LLVM 18.0.0git
X86InstrInfo.cpp
Go to the documentation of this file.
1//===-- X86InstrInfo.cpp - X86 Instruction Information --------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file contains the X86 implementation of the TargetInstrInfo class.
10//
11//===----------------------------------------------------------------------===//
12
13#include "X86InstrInfo.h"
14#include "X86.h"
15#include "X86InstrBuilder.h"
16#include "X86InstrFoldTables.h"
18#include "X86Subtarget.h"
19#include "X86TargetMachine.h"
20#include "llvm/ADT/STLExtras.h"
21#include "llvm/ADT/Sequence.h"
37#include "llvm/IR/Function.h"
38#include "llvm/IR/InstrTypes.h"
39#include "llvm/MC/MCAsmInfo.h"
40#include "llvm/MC/MCExpr.h"
41#include "llvm/MC/MCInst.h"
43#include "llvm/Support/Debug.h"
47#include <optional>
48
49using namespace llvm;
50
51#define DEBUG_TYPE "x86-instr-info"
52
53#define GET_INSTRINFO_CTOR_DTOR
54#include "X86GenInstrInfo.inc"
55
56static cl::opt<bool>
57 NoFusing("disable-spill-fusing",
58 cl::desc("Disable fusing of spill code into instructions"),
60static cl::opt<bool>
61PrintFailedFusing("print-failed-fuse-candidates",
62 cl::desc("Print instructions that the allocator wants to"
63 " fuse, but the X86 backend currently can't"),
65static cl::opt<bool>
66ReMatPICStubLoad("remat-pic-stub-load",
67 cl::desc("Re-materialize load from stub in PIC mode"),
68 cl::init(false), cl::Hidden);
70PartialRegUpdateClearance("partial-reg-update-clearance",
71 cl::desc("Clearance between two register writes "
72 "for inserting XOR to avoid partial "
73 "register update"),
74 cl::init(64), cl::Hidden);
76UndefRegClearance("undef-reg-clearance",
77 cl::desc("How many idle instructions we would like before "
78 "certain undef register reads"),
79 cl::init(128), cl::Hidden);
80
81
82// Pin the vtable to this file.
83void X86InstrInfo::anchor() {}
84
86 : X86GenInstrInfo((STI.isTarget64BitLP64() ? X86::ADJCALLSTACKDOWN64
87 : X86::ADJCALLSTACKDOWN32),
88 (STI.isTarget64BitLP64() ? X86::ADJCALLSTACKUP64
89 : X86::ADJCALLSTACKUP32),
90 X86::CATCHRET,
91 (STI.is64Bit() ? X86::RET64 : X86::RET32)),
92 Subtarget(STI), RI(STI.getTargetTriple()) {
93}
94
95bool
97 Register &SrcReg, Register &DstReg,
98 unsigned &SubIdx) const {
99 switch (MI.getOpcode()) {
100 default: break;
101 case X86::MOVSX16rr8:
102 case X86::MOVZX16rr8:
103 case X86::MOVSX32rr8:
104 case X86::MOVZX32rr8:
105 case X86::MOVSX64rr8:
106 if (!Subtarget.is64Bit())
107 // It's not always legal to reference the low 8-bit of the larger
108 // register in 32-bit mode.
109 return false;
110 [[fallthrough]];
111 case X86::MOVSX32rr16:
112 case X86::MOVZX32rr16:
113 case X86::MOVSX64rr16:
114 case X86::MOVSX64rr32: {
115 if (MI.getOperand(0).getSubReg() || MI.getOperand(1).getSubReg())
116 // Be conservative.
117 return false;
118 SrcReg = MI.getOperand(1).getReg();
119 DstReg = MI.getOperand(0).getReg();
120 switch (MI.getOpcode()) {
121 default: llvm_unreachable("Unreachable!");
122 case X86::MOVSX16rr8:
123 case X86::MOVZX16rr8:
124 case X86::MOVSX32rr8:
125 case X86::MOVZX32rr8:
126 case X86::MOVSX64rr8:
127 SubIdx = X86::sub_8bit;
128 break;
129 case X86::MOVSX32rr16:
130 case X86::MOVZX32rr16:
131 case X86::MOVSX64rr16:
132 SubIdx = X86::sub_16bit;
133 break;
134 case X86::MOVSX64rr32:
135 SubIdx = X86::sub_32bit;
136 break;
137 }
138 return true;
139 }
140 }
141 return false;
142}
143
145 if (MI.mayLoad() || MI.mayStore())
146 return false;
147
148 // Some target-independent operations that trivially lower to data-invariant
149 // instructions.
150 if (MI.isCopyLike() || MI.isInsertSubreg())
151 return true;
152
153 unsigned Opcode = MI.getOpcode();
154 using namespace X86;
155 // On x86 it is believed that imul is constant time w.r.t. the loaded data.
156 // However, they set flags and are perhaps the most surprisingly constant
157 // time operations so we call them out here separately.
158 if (isIMUL(Opcode))
159 return true;
160 // Bit scanning and counting instructions that are somewhat surprisingly
161 // constant time as they scan across bits and do other fairly complex
162 // operations like popcnt, but are believed to be constant time on x86.
163 // However, these set flags.
164 if (isBSF(Opcode) || isBSR(Opcode) || isLZCNT(Opcode) || isPOPCNT(Opcode) ||
165 isTZCNT(Opcode))
166 return true;
167 // Bit manipulation instructions are effectively combinations of basic
168 // arithmetic ops, and should still execute in constant time. These also
169 // set flags.
170 if (isBLCFILL(Opcode) || isBLCI(Opcode) || isBLCIC(Opcode) ||
171 isBLCMSK(Opcode) || isBLCS(Opcode) || isBLSFILL(Opcode) ||
172 isBLSI(Opcode) || isBLSIC(Opcode) || isBLSMSK(Opcode) || isBLSR(Opcode) ||
173 isTZMSK(Opcode))
174 return true;
175 // Bit extracting and clearing instructions should execute in constant time,
176 // and set flags.
177 if (isBEXTR(Opcode) || isBZHI(Opcode))
178 return true;
179 // Shift and rotate.
180 if (isROL(Opcode) || isROR(Opcode) || isSAR(Opcode) || isSHL(Opcode) ||
181 isSHR(Opcode) || isSHLD(Opcode) || isSHRD(Opcode))
182 return true;
183 // Basic arithmetic is constant time on the input but does set flags.
184 if (isADC(Opcode) || isADD(Opcode) || isAND(Opcode) || isOR(Opcode) ||
185 isSBB(Opcode) || isSUB(Opcode) || isXOR(Opcode))
186 return true;
187 // Arithmetic with just 32-bit and 64-bit variants and no immediates.
188 if (isANDN(Opcode))
189 return true;
190 // Unary arithmetic operations.
191 if (isDEC(Opcode) || isINC(Opcode) || isNEG(Opcode))
192 return true;
193 // Unlike other arithmetic, NOT doesn't set EFLAGS.
194 if (isNOT(Opcode))
195 return true;
196 // Various move instructions used to zero or sign extend things. Note that we
197 // intentionally don't support the _NOREX variants as we can't handle that
198 // register constraint anyways.
199 if (isMOVSX(Opcode) || isMOVZX(Opcode) || isMOVSXD(Opcode) || isMOV(Opcode))
200 return true;
201 // Arithmetic instructions that are both constant time and don't set flags.
202 if (isRORX(Opcode) || isSARX(Opcode) || isSHLX(Opcode) || isSHRX(Opcode))
203 return true;
204 // LEA doesn't actually access memory, and its arithmetic is constant time.
205 if (isLEA(Opcode))
206 return true;
207 // By default, assume that the instruction is not data invariant.
208 return false;
209}
210
212 switch (MI.getOpcode()) {
213 default:
214 // By default, assume that the load will immediately leak.
215 return false;
216
217 // On x86 it is believed that imul is constant time w.r.t. the loaded data.
218 // However, they set flags and are perhaps the most surprisingly constant
219 // time operations so we call them out here separately.
220 case X86::IMUL16rm:
221 case X86::IMUL16rmi:
222 case X86::IMUL32rm:
223 case X86::IMUL32rmi:
224 case X86::IMUL64rm:
225 case X86::IMUL64rmi32:
226
227 // Bit scanning and counting instructions that are somewhat surprisingly
228 // constant time as they scan across bits and do other fairly complex
229 // operations like popcnt, but are believed to be constant time on x86.
230 // However, these set flags.
231 case X86::BSF16rm:
232 case X86::BSF32rm:
233 case X86::BSF64rm:
234 case X86::BSR16rm:
235 case X86::BSR32rm:
236 case X86::BSR64rm:
237 case X86::LZCNT16rm:
238 case X86::LZCNT32rm:
239 case X86::LZCNT64rm:
240 case X86::POPCNT16rm:
241 case X86::POPCNT32rm:
242 case X86::POPCNT64rm:
243 case X86::TZCNT16rm:
244 case X86::TZCNT32rm:
245 case X86::TZCNT64rm:
246
247 // Bit manipulation instructions are effectively combinations of basic
248 // arithmetic ops, and should still execute in constant time. These also
249 // set flags.
250 case X86::BLCFILL32rm:
251 case X86::BLCFILL64rm:
252 case X86::BLCI32rm:
253 case X86::BLCI64rm:
254 case X86::BLCIC32rm:
255 case X86::BLCIC64rm:
256 case X86::BLCMSK32rm:
257 case X86::BLCMSK64rm:
258 case X86::BLCS32rm:
259 case X86::BLCS64rm:
260 case X86::BLSFILL32rm:
261 case X86::BLSFILL64rm:
262 case X86::BLSI32rm:
263 case X86::BLSI64rm:
264 case X86::BLSIC32rm:
265 case X86::BLSIC64rm:
266 case X86::BLSMSK32rm:
267 case X86::BLSMSK64rm:
268 case X86::BLSR32rm:
269 case X86::BLSR64rm:
270 case X86::TZMSK32rm:
271 case X86::TZMSK64rm:
272
273 // Bit extracting and clearing instructions should execute in constant time,
274 // and set flags.
275 case X86::BEXTR32rm:
276 case X86::BEXTR64rm:
277 case X86::BEXTRI32mi:
278 case X86::BEXTRI64mi:
279 case X86::BZHI32rm:
280 case X86::BZHI64rm:
281
282 // Basic arithmetic is constant time on the input but does set flags.
283 case X86::ADC8rm:
284 case X86::ADC16rm:
285 case X86::ADC32rm:
286 case X86::ADC64rm:
287 case X86::ADD8rm:
288 case X86::ADD16rm:
289 case X86::ADD32rm:
290 case X86::ADD64rm:
291 case X86::AND8rm:
292 case X86::AND16rm:
293 case X86::AND32rm:
294 case X86::AND64rm:
295 case X86::ANDN32rm:
296 case X86::ANDN64rm:
297 case X86::OR8rm:
298 case X86::OR16rm:
299 case X86::OR32rm:
300 case X86::OR64rm:
301 case X86::SBB8rm:
302 case X86::SBB16rm:
303 case X86::SBB32rm:
304 case X86::SBB64rm:
305 case X86::SUB8rm:
306 case X86::SUB16rm:
307 case X86::SUB32rm:
308 case X86::SUB64rm:
309 case X86::XOR8rm:
310 case X86::XOR16rm:
311 case X86::XOR32rm:
312 case X86::XOR64rm:
313
314 // Integer multiply w/o affecting flags is still believed to be constant
315 // time on x86. Called out separately as this is among the most surprising
316 // instructions to exhibit that behavior.
317 case X86::MULX32rm:
318 case X86::MULX64rm:
319
320 // Arithmetic instructions that are both constant time and don't set flags.
321 case X86::RORX32mi:
322 case X86::RORX64mi:
323 case X86::SARX32rm:
324 case X86::SARX64rm:
325 case X86::SHLX32rm:
326 case X86::SHLX64rm:
327 case X86::SHRX32rm:
328 case X86::SHRX64rm:
329
330 // Conversions are believed to be constant time and don't set flags.
331 case X86::CVTTSD2SI64rm:
332 case X86::VCVTTSD2SI64rm:
333 case X86::VCVTTSD2SI64Zrm:
334 case X86::CVTTSD2SIrm:
335 case X86::VCVTTSD2SIrm:
336 case X86::VCVTTSD2SIZrm:
337 case X86::CVTTSS2SI64rm:
338 case X86::VCVTTSS2SI64rm:
339 case X86::VCVTTSS2SI64Zrm:
340 case X86::CVTTSS2SIrm:
341 case X86::VCVTTSS2SIrm:
342 case X86::VCVTTSS2SIZrm:
343 case X86::CVTSI2SDrm:
344 case X86::VCVTSI2SDrm:
345 case X86::VCVTSI2SDZrm:
346 case X86::CVTSI2SSrm:
347 case X86::VCVTSI2SSrm:
348 case X86::VCVTSI2SSZrm:
349 case X86::CVTSI642SDrm:
350 case X86::VCVTSI642SDrm:
351 case X86::VCVTSI642SDZrm:
352 case X86::CVTSI642SSrm:
353 case X86::VCVTSI642SSrm:
354 case X86::VCVTSI642SSZrm:
355 case X86::CVTSS2SDrm:
356 case X86::VCVTSS2SDrm:
357 case X86::VCVTSS2SDZrm:
358 case X86::CVTSD2SSrm:
359 case X86::VCVTSD2SSrm:
360 case X86::VCVTSD2SSZrm:
361 // AVX512 added unsigned integer conversions.
362 case X86::VCVTTSD2USI64Zrm:
363 case X86::VCVTTSD2USIZrm:
364 case X86::VCVTTSS2USI64Zrm:
365 case X86::VCVTTSS2USIZrm:
366 case X86::VCVTUSI2SDZrm:
367 case X86::VCVTUSI642SDZrm:
368 case X86::VCVTUSI2SSZrm:
369 case X86::VCVTUSI642SSZrm:
370
371 // Loads to register don't set flags.
372 case X86::MOV8rm:
373 case X86::MOV8rm_NOREX:
374 case X86::MOV16rm:
375 case X86::MOV32rm:
376 case X86::MOV64rm:
377 case X86::MOVSX16rm8:
378 case X86::MOVSX32rm16:
379 case X86::MOVSX32rm8:
380 case X86::MOVSX32rm8_NOREX:
381 case X86::MOVSX64rm16:
382 case X86::MOVSX64rm32:
383 case X86::MOVSX64rm8:
384 case X86::MOVZX16rm8:
385 case X86::MOVZX32rm16:
386 case X86::MOVZX32rm8:
387 case X86::MOVZX32rm8_NOREX:
388 case X86::MOVZX64rm16:
389 case X86::MOVZX64rm8:
390 return true;
391 }
392}
393
395 const MachineFunction *MF = MI.getParent()->getParent();
397
398 if (isFrameInstr(MI)) {
399 int SPAdj = alignTo(getFrameSize(MI), TFI->getStackAlign());
400 SPAdj -= getFrameAdjustment(MI);
401 if (!isFrameSetup(MI))
402 SPAdj = -SPAdj;
403 return SPAdj;
404 }
405
406 // To know whether a call adjusts the stack, we need information
407 // that is bound to the following ADJCALLSTACKUP pseudo.
408 // Look for the next ADJCALLSTACKUP that follows the call.
409 if (MI.isCall()) {
410 const MachineBasicBlock *MBB = MI.getParent();
412 for (auto E = MBB->end(); I != E; ++I) {
413 if (I->getOpcode() == getCallFrameDestroyOpcode() ||
414 I->isCall())
415 break;
416 }
417
418 // If we could not find a frame destroy opcode, then it has already
419 // been simplified, so we don't care.
420 if (I->getOpcode() != getCallFrameDestroyOpcode())
421 return 0;
422
423 return -(I->getOperand(1).getImm());
424 }
425
426 // Currently handle only PUSHes we can reasonably expect to see
427 // in call sequences
428 switch (MI.getOpcode()) {
429 default:
430 return 0;
431 case X86::PUSH32r:
432 case X86::PUSH32rmm:
433 case X86::PUSH32rmr:
434 case X86::PUSH32i:
435 return 4;
436 case X86::PUSH64r:
437 case X86::PUSH64rmm:
438 case X86::PUSH64rmr:
439 case X86::PUSH64i32:
440 return 8;
441 }
442}
443
444/// Return true and the FrameIndex if the specified
445/// operand and follow operands form a reference to the stack frame.
446bool X86InstrInfo::isFrameOperand(const MachineInstr &MI, unsigned int Op,
447 int &FrameIndex) const {
448 if (MI.getOperand(Op + X86::AddrBaseReg).isFI() &&
449 MI.getOperand(Op + X86::AddrScaleAmt).isImm() &&
450 MI.getOperand(Op + X86::AddrIndexReg).isReg() &&
451 MI.getOperand(Op + X86::AddrDisp).isImm() &&
452 MI.getOperand(Op + X86::AddrScaleAmt).getImm() == 1 &&
453 MI.getOperand(Op + X86::AddrIndexReg).getReg() == 0 &&
454 MI.getOperand(Op + X86::AddrDisp).getImm() == 0) {
455 FrameIndex = MI.getOperand(Op + X86::AddrBaseReg).getIndex();
456 return true;
457 }
458 return false;
459}
460
461static bool isFrameLoadOpcode(int Opcode, unsigned &MemBytes) {
462 switch (Opcode) {
463 default:
464 return false;
465 case X86::MOV8rm:
466 case X86::KMOVBkm:
467 MemBytes = 1;
468 return true;
469 case X86::MOV16rm:
470 case X86::KMOVWkm:
471 case X86::VMOVSHZrm:
472 case X86::VMOVSHZrm_alt:
473 MemBytes = 2;
474 return true;
475 case X86::MOV32rm:
476 case X86::MOVSSrm:
477 case X86::MOVSSrm_alt:
478 case X86::VMOVSSrm:
479 case X86::VMOVSSrm_alt:
480 case X86::VMOVSSZrm:
481 case X86::VMOVSSZrm_alt:
482 case X86::KMOVDkm:
483 MemBytes = 4;
484 return true;
485 case X86::MOV64rm:
486 case X86::LD_Fp64m:
487 case X86::MOVSDrm:
488 case X86::MOVSDrm_alt:
489 case X86::VMOVSDrm:
490 case X86::VMOVSDrm_alt:
491 case X86::VMOVSDZrm:
492 case X86::VMOVSDZrm_alt:
493 case X86::MMX_MOVD64rm:
494 case X86::MMX_MOVQ64rm:
495 case X86::KMOVQkm:
496 MemBytes = 8;
497 return true;
498 case X86::MOVAPSrm:
499 case X86::MOVUPSrm:
500 case X86::MOVAPDrm:
501 case X86::MOVUPDrm:
502 case X86::MOVDQArm:
503 case X86::MOVDQUrm:
504 case X86::VMOVAPSrm:
505 case X86::VMOVUPSrm:
506 case X86::VMOVAPDrm:
507 case X86::VMOVUPDrm:
508 case X86::VMOVDQArm:
509 case X86::VMOVDQUrm:
510 case X86::VMOVAPSZ128rm:
511 case X86::VMOVUPSZ128rm:
512 case X86::VMOVAPSZ128rm_NOVLX:
513 case X86::VMOVUPSZ128rm_NOVLX:
514 case X86::VMOVAPDZ128rm:
515 case X86::VMOVUPDZ128rm:
516 case X86::VMOVDQU8Z128rm:
517 case X86::VMOVDQU16Z128rm:
518 case X86::VMOVDQA32Z128rm:
519 case X86::VMOVDQU32Z128rm:
520 case X86::VMOVDQA64Z128rm:
521 case X86::VMOVDQU64Z128rm:
522 MemBytes = 16;
523 return true;
524 case X86::VMOVAPSYrm:
525 case X86::VMOVUPSYrm:
526 case X86::VMOVAPDYrm:
527 case X86::VMOVUPDYrm:
528 case X86::VMOVDQAYrm:
529 case X86::VMOVDQUYrm:
530 case X86::VMOVAPSZ256rm:
531 case X86::VMOVUPSZ256rm:
532 case X86::VMOVAPSZ256rm_NOVLX:
533 case X86::VMOVUPSZ256rm_NOVLX:
534 case X86::VMOVAPDZ256rm:
535 case X86::VMOVUPDZ256rm:
536 case X86::VMOVDQU8Z256rm:
537 case X86::VMOVDQU16Z256rm:
538 case X86::VMOVDQA32Z256rm:
539 case X86::VMOVDQU32Z256rm:
540 case X86::VMOVDQA64Z256rm:
541 case X86::VMOVDQU64Z256rm:
542 MemBytes = 32;
543 return true;
544 case X86::VMOVAPSZrm:
545 case X86::VMOVUPSZrm:
546 case X86::VMOVAPDZrm:
547 case X86::VMOVUPDZrm:
548 case X86::VMOVDQU8Zrm:
549 case X86::VMOVDQU16Zrm:
550 case X86::VMOVDQA32Zrm:
551 case X86::VMOVDQU32Zrm:
552 case X86::VMOVDQA64Zrm:
553 case X86::VMOVDQU64Zrm:
554 MemBytes = 64;
555 return true;
556 }
557}
558
559static bool isFrameStoreOpcode(int Opcode, unsigned &MemBytes) {
560 switch (Opcode) {
561 default:
562 return false;
563 case X86::MOV8mr:
564 case X86::KMOVBmk:
565 MemBytes = 1;
566 return true;
567 case X86::MOV16mr:
568 case X86::KMOVWmk:
569 case X86::VMOVSHZmr:
570 MemBytes = 2;
571 return true;
572 case X86::MOV32mr:
573 case X86::MOVSSmr:
574 case X86::VMOVSSmr:
575 case X86::VMOVSSZmr:
576 case X86::KMOVDmk:
577 MemBytes = 4;
578 return true;
579 case X86::MOV64mr:
580 case X86::ST_FpP64m:
581 case X86::MOVSDmr:
582 case X86::VMOVSDmr:
583 case X86::VMOVSDZmr:
584 case X86::MMX_MOVD64mr:
585 case X86::MMX_MOVQ64mr:
586 case X86::MMX_MOVNTQmr:
587 case X86::KMOVQmk:
588 MemBytes = 8;
589 return true;
590 case X86::MOVAPSmr:
591 case X86::MOVUPSmr:
592 case X86::MOVAPDmr:
593 case X86::MOVUPDmr:
594 case X86::MOVDQAmr:
595 case X86::MOVDQUmr:
596 case X86::VMOVAPSmr:
597 case X86::VMOVUPSmr:
598 case X86::VMOVAPDmr:
599 case X86::VMOVUPDmr:
600 case X86::VMOVDQAmr:
601 case X86::VMOVDQUmr:
602 case X86::VMOVUPSZ128mr:
603 case X86::VMOVAPSZ128mr:
604 case X86::VMOVUPSZ128mr_NOVLX:
605 case X86::VMOVAPSZ128mr_NOVLX:
606 case X86::VMOVUPDZ128mr:
607 case X86::VMOVAPDZ128mr:
608 case X86::VMOVDQA32Z128mr:
609 case X86::VMOVDQU32Z128mr:
610 case X86::VMOVDQA64Z128mr:
611 case X86::VMOVDQU64Z128mr:
612 case X86::VMOVDQU8Z128mr:
613 case X86::VMOVDQU16Z128mr:
614 MemBytes = 16;
615 return true;
616 case X86::VMOVUPSYmr:
617 case X86::VMOVAPSYmr:
618 case X86::VMOVUPDYmr:
619 case X86::VMOVAPDYmr:
620 case X86::VMOVDQUYmr:
621 case X86::VMOVDQAYmr:
622 case X86::VMOVUPSZ256mr:
623 case X86::VMOVAPSZ256mr:
624 case X86::VMOVUPSZ256mr_NOVLX:
625 case X86::VMOVAPSZ256mr_NOVLX:
626 case X86::VMOVUPDZ256mr:
627 case X86::VMOVAPDZ256mr:
628 case X86::VMOVDQU8Z256mr:
629 case X86::VMOVDQU16Z256mr:
630 case X86::VMOVDQA32Z256mr:
631 case X86::VMOVDQU32Z256mr:
632 case X86::VMOVDQA64Z256mr:
633 case X86::VMOVDQU64Z256mr:
634 MemBytes = 32;
635 return true;
636 case X86::VMOVUPSZmr:
637 case X86::VMOVAPSZmr:
638 case X86::VMOVUPDZmr:
639 case X86::VMOVAPDZmr:
640 case X86::VMOVDQU8Zmr:
641 case X86::VMOVDQU16Zmr:
642 case X86::VMOVDQA32Zmr:
643 case X86::VMOVDQU32Zmr:
644 case X86::VMOVDQA64Zmr:
645 case X86::VMOVDQU64Zmr:
646 MemBytes = 64;
647 return true;
648 }
649 return false;
650}
651
653 int &FrameIndex) const {
654 unsigned Dummy;
655 return X86InstrInfo::isLoadFromStackSlot(MI, FrameIndex, Dummy);
656}
657
659 int &FrameIndex,
660 unsigned &MemBytes) const {
661 if (isFrameLoadOpcode(MI.getOpcode(), MemBytes))
662 if (MI.getOperand(0).getSubReg() == 0 && isFrameOperand(MI, 1, FrameIndex))
663 return MI.getOperand(0).getReg();
664 return 0;
665}
666
668 int &FrameIndex) const {
669 unsigned Dummy;
670 if (isFrameLoadOpcode(MI.getOpcode(), Dummy)) {
671 unsigned Reg;
672 if ((Reg = isLoadFromStackSlot(MI, FrameIndex)))
673 return Reg;
674 // Check for post-frame index elimination operations
676 if (hasLoadFromStackSlot(MI, Accesses)) {
677 FrameIndex =
678 cast<FixedStackPseudoSourceValue>(Accesses.front()->getPseudoValue())
679 ->getFrameIndex();
680 return MI.getOperand(0).getReg();
681 }
682 }
683 return 0;
684}
685
687 int &FrameIndex) const {
688 unsigned Dummy;
689 return X86InstrInfo::isStoreToStackSlot(MI, FrameIndex, Dummy);
690}
691
693 int &FrameIndex,
694 unsigned &MemBytes) const {
695 if (isFrameStoreOpcode(MI.getOpcode(), MemBytes))
696 if (MI.getOperand(X86::AddrNumOperands).getSubReg() == 0 &&
697 isFrameOperand(MI, 0, FrameIndex))
698 return MI.getOperand(X86::AddrNumOperands).getReg();
699 return 0;
700}
701
703 int &FrameIndex) const {
704 unsigned Dummy;
705 if (isFrameStoreOpcode(MI.getOpcode(), Dummy)) {
706 unsigned Reg;
707 if ((Reg = isStoreToStackSlot(MI, FrameIndex)))
708 return Reg;
709 // Check for post-frame index elimination operations
711 if (hasStoreToStackSlot(MI, Accesses)) {
712 FrameIndex =
713 cast<FixedStackPseudoSourceValue>(Accesses.front()->getPseudoValue())
714 ->getFrameIndex();
715 return MI.getOperand(X86::AddrNumOperands).getReg();
716 }
717 }
718 return 0;
719}
720
721/// Return true if register is PIC base; i.e.g defined by X86::MOVPC32r.
