66#define DEBUG_TYPE "regalloc"
68STATISTIC(numJoins,
"Number of interval joins performed");
69STATISTIC(numCrossRCs,
"Number of cross class joins performed");
70STATISTIC(numCommutes,
"Number of instruction commuting performed");
72STATISTIC(NumReMats,
"Number of instructions re-materialized");
73STATISTIC(NumInflated,
"Number of register classes inflated");
74STATISTIC(NumLaneConflicts,
"Number of dead lane conflicts tested");
75STATISTIC(NumLaneResolves,
"Number of dead lane conflicts resolved");
76STATISTIC(NumShrinkToUses,
"Number of shrinkToUses called");
79 cl::desc(
"Coalesce copies (default=true)"),
94 cl::desc(
"Coalesce copies that span blocks (default=subtarget)"),
99 cl::desc(
"Verify machine instrs before and after register coalescing"),
104 cl::desc(
"During rematerialization for a copy, if the def instruction has "
105 "many other copy uses to be rematerialized, delay the multiple "
106 "separate live interval update work and do them all at once after "
107 "all those rematerialization are done. It will save a lot of "
113 cl::desc(
"If the valnos size of an interval is larger than the threshold, "
114 "it is regarded as a large interval. "),
119 cl::desc(
"For a large interval, if it is coalesced with other live "
120 "intervals many times more than the threshold, stop its "
121 "coalescing to control the compile time. "),
146 DenseMap<unsigned, PHIValPos> PHIValToPos;
150 DenseMap<Register, SmallVector<unsigned, 2>> RegToPHIIdx;
155 using DbgValueLoc = std::pair<SlotIndex, MachineInstr *>;
156 DenseMap<Register, std::vector<DbgValueLoc>> DbgVRegToValues;
160 LaneBitmask ShrinkMask;
164 bool ShrinkMainRange =
false;
168 bool JoinGlobalCopies =
false;
172 bool JoinSplitEdges =
false;
175 SmallVector<MachineInstr *, 8> WorkList;
176 SmallVector<MachineInstr *, 8> LocalWorkList;
180 SmallPtrSet<MachineInstr *, 8> ErasedInstrs;
183 SmallVector<MachineInstr *, 8> DeadDefs;
191 DenseSet<Register> ToBeUpdated;
195 DenseMap<Register, unsigned long> LargeLIVisitCounter;
198 void eliminateDeadDefs(LiveRangeEdit *Edit =
nullptr);
201 void LRE_WillEraseInstruction(MachineInstr *
MI)
override;
204 void coalesceLocals();
207 void joinAllIntervals();
211 void copyCoalesceInMBB(MachineBasicBlock *
MBB);
222 void lateLiveIntervalUpdate();
227 bool copyValueUndefInPredecessors(
LiveRange &S,
const MachineBasicBlock *
MBB,
228 LiveQueryResult SLRQ);
232 void setUndefOnPrunedSubRegUses(LiveInterval &LI,
Register Reg,
233 LaneBitmask PrunedLanes);
240 bool joinCopy(MachineInstr *CopyMI,
bool &Again,
241 SmallPtrSetImpl<MachineInstr *> &CurrentErasedInstrs);
246 bool joinIntervals(CoalescerPair &CP);
249 bool joinVirtRegs(CoalescerPair &CP);
254 bool isHighCostLiveInterval(LiveInterval &LI);
257 bool joinReservedPhysReg(CoalescerPair &CP);
264 void mergeSubRangeInto(LiveInterval &LI,
const LiveRange &ToMerge,
265 LaneBitmask LaneMask, CoalescerPair &CP,
271 LaneBitmask LaneMask,
const CoalescerPair &CP);
277 bool adjustCopiesBackFrom(
const CoalescerPair &CP, MachineInstr *CopyMI);
281 bool hasOtherReachingDefs(LiveInterval &IntA, LiveInterval &IntB,
282 VNInfo *AValNo, VNInfo *BValNo);
292 std::pair<bool, bool> removeCopyByCommutingDef(
const CoalescerPair &CP,
293 MachineInstr *CopyMI);
296 bool removePartialRedundancy(
const CoalescerPair &CP, MachineInstr &CopyMI);
300 bool reMaterializeDef(
const CoalescerPair &CP, MachineInstr *CopyMI,
304 bool canJoinPhys(
const CoalescerPair &CP);
319 void addUndefFlag(
const LiveInterval &
Int, SlotIndex UseIdx,
320 MachineOperand &MO,
unsigned SubRegIdx);
326 MachineInstr *eliminateUndefCopy(MachineInstr *CopyMI);
340 bool applyTerminalRule(
const MachineInstr &Copy)
const;
346 SmallVectorImpl<MachineInstr *> *Dead =
nullptr) {
348 if (LIS->shrinkToUses(LI, Dead)) {
352 LIS->splitSeparateComponents(*LI, SplitLIs);
360 void deleteInstr(MachineInstr *
MI) {
361 ErasedInstrs.insert(
MI);
362 LIS->RemoveMachineInstrFromMaps(*
MI);
363 MI->eraseFromParent();
372 void checkMergingChangesDbgValues(CoalescerPair &CP,
LiveRange &
LHS,
381 RegisterCoalescer() {}
382 RegisterCoalescer &operator=(RegisterCoalescer &&
Other) =
default;
384 RegisterCoalescer(LiveIntervals *LIS, SlotIndexes *SI,
385 const MachineLoopInfo *Loops)
386 : LIS(LIS), SI(SI), Loops(Loops) {}
388 bool run(MachineFunction &MF);
395 RegisterCoalescerLegacy() : MachineFunctionPass(ID) {
399 void getAnalysisUsage(AnalysisUsage &AU)
const override;
401 MachineFunctionProperties getClearedProperties()
const override {
402 return MachineFunctionProperties().setIsSSA();
406 bool runOnMachineFunction(MachineFunction &)
override;
411char RegisterCoalescerLegacy::ID = 0;
416 "Register Coalescer",
false,
false)
428 Dst = MI->getOperand(0).getReg();
429 DstSub = MI->getOperand(0).getSubReg();
430 Src = MI->getOperand(1).getReg();
431 SrcSub = MI->getOperand(1).getSubReg();
432 }
else if (
MI->isSubregToReg()) {
433 Dst = MI->getOperand(0).getReg();
434 DstSub = tri.composeSubRegIndices(MI->getOperand(0).getSubReg(),
435 MI->getOperand(3).getImm());
436 Src = MI->getOperand(2).getReg();
437 SrcSub = MI->getOperand(2).getSubReg();
449 if (
MBB->pred_size() != 1 ||
MBB->succ_size() != 1)
452 for (
const auto &
MI : *
MBB) {
453 if (!
MI.isCopyLike() && !
MI.isUnconditionalBranch())
463 Flipped = CrossClass =
false;
466 unsigned SrcSub = 0, DstSub = 0;
469 Partial = SrcSub || DstSub;
472 if (Src.isPhysical()) {
473 if (Dst.isPhysical())
483 if (Dst.isPhysical()) {
486 Dst = TRI.getSubReg(Dst, DstSub);
494 Dst = TRI.getMatchingSuperReg(Dst, SrcSub, SrcRC);
505 if (SrcSub && DstSub) {
507 if (Src == Dst && SrcSub != DstSub)
510 NewRC = TRI.getCommonSuperRegClass(SrcRC, SrcSub, DstRC, DstSub, SrcIdx,
517 NewRC = TRI.getMatchingSuperRegClass(DstRC, SrcRC, DstSub);
521 NewRC = TRI.getMatchingSuperRegClass(SrcRC, DstRC, SrcSub);
524 NewRC = TRI.getCommonSubClass(DstRC, SrcRC);
533 if (DstIdx && !SrcIdx) {
539 CrossClass = NewRC != DstRC || NewRC != SrcRC;
542 assert(Src.isVirtual() &&
"Src must be virtual");
543 assert(!(Dst.isPhysical() && DstSub) &&
"Cannot have a physical SubIdx");
550 if (DstReg.isPhysical())
562 unsigned SrcSub = 0, DstSub = 0;
570 }
else if (Src != SrcReg) {
575 if (DstReg.isPhysical()) {
576 if (!Dst.isPhysical())
578 assert(!DstIdx && !SrcIdx &&
"Inconsistent CoalescerPair state.");
581 Dst = TRI.getSubReg(Dst, DstSub);
584 return DstReg == Dst;
586 return Register(TRI.getSubReg(DstReg, SrcSub)) == Dst;
593 return TRI.composeSubRegIndices(SrcIdx, SrcSub) ==
594 TRI.composeSubRegIndices(DstIdx, DstSub);
597void RegisterCoalescerLegacy::getAnalysisUsage(
AnalysisUsage &AU)
const {
609void RegisterCoalescer::eliminateDeadDefs(
LiveRangeEdit *Edit) {
619void RegisterCoalescer::LRE_WillEraseInstruction(
MachineInstr *
MI) {
624bool RegisterCoalescer::adjustCopiesBackFrom(
const CoalescerPair &CP,
626 assert(!
CP.isPartial() &&
"This doesn't work for partial copies.");
627 assert(!
CP.isPhys() &&
"This doesn't work for physreg copies.");
652 if (BS == IntB.
end())
654 VNInfo *BValNo = BS->valno;
659 if (BValNo->
def != CopyIdx)
666 if (AS == IntA.
end())
668 VNInfo *AValNo = AS->valno;
674 if (!
CP.isCoalescable(ACopyMI) || !ACopyMI->
isFullCopy())
680 if (ValS == IntB.
end())
698 SlotIndex FillerStart = ValS->end, FillerEnd = BS->start;
702 BValNo->
def = FillerStart;
710 if (BValNo != ValS->valno)
719 S.removeSegment(*SS,
true);
723 if (!S.getVNInfoAt(FillerStart)) {
726 S.extendInBlock(BBStart, FillerStart);
728 VNInfo *SubBValNo = S.getVNInfoAt(CopyIdx);
731 if (SubBValNo != SubValSNo)
732 S.MergeValueNumberInto(SubBValNo, SubValSNo);
749 bool RecomputeLiveRange = AS->end == CopyIdx;
750 if (!RecomputeLiveRange) {
753 if (SS != S.end() &&
SS->end == CopyIdx) {
754 RecomputeLiveRange =
true;
759 if (RecomputeLiveRange)
766bool RegisterCoalescer::hasOtherReachingDefs(
LiveInterval &IntA,
775 if (ASeg.
valno != AValNo)
778 if (BI != IntB.
begin())
780 for (; BI != IntB.
end() && ASeg.
end >= BI->start; ++BI) {
781 if (BI->valno == BValNo)
783 if (BI->start <= ASeg.
start && BI->end > ASeg.
start)
785 if (BI->start > ASeg.
start && BI->start < ASeg.
end)
799 bool MergedWithDead =
false;
801 if (S.
valno != SrcValNo)
812 MergedWithDead =
true;
815 return std::make_pair(
Changed, MergedWithDead);
819RegisterCoalescer::removeCopyByCommutingDef(
const CoalescerPair &CP,
852 assert(BValNo !=
nullptr && BValNo->
def == CopyIdx);
858 return {
false,
false};
861 return {
false,
false};
863 return {
false,
false};
870 return {
false,
false};
882 if (!
