is a FP or a vector FP type.
static MVT getIntegerVT(unsigned BitWidth)
MVT changeVectorElementTypeToInteger() const
Return a vector with the same number of elements as this vector, but with the element type converted ...
void transferSuccessorsAndUpdatePHIs(MachineBasicBlock *FromMBB)
Transfers all the successors, as in transferSuccessors, and update PHI operands in the successor bloc...
const BasicBlock * getBasicBlock() const
Return the LLVM basic block that this instance corresponded to originally.
void addSuccessor(MachineBasicBlock *Succ, BranchProbability Prob=BranchProbability::getUnknown())
Add Succ as a successor of this MachineBasicBlock.
const MachineFunction * getParent() const
Return the MachineFunction containing this basic block.
void splice(iterator Where, MachineBasicBlock *Other, iterator From)
Take an instruction from MBB 'Other' at the position From, and insert it into this MBB right before '...
The MachineFrameInfo class represents an abstract stack frame until prolog/epilog code is inserted.
int CreateFixedObject(uint64_t Size, int64_t SPOffset, bool IsImmutable, bool isAliased=false)
Create a new object at a fixed location on the stack.
int CreateStackObject(uint64_t Size, Align Alignment, bool isSpillSlot, const AllocaInst *Alloca=nullptr, uint8_t ID=0)
Create a new statically sized stack object, returning a nonnegative identifier to represent it.
void setFrameAddressIsTaken(bool T)
void setHasTailCall(bool V=true)
void setReturnAddressIsTaken(bool s)
const TargetSubtargetInfo & getSubtarget() const
getSubtarget - Return the subtarget for which this machine code is being compiled.
MachineMemOperand * getMachineMemOperand(MachinePointerInfo PtrInfo, MachineMemOperand::Flags f, LLT MemTy, Align base_alignment, const AAMDNodes &AAInfo=AAMDNodes(), const MDNode *Ranges=nullptr, SyncScope::ID SSID=SyncScope::System, AtomicOrdering Ordering=AtomicOrdering::NotAtomic, AtomicOrdering FailureOrdering=AtomicOrdering::NotAtomic)
getMachineMemOperand - Allocate a new MachineMemOperand.
MachineFrameInfo & getFrameInfo()
getFrameInfo - Return the frame info object for the current function.
MachineRegisterInfo & getRegInfo()
getRegInfo - Return information about the registers currently in use.
const DataLayout & getDataLayout() const
Return the DataLayout attached to the Module associated to this MF.
Function & getFunction()
Return the LLVM function that this machine code represents.
Ty * getInfo()
getInfo - Keep track of various per-function pieces of information for backends that would like to do...
Register addLiveIn(MCRegister PReg, const TargetRegisterClass *RC)
addLiveIn - Add the specified physical register as a live-in value and create a corresponding virtual...
MachineBasicBlock * CreateMachineBasicBlock(const BasicBlock *BB=nullptr, std::optional< UniqueBBID > BBID=std::nullopt)
CreateMachineBasicBlock - Allocate a new MachineBasicBlock.
void insert(iterator MBBI, MachineBasicBlock *MBB)
const MachineInstrBuilder & addImm(int64_t Val) const
Add a new immediate operand.
const MachineInstrBuilder & addReg(Register RegNo, unsigned flags=0, unsigned SubReg=0) const
Add a new virtual register operand.
const MachineInstrBuilder & addMBB(MachineBasicBlock *MBB, unsigned TargetFlags=0) const
Representation of each machine instruction.
const MachineOperand & getOperand(unsigned i) const
A description of a memory reference used in the backend.
Flags
Flags values. These may be or'd together.
@ MOVolatile
The memory access is volatile.
@ MODereferenceable
The memory access is dereferenceable (i.e., doesn't trap).
@ MOLoad
The memory access reads data.
@ MOInvariant
The memory access always returns the same value (or traps).
@ MOStore
The memory access writes data.
MachineOperand class - Representation of each machine instruction operand.
void setIsKill(bool Val=true)
void setIsUndef(bool Val=true)
Register getReg() const
getReg - Returns the register number.
static MachineOperand CreateReg(Register Reg, bool isDef, bool isImp=false, bool isKill=false, bool isDead=false, bool isUndef=false, bool isEarlyClobber=false, unsigned SubReg=0, bool isDebug=false, bool isInternalRead=false, bool isRenamable=false)
MachineRegisterInfo - Keep track of information for virtual and physical registers,...