722static bool regIsPICBase(Register BaseReg, const MachineRegisterInfo &MRI) {
723 // Don't waste compile time scanning use-def chains of physregs.
724 if (!BaseReg.isVirtual())
725 return false;
726 bool isPICBase = false;
727 for (MachineRegisterInfo::def_instr_iterator I = MRI.def_instr_begin(BaseReg),
728 E = MRI.def_instr_end(); I != E; ++I) {
729 MachineInstr *DefMI = &*I;
730 if (DefMI->getOpcode() != X86::MOVPC32r)
731 return false;
732 assert(!isPICBase && "More than one PIC base?");
733 isPICBase = true;
734 }
735 return isPICBase;
736}
737
739 const MachineInstr &MI) const {
740 switch (MI.getOpcode()) {
741 default:
742 // This function should only be called for opcodes with the ReMaterializable
743 // flag set.
744 llvm_unreachable("Unknown rematerializable operation!");
745 break;
746
747 case X86::LOAD_STACK_GUARD:
748 case X86::AVX1_SETALLONES:
749 case X86::AVX2_SETALLONES:
750 case X86::AVX512_128_SET0:
751 case X86::AVX512_256_SET0:
752 case X86::AVX512_512_SET0:
753 case X86::AVX512_512_SETALLONES:
754 case X86::AVX512_FsFLD0SD:
755 case X86::AVX512_FsFLD0SH:
756 case X86::AVX512_FsFLD0SS:
757 case X86::AVX512_FsFLD0F128:
758 case X86::AVX_SET0:
759 case X86::FsFLD0SD:
760 case X86::FsFLD0SS:
761 case X86::FsFLD0SH:
762 case X86::FsFLD0F128:
763 case X86::KSET0D:
764 case X86::KSET0Q:
765 case X86::KSET0W:
766 case X86::KSET1D:
767 case X86::KSET1Q:
768 case X86::KSET1W:
769 case X86::MMX_SET0:
770 case X86::MOV32ImmSExti8:
771 case X86::MOV32r0:
772 case X86::MOV32r1:
773 case X86::MOV32r_1:
774 case X86::MOV32ri64:
775 case X86::MOV64ImmSExti8:
776 case X86::V_SET0:
777 case X86::V_SETALLONES:
778 case X86::MOV16ri:
779 case X86::MOV32ri:
780 case X86::MOV64ri:
781 case X86::MOV64ri32:
782 case X86::MOV8ri:
783 case X86::PTILEZEROV:
784 return true;
785
786 case X86::MOV8rm:
787 case X86::MOV8rm_NOREX:
788 case X86::MOV16rm:
789 case X86::MOV32rm:
790 case X86::MOV64rm:
791 case X86::MOVSSrm:
792 case X86::MOVSSrm_alt:
793 case X86::MOVSDrm:
794 case X86::MOVSDrm_alt:
795 case X86::MOVAPSrm:
796 case X86::MOVUPSrm:
797 case X86::MOVAPDrm:
798 case X86::MOVUPDrm:
799 case X86::MOVDQArm:
800 case X86::MOVDQUrm:
801 case X86::VMOVSSrm:
802 case X86::VMOVSSrm_alt:
803 case X86::VMOVSDrm:
804 case X86::VMOVSDrm_alt:
805 case X86::VMOVAPSrm:
806 case X86::VMOVUPSrm:
807 case X86::VMOVAPDrm:
808 case X86::VMOVUPDrm:
809 case X86::VMOVDQArm:
810 case X86::VMOVDQUrm:
811 case X86::VMOVAPSYrm:
812 case X86::VMOVUPSYrm:
813 case X86::VMOVAPDYrm:
814 case X86::VMOVUPDYrm:
815 case X86::VMOVDQAYrm:
816 case X86::VMOVDQUYrm:
817 case X86::MMX_MOVD64rm:
818 case X86::MMX_MOVQ64rm:
819 // AVX-512
820 case X86::VMOVSSZrm:
821 case X86::VMOVSSZrm_alt:
822 case X86::VMOVSDZrm:
823 case X86::VMOVSDZrm_alt:
824 case X86::VMOVSHZrm:
825 case X86::VMOVSHZrm_alt:
826 case X86::VMOVAPDZ128rm:
827 case X86::VMOVAPDZ256rm:
828 case X86::VMOVAPDZrm:
829 case X86::VMOVAPSZ128rm:
830 case X86::VMOVAPSZ256rm:
831 case X86::VMOVAPSZ128rm_NOVLX:
832 case X86::VMOVAPSZ256rm_NOVLX:
833 case X86::VMOVAPSZrm:
834 case X86::VMOVDQA32Z128rm:
835 case X86::VMOVDQA32Z256rm:
836 case X86::VMOVDQA32Zrm:
837 case X86::VMOVDQA64Z128rm:
838 case X86::VMOVDQA64Z256rm:
839 case X86::VMOVDQA64Zrm:
840 case X86::VMOVDQU16Z128rm:
841 case X86::VMOVDQU16Z256rm:
842 case X86::VMOVDQU16Zrm:
843 case X86::VMOVDQU32Z128rm:
844 case X86::VMOVDQU32Z256rm:
845 case X86::VMOVDQU32Zrm:
846 case X86::VMOVDQU64Z128rm:
847 case X86::VMOVDQU64Z256rm:
848 case X86::VMOVDQU64Zrm:
849 case X86::VMOVDQU8Z128rm:
850 case X86::VMOVDQU8Z256rm:
851 case X86::VMOVDQU8Zrm:
852 case X86::VMOVUPDZ128rm:
853 case X86::VMOVUPDZ256rm:
854 case X86::VMOVUPDZrm:
855 case X86::VMOVUPSZ128rm:
856 case X86::VMOVUPSZ256rm:
857 case X86::VMOVUPSZ128rm_NOVLX:
858 case X86::VMOVUPSZ256rm_NOVLX:
859 case X86::VMOVUPSZrm: {
860 // Loads from constant pools are trivially rematerializable.
861 if (MI.getOperand(1 + X86::AddrBaseReg).isReg() &&
862 MI.getOperand(1 + X86::AddrScaleAmt).isImm() &&
863 MI.getOperand(1 + X86::AddrIndexReg).isReg() &&
864 MI.getOperand(1 + X86::AddrIndexReg).getReg() == 0 &&
865 MI.isDereferenceableInvariantLoad()) {
866 Register BaseReg = MI.getOperand(1 + X86::AddrBaseReg).getReg();
867 if (BaseReg == 0 || BaseReg == X86::RIP)
868 return true;
869 // Allow re-materialization of PIC load.
870 if (!(!ReMatPICStubLoad && MI.getOperand(1 + X86::AddrDisp).isGlobal())) {
871 const MachineFunction &MF = *MI.getParent()->getParent();
872 const MachineRegisterInfo &MRI = MF.getRegInfo();
873 if (regIsPICBase(BaseReg, MRI))
874 return true;
875 }
876 }
877 break;
878 }
879
880 case X86::LEA32r:
881 case X86::LEA64r: {
882 if (MI.getOperand(1 + X86::AddrScaleAmt).isImm() &&
883 MI.getOperand(1 + X86::AddrIndexReg).isReg() &&
884 MI.getOperand(1 + X86::AddrIndexReg).getReg() == 0 &&
885 !MI.getOperand(1 + X86::AddrDisp).isReg()) {
886 // lea fi#, lea GV, etc. are all rematerializable.
887 if (!MI.getOperand(1 + X86::AddrBaseReg).isReg())
888 return true;
889 Register BaseReg = MI.getOperand(1 + X86::AddrBaseReg).getReg();
890 if (BaseReg == 0)
891 return true;
892 // Allow re-materialization of lea PICBase + x.
893 const MachineFunction &MF = *MI.getParent()->getParent();
894 const MachineRegisterInfo &MRI = MF.getRegInfo();
895 if (regIsPICBase(BaseReg, MRI))
896 return true;
897 }
898 break;
899 }
900 }
902}
903
906 Register DestReg, unsigned SubIdx,
907 const MachineInstr &Orig,
908 const TargetRegisterInfo &TRI) const {
909 bool ClobbersEFLAGS = Orig.modifiesRegister(X86::EFLAGS, &TRI);
910 if (ClobbersEFLAGS && MBB.computeRegisterLiveness(&TRI, X86::EFLAGS, I) !=
912 // The instruction clobbers EFLAGS. Re-materialize as MOV32ri to avoid side
913 // effects.
914 int Value;
915 switch (Orig.getOpcode()) {
916 case X86::MOV32r0: Value = 0; break;
917 case X86::MOV32r1: Value = 1; break;
918 case X86::MOV32r_1: Value = -1; break;
919 default:
920 llvm_unreachable("Unexpected instruction!");
921 }
922
923 const DebugLoc &DL = Orig.getDebugLoc();
924 BuildMI(MBB, I, DL, get(X86::MOV32ri))
925 .add(Orig.getOperand(0))
926 .addImm(Value);
927 } else {
929 MBB.insert(I, MI);
930 }
931
932 MachineInstr &NewMI = *std::prev(I);
933 NewMI.substituteRegister(Orig.getOperand(0).getReg(), DestReg, SubIdx, TRI);
934}
935
936/// True if MI has a condition code def, e.g. EFLAGS, that is not marked dead.
938 for (const MachineOperand &MO : MI.operands()) {
939 if (MO.isReg() && MO.isDef() &&
940 MO.getReg() == X86::EFLAGS && !MO.isDead()) {
941 return true;
942 }
943 }
944 return false;
945}
946
947/// Check whether the shift count for a machine operand is non-zero.
948inline static unsigned getTruncatedShiftCount(const MachineInstr &MI,
949 unsigned ShiftAmtOperandIdx) {
950 // The shift count is six bits with the REX.W prefix and five bits without.
951 unsigned ShiftCountMask = (MI.getDesc().TSFlags & X86II::REX_W) ? 63 : 31;
952 unsigned Imm = MI.getOperand(ShiftAmtOperandIdx).getImm();
953 return Imm & ShiftCountMask;
954}
955
956/// Check whether the given shift count is appropriate
957/// can be represented by a LEA instruction.
958inline static bool isTruncatedShiftCountForLEA(unsigned ShAmt) {
959 // Left shift instructions can be transformed into load-effective-address
960 // instructions if we can encode them appropriately.
961 // A LEA instruction utilizes a SIB byte to encode its scale factor.
962 // The SIB.scale field is two bits wide which means that we can encode any
963 // shift amount less than 4.
964 return ShAmt < 4 && ShAmt > 0;
965}
966
968 MachineInstr &CmpValDefInstr,
970 MachineInstr **AndInstr,
971 const TargetRegisterInfo *TRI,
972 bool &NoSignFlag, bool &ClearsOverflowFlag) {
973 if (!(CmpValDefInstr.getOpcode() == X86::SUBREG_TO_REG &&
974 CmpInstr.getOpcode() == X86::TEST64rr) &&
975 !(CmpValDefInstr.getOpcode() == X86::COPY &&
976 CmpInstr.getOpcode() == X86::TEST16rr))
977 return false;
978
979 // CmpInstr is a TEST16rr/TEST64rr instruction, and
980 // `X86InstrInfo::analyzeCompare` guarantees that it's analyzable only if two
981 // registers are identical.
982 assert((CmpInstr.getOperand(0).getReg() == CmpInstr.getOperand(1).getReg()) &&
983 "CmpInstr is an analyzable TEST16rr/TEST64rr, and "
984 "`X86InstrInfo::analyzeCompare` requires two reg operands are the"
985 "same.");
986
987 // Caller (`X86InstrInfo::optimizeCompareInstr`) guarantees that
988 // `CmpValDefInstr` defines the value that's used by `CmpInstr`; in this case
989 // if `CmpValDefInstr` sets the EFLAGS, it is likely that `CmpInstr` is
990 // redundant.
991 assert(
992 (MRI->getVRegDef(CmpInstr.getOperand(0).getReg()) == &CmpValDefInstr) &&
993 "Caller guarantees that TEST64rr is a user of SUBREG_TO_REG or TEST16rr "
994 "is a user of COPY sub16bit.");
995 MachineInstr *VregDefInstr = nullptr;
996 if (CmpInstr.getOpcode() == X86::TEST16rr) {
997 if (!CmpValDefInstr.getOperand(1).getReg().isVirtual())
998 return false;
999 VregDefInstr = MRI->getVRegDef(CmpValDefInstr.getOperand(1).getReg());
1000 if (!VregDefInstr)
1001 return false;
1002 // We can only remove test when AND32ri or AND64ri32 whose imm can fit 16bit
1003 // size, others 32/64 bit ops would test higher bits which test16rr don't
1004 // want to.
1005 if (!((VregDefInstr->getOpcode() == X86::AND32ri ||
1006 VregDefInstr->getOpcode() == X86::AND64ri32) &&
1007 isUInt<16>(VregDefInstr->getOperand(2).getImm())))
1008 return false;
1009 }
1010
1011 if (CmpInstr.getOpcode() == X86::TEST64rr) {
1012 // As seen in X86 td files, CmpValDefInstr.getOperand(1).getImm() is
1013 // typically 0.
1014 if (CmpValDefInstr.getOperand(1).getImm() != 0)
1015 return false;
1016
1017 // As seen in X86 td files, CmpValDefInstr.getOperand(3) is typically
1018 // sub_32bit or sub_xmm.
1019 if (CmpValDefInstr.getOperand(3).getImm() != X86::sub_32bit)
1020 return false;
1021
1022 VregDefInstr = MRI->getVRegDef(CmpValDefInstr.getOperand(2).getReg());
1023 }
1024
1025 assert(VregDefInstr && "Must have a definition (SSA)");
1026
1027 // Requires `CmpValDefInstr` and `VregDefInstr` are from the same MBB
1028 // to simplify the subsequent analysis.
1029 //
1030 // FIXME: If `VregDefInstr->getParent()` is the only predecessor of
1031 // `CmpValDefInstr.getParent()`, this could be handled.
1032 if (VregDefInstr->getParent() != CmpValDefInstr.getParent())
1033 return false;
1034
1035 if (X86::isAND(VregDefInstr->getOpcode())) {
1036 // Get a sequence of instructions like
1037 // %reg = and* ... // Set EFLAGS
1038 // ... // EFLAGS not changed
1039 // %extended_reg = subreg_to_reg 0, %reg, %subreg.sub_32bit
1040 // test64rr %extended_reg, %extended_reg, implicit-def $eflags
1041 // or
1042 // %reg = and32* ...
1043 // ... // EFLAGS not changed.
1044 // %src_reg = copy %reg.sub_16bit:gr32
1045 // test16rr %src_reg, %src_reg, implicit-def $eflags
1046 //
1047 // If subsequent readers use a subset of bits that don't change
1048 // after `and*` instructions, it's likely that the test64rr could
1049 // be optimized away.
1050 for (const MachineInstr &Instr :
1051 make_range(std::next(MachineBasicBlock::iterator(VregDefInstr)),
1052 MachineBasicBlock::iterator(CmpValDefInstr))) {
1053 // There are instructions between 'VregDefInstr' and
1054 // 'CmpValDefInstr' that modifies EFLAGS.
1055 if (Instr.modifiesRegister(X86::EFLAGS, TRI))
1056 return false;
1057 }
1058
1059 *AndInstr = VregDefInstr;
1060
1061 // AND instruction will essentially update SF and clear OF, so
1062 // NoSignFlag should be false in the sense that SF is modified by `AND`.
1063 //
1064 // However, the implementation artifically sets `NoSignFlag` to true
1065 // to poison the SF bit; that is to say, if SF is looked at later, the
1066 // optimization (to erase TEST64rr) will be disabled.
1067 //
1068 // The reason to poison SF bit is that SF bit value could be different
1069 // in the `AND` and `TEST` operation; signed bit is not known for `AND`,
1070 // and is known to be 0 as a result of `TEST64rr`.
1071 //
1072 // FIXME: As opposed to poisoning the SF bit directly, consider peeking into
1073 // the AND instruction and using the static information to guide peephole
1074 // optimization if possible. For example, it's possible to fold a
1075 // conditional move into a copy if the relevant EFLAG bits could be deduced
1076 // from an immediate operand of and operation.
1077 //
1078 NoSignFlag = true;
1079 // ClearsOverflowFlag is true for AND operation (no surprise).
1080 ClearsOverflowFlag = true;
1081 return true;
1082 }
1083 return false;
1084}
1085
1087 unsigned Opc, bool AllowSP, Register &NewSrc,
1088 bool &isKill, MachineOperand &ImplicitOp,
1089 LiveVariables *LV, LiveIntervals *LIS) const {
1090 MachineFunction &MF = *MI.getParent()->getParent();
1091 const TargetRegisterClass *RC;
1092 if (AllowSP) {
1093 RC = Opc != X86::LEA32r ? &X86::GR64RegClass : &X86::GR32RegClass;
1094 } else {
1095 RC = Opc != X86::LEA32r ?
1096 &X86::GR64_NOSPRegClass : &X86::GR32_NOSPRegClass;
1097 }
1098 Register SrcReg = Src.getReg();
1099 isKill = MI.killsRegister(SrcReg);
1100
1101 // For both LEA64 and LEA32 the register already has essentially the right
1102 // type (32-bit or 64-bit) we may just need to forbid SP.
1103 if (Opc != X86::LEA64_32r) {
1104 NewSrc = SrcReg;
1105 assert(!Src.isUndef() && "Undef op doesn't need optimization");
1106
1107 if (NewSrc.isVirtual() && !MF.getRegInfo().constrainRegClass(NewSrc, RC))
1108 return false;
1109
1110 return true;
1111 }
1112
1113 // This is for an LEA64_32r and incoming registers are 32-bit. One way or
1114 // another we need to add 64-bit registers to the final MI.
1115 if (SrcReg.isPhysical()) {
1116 ImplicitOp = Src;
1117 ImplicitOp.setImplicit();
1118
1119 NewSrc = getX86SubSuperRegister(SrcReg, 64);
1120 assert(NewSrc.isValid() && "Invalid Operand");
1121 assert(!Src.isUndef() && "Undef op doesn't need optimization");
1122 } else {
1123 // Virtual register of the wrong class, we have to create a temporary 64-bit
1124 // vreg to feed into the LEA.
1125 NewSrc = MF.getRegInfo().createVirtualRegister(RC);
1126 MachineInstr *Copy =
1127 BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(TargetOpcode::COPY))
1128 .addReg(NewSrc, RegState::Define | RegState::Undef, X86::sub_32bit)
1129 .addReg(SrcReg, getKillRegState(isKill));
1130
1131 // Which is obviously going to be dead after we're done with it.
1132 isKill = true;
1133
1134 if (LV)
1135 LV->replaceKillInstruction(SrcReg, MI, *Copy);
1136
1137 if (LIS) {
1138 SlotIndex CopyIdx = LIS->InsertMachineInstrInMaps(*Copy);
1140 LiveInterval &LI = LIS->getInterval(SrcReg);
1142 if (S->end.getBaseIndex() == Idx)
1143 S->end = CopyIdx.getRegSlot();
1144 }
1145 }
1146
1147 // We've set all the parameters without issue.
1148 return true;
1149}
1150
1151MachineInstr *X86InstrInfo::convertToThreeAddressWithLEA(unsigned MIOpc,
1153 LiveVariables *LV,
1154 LiveIntervals *LIS,
1155 bool Is8BitOp) const {
1156 // We handle 8-bit adds and various 16-bit opcodes in the switch below.