TII->findCommutedOpIndices(*
DefMI, UseOpIdx, NewDstIdx))
883 return {
false,
false};
888 return {
false,
false};
892 if (hasOtherReachingDefs(IntA, IntB, AValNo, BValNo))
893 return {
false,
false};
902 if (US == IntA.
end() || US->valno != AValNo)
906 return {
false,
false};
916 TII->commuteInstruction(*
DefMI,
false, UseOpIdx, NewDstIdx);
918 return {
false,
false};
920 !
MRI->constrainRegClass(IntB.
reg(),
MRI->getRegClass(IntA.
reg())))
921 return {
false,
false};
922 if (NewMI !=
DefMI) {
947 UseMO.setReg(NewReg);
952 assert(US != IntA.
end() &&
"Use must be live");
953 if (US->valno != AValNo)
956 UseMO.setIsKill(
false);
958 UseMO.substPhysReg(NewReg, *
TRI);
960 UseMO.setReg(NewReg);
979 VNInfo *SubDVNI = S.getVNInfoAt(DefIdx);
982 VNInfo *SubBValNo = S.getVNInfoAt(CopyIdx);
984 S.MergeValueNumberInto(SubDVNI, SubBValNo);
992 bool ShrinkB =
false;
1006 VNInfo *ASubValNo = SA.getVNInfoAt(AIdx);
1015 MaskA |= SA.LaneMask;
1021 VNInfo *BSubValNo = SR.empty() ? SR.getNextValue(CopyIdx, Allocator)
1022 : SR.getVNInfoAt(CopyIdx);
1023 assert(BSubValNo != nullptr);
1024 auto P = addSegmentsWithValNo(SR, BSubValNo, SA, ASubValNo);
1025 ShrinkB |= P.second;
1027 BSubValNo->def = ASubValNo->def;
1035 if ((SB.LaneMask & MaskA).any())
1039 SB.removeSegment(*S,
true);
1043 BValNo->
def = AValNo->
def;
1045 ShrinkB |=
P.second;
1052 return {
true, ShrinkB};
1102bool RegisterCoalescer::removePartialRedundancy(
const CoalescerPair &CP,
1135 bool FoundReverseCopy =
false;
1154 bool ValB_Changed =
false;
1155 for (
auto *VNI : IntB.
valnos) {
1156 if (VNI->isUnused())
1159 ValB_Changed =
true;
1167 FoundReverseCopy =
true;
1171 if (!FoundReverseCopy)
1181 if (CopyLeftBB && CopyLeftBB->
succ_size() > 1)
1192 if (InsPos != CopyLeftBB->
end()) {
1198 LLVM_DEBUG(
dbgs() <<
"\tremovePartialRedundancy: Move the copy to "
1203 TII->get(TargetOpcode::COPY), IntB.
reg())
1214 ErasedInstrs.
erase(NewCopyMI);
1216 LLVM_DEBUG(
dbgs() <<
"\tremovePartialRedundancy: Remove the copy from "
1227 deleteInstr(&CopyMI);
1243 if (!IntB.
liveAt(UseIdx))
1244 MO.setIsUndef(
true);
1254 VNInfo *BValNo = SR.Query(CopyIdx).valueOutOrDead();
1255 assert(BValNo &&
"All sublanes should be live");
1264 for (
unsigned I = 0;
I != EndPoints.
size();) {
1266 EndPoints[
I] = EndPoints.
back();
1288 assert(!
Reg.isPhysical() &&
"This code cannot handle physreg aliasing");
1291 if (
Op.getReg() !=
Reg)
1295 if (
Op.getSubReg() == 0 ||
Op.isUndef())
1301bool RegisterCoalescer::reMaterializeDef(
const CoalescerPair &CP,
1305 Register SrcReg =
CP.isFlipped() ?
CP.getDstReg() :
CP.getSrcReg();
1306 unsigned SrcIdx =
CP.isFlipped() ?
CP.getDstIdx() :
CP.getSrcIdx();
1307 Register DstReg =
CP.isFlipped() ?
CP.getSrcReg() :
CP.getDstReg();
1308 unsigned DstIdx =
CP.isFlipped() ?
CP.getSrcIdx() :
CP.getDstIdx();
1329 if (!
TII->isReMaterializable(*
DefMI))
1334 bool SawStore =
false;
1338 if (
MCID.getNumDefs() != 1)
1346 if (SrcIdx && DstIdx)
1381 unsigned NewDstIdx =
TRI->composeSubRegIndices(
CP.getSrcIdx(), DefSubIdx);
1383 NewDstReg =
TRI->getSubReg(DstReg, NewDstIdx);
1393 "Only expect to deal with virtual or physical registers");
1407 LiveRangeEdit Edit(&SrcInt, NewRegs, *MF, *LIS,
nullptr,
this);
1421 assert(SrcIdx == 0 &&
CP.isFlipped() &&
1422 "Shouldn't have SrcIdx+DstIdx at this point");
1425 TRI->getCommonSubClass(DefRC, DstRC);
1426 if (CommonRC !=
nullptr) {
1434 if (MO.isReg() && MO.getReg() == DstReg && MO.getSubReg() == DstIdx) {
1456 "No explicit operands after implicit operands.");
1459 "unexpected implicit virtual register def");
1465 ErasedInstrs.
insert(CopyMI);
1489 ((
TRI->getSubReg(MO.
getReg(), DefSubIdx) ==
1502 assert(!
MRI->shouldTrackSubRegLiveness(DstReg) &&
1503 "subrange update for implicit-def of super register may not be "
1504 "properly handled");
1512 if (DefRC !=
nullptr) {
1514 NewRC =
TRI->getMatchingSuperRegClass(NewRC, DefRC, NewIdx);
1516 NewRC =
TRI->getCommonSubClass(NewRC, DefRC);
1517 assert(NewRC &&
"subreg chosen for remat incompatible with instruction");
1523 SR.LaneMask =
TRI->composeSubRegIndexLaneMask(DstIdx, SR.LaneMask);
1525 MRI->setRegClass(DstReg, NewRC);
1528 updateRegDefsUses(DstReg, DstReg, DstIdx);
1547 MRI->shouldTrackSubRegLiveness(DstReg)) {
1577 if (!SR.liveAt(DefIndex))
1578 SR.createDeadDef(DefIndex,
Alloc);
1579 MaxMask &= ~SR.LaneMask;
1581 if (MaxMask.
any()) {
1599 bool UpdatedSubRanges =
false;
1604 if ((SR.
LaneMask & DstMask).none()) {
1606 <<
"Removing undefined SubRange "
1619 UpdatedSubRanges =
true;
1626 if (!SR.
liveAt(DefIndex))
1630 if (UpdatedSubRanges)
1637 "Only expect virtual or physical registers in remat");
1645 bool HasDefMatchingCopy =
false;
1652 if (DstReg != CopyDstReg)
1655 HasDefMatchingCopy =
true;
1659 if (!HasDefMatchingCopy)
1661 CopyDstReg,
true ,
true ,
false ));
1703 if (
MRI->use_nodbg_empty(SrcReg)) {
1709 UseMO.substPhysReg(DstReg, *
TRI);
1711 UseMO.setReg(DstReg);
1720 if (ToBeUpdated.
count(SrcReg))
1723 unsigned NumCopyUses = 0;
1725 if (UseMO.getParent()->isCopyLike())
1731 if (!DeadDefs.
empty())
1732 eliminateDeadDefs(&Edit);
1734 ToBeUpdated.
insert(SrcReg);
1752 unsigned SrcSubIdx = 0, DstSubIdx = 0;
1753 if (!
isMoveInstr(*
TRI, CopyMI, SrcReg, DstReg, SrcSubIdx, DstSubIdx))
1762 if ((SR.
LaneMask & SrcMask).none())
1767 }
else if (SrcLI.
liveAt(Idx))
1775 assert(Seg !=
nullptr &&
"No segment for defining instruction");
1780 if (((V &&
V->isPHIDef()) || (!V && !DstLI.
liveAt(Idx)))) {
1788 CopyMI->
getOpcode() == TargetOpcode::SUBREG_TO_REG);
1793 CopyMI->
setDesc(
TII->get(TargetOpcode::IMPLICIT_DEF));
1810 if ((SR.
LaneMask & DstMask).none())
1832 if ((SR.
LaneMask & UseMask).none())
1840 isLive = DstLI.
liveAt(UseIdx);
1853 if (MO.
getReg() == DstReg)
1865 bool IsUndef =
true;
1867 if ((S.LaneMask & Mask).none())
1869 if (S.liveAt(UseIdx)) {
1882 ShrinkMainRange =
true;
1891 if (DstInt && DstInt->
hasSubRanges() && DstReg != SrcReg) {
1900 if (
MI.isDebugInstr())
1903 addUndefFlag(*DstInt, UseIdx, MO,
SubReg);
1909 E =
MRI->reg_instr_end();
1918 if (SrcReg == DstReg && !Visited.
insert(
UseMI).second)
1931 for (
unsigned Op :
Ops) {
1937 if (SubIdx && MO.
isDef())
1943 unsigned SubUseIdx =
TRI->composeSubRegIndices(SubIdx, MO.
getSubReg());
1944 if (SubUseIdx != 0 &&
MRI->shouldTrackSubRegLiveness(DstReg)) {
1961 addUndefFlag(*DstInt, UseIdx, MO, SubUseIdx);
1972 dbgs() <<
"\t\tupdated: ";
1980bool RegisterCoalescer::canJoinPhys(
const CoalescerPair &CP) {
1984 if (!
MRI->isReserved(
CP.getDstReg())) {
1985 LLVM_DEBUG(
dbgs() <<
"\tCan only merge into reserved registers.\n");
1994 dbgs() <<
"\tCannot join complex intervals into reserved register.\n");
1998bool RegisterCoalescer::copyValueUndefInPredecessors(
2012void RegisterCoalescer::setUndefOnPrunedSubRegUses(
LiveInterval &LI,
2019 if (SubRegIdx == 0 || MO.
isUndef())
2025 if (!S.
liveAt(Pos) && (PrunedLanes & SubRegMask).any()) {
2041bool RegisterCoalescer::joinCopy(
2048 if (!