Register createVirtualRegister(const TargetRegisterClass *RegClass, StringRef Name="")
createVirtualRegister - Create and return a new virtual register in the function with the specified r...
void addLiveIn(MCRegister Reg, Register vreg=Register())
addLiveIn - Add the specified register as a live-in.
EVT getMemoryVT() const
Return the type of the in-memory value.
MutableArrayRef - Represent a mutable reference to an array (0 or more elements consecutively in memo...
Class to represent pointers.
unsigned getAddressSpace() const
Return the address space of the Pointer type.
Wrapper class representing virtual and physical registers.
Wrapper class for IR location info (IR ordering and DebugLoc) to be passed into SDNode creation funct...
Represents one node in the SelectionDAG.
unsigned getOpcode() const
Return the SelectionDAG opcode value for this node.
size_t use_size() const
Return the number of uses of this node.
uint64_t getAsZExtVal() const
Helper method returns the zero-extended integer value of a ConstantSDNode.
const SDValue & getOperand(unsigned Num) const
EVT getValueType(unsigned ResNo) const
Return the type of a specified result.
Unlike LLVM values, Selection DAG nodes may return multiple values as the result of a computation.
SDNode * getNode() const
get the SDNode which holds the desired result
SDValue getValue(unsigned R) const
EVT getValueType() const
Return the ValueType of the referenced return value.
const SDValue & getOperand(unsigned i) const
uint64_t getScalarValueSizeInBits() const
uint64_t getConstantOperandVal(unsigned i) const
MVT getSimpleValueType() const
Return the simple ValueType of the referenced return value.
unsigned getOpcode() const
This is used to represent a portion of an LLVM function in a low-level Data Dependence DAG representa...
SDValue getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, EVT VT, SDValue Chain, SDValue Ptr, MachinePointerInfo PtrInfo, EVT MemVT, MaybeAlign Alignment=MaybeAlign(), MachineMemOperand::Flags MMOFlags=MachineMemOperand::MONone, const AAMDNodes &AAInfo=AAMDNodes())
SDValue getTargetGlobalAddress(const GlobalValue *GV, const SDLoc &DL, EVT VT, int64_t offset=0, unsigned TargetFlags=0)
SDValue getCopyToReg(SDValue Chain, const SDLoc &dl, Register Reg, SDValue N)
SDValue getMergeValues(ArrayRef< SDValue > Ops, const SDLoc &dl)
Create a MERGE_VALUES node from the given operands.
SDVTList getVTList(EVT VT)
Return an SDVTList that represents the list of values specified.
MachineSDNode * getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT)
These are used for target selectors to create a new node with specified return type(s),...
SDValue getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst, SDValue Src, SDValue Size, Align Alignment, bool isVol, bool AlwaysInline, const CallInst *CI, std::optional< bool > OverrideTailCall, MachinePointerInfo DstPtrInfo, MachinePointerInfo SrcPtrInfo, const AAMDNodes &AAInfo=AAMDNodes(), AAResults *AA=nullptr)
SDValue getSetCC(const SDLoc &DL, EVT VT, SDValue LHS, SDValue RHS, ISD::CondCode Cond, SDValue Chain=SDValue(), bool IsSignaling=false)
Helper function to make it easier to build SetCC's if you just have an ISD::CondCode instead of an SD...
SDValue getRegister(Register Reg, EVT VT)
SDValue getLoad(EVT VT, const SDLoc &dl, SDValue Chain, SDValue Ptr, MachinePointerInfo PtrInfo, MaybeAlign Alignment=MaybeAlign(), MachineMemOperand::Flags MMOFlags=MachineMemOperand::MONone, const AAMDNodes &AAInfo=AAMDNodes(), const MDNode *Ranges=nullptr)
Loads are not normal binary operators: their result type is not determined by their operands,...
void addNoMergeSiteInfo(const SDNode *Node, bool NoMerge)
Set NoMergeSiteInfo to be associated with Node if NoMerge is true.
SDValue getNOT(const SDLoc &DL, SDValue Val, EVT VT)
Create a bitwise NOT operation as (XOR Val, -1).
const TargetLowering & getTargetLoweringInfo() const
SDValue getTargetJumpTable(int JTI, EVT VT, unsigned TargetFlags=0)
SDValue getUNDEF(EVT VT)
Return an UNDEF node. UNDEF does not have a useful SDLoc.
