LLVM 19.0.0git
RegisterCoalescer.cpp
Go to the documentation of this file.
1//===- RegisterCoalescer.cpp - Generic Register Coalescing Interface ------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements the generic RegisterCoalescer interface which
10// is used as the common interface used by all clients and
11// implementations of register coalescing.
12//
13//===----------------------------------------------------------------------===//
14
15#include "RegisterCoalescer.h"
16#include "llvm/ADT/ArrayRef.h"
17#include "llvm/ADT/BitVector.h"
18#include "llvm/ADT/DenseSet.h"
19#include "llvm/ADT/STLExtras.h"
22#include "llvm/ADT/Statistic.h"
35#include "llvm/CodeGen/Passes.h"
42#include "llvm/IR/DebugLoc.h"
44#include "llvm/MC/LaneBitmask.h"
45#include "llvm/MC/MCInstrDesc.h"
47#include "llvm/Pass.h"
50#include "llvm/Support/Debug.h"
53#include <algorithm>
54#include <cassert>
55#include <iterator>
56#include <limits>
57#include <tuple>
58#include <utility>
59#include <vector>
60
61using namespace llvm;
62
63#define DEBUG_TYPE "regalloc"
64
65STATISTIC(numJoins , "Number of interval joins performed");
66STATISTIC(numCrossRCs , "Number of cross class joins performed");
67STATISTIC(numCommutes , "Number of instruction commuting performed");
68STATISTIC(numExtends , "Number of copies extended");
69STATISTIC(NumReMats , "Number of instructions re-materialized");
70STATISTIC(NumInflated , "Number of register classes inflated");
71STATISTIC(NumLaneConflicts, "Number of dead lane conflicts tested");
72STATISTIC(NumLaneResolves, "Number of dead lane conflicts resolved");
73STATISTIC(NumShrinkToUses, "Number of shrinkToUses called");
74
75static cl::opt<bool> EnableJoining("join-liveintervals",
76 cl::desc("Coalesce copies (default=true)"),
77 cl::init(true), cl::Hidden);
78
79static cl::opt<bool> UseTerminalRule("terminal-rule",
80 cl::desc("Apply the terminal rule"),
81 cl::init(false), cl::Hidden);
82
83/// Temporary flag to test critical edge unsplitting.
84static cl::opt<bool>
85EnableJoinSplits("join-splitedges",
86 cl::desc("Coalesce copies on split edges (default=subtarget)"), cl::Hidden);
87
88/// Temporary flag to test global copy optimization.
90EnableGlobalCopies("join-globalcopies",
91 cl::desc("Coalesce copies that span blocks (default=subtarget)"),
93
94static cl::opt<bool>
95VerifyCoalescing("verify-coalescing",
96 cl::desc("Verify machine instrs before and after register coalescing"),
98
100 "late-remat-update-threshold", cl::Hidden,
101 cl::desc("During rematerialization for a copy, if the def instruction has "
102 "many other copy uses to be rematerialized, delay the multiple "
103 "separate live interval update work and do them all at once after "
104 "all those rematerialization are done. It will save a lot of "
105 "repeated work. "),
106 cl::init(100));
107
109 "large-interval-size-threshold", cl::Hidden,
110 cl::desc("If the valnos size of an interval is larger than the threshold, "
111 "it is regarded as a large interval. "),
112 cl::init(100));
113
115 "large-interval-freq-threshold", cl::Hidden,
116 cl::desc("For a large interval, if it is coalesed with other live "
117 "intervals many times more than the threshold, stop its "
118 "coalescing to control the compile time. "),
119 cl::init(256));
120
121namespace {
122
123 class JoinVals;
124
125 class RegisterCoalescer : public MachineFunctionPass,
127 MachineFunction* MF = nullptr;
128 MachineRegisterInfo* MRI = nullptr;
129 const TargetRegisterInfo* TRI = nullptr;
130 const TargetInstrInfo* TII = nullptr;
131 LiveIntervals *LIS = nullptr;
132 const MachineLoopInfo* Loops = nullptr;
133 AliasAnalysis *AA = nullptr;
134 RegisterClassInfo RegClassInfo;
135
136 /// Position and VReg of a PHI instruction during coalescing.
137 struct PHIValPos {
138 SlotIndex SI; ///< Slot where this PHI occurs.
139 Register Reg; ///< VReg the PHI occurs in.
140 unsigned SubReg; ///< Qualifying subregister for Reg.
141 };
142
143 /// Map from debug instruction number to PHI position during coalescing.
145 /// Index of, for each VReg, which debug instruction numbers and
146 /// corresponding PHIs are sensitive to coalescing. Each VReg may have
147 /// multiple PHI defs, at different positions.
149
150 /// Debug variable location tracking -- for each VReg, maintain an
151 /// ordered-by-slot-index set of DBG_VALUEs, to help quick
152 /// identification of whether coalescing may change location validity.
153 using DbgValueLoc = std::pair<SlotIndex, MachineInstr*>;
155
156 /// A LaneMask to remember on which subregister live ranges we need to call
157 /// shrinkToUses() later.
158 LaneBitmask ShrinkMask;
159
160 /// True if the main range of the currently coalesced intervals should be
161 /// checked for smaller live intervals.
162 bool ShrinkMainRange = false;
163
164 /// True if the coalescer should aggressively coalesce global copies
165 /// in favor of keeping local copies.
166 bool JoinGlobalCopies = false;
167
168 /// True if the coalescer should aggressively coalesce fall-thru
169 /// blocks exclusively containing copies.
170 bool JoinSplitEdges = false;
171
172 /// Copy instructions yet to be coalesced.
174 SmallVector<MachineInstr*, 8> LocalWorkList;
175
176 /// Set of instruction pointers that have been erased, and
177 /// that may be present in WorkList.
179
180 /// Dead instructions that are about to be deleted.
182
183 /// Virtual registers to be considered for register class inflation.
184 SmallVector<Register, 8> InflateRegs;
185
186 /// The collection of live intervals which should have been updated
187 /// immediately after rematerialiation but delayed until
188 /// lateLiveIntervalUpdate is called.
189 DenseSet<Register> ToBeUpdated;
190
191 /// Record how many times the large live interval with many valnos
192 /// has been tried to join with other live interval.
193 DenseMap<Register, unsigned long> LargeLIVisitCounter;
194
195 /// Recursively eliminate dead defs in DeadDefs.
196 void eliminateDeadDefs(LiveRangeEdit *Edit = nullptr);
197
198 /// LiveRangeEdit callback for eliminateDeadDefs().
200
201 /// Coalesce the LocalWorkList.
202 void coalesceLocals();
203
204 /// Join compatible live intervals
205 void joinAllIntervals();
206
207 /// Coalesce copies in the specified MBB, putting
208 /// copies that cannot yet be coalesced into WorkList.
209 void copyCoalesceInMBB(MachineBasicBlock *MBB);
210
211 /// Tries to coalesce all copies in CurrList. Returns true if any progress
212 /// was made.
213 bool copyCoalesceWorkList(MutableArrayRef<MachineInstr*> CurrList);
214
215 /// If one def has many copy like uses, and those copy uses are all
216 /// rematerialized, the live interval update needed for those
217 /// rematerializations will be delayed and done all at once instead
218 /// of being done multiple times. This is to save compile cost because
219 /// live interval update is costly.
220 void lateLiveIntervalUpdate();
221
222 /// Check if the incoming value defined by a COPY at \p SLRQ in the subrange
223 /// has no value defined in the predecessors. If the incoming value is the
224 /// same as defined by the copy itself, the value is considered undefined.
225 bool copyValueUndefInPredecessors(LiveRange &S,
226 const MachineBasicBlock *MBB,
227 LiveQueryResult SLRQ);
228
229 /// Set necessary undef flags on subregister uses after pruning out undef
230 /// lane segments from the subrange.
231 void setUndefOnPrunedSubRegUses(LiveInterval &LI, Register Reg,
232 LaneBitmask PrunedLanes);
233
234 /// Attempt to join intervals corresponding to SrcReg/DstReg, which are the
235 /// src/dst of the copy instruction CopyMI. This returns true if the copy
236 /// was successfully coalesced away. If it is not currently possible to
237 /// coalesce this interval, but it may be possible if other things get
238 /// coalesced, then it returns true by reference in 'Again'.
239 bool joinCopy(MachineInstr *CopyMI, bool &Again,
240 SmallPtrSetImpl<MachineInstr *> &CurrentErasedInstrs);
241
242 /// Attempt to join these two intervals. On failure, this
243 /// returns false. The output "SrcInt" will not have been modified, so we
244 /// can use this information below to update aliases.
245 bool joinIntervals(CoalescerPair &CP);
246
247 /// Attempt joining two virtual registers. Return true on success.
248 bool joinVirtRegs(CoalescerPair &CP);
249
250 /// If a live interval has many valnos and is coalesced with other
251 /// live intervals many times, we regard such live interval as having
252 /// high compile time cost.
253 bool isHighCostLiveInterval(LiveInterval &LI);
254
255 /// Attempt joining with a reserved physreg.
256 bool joinReservedPhysReg(CoalescerPair &CP);
257
258 /// Add the LiveRange @p ToMerge as a subregister liverange of @p LI.
259 /// Subranges in @p LI which only partially interfere with the desired
260 /// LaneMask are split as necessary. @p LaneMask are the lanes that
261 /// @p ToMerge will occupy in the coalescer register. @p LI has its subrange
262 /// lanemasks already adjusted to the coalesced register.
263 void mergeSubRangeInto(LiveInterval &LI, const LiveRange &ToMerge,
264 LaneBitmask LaneMask, CoalescerPair &CP,
265 unsigned DstIdx);
266
267 /// Join the liveranges of two subregisters. Joins @p RRange into
268 /// @p LRange, @p RRange may be invalid afterwards.
269 void joinSubRegRanges(LiveRange &LRange, LiveRange &RRange,
270 LaneBitmask LaneMask, const CoalescerPair &CP);
271
272 /// We found a non-trivially-coalescable copy. If the source value number is
273 /// defined by a copy from the destination reg see if we can merge these two
274 /// destination reg valno# into a single value number, eliminating a copy.
275 /// This returns true if an interval was modified.
276 bool adjustCopiesBackFrom(const CoalescerPair &CP, MachineInstr *CopyMI);
277
278 /// Return true if there are definitions of IntB
279 /// other than BValNo val# that can reach uses of AValno val# of IntA.
280 bool hasOtherReachingDefs(LiveInterval &IntA, LiveInterval &IntB,
281 VNInfo *AValNo, VNInfo *BValNo);
282
283 /// We found a non-trivially-coalescable copy.
284 /// If the source value number is defined by a commutable instruction and
285 /// its other operand is coalesced to the copy dest register, see if we
286 /// can transform the copy into a noop by commuting the definition.
287 /// This returns a pair of two flags:
288 /// - the first element is true if an interval was modified,
289 /// - the second element is true if the destination interval needs
290 /// to be shrunk after deleting the copy.
291 std::pair<bool,bool> removeCopyByCommutingDef(const CoalescerPair &CP,
292 MachineInstr *CopyMI);
293
294 /// We found a copy which can be moved to its less frequent predecessor.
295 bool removePartialRedundancy(const CoalescerPair &CP, MachineInstr &CopyMI);
296
297 /// If the source of a copy is defined by a
298 /// trivial computation, replace the copy by rematerialize the definition.
299 bool reMaterializeTrivialDef(const CoalescerPair &CP, MachineInstr *CopyMI,
300 bool &IsDefCopy);
301
302 /// Return true if a copy involving a physreg should be joined.
303 bool canJoinPhys(const CoalescerPair &CP);
304
305 /// Replace all defs and uses of SrcReg to DstReg and update the subregister
306 /// number if it is not zero. If DstReg is a physical register and the
307 /// existing subregister number of the def / use being updated is not zero,
308 /// make sure to set it to the correct physical subregister.
309 void updateRegDefsUses(Register SrcReg, Register DstReg, unsigned SubIdx);
310
311 /// If the given machine operand reads only undefined lanes add an undef
312 /// flag.
313 /// This can happen when undef uses were previously concealed by a copy
314 /// which we coalesced. Example:
315 /// %0:sub0<def,read-undef> = ...
316 /// %1 = COPY %0 <-- Coalescing COPY reveals undef
317 /// = use %1:sub1 <-- hidden undef use
318 void addUndefFlag(const LiveInterval &Int, SlotIndex UseIdx,
319 MachineOperand &MO, unsigned SubRegIdx);
320
321 /// Handle copies of undef values. If the undef value is an incoming
322 /// PHI value, it will convert @p CopyMI to an IMPLICIT_DEF.
323 /// Returns nullptr if @p CopyMI was not in any way eliminable. Otherwise,
324 /// it returns @p CopyMI (which could be an IMPLICIT_DEF at this point).
325 MachineInstr *eliminateUndefCopy(MachineInstr *CopyMI);
326
327 /// Check whether or not we should apply the terminal rule on the
328 /// destination (Dst) of \p Copy.
329 /// When the terminal rule applies, Copy is not profitable to
330 /// coalesce.
331 /// Dst is terminal if it has exactly one affinity (Dst, Src) and
332 /// at least one interference (Dst, Dst2). If Dst is terminal, the
333 /// terminal rule consists in checking that at least one of
334 /// interfering node, say Dst2, has an affinity of equal or greater
335 /// weight with Src.
336 /// In that case, Dst2 and Dst will not be able to be both coalesced
337 /// with Src. Since Dst2 exposes more coalescing opportunities than
338 /// Dst, we can drop \p Copy.
339 bool applyTerminalRule(const MachineInstr &Copy) const;
340
341 /// Wrapper method for \see LiveIntervals::shrinkToUses.
342 /// This method does the proper fixing of the live-ranges when the afore
343 /// mentioned method returns true.
344 void shrinkToUses(LiveInterval *LI,
345 SmallVectorImpl<MachineInstr * > *Dead = nullptr) {
346 NumShrinkToUses++;
347 if (LIS->shrinkToUses(LI, Dead)) {
348 /// Check whether or not \p LI is composed by multiple connected
349 /// components and if that is the case, fix that.
351 LIS->splitSeparateComponents(*LI, SplitLIs);
352 }
353 }
354
355 /// Wrapper Method to do all the necessary work when an Instruction is
356 /// deleted.
357 /// Optimizations should use this to make sure that deleted instructions
358 /// are always accounted for.
359 void deleteInstr(MachineInstr* MI) {
360 ErasedInstrs.insert(MI);
362 MI->eraseFromParent();
363 }
364
365 /// Walk over function and initialize the DbgVRegToValues map.
367
368 /// Test whether, after merging, any DBG_VALUEs would refer to a
369 /// different value number than before merging, and whether this can
370 /// be resolved. If not, mark the DBG_VALUE as being undef.
371 void checkMergingChangesDbgValues(CoalescerPair &CP, LiveRange &LHS,
372 JoinVals &LHSVals, LiveRange &RHS,
373 JoinVals &RHSVals);
374
375 void checkMergingChangesDbgValuesImpl(Register Reg, LiveRange &OtherRange,
376 LiveRange &RegRange, JoinVals &Vals2);
377
378 public:
379 static char ID; ///< Class identification, replacement for typeinfo
380
381 RegisterCoalescer() : MachineFunctionPass(ID) {
383 }
384
385 void getAnalysisUsage(AnalysisUsage &AU) const override;
386
389 MachineFunctionProperties::Property::IsSSA);
390 }
391
392 void releaseMemory() override;
393
394 /// This is the pass entry point.
396
397 /// Implement the dump method.
398 void print(raw_ostream &O, const Module* = nullptr) const override;
399 };
400
401} // end anonymous namespace
402
403char RegisterCoalescer::ID = 0;
404
405char &llvm::RegisterCoalescerID = RegisterCoalescer::ID;
406
407INITIALIZE_PASS_BEGIN(RegisterCoalescer, "register-coalescer",
408 "Register Coalescer", false, false)
413INITIALIZE_PASS_END(RegisterCoalescer, "register-coalescer",
415
416[[nodiscard]] static bool isMoveInstr(const TargetRegisterInfo &tri,
418 Register &Dst, unsigned &SrcSub,
419 unsigned &DstSub) {
420 if (MI->isCopy()) {
421 Dst = MI->getOperand(0).getReg();
422 DstSub = MI->getOperand(0).getSubReg();
423 Src = MI->getOperand(1).getReg();
424 SrcSub = MI->getOperand(1).getSubReg();
425 } else if (MI->isSubregToReg()) {
426 Dst = MI->getOperand(0).getReg();
427 DstSub = tri.composeSubRegIndices(MI->getOperand(0).getSubReg(),
428 MI->getOperand(3).getImm());
429 Src = MI->getOperand(2).getReg();
430 SrcSub = MI->getOperand(2).getSubReg();
431 } else
432 return false;
433 return true;
434}
435
436/// Return true if this block should be vacated by the coalescer to eliminate
437/// branches. The important cases to handle in the coalescer are critical edges
438/// split during phi elimination which contain only copies. Simple blocks that
439/// contain non-branches should also be vacated, but this can be handled by an
440/// earlier pass similar to early if-conversion.
441static bool isSplitEdge(const MachineBasicBlock *MBB) {
442 if (MBB->pred_size() != 1 || MBB->succ_size() != 1)
443 return false;
444
445 for (const auto &MI : *MBB) {
446 if (!MI.isCopyLike() && !MI.isUnconditionalBranch())
447 return false;
448 }
449 return true;
450}
451
453 SrcReg = DstReg = Register();
454 SrcIdx = DstIdx = 0;
455 NewRC = nullptr;
456 Flipped = CrossClass = false;
457
458 Register Src, Dst;
459 unsigned SrcSub = 0, DstSub = 0;
460 if (!isMoveInstr(TRI, MI, Src, Dst, SrcSub, DstSub))
461 return false;
462 Partial = SrcSub || DstSub;
463
464 // If one register is a physreg, it must be Dst.
465 if (Src.isPhysical()) {
466 if (Dst.isPhysical())
467 return false;
468 std::swap(Src, Dst);
469 std::swap(SrcSub, DstSub);
470 Flipped = true;
471 }
472
473 const MachineRegisterInfo &MRI = MI->getMF()->getRegInfo();
474
475 if (Dst.isPhysical()) {
476 // Eliminate DstSub on a physreg.
477 if (DstSub) {
478 Dst = TRI.getSubReg(Dst, DstSub);
479 if (!Dst) return false;
480 DstSub = 0;
481 }
482
483 // Eliminate SrcSub by picking a corresponding Dst superregister.
484 if (SrcSub) {
485 Dst = TRI.getMatchingSuperReg(Dst, SrcSub, MRI.getRegClass(Src));
486 if (!Dst) return false;
487 } else if (!MRI.getRegClass(Src)->contains(Dst)) {
488 return false;
489 }
490 } else {
491 // Both registers are virtual.
492 const TargetRegisterClass *SrcRC = MRI.getRegClass(Src);
493 const TargetRegisterClass *DstRC = MRI.getRegClass(Dst);
494
495 // Both registers have subreg indices.
496 if (SrcSub && DstSub) {
497 // Copies between different sub-registers are never coalescable.
498 if (Src == Dst && SrcSub != DstSub)
499 return false;
500
501 NewRC = TRI.getCommonSuperRegClass(SrcRC, SrcSub, DstRC, DstSub,
502 SrcIdx, DstIdx);
503 if (!NewRC)
504 return false;
505 } else if (DstSub) {
506 // SrcReg will be merged with a sub-register of DstReg.
507 SrcIdx = DstSub;
508 NewRC = TRI.getMatchingSuperRegClass(DstRC, SrcRC, DstSub);
509 } else if (SrcSub) {
510 // DstReg will be merged with a sub-register of SrcReg.
511 DstIdx = SrcSub;
512 NewRC = TRI.getMatchingSuperRegClass(SrcRC, DstRC, SrcSub);
513 } else {
514 // This is a straight copy without sub-registers.
515 NewRC = TRI.getCommonSubClass(DstRC, SrcRC);
516 }
517
518 // The combined constraint may be impossible to satisfy.
519 if (!NewRC)
520 return false;
521
522 // Prefer SrcReg to be a sub-register of DstReg.
523 // FIXME: Coalescer should support subregs symmetrically.
524 if (DstIdx && !SrcIdx) {
525 std::swap(Src, Dst);
526 std::swap(SrcIdx, DstIdx);
527 Flipped = !Flipped;
528 }
529
530 CrossClass = NewRC != DstRC || NewRC != SrcRC;
531 }
532 // Check our invariants
533 assert(Src.isVirtual() && "Src must be virtual");
534 assert(!(Dst.isPhysical() && DstSub) && "Cannot have a physical SubIdx");
535 SrcReg = Src;
536 DstReg = Dst;
537 return true;
538}
539
541 if (DstReg.isPhysical())
542 return false;
543 std::swap(SrcReg, DstReg);
544 std::swap(SrcIdx, DstIdx);
545 Flipped = !Flipped;
546 return true;
547}
548
550 if (!MI)
551 return false;
552 Register Src, Dst;
553 unsigned SrcSub = 0, DstSub = 0;
554 if (!isMoveInstr(TRI, MI, Src, Dst, SrcSub, DstSub))
555 return false;
556
557 // Find the virtual register that is SrcReg.
558 if (Dst == SrcReg) {
559 std::swap(Src, Dst);
560 std::swap(SrcSub, DstSub);
561 } else if (Src != SrcReg) {
562 return false;
563 }
564
565 // Now check that Dst matches DstReg.
566 if (DstReg.isPhysical()) {
567 if (!Dst.isPhysical())
568 return false;
569 assert(!DstIdx && !SrcIdx && "Inconsistent CoalescerPair state.");
570 // DstSub could be set for a physreg from INSERT_SUBREG.
571 if (DstSub)
572 Dst = TRI.getSubReg(Dst, DstSub);
573 // Full copy of Src.
574 if (!SrcSub)
575 return DstReg == Dst;
576 // This is a partial register copy. Check that the parts match.
577 return Register(TRI.getSubReg(DstReg, SrcSub)) == Dst;
578 } else {
579 // DstReg is virtual.
580 if (DstReg != Dst)
581 return false;
582 // Registers match, do the subregisters line up?
583 return TRI.composeSubRegIndices(SrcIdx, SrcSub) ==
584 TRI.composeSubRegIndices(DstIdx, DstSub);
585 }
586}
587
588void RegisterCoalescer::getAnalysisUsage(AnalysisUsage &AU) const {
589 AU.setPreservesCFG();
598}
599
600void RegisterCoalescer::eliminateDeadDefs(LiveRangeEdit *Edit) {
601 if (Edit) {
602 Edit->eliminateDeadDefs(DeadDefs);
603 return;
604 }
606 LiveRangeEdit(nullptr, NewRegs, *MF, *LIS,
607 nullptr, this).eliminateDeadDefs(DeadDefs);
608}
609
610void RegisterCoalescer::LRE_WillEraseInstruction(MachineInstr *MI) {
611 // MI may be in WorkList. Make sure we don't visit it.
612 ErasedInstrs.insert(MI);
613}
614
615bool RegisterCoalescer::adjustCopiesBackFrom(const CoalescerPair &CP,
616 MachineInstr *CopyMI) {
617 assert(!CP.isPartial() && "This doesn't work for partial copies.");
618 assert(!CP.isPhys() && "This doesn't work for physreg copies.");
619
620 LiveInterval &IntA =
621 LIS->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg());
622 LiveInterval &IntB =
623 LIS->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg());
624 SlotIndex CopyIdx = LIS->getInstructionIndex(*CopyMI).getRegSlot();
625
626 // We have a non-trivially-coalescable copy with IntA being the source and
627 // IntB being the dest, thus this defines a value number in IntB. If the
628 // source value number (in IntA) is defined by a copy from B, see if we can
629 // merge these two pieces of B into a single value number, eliminating a copy.
630 // For example:
631 //
632 // A3 = B0
633 // ...
634 // B1 = A3 <- this copy
635 //
636 // In this case, B0 can be extended to where the B1 copy lives, allowing the
637 // B1 value number to be replaced with B0 (which simplifies the B
638 // liveinterval).
639
640 // BValNo is a value number in B that is defined by a copy from A. 'B1' in
641 // the example above.
643 if (BS == IntB.end()) return false;
644 VNInfo *BValNo = BS->valno;
645
646 // Get the location that B is defined at. Two options: either this value has
647 // an unknown definition point or it is defined at CopyIdx. If unknown, we
648 // can't process it.
649 if (BValNo->def != CopyIdx) return false;
650
651 // AValNo is the value number in A that defines the copy, A3 in the example.
652 SlotIndex CopyUseIdx = CopyIdx.getRegSlot(true);
653 LiveInterval::iterator AS = IntA.FindSegmentContaining(CopyUseIdx);
654 // The live segment might not exist after fun with physreg coalescing.
655 if (AS == IntA.end()) return false;
656 VNInfo *AValNo = AS->valno;
657
658 // If AValNo is defined as a copy from IntB, we can potentially process this.
659 // Get the instruction that defines this value number.
660 MachineInstr *ACopyMI = LIS->getInstructionFromIndex(AValNo->def);
661 // Don't allow any partial copies, even if isCoalescable() allows them.
662 if (!CP.isCoalescable(ACopyMI) || !ACopyMI->isFullCopy())
663 return false;
664
665 // Get the Segment in IntB that this value number starts with.
667 IntB.FindSegmentContaining(AValNo->def.getPrevSlot());
668 if (ValS == IntB.end())
669 return false;
670
671 // Make sure that the end of the live segment is inside the same block as
672 // CopyMI.
673 MachineInstr *ValSEndInst =
674 LIS->getInstructionFromIndex(ValS->end.getPrevSlot());
675 if (!ValSEndInst || ValSEndInst->getParent() != CopyMI->getParent())
676 return false;
677
678 // Okay, we now know that ValS ends in the same block that the CopyMI
679 // live-range starts. If there are no intervening live segments between them
680 // in IntB, we can merge them.
681 if (ValS+1 != BS) return false;
682
683 LLVM_DEBUG(dbgs() << "Extending: " << printReg(IntB.reg(), TRI));
684
685 SlotIndex FillerStart = ValS->end, FillerEnd = BS->start;
686 // We are about to delete CopyMI, so need to remove it as the 'instruction
687 // that defines this value #'. Update the valnum with the new defining
688 // instruction #.
689 BValNo->def = FillerStart;
690
691 // Okay, we can merge them. We need to insert a new liverange:
692 // [ValS.end, BS.begin) of either value number, then we merge the
693 // two value numbers.
694 IntB.addSegment(LiveInterval::Segment(FillerStart, FillerEnd, BValNo));
695
696 // Okay, merge "B1" into the same value number as "B0".
697 if (BValNo != ValS->valno)
698 IntB.MergeValueNumberInto(BValNo, ValS->valno);
699
700 // Do the same for the subregister segments.
701 for (LiveInterval::SubRange &S : IntB.subranges()) {
702 // Check for SubRange Segments of the form [1234r,1234d:0) which can be
703 // removed to prevent creating bogus SubRange Segments.
704 LiveInterval::iterator SS = S.FindSegmentContaining(CopyIdx);
705 if (SS != S.end() && SlotIndex::isSameInstr(SS->start, SS->end)) {
706 S.removeSegment(*SS, true);
707 continue;
708 }
709 // The subrange may have ended before FillerStart. If so, extend it.
710 if (!S.getVNInfoAt(FillerStart)) {
711 SlotIndex BBStart =
712 LIS->getMBBStartIdx(LIS->getMBBFromIndex(FillerStart));
713 S.extendInBlock(BBStart, FillerStart);
714 }
715 VNInfo *SubBValNo = S.getVNInfoAt(CopyIdx);
716 S.addSegment(LiveInterval::Segment(FillerStart, FillerEnd, SubBValNo));
717 VNInfo *SubValSNo = S.getVNInfoAt(AValNo->def.getPrevSlot());
718 if (SubBValNo != SubValSNo)
719 S.MergeValueNumberInto(SubBValNo, SubValSNo);
720 }
721
722 LLVM_DEBUG(dbgs() << " result = " << IntB << '\n');
723
724 // If the source instruction was killing the source register before the
725 // merge, unset the isKill marker given the live range has been extended.