CP.setRegisters(CopyMI)) {
2053 if (
CP.getNewRC()) {
2056 <<
"are available for allocation\n");
2060 auto SrcRC =
MRI->getRegClass(
CP.getSrcReg());
2061 auto DstRC =
MRI->getRegClass(
CP.getDstReg());
2062 unsigned SrcIdx =
CP.getSrcIdx();
2063 unsigned DstIdx =
CP.getDstIdx();
2064 if (
CP.isFlipped()) {
2068 if (!
TRI->shouldCoalesce(CopyMI, SrcRC, SrcIdx, DstRC, DstIdx,
2069 CP.getNewRC(), *LIS)) {
2081 eliminateDeadDefs();
2088 if (
MachineInstr *UndefMI = eliminateUndefCopy(CopyMI)) {
2089 if (UndefMI->isImplicitDef())
2091 deleteInstr(CopyMI);
2099 if (
CP.getSrcReg() ==
CP.getDstReg()) {
2101 LLVM_DEBUG(
dbgs() <<
"\tCopy already coalesced: " << LI <<
'\n');
2106 assert(ReadVNI &&
"No value before copy and no <undef> flag.");
2107 assert(ReadVNI != DefVNI &&
"Cannot read and define the same value.");
2122 if (copyValueUndefInPredecessors(S,
MBB, SLRQ)) {
2123 LLVM_DEBUG(
dbgs() <<
"Incoming sublane value is undef at copy\n");
2124 PrunedLanes |= S.LaneMask;
2131 if (PrunedLanes.
any()) {
2132 LLVM_DEBUG(
dbgs() <<
"Pruning undef incoming lanes: " << PrunedLanes
2134 setUndefOnPrunedSubRegUses(LI,
CP.getSrcReg(), PrunedLanes);
2139 deleteInstr(CopyMI);
2148 if (!canJoinPhys(CP)) {
2151 bool IsDefCopy =
false;
2152 if (reMaterializeDef(CP, CopyMI, IsDefCopy))
2165 dbgs() <<
"\tConsidering merging to "
2166 <<
TRI->getRegClassName(
CP.getNewRC()) <<
" with ";
2167 if (
CP.getDstIdx() &&
CP.getSrcIdx())
2169 <<
TRI->getSubRegIndexName(
CP.getDstIdx()) <<
" and "
2171 <<
TRI->getSubRegIndexName(
CP.getSrcIdx()) <<
'\n';
2179 ShrinkMainRange =
false;
2185 if (!joinIntervals(CP)) {
2189 bool IsDefCopy =
false;
2190 if (reMaterializeDef(CP, CopyMI, IsDefCopy))
2195 if (!
CP.isPartial() && !
CP.isPhys()) {
2196 bool Changed = adjustCopiesBackFrom(CP, CopyMI);
2197 bool Shrink =
false;
2199 std::tie(
Changed, Shrink) = removeCopyByCommutingDef(CP, CopyMI);
2201 deleteInstr(CopyMI);
2203 Register DstReg =
CP.isFlipped() ?
CP.getSrcReg() :
CP.getDstReg();
2215 if (!
CP.isPartial() && !
CP.isPhys())
2216 if (removePartialRedundancy(CP, *CopyMI))
2227 if (
CP.isCrossClass()) {
2229 MRI->setRegClass(
CP.getDstReg(),
CP.getNewRC());
2240 if (ErasedInstrs.
erase(CopyMI))
2242 CurrentErasedInstrs.
insert(CopyMI);
2247 updateRegDefsUses(
CP.getDstReg(),
CP.getDstReg(),
CP.getDstIdx());
2248 updateRegDefsUses(
CP.getSrcReg(),
CP.getDstReg(),
CP.getSrcIdx());
2251 if (ShrinkMask.
any()) {
2254 if ((S.LaneMask & ShrinkMask).none())
2259 ShrinkMainRange =
true;
2267 if (ToBeUpdated.
count(
CP.getSrcReg()))
2268 ShrinkMainRange =
true;
2270 if (ShrinkMainRange) {
2280 TRI->updateRegAllocHint(
CP.getSrcReg(),
CP.getDstReg(), *MF);
2285 dbgs() <<
"\tResult = ";
2297bool RegisterCoalescer::joinReservedPhysReg(
CoalescerPair &CP) {
2300 assert(
CP.isPhys() &&
"Must be a physreg copy");
2301 assert(
MRI->isReserved(DstReg) &&
"Not a reserved register");
2305 assert(
RHS.containsOneValue() &&
"Invalid join with reserved register");
2314 if (!
MRI->isConstantPhysReg(DstReg)) {
2318 if (!
MRI->isReserved(*RI))
2331 !RegMaskUsable.
test(DstReg.
id())) {
2344 if (
CP.isFlipped()) {
2352 CopyMI =
MRI->getVRegDef(SrcReg);
2353 deleteInstr(CopyMI);
2362 if (!
MRI->hasOneNonDBGUse(SrcReg)) {
2373 CopyMI = &*
MRI->use_instr_nodbg_begin(SrcReg);
2377 if (!
MRI->isConstantPhysReg(DstReg)) {
2385 if (
MI->readsRegister(DstReg,
TRI)) {
2395 <<
printReg(DstReg,
TRI) <<
" at " << CopyRegIdx <<
"\n");
2398 deleteInstr(CopyMI);
2408 MRI->clearKillFlags(
CP.getSrcReg());
2493 const unsigned SubIdx;
2497 const LaneBitmask LaneMask;
2501 const bool SubRangeJoin;
2504 const bool TrackSubRegLiveness;
2507 SmallVectorImpl<VNInfo *> &NewVNInfo;
2509 const CoalescerPair &
CP;
2511 SlotIndexes *Indexes;
2512 const TargetRegisterInfo *
TRI;
2516 SmallVector<int, 8> Assignments;
2520 enum ConflictResolution {
2552 ConflictResolution Resolution = CR_Keep;
2555 LaneBitmask WriteLanes;
2559 LaneBitmask ValidLanes;
2562 VNInfo *RedefVNI =
nullptr;
2565 VNInfo *OtherVNI =
nullptr;
2578 bool ErasableImplicitDef =
false;
2582 bool Pruned =
false;
2585 bool PrunedComputed =
false;
2592 bool Identical =
false;
2596 bool isAnalyzed()
const {
return WriteLanes.
any(); }
2600 void mustKeepImplicitDef(
const TargetRegisterInfo &
TRI,
2601 const MachineInstr &ImpDef) {
2603 ErasableImplicitDef =
false;
2614 LaneBitmask computeWriteLanes(
const MachineInstr *
DefMI,
bool &Redef)
const;
2617 std::pair<const VNInfo *, Register> followCopyChain(
const VNInfo *VNI)
const;
2619 bool valuesIdentical(VNInfo *Value0, VNInfo *Value1,
2620 const JoinVals &
Other)
const;
2629 ConflictResolution analyzeValue(
unsigned ValNo, JoinVals &
Other);
2634 void computeAssignment(
unsigned ValNo, JoinVals &
Other);
2652 taintExtent(
unsigned ValNo, LaneBitmask TaintedLanes, JoinVals &
Other,
2653 SmallVectorImpl<std::pair<SlotIndex, LaneBitmask>> &TaintExtent);
2657 bool usesLanes(
const MachineInstr &
MI,
Register,
unsigned, LaneBitmask)
const;
2665 bool isPrunedValue(
unsigned ValNo, JoinVals &
Other);
2669 SmallVectorImpl<VNInfo *> &newVNInfo,
const CoalescerPair &cp,
2670 LiveIntervals *lis,
const TargetRegisterInfo *
TRI,
bool SubRangeJoin,
2671 bool TrackSubRegLiveness)
2672 : LR(LR),
Reg(
Reg), SubIdx(SubIdx), LaneMask(LaneMask),
2673 SubRangeJoin(SubRangeJoin), TrackSubRegLiveness(TrackSubRegLiveness),
2674 NewVNInfo(newVNInfo),
CP(cp), LIS(lis), Indexes(LIS->getSlotIndexes()),
2675 TRI(
TRI), Assignments(LR.getNumValNums(), -1),
2676 Vals(LR.getNumValNums()) {}
2680 bool mapValues(JoinVals &
Other);
2684 bool resolveConflicts(JoinVals &
Other);
2689 void pruneValues(JoinVals &
Other, SmallVectorImpl<SlotIndex> &EndPoints,
2695 void pruneSubRegValues(LiveInterval &LI, LaneBitmask &ShrinkMask);
2704 void pruneMainSegments(LiveInterval &LI,
bool &ShrinkMainRange);
2710 void eraseInstrs(SmallPtrSetImpl<MachineInstr *> &ErasedInstrs,
2711 SmallVectorImpl<Register> &ShrinkRegs,
2712 LiveInterval *LI =
nullptr);
2715 void removeImplicitDefs();
2718 const int *getAssignments()
const {
return Assignments.
data(); }
2721 ConflictResolution getResolution(
unsigned Num)
const {
2722 return Vals[Num].Resolution;
2729 bool &Redef)
const {
2734 L |=
TRI->getSubRegIndexLaneMask(
2742std::pair<const VNInfo *, Register>
2743JoinVals::followCopyChain(
const VNInfo *VNI)
const {
2749 assert(
MI &&
"No defining instruction");
2750 if (!
MI->isFullCopy())
2751 return std::make_pair(VNI, TrackReg);
2752 Register SrcReg =
MI->getOperand(1).getReg();
2754 return std::make_pair(VNI, TrackReg);
2768 LaneBitmask SMask =
TRI->composeSubRegIndexLaneMask(SubIdx, S.LaneMask);
2769 if ((SMask & LaneMask).
none())
2777 return std::make_pair(VNI, TrackReg);
2780 if (ValueIn ==
nullptr) {
2787 return std::make_pair(
nullptr, SrcReg);
2792 return std::make_pair(VNI, TrackReg);
2795bool JoinVals::valuesIdentical(
VNInfo *Value0,
VNInfo *Value1,
2796 const JoinVals &
Other)
const {
2799 std::tie(Orig0, Reg0) = followCopyChain(Value0);
2800 if (Orig0 == Value1 && Reg0 ==
Other.Reg)
2805 std::tie(Orig1, Reg1) =
Other.followCopyChain(Value1);
2809 if (Orig0 ==
nullptr || Orig1 ==
nullptr)
2810 return Orig0 == Orig1 && Reg0 == Reg1;
2816 return Orig0->
def == Orig1->
def && Reg0 == Reg1;
2819JoinVals::ConflictResolution JoinVals::analyzeValue(
unsigned ValNo,
2821 Val &
V = Vals[ValNo];
2822 assert(!