SDValue getCALLSEQ_END(SDValue Chain, SDValue Op1, SDValue Op2, SDValue InGlue, const SDLoc &DL)
Return a new CALLSEQ_END node, which always must have a glue result (to ensure it's not CSE'd).
SDValue getBuildVector(EVT VT, const SDLoc &DL, ArrayRef< SDValue > Ops)
Return an ISD::BUILD_VECTOR node.
bool isSplatValue(SDValue V, const APInt &DemandedElts, APInt &UndefElts, unsigned Depth=0) const
Test whether V has a splatted value for all the demanded elements.
SDValue getBitcast(EVT VT, SDValue V)
Return a bitcast using the SDLoc of the value operand, and casting to the provided type.
SDValue getCopyFromReg(SDValue Chain, const SDLoc &dl, Register Reg, EVT VT)
void setNodeMemRefs(MachineSDNode *N, ArrayRef< MachineMemOperand * > NewMemRefs)
Mutate the specified machine node's memory references to the provided list.
const DataLayout & getDataLayout() const
SDValue getConstant(uint64_t Val, const SDLoc &DL, EVT VT, bool isTarget=false, bool isOpaque=false)
Create a ConstantSDNode wrapping a constant value.
SDValue getSignedTargetConstant(int64_t Val, const SDLoc &DL, EVT VT, bool isOpaque=false)
void ReplaceAllUsesWith(SDValue From, SDValue To)
Modify anything using 'From' to use 'To' instead.
SDValue getCommutedVectorShuffle(const ShuffleVectorSDNode &SV)
Returns an ISD::VECTOR_SHUFFLE node semantically equivalent to the shuffle node in input but with swa...
SDValue getStore(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr, MachinePointerInfo PtrInfo, Align Alignment, MachineMemOperand::Flags MMOFlags=MachineMemOperand::MONone, const AAMDNodes &AAInfo=AAMDNodes())
Helper function to build ISD::STORE nodes.
SDValue getSignedConstant(int64_t Val, const SDLoc &DL, EVT VT, bool isTarget=false, bool isOpaque=false)
SDValue getCALLSEQ_START(SDValue Chain, uint64_t InSize, uint64_t OutSize, const SDLoc &DL)
Return a new CALLSEQ_START node, that starts new call frame, in which InSize bytes are set up inside ...
SDValue getExternalSymbol(const char *Sym, EVT VT)
const TargetMachine & getTarget() const
SDValue getIntPtrConstant(uint64_t Val, const SDLoc &DL, bool isTarget=false)
SDValue getValueType(EVT)
SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, ArrayRef< SDUse > Ops)
Gets or creates the specified node.
SDValue getTargetConstant(uint64_t Val, const SDLoc &DL, EVT VT, bool isOpaque=false)
SDValue getTargetBlockAddress(const BlockAddress *BA, EVT VT, int64_t Offset=0, unsigned TargetFlags=0)
MachineFunction & getMachineFunction() const
SDValue getFrameIndex(int FI, EVT VT, bool isTarget=false)
KnownBits computeKnownBits(SDValue Op, unsigned Depth=0) const
Determine which bits of Op are known to be either zero or one and return them in Known.
SDValue getRegisterMask(const uint32_t *RegMask)
LLVMContext * getContext() const
SDValue getTargetExternalSymbol(const char *Sym, EVT VT, unsigned TargetFlags=0)
SDValue CreateStackTemporary(TypeSize Bytes, Align Alignment)
Create a stack temporary based on the size in bytes and the alignment.
SDValue getTargetConstantPool(const Constant *C, EVT VT, MaybeAlign Align=std::nullopt, int Offset=0, unsigned TargetFlags=0)
SDValue getEntryNode() const
Return the token chain corresponding to the entry of the function.
SDValue getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1, SDValue N2, ArrayRef< int > Mask)
Return an ISD::VECTOR_SHUFFLE node.
This SDNode is used to implement the code generator support for the llvm IR shufflevector instruction...
ArrayRef< int > getMask() const
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
typename SuperClass::const_iterator const_iterator
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
StackOffset holds a fixed and a scalable offset in bytes.