726 int UIdx =
727 ValSEndInst->findRegisterUseOperandIdx(IntB.reg(), /*TRI=*/nullptr, true);
728 if (UIdx != -1) {
729 ValSEndInst->getOperand(UIdx).setIsKill(false);
730 }
731
732 // Rewrite the copy.
733 CopyMI->substituteRegister(IntA.reg(), IntB.reg(), 0, *TRI);
734 // If the copy instruction was killing the destination register or any
735 // subrange before the merge trim the live range.
736 bool RecomputeLiveRange = AS->end == CopyIdx;
737 if (!RecomputeLiveRange) {
738 for (LiveInterval::SubRange &S : IntA.subranges()) {
739 LiveInterval::iterator SS = S.FindSegmentContaining(CopyUseIdx);
740 if (SS != S.end() && SS->end == CopyIdx) {
741 RecomputeLiveRange = true;
742 break;
743 }
744 }
745 }
746 if (RecomputeLiveRange)
747 shrinkToUses(&IntA);
748
749 ++numExtends;
750 return true;
751}
752
753bool RegisterCoalescer::hasOtherReachingDefs(LiveInterval &IntA,
754 LiveInterval &IntB,
755 VNInfo *AValNo,
756 VNInfo *BValNo) {
757 // If AValNo has PHI kills, conservatively assume that IntB defs can reach
758 // the PHI values.
759 if (LIS->hasPHIKill(IntA, AValNo))
760 return true;
761
762 for (LiveRange::Segment &ASeg : IntA.segments) {
763 if (ASeg.valno != AValNo) continue;
765 if (BI != IntB.begin())
766 --BI;
767 for (; BI != IntB.end() && ASeg.end >= BI->start; ++BI) {
768 if (BI->valno == BValNo)
769 continue;
770 if (BI->start <= ASeg.start && BI->end > ASeg.start)
771 return true;
772 if (BI->start > ASeg.start && BI->start < ASeg.end)
773 return true;
774 }
775 }
776 return false;
777}
778
779/// Copy segments with value number @p SrcValNo from liverange @p Src to live
780/// range @Dst and use value number @p DstValNo there.
781static std::pair<bool,bool>
782addSegmentsWithValNo(LiveRange &Dst, VNInfo *DstValNo, const LiveRange &Src,
783 const VNInfo *SrcValNo) {
784 bool Changed = false;
785 bool MergedWithDead = false;
786 for (const LiveRange::Segment &S : Src.segments) {
787 if (S.valno != SrcValNo)
788 continue;
789 // This is adding a segment from Src that ends in a copy that is about
790 // to be removed. This segment is going to be merged with a pre-existing
791 // segment in Dst. This works, except in cases when the corresponding
792 // segment in Dst is dead. For example: adding [192r,208r:1) from Src
793 // to [208r,208d:1) in Dst would create [192r,208d:1) in Dst.
794 // Recognized such cases, so that the segments can be shrunk.
795 LiveRange::Segment Added = LiveRange::Segment(S.start, S.end, DstValNo);
796 LiveRange::Segment &Merged = *Dst.addSegment(Added);
797 if (Merged.end.isDead())
798 MergedWithDead = true;
799 Changed = true;
800 }
801 return std::make_pair(Changed, MergedWithDead);
802}
803
804std::pair<bool,bool>
805RegisterCoalescer::removeCopyByCommutingDef(const CoalescerPair &CP,
806 MachineInstr *CopyMI) {
807 assert(!CP.isPhys());
808
809 LiveInterval &IntA =
810 LIS->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg());
811 LiveInterval &IntB =
812 LIS->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg());
813
814 // We found a non-trivially-coalescable copy with IntA being the source and
815 // IntB being the dest, thus this defines a value number in IntB. If the
816 // source value number (in IntA) is defined by a commutable instruction and
817 // its other operand is coalesced to the copy dest register, see if we can
818 // transform the copy into a noop by commuting the definition. For example,
819 //
820 // A3 = op A2 killed B0
821 // ...
822 // B1 = A3 <- this copy
823 // ...
824 // = op A3 <- more uses
825 //
826 // ==>
827 //
828 // B2 = op B0 killed A2
829 // ...
830 // B1 = B2 <- now an identity copy
831 // ...
832 // = op B2 <- more uses
833
834 // BValNo is a value number in B that is defined by a copy from A. 'B1' in
835 // the example above.
836 SlotIndex CopyIdx = LIS->getInstructionIndex(*CopyMI).getRegSlot();
837 VNInfo *BValNo = IntB.getVNInfoAt(CopyIdx);
838 assert(BValNo != nullptr && BValNo->def == CopyIdx);
839
840 // AValNo is the value number in A that defines the copy, A3 in the example.
841 VNInfo *AValNo = IntA.getVNInfoAt(CopyIdx.getRegSlot(true));
842 assert(AValNo && !AValNo->isUnused() && "COPY source not live");
843 if (AValNo->isPHIDef())
844 return { false, false };
846 if (!DefMI)
847 return { false, false };
848 if (!DefMI->isCommutable())
849 return { false, false };
850 // If DefMI is a two-address instruction then commuting it will change the
851 // destination register.
852 int DefIdx = DefMI->findRegisterDefOperandIdx(IntA.reg(), /*TRI=*/nullptr);
853 assert(DefIdx != -1);
854 unsigned UseOpIdx;
855 if (!DefMI->isRegTiedToUseOperand(DefIdx, &UseOpIdx))
856 return { false, false };
857
858 // FIXME: The code below tries to commute 'UseOpIdx' operand with some other
859 // commutable operand which is expressed by 'CommuteAnyOperandIndex'value
860 // passed to the method. That _other_ operand is chosen by
861 // the findCommutedOpIndices() method.
862 //
863 // That is obviously an area for improvement in case of instructions having
864 // more than 2 operands. For example, if some instruction has 3 commutable
865 // operands then all possible variants (i.e. op#1<->op#2, op#1<->op#3,
866 // op#2<->op#3) of commute transformation should be considered/tried here.
867 unsigned NewDstIdx = TargetInstrInfo::CommuteAnyOperandIndex;
868 if (!TII->findCommutedOpIndices(*DefMI, UseOpIdx, NewDstIdx))
869 return { false, false };
870
871 MachineOperand &NewDstMO = DefMI->getOperand(NewDstIdx);
872 Register NewReg = NewDstMO.getReg();
873 if (NewReg != IntB.reg() || !IntB.Query(AValNo->def).isKill())
874 return { false, false };
875
876 // Make sure there are no other definitions of IntB that would reach the
877 // uses which the new definition can reach.
878 if (hasOtherReachingDefs(IntA, IntB, AValNo, BValNo))
879 return { false, false };
880
881 // If some of the uses of IntA.reg is already coalesced away, return false.
882 // It's not possible to determine whether it's safe to perform the coalescing.
883 for (MachineOperand &MO : MRI->use_nodbg_operands(IntA.reg())) {
884 MachineInstr *UseMI = MO.getParent();
885 unsigned OpNo = &MO - &UseMI->getOperand(0);
886 SlotIndex UseIdx = LIS->getInstructionIndex(*UseMI);
888 if (US == IntA.end() || US->valno != AValNo)
889 continue;
890 // If this use is tied to a def, we can't rewrite the register.
891 if (UseMI->isRegTiedToDefOperand(OpNo))
892 return { false, false };
893 }
894
895 LLVM_DEBUG(dbgs() << "\tremoveCopyByCommutingDef: " << AValNo->def << '\t'
896 << *DefMI);
897
898 // At this point we have decided that it is legal to do this
899 // transformation. Start by commuting the instruction.
901 MachineInstr *NewMI =
902 TII->commuteInstruction(*DefMI, false, UseOpIdx, NewDstIdx);
903 if (!NewMI)
904 return { false, false };
905 if (IntA.reg().isVirtual() && IntB.reg().isVirtual() &&
906 !MRI->constrainRegClass(IntB.reg(), MRI->getRegClass(IntA.reg())))
907 return { false, false };
908 if (NewMI != DefMI) {
909 LIS->ReplaceMachineInstrInMaps(*DefMI, *NewMI);
911 MBB->insert(Pos, NewMI);
912 MBB->erase(DefMI);
913 }
914
915 // If ALR and BLR overlaps and end of BLR extends beyond end of ALR, e.g.
916 // A = or A, B
917 // ...
918 // B = A
919 // ...
920 // C = killed A
921 // ...
922 // = B
923
924 // Update uses of IntA of the specific Val# with IntB.
925 for (MachineOperand &UseMO :
926 llvm::make_early_inc_range(MRI->use_operands(IntA.reg()))) {
927 if (UseMO.isUndef())
928 continue;
929 MachineInstr *UseMI = UseMO.getParent();
930 if (UseMI->isDebugInstr()) {
931 // FIXME These don't have an instruction index. Not clear we have enough
932 // info to decide whether to do this replacement or not. For now do it.
933 UseMO.setReg(NewReg);
934 continue;
935 }
936 SlotIndex UseIdx = LIS->getInstructionIndex(*UseMI).getRegSlot(true);
938 assert(US != IntA.end() && "Use must be live");
939 if (US->valno != AValNo)
940 continue;
941 // Kill flags are no longer accurate. They are recomputed after RA.
942 UseMO.setIsKill(false);
943 if (NewReg.isPhysical())
944 UseMO.substPhysReg(NewReg, *TRI);
945 else
946 UseMO.setReg(NewReg);
947 if (UseMI == CopyMI)
948 continue;
949 if (!UseMI->isCopy())
950 continue;
951 if (UseMI->getOperand(0).getReg() != IntB.reg() ||
953 continue;
954
955 // This copy will become a noop. If it's defining a new val#, merge it into
956 // BValNo.
957 SlotIndex DefIdx = UseIdx.getRegSlot();
958 VNInfo *DVNI = IntB.getVNInfoAt(DefIdx);
959 if (!DVNI)
960 continue;
961 LLVM_DEBUG(dbgs() << "\t\tnoop: " << DefIdx << '\t' << *UseMI);
962 assert(DVNI->def == DefIdx);
963 BValNo = IntB.MergeValueNumberInto(DVNI, BValNo);
964 for (LiveInterval::SubRange &S : IntB.subranges()) {
965 VNInfo *SubDVNI = S.getVNInfoAt(DefIdx);
966 if (!SubDVNI)
967 continue;
968 VNInfo *SubBValNo = S.getVNInfoAt(CopyIdx);
969 assert(SubBValNo->def == CopyIdx);
970 S.MergeValueNumberInto(SubDVNI, SubBValNo);
971 }
972
973 deleteInstr(UseMI);
974 }
975
976 // Extend BValNo by merging in IntA live segments of AValNo. Val# definition
977 // is updated.
978 bool ShrinkB = false;
980 if (IntA.hasSubRanges() || IntB.hasSubRanges()) {
981 if (!IntA.hasSubRanges()) {
982 LaneBitmask Mask = MRI->getMaxLaneMaskForVReg(IntA.reg());
983 IntA.createSubRangeFrom(Allocator, Mask, IntA);
984 } else if (!IntB.hasSubRanges()) {
985 LaneBitmask Mask = MRI->getMaxLaneMaskForVReg(IntB.reg());
986 IntB.createSubRangeFrom(Allocator, Mask, IntB);
987 }
988 SlotIndex AIdx = CopyIdx.getRegSlot(true);
989 LaneBitmask MaskA;
990 const SlotIndexes &Indexes = *LIS->getSlotIndexes();
991 for (LiveInterval::SubRange &SA : IntA.subranges()) {
992 VNInfo *ASubValNo = SA.getVNInfoAt(AIdx);
993 // Even if we are dealing with a full copy, some lanes can
994 // still be undefined.
995 // E.g.,
996 // undef A.subLow = ...
997 // B = COPY A <== A.subHigh is undefined here and does
998 // not have a value number.
999 if (!ASubValNo)
1000 continue;
1001 MaskA |= SA.LaneMask;
1002
1003 IntB.refineSubRanges(
1004 Allocator, SA.LaneMask,
1005 [&Allocator, &SA, CopyIdx, ASubValNo,
1006 &ShrinkB](LiveInterval::SubRange &SR) {
1007 VNInfo *BSubValNo = SR.empty() ? SR.getNextValue(CopyIdx, Allocator)
1008 : SR.getVNInfoAt(CopyIdx);
1009 assert(BSubValNo != nullptr);
1010 auto P = addSegmentsWithValNo(SR, BSubValNo, SA, ASubValNo);
1011 ShrinkB |= P.second;
1012 if (P.first)
1013 BSubValNo->def = ASubValNo->def;
1014 },
1015 Indexes, *TRI);
1016 }
1017 // Go over all subranges of IntB that have not been covered by IntA,
1018 // and delete the segments starting at CopyIdx. This can happen if
1019 // IntA has undef lanes that are defined in IntB.
1020 for (LiveInterval::SubRange &SB : IntB.subranges()) {
1021 if ((SB.LaneMask & MaskA).any())
1022 continue;
1023 if (LiveRange::Segment *S = SB.getSegmentContaining(CopyIdx))
1024 if (S->start.getBaseIndex() == CopyIdx.getBaseIndex())
1025 SB.removeSegment(*S, true);
1026 }
1027 }
1028
1029 BValNo->def = AValNo->def;
1030 auto P = addSegmentsWithValNo(IntB, BValNo, IntA, AValNo);
1031 ShrinkB |= P.second;
1032 LLVM_DEBUG(dbgs() << "\t\textended: " << IntB << '\n');
1033
1034 LIS->removeVRegDefAt(IntA, AValNo->def);
1035
1036 LLVM_DEBUG(dbgs() << "\t\ttrimmed: " << IntA << '\n');
1037 ++numCommutes;
1038 return { true, ShrinkB };
1039}
1040
1041/// For copy B = A in BB2, if A is defined by A = B in BB0 which is a
1042/// predecessor of BB2, and if B is not redefined on the way from A = B
1043/// in BB0 to B = A in BB2, B = A in BB2 is partially redundant if the
1044/// execution goes through the path from BB0 to BB2. We may move B = A
1045/// to the predecessor without such reversed copy.
1046/// So we will transform the program from:
1047/// BB0:
1048/// A = B; BB1:
1049/// ... ...
1050/// / \ /
1051/// BB2:
1052/// ...
1053/// B = A;
1054///
1055/// to:
1056///
1057/// BB0: BB1:
1058/// A = B; ...
1059/// ... B = A;
1060/// / \ /
1061/// BB2:
1062/// ...
1063///
1064/// A special case is when BB0 and BB2 are the same BB which is the only
1065/// BB in a loop:
1066/// BB1:
1067/// ...
1068/// BB0/BB2: ----
1069/// B = A; |
1070/// ... |
1071/// A = B; |
1072/// |-------
1073/// |
1074/// We may hoist B = A from BB0/BB2 to BB1.
1075///
1076/// The major preconditions for correctness to remove such partial
1077/// redundancy include:
1078/// 1. A in B = A in BB2 is defined by a PHI in BB2, and one operand of
1079/// the PHI is defined by the reversed copy A = B in BB0.
1080/// 2. No B is referenced from the start of BB2 to B = A.
1081/// 3. No B is defined from A = B to the end of BB0.
1082/// 4. BB1 has only one successor.
1083///
1084/// 2 and 4 implicitly ensure B is not live at the end of BB1.
1085/// 4 guarantees BB2 is hotter than BB1, so we can only move a copy to a
1086/// colder place, which not only prevent endless loop, but also make sure
1087/// the movement of copy is beneficial.
1088bool RegisterCoalescer::removePartialRedundancy(const CoalescerPair &CP,
1089 MachineInstr &CopyMI) {
1090 assert(!CP.isPhys());
1091 if (!CopyMI.isFullCopy())
1092 return false;
1093
1094 MachineBasicBlock &MBB = *CopyMI.getParent();
1095 // If this block is the target of an invoke/inlineasm_br, moving the copy into
1096 // the predecessor is tricker, and we don't handle it.
1098 return false;
1099
1100 if (MBB.pred_size() != 2)
1101 return false;
1102
1103 LiveInterval &IntA =
1104 LIS->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg());
1105 LiveInterval &IntB =
1106 LIS->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg());
1107
1108 // A is defined by PHI at the entry of MBB.
1109 SlotIndex CopyIdx = LIS->getInstructionIndex(CopyMI).getRegSlot(true);
1110 VNInfo *AValNo = IntA.getVNInfoAt(CopyIdx);
1111 assert(AValNo && !AValNo->isUnused() && "COPY source not live");
1112 if (!AValNo->isPHIDef())
1113 return false;
1114
1115 // No B is referenced before CopyMI in MBB.
1116 if (IntB.overlaps(LIS->getMBBStartIdx(&MBB), CopyIdx))
1117 return false;
1118
1119 // MBB has two predecessors: one contains A = B so no copy will be inserted
1120 // for it. The other one will have a copy moved from MBB.
1121 bool FoundReverseCopy = false;
1122 MachineBasicBlock *CopyLeftBB = nullptr;
1123 for (MachineBasicBlock *Pred : MBB.predecessors()) {
1124 VNInfo *PVal = IntA.getVNInfoBefore(LIS->getMBBEndIdx(Pred));
1126 if (!DefMI || !DefMI->isFullCopy()) {
1127 CopyLeftBB = Pred;
1128 continue;
1129 }
1130 // Check DefMI is a reverse copy and it is in BB Pred.
1131 if (DefMI->getOperand(0).getReg() != IntA.reg() ||
1132 DefMI->getOperand(1).getReg() != IntB.reg() ||
1133 DefMI->getParent() != Pred) {
1134 CopyLeftBB = Pred;
1135 continue;
1136 }
1137 // If there is any other def of B after DefMI and before the end of Pred,
1138 // we need to keep the copy of B = A at the end of Pred if we remove
1139 // B = A from MBB.
1140 bool ValB_Changed = false;
1141 for (auto *VNI : IntB.valnos) {
1142 if (VNI->isUnused())
1143 continue;
1144 if (PVal->def < VNI->def && VNI->def < LIS->getMBBEndIdx(Pred)) {
1145 ValB_Changed = true;
1146 break;
1147 }
1148 }
1149 if (ValB_Changed) {
1150 CopyLeftBB = Pred;
1151 continue;
1152 }
1153 FoundReverseCopy = true;
1154 }
1155
1156 // If no reverse copy is found in predecessors, nothing to do.
1157 if (!FoundReverseCopy)
1158 return false;
1159
1160 // If CopyLeftBB is nullptr, it means every predecessor of MBB contains
1161 // reverse copy, CopyMI can be removed trivially if only IntA/IntB is updated.
1162 // If CopyLeftBB is not nullptr, move CopyMI from MBB to CopyLeftBB and
1163 // update IntA/IntB.
1164 //
1165 // If CopyLeftBB is not nullptr, ensure CopyLeftBB has a single succ so
1166 // MBB is hotter than CopyLeftBB.
1167 if (CopyLeftBB && CopyLeftBB->succ_size() > 1)
1168 return false;
1169
1170 // Now (almost sure it's) ok to move copy.
1171 if (CopyLeftBB) {
1172 // Position in CopyLeftBB where we should insert new copy.
1173 auto InsPos = CopyLeftBB->getFirstTerminator();
1174
1175 // Make sure that B isn't referenced in the terminators (if any) at the end
1176 // of the predecessor since we're about to insert a new definition of B
1177 // before them.
1178 if (InsPos != CopyLeftBB->end()) {
1179 SlotIndex InsPosIdx = LIS->getInstructionIndex(*InsPos).getRegSlot(true);
1180 if (IntB.overlaps(InsPosIdx, LIS->getMBBEndIdx(CopyLeftBB)))
1181 return false;
1182 }
1183
1184 LLVM_DEBUG(dbgs() << "\tremovePartialRedundancy: Move the copy to "
1185 << printMBBReference(*CopyLeftBB) << '\t' << CopyMI);
1186
1187 // Insert new copy to CopyLeftBB.
1188 MachineInstr *NewCopyMI = BuildMI(*CopyLeftBB, InsPos, CopyMI.getDebugLoc(),
1189 TII->get(TargetOpcode::COPY), IntB.reg())
1190 .addReg(IntA.reg());
1191 SlotIndex NewCopyIdx =
1192 LIS->InsertMachineInstrInMaps(*NewCopyMI).getRegSlot();
1193 IntB.createDeadDef(NewCopyIdx, LIS->getVNInfoAllocator());
1194 for (LiveInterval::SubRange &SR : IntB.subranges())
1195 SR.createDeadDef(NewCopyIdx, LIS->getVNInfoAllocator());
1196
1197 // If the newly created Instruction has an address of an instruction that was
1198 // deleted before (object recycled by the allocator) it needs to be removed from
1199 // the deleted list.
1200 ErasedInstrs.erase(NewCopyMI);
1201 } else {
1202 LLVM_DEBUG(dbgs() << "\tremovePartialRedundancy: Remove the copy from "
1203 << printMBBReference(MBB) << '\t' << CopyMI);
1204 }
1205
1206 const bool IsUndefCopy = CopyMI.getOperand(1).isUndef();
1207
1208 // Remove CopyMI.
1209 // Note: This is fine to remove the copy before updating the live-ranges.
1210 // While updating the live-ranges, we only look at slot indices and
1211 // never go back to the instruction.
1212 // Mark instructions as deleted.
1213 deleteInstr(&CopyMI);
1214
1215 // Update the liveness.
1216 SmallVector<SlotIndex, 8> EndPoints;
1217 VNInfo *BValNo = IntB.Query(CopyIdx).valueOutOrDead();
1218 LIS->pruneValue(*static_cast<LiveRange *>(&IntB), CopyIdx.getRegSlot(),
1219 &EndPoints);
1220 BValNo->markUnused();
1221
1222 if (IsUndefCopy) {
1223 // We're introducing an undef phi def, and need to set undef on any users of
1224 // the previously local def to avoid artifically extending the lifetime
1225 // through the block.
1226 for (MachineOperand &MO : MRI->use_nodbg_operands(IntB.reg())) {
1227 const MachineInstr &MI = *MO.getParent();
1228 SlotIndex UseIdx = LIS->getInstructionIndex(MI);
1229 if (!IntB.liveAt(UseIdx))
1230 MO.setIsUndef(true);
1231 }
1232 }
1233
1234 // Extend IntB to the EndPoints of its original live interval.
1235 LIS->extendToIndices(IntB, EndPoints);
1236
1237 // Now, do the same for its subranges.
1238 for (LiveInterval::SubRange &SR : IntB.subranges()) {
1239 EndPoints.clear();
1240 VNInfo *BValNo = SR.Query(CopyIdx).valueOutOrDead();
1241 assert(BValNo && "All sublanes should be live");
1242 LIS->pruneValue(SR, CopyIdx.getRegSlot(), &EndPoints);
1243 BValNo->markUnused();
1244 // We can have a situation where the result of the original copy is live,
1245 // but is immediately dead in this subrange, e.g. [336r,336d:0). That makes
1246 // the copy appear as an endpoint from pruneValue(), but we don't want it
1247 // to because the copy has been removed. We can go ahead and remove that
1248 // endpoint; there is no other situation here that there could be a use at
1249 // the same place as we know that the copy is a full copy.
1250 for (unsigned I = 0; I != EndPoints.size(); ) {
1251 if (SlotIndex::isSameInstr(EndPoints[I], CopyIdx)) {
1252 EndPoints[I] = EndPoints.back();
1253 EndPoints.pop_back();
1254 continue;
1255 }
1256 ++I;
1257 }
1259 IntB.computeSubRangeUndefs(Undefs, SR.LaneMask, *MRI,
1260 *LIS->getSlotIndexes());
1261 LIS->extendToIndices(SR, EndPoints, Undefs);
1262 }
1263 // If any dead defs were extended, truncate them.
1264 shrinkToUses(&IntB);
1265
1266 // Finally, update the live-range of IntA.
1267 shrinkToUses(&IntA);
1268 return true;
1269}
1270
1271/// Returns true if @p MI defines the full vreg @p Reg, as opposed to just
1272/// defining a subregister.
1273static bool definesFullReg(const MachineInstr &MI, Register Reg) {
1274 assert(!Reg.isPhysical() && "This code cannot handle physreg aliasing");
1275
1276 for (const MachineOperand &Op : MI.all_defs()) {
1277 if (Op.getReg() != Reg)
1278 continue;
1279 // Return true if we define the full register or don't care about the value
1280 // inside other subregisters.
1281 if (Op.getSubReg() == 0 || Op.isUndef())
1282 return true;
1283 }
1284 return false;
1285}
1286
1287bool RegisterCoalescer::reMaterializeTrivialDef(const CoalescerPair &CP,
1288 MachineInstr *CopyMI,
1289 bool &IsDefCopy) {
1290 IsDefCopy = false;
1291 Register SrcReg = CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg();
1292 unsigned SrcIdx = CP.isFlipped() ? CP.getDstIdx() : CP.getSrcIdx();
1293 Register DstReg = CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg();
1294 unsigned DstIdx = CP.isFlipped() ? CP.getSrcIdx() : CP.getDstIdx();
1295 if (SrcReg.isPhysical())
1296 return false;
1297
1298 LiveInterval &SrcInt = LIS->getInterval(SrcReg);
1299 SlotIndex CopyIdx = LIS->getInstructionIndex(*CopyMI);
1300 VNInfo *ValNo = SrcInt.Query(CopyIdx).valueIn();
1301 if (!ValNo)
1302 return false;
1303 if (ValNo->isPHIDef() || ValNo->isUnused())
1304 return false;
1306 if (!DefMI)
1307 return false;
1308 if (DefMI->isCopyLike()) {
1309 IsDefCopy = true;
1310 return false;
1311 }
1312 if (!TII->isAsCheapAsAMove(*DefMI))
1313 return false;
1314
1316 LiveRangeEdit Edit(&SrcInt, NewRegs, *MF, *LIS, nullptr, this);
1317 if (!Edit.checkRematerializable(ValNo, DefMI))
1318 return false;
1319
1320 if (!definesFullReg(*DefMI, SrcReg))
1321 return false;
1322 bool SawStore = false;
1323 if (!DefMI->isSafeToMove(AA, SawStore))
1324 return false;
1325 const MCInstrDesc &MCID = DefMI->getDesc();
1326 if (MCID.getNumDefs() != 1)
1327 return false;
1328 // Only support subregister destinations when the def is read-undef.
1329 MachineOperand &DstOperand = CopyMI->getOperand(0);
1330 Register CopyDstReg = DstOperand.getReg();
1331 if (DstOperand.getSubReg() && !DstOperand.isUndef())
1332 return false;
1333
1334 // If both SrcIdx and DstIdx are set, correct rematerialization would widen
1335 // the register substantially (beyond both source and dest size). This is bad
1336 // for performance since it can cascade through a function, introducing many
1337 // extra spills and fills (e.g. ARM can easily end up copying QQQQPR registers
1338 // around after a few subreg copies).
1339 if (SrcIdx && DstIdx)
1340 return false;
1341
1342 [[maybe_unused]] const unsigned DefSubIdx = DefMI->getOperand(0).getSubReg();
1343 const TargetRegisterClass *DefRC = TII->getRegClass(MCID, 0, TRI, *MF);
1344 if (!DefMI->isImplicitDef()) {
1345 if (DstReg.isPhysical()) {
1346 Register NewDstReg = DstReg;
1347
1348 unsigned NewDstIdx = TRI->composeSubRegIndices(CP.getSrcIdx(),
1349 DefMI->getOperand(0).getSubReg());
1350 if (NewDstIdx)
1351 NewDstReg = TRI->getSubReg(DstReg, NewDstIdx);
1352
1353 // Finally, make sure that the physical subregister that will be
1354 // constructed later is permitted for the instruction.