1157 MachineBasicBlock &MBB = *MI.getParent();
1159 assert((Is8BitOp || RegInfo.getTargetRegisterInfo()->getRegSizeInBits(
1160 *RegInfo.getRegClass(MI.getOperand(0).getReg())) == 16) &&
1161 "Unexpected type for LEA transform");
1162
1163 // TODO: For a 32-bit target, we need to adjust the LEA variables with
1164 // something like this:
1165 // Opcode = X86::LEA32r;
1166 // InRegLEA = RegInfo.createVirtualRegister(&X86::GR32_NOSPRegClass);
1167 // OutRegLEA =
1168 // Is8BitOp ? RegInfo.createVirtualRegister(&X86::GR32ABCD_RegClass)
1169 // : RegInfo.createVirtualRegister(&X86::GR32RegClass);
1170 if (!Subtarget.is64Bit())
1171 return nullptr;
1172
1173 unsigned Opcode = X86::LEA64_32r;
1174 Register InRegLEA = RegInfo.createVirtualRegister(&X86::GR64_NOSPRegClass);
1175 Register OutRegLEA = RegInfo.createVirtualRegister(&X86::GR32RegClass);
1176 Register InRegLEA2;
1177
1178 // Build and insert into an implicit UNDEF value. This is OK because
1179 // we will be shifting and then extracting the lower 8/16-bits.
1180 // This has the potential to cause partial register stall. e.g.
1181 // movw (%rbp,%rcx,2), %dx
1182 // leal -65(%rdx), %esi
1183 // But testing has shown this *does* help performance in 64-bit mode (at
1184 // least on modern x86 machines).
1185 MachineBasicBlock::iterator MBBI = MI.getIterator();
1186 Register Dest = MI.getOperand(0).getReg();
1187 Register Src = MI.getOperand(1).getReg();
1188 Register Src2;
1189 bool IsDead = MI.getOperand(0).isDead();
1190 bool IsKill = MI.getOperand(1).isKill();
1191 unsigned SubReg = Is8BitOp ? X86::sub_8bit : X86::sub_16bit;
1192 assert(!MI.getOperand(1).isUndef() && "Undef op doesn't need optimization");
1193 MachineInstr *ImpDef =
1194 BuildMI(MBB, MBBI, MI.getDebugLoc(), get(X86::IMPLICIT_DEF), InRegLEA);
1195 MachineInstr *InsMI =
1196 BuildMI(MBB, MBBI, MI.getDebugLoc(), get(TargetOpcode::COPY))
1197 .addReg(InRegLEA, RegState::Define, SubReg)
1198 .addReg(Src, getKillRegState(IsKill));
1199 MachineInstr *ImpDef2 = nullptr;
1200 MachineInstr *InsMI2 = nullptr;
1201
1203 BuildMI(MBB, MBBI, MI.getDebugLoc(), get(Opcode), OutRegLEA);
1204 switch (MIOpc) {
1205 default: llvm_unreachable("Unreachable!");
1206 case X86::SHL8ri:
1207 case X86::SHL16ri: {
1208 unsigned ShAmt = MI.getOperand(2).getImm();
1209 MIB.addReg(0)
1210 .addImm(1LL << ShAmt)
1211 .addReg(InRegLEA, RegState::Kill)
1212 .addImm(0)
1213 .addReg(0);
1214 break;
1215 }
1216 case X86::INC8r:
1217 case X86::INC16r:
1218 addRegOffset(MIB, InRegLEA, true, 1);
1219 break;
1220 case X86::DEC8r:
1221 case X86::DEC16r:
1222 addRegOffset(MIB, InRegLEA, true, -1);
1223 break;
1224 case X86::ADD8ri:
1225 case X86::ADD8ri_DB:
1226 case X86::ADD16ri:
1227 case X86::ADD16ri_DB:
1228 addRegOffset(MIB, InRegLEA, true, MI.getOperand(2).getImm());
1229 break;
1230 case X86::ADD8rr:
1231 case X86::ADD8rr_DB:
1232 case X86::ADD16rr:
1233 case X86::ADD16rr_DB: {
1234 Src2 = MI.getOperand(2).getReg();
1235 bool IsKill2 = MI.getOperand(2).isKill();
1236 assert(!MI.getOperand(2).isUndef() && "Undef op doesn't need optimization");
1237 if (Src == Src2) {
1238 // ADD8rr/ADD16rr killed %reg1028, %reg1028
1239 // just a single insert_subreg.
1240 addRegReg(MIB, InRegLEA, true, InRegLEA, false);
1241 } else {
1242 if (Subtarget.is64Bit())
1243 InRegLEA2 = RegInfo.createVirtualRegister(&X86::GR64_NOSPRegClass);
1244 else
1245 InRegLEA2 = RegInfo.createVirtualRegister(&X86::GR32_NOSPRegClass);
1246 // Build and insert into an implicit UNDEF value. This is OK because
1247 // we will be shifting and then extracting the lower 8/16-bits.
1248 ImpDef2 = BuildMI(MBB, &*MIB, MI.getDebugLoc(), get(X86::IMPLICIT_DEF),
1249 InRegLEA2);
1250 InsMI2 = BuildMI(MBB, &*MIB, MI.getDebugLoc(), get(TargetOpcode::COPY))
1251 .addReg(InRegLEA2, RegState::Define, SubReg)
1252 .addReg(Src2, getKillRegState(IsKill2));
1253 addRegReg(MIB, InRegLEA, true, InRegLEA2, true);
1254 }
1255 if (LV && IsKill2 && InsMI2)
1256 LV->replaceKillInstruction(Src2, MI, *InsMI2);
1257 break;
1258 }
1259 }
1260
1261 MachineInstr *NewMI = MIB;
1262 MachineInstr *ExtMI =
1263 BuildMI(MBB, MBBI, MI.getDebugLoc(), get(TargetOpcode::COPY))
1265 .addReg(OutRegLEA, RegState::Kill, SubReg);
1266
1267 if (LV) {
1268 // Update live variables.
1269 LV->getVarInfo(InRegLEA).Kills.push_back(NewMI);
1270 if (InRegLEA2)
1271 LV->getVarInfo(InRegLEA2).Kills.push_back(NewMI);
1272 LV->getVarInfo(OutRegLEA).Kills.push_back(ExtMI);
1273 if (IsKill)
1274 LV->replaceKillInstruction(Src, MI, *InsMI);
1275 if (IsDead)
1276 LV->replaceKillInstruction(Dest, MI, *ExtMI);
1277 }
1278
1279 if (LIS) {
1280 LIS->InsertMachineInstrInMaps(*ImpDef);
1281 SlotIndex InsIdx = LIS->InsertMachineInstrInMaps(*InsMI);
1282 if (ImpDef2)
1283 LIS->InsertMachineInstrInMaps(*ImpDef2);
1284 SlotIndex Ins2Idx;
1285 if (InsMI2)
1286 Ins2Idx = LIS->InsertMachineInstrInMaps(*InsMI2);
1287 SlotIndex NewIdx = LIS->ReplaceMachineInstrInMaps(MI, *NewMI);
1288 SlotIndex ExtIdx = LIS->InsertMachineInstrInMaps(*ExtMI);
1289 LIS->getInterval(InRegLEA);
1290 LIS->getInterval(OutRegLEA);
1291 if (InRegLEA2)
1292 LIS->getInterval(InRegLEA2);
1293
1294 // Move the use of Src up to InsMI.
1295 LiveInterval &SrcLI = LIS->getInterval(Src);
1296 LiveRange::Segment *SrcSeg = SrcLI.getSegmentContaining(NewIdx);
1297 if (SrcSeg->end == NewIdx.getRegSlot())
1298 SrcSeg->end = InsIdx.getRegSlot();
1299
1300 if (InsMI2) {
1301 // Move the use of Src2 up to InsMI2.
1302 LiveInterval &Src2LI = LIS->getInterval(Src2);
1303 LiveRange::Segment *Src2Seg = Src2LI.getSegmentContaining(NewIdx);
1304 if (Src2Seg->end == NewIdx.getRegSlot())
1305 Src2Seg->end = Ins2Idx.getRegSlot();
1306 }
1307
1308 // Move the definition of Dest down to ExtMI.
1309 LiveInterval &DestLI = LIS->getInterval(Dest);
1310 LiveRange::Segment *DestSeg =
1311 DestLI.getSegmentContaining(NewIdx.getRegSlot());
1312 assert(DestSeg->start == NewIdx.getRegSlot() &&
1313 DestSeg->valno->def == NewIdx.getRegSlot());
1314 DestSeg->start = ExtIdx.getRegSlot();
1315 DestSeg->valno->def = ExtIdx.getRegSlot();
1316 }
1317
1318 return ExtMI;
1319}
1320
1321/// This method must be implemented by targets that
1322/// set the M_CONVERTIBLE_TO_3_ADDR flag. When this flag is set, the target
1323/// may be able to convert a two-address instruction into a true
1324/// three-address instruction on demand. This allows the X86 target (for
1325/// example) to convert ADD and SHL instructions into LEA instructions if they
1326/// would require register copies due to two-addressness.
1327///
1328/// This method returns a null pointer if the transformation cannot be
1329/// performed, otherwise it returns the new instruction.
1330///
1332 LiveVariables *LV,
1333 LiveIntervals *LIS) const {
1334 // The following opcodes also sets the condition code register(s). Only
1335 // convert them to equivalent lea if the condition code register def's
1336 // are dead!
1338 return nullptr;
1339
1340 MachineFunction &MF = *MI.getParent()->getParent();
1341 // All instructions input are two-addr instructions. Get the known operands.
1342 const MachineOperand &Dest = MI.getOperand(0);
1343 const MachineOperand &Src = MI.getOperand(1);
1344
1345 // Ideally, operations with undef should be folded before we get here, but we
1346 // can't guarantee it. Bail out because optimizing undefs is a waste of time.
1347 // Without this, we have to forward undef state to new register operands to
1348 // avoid machine verifier errors.
1349 if (Src.isUndef())
1350 return nullptr;
1351 if (MI.getNumOperands() > 2)
1352 if (MI.getOperand(2).isReg() && MI.getOperand(2).isUndef())
1353 return nullptr;
1354
1355 MachineInstr *NewMI = nullptr;
1356 Register SrcReg, SrcReg2;
1357 bool Is64Bit = Subtarget.is64Bit();
1358
1359 bool Is8BitOp = false;
1360 unsigned NumRegOperands = 2;
1361 unsigned MIOpc = MI.getOpcode();
1362 switch (MIOpc) {
1363 default: llvm_unreachable("Unreachable!");
1364 case X86::SHL64ri: {
1365 assert(MI.getNumOperands() >= 3 && "Unknown shift instruction!");
1366 unsigned ShAmt = getTruncatedShiftCount(MI, 2);
1367 if (!isTruncatedShiftCountForLEA(ShAmt)) return nullptr;
1368
1369 // LEA can't handle RSP.
1370 if (Src.getReg().isVirtual() && !MF.getRegInfo().constrainRegClass(
1371 Src.getReg(), &X86::GR64_NOSPRegClass))
1372 return nullptr;
1373
1374 NewMI = BuildMI(MF, MI.getDebugLoc(), get(X86::LEA64r))
1375 .add(Dest)
1376 .addReg(0)
1377 .addImm(1LL << ShAmt)
1378 .add(Src)
1379 .addImm(0)
1380 .addReg(0);
1381 break;
1382 }
1383 case X86::SHL32ri: {
1384 assert(MI.getNumOperands() >= 3 && "Unknown shift instruction!");
1385 unsigned ShAmt = getTruncatedShiftCount(MI, 2);
1386 if (!isTruncatedShiftCountForLEA(ShAmt)) return nullptr;
1387
1388 unsigned Opc = Is64Bit ? X86::LEA64_32r : X86::LEA32r;
1389
1390 // LEA can't handle ESP.
1391 bool isKill;
1392 MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
1393 if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/false, SrcReg, isKill,
1394 ImplicitOp, LV, LIS))
1395 return nullptr;
1396
1398 BuildMI(MF, MI.getDebugLoc(), get(Opc))
1399 .add(Dest)
1400 .addReg(0)
1401 .addImm(1LL << ShAmt)
1402 .addReg(SrcReg, getKillRegState(isKill))
1403 .addImm(0)
1404 .addReg(0);
1405 if (ImplicitOp.getReg() != 0)
1406 MIB.add(ImplicitOp);
1407 NewMI = MIB;
1408
1409 // Add kills if classifyLEAReg created a new register.
1410 if (LV && SrcReg != Src.getReg())
1411 LV->getVarInfo(SrcReg).Kills.push_back(NewMI);
1412 break;
1413 }
1414 case X86::SHL8ri:
1415 Is8BitOp = true;
1416 [[fallthrough]];
1417 case X86::SHL16ri: {
1418 assert(MI.getNumOperands() >= 3 && "Unknown shift instruction!");
1419 unsigned ShAmt = getTruncatedShiftCount(MI, 2);
1420 if (!isTruncatedShiftCountForLEA(ShAmt))
1421 return nullptr;
1422 return convertToThreeAddressWithLEA(MIOpc, MI, LV, LIS, Is8BitOp);
1423 }
1424 case X86::INC64r:
1425 case X86::INC32r: {
1426 assert(MI.getNumOperands() >= 2 && "Unknown inc instruction!");
1427 unsigned Opc = MIOpc == X86::INC64r ? X86::LEA64r :
1428 (Is64Bit ? X86::LEA64_32r : X86::LEA32r);
1429 bool isKill;
1430 MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
1431 if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/false, SrcReg, isKill,
1432 ImplicitOp, LV, LIS))
1433 return nullptr;
1434
1436 BuildMI(MF, MI.getDebugLoc(), get(Opc))
1437 .add(Dest)
1438 .addReg(SrcReg, getKillRegState(isKill));
1439 if (ImplicitOp.getReg() != 0)
1440 MIB.add(ImplicitOp);
1441
1442 NewMI = addOffset(MIB, 1);
1443
1444 // Add kills if classifyLEAReg created a new register.
1445 if (LV && SrcReg != Src.getReg())
1446 LV->getVarInfo(SrcReg).Kills.push_back(NewMI);
1447 break;
1448 }
1449 case X86::DEC64r:
1450 case X86::DEC32r: {
1451 assert(MI.getNumOperands() >= 2 && "Unknown dec instruction!");
1452 unsigned Opc = MIOpc == X86::DEC64r ? X86::LEA64r
1453 : (Is64Bit ? X86::LEA64_32r : X86::LEA32r);
1454
1455 bool isKill;
1456 MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
1457 if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/false, SrcReg, isKill,
1458 ImplicitOp, LV, LIS))
1459 return nullptr;
1460
1461 MachineInstrBuilder MIB = BuildMI(MF, MI.getDebugLoc(), get(Opc))
1462 .add(Dest)
1463 .addReg(SrcReg, getKillRegState(isKill));
1464 if (ImplicitOp.getReg() != 0)
1465 MIB.add(ImplicitOp);
1466
1467 NewMI = addOffset(MIB, -1);
1468
1469 // Add kills if classifyLEAReg created a new register.
1470 if (LV && SrcReg != Src.getReg())
1471 LV->getVarInfo(SrcReg).Kills.push_back(NewMI);
1472 break;
1473 }
1474 case X86::DEC8r:
1475 case X86::INC8r:
1476 Is8BitOp = true;
1477 [[fallthrough]];
1478 case X86::DEC16r:
1479 case X86::INC16r:
1480 return convertToThreeAddressWithLEA(MIOpc, MI, LV, LIS, Is8BitOp);
1481 case X86::ADD64rr:
1482 case X86::ADD64rr_DB:
1483 case X86::ADD32rr:
1484 case X86::ADD32rr_DB: {
1485 assert(MI.getNumOperands() >= 3 && "Unknown add instruction!");
1486 unsigned Opc;
1487 if (MIOpc == X86::ADD64rr || MIOpc == X86::ADD64rr_DB)
1488 Opc = X86::LEA64r;
1489 else
1490 Opc = Is64Bit ? X86::LEA64_32r : X86::LEA32r;
1491
1492 const MachineOperand &Src2 = MI.getOperand(2);
1493 bool isKill2;
1494 MachineOperand ImplicitOp2 = MachineOperand::CreateReg(0, false);
1495 if (!classifyLEAReg(MI, Src2, Opc, /*AllowSP=*/false, SrcReg2, isKill2,
1496 ImplicitOp2, LV, LIS))
1497 return nullptr;
1498
1499 bool isKill;
1500 MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
1501 if (Src.getReg() == Src2.getReg()) {
1502 // Don't call classify LEAReg a second time on the same register, in case
1503 // the first call inserted a COPY from Src2 and marked it as killed.
1504 isKill = isKill2;
1505 SrcReg = SrcReg2;
1506 } else {
1507 if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/true, SrcReg, isKill,
1508 ImplicitOp, LV, LIS))
1509 return nullptr;
1510 }
1511
1512 MachineInstrBuilder MIB = BuildMI(MF, MI.getDebugLoc(), get(Opc)).add(Dest);
1513 if (ImplicitOp.getReg() != 0)
1514 MIB.add(ImplicitOp);
1515 if (ImplicitOp2.getReg() != 0)
1516 MIB.add(ImplicitOp2);
1517
1518 NewMI = addRegReg(MIB, SrcReg, isKill, SrcReg2, isKill2);
1519
1520 // Add kills if classifyLEAReg created a new register.
1521 if (LV) {
1522 if (SrcReg2 != Src2.getReg())
1523 LV->getVarInfo(SrcReg2).Kills.push_back(NewMI);
1524 if (SrcReg != SrcReg2 && SrcReg != Src.getReg())
1525 LV->getVarInfo(SrcReg).Kills.push_back(NewMI);
1526 }
1527 NumRegOperands = 3;
1528 break;
1529 }
1530 case X86::ADD8rr:
1531 case X86::ADD8rr_DB:
1532 Is8BitOp = true;
1533 [[fallthrough]];
1534 case X86::ADD16rr:
1535 case X86::ADD16rr_DB:
1536 return convertToThreeAddressWithLEA(MIOpc, MI, LV, LIS, Is8BitOp);
1537 case X86::ADD64ri32:
1538 case X86::ADD64ri32_DB:
1539 assert(MI.getNumOperands() >= 3 && "Unknown add instruction!");
1540 NewMI = addOffset(
1541 BuildMI(MF, MI.getDebugLoc(), get(X86::LEA64r)).add(Dest).add(Src),
1542 MI.getOperand(2));
1543 break;
1544 case X86::ADD32ri:
1545 case X86::ADD32ri_DB: {
1546 assert(MI.getNumOperands() >= 3 && "Unknown add instruction!");
1547 unsigned Opc = Is64Bit ? X86::LEA64_32r : X86::LEA32r;
1548
1549 bool isKill;
1550 MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
1551 if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/true, SrcReg, isKill,
1552 ImplicitOp, LV, LIS))
1553 return nullptr;
1554
1555 MachineInstrBuilder MIB = BuildMI(MF, MI.getDebugLoc(), get(Opc))
1556 .add(Dest)
1557 .addReg(SrcReg, getKillRegState(isKill));
1558 if (ImplicitOp.getReg() != 0)
1559 MIB.add(ImplicitOp);
1560
1561 NewMI = addOffset(MIB, MI.getOperand(2));
1562
1563 // Add kills if classifyLEAReg created a new register.
1564 if (LV && SrcReg != Src.getReg())
1565 LV->getVarInfo(SrcReg).Kills.push_back(NewMI);
1566 break;
1567 }
1568 case X86::ADD8ri:
1569 case X86::ADD8ri_DB:
1570 Is8BitOp = true;
1571 [[fallthrough]];
1572 case X86::ADD16ri:
1573 case X86::ADD16ri_DB:
1574 return convertToThreeAddressWithLEA(MIOpc, MI, LV, LIS, Is8BitOp);
1575 case X86::SUB8ri:
1576 case X86::SUB16ri:
1577 /// FIXME: Support these similar to ADD8ri/ADD16ri*.
1578 return nullptr;
1579 case X86::SUB32ri: {
1580 if (!MI.getOperand(2).isImm())
1581 return nullptr;
1582 int64_t Imm = MI.getOperand(2).getImm();
1583 if (!isInt<32>(-Imm))
1584 return nullptr;
1585
1586 assert(MI.getNumOperands() >= 3 && "Unknown add instruction!");
1587 unsigned Opc = Is64Bit ? X86::LEA64_32r : X86::LEA32r;
1588
1589 bool isKill;
1590 MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
1591 if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/true, SrcReg, isKill,
1592 ImplicitOp, LV, LIS))
1593 return nullptr;
1594
1595 MachineInstrBuilder MIB = BuildMI(MF, MI.getDebugLoc(), get(Opc))
1596 .add(Dest)
1597 .addReg(SrcReg, getKillRegState(isKill));
1598 if (ImplicitOp.getReg() != 0)
1599 MIB.add(ImplicitOp);
1600
1601 NewMI = addOffset(MIB, -Imm);
1602
1603 // Add kills if classifyLEAReg created a new register.