V.isAnalyzed() &&
"Value has already been analyzed!");
2834 :
TRI->getSubRegIndexLaneMask(SubIdx);
2835 V.ValidLanes =
V.WriteLanes = Lanes;
2844 V.ErasableImplicitDef =
true;
2848 V.ValidLanes =
V.WriteLanes = computeWriteLanes(
DefMI, Redef);
2867 assert((TrackSubRegLiveness ||
V.RedefVNI) &&
2868 "Instruction is reading nonexistent value");
2869 if (
V.RedefVNI !=
nullptr) {
2870 computeAssignment(
V.RedefVNI->id,
Other);
2871 V.ValidLanes |= Vals[
V.RedefVNI->id].ValidLanes;
2883 V.ErasableImplicitDef =
true;
2900 if (OtherVNI->
def < VNI->
def)
2901 Other.computeAssignment(OtherVNI->
id, *
this);
2906 return CR_Impossible;
2908 V.OtherVNI = OtherVNI;
2909 Val &OtherV =
Other.Vals[OtherVNI->
id];
2913 if (!OtherV.isAnalyzed() ||
Other.Assignments[OtherVNI->
id] == -1)
2920 if ((
V.ValidLanes & OtherV.ValidLanes).any())
2922 return CR_Impossible;
2936 Other.computeAssignment(
V.OtherVNI->id, *
this);
2937 Val &OtherV =
Other.Vals[
V.OtherVNI->id];
2939 if (OtherV.ErasableImplicitDef) {
2959 <<
", keeping it.\n");
2960 OtherV.mustKeepImplicitDef(*
TRI, *OtherImpDef);
2967 dbgs() <<
"IMPLICIT_DEF defined at " <<
V.OtherVNI->def
2968 <<
" may be live into EH pad successors, keeping it.\n");
2969 OtherV.mustKeepImplicitDef(*
TRI, *OtherImpDef);
2972 OtherV.ValidLanes &= ~OtherV.WriteLanes;
2987 if (
CP.isCoalescable(
DefMI)) {
2990 V.ValidLanes &= ~V.WriteLanes | OtherV.ValidLanes;
3005 valuesIdentical(VNI,
V.OtherVNI,
Other)) {
3028 if ((
V.WriteLanes & OtherV.ValidLanes).none())
3041 "Only early clobber defs can overlap a kill");
3042 return CR_Impossible;
3049 if ((
TRI->getSubRegIndexLaneMask(
Other.SubIdx) & ~
V.WriteLanes).none())
3050 return CR_Impossible;
3052 if (TrackSubRegLiveness) {
3057 if (!OtherLI.hasSubRanges()) {
3059 return (OtherMask &
V.WriteLanes).none() ? CR_Replace : CR_Impossible;
3067 TRI->composeSubRegIndexLaneMask(
Other.SubIdx, OtherSR.LaneMask);
3068 if ((OtherMask &
V.WriteLanes).none())
3071 auto OtherSRQ = OtherSR.Query(VNI->
def);
3072 if (OtherSRQ.valueIn() && OtherSRQ.endPoint() > VNI->
def) {
3074 return CR_Impossible;
3087 return CR_Impossible;
3096 return CR_Unresolved;
3099void JoinVals::computeAssignment(
unsigned ValNo, JoinVals &
Other) {
3100 Val &
V = Vals[ValNo];
3101 if (
V.isAnalyzed()) {
3104 assert(Assignments[ValNo] != -1 &&
"Bad recursion?");
3107 switch ((
V.Resolution = analyzeValue(ValNo,
Other))) {
3111 assert(
V.OtherVNI &&
"OtherVNI not assigned, can't merge.");
3112 assert(
Other.Vals[
V.OtherVNI->id].isAnalyzed() &&
"Missing recursion");
3113 Assignments[ValNo] =
Other.Assignments[
V.OtherVNI->id];
3117 <<
V.OtherVNI->def <<
" --> @"
3118 << NewVNInfo[Assignments[ValNo]]->def <<
'\n');
3121 case CR_Unresolved: {
3123 assert(
V.OtherVNI &&
"OtherVNI not assigned, can't prune");
3124 Val &OtherV =
Other.Vals[
V.OtherVNI->id];
3125 OtherV.Pruned =
true;
3130 Assignments[ValNo] = NewVNInfo.
size();
3136bool JoinVals::mapValues(JoinVals &
Other) {
3138 computeAssignment(i,
Other);
3139 if (Vals[i].Resolution == CR_Impossible) {
3148bool JoinVals::taintExtent(
3157 assert(OtherI !=
Other.LR.end() &&
"No conflict?");
3162 if (End >= MBBEnd) {
3164 << OtherI->valno->id <<
'@' << OtherI->start <<
'\n');
3168 << OtherI->valno->id <<
'@' << OtherI->start <<
" to "
3173 TaintExtent.push_back(std::make_pair(End, TaintedLanes));
3176 if (++OtherI ==
Other.LR.end() || OtherI->start >= MBBEnd)
3180 const Val &OV =
Other.Vals[OtherI->valno->id];
3181 TaintedLanes &= ~OV.WriteLanes;
3184 }
while (TaintedLanes.
any());
3190 if (
MI.isDebugOrPseudoInstr())
3197 unsigned S =
TRI->composeSubRegIndices(SubIdx, MO.
getSubReg());
3198 if ((Lanes &
TRI->getSubRegIndexLaneMask(S)).any())
3204bool JoinVals::resolveConflicts(JoinVals &
Other) {
3207 assert(
V.Resolution != CR_Impossible &&
"Unresolvable conflict");
3208 if (
V.Resolution != CR_Unresolved)
3217 assert(
V.OtherVNI &&
"Inconsistent conflict resolution.");
3219 const Val &OtherV =
Other.Vals[
V.OtherVNI->id];
3224 LaneBitmask TaintedLanes =
V.WriteLanes & OtherV.ValidLanes;
3226 if (!taintExtent(i, TaintedLanes,
Other, TaintExtent))
3230 assert(!TaintExtent.
empty() &&
"There should be at least one conflict.");
3243 "Interference ends on VNI->def. Should have been handled earlier");
3246 assert(LastMI &&
"Range must end at a proper instruction");
3247 unsigned TaintNum = 0;
3250 if (usesLanes(*
MI,
Other.Reg,
Other.SubIdx, TaintedLanes)) {
3255 if (&*
MI == LastMI) {
3256 if (++TaintNum == TaintExtent.
size())
3259 assert(LastMI &&
"Range must end at a proper instruction");
3260 TaintedLanes = TaintExtent[TaintNum].second;
3266 V.Resolution = CR_Replace;
3272bool JoinVals::isPrunedValue(
unsigned ValNo, JoinVals &
Other) {
3273 Val &
V = Vals[ValNo];
3274 if (
V.Pruned ||
V.PrunedComputed)
3277 if (
V.Resolution != CR_Erase &&
V.Resolution != CR_Merge)
3282 V.PrunedComputed =
true;
3283 V.Pruned =
Other.isPrunedValue(
V.OtherVNI->id, *
this);
3287void JoinVals::pruneValues(JoinVals &
Other,
3289 bool changeInstrs) {
3292 switch (Vals[i].Resolution) {
3302 Val &OtherV =
Other.Vals[Vals[i].OtherVNI->id];
3304 OtherV.ErasableImplicitDef && OtherV.Resolution == CR_Keep;
3305 if (!
Def.isBlock()) {
3325 <<
": " <<
Other.LR <<
'\n');
3330 if (isPrunedValue(i,
Other)) {
3337 << Def <<
": " << LR <<
'\n');
3395 bool DidPrune =
false;
3400 if (
V.Resolution != CR_Erase &&
3401 (
V.Resolution != CR_Keep || !
V.ErasableImplicitDef || !
V.Pruned))
3408 OtherDef =
V.OtherVNI->def;
3411 LLVM_DEBUG(
dbgs() <<
"\t\tExpecting instruction removal at " << Def
3419 if (ValueOut !=
nullptr &&
3421 (
V.Identical &&
V.Resolution == CR_Erase && ValueOut->
def == Def))) {
3423 <<
" at " << Def <<
"\n");
3430 if (
V.Identical && S.Query(OtherDef).valueOutOrDead()) {
3440 ShrinkMask |= S.LaneMask;
3454 ShrinkMask |= S.LaneMask;
3466 if (VNI->
def == Def)
3472void JoinVals::pruneMainSegments(
LiveInterval &LI,
bool &ShrinkMainRange) {
3476 if (Vals[i].Resolution != CR_Keep)
3481 Vals[i].Pruned =
true;
3482 ShrinkMainRange =
true;
3486void JoinVals::removeImplicitDefs() {
3489 if (
V.Resolution != CR_Keep || !
V.ErasableImplicitDef || !
V.Pruned)
3505 switch (Vals[i].Resolution) {
3510 if (!Vals[i].ErasableImplicitDef || !Vals[i].Pruned)
3522 if (LI !=
nullptr) {
3547 ED = ED.
isValid() ? std::min(ED,
I->start) :
I->start;
3549 LE =
LE.isValid() ? std::max(LE,
I->end) :
I->
end;
3552 NewEnd = std::min(NewEnd, LE);
3554 NewEnd = std::min(NewEnd, ED);
3560 if (S != LR.
begin())
3561 std::prev(S)->end = NewEnd;
3565 dbgs() <<
"\t\tremoved " << i <<
'@' <<
Def <<
": " << LR <<
'\n';
3567 dbgs() <<
"\t\t LHS = " << *LI <<
'\n';
3574 assert(
MI &&
"No instruction to erase");
3583 MI->eraseFromParent();
3596 JoinVals RHSVals(RRange,
CP.getSrcReg(),
CP.getSrcIdx(), LaneMask, NewVNInfo,
3597 CP, LIS,
TRI,
true,
true);
3598 JoinVals LHSVals(LRange,
CP.getDstReg(),
CP.getDstIdx(), LaneMask, NewVNInfo,
3599 CP, LIS,
TRI,
true,
true);
3606 if (!LHSVals.mapValues(RHSVals) || !RHSVals.mapValues(LHSVals)) {
3611 if (!LHSVals.resolveConflicts(RHSVals) ||
3612 !RHSVals.resolveConflicts(LHSVals)) {
3623 LHSVals.pruneValues(RHSVals, EndPoints,
false);
3624 RHSVals.pruneValues(LHSVals, EndPoints,
false);
3626 LHSVals.removeImplicitDefs();
3627 RHSVals.removeImplicitDefs();
3632 LRange.
join(RRange, LHSVals.getAssignments(), RHSVals.getAssignments(),
3637 if (EndPoints.
empty())
3643 dbgs() <<
"\t\trestoring liveness to " << EndPoints.
size() <<
" points: ";
3644 for (
unsigned i = 0, n = EndPoints.
size(); i != n; ++i) {
3645 dbgs() << EndPoints[i];
3649 dbgs() <<
": " << LRange <<
'\n';
3654void RegisterCoalescer::mergeSubRangeInto(
LiveInterval &LI,
3658 unsigned ComposeSubRegIdx) {
3668 joinSubRegRanges(SR, RangeCopy, SR.