1355 if (!DefRC->contains(NewDstReg))
1356 return false;
1357 } else {
1358 // Theoretically, some stack frame reference could exist. Just make sure
1359 // it hasn't actually happened.
1360 assert(DstReg.isVirtual() &&
1361 "Only expect to deal with virtual or physical registers");
1362 }
1363 }
1364
1365 LiveRangeEdit::Remat RM(ValNo);
1366 RM.OrigMI = DefMI;
1367 if (!Edit.canRematerializeAt(RM, ValNo, CopyIdx, true))
1368 return false;
1369
1370 DebugLoc DL = CopyMI->getDebugLoc();
1371 MachineBasicBlock *MBB = CopyMI->getParent();
1373 std::next(MachineBasicBlock::iterator(CopyMI));
1374 Edit.rematerializeAt(*MBB, MII, DstReg, RM, *TRI, false, SrcIdx, CopyMI);
1375 MachineInstr &NewMI = *std::prev(MII);
1376 NewMI.setDebugLoc(DL);
1377
1378 // In a situation like the following:
1379 // %0:subreg = instr ; DefMI, subreg = DstIdx
1380 // %1 = copy %0:subreg ; CopyMI, SrcIdx = 0
1381 // instead of widening %1 to the register class of %0 simply do:
1382 // %1 = instr
1383 const TargetRegisterClass *NewRC = CP.getNewRC();
1384 if (DstIdx != 0) {
1385 MachineOperand &DefMO = NewMI.getOperand(0);
1386 if (DefMO.getSubReg() == DstIdx) {
1387 assert(SrcIdx == 0 && CP.isFlipped()
1388 && "Shouldn't have SrcIdx+DstIdx at this point");
1389 const TargetRegisterClass *DstRC = MRI->getRegClass(DstReg);
1390 const TargetRegisterClass *CommonRC =
1391 TRI->getCommonSubClass(DefRC, DstRC);
1392 if (CommonRC != nullptr) {
1393 NewRC = CommonRC;
1394
1395 // Instruction might contain "undef %0:subreg" as use operand:
1396 // %0:subreg = instr op_1, ..., op_N, undef %0:subreg, op_N+2, ...
1397 //
1398 // Need to check all operands.
1399 for (MachineOperand &MO : NewMI.operands()) {
1400 if (MO.isReg() && MO.getReg() == DstReg && MO.getSubReg() == DstIdx) {
1401 MO.setSubReg(0);
1402 }
1403 }
1404
1405 DstIdx = 0;
1406 DefMO.setIsUndef(false); // Only subregs can have def+undef.
1407 }
1408 }
1409 }
1410
1411 // CopyMI may have implicit operands, save them so that we can transfer them
1412 // over to the newly materialized instruction after CopyMI is removed.
1414 ImplicitOps.reserve(CopyMI->getNumOperands() -
1415 CopyMI->getDesc().getNumOperands());
1416 for (unsigned I = CopyMI->getDesc().getNumOperands(),
1417 E = CopyMI->getNumOperands();
1418 I != E; ++I) {
1419 MachineOperand &MO = CopyMI->getOperand(I);
1420 if (MO.isReg()) {
1421 assert(MO.isImplicit() && "No explicit operands after implicit operands.");
1422 assert((MO.getReg().isPhysical() ||
1423 (MO.getSubReg() == 0 && MO.getReg() == DstOperand.getReg())) &&
1424 "unexpected implicit virtual register def");
1425 ImplicitOps.push_back(MO);
1426 }
1427 }
1428
1429 CopyMI->eraseFromParent();
1430 ErasedInstrs.insert(CopyMI);
1431
1432 // NewMI may have dead implicit defs (E.g. EFLAGS for MOV<bits>r0 on X86).
1433 // We need to remember these so we can add intervals once we insert
1434 // NewMI into SlotIndexes.
1435 //
1436 // We also expect to have tied implicit-defs of super registers originating
1437 // from SUBREG_TO_REG, such as:
1438 // $edi = MOV32r0 implicit-def dead $eflags, implicit-def $rdi
1439 // undef %0.sub_32bit = MOV32r0 implicit-def dead $eflags, implicit-def %0
1440 //
1441 // The implicit-def of the super register may have been reduced to
1442 // subregisters depending on the uses.
1443
1444 bool NewMIDefinesFullReg = false;
1445
1446 SmallVector<MCRegister, 4> NewMIImplDefs;
1447 for (unsigned i = NewMI.getDesc().getNumOperands(),
1448 e = NewMI.getNumOperands();
1449 i != e; ++i) {
1450 MachineOperand &MO = NewMI.getOperand(i);
1451 if (MO.isReg() && MO.isDef()) {
1452 assert(MO.isImplicit());
1453 if (MO.getReg().isPhysical()) {
1454 if (MO.getReg() == DstReg)
1455 NewMIDefinesFullReg = true;
1456
1457 assert(MO.isImplicit() && MO.getReg().isPhysical() &&
1458 (MO.isDead() ||
1459 (DefSubIdx &&
1460 ((TRI->getSubReg(MO.getReg(), DefSubIdx) ==
1461 MCRegister((unsigned)NewMI.getOperand(0).getReg())) ||
1462 TRI->isSubRegisterEq(NewMI.getOperand(0).getReg(),
1463 MO.getReg())))));
1464 NewMIImplDefs.push_back(MO.getReg().asMCReg());
1465 } else {
1466 assert(MO.getReg() == NewMI.getOperand(0).getReg());
1467
1468 // We're only expecting another def of the main output, so the range
1469 // should get updated with the regular output range.
1470 //
1471 // FIXME: The range updating below probably needs updating to look at
1472 // the super register if subranges are tracked.
1473 assert(!MRI->shouldTrackSubRegLiveness(DstReg) &&
1474 "subrange update for implicit-def of super register may not be "
1475 "properly handled");
1476 }
1477 }
1478 }
1479
1480 if (DstReg.isVirtual()) {
1481 unsigned NewIdx = NewMI.getOperand(0).getSubReg();
1482
1483 if (DefRC != nullptr) {
1484 if (NewIdx)
1485 NewRC = TRI->getMatchingSuperRegClass(NewRC, DefRC, NewIdx);
1486 else
1487 NewRC = TRI->getCommonSubClass(NewRC, DefRC);
1488 assert(NewRC && "subreg chosen for remat incompatible with instruction");
1489 }
1490 // Remap subranges to new lanemask and change register class.
1491 LiveInterval &DstInt = LIS->getInterval(DstReg);
1492 for (LiveInterval::SubRange &SR : DstInt.subranges()) {
1493 SR.LaneMask = TRI->composeSubRegIndexLaneMask(DstIdx, SR.LaneMask);
1494 }
1495 MRI->setRegClass(DstReg, NewRC);
1496
1497 // Update machine operands and add flags.
1498 updateRegDefsUses(DstReg, DstReg, DstIdx);
1499 NewMI.getOperand(0).setSubReg(NewIdx);
1500 // updateRegDefUses can add an "undef" flag to the definition, since
1501 // it will replace DstReg with DstReg.DstIdx. If NewIdx is 0, make
1502 // sure that "undef" is not set.
1503 if (NewIdx == 0)
1504 NewMI.getOperand(0).setIsUndef(false);
1505 // Add dead subregister definitions if we are defining the whole register
1506 // but only part of it is live.
1507 // This could happen if the rematerialization instruction is rematerializing
1508 // more than actually is used in the register.
1509 // An example would be:
1510 // %1 = LOAD CONSTANTS 5, 8 ; Loading both 5 and 8 in different subregs
1511 // ; Copying only part of the register here, but the rest is undef.
1512 // %2:sub_16bit<def, read-undef> = COPY %1:sub_16bit
1513 // ==>
1514 // ; Materialize all the constants but only using one
1515 // %2 = LOAD_CONSTANTS 5, 8
1516 //
1517 // at this point for the part that wasn't defined before we could have
1518 // subranges missing the definition.
1519 if (NewIdx == 0 && DstInt.hasSubRanges()) {
1520 SlotIndex CurrIdx = LIS->getInstructionIndex(NewMI);
1521 SlotIndex DefIndex =
1522 CurrIdx.getRegSlot(NewMI.getOperand(0).isEarlyClobber());
1523 LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(DstReg);
1525 for (LiveInterval::SubRange &SR : DstInt.subranges()) {
1526 if (!SR.liveAt(DefIndex))
1527 SR.createDeadDef(DefIndex, Alloc);
1528 MaxMask &= ~SR.LaneMask;
1529 }
1530 if (MaxMask.any()) {
1531 LiveInterval::SubRange *SR = DstInt.createSubRange(Alloc, MaxMask);
1532 SR->createDeadDef(DefIndex, Alloc);
1533 }
1534 }
1535
1536 // Make sure that the subrange for resultant undef is removed
1537 // For example:
1538 // %1:sub1<def,read-undef> = LOAD CONSTANT 1
1539 // %2 = COPY %1
1540 // ==>
1541 // %2:sub1<def, read-undef> = LOAD CONSTANT 1
1542 // ; Correct but need to remove the subrange for %2:sub0
1543 // ; as it is now undef
1544 if (NewIdx != 0 && DstInt.hasSubRanges()) {
1545 // The affected subregister segments can be removed.
1546 SlotIndex CurrIdx = LIS->getInstructionIndex(NewMI);
1547 LaneBitmask DstMask = TRI->getSubRegIndexLaneMask(NewIdx);
1548 bool UpdatedSubRanges = false;
1549 SlotIndex DefIndex =
1550 CurrIdx.getRegSlot(NewMI.getOperand(0).isEarlyClobber());
1552 for (LiveInterval::SubRange &SR : DstInt.subranges()) {
1553 if ((SR.LaneMask & DstMask).none()) {
1555 << "Removing undefined SubRange "
1556 << PrintLaneMask(SR.LaneMask) << " : " << SR << "\n");
1557
1558 if (VNInfo *RmValNo = SR.getVNInfoAt(CurrIdx.getRegSlot())) {
1559 // VNI is in ValNo - remove any segments in this SubRange that have
1560 // this ValNo
1561 SR.removeValNo(RmValNo);
1562 }
1563
1564 // We may not have a defined value at this point, but still need to
1565 // clear out any empty subranges tentatively created by
1566 // updateRegDefUses. The original subrange def may have only undefed
1567 // some lanes.
1568 UpdatedSubRanges = true;
1569 } else {
1570 // We know that this lane is defined by this instruction,
1571 // but at this point it may be empty because it is not used by
1572 // anything. This happens when updateRegDefUses adds the missing
1573 // lanes. Assign that lane a dead def so that the interferences
1574 // are properly modeled.
1575 if (SR.empty())
1576 SR.createDeadDef(DefIndex, Alloc);
1577 }
1578 }
1579 if (UpdatedSubRanges)
1580 DstInt.removeEmptySubRanges();
1581 }
1582 } else if (NewMI.getOperand(0).getReg() != CopyDstReg) {
1583 // The New instruction may be defining a sub-register of what's actually
1584 // been asked for. If so it must implicitly define the whole thing.
1585 assert(DstReg.isPhysical() &&
1586 "Only expect virtual or physical registers in remat");
1587 NewMI.getOperand(0).setIsDead(true);
1588
1589 if (!NewMIDefinesFullReg) {
1591 CopyDstReg, true /*IsDef*/, true /*IsImp*/, false /*IsKill*/));
1592 }
1593
1594 // Record small dead def live-ranges for all the subregisters
1595 // of the destination register.
1596 // Otherwise, variables that live through may miss some
1597 // interferences, thus creating invalid allocation.
1598 // E.g., i386 code:
1599 // %1 = somedef ; %1 GR8
1600 // %2 = remat ; %2 GR32
1601 // CL = COPY %2.sub_8bit
1602 // = somedef %1 ; %1 GR8
1603 // =>
1604 // %1 = somedef ; %1 GR8
1605 // dead ECX = remat ; implicit-def CL
1606 // = somedef %1 ; %1 GR8
1607 // %1 will see the interferences with CL but not with CH since
1608 // no live-ranges would have been created for ECX.
1609 // Fix that!
1610 SlotIndex NewMIIdx = LIS->getInstructionIndex(NewMI);
1611 for (MCRegUnit Unit : TRI->regunits(NewMI.getOperand(0).getReg()))
1612 if (LiveRange *LR = LIS->getCachedRegUnit(Unit))
1613 LR->createDeadDef(NewMIIdx.getRegSlot(), LIS->getVNInfoAllocator());
1614 }
1615
1616 NewMI.setRegisterDefReadUndef(NewMI.getOperand(0).getReg());
1617
1618 // Transfer over implicit operands to the rematerialized instruction.
1619 for (MachineOperand &MO : ImplicitOps)
1620 NewMI.addOperand(MO);
1621
1622 SlotIndex NewMIIdx = LIS->getInstructionIndex(NewMI);
1623 for (MCRegister Reg : NewMIImplDefs) {
1624 for (MCRegUnit Unit : TRI->regunits(Reg))
1625 if (LiveRange *LR = LIS->getCachedRegUnit(Unit))
1626 LR->createDeadDef(NewMIIdx.getRegSlot(), LIS->getVNInfoAllocator());
1627 }
1628
1629 LLVM_DEBUG(dbgs() << "Remat: " << NewMI);
1630 ++NumReMats;
1631
1632 // If the virtual SrcReg is completely eliminated, update all DBG_VALUEs
1633 // to describe DstReg instead.
1634 if (MRI->use_nodbg_empty(SrcReg)) {
1635 for (MachineOperand &UseMO :
1636 llvm::make_early_inc_range(MRI->use_operands(SrcReg))) {
1637 MachineInstr *UseMI = UseMO.getParent();
1638 if (UseMI->isDebugInstr()) {
1639 if (DstReg.isPhysical())
1640 UseMO.substPhysReg(DstReg, *TRI);
1641 else
1642 UseMO.setReg(DstReg);
1643 // Move the debug value directly after the def of the rematerialized
1644 // value in DstReg.
1645 MBB->splice(std::next(NewMI.getIterator()), UseMI->getParent(), UseMI);
1646 LLVM_DEBUG(dbgs() << "\t\tupdated: " << *UseMI);
1647 }
1648 }
1649 }
1650
1651 if (ToBeUpdated.count(SrcReg))
1652 return true;
1653
1654 unsigned NumCopyUses = 0;
1655 for (MachineOperand &UseMO : MRI->use_nodbg_operands(SrcReg)) {
1656 if (UseMO.getParent()->isCopyLike())
1657 NumCopyUses++;
1658 }
1659 if (NumCopyUses < LateRematUpdateThreshold) {
1660 // The source interval can become smaller because we removed a use.
1661 shrinkToUses(&SrcInt, &DeadDefs);
1662 if (!DeadDefs.empty())
1663 eliminateDeadDefs(&Edit);
1664 } else {
1665 ToBeUpdated.insert(SrcReg);
1666 }
1667 return true;
1668}
1669
1670MachineInstr *RegisterCoalescer::eliminateUndefCopy(MachineInstr *CopyMI) {
1671 // ProcessImplicitDefs may leave some copies of <undef> values, it only
1672 // removes local variables. When we have a copy like:
1673 //
1674 // %1 = COPY undef %2
1675 //
1676 // We delete the copy and remove the corresponding value number from %1.
1677 // Any uses of that value number are marked as <undef>.
1678
1679 // Note that we do not query CoalescerPair here but redo isMoveInstr as the
1680 // CoalescerPair may have a new register class with adjusted subreg indices
1681 // at this point.
1682 Register SrcReg, DstReg;
1683 unsigned SrcSubIdx = 0, DstSubIdx = 0;
1684 if(!isMoveInstr(*TRI, CopyMI, SrcReg, DstReg, SrcSubIdx, DstSubIdx))
1685 return nullptr;
1686
1687 SlotIndex Idx = LIS->getInstructionIndex(*CopyMI);
1688 const LiveInterval &SrcLI = LIS->getInterval(SrcReg);
1689 // CopyMI is undef iff SrcReg is not live before the instruction.
1690 if (SrcSubIdx != 0 && SrcLI.hasSubRanges()) {
1691 LaneBitmask SrcMask = TRI->getSubRegIndexLaneMask(SrcSubIdx);
1692 for (const LiveInterval::SubRange &SR : SrcLI.subranges()) {
1693 if ((SR.LaneMask & SrcMask).none())
1694 continue;
1695 if (SR.liveAt(Idx))
1696 return nullptr;
1697 }
1698 } else if (SrcLI.liveAt(Idx))
1699 return nullptr;
1700
1701 // If the undef copy defines a live-out value (i.e. an input to a PHI def),
1702 // then replace it with an IMPLICIT_DEF.
1703 LiveInterval &DstLI = LIS->getInterval(DstReg);
1704 SlotIndex RegIndex = Idx.getRegSlot();
1705 LiveRange::Segment *Seg = DstLI.getSegmentContaining(RegIndex);
1706 assert(Seg != nullptr && "No segment for defining instruction");
1707 VNInfo *V = DstLI.getVNInfoAt(Seg->end);
1708
1709 // The source interval may also have been on an undef use, in which case the
1710 // copy introduced a live value.
1711 if (((V && V->isPHIDef()) || (!V && !DstLI.liveAt(Idx)))) {
1712 for (unsigned i = CopyMI->getNumOperands(); i != 0; --i) {
1713 MachineOperand &MO = CopyMI->getOperand(i-1);
1714 if (MO.isReg()) {
1715 if (MO.isUse())
1716 CopyMI->removeOperand(i - 1);
1717 } else {
1718 assert(MO.isImm() &&
1719 CopyMI->getOpcode() == TargetOpcode::SUBREG_TO_REG);
1720 CopyMI->removeOperand(i-1);
1721 }
1722 }
1723
1724 CopyMI->setDesc(TII->get(TargetOpcode::IMPLICIT_DEF));
1725 LLVM_DEBUG(dbgs() << "\tReplaced copy of <undef> value with an "
1726 "implicit def\n");
1727 return CopyMI;
1728 }
1729
1730 // Remove any DstReg segments starting at the instruction.
1731 LLVM_DEBUG(dbgs() << "\tEliminating copy of <undef> value\n");
1732
1733 // Remove value or merge with previous one in case of a subregister def.
1734 if (VNInfo *PrevVNI = DstLI.getVNInfoAt(Idx)) {
1735 VNInfo *VNI = DstLI.getVNInfoAt(RegIndex);
1736 DstLI.MergeValueNumberInto(VNI, PrevVNI);
1737
1738 // The affected subregister segments can be removed.
1739 LaneBitmask DstMask = TRI->getSubRegIndexLaneMask(DstSubIdx);
1740 for (LiveInterval::SubRange &SR : DstLI.subranges()) {
1741 if ((SR.LaneMask & DstMask).none())
1742 continue;
1743
1744 VNInfo *SVNI = SR.getVNInfoAt(RegIndex);
1745 assert(SVNI != nullptr && SlotIndex::isSameInstr(SVNI->def, RegIndex));
1746 SR.removeValNo(SVNI);
1747 }
1748 DstLI.removeEmptySubRanges();
1749 } else
1750 LIS->removeVRegDefAt(DstLI, RegIndex);
1751
1752 // Mark uses as undef.
1753 for (MachineOperand &MO : MRI->reg_nodbg_operands(DstReg)) {
1754 if (MO.isDef() /*|| MO.isUndef()*/)
1755 continue;
1756 const MachineInstr &MI = *MO.getParent();
1757 SlotIndex UseIdx = LIS->getInstructionIndex(MI);
1758 LaneBitmask UseMask = TRI->getSubRegIndexLaneMask(MO.getSubReg());
1759 bool isLive;
1760 if (!UseMask.all() && DstLI.hasSubRanges()) {
1761 isLive = false;
1762 for (const LiveInterval::SubRange &SR : DstLI.subranges()) {
1763 if ((SR.LaneMask & UseMask).none())
1764 continue;
1765 if (SR.liveAt(UseIdx)) {
1766 isLive = true;
1767 break;
1768 }
1769 }
1770 } else
1771 isLive = DstLI.liveAt(UseIdx);
1772 if (isLive)
1773 continue;
1774 MO.setIsUndef(true);
1775 LLVM_DEBUG(dbgs() << "\tnew undef: " << UseIdx << '\t' << MI);
1776 }
1777
1778 // A def of a subregister may be a use of the other subregisters, so
1779 // deleting a def of a subregister may also remove uses. Since CopyMI
1780 // is still part of the function (but about to be erased), mark all
1781 // defs of DstReg in it as <undef>, so that shrinkToUses would
1782 // ignore them.
1783 for (MachineOperand &MO : CopyMI->all_defs())
1784 if (MO.getReg() == DstReg)
1785 MO.setIsUndef(true);
1786 LIS->shrinkToUses(&DstLI);
1787
1788 return CopyMI;
1789}
1790
1791void RegisterCoalescer::addUndefFlag(const LiveInterval &Int, SlotIndex UseIdx,
1792 MachineOperand &MO, unsigned SubRegIdx) {
1793 LaneBitmask Mask = TRI->getSubRegIndexLaneMask(SubRegIdx);
1794 if (MO.isDef())
1795 Mask = ~Mask;
1796 bool IsUndef = true;
1797 for (const LiveInterval::SubRange &S : Int.subranges()) {
1798 if ((S.LaneMask & Mask).none())
1799 continue;
1800 if (S.liveAt(UseIdx)) {
1801 IsUndef = false;
1802 break;
1803 }
1804 }
1805 if (IsUndef) {
1806 MO.setIsUndef(true);
1807 // We found out some subregister use is actually reading an undefined
1808 // value. In some cases the whole vreg has become undefined at this
1809 // point so we have to potentially shrink the main range if the
1810 // use was ending a live segment there.
1811 LiveQueryResult Q = Int.Query(UseIdx);
1812 if (Q.valueOut() == nullptr)
1813 ShrinkMainRange = true;
1814 }
1815}
1816
1817void RegisterCoalescer::updateRegDefsUses(Register SrcReg, Register DstReg,
1818 unsigned SubIdx) {
1819 bool DstIsPhys = DstReg.isPhysical();
1820 LiveInterval *DstInt = DstIsPhys ? nullptr : &LIS->getInterval(DstReg);
1821
1822 if (DstInt && DstInt->hasSubRanges() && DstReg != SrcReg) {
1823 for (MachineOperand &MO : MRI->reg_operands(DstReg)) {
1824 unsigned SubReg = MO.getSubReg();
1825 if (SubReg == 0 || MO.isUndef())
1826 continue;
1827 MachineInstr &MI = *MO.getParent();
1828 if (MI.isDebugInstr())
1829 continue;
1830 SlotIndex UseIdx = LIS->getInstructionIndex(MI).getRegSlot(true);
1831 addUndefFlag(*DstInt, UseIdx, MO, SubReg);
1832 }
1833 }
1834
1837 I = MRI->reg_instr_begin(SrcReg), E = MRI->reg_instr_end();
1838 I != E; ) {
1839 MachineInstr *UseMI = &*(I++);
1840
1841 // Each instruction can only be rewritten once because sub-register
1842 // composition is not always idempotent. When SrcReg != DstReg, rewriting
1843 // the UseMI operands removes them from the SrcReg use-def chain, but when
1844 // SrcReg is DstReg we could encounter UseMI twice if it has multiple
1845 // operands mentioning the virtual register.
1846 if (SrcReg == DstReg && !Visited.insert(UseMI).second)
1847 continue;
1848
1850 bool Reads, Writes;
1851 std::tie(Reads, Writes) = UseMI->readsWritesVirtualRegister(SrcReg, &Ops);
1852
1853 // If SrcReg wasn't read, it may still be the case that DstReg is live-in
1854 // because SrcReg is a sub-register.
1855 if (DstInt && !Reads && SubIdx && !UseMI->isDebugInstr())
1856 Reads = DstInt->liveAt(LIS->getInstructionIndex(*UseMI));
1857
1858 // Replace SrcReg with DstReg in all UseMI operands.
1859 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1860 MachineOperand &MO = UseMI->getOperand(Ops[i]);
1861
1862 // Adjust <undef> flags in case of sub-register joins. We don't want to
1863 // turn a full def into a read-modify-write sub-register def and vice
1864 // versa.
1865 if (SubIdx && MO.isDef())
1866 MO.setIsUndef(!Reads);
1867
1868 // A subreg use of a partially undef (super) register may be a complete
1869 // undef use now and then has to be marked that way.
1870 if (MO.isUse() && !DstIsPhys) {
1871 unsigned SubUseIdx = TRI->composeSubRegIndices(SubIdx, MO.getSubReg());
1872 if (SubUseIdx != 0 && MRI->shouldTrackSubRegLiveness(DstReg)) {
1873 if (!DstInt->hasSubRanges()) {
1875 LaneBitmask FullMask = MRI->getMaxLaneMaskForVReg(DstInt->reg());
1876 LaneBitmask UsedLanes = TRI->getSubRegIndexLaneMask(SubIdx);
1877 LaneBitmask UnusedLanes = FullMask & ~UsedLanes;
1878 DstInt->createSubRangeFrom(Allocator, UsedLanes, *DstInt);
1879 // The unused lanes are just empty live-ranges at this point.
1880 // It is the caller responsibility to set the proper
1881 // dead segments if there is an actual dead def of the
1882 // unused lanes. This may happen with rematerialization.
1883 DstInt->createSubRange(Allocator, UnusedLanes);
1884 }
1885 SlotIndex MIIdx = UseMI->isDebugInstr()
1887 : LIS->getInstructionIndex(*UseMI);
1888 SlotIndex UseIdx = MIIdx.getRegSlot(true);
1889 addUndefFlag(*DstInt, UseIdx, MO, SubUseIdx);
1890 }
1891 }
1892
1893 if (DstIsPhys)
1894 MO.substPhysReg(DstReg, *TRI);
1895 else
1896 MO.substVirtReg(DstReg, SubIdx, *TRI);
1897 }
1898
1899 LLVM_DEBUG({
1900 dbgs() << "\t\tupdated: ";
1901 if (!UseMI->isDebugInstr())
1902 dbgs() << LIS->getInstructionIndex(*UseMI) << "\t";
1903 dbgs() << *UseMI;
1904 });
1905 }
1906}
1907
1908bool RegisterCoalescer::canJoinPhys(const CoalescerPair &CP) {
1909 // Always join simple intervals that are defined by a single copy from a
1910 // reserved register. This doesn't increase register pressure, so it is
1911 // always beneficial.
1912 if (!MRI->isReserved(CP.getDstReg())) {
1913 LLVM_DEBUG(dbgs() << "\tCan only merge into reserved registers.\n");
1914 return false;
1915 }
1916
1917 LiveInterval &JoinVInt = LIS->getInterval(CP.getSrcReg());
1918 if (JoinVInt.containsOneValue())
1919 return true;
1920
1921 LLVM_DEBUG(
1922 dbgs() << "\tCannot join complex intervals into reserved register.\n");
1923 return false;
1924}
1925
1926bool RegisterCoalescer::copyValueUndefInPredecessors(
1928 for (const MachineBasicBlock *Pred : MBB->predecessors()) {
1929 SlotIndex PredEnd = LIS->getMBBEndIdx(Pred);
1930 if (VNInfo *V = S.getVNInfoAt(PredEnd.getPrevSlot())) {
1931 // If this is a self loop, we may be reading the same value.
1932 if (V->id != SLRQ.valueOutOrDead()->id)
1933 return false;
1934 }
1935 }
1936
1937 return true;
1938}
1939
1940void RegisterCoalescer::setUndefOnPrunedSubRegUses(LiveInterval &LI,
1941 Register Reg,
1942 LaneBitmask PrunedLanes) {
1943 // If we had other instructions in the segment reading the undef sublane
1944 // value, we need to mark them with undef.