1604 if (LV && SrcReg != Src.getReg())
1605 LV->getVarInfo(SrcReg).Kills.push_back(NewMI);
1606 break;
1607 }
1608
1609 case X86::SUB64ri32: {
1610 if (!MI.getOperand(2).isImm())
1611 return nullptr;
1612 int64_t Imm = MI.getOperand(2).getImm();
1613 if (!isInt<32>(-Imm))
1614 return nullptr;
1615
1616 assert(MI.getNumOperands() >= 3 && "Unknown sub instruction!");
1617
1618 MachineInstrBuilder MIB = BuildMI(MF, MI.getDebugLoc(),
1619 get(X86::LEA64r)).add(Dest).add(Src);
1620 NewMI = addOffset(MIB, -Imm);
1621 break;
1622 }
1623
1624 case X86::VMOVDQU8Z128rmk:
1625 case X86::VMOVDQU8Z256rmk:
1626 case X86::VMOVDQU8Zrmk:
1627 case X86::VMOVDQU16Z128rmk:
1628 case X86::VMOVDQU16Z256rmk:
1629 case X86::VMOVDQU16Zrmk:
1630 case X86::VMOVDQU32Z128rmk: case X86::VMOVDQA32Z128rmk:
1631 case X86::VMOVDQU32Z256rmk: case X86::VMOVDQA32Z256rmk:
1632 case X86::VMOVDQU32Zrmk: case X86::VMOVDQA32Zrmk:
1633 case X86::VMOVDQU64Z128rmk: case X86::VMOVDQA64Z128rmk:
1634 case X86::VMOVDQU64Z256rmk: case X86::VMOVDQA64Z256rmk:
1635 case X86::VMOVDQU64Zrmk: case X86::VMOVDQA64Zrmk:
1636 case X86::VMOVUPDZ128rmk: case X86::VMOVAPDZ128rmk:
1637 case X86::VMOVUPDZ256rmk: case X86::VMOVAPDZ256rmk:
1638 case X86::VMOVUPDZrmk: case X86::VMOVAPDZrmk:
1639 case X86::VMOVUPSZ128rmk: case X86::VMOVAPSZ128rmk:
1640 case X86::VMOVUPSZ256rmk: case X86::VMOVAPSZ256rmk:
1641 case X86::VMOVUPSZrmk: case X86::VMOVAPSZrmk:
1642 case X86::VBROADCASTSDZ256rmk:
1643 case X86::VBROADCASTSDZrmk:
1644 case X86::VBROADCASTSSZ128rmk:
1645 case X86::VBROADCASTSSZ256rmk:
1646 case X86::VBROADCASTSSZrmk:
1647 case X86::VPBROADCASTDZ128rmk:
1648 case X86::VPBROADCASTDZ256rmk:
1649 case X86::VPBROADCASTDZrmk:
1650 case X86::VPBROADCASTQZ128rmk:
1651 case X86::VPBROADCASTQZ256rmk:
1652 case X86::VPBROADCASTQZrmk: {
1653 unsigned Opc;
1654 switch (MIOpc) {
1655 default: llvm_unreachable("Unreachable!");
1656 case X86::VMOVDQU8Z128rmk: Opc = X86::VPBLENDMBZ128rmk; break;
1657 case X86::VMOVDQU8Z256rmk: Opc = X86::VPBLENDMBZ256rmk; break;
1658 case X86::VMOVDQU8Zrmk: Opc = X86::VPBLENDMBZrmk; break;
1659 case X86::VMOVDQU16Z128rmk: Opc = X86::VPBLENDMWZ128rmk; break;
1660 case X86::VMOVDQU16Z256rmk: Opc = X86::VPBLENDMWZ256rmk; break;
1661 case X86::VMOVDQU16Zrmk: Opc = X86::VPBLENDMWZrmk; break;
1662 case X86::VMOVDQU32Z128rmk: Opc = X86::VPBLENDMDZ128rmk; break;
1663 case X86::VMOVDQU32Z256rmk: Opc = X86::VPBLENDMDZ256rmk; break;
1664 case X86::VMOVDQU32Zrmk: Opc = X86::VPBLENDMDZrmk; break;
1665 case X86::VMOVDQU64Z128rmk: Opc = X86::VPBLENDMQZ128rmk; break;
1666 case X86::VMOVDQU64Z256rmk: Opc = X86::VPBLENDMQZ256rmk; break;
1667 case X86::VMOVDQU64Zrmk: Opc = X86::VPBLENDMQZrmk; break;
1668 case X86::VMOVUPDZ128rmk: Opc = X86::VBLENDMPDZ128rmk; break;
1669 case X86::VMOVUPDZ256rmk: Opc = X86::VBLENDMPDZ256rmk; break;
1670 case X86::VMOVUPDZrmk: Opc = X86::VBLENDMPDZrmk; break;
1671 case X86::VMOVUPSZ128rmk: Opc = X86::VBLENDMPSZ128rmk; break;
1672 case X86::VMOVUPSZ256rmk: Opc = X86::VBLENDMPSZ256rmk; break;
1673 case X86::VMOVUPSZrmk: Opc = X86::VBLENDMPSZrmk; break;
1674 case X86::VMOVDQA32Z128rmk: Opc = X86::VPBLENDMDZ128rmk; break;
1675 case X86::VMOVDQA32Z256rmk: Opc = X86::VPBLENDMDZ256rmk; break;
1676 case X86::VMOVDQA32Zrmk: Opc = X86::VPBLENDMDZrmk; break;
1677 case X86::VMOVDQA64Z128rmk: Opc = X86::VPBLENDMQZ128rmk; break;
1678 case X86::VMOVDQA64Z256rmk: Opc = X86::VPBLENDMQZ256rmk; break;
1679 case X86::VMOVDQA64Zrmk: Opc = X86::VPBLENDMQZrmk; break;
1680 case X86::VMOVAPDZ128rmk: Opc = X86::VBLENDMPDZ128rmk; break;
1681 case X86::VMOVAPDZ256rmk: Opc = X86::VBLENDMPDZ256rmk; break;
1682 case X86::VMOVAPDZrmk: Opc = X86::VBLENDMPDZrmk; break;
1683 case X86::VMOVAPSZ128rmk: Opc = X86::VBLENDMPSZ128rmk; break;
1684 case X86::VMOVAPSZ256rmk: Opc = X86::VBLENDMPSZ256rmk; break;
1685 case X86::VMOVAPSZrmk: Opc = X86::VBLENDMPSZrmk; break;
1686 case X86::VBROADCASTSDZ256rmk: Opc = X86::VBLENDMPDZ256rmbk; break;
1687 case X86::VBROADCASTSDZrmk: Opc = X86::VBLENDMPDZrmbk; break;
1688 case X86::VBROADCASTSSZ128rmk: Opc = X86::VBLENDMPSZ128rmbk; break;
1689 case X86::VBROADCASTSSZ256rmk: Opc = X86::VBLENDMPSZ256rmbk; break;
1690 case X86::VBROADCASTSSZrmk: Opc = X86::VBLENDMPSZrmbk; break;
1691 case X86::VPBROADCASTDZ128rmk: Opc = X86::VPBLENDMDZ128rmbk; break;
1692 case X86::VPBROADCASTDZ256rmk: Opc = X86::VPBLENDMDZ256rmbk; break;
1693 case X86::VPBROADCASTDZrmk: Opc = X86::VPBLENDMDZrmbk; break;
1694 case X86::VPBROADCASTQZ128rmk: Opc = X86::VPBLENDMQZ128rmbk; break;
1695 case X86::VPBROADCASTQZ256rmk: Opc = X86::VPBLENDMQZ256rmbk; break;
1696 case X86::VPBROADCASTQZrmk: Opc = X86::VPBLENDMQZrmbk; break;
1697 }
1698
1699 NewMI = BuildMI(MF, MI.getDebugLoc(), get(Opc))
1700 .add(Dest)
1701 .add(MI.getOperand(2))
1702 .add(Src)
1703 .add(MI.getOperand(3))
1704 .add(MI.getOperand(4))
1705 .add(MI.getOperand(5))
1706 .add(MI.getOperand(6))
1707 .add(MI.getOperand(7));
1708 NumRegOperands = 4;
1709 break;
1710 }
1711
1712 case X86::VMOVDQU8Z128rrk:
1713 case X86::VMOVDQU8Z256rrk:
1714 case X86::VMOVDQU8Zrrk:
1715 case X86::VMOVDQU16Z128rrk:
1716 case X86::VMOVDQU16Z256rrk:
1717 case X86::VMOVDQU16Zrrk:
1718 case X86::VMOVDQU32Z128rrk: case X86::VMOVDQA32Z128rrk:
1719 case X86::VMOVDQU32Z256rrk: case X86::VMOVDQA32Z256rrk:
1720 case X86::VMOVDQU32Zrrk: case X86::VMOVDQA32Zrrk:
1721 case X86::VMOVDQU64Z128rrk: case X86::VMOVDQA64Z128rrk:
1722 case X86::VMOVDQU64Z256rrk: case X86::VMOVDQA64Z256rrk:
1723 case X86::VMOVDQU64Zrrk: case X86::VMOVDQA64Zrrk:
1724 case X86::VMOVUPDZ128rrk: case X86::VMOVAPDZ128rrk:
1725 case X86::VMOVUPDZ256rrk: case X86::VMOVAPDZ256rrk:
1726 case X86::VMOVUPDZrrk: case X86::VMOVAPDZrrk:
1727 case X86::VMOVUPSZ128rrk: case X86::VMOVAPSZ128rrk:
1728 case X86::VMOVUPSZ256rrk: case X86::VMOVAPSZ256rrk:
1729 case X86::VMOVUPSZrrk: case X86::VMOVAPSZrrk: {
1730 unsigned Opc;
1731 switch (MIOpc) {
1732 default: llvm_unreachable("Unreachable!");
1733 case X86::VMOVDQU8Z128rrk: Opc = X86::VPBLENDMBZ128rrk; break;
1734 case X86::VMOVDQU8Z256rrk: Opc = X86::VPBLENDMBZ256rrk; break;
1735 case X86::VMOVDQU8Zrrk: Opc = X86::VPBLENDMBZrrk; break;
1736 case X86::VMOVDQU16Z128rrk: Opc = X86::VPBLENDMWZ128rrk; break;
1737 case X86::VMOVDQU16Z256rrk: Opc = X86::VPBLENDMWZ256rrk; break;
1738 case X86::VMOVDQU16Zrrk: Opc = X86::VPBLENDMWZrrk; break;
1739 case X86::VMOVDQU32Z128rrk: Opc = X86::VPBLENDMDZ128rrk; break;
1740 case X86::VMOVDQU32Z256rrk: Opc = X86::VPBLENDMDZ256rrk; break;
1741 case X86::VMOVDQU32Zrrk: Opc = X86::VPBLENDMDZrrk; break;
1742 case X86::VMOVDQU64Z128rrk: Opc = X86::VPBLENDMQZ128rrk; break;
1743 case X86::VMOVDQU64Z256rrk: Opc = X86::VPBLENDMQZ256rrk; break;
1744 case X86::VMOVDQU64Zrrk: Opc = X86::VPBLENDMQZrrk; break;
1745 case X86::VMOVUPDZ128rrk: Opc = X86::VBLENDMPDZ128rrk; break;
1746 case X86::VMOVUPDZ256rrk: Opc = X86::VBLENDMPDZ256rrk; break;
1747 case X86::VMOVUPDZrrk: Opc = X86::VBLENDMPDZrrk; break;
1748 case X86::VMOVUPSZ128rrk: Opc = X86::VBLENDMPSZ128rrk; break;
1749 case X86::VMOVUPSZ256rrk: Opc = X86::VBLENDMPSZ256rrk; break;
1750 case X86::VMOVUPSZrrk: Opc = X86::VBLENDMPSZrrk; break;
1751 case X86::VMOVDQA32Z128rrk: Opc = X86::VPBLENDMDZ128rrk; break;
1752 case X86::VMOVDQA32Z256rrk: Opc = X86::VPBLENDMDZ256rrk; break;
1753 case X86::VMOVDQA32Zrrk: Opc = X86::VPBLENDMDZrrk; break;
1754 case X86::VMOVDQA64Z128rrk: Opc = X86::VPBLENDMQZ128rrk; break;
1755 case X86::VMOVDQA64Z256rrk: Opc = X86::VPBLENDMQZ256rrk; break;
1756 case X86::VMOVDQA64Zrrk: Opc = X86::VPBLENDMQZrrk; break;
1757 case X86::VMOVAPDZ128rrk: Opc = X86::VBLENDMPDZ128rrk; break;
1758 case X86::VMOVAPDZ256rrk: Opc = X86::VBLENDMPDZ256rrk; break;
1759 case X86::VMOVAPDZrrk: Opc = X86::VBLENDMPDZrrk; break;
1760 case X86::VMOVAPSZ128rrk: Opc = X86::VBLENDMPSZ128rrk; break;
1761 case X86::VMOVAPSZ256rrk: Opc = X86::VBLENDMPSZ256rrk; break;
1762 case X86::VMOVAPSZrrk: Opc = X86::VBLENDMPSZrrk; break;
1763 }
1764
1765 NewMI = BuildMI(MF, MI.getDebugLoc(), get(Opc))
1766 .add(Dest)
1767 .add(MI.getOperand(2))
1768 .add(Src)
1769 .add(MI.getOperand(3));
1770 NumRegOperands = 4;
1771 break;
1772 }
1773 }
1774
1775 if (!NewMI) return nullptr;
1776
1777 if (LV) { // Update live variables
1778 for (unsigned I = 0; I < NumRegOperands; ++I) {
1779 MachineOperand &Op = MI.getOperand(I);
1780 if (Op.isReg() && (Op.isDead() || Op.isKill()))
1781 LV->replaceKillInstruction(Op.getReg(), MI, *NewMI);
1782 }
1783 }
1784
1785 MachineBasicBlock &MBB = *MI.getParent();
1786 MBB.insert(MI.getIterator(), NewMI); // Insert the new inst
1787
1788 if (LIS) {
1789 LIS->ReplaceMachineInstrInMaps(MI, *NewMI);
1790 if (SrcReg)
1791 LIS->getInterval(SrcReg);
1792 if (SrcReg2)
1793 LIS->getInterval(SrcReg2);
1794 }
1795
1796 return NewMI;
1797}
1798
1799/// This determines which of three possible cases of a three source commute
1800/// the source indexes correspond to taking into account any mask operands.
1801/// All prevents commuting a passthru operand. Returns -1 if the commute isn't
1802/// possible.
1803/// Case 0 - Possible to commute the first and second operands.
1804/// Case 1 - Possible to commute the first and third operands.
1805/// Case 2 - Possible to commute the second and third operands.
1806static unsigned getThreeSrcCommuteCase(uint64_t TSFlags, unsigned SrcOpIdx1,
1807 unsigned SrcOpIdx2) {
1808 // Put the lowest index to SrcOpIdx1 to simplify the checks below.
1809 if (SrcOpIdx1 > SrcOpIdx2)
1810 std::swap(SrcOpIdx1, SrcOpIdx2);
1811
1812 unsigned Op1 = 1, Op2 = 2, Op3 = 3;
1814 Op2++;
1815 Op3++;
1816 }
1817
1818 if (SrcOpIdx1 == Op1 && SrcOpIdx2 == Op2)
1819 return 0;
1820 if (SrcOpIdx1 == Op1 && SrcOpIdx2 == Op3)
1821 return 1;
1822 if (SrcOpIdx1 == Op2 && SrcOpIdx2 == Op3)
1823 return 2;
1824 llvm_unreachable("Unknown three src commute case.");
1825}
1826
1828 const MachineInstr &MI, unsigned SrcOpIdx1, unsigned SrcOpIdx2,
1829 const X86InstrFMA3Group &FMA3Group) const {
1830
1831 unsigned Opc = MI.getOpcode();
1832
1833 // TODO: Commuting the 1st operand of FMA*_Int requires some additional
1834 // analysis. The commute optimization is legal only if all users of FMA*_Int
1835 // use only the lowest element of the FMA*_Int instruction. Such analysis are
1836 // not implemented yet. So, just return 0 in that case.
1837 // When such analysis are available this place will be the right place for
1838 // calling it.
1839 assert(!(FMA3Group.isIntrinsic() && (SrcOpIdx1 == 1 || SrcOpIdx2 == 1)) &&
1840 "Intrinsic instructions can't commute operand 1");
1841
1842 // Determine which case this commute is or if it can't be done.
1843 unsigned Case = getThreeSrcCommuteCase(MI.getDesc().TSFlags, SrcOpIdx1,
1844 SrcOpIdx2);
1845 assert(Case < 3 && "Unexpected case number!");
1846
1847 // Define the FMA forms mapping array that helps to map input FMA form
1848 // to output FMA form to preserve the operation semantics after
1849 // commuting the operands.
1850 const unsigned Form132Index = 0;
1851 const unsigned Form213Index = 1;
1852 const unsigned Form231Index = 2;
1853 static const unsigned FormMapping[][3] = {
1854 // 0: SrcOpIdx1 == 1 && SrcOpIdx2 == 2;
1855 // FMA132 A, C, b; ==> FMA231 C, A, b;
1856 // FMA213 B, A, c; ==> FMA213 A, B, c;
1857 // FMA231 C, A, b; ==> FMA132 A, C, b;
1858 { Form231Index, Form213Index, Form132Index },
1859 // 1: SrcOpIdx1 == 1 && SrcOpIdx2 == 3;
1860 // FMA132 A, c, B; ==> FMA132 B, c, A;
1861 // FMA213 B, a, C; ==> FMA231 C, a, B;
1862 // FMA231 C, a, B; ==> FMA213 B, a, C;
1863 { Form132Index, Form231Index, Form213Index },
1864 // 2: SrcOpIdx1 == 2 && SrcOpIdx2 == 3;
1865 // FMA132 a, C, B; ==> FMA213 a, B, C;
1866 // FMA213 b, A, C; ==> FMA132 b, C, A;
1867 // FMA231 c, A, B; ==> FMA231 c, B, A;
1868 { Form213Index, Form132Index, Form231Index }
1869 };
1870
1871 unsigned FMAForms[3];
1872 FMAForms[0] = FMA3Group.get132Opcode();
1873 FMAForms[1] = FMA3Group.get213Opcode();
1874 FMAForms[2] = FMA3Group.get231Opcode();
1875
1876 // Everything is ready, just adjust the FMA opcode and return it.
1877 for (unsigned FormIndex = 0; FormIndex < 3; FormIndex++)
1878 if (Opc == FMAForms[FormIndex])
1879 return FMAForms[FormMapping[Case][FormIndex]];
1880
1881 llvm_unreachable("Illegal FMA3 format");
1882}
1883
1884static void commuteVPTERNLOG(MachineInstr &MI, unsigned SrcOpIdx1,
1885 unsigned SrcOpIdx2) {
1886 // Determine which case this commute is or if it can't be done.
1887 unsigned Case = getThreeSrcCommuteCase(MI.getDesc().TSFlags, SrcOpIdx1,
1888 SrcOpIdx2);
1889 assert(Case < 3 && "Unexpected case value!");
1890
1891 // For each case we need to swap two pairs of bits in the final immediate.
1892 static const uint8_t SwapMasks[3][4] = {
1893 { 0x04, 0x10, 0x08, 0x20 }, // Swap bits 2/4 and 3/5.
1894 { 0x02, 0x10, 0x08, 0x40 }, // Swap bits 1/4 and 3/6.
1895 { 0x02, 0x04, 0x20, 0x40 }, // Swap bits 1/2 and 5/6.
1896 };
1897
1898 uint8_t Imm = MI.getOperand(MI.getNumOperands()-1).getImm();
1899 // Clear out the bits we are swapping.
1900 uint8_t NewImm = Imm & ~(SwapMasks[Case][0] | SwapMasks[Case][1] |
1901 SwapMasks[Case][2] | SwapMasks[Case][3]);
1902 // If the immediate had a bit of the pair set, then set the opposite bit.
1903 if (Imm & SwapMasks[Case][0]) NewImm |= SwapMasks[Case][1];
1904 if (Imm & SwapMasks[Case][1]) NewImm |= SwapMasks[Case][0];
1905 if (Imm & SwapMasks[Case][2]) NewImm |= SwapMasks[Case][3];
1906 if (Imm & SwapMasks[Case][3]) NewImm |= SwapMasks[Case][2];
1907 MI.getOperand(MI.getNumOperands()-1).setImm(NewImm);
1908}
1909
1910// Returns true if this is a VPERMI2 or VPERMT2 instruction that can be
1911// commuted.
1912static bool isCommutableVPERMV3Instruction(unsigned Opcode) {
1913#define VPERM_CASES(Suffix) \
1914 case X86::VPERMI2##Suffix##128rr: case X86::VPERMT2##Suffix##128rr: \
1915 case X86::VPERMI2##Suffix##256rr: case X86::VPERMT2##Suffix##256rr: \
1916 case X86::VPERMI2##Suffix##rr: case X86::VPERMT2##Suffix##rr: \
1917 case X86::VPERMI2##Suffix##128rm: case X86::VPERMT2##Suffix##128rm: \
1918 case X86::VPERMI2##Suffix##256rm: case X86::VPERMT2##Suffix##256rm: \
1919 case X86::VPERMI2##Suffix##rm: case X86::VPERMT2##Suffix##rm: \
1920 case X86::VPERMI2##Suffix##128rrkz: case X86::VPERMT2##Suffix##128rrkz: \
1921 case X86::VPERMI2##Suffix##256rrkz: case X86::VPERMT2##Suffix##256rrkz: \
1922 case X86::VPERMI2##Suffix##rrkz: case X86::VPERMT2##Suffix##rrkz: \
1923 case X86::VPERMI2##Suffix##128rmkz: case X86::VPERMT2##Suffix##128rmkz: \
1924 case X86::VPERMI2##Suffix##256rmkz: case X86::VPERMT2##Suffix##256rmkz: \
1925 case X86::VPERMI2##Suffix##rmkz: case X86::VPERMT2##Suffix##rmkz:
1926
1927#define VPERM_CASES_BROADCAST(Suffix) \
1928 VPERM_CASES(Suffix) \
1929 case X86::VPERMI2##Suffix##128rmb: case X86::VPERMT2##Suffix##128rmb: \
1930 case X86::VPERMI2##Suffix##256rmb: case X86::VPERMT2##Suffix##256rmb: \
1931 case X86::VPERMI2##Suffix##rmb: case X86::VPERMT2##Suffix##rmb: \
1932 case X86::VPERMI2##Suffix##128rmbkz: case X86::VPERMT2##Suffix##128rmbkz: \
1933 case X86::VPERMI2##Suffix##256rmbkz: case X86::VPERMT2##Suffix##256rmbkz: \
1934 case X86::VPERMI2##Suffix##rmbkz: case X86::VPERMT2##Suffix##rmbkz:
1935
1936 switch (Opcode) {
1937 default: return false;
1938 VPERM_CASES(B)
1943 VPERM_CASES(W)
1944 return true;
1945 }
1946#undef VPERM_CASES_BROADCAST
1947#undef VPERM_CASES
1948}
1949
1950// Returns commuted opcode for VPERMI2 and VPERMT2 instructions by switching
1951// from the I opcode to the T opcode and vice versa.