LaneMask, CP);
3674bool RegisterCoalescer::isHighCostLiveInterval(
LiveInterval &LI) {
3677 auto &Counter = LargeLIVisitCounter[LI.
reg()];
3689 bool TrackSubRegLiveness =
MRI->shouldTrackSubRegLiveness(*
CP.getNewRC());
3691 NewVNInfo, CP, LIS,
TRI,
false, TrackSubRegLiveness);
3693 NewVNInfo, CP, LIS,
TRI,
false, TrackSubRegLiveness);
3697 if (isHighCostLiveInterval(
LHS) || isHighCostLiveInterval(
RHS))
3702 if (!LHSVals.mapValues(RHSVals) || !RHSVals.mapValues(LHSVals))
3706 if (!LHSVals.resolveConflicts(RHSVals) || !RHSVals.resolveConflicts(LHSVals))
3710 if (
RHS.hasSubRanges() ||
LHS.hasSubRanges()) {
3715 unsigned DstIdx =
CP.getDstIdx();
3716 if (!
LHS.hasSubRanges()) {
3718 :
TRI->getSubRegIndexLaneMask(DstIdx);
3722 }
else if (DstIdx != 0) {
3733 unsigned SrcIdx =
CP.getSrcIdx();
3734 if (!
RHS.hasSubRanges()) {
3736 :
TRI->getSubRegIndexLaneMask(SrcIdx);
3737 mergeSubRangeInto(
LHS,
RHS, Mask, CP, DstIdx);
3742 mergeSubRangeInto(
LHS, R, Mask, CP, DstIdx);
3749 LHSVals.pruneMainSegments(
LHS, ShrinkMainRange);
3751 LHSVals.pruneSubRegValues(
LHS, ShrinkMask);
3752 RHSVals.pruneSubRegValues(
LHS, ShrinkMask);
3753 }
else if (TrackSubRegLiveness && !
CP.getDstIdx() &&
CP.getSrcIdx()) {
3755 CP.getNewRC()->getLaneMask(),
LHS);
3756 mergeSubRangeInto(
LHS,
RHS,
TRI->getSubRegIndexLaneMask(
CP.getSrcIdx()), CP,
3758 LHSVals.pruneMainSegments(
LHS, ShrinkMainRange);
3759 LHSVals.pruneSubRegValues(
LHS, ShrinkMask);
3767 LHSVals.pruneValues(RHSVals, EndPoints,
true);
3768 RHSVals.pruneValues(LHSVals, EndPoints,
true);
3773 LHSVals.eraseInstrs(ErasedInstrs, ShrinkRegs, &
LHS);
3774 RHSVals.eraseInstrs(ErasedInstrs, ShrinkRegs);
3775 while (!ShrinkRegs.
empty())
3779 checkMergingChangesDbgValues(CP,
LHS, LHSVals,
RHS, RHSVals);
3783 auto RegIt = RegToPHIIdx.
find(
CP.getSrcReg());
3784 if (RegIt != RegToPHIIdx.
end()) {
3786 for (
unsigned InstID : RegIt->second) {
3787 auto PHIIt = PHIValToPos.
find(InstID);
3792 auto LII =
RHS.find(
SI);
3793 if (LII ==
RHS.end() || LII->start >
SI)
3808 if (
CP.getSrcIdx() != 0 ||
CP.getDstIdx() != 0)
3811 if (PHIIt->second.SubReg && PHIIt->second.SubReg !=
CP.getSrcIdx())
3815 PHIIt->second.Reg =
CP.getDstReg();
3819 if (
CP.getSrcIdx() != 0)
3820 PHIIt->second.SubReg =
CP.getSrcIdx();
3826 auto InstrNums = RegIt->second;
3827 RegToPHIIdx.
erase(RegIt);
3831 RegIt = RegToPHIIdx.
find(
CP.getDstReg());
3832 if (RegIt != RegToPHIIdx.
end())
3835 RegToPHIIdx.
insert({
CP.getDstReg(), InstrNums});
3839 LHS.join(
RHS, LHSVals.getAssignments(), RHSVals.getAssignments(), NewVNInfo);
3844 MRI->clearKillFlags(
LHS.reg());
3845 MRI->clearKillFlags(
RHS.reg());
3847 if (!EndPoints.
empty()) {
3851 dbgs() <<
"\t\trestoring liveness to " << EndPoints.
size() <<
" points: ";
3852 for (
unsigned i = 0, n = EndPoints.
size(); i != n; ++i) {
3853 dbgs() << EndPoints[i];
3857 dbgs() <<
": " <<
LHS <<
'\n';
3866 return CP.isPhys() ? joinReservedPhysReg(CP) : joinVirtRegs(
CP);
3876 for (
auto *
X : ToInsert) {
3877 for (
const auto &
Op :
X->debug_operands()) {
3878 if (
Op.isReg() &&
Op.getReg().isVirtual())
3879 DbgVRegToValues[
Op.getReg()].push_back({
Slot,
X});
3889 for (
auto &
MBB : MF) {
3892 for (
auto &
MI :
MBB) {
3893 if (
MI.isDebugValue()) {
3895 return MO.isReg() && MO.getReg().isVirtual();
3897 ToInsert.push_back(&
MI);
3898 }
else if (!
MI.isDebugOrPseudoInstr()) {
3900 CloseNewDVRange(CurrentSlot);
3909 for (
auto &Pair : DbgVRegToValues)
3913void RegisterCoalescer::checkMergingChangesDbgValues(
CoalescerPair &CP,
3917 JoinVals &RHSVals) {
3919 checkMergingChangesDbgValuesImpl(
Reg,
RHS,
LHS, LHSVals);
3923 checkMergingChangesDbgValuesImpl(
Reg,
LHS,
RHS, RHSVals);
3927 ScanForSrcReg(
CP.getSrcReg());
3928 ScanForDstReg(
CP.getDstReg());
3931void RegisterCoalescer::checkMergingChangesDbgValuesImpl(
Register Reg,
3934 JoinVals &RegVals) {
3936 auto VRegMapIt = DbgVRegToValues.
find(
Reg);
3937 if (VRegMapIt == DbgVRegToValues.
end())
3940 auto &DbgValueSet = VRegMapIt->second;
3941 auto DbgValueSetIt = DbgValueSet.begin();
3942 auto SegmentIt = OtherLR.
begin();
3944 bool LastUndefResult =
false;
3949 auto ShouldUndef = [&RegVals, &
RegLR, &LastUndefResult,
3954 if (LastUndefIdx == Idx)
3955 return LastUndefResult;
3961 auto OtherIt =
RegLR.find(Idx);
3962 if (OtherIt ==
RegLR.end())
3971 auto Resolution = RegVals.getResolution(OtherIt->valno->id);
3973 Resolution != JoinVals::CR_Keep && Resolution != JoinVals::CR_Erase;
3975 return LastUndefResult;
3981 while (DbgValueSetIt != DbgValueSet.end() && SegmentIt != OtherLR.
end()) {
3982 if (DbgValueSetIt->first < SegmentIt->end) {
3985 if (DbgValueSetIt->first >= SegmentIt->start) {
3986 bool HasReg = DbgValueSetIt->second->hasDebugOperandForReg(
Reg);
3987 bool ShouldUndefReg = ShouldUndef(DbgValueSetIt->first);
3988 if (HasReg && ShouldUndefReg) {
3990 DbgValueSetIt->second->setDebugValueUndef();
4004struct MBBPriorityInfo {
4005 MachineBasicBlock *
MBB;
4009 MBBPriorityInfo(MachineBasicBlock *mbb,
unsigned depth,
bool issplit)
4010 :
MBB(mbb),
Depth(depth), IsSplit(issplit) {}
4020 const MBBPriorityInfo *
RHS) {
4022 if (
LHS->Depth !=
RHS->Depth)
4023 return LHS->Depth >
RHS->Depth ? -1 : 1;
4026 if (
LHS->IsSplit !=
RHS->IsSplit)
4027 return LHS->IsSplit ? -1 : 1;
4031 unsigned cl =
LHS->MBB->pred_size() +
LHS->MBB->succ_size();
4032 unsigned cr =
RHS->MBB->pred_size() +
RHS->MBB->succ_size();
4034 return cl > cr ? -1 : 1;
4037 return LHS->MBB->getNumber() <
RHS->MBB->getNumber() ? -1 : 1;
4042 if (!Copy->isCopy())
4045 if (Copy->getOperand(1).isUndef())
4048 Register SrcReg = Copy->getOperand(1).getReg();
4049 Register DstReg = Copy->getOperand(0).getReg();
4057void RegisterCoalescer::lateLiveIntervalUpdate() {
4063 if (!DeadDefs.
empty())
4064 eliminateDeadDefs();
4066 ToBeUpdated.
clear();
4069bool RegisterCoalescer::copyCoalesceWorkList(
4071 bool Progress =
false;
4083 bool Success = joinCopy(
MI, Again, CurrentErasedInstrs);
4089 if (!CurrentErasedInstrs.
empty()) {
4091 if (
MI && CurrentErasedInstrs.
count(
MI))
4095 if (
MI && CurrentErasedInstrs.
count(
MI))
4106 assert(Copy.isCopyLike());
4109 if (&
MI != &Copy &&
MI.isCopyLike())
4114bool RegisterCoalescer::applyTerminalRule(
const MachineInstr &Copy)
const {
4119 unsigned SrcSubReg = 0, DstSubReg = 0;
4120 if (!
isMoveInstr(*
TRI, &Copy, SrcReg, DstReg, SrcSubReg, DstSubReg))
4141 if (&
MI == &Copy || !
MI.isCopyLike() ||
MI.getParent() != OrigBB)
4144 unsigned OtherSrcSubReg = 0, OtherSubReg = 0;
4145 if (!
isMoveInstr(*
TRI, &Copy, OtherSrcReg, OtherReg, OtherSrcSubReg,
4148 if (OtherReg == SrcReg)
4149 OtherReg = OtherSrcReg;
4168 const unsigned PrevSize = WorkList.
size();
4169 if (JoinGlobalCopies) {
4175 if (!