1945 for (MachineOperand &MO : MRI->use_nodbg_operands(Reg)) {
1946 unsigned SubRegIdx = MO.getSubReg();
1947 if (SubRegIdx == 0 || MO.isUndef())
1948 continue;
1949
1950 LaneBitmask SubRegMask = TRI->getSubRegIndexLaneMask(SubRegIdx);
1951 SlotIndex Pos = LIS->getInstructionIndex(*MO.getParent());
1952 for (LiveInterval::SubRange &S : LI.subranges()) {
1953 if (!S.liveAt(Pos) && (PrunedLanes & SubRegMask).any()) {
1954 MO.setIsUndef();
1955 break;
1956 }
1957 }
1958 }
1959
1961
1962 // A def of a subregister may be a use of other register lanes. Replacing
1963 // such a def with a def of a different register will eliminate the use,
1964 // and may cause the recorded live range to be larger than the actual
1965 // liveness in the program IR.
1966 LIS->shrinkToUses(&LI);
1967}
1968
1969bool RegisterCoalescer::joinCopy(
1970 MachineInstr *CopyMI, bool &Again,
1971 SmallPtrSetImpl<MachineInstr *> &CurrentErasedInstrs) {
1972 Again = false;
1973 LLVM_DEBUG(dbgs() << LIS->getInstructionIndex(*CopyMI) << '\t' << *CopyMI);
1974
1976 if (!CP.setRegisters(CopyMI)) {
1977 LLVM_DEBUG(dbgs() << "\tNot coalescable.\n");
1978 return false;
1979 }
1980
1981 if (CP.getNewRC()) {
1982 auto SrcRC = MRI->getRegClass(CP.getSrcReg());
1983 auto DstRC = MRI->getRegClass(CP.getDstReg());
1984 unsigned SrcIdx = CP.getSrcIdx();
1985 unsigned DstIdx = CP.getDstIdx();
1986 if (CP.isFlipped()) {
1987 std::swap(SrcIdx, DstIdx);
1988 std::swap(SrcRC, DstRC);
1989 }
1990 if (!TRI->shouldCoalesce(CopyMI, SrcRC, SrcIdx, DstRC, DstIdx,
1991 CP.getNewRC(), *LIS)) {
1992 LLVM_DEBUG(dbgs() << "\tSubtarget bailed on coalescing.\n");
1993 return false;
1994 }
1995 }
1996
1997 // Dead code elimination. This really should be handled by MachineDCE, but
1998 // sometimes dead copies slip through, and we can't generate invalid live
1999 // ranges.
2000 if (!CP.isPhys() && CopyMI->allDefsAreDead()) {
2001 LLVM_DEBUG(dbgs() << "\tCopy is dead.\n");
2002 DeadDefs.push_back(CopyMI);
2003 eliminateDeadDefs();
2004 return true;
2005 }
2006
2007 // Eliminate undefs.
2008 if (!CP.isPhys()) {
2009 // If this is an IMPLICIT_DEF, leave it alone, but don't try to coalesce.
2010 if (MachineInstr *UndefMI = eliminateUndefCopy(CopyMI)) {
2011 if (UndefMI->isImplicitDef())
2012 return false;
2013 deleteInstr(CopyMI);
2014 return false; // Not coalescable.
2015 }
2016 }
2017
2018 // Coalesced copies are normally removed immediately, but transformations
2019 // like removeCopyByCommutingDef() can inadvertently create identity copies.
2020 // When that happens, just join the values and remove the copy.
2021 if (CP.getSrcReg() == CP.getDstReg()) {
2022 LiveInterval &LI = LIS->getInterval(CP.getSrcReg());
2023 LLVM_DEBUG(dbgs() << "\tCopy already coalesced: " << LI << '\n');
2024 const SlotIndex CopyIdx = LIS->getInstructionIndex(*CopyMI);
2025 LiveQueryResult LRQ = LI.Query(CopyIdx);
2026 if (VNInfo *DefVNI = LRQ.valueDefined()) {
2027 VNInfo *ReadVNI = LRQ.valueIn();
2028 assert(ReadVNI && "No value before copy and no <undef> flag.");
2029 assert(ReadVNI != DefVNI && "Cannot read and define the same value.");
2030
2031 // Track incoming undef lanes we need to eliminate from the subrange.
2032 LaneBitmask PrunedLanes;
2033 MachineBasicBlock *MBB = CopyMI->getParent();
2034
2035 // Process subregister liveranges.
2036 for (LiveInterval::SubRange &S : LI.subranges()) {
2037 LiveQueryResult SLRQ = S.Query(CopyIdx);
2038 if (VNInfo *SDefVNI = SLRQ.valueDefined()) {
2039 if (VNInfo *SReadVNI = SLRQ.valueIn())
2040 SDefVNI = S.MergeValueNumberInto(SDefVNI, SReadVNI);
2041
2042 // If this copy introduced an undef subrange from an incoming value,
2043 // we need to eliminate the undef live in values from the subrange.
2044 if (copyValueUndefInPredecessors(S, MBB, SLRQ)) {
2045 LLVM_DEBUG(dbgs() << "Incoming sublane value is undef at copy\n");
2046 PrunedLanes |= S.LaneMask;
2047 S.removeValNo(SDefVNI);
2048 }
2049 }
2050 }
2051
2052 LI.MergeValueNumberInto(DefVNI, ReadVNI);
2053 if (PrunedLanes.any()) {
2054 LLVM_DEBUG(dbgs() << "Pruning undef incoming lanes: "
2055 << PrunedLanes << '\n');
2056 setUndefOnPrunedSubRegUses(LI, CP.getSrcReg(), PrunedLanes);
2057 }
2058
2059 LLVM_DEBUG(dbgs() << "\tMerged values: " << LI << '\n');
2060 }
2061 deleteInstr(CopyMI);
2062 return true;
2063 }
2064
2065 // Enforce policies.
2066 if (CP.isPhys()) {
2067 LLVM_DEBUG(dbgs() << "\tConsidering merging "
2068 << printReg(CP.getSrcReg(), TRI) << " with "
2069 << printReg(CP.getDstReg(), TRI, CP.getSrcIdx()) << '\n');
2070 if (!canJoinPhys(CP)) {
2071 // Before giving up coalescing, if definition of source is defined by
2072 // trivial computation, try rematerializing it.
2073 bool IsDefCopy = false;
2074 if (reMaterializeTrivialDef(CP, CopyMI, IsDefCopy))
2075 return true;
2076 if (IsDefCopy)
2077 Again = true; // May be possible to coalesce later.
2078 return false;
2079 }
2080 } else {
2081 // When possible, let DstReg be the larger interval.
2082 if (!CP.isPartial() && LIS->getInterval(CP.getSrcReg()).size() >
2083 LIS->getInterval(CP.getDstReg()).size())
2084 CP.flip();
2085
2086 LLVM_DEBUG({
2087 dbgs() << "\tConsidering merging to "
2088 << TRI->getRegClassName(CP.getNewRC()) << " with ";
2089 if (CP.getDstIdx() && CP.getSrcIdx())
2090 dbgs() << printReg(CP.getDstReg()) << " in "
2091 << TRI->getSubRegIndexName(CP.getDstIdx()) << " and "
2092 << printReg(CP.getSrcReg()) << " in "
2093 << TRI->getSubRegIndexName(CP.getSrcIdx()) << '\n';
2094 else
2095 dbgs() << printReg(CP.getSrcReg(), TRI) << " in "
2096 << printReg(CP.getDstReg(), TRI, CP.getSrcIdx()) << '\n';
2097 });
2098 }
2099
2100 ShrinkMask = LaneBitmask::getNone();
2101 ShrinkMainRange = false;
2102
2103 // Okay, attempt to join these two intervals. On failure, this returns false.
2104 // Otherwise, if one of the intervals being joined is a physreg, this method
2105 // always canonicalizes DstInt to be it. The output "SrcInt" will not have
2106 // been modified, so we can use this information below to update aliases.
2107 if (!joinIntervals(CP)) {
2108 // Coalescing failed.
2109
2110 // If definition of source is defined by trivial computation, try
2111 // rematerializing it.
2112 bool IsDefCopy = false;
2113 if (reMaterializeTrivialDef(CP, CopyMI, IsDefCopy))
2114 return true;
2115
2116 // If we can eliminate the copy without merging the live segments, do so
2117 // now.
2118 if (!CP.isPartial() && !CP.isPhys()) {
2119 bool Changed = adjustCopiesBackFrom(CP, CopyMI);
2120 bool Shrink = false;
2121 if (!Changed)
2122 std::tie(Changed, Shrink) = removeCopyByCommutingDef(CP, CopyMI);
2123 if (Changed) {
2124 deleteInstr(CopyMI);
2125 if (Shrink) {
2126 Register DstReg = CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg();
2127 LiveInterval &DstLI = LIS->getInterval(DstReg);
2128 shrinkToUses(&DstLI);
2129 LLVM_DEBUG(dbgs() << "\t\tshrunk: " << DstLI << '\n');
2130 }
2131 LLVM_DEBUG(dbgs() << "\tTrivial!\n");
2132 return true;
2133 }
2134 }
2135
2136 // Try and see if we can partially eliminate the copy by moving the copy to
2137 // its predecessor.
2138 if (!CP.isPartial() && !CP.isPhys())
2139 if (removePartialRedundancy(CP, *CopyMI))
2140 return true;
2141
2142 // Otherwise, we are unable to join the intervals.
2143 LLVM_DEBUG(dbgs() << "\tInterference!\n");
2144 Again = true; // May be possible to coalesce later.
2145 return false;
2146 }
2147
2148 // Coalescing to a virtual register that is of a sub-register class of the
2149 // other. Make sure the resulting register is set to the right register class.
2150 if (CP.isCrossClass()) {
2151 ++numCrossRCs;
2152 MRI->setRegClass(CP.getDstReg(), CP.getNewRC());
2153 }
2154
2155 // Removing sub-register copies can ease the register class constraints.
2156 // Make sure we attempt to inflate the register class of DstReg.
2157 if (!CP.isPhys() && RegClassInfo.isProperSubClass(CP.getNewRC()))
2158 InflateRegs.push_back(CP.getDstReg());
2159
2160 // CopyMI has been erased by joinIntervals at this point. Remove it from
2161 // ErasedInstrs since copyCoalesceWorkList() won't add a successful join back
2162 // to the work list. This keeps ErasedInstrs from growing needlessly.
2163 if (ErasedInstrs.erase(CopyMI))
2164 // But we may encounter the instruction again in this iteration.
2165 CurrentErasedInstrs.insert(CopyMI);
2166
2167 // Rewrite all SrcReg operands to DstReg.
2168 // Also update DstReg operands to include DstIdx if it is set.
2169 if (CP.getDstIdx())
2170 updateRegDefsUses(CP.getDstReg(), CP.getDstReg(), CP.getDstIdx());
2171 updateRegDefsUses(CP.getSrcReg(), CP.getDstReg(), CP.getSrcIdx());
2172
2173 // Shrink subregister ranges if necessary.
2174 if (ShrinkMask.any()) {
2175 LiveInterval &LI = LIS->getInterval(CP.getDstReg());
2176 for (LiveInterval::SubRange &S : LI.subranges()) {
2177 if ((S.LaneMask & ShrinkMask).none())
2178 continue;
2179 LLVM_DEBUG(dbgs() << "Shrink LaneUses (Lane " << PrintLaneMask(S.LaneMask)
2180 << ")\n");
2181 LIS->shrinkToUses(S, LI.reg());
2182 ShrinkMainRange = true;
2183 }
2185 }
2186
2187 // CP.getSrcReg()'s live interval has been merged into CP.getDstReg's live
2188 // interval. Since CP.getSrcReg() is in ToBeUpdated set and its live interval
2189 // is not up-to-date, need to update the merged live interval here.
2190 if (ToBeUpdated.count(CP.getSrcReg()))
2191 ShrinkMainRange = true;
2192
2193 if (ShrinkMainRange) {
2194 LiveInterval &LI = LIS->getInterval(CP.getDstReg());
2195 shrinkToUses(&LI);
2196 }
2197
2198 // SrcReg is guaranteed to be the register whose live interval that is
2199 // being merged.
2200 LIS->removeInterval(CP.getSrcReg());
2201
2202 // Update regalloc hint.
2203 TRI->updateRegAllocHint(CP.getSrcReg(), CP.getDstReg(), *MF);
2204
2205 LLVM_DEBUG({
2206 dbgs() << "\tSuccess: " << printReg(CP.getSrcReg(), TRI, CP.getSrcIdx())
2207 << " -> " << printReg(CP.getDstReg(), TRI, CP.getDstIdx()) << '\n';
2208 dbgs() << "\tResult = ";
2209 if (CP.isPhys())
2210 dbgs() << printReg(CP.getDstReg(), TRI);
2211 else
2212 dbgs() << LIS->getInterval(CP.getDstReg());
2213 dbgs() << '\n';
2214 });
2215
2216 ++numJoins;
2217 return true;
2218}
2219
2220bool RegisterCoalescer::joinReservedPhysReg(CoalescerPair &CP) {
2221 Register DstReg = CP.getDstReg();
2222 Register SrcReg = CP.getSrcReg();
2223 assert(CP.isPhys() && "Must be a physreg copy");
2224 assert(MRI->isReserved(DstReg) && "Not a reserved register");
2225 LiveInterval &RHS = LIS->getInterval(SrcReg);
2226 LLVM_DEBUG(dbgs() << "\t\tRHS = " << RHS << '\n');
2227
2228 assert(RHS.containsOneValue() && "Invalid join with reserved register");
2229
2230 // Optimization for reserved registers like ESP. We can only merge with a
2231 // reserved physreg if RHS has a single value that is a copy of DstReg.
2232 // The live range of the reserved register will look like a set of dead defs
2233 // - we don't properly track the live range of reserved registers.
2234
2235 // Deny any overlapping intervals. This depends on all the reserved
2236 // register live ranges to look like dead defs.
2237 if (!MRI->isConstantPhysReg(DstReg)) {
2238 for (MCRegUnit Unit : TRI->regunits(DstReg)) {
2239 // Abort if not all the regunits are reserved.
2240 for (MCRegUnitRootIterator RI(Unit, TRI); RI.isValid(); ++RI) {
2241 if (!MRI->isReserved(*RI))
2242 return false;
2243 }
2244 if (RHS.overlaps(LIS->getRegUnit(Unit))) {
2245 LLVM_DEBUG(dbgs() << "\t\tInterference: " << printRegUnit(Unit, TRI)
2246 << '\n');
2247 return false;
2248 }
2249 }
2250
2251 // We must also check for overlaps with regmask clobbers.
2252 BitVector RegMaskUsable;
2253 if (LIS->checkRegMaskInterference(RHS, RegMaskUsable) &&
2254 !RegMaskUsable.test(DstReg)) {
2255 LLVM_DEBUG(dbgs() << "\t\tRegMask interference\n");
2256 return false;
2257 }
2258 }
2259
2260 // Skip any value computations, we are not adding new values to the
2261 // reserved register. Also skip merging the live ranges, the reserved
2262 // register live range doesn't need to be accurate as long as all the
2263 // defs are there.
2264
2265 // Delete the identity copy.
2266 MachineInstr *CopyMI;
2267 if (CP.isFlipped()) {
2268 // Physreg is copied into vreg
2269 // %y = COPY %physreg_x
2270 // ... //< no other def of %physreg_x here
2271 // use %y
2272 // =>
2273 // ...
2274 // use %physreg_x
2275 CopyMI = MRI->getVRegDef(SrcReg);
2276 deleteInstr(CopyMI);
2277 } else {
2278 // VReg is copied into physreg:
2279 // %y = def
2280 // ... //< no other def or use of %physreg_x here
2281 // %physreg_x = COPY %y
2282 // =>
2283 // %physreg_x = def
2284 // ...
2285 if (!MRI->hasOneNonDBGUse(SrcReg)) {
2286 LLVM_DEBUG(dbgs() << "\t\tMultiple vreg uses!\n");
2287 return false;
2288 }
2289
2290 if (!LIS->intervalIsInOneMBB(RHS)) {
2291 LLVM_DEBUG(dbgs() << "\t\tComplex control flow!\n");
2292 return false;
2293 }
2294
2295 MachineInstr &DestMI = *MRI->getVRegDef(SrcReg);
2296 CopyMI = &*MRI->use_instr_nodbg_begin(SrcReg);
2297 SlotIndex CopyRegIdx = LIS->getInstructionIndex(*CopyMI).getRegSlot();
2298 SlotIndex DestRegIdx = LIS->getInstructionIndex(DestMI).getRegSlot();
2299
2300 if (!MRI->isConstantPhysReg(DstReg)) {
2301 // We checked above that there are no interfering defs of the physical
2302 // register. However, for this case, where we intend to move up the def of
2303 // the physical register, we also need to check for interfering uses.
2304 SlotIndexes *Indexes = LIS->getSlotIndexes();
2305 for (SlotIndex SI = Indexes->getNextNonNullIndex(DestRegIdx);
2306 SI != CopyRegIdx; SI = Indexes->getNextNonNullIndex(SI)) {
2308 if (MI->readsRegister(DstReg, TRI)) {
2309 LLVM_DEBUG(dbgs() << "\t\tInterference (read): " << *MI);
2310 return false;
2311 }
2312 }
2313 }
2314
2315 // We're going to remove the copy which defines a physical reserved
2316 // register, so remove its valno, etc.
2317 LLVM_DEBUG(dbgs() << "\t\tRemoving phys reg def of "
2318 << printReg(DstReg, TRI) << " at " << CopyRegIdx << "\n");
2319
2320 LIS->removePhysRegDefAt(DstReg.asMCReg(), CopyRegIdx);
2321 deleteInstr(CopyMI);
2322
2323 // Create a new dead def at the new def location.
2324 for (MCRegUnit Unit : TRI->regunits(DstReg)) {
2325 LiveRange &LR = LIS->getRegUnit(Unit);
2326 LR.createDeadDef(DestRegIdx, LIS->getVNInfoAllocator());
2327 }
2328 }
2329
2330 // We don't track kills for reserved registers.
2331 MRI->clearKillFlags(CP.getSrcReg());
2332
2333 return true;
2334}
2335
2336//===----------------------------------------------------------------------===//
2337// Interference checking and interval joining
2338//===----------------------------------------------------------------------===//
2339//
2340// In the easiest case, the two live ranges being joined are disjoint, and
2341// there is no interference to consider. It is quite common, though, to have
2342// overlapping live ranges, and we need to check if the interference can be
2343// resolved.
2344//
2345// The live range of a single SSA value forms a sub-tree of the dominator tree.
2346// This means that two SSA values overlap if and only if the def of one value
2347// is contained in the live range of the other value. As a special case, the
2348// overlapping values can be defined at the same index.
2349//
2350// The interference from an overlapping def can be resolved in these cases:
2351//
2352// 1. Coalescable copies. The value is defined by a copy that would become an
2353// identity copy after joining SrcReg and DstReg. The copy instruction will
2354// be removed, and the value will be merged with the source value.
2355//
2356// There can be several copies back and forth, causing many values to be
2357// merged into one. We compute a list of ultimate values in the joined live
2358// range as well as a mappings from the old value numbers.
2359//
2360// 2. IMPLICIT_DEF. This instruction is only inserted to ensure all PHI
2361// predecessors have a live out value. It doesn't cause real interference,
2362// and can be merged into the value it overlaps. Like a coalescable copy, it
2363// can be erased after joining.
2364//
2365// 3. Copy of external value. The overlapping def may be a copy of a value that
2366// is already in the other register. This is like a coalescable copy, but
2367// the live range of the source register must be trimmed after erasing the
2368// copy instruction:
2369//
2370// %src = COPY %ext
2371// %dst = COPY %ext <-- Remove this COPY, trim the live range of %ext.
2372//
2373// 4. Clobbering undefined lanes. Vector registers are sometimes built by
2374// defining one lane at a time:
2375//
2376// %dst:ssub0<def,read-undef> = FOO
2377// %src = BAR
2378// %dst:ssub1 = COPY %src
2379//
2380// The live range of %src overlaps the %dst value defined by FOO, but
2381// merging %src into %dst:ssub1 is only going to clobber the ssub1 lane
2382// which was undef anyway.
2383//
2384// The value mapping is more complicated in this case. The final live range
2385// will have different value numbers for both FOO and BAR, but there is no
2386// simple mapping from old to new values. It may even be necessary to add
2387// new PHI values.
2388//
2389// 5. Clobbering dead lanes. A def may clobber a lane of a vector register that
2390// is live, but never read. This can happen because we don't compute
2391// individual live ranges per lane.
2392//
2393// %dst = FOO
2394// %src = BAR
2395// %dst:ssub1 = COPY %src
2396//
2397// This kind of interference is only resolved locally. If the clobbered
2398// lane value escapes the block, the join is aborted.
2399
2400namespace {
2401
2402/// Track information about values in a single virtual register about to be
2403/// joined. Objects of this class are always created in pairs - one for each
2404/// side of the CoalescerPair (or one for each lane of a side of the coalescer
2405/// pair)
2406class JoinVals {
2407 /// Live range we work on.
2408 LiveRange &LR;
2409
2410 /// (Main) register we work on.
2411 const Register Reg;
2412
2413 /// Reg (and therefore the values in this liverange) will end up as
2414 /// subregister SubIdx in the coalesced register. Either CP.DstIdx or
2415 /// CP.SrcIdx.
2416 const unsigned SubIdx;
2417
2418 /// The LaneMask that this liverange will occupy the coalesced register. May
2419 /// be smaller than the lanemask produced by SubIdx when merging subranges.
2420 const LaneBitmask LaneMask;
2421
2422 /// This is true when joining sub register ranges, false when joining main
2423 /// ranges.
2424 const bool SubRangeJoin;
2425
2426 /// Whether the current LiveInterval tracks subregister liveness.
2427 const bool TrackSubRegLiveness;
2428
2429 /// Values that will be present in the final live range.
2430 SmallVectorImpl<VNInfo*> &NewVNInfo;
2431
2432 const CoalescerPair &CP;
2433 LiveIntervals *LIS;
2434 SlotIndexes *Indexes;
2435 const TargetRegisterInfo *TRI;
2436
2437 /// Value number assignments. Maps value numbers in LI to entries in
2438 /// NewVNInfo. This is suitable for passing to LiveInterval::join().
2439 SmallVector<int, 8> Assignments;
2440
2441 public:
2442 /// Conflict resolution for overlapping values.
2443 enum ConflictResolution {
2444 /// No overlap, simply keep this value.
2445 CR_Keep,
2446
2447 /// Merge this value into OtherVNI and erase the defining instruction.
2448 /// Used for IMPLICIT_DEF, coalescable copies, and copies from external
2449 /// values.
2450 CR_Erase,
2451
2452 /// Merge this value into OtherVNI but keep the defining instruction.
2453 /// This is for the special case where OtherVNI is defined by the same
2454 /// instruction.
2455 CR_Merge,
2456
2457 /// Keep this value, and have it replace OtherVNI where possible. This
2458 /// complicates value mapping since OtherVNI maps to two different values
2459 /// before and after this def.
2460 /// Used when clobbering undefined or dead lanes.
2461 CR_Replace,
2462
2463 /// Unresolved conflict. Visit later when all values have been mapped.
2464 CR_Unresolved,
2465
2466 /// Unresolvable conflict. Abort the join.
2467 CR_Impossible
2468 };
2469
2470 private:
2471 /// Per-value info for LI. The lane bit masks are all relative to the final
2472 /// joined register, so they can be compared directly between SrcReg and
2473 /// DstReg.
2474 struct Val {
2475 ConflictResolution Resolution = CR_Keep;
2476
2477 /// Lanes written by this def, 0 for unanalyzed values.
2478 LaneBitmask WriteLanes;
2479
2480 /// Lanes with defined values in this register. Other lanes are undef and
2481 /// safe to clobber.
2482 LaneBitmask ValidLanes;
2483
2484 /// Value in LI being redefined by this def.
2485 VNInfo *RedefVNI = nullptr;
2486
2487 /// Value in the other live range that overlaps this def, if any.
2488 VNInfo *OtherVNI = nullptr;
2489
2490 /// Is this value an IMPLICIT_DEF that can be erased?
2491 ///
2492 /// IMPLICIT_DEF values should only exist at the end of a basic block that
2493 /// is a predecessor to a phi-value. These IMPLICIT_DEF instructions can be
2494 /// safely erased if they are overlapping a live value in the other live
2495 /// interval.
2496 ///
2497 /// Weird control flow graphs and incomplete PHI handling in
2498 /// ProcessImplicitDefs can very rarely create IMPLICIT_DEF values with
2499 /// longer live ranges. Such IMPLICIT_DEF values should be treated like
2500 /// normal values.
2501 bool ErasableImplicitDef = false;
2502
2503 /// True when the live range of this value will be pruned because of an
2504 /// overlapping CR_Replace value in the other live range.
2505 bool Pruned = false;
2506
2507 /// True once Pruned above has been computed.
2508 bool PrunedComputed = false;
2509
2510 /// True if this value is determined to be identical to OtherVNI
2511 /// (in valuesIdentical). This is used with CR_Erase where the erased
2512 /// copy is redundant, i.e. the source value is already the same as
2513 /// the destination. In such cases the subranges need to be updated
2514 /// properly. See comment at pruneSubRegValues for more info.
2515 bool Identical = false;
2516
2517 Val() = default;
2518
2519 bool isAnalyzed() const { return WriteLanes.any(); }
2520
2521 /// Mark this value as an IMPLICIT_DEF which must be kept as if it were an
2522 /// ordinary value.
2523 void mustKeepImplicitDef(const TargetRegisterInfo &TRI,
2524 const MachineInstr &ImpDef) {
2525 assert(ImpDef.isImplicitDef());
2526 ErasableImplicitDef = false;
2527 ValidLanes = TRI.getSubRegIndexLaneMask(ImpDef.getOperand(0).getSubReg());
2528 }
2529 };
2530
2531 /// One entry per value number in LI.
2533
2534 /// Compute the bitmask of lanes actually written by DefMI.
2535 /// Set Redef if there are any partial register definitions that depend on the
2536 /// previous value of the register.
2537 LaneBitmask computeWriteLanes(const MachineInstr *DefMI, bool &Redef) const;
2538
2539 /// Find the ultimate value that VNI was copied from.
2540 std::pair<const VNInfo *, Register> followCopyChain(const VNInfo *VNI) const;
2541
2542 bool valuesIdentical(VNInfo *Value0, VNInfo *Value1, const JoinVals &Other) const;
2543
2544 /// Analyze ValNo in this live range, and set all fields of Vals[ValNo].
2545 /// Return a conflict resolution when possible, but leave the hard cases as
2546 /// CR_Unresolved.
2547 /// Recursively calls computeAssignment() on this and Other, guaranteeing that
2548 /// both OtherVNI and RedefVNI have been analyzed and mapped before returning.
2549 /// The recursion always goes upwards in the dominator tree, making loops
2550 /// impossible.
2551 ConflictResolution analyzeValue(unsigned ValNo, JoinVals &Other);
2552
2553 /// Compute the value assignment for ValNo in RI.
2554 /// This may be called recursively by analyzeValue(), but never for a ValNo on
2555 /// the stack.
2556 void computeAssignment(unsigned ValNo, JoinVals &Other);
2557
2558 /// Assuming ValNo is going to clobber some valid lanes in Other.LR, compute
2559 /// the extent of the tainted lanes in the block.
2560 ///
2561 /// Multiple values in Other.LR can be affected since partial redefinitions
2562 /// can preserve previously tainted lanes.
2563 ///
2564 /// 1 %dst = VLOAD <-- Define all lanes in %dst
2565 /// 2 %src = FOO <-- ValNo to be joined with %dst:ssub0
2566 /// 3 %dst:ssub1 = BAR <-- Partial redef doesn't clear taint in ssub0
2567 /// 4 %dst:ssub0 = COPY %src <-- Conflict resolved, ssub0 wasn't read
2568 ///
2569 /// For each ValNo in Other that is affected, add an (EndIndex, TaintedLanes)
2570 /// entry to TaintedVals.
2571 ///
2572 /// Returns false if the tainted lanes extend beyond the basic block.