1952static unsigned getCommutedVPERMV3Opcode(unsigned Opcode) {
1953#define VPERM_CASES(Orig, New) \
1954 case X86::Orig##128rr: return X86::New##128rr; \
1955 case X86::Orig##128rrkz: return X86::New##128rrkz; \
1956 case X86::Orig##128rm: return X86::New##128rm; \
1957 case X86::Orig##128rmkz: return X86::New##128rmkz; \
1958 case X86::Orig##256rr: return X86::New##256rr; \
1959 case X86::Orig##256rrkz: return X86::New##256rrkz; \
1960 case X86::Orig##256rm: return X86::New##256rm; \
1961 case X86::Orig##256rmkz: return X86::New##256rmkz; \
1962 case X86::Orig##rr: return X86::New##rr; \
1963 case X86::Orig##rrkz: return X86::New##rrkz; \
1964 case X86::Orig##rm: return X86::New##rm; \
1965 case X86::Orig##rmkz: return X86::New##rmkz;
1966
1967#define VPERM_CASES_BROADCAST(Orig, New) \
1968 VPERM_CASES(Orig, New) \
1969 case X86::Orig##128rmb: return X86::New##128rmb; \
1970 case X86::Orig##128rmbkz: return X86::New##128rmbkz; \
1971 case X86::Orig##256rmb: return X86::New##256rmb; \
1972 case X86::Orig##256rmbkz: return X86::New##256rmbkz; \
1973 case X86::Orig##rmb: return X86::New##rmb; \
1974 case X86::Orig##rmbkz: return X86::New##rmbkz;
1975
1976 switch (Opcode) {
1977 VPERM_CASES(VPERMI2B, VPERMT2B)
1978 VPERM_CASES_BROADCAST(VPERMI2D, VPERMT2D)
1979 VPERM_CASES_BROADCAST(VPERMI2PD, VPERMT2PD)
1980 VPERM_CASES_BROADCAST(VPERMI2PS, VPERMT2PS)
1981 VPERM_CASES_BROADCAST(VPERMI2Q, VPERMT2Q)
1982 VPERM_CASES(VPERMI2W, VPERMT2W)
1983 VPERM_CASES(VPERMT2B, VPERMI2B)
1984 VPERM_CASES_BROADCAST(VPERMT2D, VPERMI2D)
1985 VPERM_CASES_BROADCAST(VPERMT2PD, VPERMI2PD)
1986 VPERM_CASES_BROADCAST(VPERMT2PS, VPERMI2PS)
1987 VPERM_CASES_BROADCAST(VPERMT2Q, VPERMI2Q)
1988 VPERM_CASES(VPERMT2W, VPERMI2W)
1989 }
1990
1991 llvm_unreachable("Unreachable!");
1992#undef VPERM_CASES_BROADCAST
1993#undef VPERM_CASES
1994}
1995
1997 unsigned OpIdx1,
1998 unsigned OpIdx2) const {
1999 auto cloneIfNew = [NewMI](MachineInstr &MI) -> MachineInstr & {
2000 if (NewMI)
2001 return *MI.getParent()->getParent()->CloneMachineInstr(&MI);
2002 return MI;
2003 };
2004
2005 switch (MI.getOpcode()) {
2006 case X86::SHRD16rri8: // A = SHRD16rri8 B, C, I -> A = SHLD16rri8 C, B, (16-I)
2007 case X86::SHLD16rri8: // A = SHLD16rri8 B, C, I -> A = SHRD16rri8 C, B, (16-I)
2008 case X86::SHRD32rri8: // A = SHRD32rri8 B, C, I -> A = SHLD32rri8 C, B, (32-I)
2009 case X86::SHLD32rri8: // A = SHLD32rri8 B, C, I -> A = SHRD32rri8 C, B, (32-I)
2010 case X86::SHRD64rri8: // A = SHRD64rri8 B, C, I -> A = SHLD64rri8 C, B, (64-I)
2011 case X86::SHLD64rri8:{// A = SHLD64rri8 B, C, I -> A = SHRD64rri8 C, B, (64-I)
2012 unsigned Opc;
2013 unsigned Size;
2014 switch (MI.getOpcode()) {
2015 default: llvm_unreachable("Unreachable!");
2016 case X86::SHRD16rri8: Size = 16; Opc = X86::SHLD16rri8; break;
2017 case X86::SHLD16rri8: Size = 16; Opc = X86::SHRD16rri8; break;
2018 case X86::SHRD32rri8: Size = 32; Opc = X86::SHLD32rri8; break;
2019 case X86::SHLD32rri8: Size = 32; Opc = X86::SHRD32rri8; break;
2020 case X86::SHRD64rri8: Size = 64; Opc = X86::SHLD64rri8; break;
2021 case X86::SHLD64rri8: Size = 64; Opc = X86::SHRD64rri8; break;
2022 }
2023 unsigned Amt = MI.getOperand(3).getImm();
2024 auto &WorkingMI = cloneIfNew(MI);
2025 WorkingMI.setDesc(get(Opc));
2026 WorkingMI.getOperand(3).setImm(Size - Amt);
2027 return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
2028 OpIdx1, OpIdx2);
2029 }
2030 case X86::PFSUBrr:
2031 case X86::PFSUBRrr: {
2032 // PFSUB x, y: x = x - y
2033 // PFSUBR x, y: x = y - x
2034 unsigned Opc =
2035 (X86::PFSUBRrr == MI.getOpcode() ? X86::PFSUBrr : X86::PFSUBRrr);
2036 auto &WorkingMI = cloneIfNew(MI);
2037 WorkingMI.setDesc(get(Opc));
2038 return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
2039 OpIdx1, OpIdx2);
2040 }
2041 case X86::BLENDPDrri:
2042 case X86::BLENDPSrri:
2043 case X86::VBLENDPDrri:
2044 case X86::VBLENDPSrri:
2045 // If we're optimizing for size, try to use MOVSD/MOVSS.
2046 if (MI.getParent()->getParent()->getFunction().hasOptSize()) {
2047 unsigned Mask, Opc;
2048 switch (MI.getOpcode()) {
2049 default: llvm_unreachable("Unreachable!");
2050 case X86::BLENDPDrri: Opc = X86::MOVSDrr; Mask = 0x03; break;
2051 case X86::BLENDPSrri: Opc = X86::MOVSSrr; Mask = 0x0F; break;
2052 case X86::VBLENDPDrri: Opc = X86::VMOVSDrr; Mask = 0x03; break;
2053 case X86::VBLENDPSrri: Opc = X86::VMOVSSrr; Mask = 0x0F; break;
2054 }
2055 if ((MI.getOperand(3).getImm() ^ Mask) == 1) {
2056 auto &WorkingMI = cloneIfNew(MI);
2057 WorkingMI.setDesc(get(Opc));
2058 WorkingMI.removeOperand(3);
2060 /*NewMI=*/false,
2061 OpIdx1, OpIdx2);
2062 }
2063 }
2064 [[fallthrough]];
2065 case X86::PBLENDWrri:
2066 case X86::VBLENDPDYrri:
2067 case X86::VBLENDPSYrri:
2068 case X86::VPBLENDDrri:
2069 case X86::VPBLENDWrri:
2070 case X86::VPBLENDDYrri:
2071 case X86::VPBLENDWYrri:{
2072 int8_t Mask;
2073 switch (MI.getOpcode()) {
2074 default: llvm_unreachable("Unreachable!");
2075 case X86::BLENDPDrri: Mask = (int8_t)0x03; break;
2076 case X86::BLENDPSrri: Mask = (int8_t)0x0F; break;
2077 case X86::PBLENDWrri: Mask = (int8_t)0xFF; break;
2078 case X86::VBLENDPDrri: Mask = (int8_t)0x03; break;
2079 case X86::VBLENDPSrri: Mask = (int8_t)0x0F; break;
2080 case X86::VBLENDPDYrri: Mask = (int8_t)0x0F; break;
2081 case X86::VBLENDPSYrri: Mask = (int8_t)0xFF; break;
2082 case X86::VPBLENDDrri: Mask = (int8_t)0x0F; break;
2083 case X86::VPBLENDWrri: Mask = (int8_t)0xFF; break;
2084 case X86::VPBLENDDYrri: Mask = (int8_t)0xFF; break;
2085 case X86::VPBLENDWYrri: Mask = (int8_t)0xFF; break;
2086 }
2087 // Only the least significant bits of Imm are used.
2088 // Using int8_t to ensure it will be sign extended to the int64_t that
2089 // setImm takes in order to match isel behavior.
2090 int8_t Imm = MI.getOperand(3).getImm() & Mask;
2091 auto &WorkingMI = cloneIfNew(MI);
2092 WorkingMI.getOperand(3).setImm(Mask ^ Imm);
2093 return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
2094 OpIdx1, OpIdx2);
2095 }
2096 case X86::INSERTPSrr:
2097 case X86::VINSERTPSrr:
2098 case X86::VINSERTPSZrr: {
2099 unsigned Imm = MI.getOperand(MI.getNumOperands() - 1).getImm();
2100 unsigned ZMask = Imm & 15;
2101 unsigned DstIdx = (Imm >> 4) & 3;
2102 unsigned SrcIdx = (Imm >> 6) & 3;
2103
2104 // We can commute insertps if we zero 2 of the elements, the insertion is
2105 // "inline" and we don't override the insertion with a zero.
2106 if (DstIdx == SrcIdx && (ZMask & (1 << DstIdx)) == 0 &&
2107 llvm::popcount(ZMask) == 2) {
2108 unsigned AltIdx = llvm::countr_zero((ZMask | (1 << DstIdx)) ^ 15);
2109 assert(AltIdx < 4 && "Illegal insertion index");
2110 unsigned AltImm = (AltIdx << 6) | (AltIdx << 4) | ZMask;
2111 auto &WorkingMI = cloneIfNew(MI);
2112 WorkingMI.getOperand(MI.getNumOperands() - 1).setImm(AltImm);
2113 return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
2114 OpIdx1, OpIdx2);
2115 }
2116 return nullptr;
2117 }
2118 case X86::MOVSDrr:
2119 case X86::MOVSSrr:
2120 case X86::VMOVSDrr:
2121 case X86::VMOVSSrr:{
2122 // On SSE41 or later we can commute a MOVSS/MOVSD to a BLENDPS/BLENDPD.
2123 if (Subtarget.hasSSE41()) {
2124 unsigned Mask, Opc;
2125 switch (MI.getOpcode()) {
2126 default: llvm_unreachable("Unreachable!");
2127 case X86::MOVSDrr: Opc = X86::BLENDPDrri; Mask = 0x02; break;
2128 case X86::MOVSSrr: Opc = X86::BLENDPSrri; Mask = 0x0E; break;
2129 case X86::VMOVSDrr: Opc = X86::VBLENDPDrri; Mask = 0x02; break;
2130 case X86::VMOVSSrr: Opc = X86::VBLENDPSrri; Mask = 0x0E; break;
2131 }
2132
2133 auto &WorkingMI = cloneIfNew(MI);
2134 WorkingMI.setDesc(get(Opc));
2135 WorkingMI.addOperand(MachineOperand::CreateImm(Mask));
2136 return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
2137 OpIdx1, OpIdx2);
2138 }
2139
2140 // Convert to SHUFPD.
2141 assert(MI.getOpcode() == X86::MOVSDrr &&
2142 "Can only commute MOVSDrr without SSE4.1");
2143
2144 auto &WorkingMI = cloneIfNew(MI);
2145 WorkingMI.setDesc(get(X86::SHUFPDrri));
2146 WorkingMI.addOperand(MachineOperand::CreateImm(0x02));
2147 return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
2148 OpIdx1, OpIdx2);
2149 }
2150 case X86::SHUFPDrri: {
2151 // Commute to MOVSD.
2152 assert(MI.getOperand(3).getImm() == 0x02 && "Unexpected immediate!");
2153 auto &WorkingMI = cloneIfNew(MI);
2154 WorkingMI.setDesc(get(X86::MOVSDrr));
2155 WorkingMI.removeOperand(3);
2156 return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
2157 OpIdx1, OpIdx2);
2158 }
2159 case X86::PCLMULQDQrr:
2160 case X86::VPCLMULQDQrr:
2161 case X86::VPCLMULQDQYrr:
2162 case X86::VPCLMULQDQZrr:
2163 case X86::VPCLMULQDQZ128rr:
2164 case X86::VPCLMULQDQZ256rr: {
2165 // SRC1 64bits = Imm[0] ? SRC1[127:64] : SRC1[63:0]
2166 // SRC2 64bits = Imm[4] ? SRC2[127:64] : SRC2[63:0]
2167 unsigned Imm = MI.getOperand(3).getImm();
2168 unsigned Src1Hi = Imm & 0x01;
2169 unsigned Src2Hi = Imm & 0x10;
2170 auto &WorkingMI = cloneIfNew(MI);
2171 WorkingMI.getOperand(3).setImm((Src1Hi << 4) | (Src2Hi >> 4));
2172 return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
2173 OpIdx1, OpIdx2);
2174 }
2175 case X86::VPCMPBZ128rri: case X86::VPCMPUBZ128rri:
2176 case X86::VPCMPBZ256rri: case X86::VPCMPUBZ256rri:
2177 case X86::VPCMPBZrri: case X86::VPCMPUBZrri:
2178 case X86::VPCMPDZ128rri: case X86::VPCMPUDZ128rri:
2179 case X86::VPCMPDZ256rri: case X86::VPCMPUDZ256rri:
2180 case X86::VPCMPDZrri: case X86::VPCMPUDZrri:
2181 case X86::VPCMPQZ128rri: case X86::VPCMPUQZ128rri:
2182 case X86::VPCMPQZ256rri: case X86::VPCMPUQZ256rri:
2183 case X86::VPCMPQZrri: case X86::VPCMPUQZrri:
2184 case X86::VPCMPWZ128rri: case X86::VPCMPUWZ128rri:
2185 case X86::VPCMPWZ256rri: case X86::VPCMPUWZ256rri:
2186 case X86::VPCMPWZrri: case X86::VPCMPUWZrri:
2187 case X86::VPCMPBZ128rrik: case X86::VPCMPUBZ128rrik:
2188 case X86::VPCMPBZ256rrik: case X86::VPCMPUBZ256rrik:
2189 case X86::VPCMPBZrrik: case X86::VPCMPUBZrrik:
2190 case X86::VPCMPDZ128rrik: case X86::VPCMPUDZ128rrik:
2191 case X86::VPCMPDZ256rrik: case X86::VPCMPUDZ256rrik:
2192 case X86::VPCMPDZrrik: case X86::VPCMPUDZrrik:
2193 case X86::VPCMPQZ128rrik: case X86::VPCMPUQZ128rrik:
2194 case X86::VPCMPQZ256rrik: case X86::VPCMPUQZ256rrik:
2195 case X86::VPCMPQZrrik: case X86::VPCMPUQZrrik:
2196 case X86::VPCMPWZ128rrik: case X86::VPCMPUWZ128rrik:
2197 case X86::VPCMPWZ256rrik: case X86::VPCMPUWZ256rrik:
2198 case X86::VPCMPWZrrik: case X86::VPCMPUWZrrik: {
2199 // Flip comparison mode immediate (if necessary).
2200 unsigned Imm = MI.getOperand(MI.getNumOperands() - 1).getImm() & 0x7;
2201 Imm = X86::getSwappedVPCMPImm(Imm);
2202 auto &WorkingMI = cloneIfNew(MI);
2203 WorkingMI.getOperand(MI.getNumOperands() - 1).setImm(Imm);
2204 return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
2205 OpIdx1, OpIdx2);
2206 }
2207 case X86::VPCOMBri: case X86::VPCOMUBri:
2208 case X86::VPCOMDri: case X86::VPCOMUDri:
2209 case X86::VPCOMQri: case X86::VPCOMUQri:
2210 case X86::VPCOMWri: case X86::VPCOMUWri: {
2211 // Flip comparison mode immediate (if necessary).
2212 unsigned Imm = MI.getOperand(3).getImm() & 0x7;
2213 Imm = X86::getSwappedVPCOMImm(Imm);
2214 auto &WorkingMI = cloneIfNew(MI);
2215 WorkingMI.getOperand(3).setImm(Imm);
2216 return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
2217 OpIdx1, OpIdx2);
2218 }
2219 case X86::VCMPSDZrr:
2220 case X86::VCMPSSZrr:
2221 case X86::VCMPPDZrri:
2222 case X86::VCMPPSZrri:
2223 case X86::VCMPSHZrr:
2224 case X86::VCMPPHZrri:
2225 case X86::VCMPPHZ128rri:
2226 case X86::VCMPPHZ256rri:
2227 case X86::VCMPPDZ128rri:
2228 case X86::VCMPPSZ128rri:
2229 case X86::VCMPPDZ256rri:
2230 case X86::VCMPPSZ256rri:
2231 case X86::VCMPPDZrrik:
2232 case X86::VCMPPSZrrik:
2233 case X86::VCMPPDZ128rrik:
2234 case X86::VCMPPSZ128rrik:
2235 case X86::VCMPPDZ256rrik:
2236 case X86::VCMPPSZ256rrik: {
2237 unsigned Imm =
2238 MI.getOperand(MI.getNumExplicitOperands() - 1).getImm() & 0x1f;
2239 Imm = X86::getSwappedVCMPImm(Imm);
2240 auto &WorkingMI = cloneIfNew(MI);
2241 WorkingMI.getOperand(MI.getNumExplicitOperands() - 1).setImm(Imm);
2242 return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
2243 OpIdx1, OpIdx2);
2244 }
2245 case X86::VPERM2F128rr:
2246 case X86::VPERM2I128rr: {
2247 // Flip permute source immediate.
2248 // Imm & 0x02: lo = if set, select Op1.lo/hi else Op0.lo/hi.
2249 // Imm & 0x20: hi = if set, select Op1.lo/hi else Op0.lo/hi.
2250 int8_t Imm = MI.getOperand(3).getImm() & 0xFF;
2251 auto &WorkingMI = cloneIfNew(MI);
2252 WorkingMI.getOperand(3).setImm(Imm ^ 0x22);
2253 return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
2254 OpIdx1, OpIdx2);
2255 }
2256 case X86::MOVHLPSrr:
2257 case X86::UNPCKHPDrr:
2258 case X86::VMOVHLPSrr:
2259 case X86::VUNPCKHPDrr:
2260 case X86::VMOVHLPSZrr:
2261 case X86::VUNPCKHPDZ128rr: {
2262 assert(Subtarget.hasSSE2() && "Commuting MOVHLP/UNPCKHPD requires SSE2!");
2263
2264 unsigned Opc = MI.getOpcode();
2265 switch (Opc) {
2266 default: llvm_unreachable("Unreachable!");
2267 case X86::MOVHLPSrr: Opc = X86::UNPCKHPDrr; break;
2268 case X86::UNPCKHPDrr: Opc = X86::MOVHLPSrr; break;
2269 case X86::VMOVHLPSrr: Opc = X86::VUNPCKHPDrr; break;
2270 case X86::VUNPCKHPDrr: Opc = X86::VMOVHLPSrr; break;
2271 case X86::VMOVHLPSZrr: Opc = X86::VUNPCKHPDZ128rr; break;
2272 case X86::VUNPCKHPDZ128rr: Opc = X86::VMOVHLPSZrr; break;
2273 }
2274 auto &WorkingMI = cloneIfNew(MI);
2275 WorkingMI.setDesc(get(Opc));
2276 return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
2277 OpIdx1, OpIdx2);
2278 }
2279 case X86::CMOV16rr: case X86::CMOV32rr: case X86::CMOV64rr: {
2280 auto &WorkingMI = cloneIfNew(MI);
2281 unsigned OpNo = MI.getDesc().getNumOperands() - 1;
2282 X86::CondCode CC = static_cast<X86::CondCode>(MI.getOperand(OpNo).getImm());
2283 WorkingMI.getOperand(OpNo).setImm(X86::GetOppositeBranchCondition(CC));
2284 return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
2285 OpIdx1, OpIdx2);
2286 }
2287 case X86::VPTERNLOGDZrri: case X86::VPTERNLOGDZrmi:
2288 case X86::VPTERNLOGDZ128rri: case X86::VPTERNLOGDZ128rmi:
2289 case X86::VPTERNLOGDZ256rri: case X86::VPTERNLOGDZ256rmi:
2290 case X86::VPTERNLOGQZrri: case X86::VPTERNLOGQZrmi:
2291 case X86::VPTERNLOGQZ128rri: case X86::VPTERNLOGQZ128rmi:
2292 case X86::VPTERNLOGQZ256rri: case X86::VPTERNLOGQZ256rmi:
2293 case X86::VPTERNLOGDZrrik:
2294 case X86::VPTERNLOGDZ128rrik:
2295 case X86::VPTERNLOGDZ256rrik:
2296 case X86::VPTERNLOGQZrrik:
2297 case X86::VPTERNLOGQZ128rrik:
2298 case X86::VPTERNLOGQZ256rrik:
2299 case X86::VPTERNLOGDZrrikz: case X86::VPTERNLOGDZrmikz:
2300 case X86::VPTERNLOGDZ128rrikz: case X86::VPTERNLOGDZ128rmikz:
2301 case X86::VPTERNLOGDZ256rrikz: case X86::VPTERNLOGDZ256rmikz:
2302 case X86::VPTERNLOGQZrrikz: case X86::VPTERNLOGQZrmikz:
2303 case X86::VPTERNLOGQZ128rrikz: case X86::VPTERNLOGQZ128rmikz:
2304 case X86::VPTERNLOGQZ256rrikz: case X86::VPTERNLOGQZ256rmikz:
2305 case X86::VPTERNLOGDZ128rmbi:
2306 case X86::VPTERNLOGDZ256rmbi:
2307 case X86::VPTERNLOGDZrmbi:
2308 case X86::VPTERNLOGQZ128rmbi:
2309 case X86::VPTERNLOGQZ256rmbi:
2310 case X86::VPTERNLOGQZrmbi:
2311 case X86::VPTERNLOGDZ128rmbikz:
2312 case X86::VPTERNLOGDZ256rmbikz:
2313 case X86::VPTERNLOGDZrmbikz:
2314 case X86::VPTERNLOGQZ128rmbikz:
2315 case X86::VPTERNLOGQZ256rmbikz:
2316 case X86::VPTERNLOGQZrmbikz: {
2317 auto &WorkingMI = cloneIfNew(MI);
2318 commuteVPTERNLOG(WorkingMI, OpIdx1, OpIdx2);
2319 return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
2320 OpIdx1, OpIdx2);
2321 }
2322 default: {
2323 if (isCommutableVPERMV3Instruction(MI.getOpcode())) {
2324 unsigned Opc = getCommutedVPERMV3Opcode(MI.getOpcode());
2325 auto &WorkingMI = cloneIfNew(MI);
2326 WorkingMI.setDesc(get(Opc));
2327 return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
2328 OpIdx1, OpIdx2);
2329 }
2330
2331 const X86InstrFMA3Group *FMA3Group = getFMA3Group(MI.getOpcode(),
2332 MI.getDesc().TSFlags);
2333 if (FMA3Group) {
2334 unsigned Opc =
2335 getFMA3OpcodeToCommuteOperands(MI, OpIdx1, OpIdx2, *FMA3Group);
2336 auto &WorkingMI = cloneIfNew(MI);
2337 WorkingMI.setDesc(get(Opc));
2338 return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
2339 OpIdx1, OpIdx2);
2340 }
2341
2342 return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2);
2343 }
2344 }
2345}
2346
2347bool
2348X86InstrInfo::findThreeSrcCommutedOpIndices(const MachineInstr &MI,
2349 unsigned &SrcOpIdx1,
2350 unsigned &SrcOpIdx2,
2351 bool IsIntrinsic) const {
2352 uint64_t TSFlags = MI.getDesc().TSFlags;
2353
2354 unsigned FirstCommutableVecOp = 1;
2355 unsigned LastCommutableVecOp = 3;
2356 unsigned KMaskOp = -1U;
2358 // For k-zero-masked operations it is Ok to commute the first vector
2359 // operand. Unless this is an intrinsic instruction.
2360 // For regular k-masked operations a conservative choice is done as the
2361 // elements of the first vector operand, for which the corresponding bit
2362 // in the k-mask operand is set to 0, are copied to the result of the
2363 // instruction.
2364 // TODO/FIXME: The commute still may be legal if it is known that the
2365 // k-mask operand is set to either all ones or all zeroes.
2366 // It is also Ok to commute the 1st operand if all users of MI use only
2367 // the elements enabled by the k-mask operand. For example,
2368 // v4 = VFMADD213PSZrk v1, k, v2, v3; // v1[i] = k[i] ? v2[i]*v1[i]+v3[i]
2369 // : v1[i];
2370 // VMOVAPSZmrk <mem_addr>, k, v4; // this is the ONLY user of v4 ->
2371 // // Ok, to commute v1 in FMADD213PSZrk.
2372
2373 // The k-mask operand has index = 2 for masked and zero-masked operations.
2374 KMaskOp = 2;
2375
2376 // The operand with index = 1 is used as a source for those elements for
2377 // which the corresponding bit in the k-mask is set to 0.
2378 if (X86II::isKMergeMasked(TSFlags) || IsIntrinsic)
2379 FirstCommutableVecOp = 3;
2380
2381 LastCommutableVecOp++;
2382 } else if (IsIntrinsic) {
2383 // Commuting the first operand of an intrinsic instruction isn't possible
2384 // unless we can prove that only the lowest element of the result is used.
2385 FirstCommutableVecOp = 2;
2386 }
2387
2388 if (isMem(MI, LastCommutableVecOp))
2389 LastCommutableVecOp--;
2390
2391 // Only the first RegOpsNum operands are commutable.
2392 // Also, the value 'CommuteAnyOperandIndex' is valid here as it means
2393 // that the operand is not specified/fixed.