StringRef - Represent a constant reference to a string, i.e.
std::pair< StringRef, StringRef > split(char Separator) const
Split into two substrings around the first occurrence of a separator character.
bool starts_with(StringRef Prefix) const
Check if this string starts with the given Prefix.
constexpr size_t size() const
size - Get the string size.
A switch()-like statement whose cases are string literals.
StringSwitch & Case(StringLiteral S, T Value)
TargetInstrInfo - Interface to description of machine instruction set.
void setBooleanVectorContents(BooleanContent Ty)
Specify how the target extends the result of a vector boolean value from a vector of i1 to a wider ty...
void setOperationAction(unsigned Op, MVT VT, LegalizeAction Action)
Indicate that the specified operation does not work with the specified type and indicate what to do a...
MachineBasicBlock * emitPatchPoint(MachineInstr &MI, MachineBasicBlock *MBB) const
Replace/modify any TargetFrameIndex operands with a targte-dependent sequence of memory operands that...
virtual const TargetRegisterClass * getRegClassFor(MVT VT, bool isDivergent=false) const
Return the register class that should be used for the specified value type.
const TargetMachine & getTargetMachine() const
virtual bool isZExtFree(Type *FromTy, Type *ToTy) const
Return true if any actual instruction that defines a value of type FromTy implicitly zero-extends the...
void setMaxBytesForAlignment(unsigned MaxBytes)
void setPrefLoopAlignment(Align Alignment)
Set the target's preferred loop alignment.
void setMaxAtomicSizeInBitsSupported(unsigned SizeInBits)
Set the maximum atomic operation size supported by the backend.
void setMinFunctionAlignment(Align Alignment)
Set the target's minimum function alignment.
void setBooleanContents(BooleanContent Ty)
Specify how the target extends the result of integer and floating point boolean values from i1 to a w...
void computeRegisterProperties(const TargetRegisterInfo *TRI)
Once all of the register classes are added, this allows us to compute derived properties we expose.
void addRegisterClass(MVT VT, const TargetRegisterClass *RC)
Add the specified register class as an available regclass for the specified value type.
virtual MVT getPointerTy(const DataLayout &DL, uint32_t AS=0) const
Return the pointer type for the given address space, defaults to the pointer type from the data layou...
void setPrefFunctionAlignment(Align Alignment)
Set the target's preferred function alignment.
void setTruncStoreAction(MVT ValVT, MVT MemVT, LegalizeAction Action)
Indicate that the specified truncating store does not work with the specified type and indicate what ...
@ ZeroOrOneBooleanContent
@ ZeroOrNegativeOneBooleanContent
void setMinCmpXchgSizeInBits(unsigned SizeInBits)
Sets the minimum cmpxchg or ll/sc size supported by the backend.
void setStackPointerRegisterToSaveRestore(Register R)
If set to a physical register, this specifies the register that llvm.savestack/llvm....
AtomicExpansionKind
Enum that specifies what an atomic load/AtomicRMWInst is expanded to, if at all.
void setCondCodeAction(ArrayRef< ISD::CondCode > CCs, MVT VT, LegalizeAction Action)
Indicate that the specified condition code is or isn't supported on the target and indicate what to d...
void setTargetDAGCombine(ArrayRef< ISD::NodeType > NTs)
Targets should invoke this method for each target independent node that they want to provide a custom...
void setLoadExtAction(unsigned ExtType, MVT ValVT, MVT MemVT, LegalizeAction Action)
Indicate that the specified load with extension does not work with the specified type and indicate wh...
LegalizeTypeAction getTypeAction(LLVMContext &Context, EVT VT) const
Return how we should legalize values of this type, either it is already legal (return 'Legal') or we ...
std::vector< ArgListEntry > ArgListTy
This class defines information used to lower LLVM code to legal SelectionDAG operators that the targe...
std::pair< SDValue, SDValue > makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT, ArrayRef< SDValue > Ops, MakeLibCallOptions CallOptions, const SDLoc &dl, SDValue Chain=SDValue()) const
Returns a pair of (return value, chain).
virtual InlineAsm::ConstraintCode getInlineAsmMemConstraint(StringRef ConstraintCode) const
virtual ConstraintType getConstraintType(StringRef Constraint) const
Given a constraint, return the type of constraint it is for this target.
std::pair< SDValue, SDValue > LowerCallTo(CallLoweringInfo &CLI) const
This function lowers an abstract call to a function into an actual call.
virtual std::pair< unsigned, const TargetRegisterClass * > getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const
Given a physical register constraint (e.g.
bool verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const
virtual void LowerAsmOperandForConstraint(SDValue Op, StringRef Constraint, std::vector< SDValue > &Ops, SelectionDAG &DAG) const
Lower the specified operand into the Ops vector.