MI.isCopyLike())
4177 bool ApplyTerminalRule = applyTerminalRule(
MI);
4179 if (ApplyTerminalRule)
4184 if (ApplyTerminalRule)
4191 LocalWorkList.
append(LocalTerminals.
begin(), LocalTerminals.
end());
4198 if (MII.isCopyLike()) {
4199 if (applyTerminalRule(MII))
4212 if (copyCoalesceWorkList(CurrList))
4214 std::remove(WorkList.
begin() + PrevSize, WorkList.
end(),
nullptr),
4218void RegisterCoalescer::coalesceLocals() {
4219 copyCoalesceWorkList(LocalWorkList);
4224 LocalWorkList.clear();
4227void RegisterCoalescer::joinAllIntervals() {
4228 LLVM_DEBUG(
dbgs() <<
"********** JOINING INTERVALS ***********\n");
4229 assert(WorkList.
empty() && LocalWorkList.empty() &&
"Old data still around.");
4231 std::vector<MBBPriorityInfo> MBBs;
4232 MBBs.reserve(MF->size());
4234 MBBs.push_back(MBBPriorityInfo(&
MBB,
Loops->getLoopDepth(&
MBB),
4240 unsigned CurrDepth = std::numeric_limits<unsigned>::max();
4241 for (MBBPriorityInfo &
MBB : MBBs) {
4243 if (JoinGlobalCopies &&
MBB.Depth < CurrDepth) {
4245 CurrDepth =
MBB.Depth;
4247 copyCoalesceInMBB(
MBB.MBB);
4249 lateLiveIntervalUpdate();
4254 while (copyCoalesceWorkList(WorkList))
4256 lateLiveIntervalUpdate();
4266 RegisterCoalescer Impl(&LIS,
SI, &
Loops);
4278bool RegisterCoalescerLegacy::runOnMachineFunction(
MachineFunction &MF) {
4279 auto *LIS = &getAnalysis<LiveIntervalsWrapperPass>().getLIS();
4280 auto *
Loops = &getAnalysis<MachineLoopInfoWrapperPass>().getLI();
4281 auto *SIWrapper = getAnalysisIfAvailable<SlotIndexesWrapperPass>();
4282 SlotIndexes *
SI = SIWrapper ? &SIWrapper->getSI() :
nullptr;
4283 RegisterCoalescer Impl(LIS,
SI,
Loops);
4284 return Impl.run(MF);
4288 LLVM_DEBUG(
dbgs() <<
"********** REGISTER COALESCER **********\n"
4289 <<
"********** Function: " << fn.
getName() <<
'\n');
4301 dbgs() <<
"* Skipped as it exposes functions that returns twice.\n");
4321 unsigned SubReg = DebugPHI.second.SubReg;
4324 PHIValToPos.
insert(std::make_pair(DebugPHI.first,
P));
4325 RegToPHIIdx[
Reg].push_back(DebugPHI.first);
4334 MF->
verify(LIS,
SI,
"Before register coalescing", &
errs());
4336 DbgVRegToValues.
clear();
4353 if (
MRI->reg_nodbg_empty(
Reg))
4355 if (
MRI->recomputeRegClass(
Reg)) {
4357 <<
TRI->getRegClassName(
MRI->getRegClass(
Reg)) <<
'\n');
4364 if (!
MRI->shouldTrackSubRegLiveness(
Reg)) {
4372 assert((S.LaneMask & ~MaxMask).none());
4383 auto it = PHIValToPos.
find(
p.first);
4385 p.second.Reg = it->second.Reg;
4386 p.second.SubReg = it->second.SubReg;
4389 PHIValToPos.
clear();
4390 RegToPHIIdx.
clear();
4395 MF->
verify(LIS,
SI,
"After register coalescing", &
errs());
unsigned const MachineRegisterInfo * MRI
MachineInstrBuilder & UseMI
MachineInstrBuilder MachineInstrBuilder & DefMI
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
This file implements the BitVector class.
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
This file defines the DenseSet and SmallDenseSet classes.
const HexagonInstrInfo * TII
const AbstractManglingParser< Derived, Alloc >::OperatorInfo AbstractManglingParser< Derived, Alloc >::Ops[]
A common definition of LaneBitmask for use in TableGen and CodeGen.
Register const TargetRegisterInfo * TRI
Promote Memory to Register
#define INITIALIZE_PASS_DEPENDENCY(depName)
#define INITIALIZE_PASS_END(passName, arg, name, cfg, analysis)
#define INITIALIZE_PASS_BEGIN(passName, arg, name, cfg, analysis)
static cl::opt< cl::boolOrDefault > EnableGlobalCopies("join-globalcopies", cl::desc("Coalesce copies that span blocks (default=subtarget)"), cl::init(cl::BOU_UNSET), cl::Hidden)
Temporary flag to test global copy optimization.
static bool isLocalCopy(MachineInstr *Copy, const LiveIntervals *LIS)
static bool isSplitEdge(const MachineBasicBlock *MBB)
Return true if this block should be vacated by the coalescer to eliminate branches.
static int compareMBBPriority(const MBBPriorityInfo *LHS, const MBBPriorityInfo *RHS)
C-style comparator that sorts first based on the loop depth of the basic block (the unsigned),...
static cl::opt< unsigned > LargeIntervalSizeThreshold("large-interval-size-threshold", cl::Hidden, cl::desc("If the valnos size of an interval is larger than the threshold, " "it is regarded as a large interval. "), cl::init(100))
static bool isDefInSubRange(LiveInterval &LI, SlotIndex Def)
Check if any of the subranges of LI contain a definition at Def.
static std::pair< bool, bool > addSegmentsWithValNo(LiveRange &Dst, VNInfo *DstValNo, const LiveRange &Src, const VNInfo *SrcValNo)
Copy segments with value number SrcValNo from liverange Src to live range @Dst and use value number D...
static bool isLiveThrough(const LiveQueryResult Q)
static bool isTerminalReg(Register DstReg, const MachineInstr &Copy, const MachineRegisterInfo *MRI)
Check if DstReg is a terminal node.
static cl::opt< bool > VerifyCoalescing("verify-coalescing", cl::desc("Verify machine instrs before and after register coalescing"), cl::Hidden)
register Register static false bool isMoveInstr(const TargetRegisterInfo &tri, const MachineInstr *MI, Register &Src, Register &Dst, unsigned &SrcSub, unsigned &DstSub)
static cl::opt< bool > EnableJoinSplits("join-splitedges", cl::desc("Coalesce copies on split edges (default=subtarget)"), cl::Hidden)
Temporary flag to test critical edge unsplitting.
static cl::opt< bool > EnableJoining("join-liveintervals", cl::desc("Coalesce copies (default=true)"), cl::init(true), cl::Hidden)
static cl::opt< unsigned > LargeIntervalFreqThreshold("large-interval-freq-threshold", cl::Hidden, cl::desc("For a large interval, if it is coalesced with other live " "intervals many times more than the threshold, stop its " "coalescing to control the compile time. "), cl::init(256))
static bool definesFullReg(const MachineInstr &MI, Register Reg)
Returns true if MI defines the full vreg Reg, as opposed to just defining a subregister.
static cl::opt< unsigned > LateRematUpdateThreshold("late-remat-update-threshold", cl::Hidden, cl::desc("During rematerialization for a copy, if the def instruction has " "many other copy uses to be rematerialized, delay the multiple " "separate live interval update work and do them all at once after " "all those rematerialization are done. It will save a lot of " "repeated work. "), cl::init(100))
static cl::opt< bool > UseTerminalRule("terminal-rule", cl::desc("Apply the terminal rule"), cl::init(false), cl::Hidden)
SI Optimize VGPR LiveRange
This file defines the SmallPtrSet class.
This file defines the SmallVector class.
This file defines the 'Statistic' class, which is designed to be an easy way to expose various metric...
#define STATISTIC(VARNAME, DESC)
static TableGen::Emitter::OptClass< SkeletonEmitter > X("gen-skeleton-class", "Generate example skeleton class")
static DenseMap< Register, std::vector< std::pair< SlotIndex, MachineInstr * > > > buildVRegToDbgValueMap(MachineFunction &MF, const LiveIntervals *Liveness)
static void shrinkToUses(LiveInterval &LI, LiveIntervals &LIS)
PassT::Result * getCachedResult(IRUnitT &IR) const
Get the cached result of an analysis pass for a given IR unit.
PassT::Result & getResult(IRUnitT &IR, ExtraArgTs... ExtraArgs)
Get the result of an analysis pass for a given IR unit.
Represent the analysis usage information of a pass.
AnalysisUsage & addPreservedID(const void *ID)
AnalysisUsage & addUsedIfAvailable()
Add the specified Pass class to the set of analyses used by this pass.
AnalysisUsage & addRequired()
AnalysisUsage & addPreserved()
Add the specified Pass class to the set of analyses preserved by this pass.
LLVM_ABI void setPreservesCFG()
This function should be called by the pass, iff they do not:
bool test(unsigned Idx) const
Represents analyses that only rely on functions' control flow.
A helper class for register coalescers.
bool flip()
Swap SrcReg and DstReg.
bool isCoalescable(const MachineInstr *) const
Return true if MI is a copy instruction that will become an identity copy after coalescing.
bool setRegisters(const MachineInstr *)
Set registers to match the copy instruction MI.
iterator find(const_arg_type_t< KeyT > Val)
bool erase(const KeyT &Val)
std::pair< iterator, bool > insert(const std::pair< KeyT, ValueT > &KV)
bool isAsCheapAsAMove(const MachineInstr &MI) const override
A live range for subregisters.
LiveInterval - This class represents the liveness of a register, or stack slot.
LLVM_ABI void removeEmptySubRanges()
Removes all subranges without any segments (subranges without segments are not considered valid and s...
bool hasSubRanges() const
Returns true if subregister liveness information is available.
SubRange * createSubRangeFrom(BumpPtrAllocator &Allocator, LaneBitmask LaneMask, const LiveRange &CopyFrom)
Like createSubRange() but the new range is filled with a copy of the liveness information in CopyFrom...
iterator_range< subrange_iterator > subranges()
LLVM_ABI void refineSubRanges(BumpPtrAllocator &Allocator, LaneBitmask LaneMask, std::function< void(LiveInterval::SubRange &)> Apply, const SlotIndexes &Indexes, const TargetRegisterInfo &TRI, unsigned ComposeSubRegIdx=0)
Refines the subranges to support LaneMask.
LLVM_ABI void computeSubRangeUndefs(SmallVectorImpl< SlotIndex > &Undefs, LaneBitmask LaneMask, const MachineRegisterInfo &MRI, const SlotIndexes &Indexes) const
For a given lane mask LaneMask, compute indexes at which the lane is marked undefined by subregister ...
SubRange * createSubRange(BumpPtrAllocator &Allocator, LaneBitmask LaneMask)
Creates a new empty subregister live range.
LLVM_ABI void clearSubRanges()
Removes all subregister liveness information.
bool hasInterval(Register Reg) const
SlotIndex getMBBStartIdx(const MachineBasicBlock *mbb) const
Return the first index in the given basic block.