2394 if (SrcOpIdx1 != CommuteAnyOperandIndex &&
2395 (SrcOpIdx1 < FirstCommutableVecOp || SrcOpIdx1 > LastCommutableVecOp ||
2396 SrcOpIdx1 == KMaskOp))
2397 return false;
2398 if (SrcOpIdx2 != CommuteAnyOperandIndex &&
2399 (SrcOpIdx2 < FirstCommutableVecOp || SrcOpIdx2 > LastCommutableVecOp ||
2400 SrcOpIdx2 == KMaskOp))
2401 return false;
2402
2403 // Look for two different register operands assumed to be commutable
2404 // regardless of the FMA opcode. The FMA opcode is adjusted later.
2405 if (SrcOpIdx1 == CommuteAnyOperandIndex ||
2406 SrcOpIdx2 == CommuteAnyOperandIndex) {
2407 unsigned CommutableOpIdx2 = SrcOpIdx2;
2408
2409 // At least one of operands to be commuted is not specified and
2410 // this method is free to choose appropriate commutable operands.
2411 if (SrcOpIdx1 == SrcOpIdx2)
2412 // Both of operands are not fixed. By default set one of commutable
2413 // operands to the last register operand of the instruction.
2414 CommutableOpIdx2 = LastCommutableVecOp;
2415 else if (SrcOpIdx2 == CommuteAnyOperandIndex)
2416 // Only one of operands is not fixed.
2417 CommutableOpIdx2 = SrcOpIdx1;
2418
2419 // CommutableOpIdx2 is well defined now. Let's choose another commutable
2420 // operand and assign its index to CommutableOpIdx1.
2421 Register Op2Reg = MI.getOperand(CommutableOpIdx2).getReg();
2422
2423 unsigned CommutableOpIdx1;
2424 for (CommutableOpIdx1 = LastCommutableVecOp;
2425 CommutableOpIdx1 >= FirstCommutableVecOp; CommutableOpIdx1--) {
2426 // Just ignore and skip the k-mask operand.
2427 if (CommutableOpIdx1 == KMaskOp)
2428 continue;
2429
2430 // The commuted operands must have different registers.
2431 // Otherwise, the commute transformation does not change anything and
2432 // is useless then.
2433 if (Op2Reg != MI.getOperand(CommutableOpIdx1).getReg())
2434 break;
2435 }
2436
2437 // No appropriate commutable operands were found.
2438 if (CommutableOpIdx1 < FirstCommutableVecOp)
2439 return false;
2440
2441 // Assign the found pair of commutable indices to SrcOpIdx1 and SrcOpidx2
2442 // to return those values.
2443 if (!fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2,
2444 CommutableOpIdx1, CommutableOpIdx2))
2445 return false;
2446 }
2447
2448 return true;
2449}
2450
2452 unsigned &SrcOpIdx1,
2453 unsigned &SrcOpIdx2) const {
2454 const MCInstrDesc &Desc = MI.getDesc();
2455 if (!Desc.isCommutable())
2456 return false;
2457
2458 switch (MI.getOpcode()) {
2459 case X86::CMPSDrr:
2460 case X86::CMPSSrr:
2461 case X86::CMPPDrri:
2462 case X86::CMPPSrri:
2463 case X86::VCMPSDrr:
2464 case X86::VCMPSSrr:
2465 case X86::VCMPPDrri:
2466 case X86::VCMPPSrri:
2467 case X86::VCMPPDYrri:
2468 case X86::VCMPPSYrri:
2469 case X86::VCMPSDZrr:
2470 case X86::VCMPSSZrr:
2471 case X86::VCMPPDZrri:
2472 case X86::VCMPPSZrri:
2473 case X86::VCMPSHZrr:
2474 case X86::VCMPPHZrri:
2475 case X86::VCMPPHZ128rri:
2476 case X86::VCMPPHZ256rri:
2477 case X86::VCMPPDZ128rri:
2478 case X86::VCMPPSZ128rri:
2479 case X86::VCMPPDZ256rri:
2480 case X86::VCMPPSZ256rri:
2481 case X86::VCMPPDZrrik:
2482 case X86::VCMPPSZrrik:
2483 case X86::VCMPPDZ128rrik:
2484 case X86::VCMPPSZ128rrik:
2485 case X86::VCMPPDZ256rrik:
2486 case X86::VCMPPSZ256rrik: {
2487 unsigned OpOffset = X86II::isKMasked(Desc.TSFlags) ? 1 : 0;
2488
2489 // Float comparison can be safely commuted for
2490 // Ordered/Unordered/Equal/NotEqual tests
2491 unsigned Imm = MI.getOperand(3 + OpOffset).getImm() & 0x7;
2492 switch (Imm) {
2493 default:
2494 // EVEX versions can be commuted.
2495 if ((Desc.TSFlags & X86II::EncodingMask) == X86II::EVEX)
2496 break;
2497 return false;
2498 case 0x00: // EQUAL
2499 case 0x03: // UNORDERED
2500 case 0x04: // NOT EQUAL
2501 case 0x07: // ORDERED
2502 break;
2503 }
2504
2505 // The indices of the commutable operands are 1 and 2 (or 2 and 3
2506 // when masked).
2507 // Assign them to the returned operand indices here.
2508 return fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, 1 + OpOffset,
2509 2 + OpOffset);
2510 }
2511 case X86::MOVSSrr:
2512 // X86::MOVSDrr is always commutable. MOVSS is only commutable if we can
2513 // form sse4.1 blend. We assume VMOVSSrr/VMOVSDrr is always commutable since
2514 // AVX implies sse4.1.
2515 if (Subtarget.hasSSE41())
2516 return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2);
2517 return false;
2518 case X86::SHUFPDrri:
2519 // We can commute this to MOVSD.
2520 if (MI.getOperand(3).getImm() == 0x02)
2521 return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2);
2522 return false;
2523 case X86::MOVHLPSrr:
2524 case X86::UNPCKHPDrr:
2525 case X86::VMOVHLPSrr:
2526 case X86::VUNPCKHPDrr:
2527 case X86::VMOVHLPSZrr:
2528 case X86::VUNPCKHPDZ128rr:
2529 if (Subtarget.hasSSE2())
2530 return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2);
2531 return false;
2532 case X86::VPTERNLOGDZrri: case X86::VPTERNLOGDZrmi:
2533 case X86::VPTERNLOGDZ128rri: case X86::VPTERNLOGDZ128rmi:
2534 case X86::VPTERNLOGDZ256rri: case X86::VPTERNLOGDZ256rmi:
2535 case X86::VPTERNLOGQZrri: case X86::VPTERNLOGQZrmi:
2536 case X86::VPTERNLOGQZ128rri: case X86::VPTERNLOGQZ128rmi:
2537 case X86::VPTERNLOGQZ256rri: case X86::VPTERNLOGQZ256rmi:
2538 case X86::VPTERNLOGDZrrik:
2539 case X86::VPTERNLOGDZ128rrik:
2540 case X86::VPTERNLOGDZ256rrik:
2541 case X86::VPTERNLOGQZrrik:
2542 case X86::VPTERNLOGQZ128rrik:
2543 case X86::VPTERNLOGQZ256rrik:
2544 case X86::VPTERNLOGDZrrikz: case X86::VPTERNLOGDZrmikz:
2545 case X86::VPTERNLOGDZ128rrikz: case X86::VPTERNLOGDZ128rmikz:
2546 case X86::VPTERNLOGDZ256rrikz: case X86::VPTERNLOGDZ256rmikz:
2547 case X86::VPTERNLOGQZrrikz: case X86::VPTERNLOGQZrmikz:
2548 case X86::VPTERNLOGQZ128rrikz: case X86::VPTERNLOGQZ128rmikz:
2549 case X86::VPTERNLOGQZ256rrikz: case X86::VPTERNLOGQZ256rmikz:
2550 case X86::VPTERNLOGDZ128rmbi:
2551 case X86::VPTERNLOGDZ256rmbi:
2552 case X86::VPTERNLOGDZrmbi:
2553 case X86::VPTERNLOGQZ128rmbi:
2554 case X86::VPTERNLOGQZ256rmbi:
2555 case X86::VPTERNLOGQZrmbi:
2556 case X86::VPTERNLOGDZ128rmbikz:
2557 case X86::VPTERNLOGDZ256rmbikz:
2558 case X86::VPTERNLOGDZrmbikz:
2559 case X86::VPTERNLOGQZ128rmbikz:
2560 case X86::VPTERNLOGQZ256rmbikz:
2561 case X86::VPTERNLOGQZrmbikz:
2562 return findThreeSrcCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2);
2563 case X86::VPDPWSSDYrr:
2564 case X86::VPDPWSSDrr:
2565 case X86::VPDPWSSDSYrr:
2566 case X86::VPDPWSSDSrr:
2567 case X86::VPDPWUUDrr:
2568 case X86::VPDPWUUDYrr:
2569 case X86::VPDPWUUDSrr:
2570 case X86::VPDPWUUDSYrr:
2571 case X86::VPDPBSSDSrr:
2572 case X86::VPDPBSSDSYrr:
2573 case X86::VPDPBSSDrr:
2574 case X86::VPDPBSSDYrr:
2575 case X86::VPDPBUUDSrr:
2576 case X86::VPDPBUUDSYrr:
2577 case X86::VPDPBUUDrr:
2578 case X86::VPDPBUUDYrr:
2579 case X86::VPDPWSSDZ128r:
2580 case X86::VPDPWSSDZ128rk:
2581 case X86::VPDPWSSDZ128rkz:
2582 case X86::VPDPWSSDZ256r:
2583 case X86::VPDPWSSDZ256rk:
2584 case X86::VPDPWSSDZ256rkz:
2585 case X86::VPDPWSSDZr:
2586 case X86::VPDPWSSDZrk:
2587 case X86::VPDPWSSDZrkz:
2588 case X86::VPDPWSSDSZ128r:
2589 case X86::VPDPWSSDSZ128rk:
2590 case X86::VPDPWSSDSZ128rkz:
2591 case X86::VPDPWSSDSZ256r:
2592 case X86::VPDPWSSDSZ256rk:
2593 case X86::VPDPWSSDSZ256rkz:
2594 case X86::VPDPWSSDSZr:
2595 case X86::VPDPWSSDSZrk:
2596 case X86::VPDPWSSDSZrkz:
2597 case X86::VPMADD52HUQrr:
2598 case X86::VPMADD52HUQYrr:
2599 case X86::VPMADD52HUQZ128r:
2600 case X86::VPMADD52HUQZ128rk:
2601 case X86::VPMADD52HUQZ128rkz:
2602 case X86::VPMADD52HUQZ256r:
2603 case X86::VPMADD52HUQZ256rk:
2604 case X86::VPMADD52HUQZ256rkz:
2605 case X86::VPMADD52HUQZr:
2606 case X86::VPMADD52HUQZrk:
2607 case X86::VPMADD52HUQZrkz:
2608 case X86::VPMADD52LUQrr:
2609 case X86::VPMADD52LUQYrr:
2610 case X86::VPMADD52LUQZ128r:
2611 case X86::VPMADD52LUQZ128rk:
2612 case X86::VPMADD52LUQZ128rkz:
2613 case X86::VPMADD52LUQZ256r:
2614 case X86::VPMADD52LUQZ256rk:
2615 case X86::VPMADD52LUQZ256rkz:
2616 case X86::VPMADD52LUQZr:
2617 case X86::VPMADD52LUQZrk:
2618 case X86::VPMADD52LUQZrkz:
2619 case X86::VFMADDCPHZr:
2620 case X86::VFMADDCPHZrk:
2621 case X86::VFMADDCPHZrkz:
2622 case X86::VFMADDCPHZ128r:
2623 case X86::VFMADDCPHZ128rk:
2624 case X86::VFMADDCPHZ128rkz:
2625 case X86::VFMADDCPHZ256r:
2626 case X86::VFMADDCPHZ256rk:
2627 case X86::VFMADDCPHZ256rkz:
2628 case X86::VFMADDCSHZr:
2629 case X86::VFMADDCSHZrk:
2630 case X86::VFMADDCSHZrkz: {
2631 unsigned CommutableOpIdx1 = 2;
2632 unsigned CommutableOpIdx2 = 3;
2633 if (X86II::isKMasked(Desc.TSFlags)) {
2634 // Skip the mask register.
2635 ++CommutableOpIdx1;
2636 ++CommutableOpIdx2;
2637 }
2638 if (!fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2,
2639 CommutableOpIdx1, CommutableOpIdx2))
2640 return false;
2641 if (!MI.getOperand(SrcOpIdx1).isReg() ||
2642 !MI.getOperand(SrcOpIdx2).isReg())
2643 // No idea.
2644 return false;
2645 return true;
2646 }
2647
2648 default:
2649 const X86InstrFMA3Group *FMA3Group = getFMA3Group(MI.getOpcode(),
2650 MI.getDesc().TSFlags);
2651 if (FMA3Group)
2652 return findThreeSrcCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2,
2653 FMA3Group->isIntrinsic());
2654
2655 // Handled masked instructions since we need to skip over the mask input
2656 // and the preserved input.
2657 if (X86II::isKMasked(Desc.TSFlags)) {
2658 // First assume that the first input is the mask operand and skip past it.
2659 unsigned CommutableOpIdx1 = Desc.getNumDefs() + 1;
2660 unsigned CommutableOpIdx2 = Desc.getNumDefs() + 2;
2661 // Check if the first input is tied. If there isn't one then we only
2662 // need to skip the mask operand which we did above.
2663 if ((MI.getDesc().getOperandConstraint(Desc.getNumDefs(),
2664 MCOI::TIED_TO) != -1)) {
2665 // If this is zero masking instruction with a tied operand, we need to
2666 // move the first index back to the first input since this must
2667 // be a 3 input instruction and we want the first two non-mask inputs.
2668 // Otherwise this is a 2 input instruction with a preserved input and
2669 // mask, so we need to move the indices to skip one more input.
2670 if (X86II::isKMergeMasked(Desc.TSFlags)) {
2671 ++CommutableOpIdx1;
2672 ++CommutableOpIdx2;
2673 } else {
2674 --CommutableOpIdx1;
2675 }
2676 }
2677
2678 if (!fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2,
2679 CommutableOpIdx1, CommutableOpIdx2))
2680 return false;
2681
2682 if (!MI.getOperand(SrcOpIdx1).isReg() ||
2683 !MI.getOperand(SrcOpIdx2).isReg())
2684 // No idea.
2685 return false;
2686 return true;
2687 }
2688
2689 return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2);
2690 }
2691 return false;
2692}
2693
2695 unsigned Opcode = MI->getOpcode();
2696 if (Opcode != X86::LEA32r && Opcode != X86::LEA64r &&
2697 Opcode != X86::LEA64_32r)
2698 return false;
2699
2700 const MachineOperand &Scale = MI->getOperand(1 + X86::AddrScaleAmt);
2701 const MachineOperand &Disp = MI->getOperand(1 + X86::AddrDisp);
2702 const MachineOperand &Segment = MI->getOperand(1 + X86::AddrSegmentReg);
2703
2704 if (Segment.getReg() != 0 || !Disp.isImm() || Disp.getImm() != 0 ||
2705 Scale.getImm() > 1)
2706 return false;
2707
2708 return true;
2709}
2710
2712 // Currently we're interested in following sequence only.
2713 // r3 = lea r1, r2
2714 // r5 = add r3, r4
2715 // Both r3 and r4 are killed in add, we hope the add instruction has the
2716 // operand order
2717 // r5 = add r4, r3
2718 // So later in X86FixupLEAs the lea instruction can be rewritten as add.
2719 unsigned Opcode = MI.getOpcode();
2720 if (Opcode != X86::ADD32rr && Opcode != X86::ADD64rr)
2721 return false;
2722
2723 const MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
2724 Register Reg1 = MI.getOperand(1).getReg();
2725 Register Reg2 = MI.getOperand(2).getReg();
2726
2727 // Check if Reg1 comes from LEA in the same MBB.
2728 if (MachineInstr *Inst = MRI.getUniqueVRegDef(Reg1)) {
2729 if (isConvertibleLEA(Inst) && Inst->getParent() == MI.getParent()) {
2730 Commute = true;
2731 return true;
2732 }
2733 }
2734
2735 // Check if Reg2 comes from LEA in the same MBB.
2736 if (MachineInstr *Inst = MRI.getUniqueVRegDef(Reg2)) {
2737 if (isConvertibleLEA(Inst) && Inst->getParent() == MI.getParent()) {
2738 Commute = false;
2739 return true;
2740 }
2741 }
2742
2743 return false;
2744}
2745
2747 unsigned Opcode = MCID.getOpcode();
2748 if (!(X86::isJCC(Opcode) || X86::isSETCC(Opcode) || X86::isCMOVCC(Opcode)))
2749 return -1;
2750 // Assume that condition code is always the last use operand.
2751 unsigned NumUses = MCID.getNumOperands() - MCID.getNumDefs();
2752 return NumUses - 1;
2753}
2754
2756 const MCInstrDesc &MCID = MI.getDesc();
2757 int CondNo = getCondSrcNoFromDesc(MCID);
2758 if (CondNo < 0)
2759 return X86::COND_INVALID;
2760 CondNo += MCID.getNumDefs();
2761 return static_cast<X86::CondCode>(MI.getOperand(CondNo).getImm());
2762}
2763
2765 return X86::isJCC(MI.getOpcode()) ? X86::getCondFromMI(MI)
2767}
2768
2770 return X86::isSETCC(MI.getOpcode()) ? X86::getCondFromMI(MI)
2772}
2773
2775 return X86::isCMOVCC(MI.getOpcode()) ? X86::getCondFromMI(MI)
2777}
2778
2779/// Return the inverse of the specified condition,
2780/// e.g. turning COND_E to COND_NE.
2782 switch (CC) {
2783 default: llvm_unreachable("Illegal condition code!");
2784 case X86::COND_E: return X86::COND_NE;
2785 case X86::COND_NE: return X86::COND_E;
2786 case X86::COND_L: return X86::COND_GE;
2787 case X86::COND_LE: return X86::COND_G;
2788 case X86::COND_G: return X86::COND_LE;
2789 case X86::COND_GE: return X86::COND_L;
2790 case X86::COND_B: return X86::COND_AE;
2791 case X86::COND_BE: return X86::COND_A;
2792 case X86::COND_A: return X86::COND_BE;
2793 case X86::COND_AE: return X86::COND_B;
2794 case X86::COND_S: return X86::COND_NS;
2795 case X86::COND_NS: return X86::COND_S;
2796 case X86::COND_P: return X86::COND_NP;
2797 case X86::COND_NP: return X86::COND_P;
2798 case X86::COND_O: return X86::COND_NO;
2799 case X86::COND_NO: return X86::COND_O;
2802 }
2803}
2804
2805/// Assuming the flags are set by MI(a,b), return the condition code if we
2806/// modify the instructions such that flags are set by MI(b,a).
2808 switch (CC) {
2809 default: return X86::COND_INVALID;
2810 case X86::COND_E: return X86::COND_E;
2811 case X86::COND_NE: return X86::COND_NE;
2812 case X86::COND_L: return X86::COND_G;
2813 case X86::COND_LE: return X86::COND_GE;
2814 case X86::COND_G: return X86::COND_L;
2815 case X86::COND_GE: return X86::COND_LE;
2816 case X86::COND_B: return X86::COND_A;
2817 case X86::COND_BE: return X86::COND_AE;
2818 case X86::COND_A: return X86::COND_B;
2819 case X86::COND_AE: return X86::COND_BE;
2820 }
2821}
2822
2823std::pair<X86::CondCode, bool>
2826 bool NeedSwap = false;
2827 switch (Predicate) {
2828 default: break;
2829 // Floating-point Predicates
2830 case CmpInst::FCMP_UEQ: CC = X86::COND_E; break;
2831 case CmpInst::FCMP_OLT: NeedSwap = true; [[fallthrough]];
2832 case CmpInst::FCMP_OGT: CC = X86::COND_A; break;
2833 case CmpInst::FCMP_OLE: NeedSwap = true; [[fallthrough]];
2834 case CmpInst::FCMP_OGE: CC = X86::COND_AE; break;
2835 case CmpInst::FCMP_UGT: NeedSwap = true; [[fallthrough]];
2836 case CmpInst::FCMP_ULT: CC = X86::COND_B; break;
2837 case CmpInst::FCMP_UGE: NeedSwap = true; [[fallthrough]];
2838 case CmpInst::FCMP_ULE: CC = X86::COND_BE; break;
2839 case CmpInst::FCMP_ONE: CC = X86::COND_NE; break;
2840 case CmpInst::FCMP_UNO: CC = X86::COND_P; break;
2841 case CmpInst::FCMP_ORD: CC = X86::COND_NP; break;
2842 case CmpInst::FCMP_OEQ: [[fallthrough]];
2843 case CmpInst::FCMP_UNE: CC = X86::COND_INVALID; break;
2844
2845 // Integer Predicates
2846 case CmpInst::ICMP_EQ: CC = X86::COND_E; break;
2847 case CmpInst::ICMP_NE: CC = X86::COND_NE; break;
2848 case CmpInst::ICMP_UGT: CC = X86::COND_A; break;
2849 case CmpInst::ICMP_UGE: CC = X86::COND_AE; break;
2850 case CmpInst::ICMP_ULT: CC = X86::COND_B; break;
2851 case CmpInst::ICMP_ULE: CC = X86::COND_BE; break;
2852 case CmpInst::ICMP_SGT: CC = X86::COND_G; break;
2853 case CmpInst::ICMP_SGE: CC = X86::COND_GE; break;
2854 case CmpInst::ICMP_SLT: CC = X86::COND_L; break;
2855 case CmpInst::ICMP_SLE: CC = X86::COND_LE; break;
2856 }
2857
2858 return std::make_pair(CC, NeedSwap);
2859}
2860
2861/// Return a cmov opcode for the given register size in bytes, and operand type.
2862unsigned X86::getCMovOpcode(unsigned RegBytes, bool HasMemoryOperand) {
2863 switch(RegBytes) {
2864 default: llvm_unreachable("Illegal register size!");
2865 case 2: return HasMemoryOperand ? X86::CMOV16rm : X86::CMOV16rr;
2866 case 4: return HasMemoryOperand ? X86::CMOV32rm : X86::CMOV32rr;
2867 case 8: return HasMemoryOperand ? X86::CMOV64rm : X86::CMOV64rr;
2868 }
2869}
2870
2871/// Get the VPCMP immediate for the given condition.
2873 switch (CC) {
2874 default: llvm_unreachable("Unexpected SETCC condition");
2875 case ISD::SETNE: return 4;
2876 case ISD::SETEQ: return 0;
2877 case ISD::SETULT:
2878 case ISD::SETLT: return 1;
2879 case ISD::SETUGT:
2880 case ISD::SETGT: return 6;
2881 case ISD::SETUGE:
2882 case ISD::SETGE: return 5;
2883 case ISD::SETULE:
2884 case ISD::SETLE: return 2;
2885 }
2886}
2887
2888/// Get the VPCMP immediate if the operands are swapped.
2889unsigned X86::getSwappedVPCMPImm(unsigned Imm) {
2890 switch (Imm) {
2891 default: llvm_unreachable("Unreachable!");
2892 case 0x01: Imm = 0x06; break; // LT -> NLE
2893 case 0x02: Imm = 0x05; break; // LE -> NLT
2894 case 0x05: Imm = 0x02; break; // NLT -> LE
2895 case 0x06: Imm = 0x01; break; // NLE -> LT
2896 case 0x00: // EQ
2897 case 0x03: // FALSE
2898 case 0x04: // NE
2899 case 0x07: // TRUE
2900 break;
2901 }
2902
2903 return Imm;
2904}
2905
2906/// Get the VPCOM immediate if the operands are swapped.