2573 bool
2574 taintExtent(unsigned ValNo, LaneBitmask TaintedLanes, JoinVals &Other,
2575 SmallVectorImpl<std::pair<SlotIndex, LaneBitmask>> &TaintExtent);
2576
2577 /// Return true if MI uses any of the given Lanes from Reg.
2578 /// This does not include partial redefinitions of Reg.
2579 bool usesLanes(const MachineInstr &MI, Register, unsigned, LaneBitmask) const;
2580
2581 /// Determine if ValNo is a copy of a value number in LR or Other.LR that will
2582 /// be pruned:
2583 ///
2584 /// %dst = COPY %src
2585 /// %src = COPY %dst <-- This value to be pruned.
2586 /// %dst = COPY %src <-- This value is a copy of a pruned value.
2587 bool isPrunedValue(unsigned ValNo, JoinVals &Other);
2588
2589public:
2590 JoinVals(LiveRange &LR, Register Reg, unsigned SubIdx, LaneBitmask LaneMask,
2591 SmallVectorImpl<VNInfo *> &newVNInfo, const CoalescerPair &cp,
2592 LiveIntervals *lis, const TargetRegisterInfo *TRI, bool SubRangeJoin,
2593 bool TrackSubRegLiveness)
2594 : LR(LR), Reg(Reg), SubIdx(SubIdx), LaneMask(LaneMask),
2595 SubRangeJoin(SubRangeJoin), TrackSubRegLiveness(TrackSubRegLiveness),
2596 NewVNInfo(newVNInfo), CP(cp), LIS(lis), Indexes(LIS->getSlotIndexes()),
2597 TRI(TRI), Assignments(LR.getNumValNums(), -1),
2598 Vals(LR.getNumValNums()) {}
2599
2600 /// Analyze defs in LR and compute a value mapping in NewVNInfo.
2601 /// Returns false if any conflicts were impossible to resolve.
2602 bool mapValues(JoinVals &Other);
2603
2604 /// Try to resolve conflicts that require all values to be mapped.
2605 /// Returns false if any conflicts were impossible to resolve.
2606 bool resolveConflicts(JoinVals &Other);
2607
2608 /// Prune the live range of values in Other.LR where they would conflict with
2609 /// CR_Replace values in LR. Collect end points for restoring the live range
2610 /// after joining.
2611 void pruneValues(JoinVals &Other, SmallVectorImpl<SlotIndex> &EndPoints,
2612 bool changeInstrs);
2613
2614 /// Removes subranges starting at copies that get removed. This sometimes
2615 /// happens when undefined subranges are copied around. These ranges contain
2616 /// no useful information and can be removed.
2617 void pruneSubRegValues(LiveInterval &LI, LaneBitmask &ShrinkMask);
2618
2619 /// Pruning values in subranges can lead to removing segments in these
2620 /// subranges started by IMPLICIT_DEFs. The corresponding segments in
2621 /// the main range also need to be removed. This function will mark
2622 /// the corresponding values in the main range as pruned, so that
2623 /// eraseInstrs can do the final cleanup.
2624 /// The parameter @p LI must be the interval whose main range is the
2625 /// live range LR.
2626 void pruneMainSegments(LiveInterval &LI, bool &ShrinkMainRange);
2627
2628 /// Erase any machine instructions that have been coalesced away.
2629 /// Add erased instructions to ErasedInstrs.
2630 /// Add foreign virtual registers to ShrinkRegs if their live range ended at
2631 /// the erased instrs.
2633 SmallVectorImpl<Register> &ShrinkRegs,
2634 LiveInterval *LI = nullptr);
2635
2636 /// Remove liverange defs at places where implicit defs will be removed.
2637 void removeImplicitDefs();
2638
2639 /// Get the value assignments suitable for passing to LiveInterval::join.
2640 const int *getAssignments() const { return Assignments.data(); }
2641
2642 /// Get the conflict resolution for a value number.
2643 ConflictResolution getResolution(unsigned Num) const {
2644 return Vals[Num].Resolution;
2645 }
2646};
2647
2648} // end anonymous namespace
2649
2650LaneBitmask JoinVals::computeWriteLanes(const MachineInstr *DefMI, bool &Redef)
2651 const {
2652 LaneBitmask L;
2653 for (const MachineOperand &MO : DefMI->all_defs()) {
2654 if (MO.getReg() != Reg)
2655 continue;
2656 L |= TRI->getSubRegIndexLaneMask(
2657 TRI->composeSubRegIndices(SubIdx, MO.getSubReg()));
2658 if (MO.readsReg())
2659 Redef = true;
2660 }
2661 return L;
2662}
2663
2664std::pair<const VNInfo *, Register>
2665JoinVals::followCopyChain(const VNInfo *VNI) const {
2666 Register TrackReg = Reg;
2667
2668 while (!VNI->isPHIDef()) {
2669 SlotIndex Def = VNI->def;
2670 MachineInstr *MI = Indexes->getInstructionFromIndex(Def);
2671 assert(MI && "No defining instruction");
2672 if (!MI->isFullCopy())
2673 return std::make_pair(VNI, TrackReg);
2674 Register SrcReg = MI->getOperand(1).getReg();
2675 if (!SrcReg.isVirtual())
2676 return std::make_pair(VNI, TrackReg);
2677
2678 const LiveInterval &LI = LIS->getInterval(SrcReg);
2679 const VNInfo *ValueIn;
2680 // No subrange involved.
2681 if (!SubRangeJoin || !LI.hasSubRanges()) {
2682 LiveQueryResult LRQ = LI.Query(Def);
2683 ValueIn = LRQ.valueIn();
2684 } else {
2685 // Query subranges. Ensure that all matching ones take us to the same def
2686 // (allowing some of them to be undef).
2687 ValueIn = nullptr;
2688 for (const LiveInterval::SubRange &S : LI.subranges()) {
2689 // Transform lanemask to a mask in the joined live interval.
2690 LaneBitmask SMask = TRI->composeSubRegIndexLaneMask(SubIdx, S.LaneMask);
2691 if ((SMask & LaneMask).none())
2692 continue;
2693 LiveQueryResult LRQ = S.Query(Def);
2694 if (!ValueIn) {
2695 ValueIn = LRQ.valueIn();
2696 continue;
2697 }
2698 if (LRQ.valueIn() && ValueIn != LRQ.valueIn())
2699 return std::make_pair(VNI, TrackReg);
2700 }
2701 }
2702 if (ValueIn == nullptr) {
2703 // Reaching an undefined value is legitimate, for example:
2704 //
2705 // 1 undef %0.sub1 = ... ;; %0.sub0 == undef
2706 // 2 %1 = COPY %0 ;; %1 is defined here.
2707 // 3 %0 = COPY %1 ;; Now %0.sub0 has a definition,
2708 // ;; but it's equivalent to "undef".
2709 return std::make_pair(nullptr, SrcReg);
2710 }
2711 VNI = ValueIn;
2712 TrackReg = SrcReg;
2713 }
2714 return std::make_pair(VNI, TrackReg);
2715}
2716
2717bool JoinVals::valuesIdentical(VNInfo *Value0, VNInfo *Value1,
2718 const JoinVals &Other) const {
2719 const VNInfo *Orig0;
2720 Register Reg0;
2721 std::tie(Orig0, Reg0) = followCopyChain(Value0);
2722 if (Orig0 == Value1 && Reg0 == Other.Reg)
2723 return true;
2724
2725 const VNInfo *Orig1;
2726 Register Reg1;
2727 std::tie(Orig1, Reg1) = Other.followCopyChain(Value1);
2728 // If both values are undefined, and the source registers are the same
2729 // register, the values are identical. Filter out cases where only one
2730 // value is defined.
2731 if (Orig0 == nullptr || Orig1 == nullptr)
2732 return Orig0 == Orig1 && Reg0 == Reg1;
2733
2734 // The values are equal if they are defined at the same place and use the
2735 // same register. Note that we cannot compare VNInfos directly as some of
2736 // them might be from a copy created in mergeSubRangeInto() while the other
2737 // is from the original LiveInterval.
2738 return Orig0->def == Orig1->def && Reg0 == Reg1;
2739}
2740
2741JoinVals::ConflictResolution
2742JoinVals::analyzeValue(unsigned ValNo, JoinVals &Other) {
2743 Val &V = Vals[ValNo];
2744 assert(!V.isAnalyzed() && "Value has already been analyzed!");
2745 VNInfo *VNI = LR.getValNumInfo(ValNo);
2746 if (VNI->isUnused()) {
2747 V.WriteLanes = LaneBitmask::getAll();
2748 return CR_Keep;
2749 }
2750
2751 // Get the instruction defining this value, compute the lanes written.
2752 const MachineInstr *DefMI = nullptr;
2753 if (VNI->isPHIDef()) {
2754 // Conservatively assume that all lanes in a PHI are valid.
2755 LaneBitmask Lanes = SubRangeJoin ? LaneBitmask::getLane(0)
2756 : TRI->getSubRegIndexLaneMask(SubIdx);
2757 V.ValidLanes = V.WriteLanes = Lanes;
2758 } else {
2759 DefMI = Indexes->getInstructionFromIndex(VNI->def);
2760 assert(DefMI != nullptr);
2761 if (SubRangeJoin) {
2762 // We don't care about the lanes when joining subregister ranges.
2763 V.WriteLanes = V.ValidLanes = LaneBitmask::getLane(0);
2764 if (DefMI->isImplicitDef()) {
2765 V.ValidLanes = LaneBitmask::getNone();
2766 V.ErasableImplicitDef = true;
2767 }
2768 } else {
2769 bool Redef = false;
2770 V.ValidLanes = V.WriteLanes = computeWriteLanes(DefMI, Redef);
2771
2772 // If this is a read-modify-write instruction, there may be more valid
2773 // lanes than the ones written by this instruction.
2774 // This only covers partial redef operands. DefMI may have normal use
2775 // operands reading the register. They don't contribute valid lanes.
2776 //
2777 // This adds ssub1 to the set of valid lanes in %src:
2778 //
2779 // %src:ssub1 = FOO
2780 //
2781 // This leaves only ssub1 valid, making any other lanes undef:
2782 //
2783 // %src:ssub1<def,read-undef> = FOO %src:ssub2
2784 //
2785 // The <read-undef> flag on the def operand means that old lane values are
2786 // not important.
2787 if (Redef) {
2788 V.RedefVNI = LR.Query(VNI->def).valueIn();
2789 assert((TrackSubRegLiveness || V.RedefVNI) &&
2790 "Instruction is reading nonexistent value");
2791 if (V.RedefVNI != nullptr) {
2792 computeAssignment(V.RedefVNI->id, Other);
2793 V.ValidLanes |= Vals[V.RedefVNI->id].ValidLanes;
2794 }
2795 }
2796
2797 // An IMPLICIT_DEF writes undef values.
2798 if (DefMI->isImplicitDef()) {
2799 // We normally expect IMPLICIT_DEF values to be live only until the end
2800 // of their block. If the value is really live longer and gets pruned in
2801 // another block, this flag is cleared again.
2802 //
2803 // Clearing the valid lanes is deferred until it is sure this can be
2804 // erased.
2805 V.ErasableImplicitDef = true;
2806 }
2807 }
2808 }
2809
2810 // Find the value in Other that overlaps VNI->def, if any.
2811 LiveQueryResult OtherLRQ = Other.LR.Query(VNI->def);
2812
2813 // It is possible that both values are defined by the same instruction, or
2814 // the values are PHIs defined in the same block. When that happens, the two
2815 // values should be merged into one, but not into any preceding value.
2816 // The first value defined or visited gets CR_Keep, the other gets CR_Merge.
2817 if (VNInfo *OtherVNI = OtherLRQ.valueDefined()) {
2818 assert(SlotIndex::isSameInstr(VNI->def, OtherVNI->def) && "Broken LRQ");
2819
2820 // One value stays, the other is merged. Keep the earlier one, or the first
2821 // one we see.
2822 if (OtherVNI->def < VNI->def)
2823 Other.computeAssignment(OtherVNI->id, *this);
2824 else if (VNI->def < OtherVNI->def && OtherLRQ.valueIn()) {
2825 // This is an early-clobber def overlapping a live-in value in the other
2826 // register. Not mergeable.
2827 V.OtherVNI = OtherLRQ.valueIn();
2828 return CR_Impossible;
2829 }
2830 V.OtherVNI = OtherVNI;
2831 Val &OtherV = Other.Vals[OtherVNI->id];
2832 // Keep this value, check for conflicts when analyzing OtherVNI. Avoid
2833 // revisiting OtherVNI->id in JoinVals::computeAssignment() below before it
2834 // is assigned.
2835 if (!OtherV.isAnalyzed() || Other.Assignments[OtherVNI->id] == -1)
2836 return CR_Keep;
2837 // Both sides have been analyzed now.
2838 // Allow overlapping PHI values. Any real interference would show up in a
2839 // predecessor, the PHI itself can't introduce any conflicts.
2840 if (VNI->isPHIDef())
2841 return CR_Merge;
2842 if ((V.ValidLanes & OtherV.ValidLanes).any())
2843 // Overlapping lanes can't be resolved.
2844 return CR_Impossible;
2845 else
2846 return CR_Merge;
2847 }
2848
2849 // No simultaneous def. Is Other live at the def?
2850 V.OtherVNI = OtherLRQ.valueIn();
2851 if (!V.OtherVNI)
2852 // No overlap, no conflict.
2853 return CR_Keep;
2854
2855 assert(!SlotIndex::isSameInstr(VNI->def, V.OtherVNI->def) && "Broken LRQ");
2856
2857 // We have overlapping values, or possibly a kill of Other.
2858 // Recursively compute assignments up the dominator tree.
2859 Other.computeAssignment(V.OtherVNI->id, *this);
2860 Val &OtherV = Other.Vals[V.OtherVNI->id];
2861
2862 if (OtherV.ErasableImplicitDef) {
2863 // Check if OtherV is an IMPLICIT_DEF that extends beyond its basic block.
2864 // This shouldn't normally happen, but ProcessImplicitDefs can leave such
2865 // IMPLICIT_DEF instructions behind, and there is nothing wrong with it
2866 // technically.
2867 //
2868 // When it happens, treat that IMPLICIT_DEF as a normal value, and don't try
2869 // to erase the IMPLICIT_DEF instruction.
2870 //
2871 // Additionally we must keep an IMPLICIT_DEF if we're redefining an incoming
2872 // value.
2873
2874 MachineInstr *OtherImpDef =
2875 Indexes->getInstructionFromIndex(V.OtherVNI->def);
2876 MachineBasicBlock *OtherMBB = OtherImpDef->getParent();
2877 if (DefMI &&
2878 (DefMI->getParent() != OtherMBB || LIS->isLiveInToMBB(LR, OtherMBB))) {
2879 LLVM_DEBUG(dbgs() << "IMPLICIT_DEF defined at " << V.OtherVNI->def
2880 << " extends into "
2882 << ", keeping it.\n");
2883 OtherV.mustKeepImplicitDef(*TRI, *OtherImpDef);
2884 } else if (OtherMBB->hasEHPadSuccessor()) {
2885 // If OtherV is defined in a basic block that has EH pad successors then
2886 // we get the same problem not just if OtherV is live beyond its basic
2887 // block, but beyond the last call instruction in its basic block. Handle
2888 // this case conservatively.
2889 LLVM_DEBUG(
2890 dbgs() << "IMPLICIT_DEF defined at " << V.OtherVNI->def
2891 << " may be live into EH pad successors, keeping it.\n");
2892 OtherV.mustKeepImplicitDef(*TRI, *OtherImpDef);
2893 } else {
2894 // We deferred clearing these lanes in case we needed to save them
2895 OtherV.ValidLanes &= ~OtherV.WriteLanes;
2896 }
2897 }
2898
2899 // Allow overlapping PHI values. Any real interference would show up in a
2900 // predecessor, the PHI itself can't introduce any conflicts.
2901 if (VNI->isPHIDef())
2902 return CR_Replace;
2903
2904 // Check for simple erasable conflicts.
2905 if (DefMI->isImplicitDef())
2906 return CR_Erase;
2907
2908 // Include the non-conflict where DefMI is a coalescable copy that kills
2909 // OtherVNI. We still want the copy erased and value numbers merged.
2910 if (CP.isCoalescable(DefMI)) {
2911 // Some of the lanes copied from OtherVNI may be undef, making them undef
2912 // here too.
2913 V.ValidLanes &= ~V.WriteLanes | OtherV.ValidLanes;
2914 return CR_Erase;
2915 }
2916
2917 // This may not be a real conflict if DefMI simply kills Other and defines
2918 // VNI.
2919 if (OtherLRQ.isKill() && OtherLRQ.endPoint() <= VNI->def)
2920 return CR_Keep;
2921
2922 // Handle the case where VNI and OtherVNI can be proven to be identical:
2923 //
2924 // %other = COPY %ext
2925 // %this = COPY %ext <-- Erase this copy
2926 //
2927 if (DefMI->isFullCopy() && !CP.isPartial() &&
2928 valuesIdentical(VNI, V.OtherVNI, Other)) {
2929 V.Identical = true;
2930 return CR_Erase;
2931 }
2932
2933 // The remaining checks apply to the lanes, which aren't tracked here. This
2934 // was already decided to be OK via the following CR_Replace condition.
2935 // CR_Replace.
2936 if (SubRangeJoin)
2937 return CR_Replace;
2938
2939 // If the lanes written by this instruction were all undef in OtherVNI, it is
2940 // still safe to join the live ranges. This can't be done with a simple value
2941 // mapping, though - OtherVNI will map to multiple values:
2942 //
2943 // 1 %dst:ssub0 = FOO <-- OtherVNI
2944 // 2 %src = BAR <-- VNI
2945 // 3 %dst:ssub1 = COPY killed %src <-- Eliminate this copy.
2946 // 4 BAZ killed %dst
2947 // 5 QUUX killed %src
2948 //
2949 // Here OtherVNI will map to itself in [1;2), but to VNI in [2;5). CR_Replace
2950 // handles this complex value mapping.
2951 if ((V.WriteLanes & OtherV.ValidLanes).none())
2952 return CR_Replace;
2953
2954 // If the other live range is killed by DefMI and the live ranges are still
2955 // overlapping, it must be because we're looking at an early clobber def:
2956 //
2957 // %dst<def,early-clobber> = ASM killed %src
2958 //
2959 // In this case, it is illegal to merge the two live ranges since the early
2960 // clobber def would clobber %src before it was read.
2961 if (OtherLRQ.isKill()) {
2962 // This case where the def doesn't overlap the kill is handled above.
2963 assert(VNI->def.isEarlyClobber() &&
2964 "Only early clobber defs can overlap a kill");
2965 return CR_Impossible;
2966 }
2967
2968 // VNI is clobbering live lanes in OtherVNI, but there is still the
2969 // possibility that no instructions actually read the clobbered lanes.
2970 // If we're clobbering all the lanes in OtherVNI, at least one must be read.
2971 // Otherwise Other.RI wouldn't be live here.
2972 if ((TRI->getSubRegIndexLaneMask(Other.SubIdx) & ~V.WriteLanes).none())
2973 return CR_Impossible;
2974
2975 if (TrackSubRegLiveness) {
2976 auto &OtherLI = LIS->getInterval(Other.Reg);
2977 // If OtherVNI does not have subranges, it means all the lanes of OtherVNI
2978 // share the same live range, so we just need to check whether they have
2979 // any conflict bit in their LaneMask.
2980 if (!OtherLI.hasSubRanges()) {
2981 LaneBitmask OtherMask = TRI->getSubRegIndexLaneMask(Other.SubIdx);
2982 return (OtherMask & V.WriteLanes).none() ? CR_Replace : CR_Impossible;
2983 }
2984
2985 // If we are clobbering some active lanes of OtherVNI at VNI->def, it is
2986 // impossible to resolve the conflict. Otherwise, we can just replace
2987 // OtherVNI because of no real conflict.
2988 for (LiveInterval::SubRange &OtherSR : OtherLI.subranges()) {
2989 LaneBitmask OtherMask =
2990 TRI->composeSubRegIndexLaneMask(Other.SubIdx, OtherSR.LaneMask);
2991 if ((OtherMask & V.WriteLanes).none())
2992 continue;
2993
2994 auto OtherSRQ = OtherSR.Query(VNI->def);
2995 if (OtherSRQ.valueIn() && OtherSRQ.endPoint() > VNI->def) {
2996 // VNI is clobbering some lanes of OtherVNI, they have real conflict.
2997 return CR_Impossible;
2998 }
2999 }
3000
3001 // VNI is NOT clobbering any lane of OtherVNI, just replace OtherVNI.
3002 return CR_Replace;
3003 }
3004
3005 // We need to verify that no instructions are reading the clobbered lanes.
3006 // To save compile time, we'll only check that locally. Don't allow the
3007 // tainted value to escape the basic block.
3008 MachineBasicBlock *MBB = Indexes->getMBBFromIndex(VNI->def);
3009 if (OtherLRQ.endPoint() >= Indexes->getMBBEndIdx(MBB))
3010 return CR_Impossible;
3011
3012 // There are still some things that could go wrong besides clobbered lanes
3013 // being read, for example OtherVNI may be only partially redefined in MBB,
3014 // and some clobbered lanes could escape the block. Save this analysis for
3015 // resolveConflicts() when all values have been mapped. We need to know
3016 // RedefVNI and WriteLanes for any later defs in MBB, and we can't compute
3017 // that now - the recursive analyzeValue() calls must go upwards in the
3018 // dominator tree.
3019 return CR_Unresolved;
3020}
3021
3022void JoinVals::computeAssignment(unsigned ValNo, JoinVals &Other) {
3023 Val &V = Vals[ValNo];
3024 if (V.isAnalyzed()) {
3025 // Recursion should always move up the dominator tree, so ValNo is not
3026 // supposed to reappear before it has been assigned.
3027 assert(Assignments[ValNo] != -1 && "Bad recursion?");
3028 return;
3029 }
3030 switch ((V.Resolution = analyzeValue(ValNo, Other))) {
3031 case CR_Erase:
3032 case CR_Merge:
3033 // Merge this ValNo into OtherVNI.
3034 assert(V.OtherVNI && "OtherVNI not assigned, can't merge.");
3035 assert(Other.Vals[V.OtherVNI->id].isAnalyzed() && "Missing recursion");
3036 Assignments[ValNo] = Other.Assignments[V.OtherVNI->id];
3037 LLVM_DEBUG(dbgs() << "\t\tmerge " << printReg(Reg) << ':' << ValNo << '@'
3038 << LR.getValNumInfo(ValNo)->def << " into "
3039 << printReg(Other.Reg) << ':' << V.OtherVNI->id << '@'
3040 << V.OtherVNI->def << " --> @"
3041 << NewVNInfo[Assignments[ValNo]]->def << '\n');
3042 break;
3043 case CR_Replace:
3044 case CR_Unresolved: {
3045 // The other value is going to be pruned if this join is successful.
3046 assert(V.OtherVNI && "OtherVNI not assigned, can't prune");
3047 Val &OtherV = Other.Vals[V.OtherVNI->id];
3048 OtherV.Pruned = true;
3049 [[fallthrough]];
3050 }
3051 default:
3052 // This value number needs to go in the final joined live range.
3053 Assignments[ValNo] = NewVNInfo.size();
3054 NewVNInfo.push_back(LR.getValNumInfo(ValNo));
3055 break;
3056 }
3057}
3058
3059bool JoinVals::mapValues(JoinVals &Other) {
3060 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
3061 computeAssignment(i, Other);
3062 if (Vals[i].Resolution == CR_Impossible) {
3063 LLVM_DEBUG(dbgs() << "\t\tinterference at " << printReg(Reg) << ':' << i
3064 << '@' << LR.getValNumInfo(i)->def << '\n');
3065 return false;
3066 }
3067 }
3068 return true;
3069}
3070
3071bool JoinVals::
3072taintExtent(unsigned ValNo, LaneBitmask TaintedLanes, JoinVals &Other,
3073 SmallVectorImpl<std::pair<SlotIndex, LaneBitmask>> &TaintExtent) {
3074 VNInfo *VNI = LR.getValNumInfo(ValNo);
3075 MachineBasicBlock *MBB = Indexes->getMBBFromIndex(VNI->def);
3076 SlotIndex MBBEnd = Indexes->getMBBEndIdx(MBB);
3077
3078 // Scan Other.LR from VNI.def to MBBEnd.
3079 LiveInterval::iterator OtherI = Other.LR.find(VNI->def);
3080 assert(OtherI != Other.LR.end() && "No conflict?");
3081 do {
3082 // OtherI is pointing to a tainted value. Abort the join if the tainted
3083 // lanes escape the block.
3084 SlotIndex End = OtherI->end;
3085 if (End >= MBBEnd) {
3086 LLVM_DEBUG(dbgs() << "\t\ttaints global " << printReg(Other.Reg) << ':'
3087 << OtherI->valno->id << '@' << OtherI->start << '\n');
3088 return false;
3089 }
3090 LLVM_DEBUG(dbgs() << "\t\ttaints local " << printReg(Other.Reg) << ':'
3091 << OtherI->valno->id << '@' << OtherI->start << " to "
3092 << End << '\n');
3093 // A dead def is not a problem.
3094 if (End.isDead())
3095 break;
3096 TaintExtent.push_back(std::make_pair(End, TaintedLanes));
3097
3098 // Check for another def in the MBB.
3099 if (++OtherI == Other.LR.end() || OtherI->start >= MBBEnd)
3100 break;
3101
3102 // Lanes written by the new def are no longer tainted.
3103 const Val &OV = Other.Vals[OtherI->valno->id];
3104 TaintedLanes &= ~OV.WriteLanes;
3105 if (!OV.RedefVNI)
3106 break;
3107 } while (TaintedLanes.any());
3108 return true;
3109}
3110
3111bool JoinVals::usesLanes(const MachineInstr &MI, Register Reg, unsigned SubIdx,
3112 LaneBitmask Lanes) const {
3113 if (MI.isDebugOrPseudoInstr())
3114 return false;
3115 for (const MachineOperand &MO : MI.all_uses()) {
3116 if (MO.getReg() != Reg)
3117 continue;
3118 if (!MO.readsReg())
3119 continue;
3120 unsigned S = TRI->composeSubRegIndices(SubIdx, MO.getSubReg());
3121 if ((Lanes & TRI->getSubRegIndexLaneMask(S)).any())
3122 return true;
3123 }
3124 return false;
3125}
3126
3127bool JoinVals::resolveConflicts(JoinVals &Other) {
3128 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
3129 Val &V = Vals[i];
3130 assert(V.Resolution != CR_Impossible && "Unresolvable conflict");
3131 if (V.Resolution != CR_Unresolved)
3132 continue;
3133 LLVM_DEBUG(dbgs() << "\t\tconflict at " << printReg(Reg) << ':' << i << '@'
3134 << LR.getValNumInfo(i)->def
3135 << ' ' << PrintLaneMask(LaneMask) << '\n');
3136 if (SubRangeJoin)
3137 return false;
3138
3139 ++NumLaneConflicts;
3140 assert(V.OtherVNI && "Inconsistent conflict resolution.");
3141 VNInfo *VNI = LR.getValNumInfo(i);
3142 const Val &OtherV = Other.Vals[V.OtherVNI->id];
3143
3144 // VNI is known to clobber some lanes in OtherVNI. If we go ahead with the
3145 // join, those lanes will be tainted with a wrong value. Get the extent of
3146 // the tainted lanes.
3147 LaneBitmask TaintedLanes = V.WriteLanes & OtherV.ValidLanes;
3149 if (!taintExtent(i, TaintedLanes, Other, TaintExtent))
3150 // Tainted lanes would extend beyond the basic block.
3151 return false;
3152
3153 assert(!TaintExtent.empty() && "There should be at least one conflict.");
3154
3155 // Now look at the instructions from VNI->def to TaintExtent (inclusive).
3156 MachineBasicBlock *MBB = Indexes->getMBBFromIndex(VNI->def);
3158 if (!VNI->isPHIDef()) {
3159 MI = Indexes->getInstructionFromIndex(VNI->def);
3160 if (!VNI->def.isEarlyClobber()) {
3161 // No need to check the instruction defining VNI for reads.