MachineInstr * getInstructionFromIndex(SlotIndex index) const
Returns the instruction associated with the given index.
LLVM_ABI bool hasPHIKill(const LiveInterval &LI, const VNInfo *VNI) const
Returns true if VNI is killed by any PHI-def values in LI.
SlotIndex InsertMachineInstrInMaps(MachineInstr &MI)
LLVM_ABI bool checkRegMaskInterference(const LiveInterval &LI, BitVector &UsableRegs)
Test if LI is live across any register mask instructions, and compute a bit mask of physical register...
SlotIndexes * getSlotIndexes() const
SlotIndex getInstructionIndex(const MachineInstr &Instr) const
Returns the base index of the given instruction.
void RemoveMachineInstrFromMaps(MachineInstr &MI)
VNInfo::Allocator & getVNInfoAllocator()
SlotIndex getMBBEndIdx(const MachineBasicBlock *mbb) const
Return the last index in the given basic block.
LiveRange & getRegUnit(unsigned Unit)
Return the live range for register unit Unit.
LiveRange * getCachedRegUnit(unsigned Unit)
Return the live range for register unit Unit if it has already been computed, or nullptr if it hasn't...
LiveInterval & getInterval(Register Reg)
LLVM_ABI void pruneValue(LiveRange &LR, SlotIndex Kill, SmallVectorImpl< SlotIndex > *EndPoints)
If LR has a live value at Kill, prune its live range by removing any liveness reachable from Kill.
void removeInterval(Register Reg)
Interval removal.
LLVM_ABI MachineBasicBlock * intervalIsInOneMBB(const LiveInterval &LI) const
If LI is confined to a single basic block, return a pointer to that block.
LLVM_ABI void removeVRegDefAt(LiveInterval &LI, SlotIndex Pos)
Remove value number and related live segments of LI and its subranges that start at position Pos.
LLVM_ABI bool shrinkToUses(LiveInterval *li, SmallVectorImpl< MachineInstr * > *dead=nullptr)
After removing some uses of a register, shrink its live range to just the remaining uses.
LLVM_ABI void extendToIndices(LiveRange &LR, ArrayRef< SlotIndex > Indices, ArrayRef< SlotIndex > Undefs)
Extend the live range LR to reach all points in Indices.
LLVM_ABI void dump() const
LLVM_ABI void removePhysRegDefAt(MCRegister Reg, SlotIndex Pos)
Remove value numbers and related live segments starting at position Pos that are part of any liverang...
MachineBasicBlock * getMBBFromIndex(SlotIndex index) const
bool isLiveInToMBB(const LiveRange &LR, const MachineBasicBlock *mbb) const
SlotIndex ReplaceMachineInstrInMaps(MachineInstr &MI, MachineInstr &NewMI)
Result of a LiveRange query.
VNInfo * valueOutOrDead() const
Returns the value alive at the end of the instruction, if any.
VNInfo * valueIn() const
Return the value that is live-in to the instruction.
VNInfo * valueOut() const
Return the value leaving the instruction, if any.
VNInfo * valueDefined() const
Return the value defined by this instruction, if any.
SlotIndex endPoint() const
Return the end point of the last live range segment to interact with the instruction,...
bool isKill() const
Return true if the live-in value is killed by this instruction.
Callback methods for LiveRangeEdit owners.
SlotIndex rematerializeAt(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, Register DestReg, const Remat &RM, const TargetRegisterInfo &, bool Late=false, unsigned SubIdx=0, MachineInstr *ReplaceIndexMI=nullptr)
rematerializeAt - Rematerialize RM.ParentVNI into DestReg by inserting an instruction into MBB before...
void eliminateDeadDefs(SmallVectorImpl< MachineInstr * > &Dead, ArrayRef< Register > RegsBeingSpilled={})
eliminateDeadDefs - Try to delete machine instructions that are now dead (allDefsAreDead returns true...
This class represents the liveness of a register, stack slot, etc.
VNInfo * getValNumInfo(unsigned ValNo)
getValNumInfo - Returns pointer to the specified val#.
LLVM_ABI iterator addSegment(Segment S)
Add the specified Segment to this range, merging segments as appropriate.
Segments::iterator iterator
const Segment * getSegmentContaining(SlotIndex Idx) const
Return the segment that contains the specified index, or null if there is none.
LLVM_ABI void join(LiveRange &Other, const int *ValNoAssignments, const int *RHSValNoAssignments, SmallVectorImpl< VNInfo * > &NewVNInfo)
join - Join two live ranges (this, and other) together.
bool liveAt(SlotIndex index) const
LLVM_ABI VNInfo * createDeadDef(SlotIndex Def, VNInfo::Allocator &VNIAlloc)
createDeadDef - Make sure the range has a value defined at Def.
LLVM_ABI void removeValNo(VNInfo *ValNo)
removeValNo - Remove all the segments defined by the specified value#.
bool overlaps(const LiveRange &other) const
overlaps - Return true if the intersection of the two live ranges is not empty.
LiveQueryResult Query(SlotIndex Idx) const
Query Liveness at Idx.
VNInfo * getVNInfoBefore(SlotIndex Idx) const
getVNInfoBefore - Return the VNInfo that is live up to but not necessarily including Idx,...
bool verify() const
Walk the range and assert if any invariants fail to hold.
LLVM_ABI VNInfo * MergeValueNumberInto(VNInfo *V1, VNInfo *V2)
MergeValueNumberInto - This method is called when two value numbers are found to be equivalent.
unsigned getNumValNums() const
bool containsOneValue() const
iterator FindSegmentContaining(SlotIndex Idx)
Return an iterator to the segment that contains the specified index, or end() if there is none.
void assign(const LiveRange &Other, BumpPtrAllocator &Allocator)
Copies values numbers and live segments from Other into this range.
VNInfo * getVNInfoAt(SlotIndex Idx) const
getVNInfoAt - Return the VNInfo that is live at Idx, or NULL.
LLVM_ABI iterator find(SlotIndex Pos)
find - Return an iterator pointing to the first segment that ends after Pos, or end().
Describe properties that are true of each instruction in the target description file.
unsigned getNumOperands() const
Return the number of declared MachineOperands for this MachineInstruction.
MCRegUnitRootIterator enumerates the root registers of a register unit.
bool isValid() const
Check if the iterator is at the end of the list.
Wrapper class representing physical registers. Should be passed by value.
An RAII based helper class to modify MachineFunctionProperties when running pass.
bool isInlineAsmBrIndirectTarget() const
Returns true if this is the indirect dest of an INLINEASM_BR.
unsigned pred_size() const
LLVM_ABI bool hasEHPadSuccessor() const
bool isEHPad() const
Returns true if the block is a landing pad.
LLVM_ABI instr_iterator insert(instr_iterator I, MachineInstr *M)
Insert MI into the instruction list before I, possibly inside a bundle.
LLVM_ABI iterator getFirstTerminator()
Returns an iterator to the first terminator instruction of this basic block.
unsigned succ_size() const
LLVM_ABI instr_iterator erase(instr_iterator I)
Remove an instruction from the instruction list and delete it.
iterator_range< pred_iterator > predecessors()
void splice(iterator Where, MachineBasicBlock *Other, iterator From)
Take an instruction from MBB 'Other' at the position From, and insert it into this MBB right before '...
MachineInstrBundleIterator< MachineInstr > iterator
LLVM_ABI StringRef getName() const
Return the name of the corresponding LLVM basic block, or an empty string.
Analysis pass which computes a MachineDominatorTree.
MachineFunctionPass - This class adapts the FunctionPass interface to allow convenient creation of pa...
void getAnalysisUsage(AnalysisUsage &AU) const override
getAnalysisUsage - Subclasses that override getAnalysisUsage must call this.
const TargetSubtargetInfo & getSubtarget() const
getSubtarget - Return the subtarget for which this machine code is being compiled.
StringRef getName() const
getName - Return the name of the corresponding LLVM function.
bool exposesReturnsTwice() const
exposesReturnsTwice - Returns true if the function calls setjmp or any other similar functions with a...
MachineRegisterInfo & getRegInfo()
getRegInfo - Return information about the registers currently in use.
bool verify(Pass *p=nullptr, const char *Banner=nullptr, raw_ostream *OS=nullptr, bool AbortOnError=true) const
Run the current MachineFunction through the machine code verifier, useful for debugger use.
DenseMap< unsigned, DebugPHIRegallocPos > DebugPHIPositions
Map of debug instruction numbers to the position of their PHI instructions during register allocation...
const MachineInstrBuilder & addReg(Register RegNo, unsigned flags=0, unsigned SubReg=0) const
Add a new virtual register operand.
Representation of each machine instruction.
unsigned getOpcode() const
Returns the opcode of this MachineInstr.
LLVM_ABI void setRegisterDefReadUndef(Register Reg, bool IsUndef=true)
Mark all subregister defs of register Reg with the undef flag.
bool isImplicitDef() const
const MachineBasicBlock * getParent() const
bool isCopyLike() const
Return true if the instruction behaves like a copy.
filtered_mop_range all_defs()
Returns an iterator range over all operands that are (explicit or implicit) register defs.
LLVM_ABI std::pair< bool, bool > readsWritesVirtualRegister(Register Reg, SmallVectorImpl< unsigned > *Ops=nullptr) const
Return a pair of bools (reads, writes) indicating if this instruction reads or writes Reg.
bool isRegTiedToDefOperand(unsigned UseOpIdx, unsigned *DefOpIdx=nullptr) const
Return true if the use operand of the specified index is tied to a def operand.
LLVM_ABI bool isSafeToMove(bool &SawStore) const
Return true if it is safe to move this instruction.
bool isDebugInstr() const
unsigned getNumOperands() const
Retuns the total number of operands.
LLVM_ABI void addOperand(MachineFunction &MF, const MachineOperand &Op)
Add the specified operand to the instruction.
bool isRegTiedToUseOperand(unsigned DefOpIdx, unsigned *UseOpIdx=nullptr) const
Given the index of a register def operand, check if the register def is tied to a source operand,...
LLVM_ABI int findRegisterUseOperandIdx(Register Reg, const TargetRegisterInfo *TRI, bool isKill=false) const
Returns the operand index that is a use of the specific register or -1 if it is not found.
const MCInstrDesc & getDesc() const
Returns the target instruction descriptor of this MachineInstr.
bool isCommutable(QueryType Type=IgnoreBundle) const
Return true if this may be a 2- or 3-address instruction (of the form "X = op Y, Z,...
LLVM_ABI void setDesc(const MCInstrDesc &TID)
Replace the instruction descriptor (thus opcode) of the current instruction with a new one.
LLVM_ABI void substituteRegister(Register FromReg, Register ToReg, unsigned SubIdx, const TargetRegisterInfo &RegInfo)
Replace all occurrences of FromReg with ToReg:SubIdx, properly composing subreg indices where necessa...
const DebugLoc & getDebugLoc() const
Returns the debug location id of this MachineInstr.