2907unsigned X86::getSwappedVPCOMImm(unsigned Imm) {
2908 switch (Imm) {
2909 default: llvm_unreachable("Unreachable!");
2910 case 0x00: Imm = 0x02; break; // LT -> GT
2911 case 0x01: Imm = 0x03; break; // LE -> GE
2912 case 0x02: Imm = 0x00; break; // GT -> LT
2913 case 0x03: Imm = 0x01; break; // GE -> LE
2914 case 0x04: // EQ
2915 case 0x05: // NE
2916 case 0x06: // FALSE
2917 case 0x07: // TRUE
2918 break;
2919 }
2920
2921 return Imm;
2922}
2923
2924/// Get the VCMP immediate if the operands are swapped.
2925unsigned X86::getSwappedVCMPImm(unsigned Imm) {
2926 // Only need the lower 2 bits to distinquish.
2927 switch (Imm & 0x3) {
2928 default: llvm_unreachable("Unreachable!");
2929 case 0x00: case 0x03:
2930 // EQ/NE/TRUE/FALSE/ORD/UNORD don't change immediate when commuted.
2931 break;
2932 case 0x01: case 0x02:
2933 // Need to toggle bits 3:0. Bit 4 stays the same.
2934 Imm ^= 0xf;
2935 break;
2936 }
2937
2938 return Imm;
2939}
2940
2941/// Return true if the Reg is X87 register.
2942static bool isX87Reg(unsigned Reg) {
2943 return (Reg == X86::FPCW || Reg == X86::FPSW ||
2944 (Reg >= X86::ST0 && Reg <= X86::ST7));
2945}
2946
2947/// check if the instruction is X87 instruction
2949 for (const MachineOperand &MO : MI.operands()) {
2950 if (!MO.isReg())
2951 continue;
2952 if (isX87Reg(MO.getReg()))
2953 return true;
2954 }
2955 return false;
2956}
2957
2959 switch (MI.getOpcode()) {
2960 case X86::TCRETURNdi:
2961 case X86::TCRETURNri:
2962 case X86::TCRETURNmi:
2963 case X86::TCRETURNdi64:
2964 case X86::TCRETURNri64:
2965 case X86::TCRETURNmi64:
2966 return true;
2967 default:
2968 return false;
2969 }
2970}
2971
2974 const MachineInstr &TailCall) const {
2975
2976 const MachineFunction *MF = TailCall.getMF();
2977
2978 if (MF->getTarget().getCodeModel() == CodeModel::Kernel) {
2979 // Kernel patches thunk calls in runtime, these should never be conditional.
2980 const MachineOperand &Target = TailCall.getOperand(0);
2981 if (Target.isSymbol()) {
2982 StringRef Symbol(Target.getSymbolName());
2983 // this is currently only relevant to r11/kernel indirect thunk.
2984 if (Symbol.equals("__x86_indirect_thunk_r11"))
2985 return false;
2986 }
2987 }
2988
2989 if (TailCall.getOpcode() != X86::TCRETURNdi &&
2990 TailCall.getOpcode() != X86::TCRETURNdi64) {
2991 // Only direct calls can be done with a conditional branch.
2992 return false;
2993 }
2994
2995 if (Subtarget.isTargetWin64() && MF->hasWinCFI()) {
2996 // Conditional tail calls confuse the Win64 unwinder.
2997 return false;
2998 }
2999
3000 assert(BranchCond.size() == 1);
3001 if (BranchCond[0].getImm() > X86::LAST_VALID_COND) {
3002 // Can't make a conditional tail call with this condition.
3003 return false;
3004 }
3005
3007 if (X86FI->getTCReturnAddrDelta() != 0 ||
3008 TailCall.getOperand(1).getImm() != 0) {
3009 // A conditional tail call cannot do any stack adjustment.
3010 return false;
3011 }
3012
3013 return true;
3014}
3015
3018 const MachineInstr &TailCall) const {
3019 assert(canMakeTailCallConditional(BranchCond, TailCall));
3020
3022 while (I != MBB.begin()) {
3023 --I;
3024 if (I->isDebugInstr())
3025 continue;
3026 if (!I->isBranch())
3027 assert(0 && "Can't find the branch to replace!");
3028
3030 assert(BranchCond.size() == 1);
3031 if (CC != BranchCond[0].getImm())
3032 continue;
3033
3034 break;
3035 }
3036
3037 unsigned Opc = TailCall.getOpcode() == X86::TCRETURNdi ? X86::TCRETURNdicc
3038 : X86::TCRETURNdi64cc;
3039
3040 auto MIB = BuildMI(MBB, I, MBB.findDebugLoc(I), get(Opc));
3041 MIB->addOperand(TailCall.getOperand(0)); // Destination.
3042 MIB.addImm(0); // Stack offset (not used).
3043 MIB->addOperand(BranchCond[0]); // Condition.
3044 MIB.copyImplicitOps(TailCall); // Regmask and (imp-used) parameters.
3045
3046 // Add implicit uses and defs of all live regs potentially clobbered by the
3047 // call. This way they still appear live across the call.
3048 LivePhysRegs LiveRegs(getRegisterInfo());
3049 LiveRegs.addLiveOuts(MBB);
3051 LiveRegs.stepForward(*MIB, Clobbers);
3052 for (const auto &C : Clobbers) {
3053 MIB.addReg(C.first, RegState::Implicit);
3055 }
3056
3057 I->eraseFromParent();
3058}
3059
3060// Given a MBB and its TBB, find the FBB which was a fallthrough MBB (it may
3061// not be a fallthrough MBB now due to layout changes). Return nullptr if the
3062// fallthrough MBB cannot be identified.
3065 // Look for non-EHPad successors other than TBB. If we find exactly one, it
3066 // is the fallthrough MBB. If we find zero, then TBB is both the target MBB
3067 // and fallthrough MBB. If we find more than one, we cannot identify the
3068 // fallthrough MBB and should return nullptr.
3069 MachineBasicBlock *FallthroughBB = nullptr;
3070 for (MachineBasicBlock *Succ : MBB->successors()) {
3071 if (Succ->isEHPad() || (Succ == TBB && FallthroughBB))
3072 continue;
3073 // Return a nullptr if we found more than one fallthrough successor.
3074 if (FallthroughBB && FallthroughBB != TBB)
3075 return nullptr;
3076 FallthroughBB = Succ;
3077 }
3078 return FallthroughBB;
3079}
3080
3081bool X86InstrInfo::AnalyzeBranchImpl(
3084 SmallVectorImpl<MachineInstr *> &CondBranches, bool AllowModify) const {
3085
3086 // Start from the bottom of the block and work up, examining the
3087 // terminator instructions.
3089 MachineBasicBlock::iterator UnCondBrIter = MBB.end();
3090 while (I != MBB.begin()) {
3091 --I;
3092 if (I->isDebugInstr())
3093 continue;
3094
3095 // Working from the bottom, when we see a non-terminator instruction, we're
3096 // done.
3097 if (!isUnpredicatedTerminator(*I))
3098 break;
3099
3100 // A terminator that isn't a branch can't easily be handled by this
3101 // analysis.
3102 if (!I->isBranch())
3103 return true;
3104
3105 // Handle unconditional branches.
3106 if (I->getOpcode() == X86::JMP_1) {
3107 UnCondBrIter = I;
3108
3109 if (!AllowModify) {
3110 TBB = I->getOperand(0).getMBB();
3111 continue;
3112 }
3113
3114 // If the block has any instructions after a JMP, delete them.
3115 MBB.erase(std::next(I), MBB.end());
3116
3117 Cond.clear();
3118 FBB = nullptr;
3119
3120 // Delete the JMP if it's equivalent to a fall-through.
3121 if (MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) {
3122 TBB = nullptr;
3123 I->eraseFromParent();
3124 I = MBB.end();
3125 UnCondBrIter = MBB.end();
3126 continue;
3127 }
3128
3129 // TBB is used to indicate the unconditional destination.
3130 TBB = I->getOperand(0).getMBB();
3131 continue;
3132 }
3133
3134 // Handle conditional branches.
3135 X86::CondCode BranchCode = X86::getCondFromBranch(*I);
3136 if (BranchCode == X86::COND_INVALID)
3137 return true; // Can't handle indirect branch.
3138
3139 // In practice we should never have an undef eflags operand, if we do
3140 // abort here as we are not prepared to preserve the flag.
3141 if (I->findRegisterUseOperand(X86::EFLAGS)->isUndef())
3142 return true;
3143
3144 // Working from the bottom, handle the first conditional branch.
3145 if (Cond.empty()) {
3146 FBB = TBB;
3147 TBB = I->getOperand(0).getMBB();
3148 Cond.push_back(MachineOperand::CreateImm(BranchCode));
3149 CondBranches.push_back(&*I);
3150 continue;
3151 }
3152
3153 // Handle subsequent conditional branches. Only handle the case where all
3154 // conditional branches branch to the same destination and their condition
3155 // opcodes fit one of the special multi-branch idioms.
3156 assert(Cond.size() == 1);
3157 assert(TBB);
3158
3159 // If the conditions are the same, we can leave them alone.
3160 X86::CondCode OldBranchCode = (X86::CondCode)Cond[0].getImm();
3161 auto NewTBB = I->getOperand(0).getMBB();
3162 if (OldBranchCode == BranchCode && TBB == NewTBB)
3163 continue;
3164
3165 // If they differ, see if they fit one of the known patterns. Theoretically,
3166 // we could handle more patterns here, but we shouldn't expect to see them
3167 // if instruction selection has done a reasonable job.
3168 if (TBB == NewTBB &&
3169 ((OldBranchCode == X86::COND_P && BranchCode == X86::COND_NE) ||
3170 (OldBranchCode == X86::COND_NE && BranchCode == X86::COND_P))) {
3171 BranchCode = X86::COND_NE_OR_P;
3172 } else if ((OldBranchCode == X86::COND_NP && BranchCode == X86::COND_NE) ||
3173 (OldBranchCode == X86::COND_E && BranchCode == X86::COND_P)) {
3174 if (NewTBB != (FBB ? FBB : getFallThroughMBB(&MBB, TBB)))
3175 return true;
3176
3177 // X86::COND_E_AND_NP usually has two different branch destinations.
3178 //
3179 // JP B1
3180 // JE B2
3181 // JMP B1
3182 // B1:
3183 // B2:
3184 //
3185 // Here this condition branches to B2 only if NP && E. It has another
3186 // equivalent form:
3187 //
3188 // JNE B1
3189 // JNP B2
3190 // JMP B1
3191 // B1:
3192 // B2:
3193 //
3194 // Similarly it branches to B2 only if E && NP. That is why this condition
3195 // is named with COND_E_AND_NP.
3196 BranchCode = X86::COND_E_AND_NP;
3197 } else
3198 return true;
3199
3200 // Update the MachineOperand.
3201 Cond[0].setImm(BranchCode);
3202 CondBranches.push_back(&*I);
3203 }
3204
3205 return false;
3206}
3207
3210 MachineBasicBlock *&FBB,
3212 bool AllowModify) const {
3213 SmallVector<MachineInstr *, 4> CondBranches;
3214 return AnalyzeBranchImpl(MBB, TBB, FBB, Cond, CondBranches, AllowModify);
3215}
3216
3218 const MCInstrDesc &Desc = MI.getDesc();
3219 int MemRefBegin = X86II::getMemoryOperandNo(Desc.TSFlags);
3220 assert(MemRefBegin >= 0 && "instr should have memory operand");
3221 MemRefBegin += X86II::getOperandBias(Desc);
3222
3223 const MachineOperand &MO = MI.getOperand(MemRefBegin + X86::AddrDisp);
3224 if (!MO.isJTI())
3225 return -1;
3226
3227 return MO.getIndex();
3228}
3229
3231 Register Reg) {
3232 if (!Reg.isVirtual())
3233 return -1;
3234 MachineInstr *MI = MRI.getUniqueVRegDef(Reg);
3235 if (MI == nullptr)
3236 return -1;
3237 unsigned Opcode = MI->getOpcode();
3238 if (Opcode != X86::LEA64r && Opcode != X86::LEA32r)
3239 return -1;
3241}
3242
3244 unsigned Opcode = MI.getOpcode();
3245 // Switch-jump pattern for non-PIC code looks like:
3246 // JMP64m $noreg, 8, %X, %jump-table.X, $noreg
3247 if (Opcode == X86::JMP64m || Opcode == X86::JMP32m) {
3249 }
3250 // The pattern for PIC code looks like:
3251 // %0 = LEA64r $rip, 1, $noreg, %jump-table.X
3252 // %1 = MOVSX64rm32 %0, 4, XX, 0, $noreg
3253 // %2 = ADD64rr %1, %0
3254 // JMP64r %2
3255 if (Opcode == X86::JMP64r || Opcode == X86::JMP32r) {
3256 Register Reg = MI.getOperand(0).getReg();
3257 if (!Reg.isVirtual())
3258 return -1;
3259 const MachineFunction &MF = *MI.getParent()->getParent();
3260 const MachineRegisterInfo &MRI = MF.getRegInfo();
3261 MachineInstr *Add = MRI.getUniqueVRegDef(Reg);
3262 if (Add == nullptr)
3263 return -1;
3264 if (Add->getOpcode() != X86::ADD64rr && Add->getOpcode() != X86::ADD32rr)
3265 return -1;
3266 int JTI1 = getJumpTableIndexFromReg(MRI, Add->getOperand(1).getReg());
3267 if (JTI1 >= 0)
3268 return JTI1;
3269 int JTI2 = getJumpTableIndexFromReg(MRI, Add->getOperand(2).getReg());
3270 if (JTI2 >= 0)
3271 return JTI2;
3272 }
3273 return -1;
3274}
3275
3277 MachineBranchPredicate &MBP,
3278 bool AllowModify) const {
3279 using namespace std::placeholders;
3280
3282 SmallVector<MachineInstr *, 4> CondBranches;
3283 if (AnalyzeBranchImpl(MBB, MBP.TrueDest, MBP.FalseDest, Cond, CondBranches,
3284 AllowModify))
3285 return true;
3286
3287 if (Cond.size() != 1)
3288 return true;
3289
3290 assert(MBP.TrueDest && "expected!");
3291
3292 if (!MBP.FalseDest)
3293 MBP.FalseDest = MBB.getNextNode();
3294
3296
3297 MachineInstr *ConditionDef = nullptr;
3298 bool SingleUseCondition = true;
3299
3301 if (MI.modifiesRegister(X86::EFLAGS, TRI)) {
3302 ConditionDef = &MI;
3303 break;
3304 }
3305
3306 if (MI.readsRegister(X86::EFLAGS, TRI))
3307 SingleUseCondition = false;
3308 }
3309
3310 if (!ConditionDef)
3311 return true;
3312
3313 if (SingleUseCondition) {
3314 for (auto *Succ : MBB.successors())
3315 if (Succ->isLiveIn(X86::EFLAGS))
3316 SingleUseCondition = false;
3317 }
3318
3319 MBP.ConditionDef = ConditionDef;
3320 MBP.SingleUseCondition = SingleUseCondition;
3321
3322 // Currently we only recognize the simple pattern:
3323 //
3324 // test %reg, %reg
3325 // je %label
3326 //
3327 const unsigned TestOpcode =
3328 Subtarget.is64Bit() ? X86::TEST64rr : X86::TEST32rr;
3329
3330 if (ConditionDef->getOpcode() == TestOpcode &&
3331 ConditionDef->getNumOperands() == 3 &&
3332 ConditionDef->getOperand(0).isIdenticalTo(ConditionDef->getOperand(1)) &&
3333 (Cond[0].getImm() == X86::COND_NE || Cond[0].getImm() == X86::COND_E)) {
3334 MBP.LHS = ConditionDef->getOperand(0);
3335 MBP.RHS = MachineOperand::CreateImm(0);
3336 MBP.Predicate = Cond[0].getImm() == X86::COND_NE
3337 ? MachineBranchPredicate::PRED_NE
3338 : MachineBranchPredicate::PRED_EQ;
3339 return false;
3340 }
3341
3342 return true;
3343}
3344
3346 int *BytesRemoved) const {
3347 assert(!BytesRemoved && "code size not handled");
3348
3350 unsigned Count = 0;
3351
3352 while (I != MBB.begin()) {
3353 --I;
3354 if (I->isDebugInstr())
3355 continue;
3356 if (I->getOpcode() != X86::JMP_1 &&
3358 break;
3359 // Remove the branch.
3360 I->eraseFromParent();
3361 I = MBB.end();
3362 ++Count;
3363 }
3364
3365 return Count;
3366}
3367
3370 MachineBasicBlock *FBB,
3372 const DebugLoc &DL,
3373 int *BytesAdded) const {
3374 // Shouldn't be a fall through.
3375 assert(TBB && "insertBranch must not be told to insert a fallthrough");
3376 assert((Cond.size() == 1 || Cond.size() == 0) &&
3377 "X86 branch conditions have one component!");
3378 assert(!BytesAdded && "code size not handled");
3379
3380 if (Cond.empty()) {
3381 // Unconditional branch?
3382 assert(!FBB && "Unconditional branch with multiple successors!");
3383 BuildMI(&MBB, DL, get(X86::JMP_1)).addMBB(TBB);
3384 return 1;
3385 }
3386
3387 // If FBB is null, it is implied to be a fall-through block.
3388 bool FallThru = FBB == nullptr;
3389
3390 // Conditional branch.
3391 unsigned Count = 0;
3392 X86::CondCode CC = (X86::CondCode)Cond[0].getImm();
3393 switch (CC) {
3394 case X86::COND_NE_OR_P:
3395 // Synthesize NE_OR_P with two branches.
3396 BuildMI(&MBB, DL, get(X86::JCC_1)).addMBB(TBB).addImm(X86::COND_NE);
3397 ++Count;
3398 BuildMI(&MBB, DL, get(X86::JCC_1)).addMBB(TBB).addImm(X86::COND_P);
3399 ++Count;
3400 break;
3401 case X86::COND_E_AND_NP:
3402 // Use the next block of MBB as FBB if it is null.
3403 if (FBB == nullptr) {
3404 FBB = getFallThroughMBB(&MBB, TBB);
3405 assert(FBB && "MBB cannot be the last block in function when the false "
3406 "body is a fall-through.");
3407 }
3408 // Synthesize COND_E_AND_NP with two branches.
3409 BuildMI(&MBB, DL, get(X86::JCC_1)).addMBB(FBB).addImm(X86::COND_NE);
3410 ++Count;
3411 BuildMI(&MBB, DL, get(X86::JCC_1)).addMBB(TBB).addImm(X86::COND_NP);
3412 ++Count;
3413 break;
3414 default: {
3415 BuildMI(&MBB, DL, get(X86::JCC_1)).addMBB(TBB).addImm(CC);
3416 ++Count;
3417 }
3418 }
3419 if (!FallThru) {
3420 // Two-way Conditional branch. Insert the second branch.
3421 BuildMI(&MBB, DL, get(X86::JMP_1)).addMBB(FBB);
3422 ++Count;
3423 }
3424 return Count;
3425}
3426
3429 Register DstReg, Register TrueReg,
3430 Register FalseReg, int &CondCycles,
3431 int &TrueCycles, int &FalseCycles) const {
3432 // Not all subtargets have cmov instructions.
3433 if (!Subtarget.canUseCMOV())
3434 return false;
3435 if (Cond.size() != 1)
3436 return false;
3437 // We cannot do the composite conditions, at least not in SSA form.
3438 if ((X86::CondCode)Cond[0].getImm() > X86::LAST_VALID_COND)
3439 return false;
3440
3441 // Check register classes.
3443 const TargetRegisterClass *RC =
3444 RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg));
3445 if (!RC)
3446 return false;
3447
3448 // We have cmov instructions for 16, 32, and 64 bit general purpose registers.
3449 if (X86::GR16RegClass.hasSubClassEq(RC) ||
3450 X86::GR32RegClass.hasSubClassEq(RC) ||
3451 X86::GR64RegClass.hasSubClassEq(RC)) {
3452 // This latency applies to Pentium M, Merom, Wolfdale, Nehalem, and Sandy
3453 // Bridge. Probably Ivy Bridge as well.
3454 CondCycles = 2;
3455 TrueCycles = 2;
3456 FalseCycles = 2;
3457 return true;
3458 }
3459
3460 // Can't do vectors.
3461 return false;
3462}
3463
3466 const DebugLoc &DL, Register DstReg,
3468 Register FalseReg) const {
3470 const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo();
3471 const TargetRegisterClass &RC = *MRI.getRegClass(DstReg);
3472 assert(Cond.size() == 1 && "Invalid Cond array");
3473 unsigned Opc = X86::getCMovOpcode(TRI.getRegSizeInBits(RC) / 8,
3474 false /*HasMemoryOperand*/);
3475 BuildMI(MBB, I, DL, get(Opc), DstReg)
3476 .addReg(FalseReg)
3477 .addReg(TrueReg)
3478 .addImm(Cond[0].getImm());
3479}
3480
3481/// Test if the given register is a physical h register.
3482static bool isHReg(unsigned Reg) {
3483 return X86::GR8_ABCD_HRegClass.contains(Reg);
3484}
3485
3486// Try and copy between VR128/VR64 and GR64 registers.
3487static unsigned CopyToFromAsymmetricReg(unsigned DestReg, unsigned SrcReg,
3488 const X86Subtarget &Subtarget) {
3489 bool HasAVX = Subtarget.hasAVX();
3490 bool HasAVX512 = Subtarget.hasAVX512();
3491
3492 // SrcReg(MaskReg) -> DestReg(GR64)
3493 // SrcReg(MaskReg) -> DestReg(GR32)
3494
3495 // All KMASK RegClasses hold the same k registers, can be tested against anyone.
3496 if (X86::VK16RegClass.contains(SrcReg)) {
3497 if (X86::GR64RegClass.contains(DestReg)) {
3498 assert(Subtarget.hasBWI());
3499 return X86::KMOVQrk;
3500 }
3501 if (X86::GR32RegClass.contains(DestReg))
3502 return Subtarget.hasBWI() ? X86::KMOVDrk : X86::KMOVWrk;
3503 }
3504
3505 // SrcReg(GR64) -> DestReg(MaskReg)
3506 // SrcReg(GR32) -> DestReg(MaskReg)
3507
3508 // All KMASK RegClasses hold the same k registers, can be tested against anyone.
3509 if (X86::VK16RegClass.contains(DestReg)) {
3510 if (X86::GR64RegClass.contains(SrcReg)) {
3511 assert(Subtarget.hasBWI());
3512 return X86::KMOVQkr;
3513 }
3514 if (X86::GR32RegClass.contains(SrcReg))
3515 return Subtarget.hasBWI() ? X86::KMOVDkr : X86::KMOVWkr;
3516 }
3517
3518
3519 // SrcReg(VR128) -> DestReg(GR64)
3520 // SrcReg(VR64) -> DestReg(GR64)
3521 // SrcReg(GR64) -> DestReg(VR128)
3522 // SrcReg(GR64) -> DestReg(VR64)
3523
3524 if (X86::GR64RegClass.contains(DestReg)) {
3525 if (X86::VR128XRegClass.contains(SrcReg))
3526 // Copy from a VR128 register to a GR64 register.