3162 ++MI;
3163 }
3164 }
3165 assert(!SlotIndex::isSameInstr(VNI->def, TaintExtent.front().first) &&
3166 "Interference ends on VNI->def. Should have been handled earlier");
3167 MachineInstr *LastMI =
3168 Indexes->getInstructionFromIndex(TaintExtent.front().first);
3169 assert(LastMI && "Range must end at a proper instruction");
3170 unsigned TaintNum = 0;
3171 while (true) {
3172 assert(MI != MBB->end() && "Bad LastMI");
3173 if (usesLanes(*MI, Other.Reg, Other.SubIdx, TaintedLanes)) {
3174 LLVM_DEBUG(dbgs() << "\t\ttainted lanes used by: " << *MI);
3175 return false;
3176 }
3177 // LastMI is the last instruction to use the current value.
3178 if (&*MI == LastMI) {
3179 if (++TaintNum == TaintExtent.size())
3180 break;
3181 LastMI = Indexes->getInstructionFromIndex(TaintExtent[TaintNum].first);
3182 assert(LastMI && "Range must end at a proper instruction");
3183 TaintedLanes = TaintExtent[TaintNum].second;
3184 }
3185 ++MI;
3186 }
3187
3188 // The tainted lanes are unused.
3189 V.Resolution = CR_Replace;
3190 ++NumLaneResolves;
3191 }
3192 return true;
3193}
3194
3195bool JoinVals::isPrunedValue(unsigned ValNo, JoinVals &Other) {
3196 Val &V = Vals[ValNo];
3197 if (V.Pruned || V.PrunedComputed)
3198 return V.Pruned;
3199
3200 if (V.Resolution != CR_Erase && V.Resolution != CR_Merge)
3201 return V.Pruned;
3202
3203 // Follow copies up the dominator tree and check if any intermediate value
3204 // has been pruned.
3205 V.PrunedComputed = true;
3206 V.Pruned = Other.isPrunedValue(V.OtherVNI->id, *this);
3207 return V.Pruned;
3208}
3209
3210void JoinVals::pruneValues(JoinVals &Other,
3211 SmallVectorImpl<SlotIndex> &EndPoints,
3212 bool changeInstrs) {
3213 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
3214 SlotIndex Def = LR.getValNumInfo(i)->def;
3215 switch (Vals[i].Resolution) {
3216 case CR_Keep:
3217 break;
3218 case CR_Replace: {
3219 // This value takes precedence over the value in Other.LR.
3220 LIS->pruneValue(Other.LR, Def, &EndPoints);
3221 // Check if we're replacing an IMPLICIT_DEF value. The IMPLICIT_DEF
3222 // instructions are only inserted to provide a live-out value for PHI
3223 // predecessors, so the instruction should simply go away once its value
3224 // has been replaced.
3225 Val &OtherV = Other.Vals[Vals[i].OtherVNI->id];
3226 bool EraseImpDef = OtherV.ErasableImplicitDef &&
3227 OtherV.Resolution == CR_Keep;
3228 if (!Def.isBlock()) {
3229 if (changeInstrs) {
3230 // Remove <def,read-undef> flags. This def is now a partial redef.
3231 // Also remove dead flags since the joined live range will
3232 // continue past this instruction.
3233 for (MachineOperand &MO :
3234 Indexes->getInstructionFromIndex(Def)->operands()) {
3235 if (MO.isReg() && MO.isDef() && MO.getReg() == Reg) {
3236 if (MO.getSubReg() != 0 && MO.isUndef() && !EraseImpDef)
3237 MO.setIsUndef(false);
3238 MO.setIsDead(false);
3239 }
3240 }
3241 }
3242 // This value will reach instructions below, but we need to make sure
3243 // the live range also reaches the instruction at Def.
3244 if (!EraseImpDef)
3245 EndPoints.push_back(Def);
3246 }
3247 LLVM_DEBUG(dbgs() << "\t\tpruned " << printReg(Other.Reg) << " at " << Def
3248 << ": " << Other.LR << '\n');
3249 break;
3250 }
3251 case CR_Erase:
3252 case CR_Merge:
3253 if (isPrunedValue(i, Other)) {
3254 // This value is ultimately a copy of a pruned value in LR or Other.LR.
3255 // We can no longer trust the value mapping computed by
3256 // computeAssignment(), the value that was originally copied could have
3257 // been replaced.
3258 LIS->pruneValue(LR, Def, &EndPoints);
3259 LLVM_DEBUG(dbgs() << "\t\tpruned all of " << printReg(Reg) << " at "
3260 << Def << ": " << LR << '\n');
3261 }
3262 break;
3263 case CR_Unresolved:
3264 case CR_Impossible:
3265 llvm_unreachable("Unresolved conflicts");
3266 }
3267 }
3268}
3269
3270// Check if the segment consists of a copied live-through value (i.e. the copy
3271// in the block only extended the liveness, of an undef value which we may need
3272// to handle).
3273static bool isLiveThrough(const LiveQueryResult Q) {
3274 return Q.valueIn() && Q.valueIn()->isPHIDef() && Q.valueIn() == Q.valueOut();
3275}
3276
3277/// Consider the following situation when coalescing the copy between
3278/// %31 and %45 at 800. (The vertical lines represent live range segments.)
3279///
3280/// Main range Subrange 0004 (sub2)
3281/// %31 %45 %31 %45
3282/// 544 %45 = COPY %28 + +
3283/// | v1 | v1
3284/// 560B bb.1: + +
3285/// 624 = %45.sub2 | v2 | v2
3286/// 800 %31 = COPY %45 + + + +
3287/// | v0 | v0
3288/// 816 %31.sub1 = ... + |
3289/// 880 %30 = COPY %31 | v1 +
3290/// 928 %45 = COPY %30 | + +
3291/// | | v0 | v0 <--+
3292/// 992B ; backedge -> bb.1 | + + |
3293/// 1040 = %31.sub0 + |
3294/// This value must remain
3295/// live-out!
3296///
3297/// Assuming that %31 is coalesced into %45, the copy at 928 becomes
3298/// redundant, since it copies the value from %45 back into it. The
3299/// conflict resolution for the main range determines that %45.v0 is
3300/// to be erased, which is ok since %31.v1 is identical to it.
3301/// The problem happens with the subrange for sub2: it has to be live
3302/// on exit from the block, but since 928 was actually a point of
3303/// definition of %45.sub2, %45.sub2 was not live immediately prior
3304/// to that definition. As a result, when 928 was erased, the value v0
3305/// for %45.sub2 was pruned in pruneSubRegValues. Consequently, an
3306/// IMPLICIT_DEF was inserted as a "backedge" definition for %45.sub2,
3307/// providing an incorrect value to the use at 624.
3308///
3309/// Since the main-range values %31.v1 and %45.v0 were proved to be
3310/// identical, the corresponding values in subranges must also be the
3311/// same. A redundant copy is removed because it's not needed, and not
3312/// because it copied an undefined value, so any liveness that originated
3313/// from that copy cannot disappear. When pruning a value that started
3314/// at the removed copy, the corresponding identical value must be
3315/// extended to replace it.
3316void JoinVals::pruneSubRegValues(LiveInterval &LI, LaneBitmask &ShrinkMask) {
3317 // Look for values being erased.
3318 bool DidPrune = false;
3319 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
3320 Val &V = Vals[i];
3321 // We should trigger in all cases in which eraseInstrs() does something.
3322 // match what eraseInstrs() is doing, print a message so
3323 if (V.Resolution != CR_Erase &&
3324 (V.Resolution != CR_Keep || !V.ErasableImplicitDef || !V.Pruned))
3325 continue;
3326
3327 // Check subranges at the point where the copy will be removed.
3328 SlotIndex Def = LR.getValNumInfo(i)->def;
3329 SlotIndex OtherDef;
3330 if (V.Identical)
3331 OtherDef = V.OtherVNI->def;
3332
3333 // Print message so mismatches with eraseInstrs() can be diagnosed.
3334 LLVM_DEBUG(dbgs() << "\t\tExpecting instruction removal at " << Def
3335 << '\n');
3336 for (LiveInterval::SubRange &S : LI.subranges()) {
3337 LiveQueryResult Q = S.Query(Def);
3338
3339 // If a subrange starts at the copy then an undefined value has been
3340 // copied and we must remove that subrange value as well.
3341 VNInfo *ValueOut = Q.valueOutOrDead();
3342 if (ValueOut != nullptr && (Q.valueIn() == nullptr ||
3343 (V.Identical && V.Resolution == CR_Erase &&
3344 ValueOut->def == Def))) {
3345 LLVM_DEBUG(dbgs() << "\t\tPrune sublane " << PrintLaneMask(S.LaneMask)
3346 << " at " << Def << "\n");
3347 SmallVector<SlotIndex,8> EndPoints;
3348 LIS->pruneValue(S, Def, &EndPoints);
3349 DidPrune = true;
3350 // Mark value number as unused.
3351 ValueOut->markUnused();
3352
3353 if (V.Identical && S.Query(OtherDef).valueOutOrDead()) {
3354 // If V is identical to V.OtherVNI (and S was live at OtherDef),
3355 // then we can't simply prune V from S. V needs to be replaced
3356 // with V.OtherVNI.
3357 LIS->extendToIndices(S, EndPoints);
3358 }
3359
3360 // We may need to eliminate the subrange if the copy introduced a live
3361 // out undef value.
3362 if (ValueOut->isPHIDef())
3363 ShrinkMask |= S.LaneMask;
3364 continue;
3365 }
3366
3367 // If a subrange ends at the copy, then a value was copied but only
3368 // partially used later. Shrink the subregister range appropriately.
3369 //
3370 // Ultimately this calls shrinkToUses, so assuming ShrinkMask is
3371 // conservatively correct.
3372 if ((Q.valueIn() != nullptr && Q.valueOut() == nullptr) ||
3373 (V.Resolution == CR_Erase && isLiveThrough(Q))) {
3374 LLVM_DEBUG(dbgs() << "\t\tDead uses at sublane "
3375 << PrintLaneMask(S.LaneMask) << " at " << Def
3376 << "\n");
3377 ShrinkMask |= S.LaneMask;
3378 }
3379 }
3380 }
3381 if (DidPrune)
3383}
3384
3385/// Check if any of the subranges of @p LI contain a definition at @p Def.
3387 for (LiveInterval::SubRange &SR : LI.subranges()) {
3388 if (VNInfo *VNI = SR.Query(Def).valueOutOrDead())
3389 if (VNI->def == Def)
3390 return true;
3391 }
3392 return false;
3393}
3394
3395void JoinVals::pruneMainSegments(LiveInterval &LI, bool &ShrinkMainRange) {
3396 assert(&static_cast<LiveRange&>(LI) == &LR);
3397
3398 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
3399 if (Vals[i].Resolution != CR_Keep)
3400 continue;
3401 VNInfo *VNI = LR.getValNumInfo(i);
3402 if (VNI->isUnused() || VNI->isPHIDef() || isDefInSubRange(LI, VNI->def))
3403 continue;
3404 Vals[i].Pruned = true;
3405 ShrinkMainRange = true;
3406 }
3407}
3408
3409void JoinVals::removeImplicitDefs() {
3410 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
3411 Val &V = Vals[i];
3412 if (V.Resolution != CR_Keep || !V.ErasableImplicitDef || !V.Pruned)
3413 continue;
3414
3415 VNInfo *VNI = LR.getValNumInfo(i);
3416 VNI->markUnused();
3417 LR.removeValNo(VNI);
3418 }
3419}
3420
3421void JoinVals::eraseInstrs(SmallPtrSetImpl<MachineInstr*> &ErasedInstrs,
3422 SmallVectorImpl<Register> &ShrinkRegs,
3423 LiveInterval *LI) {
3424 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
3425 // Get the def location before markUnused() below invalidates it.
3426 VNInfo *VNI = LR.getValNumInfo(i);
3427 SlotIndex Def = VNI->def;
3428 switch (Vals[i].Resolution) {
3429 case CR_Keep: {
3430 // If an IMPLICIT_DEF value is pruned, it doesn't serve a purpose any
3431 // longer. The IMPLICIT_DEF instructions are only inserted by
3432 // PHIElimination to guarantee that all PHI predecessors have a value.
3433 if (!Vals[i].ErasableImplicitDef || !Vals[i].Pruned)
3434 break;
3435 // Remove value number i from LR.
3436 // For intervals with subranges, removing a segment from the main range
3437 // may require extending the previous segment: for each definition of
3438 // a subregister, there will be a corresponding def in the main range.
3439 // That def may fall in the middle of a segment from another subrange.
3440 // In such cases, removing this def from the main range must be
3441 // complemented by extending the main range to account for the liveness
3442 // of the other subrange.
3443 // The new end point of the main range segment to be extended.
3444 SlotIndex NewEnd;
3445 if (LI != nullptr) {
3447 assert(I != LR.end());
3448 // Do not extend beyond the end of the segment being removed.
3449 // The segment may have been pruned in preparation for joining
3450 // live ranges.
3451 NewEnd = I->end;
3452 }
3453
3454 LR.removeValNo(VNI);
3455 // Note that this VNInfo is reused and still referenced in NewVNInfo,
3456 // make it appear like an unused value number.
3457 VNI->markUnused();
3458
3459 if (LI != nullptr && LI->hasSubRanges()) {
3460 assert(static_cast<LiveRange*>(LI) == &LR);
3461 // Determine the end point based on the subrange information:
3462 // minimum of (earliest def of next segment,
3463 // latest end point of containing segment)
3464 SlotIndex ED, LE;
3465 for (LiveInterval::SubRange &SR : LI->subranges()) {
3466 LiveRange::iterator I = SR.find(Def);
3467 if (I == SR.end())
3468 continue;
3469 if (I->start > Def)
3470 ED = ED.isValid() ? std::min(ED, I->start) : I->start;
3471 else
3472 LE = LE.isValid() ? std::max(LE, I->end) : I->end;
3473 }
3474 if (LE.isValid())
3475 NewEnd = std::min(NewEnd, LE);
3476 if (ED.isValid())
3477 NewEnd = std::min(NewEnd, ED);
3478
3479 // We only want to do the extension if there was a subrange that
3480 // was live across Def.
3481 if (LE.isValid()) {
3482 LiveRange::iterator S = LR.find(Def);
3483 if (S != LR.begin())
3484 std::prev(S)->end = NewEnd;
3485 }
3486 }
3487 LLVM_DEBUG({
3488 dbgs() << "\t\tremoved " << i << '@' << Def << ": " << LR << '\n';
3489 if (LI != nullptr)
3490 dbgs() << "\t\t LHS = " << *LI << '\n';
3491 });
3492 [[fallthrough]];
3493 }
3494
3495 case CR_Erase: {
3496 MachineInstr *MI = Indexes->getInstructionFromIndex(Def);
3497 assert(MI && "No instruction to erase");
3498 if (MI->isCopy()) {
3499 Register Reg = MI->getOperand(1).getReg();
3500 if (Reg.isVirtual() && Reg != CP.getSrcReg() && Reg != CP.getDstReg())
3501 ShrinkRegs.push_back(Reg);
3502 }
3503 ErasedInstrs.insert(MI);
3504 LLVM_DEBUG(dbgs() << "\t\terased:\t" << Def << '\t' << *MI);
3506 MI->eraseFromParent();
3507 break;
3508 }
3509 default:
3510 break;
3511 }
3512 }
3513}
3514
3515void RegisterCoalescer::joinSubRegRanges(LiveRange &LRange, LiveRange &RRange,
3516 LaneBitmask LaneMask,
3517 const CoalescerPair &CP) {
3518 SmallVector<VNInfo*, 16> NewVNInfo;
3519 JoinVals RHSVals(RRange, CP.getSrcReg(), CP.getSrcIdx(), LaneMask,
3520 NewVNInfo, CP, LIS, TRI, true, true);
3521 JoinVals LHSVals(LRange, CP.getDstReg(), CP.getDstIdx(), LaneMask,
3522 NewVNInfo, CP, LIS, TRI, true, true);
3523
3524 // Compute NewVNInfo and resolve conflicts (see also joinVirtRegs())
3525 // We should be able to resolve all conflicts here as we could successfully do
3526 // it on the mainrange already. There is however a problem when multiple
3527 // ranges get mapped to the "overflow" lane mask bit which creates unexpected
3528 // interferences.
3529 if (!LHSVals.mapValues(RHSVals) || !RHSVals.mapValues(LHSVals)) {
3530 // We already determined that it is legal to merge the intervals, so this
3531 // should never fail.
3532 llvm_unreachable("*** Couldn't join subrange!\n");
3533 }
3534 if (!LHSVals.resolveConflicts(RHSVals) ||
3535 !RHSVals.resolveConflicts(LHSVals)) {
3536 // We already determined that it is legal to merge the intervals, so this
3537 // should never fail.
3538 llvm_unreachable("*** Couldn't join subrange!\n");
3539 }
3540
3541 // The merging algorithm in LiveInterval::join() can't handle conflicting
3542 // value mappings, so we need to remove any live ranges that overlap a
3543 // CR_Replace resolution. Collect a set of end points that can be used to
3544 // restore the live range after joining.
3545 SmallVector<SlotIndex, 8> EndPoints;
3546 LHSVals.pruneValues(RHSVals, EndPoints, false);
3547 RHSVals.pruneValues(LHSVals, EndPoints, false);
3548
3549 LHSVals.removeImplicitDefs();
3550 RHSVals.removeImplicitDefs();
3551
3552 LRange.verify();
3553 RRange.verify();
3554
3555 // Join RRange into LHS.
3556 LRange.join(RRange, LHSVals.getAssignments(), RHSVals.getAssignments(),
3557 NewVNInfo);
3558
3559 LLVM_DEBUG(dbgs() << "\t\tjoined lanes: " << PrintLaneMask(LaneMask)
3560 << ' ' << LRange << "\n");
3561 if (EndPoints.empty())
3562 return;
3563
3564 // Recompute the parts of the live range we had to remove because of
3565 // CR_Replace conflicts.
3566 LLVM_DEBUG({
3567 dbgs() << "\t\trestoring liveness to " << EndPoints.size() << " points: ";
3568 for (unsigned i = 0, n = EndPoints.size(); i != n; ++i) {
3569 dbgs() << EndPoints[i];
3570 if (i != n-1)
3571 dbgs() << ',';
3572 }
3573 dbgs() << ": " << LRange << '\n';
3574 });
3575 LIS->extendToIndices(LRange, EndPoints);
3576}
3577
3578void RegisterCoalescer::mergeSubRangeInto(LiveInterval &LI,
3579 const LiveRange &ToMerge,
3580 LaneBitmask LaneMask,
3581 CoalescerPair &CP,
3582 unsigned ComposeSubRegIdx) {
3584 LI.refineSubRanges(
3585 Allocator, LaneMask,
3586 [this, &Allocator, &ToMerge, &CP](LiveInterval::SubRange &SR) {
3587 if (SR.empty()) {
3588 SR.assign(ToMerge, Allocator);
3589 } else {
3590 // joinSubRegRange() destroys the merged range, so we need a copy.
3591 LiveRange RangeCopy(ToMerge, Allocator);
3592 joinSubRegRanges(SR, RangeCopy, SR.LaneMask, CP);
3593 }
3594 },
3595 *LIS->getSlotIndexes(), *TRI, ComposeSubRegIdx);
3596}
3597
3598bool RegisterCoalescer::isHighCostLiveInterval(LiveInterval &LI) {
3600 return false;
3601 auto &Counter = LargeLIVisitCounter[LI.reg()];
3602 if (Counter < LargeIntervalFreqThreshold) {
3603 Counter++;
3604 return false;
3605 }
3606 return true;
3607}
3608
3609bool RegisterCoalescer::joinVirtRegs(CoalescerPair &CP) {
3610 SmallVector<VNInfo*, 16> NewVNInfo;
3611 LiveInterval &RHS = LIS->getInterval(CP.getSrcReg());
3612 LiveInterval &LHS = LIS->getInterval(CP.getDstReg());
3613 bool TrackSubRegLiveness = MRI->shouldTrackSubRegLiveness(*CP.getNewRC());
3614 JoinVals RHSVals(RHS, CP.getSrcReg(), CP.getSrcIdx(), LaneBitmask::getNone(),
3615 NewVNInfo, CP, LIS, TRI, false, TrackSubRegLiveness);
3616 JoinVals LHSVals(LHS, CP.getDstReg(), CP.getDstIdx(), LaneBitmask::getNone(),
3617 NewVNInfo, CP, LIS, TRI, false, TrackSubRegLiveness);
3618
3619 LLVM_DEBUG(dbgs() << "\t\tRHS = " << RHS << "\n\t\tLHS = " << LHS << '\n');
3620
3621 if (isHighCostLiveInterval(LHS) || isHighCostLiveInterval(RHS))
3622 return false;
3623
3624 // First compute NewVNInfo and the simple value mappings.
3625 // Detect impossible conflicts early.
3626 if (!LHSVals.mapValues(RHSVals) || !RHSVals.mapValues(LHSVals))
3627 return false;
3628
3629 // Some conflicts can only be resolved after all values have been mapped.
3630 if (!LHSVals.resolveConflicts(RHSVals) || !RHSVals.resolveConflicts(LHSVals))
3631 return false;
3632
3633 // All clear, the live ranges can be merged.
3634 if (RHS.hasSubRanges() || LHS.hasSubRanges()) {
3636
3637 // Transform lanemasks from the LHS to masks in the coalesced register and
3638 // create initial subranges if necessary.
3639 unsigned DstIdx = CP.getDstIdx();
3640 if (!LHS.hasSubRanges()) {
3641 LaneBitmask Mask = DstIdx == 0 ? CP.getNewRC()->getLaneMask()
3642 : TRI->getSubRegIndexLaneMask(DstIdx);
3643 // LHS must support subregs or we wouldn't be in this codepath.
3644 assert(Mask.any());
3645 LHS.createSubRangeFrom(Allocator, Mask, LHS);
3646 } else if (DstIdx != 0) {
3647 // Transform LHS lanemasks to new register class if necessary.
3648 for (LiveInterval::SubRange &R : LHS.subranges()) {
3649 LaneBitmask Mask = TRI->composeSubRegIndexLaneMask(DstIdx, R.LaneMask);
3650 R.LaneMask = Mask;
3651 }
3652 }
3653 LLVM_DEBUG(dbgs() << "\t\tLHST = " << printReg(CP.getDstReg()) << ' ' << LHS
3654 << '\n');
3655
3656 // Determine lanemasks of RHS in the coalesced register and merge subranges.
3657 unsigned SrcIdx = CP.getSrcIdx();
3658 if (!RHS.hasSubRanges()) {
3659 LaneBitmask Mask = SrcIdx == 0 ? CP.getNewRC()->getLaneMask()
3660 : TRI->getSubRegIndexLaneMask(SrcIdx);
3661 mergeSubRangeInto(LHS, RHS, Mask, CP, DstIdx);
3662 } else {
3663 // Pair up subranges and merge.
3664 for (LiveInterval::SubRange &R : RHS.subranges()) {
3665 LaneBitmask Mask = TRI->composeSubRegIndexLaneMask(SrcIdx, R.LaneMask);
3666 mergeSubRangeInto(LHS, R, Mask, CP, DstIdx);
3667 }
3668 }
3669 LLVM_DEBUG(dbgs() << "\tJoined SubRanges " << LHS << "\n");
3670
3671 // Pruning implicit defs from subranges may result in the main range
3672 // having stale segments.
3673 LHSVals.pruneMainSegments(LHS, ShrinkMainRange);
3674
3675 LHSVals.pruneSubRegValues(LHS, ShrinkMask);
3676 RHSVals.pruneSubRegValues(LHS, ShrinkMask);
3677 }
3678
3679 // The merging algorithm in LiveInterval::join() can't handle conflicting
3680 // value mappings, so we need to remove any live ranges that overlap a
3681 // CR_Replace resolution. Collect a set of end points that can be used to
3682 // restore the live range after joining.
3683 SmallVector<SlotIndex, 8> EndPoints;
3684 LHSVals.pruneValues(RHSVals, EndPoints, true);
3685 RHSVals.pruneValues(LHSVals, EndPoints, true);
3686
3687 // Erase COPY and IMPLICIT_DEF instructions. This may cause some external
3688 // registers to require trimming.
3689 SmallVector<Register, 8> ShrinkRegs;
3690 LHSVals.eraseInstrs(ErasedInstrs, ShrinkRegs, &LHS);
3691 RHSVals.eraseInstrs(ErasedInstrs, ShrinkRegs);
3692 while (!ShrinkRegs.empty())
3693 shrinkToUses(&LIS->getInterval(ShrinkRegs.pop_back_val()));
3694
3695 // Scan and mark undef any DBG_VALUEs that would refer to a different value.
3696 checkMergingChangesDbgValues(CP, LHS, LHSVals, RHS, RHSVals);
3697
3698 // If the RHS covers any PHI locations that were tracked for debug-info, we
3699 // must update tracking information to reflect the join.
3700 auto RegIt = RegToPHIIdx.find(CP.getSrcReg());
3701 if (RegIt != RegToPHIIdx.end()) {
3702 // Iterate over all the debug instruction numbers assigned this register.
3703 for (unsigned InstID : RegIt->second) {
3704 auto PHIIt = PHIValToPos.find(InstID);
3705 assert(PHIIt != PHIValToPos.end());
3706 const SlotIndex &SI = PHIIt->second.SI;
3707
3708 // Does the RHS cover the position of this PHI?
3709 auto LII = RHS.find(SI);
3710 if (LII == RHS.end() || LII->start > SI)
3711 continue;
3712
3713 // Accept two kinds of subregister movement:
3714 // * When we merge from one register class into a larger register:
3715 // %1:gr16 = some-inst
3716 // ->
3717 // %2:gr32.sub_16bit = some-inst
3718 // * When the PHI is already in a subregister, and the larger class
3719 // is coalesced:
3720 // %2:gr32.sub_16bit = some-inst
3721 // %3:gr32 = COPY %2
3722 // ->
3723 // %3:gr32.sub_16bit = some-inst
3724 // Test for subregister move:
3725 if (CP.getSrcIdx() != 0 || CP.getDstIdx() != 0)
3726 // If we're moving between different subregisters, ignore this join.
3727 // The PHI will not get a location, dropping variable locations.
3728 if (PHIIt->second.SubReg && PHIIt->second.SubReg != CP.getSrcIdx())
3729 continue;
3730
3731 // Update our tracking of where the PHI is.
3732 PHIIt->second.Reg = CP.getDstReg();
3733
3734 // If we merge into a sub-register of a larger class (test above),
3735 // update SubReg.
3736 if (CP.getSrcIdx() != 0)
3737 PHIIt->second.SubReg = CP.getSrcIdx();
3738 }
3739
3740 // Rebuild the register index in RegToPHIIdx to account for PHIs tracking
3741 // different VRegs now. Copy old collection of debug instruction numbers and
3742 // erase the old one:
3743 auto InstrNums = RegIt->second;
3744 RegToPHIIdx.erase(RegIt);
3745
3746 // There might already be PHIs being tracked in the destination VReg. Insert
3747 // into an existing tracking collection, or insert a new one.
3748 RegIt = RegToPHIIdx.find(CP.getDstReg());
3749 if (RegIt != RegToPHIIdx.end())
3750 RegIt->second.insert(RegIt->second.end(), InstrNums.begin(),
3751 InstrNums.end());
3752 else
3753 RegToPHIIdx.insert({CP.getDstReg(), InstrNums});
3754 }
3755
3756 // Join RHS into LHS.
3757 LHS.join(RHS, LHSVals.getAssignments(), RHSVals.getAssignments(), NewVNInfo);
3758
3759 // Kill flags are going to be wrong if the live ranges were overlapping.
3760 // Eventually, we should simply clear all kill flags when computing live
3761 // ranges. They are reinserted after register allocation.