Primary interface to the complete machine description for the target machine.
bool useTLSDESC() const
Returns true if this target uses TLS Descriptors.
bool useEmulatedTLS() const
Returns true if this target uses emulated TLS.
bool shouldAssumeDSOLocal(const GlobalValue *GV) const
CodeModel::Model getCodeModel() const
Returns the code model.
TargetRegisterInfo base class - We assume that the target defines a static array of TargetRegisterDes...
virtual const TargetInstrInfo * getInstrInfo() const
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
The instances of the Type class are immutable: once they are created, they are never changed.
unsigned getIntegerBitWidth() const
static IntegerType * getIntNTy(LLVMContext &C, unsigned N)
bool isIntegerTy() const
True if this is an instance of IntegerType.
TypeSize getPrimitiveSizeInBits() const LLVM_READONLY
Return the basic size of this type if it is a primitive type.
This class is used to represent EVT's, which are used to parameterize some operations.
LLVM Value Representation.
Type * getType() const
All values are typed, get the type of this value.
void replaceAllUsesWith(Value *V)
Change all uses of this to point to a new Value.
self_iterator getIterator()
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
constexpr char Args[]
Key for Kernel::Metadata::mArgs.
@ GHC
Used by the Glasgow Haskell Compiler (GHC).
@ Fast
Attempts to make calls as fast as possible (e.g.
@ C
The default llvm calling convention, compatible with C.
NodeType
ISD::NodeType enum - This enum defines the target-independent operators for a SelectionDAG.
@ SETCC
SetCC operator - This evaluates to a true value iff the condition is true.
@ STACKRESTORE
STACKRESTORE has two operands, an input chain and a pointer to restore to it returns an output chain.
@ STACKSAVE
STACKSAVE - STACKSAVE has one operand, an input chain.
@ STRICT_FSETCC
STRICT_FSETCC/STRICT_FSETCCS - Constrained versions of SETCC, used for floating-point operands only.
@ SMUL_LOHI
SMUL_LOHI/UMUL_LOHI - Multiply two integers of type iN, producing a signed/unsigned value of type i[2...
@ BSWAP
Byte Swap and Counting operators.
@ VAEND
VAEND, VASTART - VAEND and VASTART have three operands: an input chain, pointer, and a SRCVALUE.
@ ADD
Simple integer binary arithmetic operators.
@ LOAD
LOAD and STORE have token chains as their first operand, then the same operands as an LLVM load/store...
@ ANY_EXTEND
ANY_EXTEND - Used for integer types. The high bits are undefined.
@ FMA
FMA - Perform a * b + c with no intermediate rounding step.
@ INTRINSIC_VOID
OUTCHAIN = INTRINSIC_VOID(INCHAIN, INTRINSICID, arg1, arg2, ...) This node represents a target intrin...
@ SINT_TO_FP
[SU]INT_TO_FP - These operators convert integers (whose interpreted sign depends on the first letter)...
@ CONCAT_VECTORS
CONCAT_VECTORS(VECTOR0, VECTOR1, ...) - Given a number of values of vector type with the same length ...
@ FADD
Simple binary floating point operators.
@ MEMBARRIER
MEMBARRIER - Compiler barrier only; generate a no-op.
@ ATOMIC_FENCE
OUTCHAIN = ATOMIC_FENCE(INCHAIN, ordering, scope) This corresponds to the fence instruction.
@ FP16_TO_FP
FP16_TO_FP, FP_TO_FP16 - These operators are used to perform promotions and truncation for half-preci...
@ BITCAST
BITCAST - This operator converts between integer, vector and FP values, as if the value was stored to...
@ BUILTIN_OP_END
BUILTIN_OP_END - This must be the last enum value in this list.
@ SIGN_EXTEND
Conversion operators.
@ PREFETCH
PREFETCH - This corresponds to a prefetch intrinsic.
@ FSINCOS
FSINCOS - Compute both fsin and fcos as a single operation.
@ FNEG
Perform various unary floating-point operations inspired by libm.
@ BR_CC
BR_CC - Conditional branch.