LLVM_ABI void eraseFromParent()
Unlink 'this' from the containing basic block and delete it.
LLVM_ABI void removeOperand(unsigned OpNo)
Erase an operand from an instruction, leaving it with one fewer operand than it started with.
const MachineOperand & getOperand(unsigned i) const
LLVM_ABI int findRegisterDefOperandIdx(Register Reg, const TargetRegisterInfo *TRI, bool isDead=false, bool Overlap=false) const
Returns the operand index that is a def of the specified register or -1 if it is not found.
void setDebugLoc(DebugLoc DL)
Replace current source information with new such.
LLVM_ABI bool allDefsAreDead() const
Return true if all the defs of this instruction are dead.
Analysis pass that exposes the MachineLoopInfo for a machine function.
MachineOperand class - Representation of each machine instruction operand.
void setSubReg(unsigned subReg)
unsigned getSubReg() const
LLVM_ABI void substVirtReg(Register Reg, unsigned SubIdx, const TargetRegisterInfo &)
substVirtReg - Substitute the current register with the virtual subregister Reg:SubReg.
bool readsReg() const
readsReg - Returns true if this operand reads the previous value of its register.
bool isReg() const
isReg - Tests if this is a MO_Register operand.
void setIsDead(bool Val=true)
bool isImm() const
isImm - Tests if this is a MO_Immediate operand.
void setIsKill(bool Val=true)
MachineInstr * getParent()
getParent - Return the instruction that this operand belongs to.
LLVM_ABI void substPhysReg(MCRegister Reg, const TargetRegisterInfo &)
substPhysReg - Substitute the current register with the physical register Reg, taking any existing Su...
void setIsUndef(bool Val=true)
bool isEarlyClobber() const
Register getReg() const
getReg - Returns the register number.
static MachineOperand CreateReg(Register Reg, bool isDef, bool isImp=false, bool isKill=false, bool isDead=false, bool isUndef=false, bool isEarlyClobber=false, unsigned SubReg=0, bool isDebug=false, bool isInternalRead=false, bool isRenamable=false)
MachineRegisterInfo - Keep track of information for virtual and physical registers,...
defusechain_instr_iterator< true, true, false, true > reg_instr_iterator
reg_instr_iterator/reg_instr_begin/reg_instr_end - Walk all defs and uses of the specified register,...
MutableArrayRef - Represent a mutable reference to an array (0 or more elements consecutively in memo...
static LLVM_ABI PassRegistry * getPassRegistry()
getPassRegistry - Access the global registry object, which is automatically initialized at applicatio...
A set of analyses that are preserved following a run of a transformation pass.
static PreservedAnalyses all()
Construct a special preserved set that preserves all passes.
bool isProperSubClass(const TargetRegisterClass *RC) const
isProperSubClass - Returns true if RC has a legal super-class with more allocatable registers.
unsigned getNumAllocatableRegs(const TargetRegisterClass *RC) const
getNumAllocatableRegs - Returns the number of actually allocatable registers in RC in the current fun...
LLVM_ABI void runOnMachineFunction(const MachineFunction &MF, bool Rev=false)
runOnFunction - Prepare to answer questions about MF.
PreservedAnalyses run(MachineFunction &MF, MachineFunctionAnalysisManager &MFAM)
Wrapper class representing virtual and physical registers.
MCRegister asMCReg() const
Utility to check-convert this value to a MCRegister.
constexpr bool isVirtual() const
Return true if the specified register number is in the virtual register namespace.
constexpr unsigned id() const
constexpr bool isPhysical() const
Return true if the specified register number is in the physical register namespace.
SlotIndex - An opaque wrapper around machine indexes.
static bool isSameInstr(SlotIndex A, SlotIndex B)
isSameInstr - Return true if A and B refer to the same instruction.
bool isEarlyClobber() const
isEarlyClobber - Returns true if this is an early-clobber slot.
bool isValid() const
Returns true if this is a valid index.
SlotIndex getBaseIndex() const
Returns the base index for associated with this index.
SlotIndex getPrevSlot() const
Returns the previous slot in the index list.
SlotIndex getRegSlot(bool EC=false) const
Returns the register use/def slot in the current instruction for a normal or early-clobber def.
bool isDead() const
isDead - Returns true if this is a dead def kill slot.
MachineBasicBlock * getMBBFromIndex(SlotIndex index) const
Returns the basic block which the given index falls in.
SlotIndex getMBBEndIdx(unsigned Num) const
Returns the index past the last valid index in the given basic block.
SlotIndex getNextNonNullIndex(SlotIndex Index)
Returns the next non-null index, if one exists.
SlotIndex getInstructionIndex(const MachineInstr &MI, bool IgnoreBundle=false) const
Returns the base index for the given instruction.
SlotIndex getMBBStartIdx(unsigned Num) const
Returns the first index in the given basic block number.
SlotIndex getIndexBefore(const MachineInstr &MI) const
getIndexBefore - Returns the index of the last indexed instruction before MI, or the start index of i...
MachineInstr * getInstructionFromIndex(SlotIndex index) const
Returns the instruction for the given index, or null if the given index has no instruction associated...
A templated base class for SmallPtrSet which provides the typesafe interface that is common across al...
bool erase(PtrType Ptr)
Remove pointer from the set.
size_type count(ConstPtrType Ptr) const
count - Return 1 if the specified pointer is in the set, 0 otherwise.
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
void reserve(size_type N)
iterator erase(const_iterator CI)
void append(ItTy in_start, ItTy in_end)
Add the specified range to the end of the SmallVector.
void push_back(const T &Elt)
pointer data()
Return a pointer to the vector's buffer, even if empty().
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
TargetInstrInfo - Interface to description of machine instruction set.
static const unsigned CommuteAnyOperandIndex
bool contains(Register Reg) const
Return true if the specified register is included in this register class.
TargetRegisterInfo base class - We assume that the target defines a static array of TargetRegisterDes...
TargetSubtargetInfo - Generic base class for all target subtargets.
virtual bool enableJoinGlobalCopies() const
True if the subtarget should enable joining global copies.
virtual const TargetInstrInfo * getInstrInfo() const
virtual const TargetRegisterInfo * getRegisterInfo() const =0
Return the target's register information.
VNInfo - Value Number Information.
void markUnused()
Mark this value as unused.
BumpPtrAllocator Allocator
bool isUnused() const
Returns true if this value is unused.
unsigned id
The ID number of this value.
SlotIndex def
The index of the defining instruction.
bool isPHIDef() const
Returns true if this value is defined by a PHI instruction (or was, PHI instructions may have been el...
static bool allUsesAvailableAt(const MachineInstr *MI, SlotIndex UseIdx, const LiveIntervals &LIS, const MachineRegisterInfo &MRI, const TargetInstrInfo &TII)
std::pair< iterator, bool > insert(const ValueT &V)
size_type count(const_arg_type_t< ValueT > V) const
Return 1 if the specified key is in the set, 0 otherwise.
self_iterator getIterator()
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
constexpr std::underlying_type_t< E > Mask()
Get a bitmask with 1s in all places up to the high-order bit of E's largest value.
This namespace contains all of the command line option processing machinery.
initializer< Ty > init(const Ty &Val)
PointerTypeMap run(const Module &M)
Compute the PointerTypeMap for the module M.
NodeAddr< DefNode * > Def
This is an optimization pass for GlobalISel generic memory operations.
MachineInstrBuilder BuildMI(MachineFunction &MF, const MIMetadata &MIMD, const MCInstrDesc &MCID)
Builder interface. Specify how to create the initial instruction itself.
LLVM_ABI char & RegisterCoalescerID
RegisterCoalescer - This pass merges live ranges to eliminate copies.
LLVM_ABI char & MachineDominatorsID
MachineDominators - This pass is a machine dominators analysis pass.
LLVM_ABI Printable printRegUnit(unsigned Unit, const TargetRegisterInfo *TRI)
Create Printable object to print register units on a raw_ostream.
void append_range(Container &C, Range &&R)
Wrapper function to append range R to container C.
iterator_range< early_inc_iterator_impl< detail::IterOfRange< RangeT > > > make_early_inc_range(RangeT &&Range)
Make a range that does early increment to allow mutation of the underlying range without disrupting i...
Printable PrintLaneMask(LaneBitmask LaneMask)
Create Printable object to print LaneBitmasks on a raw_ostream.
AnalysisManager< MachineFunction > MachineFunctionAnalysisManager
auto unique(Range &&R, Predicate P)
auto upper_bound(R &&Range, T &&Value)
Provide wrappers to std::upper_bound which take ranges instead of having to pass begin/end explicitly...
LLVM_ABI void initializeRegisterCoalescerLegacyPass(PassRegistry &)
LLVM_ABI PreservedAnalyses getMachineFunctionPassPreservedAnalyses()
Returns the minimum set of Analyses that all machine function passes must preserve.
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
void sort(IteratorTy Start, IteratorTy End)
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
unsigned MCRegUnit
Register units are used to compute register aliasing.
BumpPtrAllocatorImpl BumpPtrAllocator
The standard BumpPtrAllocator which just uses the default template parameters.
class LLVM_GSL_OWNER SmallVector
Forward declaration of SmallVector so that calculateSmallVectorDefaultInlinedElements can reference s...
@ Success
The lock was released successfully.
MutableArrayRef(T &OneElt) -> MutableArrayRef< T >
LLVM_ABI raw_fd_ostream & errs()
This returns a reference to a raw_ostream for standard error.
DWARFExpression::Operation Op
auto make_second_range(ContainerTy &&c)
Given a container of pairs, return a range over the second elements.
bool is_contained(R &&Range, const E &Element)
Returns true if Element is found in Range.
LLVM_ABI void eraseInstrs(ArrayRef< MachineInstr * > DeadInstrs, MachineRegisterInfo &MRI, LostDebugLocObserver *LocObserver=nullptr)
void array_pod_sort(IteratorTy Start, IteratorTy End)
array_pod_sort - This sorts an array with the specified start and end extent.
LLVM_ABI Printable printReg(Register Reg, const TargetRegisterInfo *TRI=nullptr, unsigned SubIdx=0, const MachineRegisterInfo *MRI=nullptr)
Prints virtual and physical registers with or without a TRI instance.
LLVM_ABI Printable printMBBReference(const MachineBasicBlock &MBB)
Prints a machine basic block reference.
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
static constexpr LaneBitmask getLane(unsigned Lane)
static constexpr LaneBitmask getAll()
constexpr bool any() const
static constexpr LaneBitmask getNone()
Remat - Information needed to rematerialize at a specific location.
This represents a simple continuous liveness interval for a value.