3762 MRI->clearKillFlags(LHS.reg());
3763 MRI->clearKillFlags(RHS.reg());
3764
3765 if (!EndPoints.empty()) {
3766 // Recompute the parts of the live range we had to remove because of
3767 // CR_Replace conflicts.
3768 LLVM_DEBUG({
3769 dbgs() << "\t\trestoring liveness to " << EndPoints.size() << " points: ";
3770 for (unsigned i = 0, n = EndPoints.size(); i != n; ++i) {
3771 dbgs() << EndPoints[i];
3772 if (i != n-1)
3773 dbgs() << ',';
3774 }
3775 dbgs() << ": " << LHS << '\n';
3776 });
3777 LIS->extendToIndices((LiveRange&)LHS, EndPoints);
3778 }
3779
3780 return true;
3781}
3782
3783bool RegisterCoalescer::joinIntervals(CoalescerPair &CP) {
3784 return CP.isPhys() ? joinReservedPhysReg(CP) : joinVirtRegs(CP);
3785}
3786
3787void RegisterCoalescer::buildVRegToDbgValueMap(MachineFunction &MF)
3788{
3789 const SlotIndexes &Slots = *LIS->getSlotIndexes();
3791
3792 // After collecting a block of DBG_VALUEs into ToInsert, enter them into the
3793 // vreg => DbgValueLoc map.
3794 auto CloseNewDVRange = [this, &ToInsert](SlotIndex Slot) {
3795 for (auto *X : ToInsert) {
3796 for (const auto &Op : X->debug_operands()) {
3797 if (Op.isReg() && Op.getReg().isVirtual())
3798 DbgVRegToValues[Op.getReg()].push_back({Slot, X});
3799 }
3800 }
3801
3802 ToInsert.clear();
3803 };
3804
3805 // Iterate over all instructions, collecting them into the ToInsert vector.
3806 // Once a non-debug instruction is found, record the slot index of the
3807 // collected DBG_VALUEs.
3808 for (auto &MBB : MF) {
3809 SlotIndex CurrentSlot = Slots.getMBBStartIdx(&MBB);
3810
3811 for (auto &MI : MBB) {
3812 if (MI.isDebugValue()) {
3813 if (any_of(MI.debug_operands(), [](const MachineOperand &MO) {
3814 return MO.isReg() && MO.getReg().isVirtual();
3815 }))
3816 ToInsert.push_back(&MI);
3817 } else if (!MI.isDebugOrPseudoInstr()) {
3818 CurrentSlot = Slots.getInstructionIndex(MI);
3819 CloseNewDVRange(CurrentSlot);
3820 }
3821 }
3822
3823 // Close range of DBG_VALUEs at the end of blocks.
3824 CloseNewDVRange(Slots.getMBBEndIdx(&MBB));
3825 }
3826
3827 // Sort all DBG_VALUEs we've seen by slot number.
3828 for (auto &Pair : DbgVRegToValues)
3829 llvm::sort(Pair.second);
3830}
3831
3832void RegisterCoalescer::checkMergingChangesDbgValues(CoalescerPair &CP,
3833 LiveRange &LHS,
3834 JoinVals &LHSVals,
3835 LiveRange &RHS,
3836 JoinVals &RHSVals) {
3837 auto ScanForDstReg = [&](Register Reg) {
3838 checkMergingChangesDbgValuesImpl(Reg, RHS, LHS, LHSVals);
3839 };
3840
3841 auto ScanForSrcReg = [&](Register Reg) {
3842 checkMergingChangesDbgValuesImpl(Reg, LHS, RHS, RHSVals);
3843 };
3844
3845 // Scan for unsound updates of both the source and destination register.
3846 ScanForSrcReg(CP.getSrcReg());
3847 ScanForDstReg(CP.getDstReg());
3848}
3849
3850void RegisterCoalescer::checkMergingChangesDbgValuesImpl(Register Reg,
3851 LiveRange &OtherLR,
3852 LiveRange &RegLR,
3853 JoinVals &RegVals) {
3854 // Are there any DBG_VALUEs to examine?
3855 auto VRegMapIt = DbgVRegToValues.find(Reg);
3856 if (VRegMapIt == DbgVRegToValues.end())
3857 return;
3858
3859 auto &DbgValueSet = VRegMapIt->second;
3860 auto DbgValueSetIt = DbgValueSet.begin();
3861 auto SegmentIt = OtherLR.begin();
3862
3863 bool LastUndefResult = false;
3864 SlotIndex LastUndefIdx;
3865
3866 // If the "Other" register is live at a slot Idx, test whether Reg can
3867 // safely be merged with it, or should be marked undef.
3868 auto ShouldUndef = [&RegVals, &RegLR, &LastUndefResult,
3869 &LastUndefIdx](SlotIndex Idx) -> bool {
3870 // Our worst-case performance typically happens with asan, causing very
3871 // many DBG_VALUEs of the same location. Cache a copy of the most recent
3872 // result for this edge-case.
3873 if (LastUndefIdx == Idx)
3874 return LastUndefResult;
3875
3876 // If the other range was live, and Reg's was not, the register coalescer
3877 // will not have tried to resolve any conflicts. We don't know whether
3878 // the DBG_VALUE will refer to the same value number, so it must be made
3879 // undef.
3880 auto OtherIt = RegLR.find(Idx);
3881 if (OtherIt == RegLR.end())
3882 return true;
3883
3884 // Both the registers were live: examine the conflict resolution record for
3885 // the value number Reg refers to. CR_Keep meant that this value number
3886 // "won" and the merged register definitely refers to that value. CR_Erase
3887 // means the value number was a redundant copy of the other value, which
3888 // was coalesced and Reg deleted. It's safe to refer to the other register
3889 // (which will be the source of the copy).
3890 auto Resolution = RegVals.getResolution(OtherIt->valno->id);
3891 LastUndefResult = Resolution != JoinVals::CR_Keep &&
3892 Resolution != JoinVals::CR_Erase;
3893 LastUndefIdx = Idx;
3894 return LastUndefResult;
3895 };
3896
3897 // Iterate over both the live-range of the "Other" register, and the set of
3898 // DBG_VALUEs for Reg at the same time. Advance whichever one has the lowest
3899 // slot index. This relies on the DbgValueSet being ordered.
3900 while (DbgValueSetIt != DbgValueSet.end() && SegmentIt != OtherLR.end()) {
3901 if (DbgValueSetIt->first < SegmentIt->end) {
3902 // "Other" is live and there is a DBG_VALUE of Reg: test if we should
3903 // set it undef.
3904 if (DbgValueSetIt->first >= SegmentIt->start) {
3905 bool HasReg = DbgValueSetIt->second->hasDebugOperandForReg(Reg);
3906 bool ShouldUndefReg = ShouldUndef(DbgValueSetIt->first);
3907 if (HasReg && ShouldUndefReg) {
3908 // Mark undef, erase record of this DBG_VALUE to avoid revisiting.
3909 DbgValueSetIt->second->setDebugValueUndef();
3910 continue;
3911 }
3912 }
3913 ++DbgValueSetIt;
3914 } else {
3915 ++SegmentIt;
3916 }
3917 }
3918}
3919
3920namespace {
3921
3922/// Information concerning MBB coalescing priority.
3923struct MBBPriorityInfo {
3925 unsigned Depth;
3926 bool IsSplit;
3927
3928 MBBPriorityInfo(MachineBasicBlock *mbb, unsigned depth, bool issplit)
3929 : MBB(mbb), Depth(depth), IsSplit(issplit) {}
3930};
3931
3932} // end anonymous namespace
3933
3934/// C-style comparator that sorts first based on the loop depth of the basic
3935/// block (the unsigned), and then on the MBB number.
3936///
3937/// EnableGlobalCopies assumes that the primary sort key is loop depth.
3938static int compareMBBPriority(const MBBPriorityInfo *LHS,
3939 const MBBPriorityInfo *RHS) {
3940 // Deeper loops first
3941 if (LHS->Depth != RHS->Depth)
3942 return LHS->Depth > RHS->Depth ? -1 : 1;
3943
3944 // Try to unsplit critical edges next.
3945 if (LHS->IsSplit != RHS->IsSplit)
3946 return LHS->IsSplit ? -1 : 1;
3947
3948 // Prefer blocks that are more connected in the CFG. This takes care of
3949 // the most difficult copies first while intervals are short.
3950 unsigned cl = LHS->MBB->pred_size() + LHS->MBB->succ_size();
3951 unsigned cr = RHS->MBB->pred_size() + RHS->MBB->succ_size();
3952 if (cl != cr)
3953 return cl > cr ? -1 : 1;
3954
3955 // As a last resort, sort by block number.
3956 return LHS->MBB->getNumber() < RHS->MBB->getNumber() ? -1 : 1;
3957}
3958
3959/// \returns true if the given copy uses or defines a local live range.
3960static bool isLocalCopy(MachineInstr *Copy, const LiveIntervals *LIS) {
3961 if (!Copy->isCopy())
3962 return false;
3963
3964 if (Copy->getOperand(1).isUndef())
3965 return false;
3966
3967 Register SrcReg = Copy->getOperand(1).getReg();
3968 Register DstReg = Copy->getOperand(0).getReg();
3969 if (SrcReg.isPhysical() || DstReg.isPhysical())
3970 return false;
3971
3972 return LIS->intervalIsInOneMBB(LIS->getInterval(SrcReg))
3973 || LIS->intervalIsInOneMBB(LIS->getInterval(DstReg));
3974}
3975
3976void RegisterCoalescer::lateLiveIntervalUpdate() {
3977 for (Register reg : ToBeUpdated) {
3978 if (!LIS->hasInterval(reg))
3979 continue;
3980 LiveInterval &LI = LIS->getInterval(reg);
3981 shrinkToUses(&LI, &DeadDefs);
3982 if (!DeadDefs.empty())
3983 eliminateDeadDefs();
3984 }
3985 ToBeUpdated.clear();
3986}
3987
3988bool RegisterCoalescer::
3989copyCoalesceWorkList(MutableArrayRef<MachineInstr*> CurrList) {
3990 bool Progress = false;
3991 SmallPtrSet<MachineInstr *, 4> CurrentErasedInstrs;
3992 for (MachineInstr *&MI : CurrList) {
3993 if (!MI)
3994 continue;
3995 // Skip instruction pointers that have already been erased, for example by
3996 // dead code elimination.
3997 if (ErasedInstrs.count(MI) || CurrentErasedInstrs.count(MI)) {
3998 MI = nullptr;
3999 continue;
4000 }
4001 bool Again = false;
4002 bool Success = joinCopy(MI, Again, CurrentErasedInstrs);
4003 Progress |= Success;
4004 if (Success || !Again)
4005 MI = nullptr;
4006 }
4007 // Clear instructions not recorded in `ErasedInstrs` but erased.
4008 if (!CurrentErasedInstrs.empty()) {
4009 for (MachineInstr *&MI : CurrList) {
4010 if (MI && CurrentErasedInstrs.count(MI))
4011 MI = nullptr;
4012 }
4013 for (MachineInstr *&MI : WorkList) {
4014 if (MI && CurrentErasedInstrs.count(MI))
4015 MI = nullptr;
4016 }
4017 }
4018 return Progress;
4019}
4020
4021/// Check if DstReg is a terminal node.
4022/// I.e., it does not have any affinity other than \p Copy.
4023static bool isTerminalReg(Register DstReg, const MachineInstr &Copy,
4024 const MachineRegisterInfo *MRI) {
4025 assert(Copy.isCopyLike());
4026 // Check if the destination of this copy as any other affinity.
4027 for (const MachineInstr &MI : MRI->reg_nodbg_instructions(DstReg))
4028 if (&MI != &Copy && MI.isCopyLike())
4029 return false;
4030 return true;
4031}
4032
4033bool RegisterCoalescer::applyTerminalRule(const MachineInstr &Copy) const {
4034 assert(Copy.isCopyLike());
4035 if (!UseTerminalRule)
4036 return false;
4037 Register SrcReg, DstReg;
4038 unsigned SrcSubReg = 0, DstSubReg = 0;
4039 if (!isMoveInstr(*TRI, &Copy, SrcReg, DstReg, SrcSubReg, DstSubReg))
4040 return false;
4041 // Check if the destination of this copy has any other affinity.
4042 if (DstReg.isPhysical() ||
4043 // If SrcReg is a physical register, the copy won't be coalesced.
4044 // Ignoring it may have other side effect (like missing
4045 // rematerialization). So keep it.
4046 SrcReg.isPhysical() || !isTerminalReg(DstReg, Copy, MRI))
4047 return false;
4048
4049 // DstReg is a terminal node. Check if it interferes with any other
4050 // copy involving SrcReg.
4051 const MachineBasicBlock *OrigBB = Copy.getParent();
4052 const LiveInterval &DstLI = LIS->getInterval(DstReg);
4053 for (const MachineInstr &MI : MRI->reg_nodbg_instructions(SrcReg)) {
4054 // Technically we should check if the weight of the new copy is
4055 // interesting compared to the other one and update the weight
4056 // of the copies accordingly. However, this would only work if
4057 // we would gather all the copies first then coalesce, whereas
4058 // right now we interleave both actions.
4059 // For now, just consider the copies that are in the same block.
4060 if (&MI == &Copy || !MI.isCopyLike() || MI.getParent() != OrigBB)
4061 continue;
4062 Register OtherSrcReg, OtherReg;
4063 unsigned OtherSrcSubReg = 0, OtherSubReg = 0;
4064 if (!isMoveInstr(*TRI, &Copy, OtherSrcReg, OtherReg, OtherSrcSubReg,
4065 OtherSubReg))
4066 return false;
4067 if (OtherReg == SrcReg)
4068 OtherReg = OtherSrcReg;
4069 // Check if OtherReg is a non-terminal.
4070 if (OtherReg.isPhysical() || isTerminalReg(OtherReg, MI, MRI))
4071 continue;
4072 // Check that OtherReg interfere with DstReg.
4073 if (LIS->getInterval(OtherReg).overlaps(DstLI)) {
4074 LLVM_DEBUG(dbgs() << "Apply terminal rule for: " << printReg(DstReg)
4075 << '\n');
4076 return true;
4077 }
4078 }
4079 return false;
4080}
4081
4082void
4083RegisterCoalescer::copyCoalesceInMBB(MachineBasicBlock *MBB) {
4084 LLVM_DEBUG(dbgs() << MBB->getName() << ":\n");
4085
4086 // Collect all copy-like instructions in MBB. Don't start coalescing anything
4087 // yet, it might invalidate the iterator.
4088 const unsigned PrevSize = WorkList.size();
4089 if (JoinGlobalCopies) {
4090 SmallVector<MachineInstr*, 2> LocalTerminals;
4091 SmallVector<MachineInstr*, 2> GlobalTerminals;
4092 // Coalesce copies bottom-up to coalesce local defs before local uses. They
4093 // are not inherently easier to resolve, but slightly preferable until we
4094 // have local live range splitting. In particular this is required by
4095 // cmp+jmp macro fusion.
4096 for (MachineInstr &MI : *MBB) {
4097 if (!MI.isCopyLike())
4098 continue;
4099 bool ApplyTerminalRule = applyTerminalRule(MI);
4100 if (isLocalCopy(&MI, LIS)) {
4101 if (ApplyTerminalRule)
4102 LocalTerminals.push_back(&MI);
4103 else
4104 LocalWorkList.push_back(&MI);
4105 } else {
4106 if (ApplyTerminalRule)
4107 GlobalTerminals.push_back(&MI);
4108 else
4109 WorkList.push_back(&MI);
4110 }
4111 }
4112 // Append the copies evicted by the terminal rule at the end of the list.
4113 LocalWorkList.append(LocalTerminals.begin(), LocalTerminals.end());
4114 WorkList.append(GlobalTerminals.begin(), GlobalTerminals.end());
4115 }
4116 else {
4118 for (MachineInstr &MII : *MBB)
4119 if (MII.isCopyLike()) {
4120 if (applyTerminalRule(MII))
4121 Terminals.push_back(&MII);
4122 else
4123 WorkList.push_back(&MII);
4124 }
4125 // Append the copies evicted by the terminal rule at the end of the list.
4126 WorkList.append(Terminals.begin(), Terminals.end());
4127 }
4128 // Try coalescing the collected copies immediately, and remove the nulls.
4129 // This prevents the WorkList from getting too large since most copies are
4130 // joinable on the first attempt.
4132 CurrList(WorkList.begin() + PrevSize, WorkList.end());
4133 if (copyCoalesceWorkList(CurrList))
4134 WorkList.erase(std::remove(WorkList.begin() + PrevSize, WorkList.end(),
4135 nullptr), WorkList.end());
4136}
4137
4138void RegisterCoalescer::coalesceLocals() {
4139 copyCoalesceWorkList(LocalWorkList);
4140 for (unsigned j = 0, je = LocalWorkList.size(); j != je; ++j) {
4141 if (LocalWorkList[j])
4142 WorkList.push_back(LocalWorkList[j]);
4143 }
4144 LocalWorkList.clear();
4145}
4146
4147void RegisterCoalescer::joinAllIntervals() {
4148 LLVM_DEBUG(dbgs() << "********** JOINING INTERVALS ***********\n");
4149 assert(WorkList.empty() && LocalWorkList.empty() && "Old data still around.");
4150
4151 std::vector<MBBPriorityInfo> MBBs;
4152 MBBs.reserve(MF->size());
4153 for (MachineBasicBlock &MBB : *MF) {
4154 MBBs.push_back(MBBPriorityInfo(&MBB, Loops->getLoopDepth(&MBB),
4155 JoinSplitEdges && isSplitEdge(&MBB)));
4156 }
4157 array_pod_sort(MBBs.begin(), MBBs.end(), compareMBBPriority);
4158
4159 // Coalesce intervals in MBB priority order.
4160 unsigned CurrDepth = std::numeric_limits<unsigned>::max();
4161 for (MBBPriorityInfo &MBB : MBBs) {
4162 // Try coalescing the collected local copies for deeper loops.
4163 if (JoinGlobalCopies && MBB.Depth < CurrDepth) {
4164 coalesceLocals();
4165 CurrDepth = MBB.Depth;
4166 }
4167 copyCoalesceInMBB(MBB.MBB);
4168 }
4169 lateLiveIntervalUpdate();
4170 coalesceLocals();
4171
4172 // Joining intervals can allow other intervals to be joined. Iteratively join
4173 // until we make no progress.
4174 while (copyCoalesceWorkList(WorkList))
4175 /* empty */ ;
4176 lateLiveIntervalUpdate();
4177}
4178
4179void RegisterCoalescer::releaseMemory() {
4180 ErasedInstrs.clear();
4181 WorkList.clear();
4182 DeadDefs.clear();
4183 InflateRegs.clear();
4184 LargeLIVisitCounter.clear();
4185}
4186
4187bool RegisterCoalescer::runOnMachineFunction(MachineFunction &fn) {
4188 LLVM_DEBUG(dbgs() << "********** REGISTER COALESCER **********\n"
4189 << "********** Function: " << fn.getName() << '\n');
4190
4191 // Variables changed between a setjmp and a longjump can have undefined value
4192 // after the longjmp. This behaviour can be observed if such a variable is
4193 // spilled, so longjmp won't restore the value in the spill slot.
4194 // RegisterCoalescer should not run in functions with a setjmp to avoid
4195 // merging such undefined variables with predictable ones.
4196 //
4197 // TODO: Could specifically disable coalescing registers live across setjmp
4198 // calls
4199 if (fn.exposesReturnsTwice()) {
4200 LLVM_DEBUG(
4201 dbgs() << "* Skipped as it exposes functions that returns twice.\n");
4202 return false;
4203 }
4204
4205 MF = &fn;
4206 MRI = &fn.getRegInfo();
4207 const TargetSubtargetInfo &STI = fn.getSubtarget();
4208 TRI = STI.getRegisterInfo();
4209 TII = STI.getInstrInfo();
4210 LIS = &getAnalysis<LiveIntervals>();
4211 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
4212 Loops = &getAnalysis<MachineLoopInfo>();
4214 JoinGlobalCopies = STI.enableJoinGlobalCopies();
4215 else
4216 JoinGlobalCopies = (EnableGlobalCopies == cl::BOU_TRUE);
4217
4218 // If there are PHIs tracked by debug-info, they will need updating during
4219 // coalescing. Build an index of those PHIs to ease updating.
4220 SlotIndexes *Slots = LIS->getSlotIndexes();
4221 for (const auto &DebugPHI : MF->DebugPHIPositions) {
4222 MachineBasicBlock *MBB = DebugPHI.second.MBB;
4223 Register Reg = DebugPHI.second.Reg;
4224 unsigned SubReg = DebugPHI.second.SubReg;
4225 SlotIndex SI = Slots->getMBBStartIdx(MBB);
4226 PHIValPos P = {SI, Reg, SubReg};
4227 PHIValToPos.insert(std::make_pair(DebugPHI.first, P));
4228 RegToPHIIdx[Reg].push_back(DebugPHI.first);
4229 }
4230
4231 // The MachineScheduler does not currently require JoinSplitEdges. This will
4232 // either be enabled unconditionally or replaced by a more general live range
4233 // splitting optimization.
4234 JoinSplitEdges = EnableJoinSplits;
4235
4236 if (VerifyCoalescing)
4237 MF->verify(this, "Before register coalescing");
4238
4239 DbgVRegToValues.clear();
4241
4242 RegClassInfo.runOnMachineFunction(fn);
4243
4244 // Join (coalesce) intervals if requested.
4245 if (EnableJoining)
4246 joinAllIntervals();
4247
4248 // After deleting a lot of copies, register classes may be less constrained.
4249 // Removing sub-register operands may allow GR32_ABCD -> GR32 and DPR_VFP2 ->
4250 // DPR inflation.
4251 array_pod_sort(InflateRegs.begin(), InflateRegs.end());
4252 InflateRegs.erase(std::unique(InflateRegs.begin(), InflateRegs.end()),
4253 InflateRegs.end());
4254 LLVM_DEBUG(dbgs() << "Trying to inflate " << InflateRegs.size()
4255 << " regs.\n");
4256 for (Register Reg : InflateRegs) {
4257 if (MRI->reg_nodbg_empty(Reg))
4258 continue;
4259 if (MRI->recomputeRegClass(Reg)) {
4260 LLVM_DEBUG(dbgs() << printReg(Reg) << " inflated to "
4261 << TRI->getRegClassName(MRI->getRegClass(Reg)) << '\n');
4262 ++NumInflated;
4263
4264 LiveInterval &LI = LIS->getInterval(Reg);
4265 if (LI.hasSubRanges()) {
4266 // If the inflated register class does not support subregisters anymore
4267 // remove the subranges.
4268 if (!MRI->shouldTrackSubRegLiveness(Reg)) {
4269 LI.clearSubRanges();
4270 } else {
4271#ifndef NDEBUG
4272 LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(Reg);
4273 // If subranges are still supported, then the same subregs
4274 // should still be supported.
4275 for (LiveInterval::SubRange &S : LI.subranges()) {
4276 assert((S.LaneMask & ~MaxMask).none());
4277 }
4278#endif
4279 }
4280 }
4281 }
4282 }
4283
4284 // After coalescing, update any PHIs that are being tracked by debug-info
4285 // with their new VReg locations.
4286 for (auto &p : MF->DebugPHIPositions) {
4287 auto it = PHIValToPos.find(p.first);
4288 assert(it != PHIValToPos.end());
4289 p.second.Reg = it->second.Reg;
4290 p.second.SubReg = it->second.SubReg;
4291 }
4292
4293 PHIValToPos.clear();
4294 RegToPHIIdx.clear();
4295
4296 LLVM_DEBUG(dump());
4297 if (VerifyCoalescing)
4298 MF->verify(this, "After register coalescing");
4299 return true;
4300}
4301
4302void RegisterCoalescer::print(raw_ostream &O, const Module* m) const {
4303 LIS->print(O, m);
4304}
unsigned SubReg
unsigned const MachineRegisterInfo * MRI
#define Success
MachineInstrBuilder & UseMI
MachineInstrBuilder MachineInstrBuilder & DefMI
aarch64 promote const
MachineBasicBlock & MBB
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
This file implements the BitVector class.
Returns the sub type a function will return at a given Idx Should correspond to the result type of an ExtractValue instruction executed with just that one unsigned Idx
#define LLVM_DEBUG(X)
Definition: Debug.h:101
This file defines the DenseSet and SmallDenseSet classes.
std::optional< std::vector< StOtherPiece > > Other
Definition: ELFYAML.cpp:1291
bool End
Definition: ELF_riscv.cpp:480
SmallVector< uint32_t, 0 > Writes
Definition: ELF_riscv.cpp:497
static GCMetadataPrinterRegistry::Add< ErlangGCPrinter > X("erlang", "erlang-compatible garbage collector")
const HexagonInstrInfo * TII
Hexagon Hardware Loops
IRTranslator LLVM IR MI
A common definition of LaneBitmask for use in TableGen and CodeGen.
#define I(x, y, z)
Definition: MD5.cpp:58
unsigned const TargetRegisterInfo * TRI
unsigned Reg
#define P(N)
#define INITIALIZE_PASS_DEPENDENCY(depName)
Definition: PassSupport.h:55
#define INITIALIZE_PASS_END(passName, arg, name, cfg, analysis)
Definition: PassSupport.h:59
#define INITIALIZE_PASS_BEGIN(passName, arg, name, cfg, analysis)
Definition: PassSupport.h:52
Basic Register Allocator
static cl::opt< cl::boolOrDefault > EnableGlobalCopies("join-globalcopies", cl::desc("Coalesce copies that span blocks (default=subtarget)"), cl::init(cl::BOU_UNSET), cl::Hidden)
Temporary flag to test global copy optimization.
static bool isLocalCopy(MachineInstr *Copy, const LiveIntervals *LIS)
static bool isSplitEdge(const MachineBasicBlock *MBB)
Return true if this block should be vacated by the coalescer to eliminate branches.
static int compareMBBPriority(const MBBPriorityInfo *LHS, const MBBPriorityInfo *RHS)
C-style comparator that sorts first based on the loop depth of the basic block (the unsigned),...
register Register Coalescer
register coalescer
static cl::opt< unsigned > LargeIntervalSizeThreshold("large-interval-size-threshold", cl::Hidden, cl::desc("If the valnos size of an interval is larger than the threshold, " "it is regarded as a large interval. "), cl::init(100))
static bool isDefInSubRange(LiveInterval &LI, SlotIndex Def)
Check if any of the subranges of LI contain a definition at Def.
static cl::opt< unsigned > LargeIntervalFreqThreshold("large-interval-freq-threshold", cl::Hidden, cl::desc("For a large interval, if it is coalesed with other live " "intervals many times more than the threshold, stop its " "coalescing to control the compile time. "), cl::init(256))
static std::pair< bool, bool > addSegmentsWithValNo(LiveRange &Dst, VNInfo *DstValNo, const LiveRange &Src, const VNInfo *SrcValNo)
Copy segments with value number SrcValNo from liverange Src to live range @Dst and use value number D...
static bool isLiveThrough(const LiveQueryResult Q)
static bool isTerminalReg(Register DstReg, const MachineInstr &Copy, const MachineRegisterInfo *MRI)
Check if DstReg is a terminal node.
static cl::opt< bool > VerifyCoalescing("verify-coalescing", cl::desc("Verify machine instrs before and after register coalescing"), cl::Hidden)
register Register static false bool isMoveInstr(const TargetRegisterInfo &tri, const MachineInstr *MI, Register &Src, Register &Dst, unsigned &SrcSub, unsigned &DstSub)
static cl::opt< bool > EnableJoinSplits("join-splitedges", cl::desc("Coalesce copies on split edges (default=subtarget)"), cl::Hidden)
Temporary flag to test critical edge unsplitting.
static cl::opt< bool > EnableJoining("join-liveintervals", cl::desc("Coalesce copies (default=true)"), cl::init(true), cl::Hidden)
static bool definesFullReg(const MachineInstr &MI, Register Reg)
Returns true if MI defines the full vreg Reg, as opposed to just defining a subregister.
static cl::opt< unsigned > LateRematUpdateThreshold("late-remat-update-threshold", cl::Hidden, cl::desc("During rematerialization for a copy, if the def instruction has " "many other copy uses to be rematerialized, delay the multiple " "separate live interval update work and do them all at once after " "all those rematerialization are done. It will save a lot of " "repeated work. "), cl::init(100))
static cl::opt< bool > UseTerminalRule("terminal-rule", cl::desc("Apply the terminal rule"), cl::init(false), cl::Hidden)
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
This file contains some templates that are useful if you are working with the STL at all.