@ BR_JT
BR_JT - Jumptable branch.
@ IS_FPCLASS
Performs a check of floating point class property, defined by IEEE-754.
@ SELECT
Select(COND, TRUEVAL, FALSEVAL).
@ UNDEF
UNDEF - An undefined node.
@ VACOPY
VACOPY - VACOPY has 5 operands: an input chain, a destination pointer, a source pointer,...
@ MULHU
MULHU/MULHS - Multiply high - Multiply two integers of type iN, producing an unsigned/signed value of...
@ SHL
Shift and rotation operations.
@ VECTOR_SHUFFLE
VECTOR_SHUFFLE(VEC1, VEC2) - Returns a vector, of the same type as VEC1/VEC2.
@ FMINNUM_IEEE
FMINNUM_IEEE/FMAXNUM_IEEE - Perform floating-point minimumNumber or maximumNumber on two values,...
@ READ_REGISTER
READ_REGISTER, WRITE_REGISTER - This node represents llvm.register on the DAG, which implements the n...
@ EXTRACT_VECTOR_ELT
EXTRACT_VECTOR_ELT(VECTOR, IDX) - Returns a single element from VECTOR identified by the (potentially...
@ CopyToReg
CopyToReg - This node has three operands: a chain, a register number to set to this value,...
@ ZERO_EXTEND
ZERO_EXTEND - Used for integer types, zeroing the new bits.
@ DEBUGTRAP
DEBUGTRAP - Trap intended to get the attention of a debugger.
@ SELECT_CC
Select with condition operator - This selects between a true value and a false value (ops #2 and #3) ...
@ DYNAMIC_STACKALLOC
DYNAMIC_STACKALLOC - Allocate some number of bytes on the stack aligned to a specified boundary.
@ SIGN_EXTEND_INREG
SIGN_EXTEND_INREG - This operator atomically performs a SHL/SRA pair to sign extend a small value in ...
@ SMIN
[US]{MIN/MAX} - Binary minimum or maximum of signed or unsigned integers.
@ FP_EXTEND
X = FP_EXTEND(Y) - Extend a smaller FP type into a larger FP type.
@ VSELECT
Select with a vector condition (op #0) and two vector operands (ops #1 and #2), returning a vector re...
@ EH_DWARF_CFA
EH_DWARF_CFA - This node represents the pointer to the DWARF Canonical Frame Address (CFA),...
@ FRAMEADDR
FRAMEADDR, RETURNADDR - These nodes represent llvm.frameaddress and llvm.returnaddress on the DAG.
@ FP_TO_SINT
FP_TO_[US]INT - Convert a floating point value to a signed or unsigned integer.
@ AND
Bitwise operators - logical and, logical or, logical xor.
@ TRAP
TRAP - Trapping instruction.
@ INTRINSIC_WO_CHAIN
RESULT = INTRINSIC_WO_CHAIN(INTRINSICID, arg1, arg2, ...) This node represents a target intrinsic fun...
@ INSERT_VECTOR_ELT
INSERT_VECTOR_ELT(VECTOR, VAL, IDX) - Returns VECTOR with the element at IDX replaced with VAL.
@ TokenFactor
TokenFactor - This node takes multiple tokens as input and produces a single token result.
@ TRUNCATE
TRUNCATE - Completely drop the high bits.
@ VAARG
VAARG - VAARG has four operands: an input chain, a pointer, a SRCVALUE, and the alignment.
@ SHL_PARTS
SHL_PARTS/SRA_PARTS/SRL_PARTS - These operators are used for expanded integer shift operations.
@ AssertSext
AssertSext, AssertZext - These nodes record if a register contains a value that has already been zero...
@ INTRINSIC_W_CHAIN
RESULT,OUTCHAIN = INTRINSIC_W_CHAIN(INCHAIN, INTRINSICID, arg1, ...) This node represents a target in...
@ BUILD_VECTOR
BUILD_VECTOR(ELT0, ELT1, ELT2, ELT3,...) - Return a fixed-width vector with the specified,...
CondCode
ISD::CondCode enum - These are ordered carefully to make the bitfields below work out,...
LoadExtType
LoadExtType enum - This enum defines the three variants of LOADEXT (load with extension).
Function * getOrInsertDeclaration(Module *M, ID id, ArrayRef< Type * > Tys={})
Look up the Function declaration of the intrinsic id in the Module M.