This file defines the SmallPtrSet class.
This file defines the SmallVector class.
This file defines the 'Statistic' class, which is designed to be an easy way to expose various metric...
#define STATISTIC(VARNAME, DESC)
Definition: Statistic.h:167
static DenseMap< Register, std::vector< std::pair< SlotIndex, MachineInstr * > > > buildVRegToDbgValueMap(MachineFunction &MF, const LiveIntervals *Liveness)
static void shrinkToUses(LiveInterval &LI, LiveIntervals &LIS)
Value * RHS
Value * LHS
A wrapper pass to provide the legacy pass manager access to a suitably prepared AAResults object.
Represent the analysis usage information of a pass.
AnalysisUsage & addPreservedID(const void *ID)
AnalysisUsage & addRequired()
AnalysisUsage & addPreserved()
Add the specified Pass class to the set of analyses preserved by this pass.
void setPreservesCFG()
This function should be called by the pass, iff they do not:
Definition: Pass.cpp:269
bool test(unsigned Idx) const
Definition: BitVector.h:461
Allocate memory in an ever growing pool, as if by bump-pointer.
Definition: Allocator.h:66
A helper class for register coalescers.
bool flip()
Swap SrcReg and DstReg.
bool isCoalescable(const MachineInstr *) const
Return true if MI is a copy instruction that will become an identity copy after coalescing.
bool setRegisters(const MachineInstr *)
Set registers to match the copy instruction MI.
This class represents an Operation in the Expression.
The location of a single variable, composed of an expression and 0 or more DbgValueLocEntries.
A debug info location.
Definition: DebugLoc.h:33
iterator find(const_arg_type_t< KeyT > Val)
Definition: DenseMap.h:155
bool erase(const KeyT &Val)
Definition: DenseMap.h:329
iterator end()
Definition: DenseMap.h:84
std::pair< iterator, bool > insert(const std::pair< KeyT, ValueT > &KV)
Definition: DenseMap.h:220
Implements a dense probed hash-table based set.
Definition: DenseSet.h:271
bool isAsCheapAsAMove(const MachineInstr &MI) const override
A live range for subregisters.
Definition: LiveInterval.h:694
LiveInterval - This class represents the liveness of a register, or stack slot.
Definition: LiveInterval.h:687
void removeEmptySubRanges()
Removes all subranges without any segments (subranges without segments are not considered valid and s...
Register reg() const
Definition: LiveInterval.h:718
bool hasSubRanges() const
Returns true if subregister liveness information is available.
Definition: LiveInterval.h:810
SubRange * createSubRangeFrom(BumpPtrAllocator &Allocator, LaneBitmask LaneMask, const LiveRange &CopyFrom)
Like createSubRange() but the new range is filled with a copy of the liveness information in CopyFrom...
Definition: LiveInterval.h:801
iterator_range< subrange_iterator > subranges()
Definition: LiveInterval.h:782
void refineSubRanges(BumpPtrAllocator &Allocator, LaneBitmask LaneMask, std::function< void(LiveInterval::SubRange &)> Apply, const SlotIndexes &Indexes, const TargetRegisterInfo &TRI, unsigned ComposeSubRegIdx=0)
Refines the subranges to support LaneMask.
void computeSubRangeUndefs(SmallVectorImpl< SlotIndex > &Undefs, LaneBitmask LaneMask, const MachineRegisterInfo &MRI, const SlotIndexes &Indexes) const
For a given lane mask LaneMask, compute indexes at which the lane is marked undefined by subregister ...
SubRange * createSubRange(BumpPtrAllocator &Allocator, LaneBitmask LaneMask)
Creates a new empty subregister live range.
Definition: LiveInterval.h:792
void clearSubRanges()
Removes all subregister liveness information.
bool hasInterval(Register Reg) const
SlotIndex getMBBStartIdx(const MachineBasicBlock *mbb) const
Return the first index in the given basic block.
MachineInstr * getInstructionFromIndex(SlotIndex index) const
Returns the instruction associated with the given index.
bool hasPHIKill(const LiveInterval &LI, const VNInfo *VNI) const
Returns true if VNI is killed by any PHI-def values in LI.
SlotIndex InsertMachineInstrInMaps(MachineInstr &MI)
bool checkRegMaskInterference(const LiveInterval &LI, BitVector &UsableRegs)
Test if LI is live across any register mask instructions, and compute a bit mask of physical register...
SlotIndexes * getSlotIndexes() const
SlotIndex getInstructionIndex(const MachineInstr &Instr) const
Returns the base index of the given instruction.
void RemoveMachineInstrFromMaps(MachineInstr &MI)
VNInfo::Allocator & getVNInfoAllocator()
SlotIndex getMBBEndIdx(const MachineBasicBlock *mbb) const
Return the last index in the given basic block.
LiveRange & getRegUnit(unsigned Unit)
Return the live range for register unit Unit.
LiveRange * getCachedRegUnit(unsigned Unit)
Return the live range for register unit Unit if it has already been computed, or nullptr if it hasn't...
LiveInterval & getInterval(Register Reg)
void pruneValue(LiveRange &LR, SlotIndex Kill, SmallVectorImpl< SlotIndex > *EndPoints)
If LR has a live value at Kill, prune its live range by removing any liveness reachable from Kill.
void removeInterval(Register Reg)
Interval removal.
MachineBasicBlock * intervalIsInOneMBB(const LiveInterval &LI) const
If LI is confined to a single basic block, return a pointer to that block.
void removeVRegDefAt(LiveInterval &LI, SlotIndex Pos)
Remove value number and related live segments of LI and its subranges that start at position Pos.
bool shrinkToUses(LiveInterval *li, SmallVectorImpl< MachineInstr * > *dead=nullptr)
After removing some uses of a register, shrink its live range to just the remaining uses.
void extendToIndices(LiveRange &LR, ArrayRef< SlotIndex > Indices, ArrayRef< SlotIndex > Undefs)
Extend the live range LR to reach all points in Indices.
void removePhysRegDefAt(MCRegister Reg, SlotIndex Pos)
Remove value numbers and related live segments starting at position Pos that are part of any liverang...
void splitSeparateComponents(LiveInterval &LI, SmallVectorImpl< LiveInterval * > &SplitLIs)
Split separate components in LiveInterval LI into separate intervals.
MachineBasicBlock * getMBBFromIndex(SlotIndex index) const
bool isLiveInToMBB(const LiveRange &LR, const MachineBasicBlock *mbb) const
SlotIndex ReplaceMachineInstrInMaps(MachineInstr &MI, MachineInstr &NewMI)
void print(raw_ostream &O, const Module *=nullptr) const override
Implement the dump method.
Result of a LiveRange query.
Definition: LiveInterval.h:90
VNInfo * valueOutOrDead() const
Returns the value alive at the end of the instruction, if any.
Definition: LiveInterval.h:129
VNInfo * valueIn() const
Return the value that is live-in to the instruction.
Definition: LiveInterval.h:105
VNInfo * valueOut() const
Return the value leaving the instruction, if any.
Definition: LiveInterval.h:123
VNInfo * valueDefined() const
Return the value defined by this instruction, if any.
Definition: LiveInterval.h:135
SlotIndex endPoint() const
Return the end point of the last live range segment to interact with the instruction,...
Definition: LiveInterval.h:147
bool isKill() const
Return true if the live-in value is killed by this instruction.
Definition: LiveInterval.h:112
Callback methods for LiveRangeEdit owners.
Definition: LiveRangeEdit.h:45
virtual void LRE_WillEraseInstruction(MachineInstr *MI)
Called immediately before erasing a dead machine instruction.
Definition: LiveRangeEdit.h:52
void eliminateDeadDefs(SmallVectorImpl< MachineInstr * > &Dead, ArrayRef< Register > RegsBeingSpilled=std::nullopt)
eliminateDeadDefs - Try to delete machine instructions that are now dead (allDefsAreDead returns true...
SlotIndex rematerializeAt(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, Register DestReg, const Remat &RM, const TargetRegisterInfo &, bool Late=false, unsigned SubIdx=0, MachineInstr *ReplaceIndexMI=nullptr)
rematerializeAt - Rematerialize RM.ParentVNI into DestReg by inserting an instruction into MBB before...
bool checkRematerializable(VNInfo *VNI, const MachineInstr *DefMI)
checkRematerializable - Manually add VNI to the list of rematerializable values if DefMI may be remat...
bool canRematerializeAt(Remat &RM, VNInfo *OrigVNI, SlotIndex UseIdx, bool cheapAsAMove)
canRematerializeAt - Determine if ParentVNI can be rematerialized at UseIdx.
This class represents the liveness of a register, stack slot, etc.
Definition: LiveInterval.h:157
VNInfo * getValNumInfo(unsigned ValNo)
getValNumInfo - Returns pointer to the specified val#.
Definition: LiveInterval.h:317
iterator addSegment(Segment S)
Add the specified Segment to this range, merging segments as appropriate.
const Segment * getSegmentContaining(SlotIndex Idx) const
Return the segment that contains the specified index, or null if there is none.
Definition: LiveInterval.h:408
void join(LiveRange &Other, const int *ValNoAssignments, const int *RHSValNoAssignments, SmallVectorImpl< VNInfo * > &NewVNInfo)
join - Join two live ranges (this, and other) together.
bool liveAt(SlotIndex index) const
Definition: LiveInterval.h:401
VNInfo * createDeadDef(SlotIndex Def, VNInfo::Allocator &VNIAlloc)
createDeadDef - Make sure the range has a value defined at Def.
void removeValNo(VNInfo *ValNo)
removeValNo - Remove all the segments defined by the specified value#.
void verify() const
Walk the range and assert if any invariants fail to hold.
bool empty() const
Definition: LiveInterval.h:382
bool overlaps(const LiveRange &other) const
overlaps - Return true if the intersection of the two live ranges is not empty.
Definition: LiveInterval.h:448
LiveQueryResult Query(SlotIndex Idx) const
Query Liveness at Idx.
Definition: LiveInterval.h:542
iterator end()
Definition: LiveInterval.h:216
VNInfo * getVNInfoBefore(SlotIndex Idx) const
getVNInfoBefore - Return the VNInfo that is live up to but not necessarilly including Idx,...
Definition: LiveInterval.h:429
VNInfo * MergeValueNumberInto(VNInfo *V1, VNInfo *V2)
MergeValueNumberInto - This method is called when two value numbers are found to be equivalent.
unsigned getNumValNums() const
Definition: LiveInterval.h:313
iterator begin()
Definition: LiveInterval.h:215
Segments segments
Definition: LiveInterval.h:203
VNInfoList valnos
Definition: LiveInterval.h:204
bool containsOneValue() const
Definition: LiveInterval.h:311
size_t size() const
Definition: LiveInterval.h:305
iterator FindSegmentContaining(SlotIndex Idx)
Return an iterator to the segment that contains the specified index, or end() if there is none.
Definition: LiveInterval.h:436
VNInfo * getVNInfoAt(SlotIndex Idx) const
getVNInfoAt - Return the VNInfo that is live at Idx, or NULL.
Definition: LiveInterval.h:421
iterator find(SlotIndex Pos)
find - Return an iterator pointing to the first segment that ends after Pos, or end().
Describe properties that are true of each instruction in the target description file.
Definition: MCInstrDesc.h:198
unsigned getNumOperands() const
Return the number of declared MachineOperands for this MachineInstruction.
Definition: MCInstrDesc.h:237
unsigned getNumDefs() const
Return the number of MachineOperands that are register definitions.
Definition: MCInstrDesc.h:248
MCRegUnitRootIterator enumerates the root registers of a register unit.
bool isValid() const
Check if the iterator is at the end of the list.
Wrapper class representing physical registers. Should be passed by value.
Definition: MCRegister.h:33
bool isInlineAsmBrIndirectTarget() const
Returns true if this is the indirect dest of an INLINEASM_BR.
unsigned pred_size() const
bool isEHPad() const
Returns true if the block is a landing pad.
instr_iterator insert(instr_iterator I, MachineInstr *M)
Insert MI into the instruction list before I, possibly inside a bundle.
iterator getFirstTerminator()
Returns an iterator to the first terminator instruction of this basic block.
unsigned succ_size() const
instr_iterator erase(instr_iterator I)
Remove an instruction from the instruction list and delete it.
iterator_range< pred_iterator > predecessors()
void splice(iterator Where, MachineBasicBlock *Other, iterator From)
Take an instruction from MBB 'Other' at the position From, and insert it into this MBB right before '...
StringRef getName() const
Return the name of the corresponding LLVM basic block, or an empty string.
MachineFunctionPass - This class adapts the FunctionPass interface to allow convenient creation of pa...
virtual MachineFunctionProperties getClearedProperties() const
void getAnalysisUsage(AnalysisUsage &AU) const override
getAnalysisUsage - Subclasses that override getAnalysisUsage must call this.
virtual bool runOnMachineFunction(MachineFunction &MF)=0
runOnMachineFunction - This method must be overloaded to perform the desired machine code transformat...
Properties which a MachineFunction may have at a given point in time.
MachineFunctionProperties & set(Property P)
const TargetSubtargetInfo & getSubtarget() const
getSubtarget - Return the subtarget for which this machine code is being compiled.
StringRef getName() const
getName - Return the name of the corresponding LLVM function.
bool exposesReturnsTwice() const
exposesReturnsTwice - Returns true if the function calls setjmp or any other similar functions with a...
MachineRegisterInfo & getRegInfo()
getRegInfo - Return information about the registers currently in use.
const MachineInstrBuilder & addReg(Register RegNo, unsigned flags=0, unsigned SubReg=0) const
Add a new virtual register operand.
Representation of each machine instruction.
Definition: MachineInstr.h:69
unsigned getOpcode() const
Returns the opcode of this MachineInstr.
Definition: MachineInstr.h:558
void setRegisterDefReadUndef(Register Reg, bool IsUndef=true)
Mark all subregister defs of register Reg with the undef flag.
bool isSafeToMove(AAResults *AA, bool &SawStore) const
Return true if it is safe to move this instruction.
bool isImplicitDef() const
bool isCopy() const
const MachineBasicBlock * getParent() const
Definition: MachineInstr.h:341
bool isCopyLike() const
Return true if the instruction behaves like a copy.
std::pair< bool, bool > readsWritesVirtualRegister(Register Reg, SmallVectorImpl< unsigned > *Ops=nullptr) const
Return a pair of bools (reads, writes) indicating if this instruction reads or writes Reg.
bool isRegTiedToDefOperand(unsigned UseOpIdx, unsigned *DefOpIdx=nullptr) const
Return true if the use operand of the specified index is tied to a def operand.
bool isDebugInstr() const
unsigned getNumOperands() const
Retuns the total number of operands.
Definition: MachineInstr.h:561
void addOperand(MachineFunction &MF, const MachineOperand &Op)
Add the specified operand to the instruction.
bool isRegTiedToUseOperand(unsigned DefOpIdx, unsigned *UseOpIdx=nullptr) const
Given the index of a register def operand, check if the register def is tied to a source operand,...
bool isFullCopy() const
int findRegisterUseOperandIdx(Register Reg, const TargetRegisterInfo *TRI, bool isKill=false) const
Returns the operand index that is a use of the specific register or -1 if it is not found.
const MCInstrDesc & getDesc() const
Returns the target instruction descriptor of this MachineInstr.
Definition: MachineInstr.h:555
bool isCommutable(QueryType Type=IgnoreBundle) const
Return true if this may be a 2- or 3-address instruction (of the form "X = op Y, Z,...
void setDesc(const MCInstrDesc &TID)
Replace the instruction descriptor (thus opcode) of the current instruction with a new one.
iterator_range< mop_iterator > operands()
Definition: MachineInstr.h:674
void substituteRegister(Register FromReg, Register ToReg, unsigned SubIdx, const TargetRegisterInfo &RegInfo)
Replace all occurrences of FromReg with ToReg:SubIdx, properly composing subreg indices where necessa...
const DebugLoc & getDebugLoc() const
Returns the debug location id of this MachineInstr.
Definition: MachineInstr.h:487
void eraseFromParent()
Unlink 'this' from the containing basic block and delete it.
void removeOperand(unsigned OpNo)
Erase an operand from an instruction, leaving it with one fewer operand than it started with.
const MachineOperand & getOperand(unsigned i) const
Definition: MachineInstr.h:568
iterator_range< filtered_mop_iterator > all_defs()
Returns an iterator range over all operands that are (explicit or implicit) register defs.
Definition: MachineInstr.h:745
int findRegisterDefOperandIdx(Register Reg, const TargetRegisterInfo *TRI, bool isDead=false, bool Overlap=false) const
Returns the operand index that is a def of the specified register or -1 if it is not found.
void setDebugLoc(DebugLoc DL)
Replace current source information with new such.
bool allDefsAreDead() const
Return true if all the defs of this instruction are dead.
MachineOperand class - Representation of each machine instruction operand.
void setSubReg(unsigned subReg)
unsigned getSubReg() const
void substVirtReg(Register Reg, unsigned SubIdx, const TargetRegisterInfo &)
substVirtReg - Substitute the current register with the virtual subregister Reg:SubReg.
bool readsReg() const
readsReg - Returns true if this operand reads the previous value of its register.
bool isImplicit() const
bool isReg() const
isReg - Tests if this is a MO_Register operand.
void setIsDead(bool Val=true)
bool isImm() const
isImm - Tests if this is a MO_Immediate operand.
void setIsKill(bool Val=true)
MachineInstr * getParent()
getParent - Return the instruction that this operand belongs to.
void substPhysReg(MCRegister Reg, const TargetRegisterInfo &)
substPhysReg - Substitute the current register with the physical register Reg, taking any existing Su...
void setIsUndef(bool Val=true)
bool isEarlyClobber() const
Register getReg() const
getReg - Returns the register number.
static MachineOperand CreateReg(Register Reg, bool isDef, bool isImp=false, bool isKill=false, bool isDead=false, bool isUndef=false, bool isEarlyClobber=false, unsigned SubReg=0, bool isDebug=false, bool isInternalRead=false, bool isRenamable=false)
defusechain_iterator - This class provides iterator support for machine operands in the function that...
MachineRegisterInfo - Keep track of information for virtual and physical registers,...
A Module instance is used to store all the information related to an LLVM module.
Definition: Module.h:65
MutableArrayRef - Represent a mutable reference to an array (0 or more elements consecutively in memo...
Definition: ArrayRef.h:307
static PassRegistry * getPassRegistry()
getPassRegistry - Access the global registry object, which is automatically initialized at applicatio...
virtual void print(raw_ostream &OS, const Module *M) const
print - Print out the internal state of the pass.
Definition: Pass.cpp:130
virtual void releaseMemory()
releaseMemory() - This member can be implemented by a pass if it wants to be able to release its memo...
Definition: Pass.cpp:102
bool isProperSubClass(const TargetRegisterClass *RC) const
isProperSubClass - Returns true if RC has a legal super-class with more allocatable registers.
void runOnMachineFunction(const MachineFunction &MF)
runOnFunction - Prepare to answer questions about MF.
Wrapper class representing virtual and physical registers.
Definition: Register.h:19
MCRegister asMCReg() const
Utility to check-convert this value to a MCRegister.
Definition: Register.h:110
constexpr bool isVirtual() const
Return true if the specified register number is in the virtual register namespace.
Definition: Register.h:91
constexpr bool isPhysical() const
Return true if the specified register number is in the physical register namespace.
Definition: Register.h:95
SlotIndex - An opaque wrapper around machine indexes.
Definition: SlotIndexes.h:68
static bool isSameInstr(SlotIndex A, SlotIndex B)
isSameInstr - Return true if A and B refer to the same instruction.
Definition: SlotIndexes.h:179
bool isEarlyClobber() const
isEarlyClobber - Returns true if this is an early-clobber slot.
Definition: SlotIndexes.h:215
bool isValid() const
Returns true if this is a valid index.
Definition: SlotIndexes.h:133
SlotIndex getBaseIndex() const
Returns the base index for associated with this index.
Definition: SlotIndexes.h:227
SlotIndex getPrevSlot() const
Returns the previous slot in the index list.
Definition: SlotIndexes.h:275
SlotIndex getRegSlot(bool EC=false) const
Returns the register use/def slot in the current instruction for a normal or early-clobber def.
Definition: SlotIndexes.h:240
bool isDead() const
isDead - Returns true if this is a dead def kill slot.
Definition: SlotIndexes.h:222
SlotIndexes pass.
Definition: SlotIndexes.h:300
MachineBasicBlock * getMBBFromIndex(SlotIndex index) const
Returns the basic block which the given index falls in.
Definition: SlotIndexes.h:507
SlotIndex getMBBEndIdx(unsigned Num) const
Returns the last index in the given basic block number.
Definition: SlotIndexes.h:462
SlotIndex getNextNonNullIndex(SlotIndex Index)
Returns the next non-null index, if one exists.
Definition: SlotIndexes.h:395
SlotIndex getInstructionIndex(const MachineInstr &MI, bool IgnoreBundle=false) const
Returns the base index for the given instruction.
Definition: SlotIndexes.h:371
SlotIndex getMBBStartIdx(unsigned Num) const
Returns the first index in the given basic block number.
Definition: SlotIndexes.h:452
SlotIndex getIndexBefore(const MachineInstr &MI) const
getIndexBefore - Returns the index of the last indexed instruction before MI, or the start index of i...
Definition: SlotIndexes.h:408
MachineInstr * getInstructionFromIndex(SlotIndex index) const
Returns the instruction for the given index, or null if the given index has no instruction associated...
Definition: SlotIndexes.h:389
A templated base class for SmallPtrSet which provides the typesafe interface that is common across al...
Definition: SmallPtrSet.h:321
bool erase(PtrType Ptr)
erase - If the set contains the specified pointer, remove it and return true, otherwise return false.
Definition: SmallPtrSet.h:356
size_type count(ConstPtrType Ptr) const
count - Return 1 if the specified pointer is in the set, 0 otherwise.
Definition: SmallPtrSet.h:360
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
Definition: SmallPtrSet.h:342
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
Definition: SmallPtrSet.h:427
bool empty() const
Definition: SmallVector.h:94
size_t size() const
Definition: SmallVector.h:91
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
Definition: SmallVector.h:586
void reserve(size_type N)
Definition: SmallVector.h:676
iterator erase(const_iterator CI)
Definition: SmallVector.h:750
void append(ItTy in_start, ItTy in_end)
Add the specified range to the end of the SmallVector.
Definition: SmallVector.h:696
void push_back(const T &Elt)
Definition: SmallVector.h:426
pointer data()
Return a pointer to the vector's buffer, even if empty().
Definition: SmallVector.h:299
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
Definition: SmallVector.h:1209
TargetInstrInfo - Interface to description of machine instruction set.
static const unsigned CommuteAnyOperandIndex
bool contains(Register Reg) const
Return true if the specified register is included in this register class.
TargetRegisterInfo base class - We assume that the target defines a static array of TargetRegisterDes...
TargetSubtargetInfo - Generic base class for all target subtargets.
virtual bool enableJoinGlobalCopies() const
True if the subtarget should enable joining global copies.
virtual const TargetRegisterInfo * getRegisterInfo() const
getRegisterInfo - If register information is available, return it.
virtual const TargetInstrInfo * getInstrInfo() const
VNInfo - Value Number Information.
Definition: LiveInterval.h:53
void markUnused()
Mark this value as unused.
Definition: LiveInterval.h:84
bool isUnused() const
Returns true if this value is unused.
Definition: LiveInterval.h:81
unsigned id
The ID number of this value.
Definition: LiveInterval.h:58
SlotIndex def
The index of the defining instruction.
Definition: LiveInterval.h:61
bool isPHIDef() const
Returns true if this value is defined by a PHI instruction (or was, PHI instructions may have been el...
Definition: LiveInterval.h:78
std::pair< iterator, bool > insert(const ValueT &V)
Definition: DenseSet.h:206
size_type count(const_arg_type_t< ValueT > V) const
Return 1 if the specified key is in the set, 0 otherwise.
Definition: DenseSet.h:97
self_iterator getIterator()
Definition: ilist_node.h:109
This class implements an extremely fast bulk output stream that can only output to a stream.
Definition: raw_ostream.h:52
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
constexpr std::underlying_type_t< E > Mask()
Get a bitmask with 1s in all places up to the high-order bit of E's largest value.
Definition: BitmaskEnum.h:121
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
Definition: CallingConv.h:24
@ SS
Definition: X86.h:207
Reg
All possible values of the reg field in the ModR/M byte.
initializer< Ty > init(const Ty &Val)
Definition: CommandLine.h:450
NodeAddr< DefNode * > Def
Definition: RDFGraph.h:384
const_iterator end(StringRef path)
Get end iterator over path.
Definition: Path.cpp:236
This is an optimization pass for GlobalISel generic memory operations.
Definition: AddressRanges.h:18
void dump(const SparseBitVector< ElementSize > &LHS, raw_ostream &out)
MachineInstrBuilder BuildMI(MachineFunction &MF, const MIMetadata &MIMD, const MCInstrDesc &MCID)
Builder interface. Specify how to create the initial instruction itself.
char & RegisterCoalescerID
RegisterCoalescer - This pass merges live ranges to eliminate copies.
void initializeRegisterCoalescerPass(PassRegistry &)
Printable printRegUnit(unsigned Unit, const TargetRegisterInfo *TRI)
Create Printable object to print register units on a raw_ostream.
iterator_range< early_inc_iterator_impl< detail::IterOfRange< RangeT > > > make_early_inc_range(RangeT &&Range)
Make a range that does early increment to allow mutation of the underlying range without disrupting i...
Definition: STLExtras.h:656
Printable PrintLaneMask(LaneBitmask LaneMask)
Create Printable object to print LaneBitmasks on a raw_ostream.
Definition: LaneBitmask.h:92
auto upper_bound(R &&Range, T &&Value)
Provide wrappers to std::upper_bound which take ranges instead of having to pass begin/end explicitly...
Definition: STLExtras.h:1967
char & MachineDominatorsID
MachineDominators - This pass is a machine dominators analysis pass.
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
Definition: STLExtras.h:1729
void sort(IteratorTy Start, IteratorTy End)
Definition: STLExtras.h:1647
raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition: Debug.cpp:163
@ Other
Any other memory.
void eraseInstrs(ArrayRef< MachineInstr * > DeadInstrs, MachineRegisterInfo &MRI, LostDebugLocObserver *LocObserver=nullptr)
Definition: Utils.cpp:1630
void array_pod_sort(IteratorTy Start, IteratorTy End)
array_pod_sort - This sorts an array with the specified start and end extent.
Definition: STLExtras.h:1607
Printable printReg(Register Reg, const TargetRegisterInfo *TRI=nullptr, unsigned SubIdx=0, const MachineRegisterInfo *MRI=nullptr)
Prints virtual and physical registers with or without a TRI instance.
Printable printMBBReference(const MachineBasicBlock &MBB)
Prints a machine basic block reference.
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
Definition: BitVector.h:860
static constexpr LaneBitmask getLane(unsigned Lane)
Definition: LaneBitmask.h:83
static constexpr LaneBitmask getAll()
Definition: LaneBitmask.h:82
constexpr bool any() const
Definition: LaneBitmask.h:53
static constexpr LaneBitmask getNone()
Definition: LaneBitmask.h:81
Remat - Information needed to rematerialize at a specific location.
This represents a simple continuous liveness interval for a value.
Definition: LiveInterval.h:162