ABI getTargetABI(StringRef ABIName)
Libcall getSINTTOFP(EVT OpVT, EVT RetVT)
getSINTTOFP - Return the SINTTOFP_*_* value for the given types, or UNKNOWN_LIBCALL if there is none.
Libcall getUINTTOFP(EVT OpVT, EVT RetVT)
getUINTTOFP - Return the UINTTOFP_*_* value for the given types, or UNKNOWN_LIBCALL if there is none.
Libcall
RTLIB::Libcall enum - This enum defines all of the runtime library calls the backend can emit.
Libcall getFPTOSINT(EVT OpVT, EVT RetVT)
getFPTOSINT - Return the FPTOSINT_*_* value for the given types, or UNKNOWN_LIBCALL if there is none.
@ SingleThread
Synchronized with respect to signal handlers executing in the same thread.
Reg
All possible values of the reg field in the ModR/M byte.
initializer< Ty > init(const Ty &Val)
This is an optimization pass for GlobalISel generic memory operations.
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
MachineInstrBuilder BuildMI(MachineFunction &MF, const MIMetadata &MIMD, const MCInstrDesc &MCID)
Builder interface. Specify how to create the initial instruction itself.
constexpr bool isShiftedMask_64(uint64_t Value)
Return true if the argument contains a non-empty sequence of ones with the remainder zero (64 bit ver...
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
void report_fatal_error(Error Err, bool gen_crash_diag=true)
Report a serious error, calling any installed error handler.
constexpr bool isUInt(uint64_t x)
Checks if an unsigned integer fits into the given bit width.
AtomicOrdering
Atomic ordering for LLVM's memory model.
unsigned getKillRegState(bool B)
DWARFExpression::Operation Op
constexpr unsigned BitWidth
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
This struct is a compact representation of a valid (non-zero power of two) alignment.
EVT changeVectorElementTypeToInteger() const
Return a vector with the same number of elements as this vector, but with the element type converted ...
TypeSize getStoreSize() const
Return the number of bytes overwritten by a store of the specified value type.
bool isSimple() const
Test if the given EVT is simple (as opposed to being extended).
TypeSize getSizeInBits() const
Return the size of the specified value type in bits.
uint64_t getScalarSizeInBits() const
MVT getSimpleVT() const
Return the SimpleValueType held in the specified simple EVT.
bool is128BitVector() const
Return true if this is a 128-bit vector type.
uint64_t getFixedSizeInBits() const
Return the size of the specified fixed width value type in bits.
static EVT getFloatingPointVT(unsigned BitWidth)
Returns the EVT that represents a floating-point type with the given number of bits.
bool isVector() const
Return true if this is a vector value type.
EVT getScalarType() const
If this is a vector type, return the element type, otherwise return this.
bool is256BitVector() const
Return true if this is a 256-bit vector type.
Type * getTypeForEVT(LLVMContext &Context) const
This method returns an LLVM type corresponding to the specified EVT.
EVT getVectorElementType() const
Given a vector type, return the type of each element.
bool isScalarInteger() const
Return true if this is an integer, but not a vector.
unsigned getVectorNumElements() const
Given a vector type, return the number of elements it contains.
Align getNonZeroOrigAlign() const
Register getFrameRegister(const MachineFunction &MF) const override
BitVector getReservedRegs(const MachineFunction &MF) const override
This class contains a discriminated union of information about pointers in memory operands,...
static MachinePointerInfo getGOT(MachineFunction &MF)
Return a MachinePointerInfo record that refers to a GOT entry.
static MachinePointerInfo getFixedStack(MachineFunction &MF, int FI, int64_t Offset=0)
Return a MachinePointerInfo record that refers to the specified FrameIndex.
This represents a list of ValueType's that has been intern'd by a SelectionDAG.
This represents an addressing mode of: BaseGV + BaseOffs + BaseReg + Scale*ScaleReg + ScalableOffset*...
This structure contains all information that is necessary for lowering calls.
SmallVector< ISD::InputArg, 32 > Ins
SmallVector< ISD::OutputArg, 32 > Outs
SmallVector< SDValue, 32 > OutVals
bool isBeforeLegalizeOps() const
This structure is used to pass arguments to makeLibCall function.
MakeLibCallOptions & setTypeListBeforeSoften(ArrayRef< EVT > OpsVT, EVT RetVT, bool Value=true)