3527 return HasAVX512 ? X86::VMOVPQIto64Zrr :
3528 HasAVX ? X86::VMOVPQIto64rr :
3529 X86::MOVPQIto64rr;
3530 if (X86::VR64RegClass.contains(SrcReg))
3531 // Copy from a VR64 register to a GR64 register.
3532 return X86::MMX_MOVD64from64rr;
3533 } else if (X86::GR64RegClass.contains(SrcReg)) {
3534 // Copy from a GR64 register to a VR128 register.
3535 if (X86::VR128XRegClass.contains(DestReg))
3536 return HasAVX512 ? X86::VMOV64toPQIZrr :
3537 HasAVX ? X86::VMOV64toPQIrr :
3538 X86::MOV64toPQIrr;
3539 // Copy from a GR64 register to a VR64 register.
3540 if (X86::VR64RegClass.contains(DestReg))
3541 return X86::MMX_MOVD64to64rr;
3542 }
3543
3544 // SrcReg(VR128) -> DestReg(GR32)
3545 // SrcReg(GR32) -> DestReg(VR128)
3546
3547 if (X86::GR32RegClass.contains(DestReg) &&
3548 X86::VR128XRegClass.contains(SrcReg))
3549 // Copy from a VR128 register to a GR32 register.
3550 return HasAVX512 ? X86::VMOVPDI2DIZrr :
3551 HasAVX ? X86::VMOVPDI2DIrr :
3552 X86::MOVPDI2DIrr;
3553
3554 if (X86::VR128XRegClass.contains(DestReg) &&
3555 X86::GR32RegClass.contains(SrcReg))
3556 // Copy from a VR128 register to a VR128 register.
3557 return HasAVX512 ? X86::VMOVDI2PDIZrr :
3558 HasAVX ? X86::VMOVDI2PDIrr :
3559 X86::MOVDI2PDIrr;
3560 return 0;
3561}
3562
3565 const DebugLoc &DL, MCRegister DestReg,
3566 MCRegister SrcReg, bool KillSrc) const {
3567 // First deal with the normal symmetric copies.
3568 bool HasAVX = Subtarget.hasAVX();
3569 bool HasVLX = Subtarget.hasVLX();
3570 unsigned Opc = 0;
3571 if (X86::GR64RegClass.contains(DestReg, SrcReg))
3572 Opc = X86::MOV64rr;
3573 else if (X86::GR32RegClass.contains(DestReg, SrcReg))
3574 Opc = X86::MOV32rr;
3575 else if (X86::GR16RegClass.contains(DestReg, SrcReg))
3576 Opc = X86::MOV16rr;
3577 else if (X86::GR8RegClass.contains(DestReg, SrcReg)) {
3578 // Copying to or from a physical H register on x86-64 requires a NOREX
3579 // move. Otherwise use a normal move.
3580 if ((isHReg(DestReg) || isHReg(SrcReg)) &&
3581 Subtarget.is64Bit()) {
3582 Opc = X86::MOV8rr_NOREX;
3583 // Both operands must be encodable without an REX prefix.
3584 assert(X86::GR8_NOREXRegClass.contains(SrcReg, DestReg) &&
3585 "8-bit H register can not be copied outside GR8_NOREX");
3586 } else
3587 Opc = X86::MOV8rr;
3588 }
3589 else if (X86::VR64RegClass.contains(DestReg, SrcReg))
3590 Opc = X86::MMX_MOVQ64rr;
3591 else if (X86::VR128XRegClass.contains(DestReg, SrcReg)) {
3592 if (HasVLX)
3593 Opc = X86::VMOVAPSZ128rr;
3594 else if (X86::VR128RegClass.contains(DestReg, SrcReg))
3595 Opc = HasAVX ? X86::VMOVAPSrr : X86::MOVAPSrr;
3596 else {
3597 // If this an extended register and we don't have VLX we need to use a
3598 // 512-bit move.
3599 Opc = X86::VMOVAPSZrr;
3601 DestReg = TRI->getMatchingSuperReg(DestReg, X86::sub_xmm,
3602 &X86::VR512RegClass);
3603 SrcReg = TRI->getMatchingSuperReg(SrcReg, X86::sub_xmm,
3604 &X86::VR512RegClass);
3605 }
3606 } else if (X86::VR256XRegClass.contains(DestReg, SrcReg)) {
3607 if (HasVLX)
3608 Opc = X86::VMOVAPSZ256rr;
3609 else if (X86::VR256RegClass.contains(DestReg, SrcReg))
3610 Opc = X86::VMOVAPSYrr;
3611 else {
3612 // If this an extended register and we don't have VLX we need to use a
3613 // 512-bit move.
3614 Opc = X86::VMOVAPSZrr;
3616 DestReg = TRI->getMatchingSuperReg(DestReg, X86::sub_ymm,
3617 &X86::VR512RegClass);
3618 SrcReg = TRI->getMatchingSuperReg(SrcReg, X86::sub_ymm,
3619 &X86::VR512RegClass);
3620 }
3621 } else if (X86::VR512RegClass.contains(DestReg, SrcReg))
3622 Opc = X86::VMOVAPSZrr;
3623 // All KMASK RegClasses hold the same k registers, can be tested against anyone.
3624 else if (X86::VK16RegClass.contains(DestReg, SrcReg))
3625 Opc = Subtarget.hasBWI() ? X86::KMOVQkk : X86::KMOVWkk;
3626 if (!Opc)
3627 Opc = CopyToFromAsymmetricReg(DestReg, SrcReg, Subtarget);
3628
3629 if (Opc) {
3630 BuildMI(MBB, MI, DL, get(Opc), DestReg)
3631 .addReg(SrcReg, getKillRegState(KillSrc));
3632 return;
3633 }
3634
3635 if (SrcReg == X86::EFLAGS || DestReg == X86::EFLAGS) {
3636 // FIXME: We use a fatal error here because historically LLVM has tried
3637 // lower some of these physreg copies and we want to ensure we get
3638 // reasonable bug reports if someone encounters a case no other testing
3639 // found. This path should be removed after the LLVM 7 release.
3640 report_fatal_error("Unable to copy EFLAGS physical register!");
3641 }
3642
3643 LLVM_DEBUG(dbgs() << "Cannot copy " << RI.getName(SrcReg) << " to "
3644 << RI.getName(DestReg) << '\n');
3645 report_fatal_error("Cannot emit physreg copy instruction");
3646}
3647
3648std::optional<DestSourcePair>
3650 if (MI.isMoveReg()) {
3651 // FIXME: Dirty hack for apparent invariant that doesn't hold when
3652 // subreg_to_reg is coalesced with ordinary copies, such that the bits that
3653 // were asserted as 0 are now undef.
3654 if (MI.getOperand(0).isUndef() && MI.getOperand(0).getSubReg())
3655 return std::nullopt;
3656
3657 return DestSourcePair{MI.getOperand(0), MI.getOperand(1)};
3658 }
3659 return std::nullopt;
3660}
3661
3662static unsigned getLoadStoreOpcodeForFP16(bool Load, const X86Subtarget &STI) {
3663 if (STI.hasFP16())
3664 return Load ? X86::VMOVSHZrm_alt : X86::VMOVSHZmr;
3665 if (Load)
3666 return STI.hasAVX512() ? X86::VMOVSSZrm
3667 : STI.hasAVX() ? X86::VMOVSSrm
3668 : X86::MOVSSrm;
3669 else
3670 return STI.hasAVX512() ? X86::VMOVSSZmr
3671 : STI.hasAVX() ? X86::VMOVSSmr
3672 : X86::MOVSSmr;
3673}
3674
3676 const TargetRegisterClass *RC,
3677 bool IsStackAligned,
3678 const X86Subtarget &STI, bool Load) {
3679 bool HasAVX = STI.hasAVX();
3680 bool HasAVX512 = STI.hasAVX512();
3681 bool HasVLX = STI.hasVLX();
3682
3683 assert(RC != nullptr && "Invalid target register class");
3684 switch (STI.getRegisterInfo()->getSpillSize(*RC)) {
3685 default:
3686 llvm_unreachable("Unknown spill size");
3687 case 1:
3688 assert(X86::GR8RegClass.hasSubClassEq(RC) && "Unknown 1-byte regclass");
3689 if (STI.is64Bit())
3690 // Copying to or from a physical H register on x86-64 requires a NOREX
3691 // move. Otherwise use a normal move.
3692 if (isHReg(Reg) || X86::GR8_ABCD_HRegClass.hasSubClassEq(RC))
3693 return Load ? X86::MOV8rm_NOREX : X86::MOV8mr_NOREX;
3694 return Load ? X86::MOV8rm : X86::MOV8mr;
3695 case 2:
3696 if (X86::VK16RegClass.hasSubClassEq(RC))
3697 return Load ? X86::KMOVWkm : X86::KMOVWmk;
3698 assert(X86::GR16RegClass.hasSubClassEq(RC) && "Unknown 2-byte regclass");
3699 return Load ? X86::MOV16rm : X86::MOV16mr;
3700 case 4:
3701 if (X86::GR32RegClass.hasSubClassEq(RC))
3702 return Load ? X86::MOV32rm : X86::MOV32mr;
3703 if (X86::FR32XRegClass.hasSubClassEq(RC))
3704 return Load ?
3705 (HasAVX512 ? X86::VMOVSSZrm_alt :
3706 HasAVX ? X86::VMOVSSrm_alt :
3707 X86::MOVSSrm_alt) :
3708 (HasAVX512 ? X86::VMOVSSZmr :
3709 HasAVX ? X86::VMOVSSmr :
3710 X86::MOVSSmr);
3711 if (X86::RFP32RegClass.hasSubClassEq(RC))
3712 return Load ? X86::LD_Fp32m : X86::ST_Fp32m;
3713 if (X86::VK32RegClass.hasSubClassEq(RC)) {
3714 assert(STI.hasBWI() && "KMOVD requires BWI");
3715 return Load ? X86::KMOVDkm : X86::KMOVDmk;
3716 }
3717 // All of these mask pair classes have the same spill size, the same kind
3718 // of kmov instructions can be used with all of them.
3719 if (X86::VK1PAIRRegClass.hasSubClassEq(RC) ||
3720 X86::VK2PAIRRegClass.hasSubClassEq(RC) ||
3721 X86::VK4PAIRRegClass.hasSubClassEq(RC) ||
3722 X86::VK8PAIRRegClass.hasSubClassEq(RC) ||
3723 X86::VK16PAIRRegClass.hasSubClassEq(RC))
3724 return Load ? X86::MASKPAIR16LOAD : X86::MASKPAIR16STORE;
3725 if (X86::FR16RegClass.hasSubClassEq(RC) ||
3726 X86::FR16XRegClass.hasSubClassEq(RC))
3727 return getLoadStoreOpcodeForFP16(Load, STI);
3728 llvm_unreachable("Unknown 4-byte regclass");
3729 case 8:
3730 if (X86::GR64RegClass.hasSubClassEq(RC))
3731 return Load ? X86::MOV64rm : X86::MOV64mr;
3732 if (X86::FR64XRegClass.hasSubClassEq(RC))
3733 return Load ?
3734 (HasAVX512 ? X86::VMOVSDZrm_alt :
3735 HasAVX ? X86::VMOVSDrm_alt :
3736 X86::MOVSDrm_alt) :
3737 (HasAVX512 ? X86::VMOVSDZmr :
3738 HasAVX ? X86::VMOVSDmr :
3739 X86::MOVSDmr);
3740 if (X86::VR64RegClass.hasSubClassEq(RC))
3741 return Load ? X86::MMX_MOVQ64rm : X86::MMX_MOVQ64mr;
3742 if (X86::RFP64RegClass.hasSubClassEq(RC))
3743 return Load ? X86::LD_Fp64m : X86::ST_Fp64m;
3744 if (X86::VK64RegClass.hasSubClassEq(RC)) {
3745 assert(STI.hasBWI() && "KMOVQ requires BWI");
3746 return Load ? X86::KMOVQkm : X86::KMOVQmk;
3747 }
3748 llvm_unreachable("Unknown 8-byte regclass");
3749 case 10:
3750 assert(X86::RFP80RegClass.hasSubClassEq(RC) && "Unknown 10-byte regclass");
3751 return Load ? X86::LD_Fp80m : X86::ST_FpP80m;
3752 case 16: {
3753 if (X86::VR128XRegClass.hasSubClassEq(RC)) {
3754 // If stack is realigned we can use aligned stores.
3755 if (IsStackAligned)
3756 return Load ?
3757 (HasVLX ? X86::VMOVAPSZ128rm :
3758 HasAVX512 ? X86::VMOVAPSZ128rm_NOVLX :
3759 HasAVX ? X86::VMOVAPSrm :
3760 X86::MOVAPSrm):
3761 (HasVLX ? X86::VMOVAPSZ128mr :
3762 HasAVX512 ? X86::VMOVAPSZ128mr_NOVLX :
3763 HasAVX ? X86::VMOVAPSmr :
3764 X86::MOVAPSmr);
3765 else
3766 return Load ?
3767 (HasVLX ? X86::VMOVUPSZ128rm :
3768 HasAVX512 ? X86::VMOVUPSZ128rm_NOVLX :
3769 HasAVX ? X86::VMOVUPSrm :
3770 X86::MOVUPSrm):
3771 (HasVLX ? X86::VMOVUPSZ128mr :
3772 HasAVX512 ? X86::VMOVUPSZ128mr_NOVLX :
3773 HasAVX ? X86::VMOVUPSmr :
3774 X86::MOVUPSmr);
3775 }
3776 llvm_unreachable("Unknown 16-byte regclass");
3777 }
3778 case 32:
3779 assert(X86::VR256XRegClass.hasSubClassEq(RC) && "Unknown 32-byte regclass");
3780 // If stack is realigned we can use aligned stores.
3781 if (IsStackAligned)
3782 return Load ?
3783 (HasVLX ? X86::VMOVAPSZ256rm :
3784 HasAVX512 ? X86::VMOVAPSZ256rm_NOVLX :
3785 X86::VMOVAPSYrm) :
3786 (HasVLX ? X86::VMOVAPSZ256mr :
3787 HasAVX512 ? X86::VMOVAPSZ256mr_NOVLX :
3788 X86::VMOVAPSYmr);
3789 else
3790 return Load ?
3791 (HasVLX ? X86::VMOVUPSZ256rm :
3792 HasAVX512 ? X86::VMOVUPSZ256rm_NOVLX :
3793 X86::VMOVUPSYrm) :
3794 (HasVLX ? X86::VMOVUPSZ256mr :
3795 HasAVX512 ? X86::VMOVUPSZ256mr_NOVLX :
3796 X86::VMOVUPSYmr);
3797 case 64:
3798 assert(X86::VR512RegClass.hasSubClassEq(RC) && "Unknown 64-byte regclass");
3799 assert(STI.hasAVX512() && "Using 512-bit register requires AVX512");
3800 if (IsStackAligned)
3801 return Load ? X86::VMOVAPSZrm : X86::VMOVAPSZmr;
3802 else
3803 return Load ? X86::VMOVUPSZrm : X86::VMOVUPSZmr;
3804 case 1024:
3805 assert(X86::TILERegClass.hasSubClassEq(RC) && "Unknown 1024-byte regclass");
3806 assert(STI.hasAMXTILE() && "Using 8*1024-bit register requires AMX-TILE");
3807 return Load ? X86::TILELOADD : X86::TILESTORED;
3808 }
3809}
3810
3811std::optional<ExtAddrMode>
3813 const TargetRegisterInfo *TRI) const {
3814 const MCInstrDesc &Desc = MemI.getDesc();
3815 int MemRefBegin = X86II::getMemoryOperandNo(Desc.TSFlags);
3816 if (MemRefBegin < 0)
3817 return std::nullopt;
3818
3819 MemRefBegin += X86II::getOperandBias(Desc);
3820
3821 auto &BaseOp = MemI.getOperand(MemRefBegin + X86::AddrBaseReg);
3822 if (!BaseOp.isReg()) // Can be an MO_FrameIndex
3823 return std::nullopt;
3824
3825 const MachineOperand &DispMO = MemI.getOperand(MemRefBegin + X86::AddrDisp);
3826 // Displacement can be symbolic
3827 if (!DispMO.isImm())
3828 return std::nullopt;
3829
3830 ExtAddrMode AM;
3831 AM.BaseReg = BaseOp.getReg();
3832 AM.ScaledReg = MemI.getOperand(MemRefBegin + X86::AddrIndexReg).getReg();
3833 AM.Scale = MemI.getOperand(MemRefBegin + X86::AddrScaleAmt).getImm();
3834 AM.Displacement = DispMO.getImm();
3835 return AM;
3836}
3837
3839 StringRef &ErrInfo) const {
3840 std::optional<ExtAddrMode> AMOrNone = getAddrModeFromMemoryOp(MI, nullptr);
3841 if (!AMOrNone)
3842 return true;
3843
3844 ExtAddrMode AM = *AMOrNone;
3846 if (AM.ScaledReg != X86::NoRegister) {
3847 switch (AM.Scale) {
3848 case 1:
3849 case 2:
3850 case 4:
3851 case 8:
3852 break;
3853 default:
3854 ErrInfo = "Scale factor in address must be 1, 2, 4 or 8";
3855 return false;
3856 }
3857 }
3858 if (!isInt<32>(AM.Displacement)) {
3859 ErrInfo = "Displacement in address must fit into 32-bit signed "
3860 "integer";
3861 return false;
3862 }
3863
3864 return true;
3865}
3866
3868 const Register Reg,
3869 int64_t &ImmVal) const {
3870 if (MI.getOpcode() != X86::MOV32ri && MI.getOpcode() != X86::MOV64ri)
3871 return false;
3872 // Mov Src can be a global address.
3873 if (!MI.getOperand(1).isImm() || MI.getOperand(0).getReg() != Reg)
3874 return false;
3875 ImmVal = MI.getOperand(1).getImm();
3876 return true;
3877}
3878
3880 const MachineInstr *MI, const Register NullValueReg,
3881 const TargetRegisterInfo *TRI) const {
3882 if (!MI->modifiesRegister(NullValueReg, TRI))
3883 return true;
3884 switch (MI->getOpcode()) {
3885 // Shift right/left of a null unto itself is still a null, i.e. rax = shl rax
3886 // X.
3887 case X86::SHR64ri:
3888 case X86::SHR32ri:
3889 case X86::SHL64ri:
3890 case X86::SHL32ri:
3891 assert(MI->getOperand(0).isDef() && MI->getOperand(1).isUse() &&
3892 "expected for shift opcode!");
3893 return MI->getOperand(0).getReg() == NullValueReg &&
3894 MI->getOperand(1).getReg() == NullValueReg;
3895 // Zero extend of a sub-reg of NullValueReg into itself does not change the
3896 // null value.
3897 case X86::MOV32rr:
3898 return llvm::all_of(MI->operands(), [&](const MachineOperand &MO) {
3899 return TRI->isSubRegisterEq(NullValueReg, MO.getReg());
3900 });
3901 default:
3902 return false;
3903 }
3904 llvm_unreachable("Should be handled above!");
3905}
3906
3909 int64_t &Offset, bool &OffsetIsScalable, unsigned &Width,
3910 const TargetRegisterInfo *TRI) const {
3911 const MCInstrDesc &Desc = MemOp.getDesc();
3912 int MemRefBegin = X86II::getMemoryOperandNo(Desc.TSFlags);
3913 if (MemRefBegin < 0)
3914 return false;
3915
3916 MemRefBegin += X86II::getOperandBias(Desc);
3917
3918 const MachineOperand *BaseOp =
3919 &MemOp.getOperand(MemRefBegin + X86::AddrBaseReg);
3920 if (!BaseOp->isReg()) // Can be an MO_FrameIndex
3921 return false;
3922
3923 if (MemOp.getOperand(MemRefBegin + X86::AddrScaleAmt).getImm() != 1)
3924 return false;
3925
3926 if (MemOp.getOperand(MemRefBegin + X86::AddrIndexReg).getReg() !=
3927 X86::NoRegister)
3928 return false;
3929
3930 const MachineOperand &DispMO = MemOp.getOperand(MemRefBegin + X86::AddrDisp);
3931
3932 // Displacement can be symbolic
3933 if (!DispMO.isImm())
3934 return false;
3935
3936 Offset = DispMO.getImm();
3937
3938 if (!BaseOp->isReg())
3939 return false;
3940
3941 OffsetIsScalable = false;
3942 // FIXME: Relying on memoperands() may not be right thing to do here. Check
3943 // with X86 maintainers, and fix it accordingly. For now, it is ok, since
3944 // there is no use of `Width` for X86 back-end at the moment.
3945 Width =
3946 !MemOp.memoperands_empty() ? MemOp.memoperands().front()->getSize() : 0;
3947 BaseOps.push_back(BaseOp);
3948 return true;
3949}
3950
3951static unsigned getStoreRegOpcode(Register SrcReg,
3952 const TargetRegisterClass *RC,
3953 bool IsStackAligned,
3954 const X86Subtarget &STI) {
3955 return getLoadStoreRegOpcode(SrcReg, RC, IsStackAligned, STI, false);
3956}
3957
3958static unsigned getLoadRegOpcode(Register DestReg,
3959 const TargetRegisterClass *RC,
3960 bool IsStackAligned, const X86Subtarget &STI) {
3961 return getLoadStoreRegOpcode(DestReg, RC, IsStackAligned, STI, true);
3962}
3963
3964static bool isAMXOpcode(unsigned Opc) {
3965 switch (Opc) {
3966 default:
3967 return false;
3968 case X86::TILELOADD:
3969 case X86::TILESTORED:
3970 return true;
3971 }
3972}
3973
3976 unsigned Opc, Register Reg, int FrameIdx,
3977 bool isKill) const {
3978 switch (Opc) {
3979 default:
3980 llvm_unreachable("Unexpected special opcode!");
3981 case X86::TILESTORED: {
3982 // tilestored %tmm, (%sp, %idx)
3984 Register VirtReg = RegInfo.createVirtualRegister(&X86::GR64_NOSPRegClass);
3985 BuildMI(MBB, MI, DebugLoc(), get(X86::MOV64ri), VirtReg).addImm(64);
3986 MachineInstr *NewMI =
3987 addFrameReference(BuildMI(MBB, MI, DebugLoc(), get(Opc)), FrameIdx)
3988 .addReg(Reg, getKillRegState(isKill));
3990 MO.setReg(VirtReg);
3991 MO.setIsKill(true);
3992 break;
3993 }
3994 case X86::TILELOADD: {
3995 // tileloadd (%sp, %idx), %tmm
3997 Register VirtReg = RegInfo.createVirtualRegister(&X86::GR64_NOSPRegClass);
3998 BuildMI(MBB, MI, DebugLoc(), get(X86::MOV64ri), VirtReg).addImm(64);
4000 BuildMI(MBB, MI, DebugLoc(), get(Opc), Reg), FrameIdx);
4002 MO.setReg(VirtReg);
4003 MO.setIsKill(true);
4004 break;
4005 }
4006 }
4007}
4008
4011 bool isKill, int FrameIdx, const TargetRegisterClass *RC,
4012 const TargetRegisterInfo *TRI, Register VReg) const {
4013 const MachineFunction &MF = *MBB.getParent();
4014 const MachineFrameInfo &MFI = MF.getFrameInfo();
4015 assert(MFI.getObjectSize(FrameIdx) >= TRI->getSpillSize(*RC) &&
4016 "Stack slot too small for store");
4017
4018 unsigned Alignment = std::max<uint32_t>(TRI->getSpillSize(*RC), 16);
4019 bool isAligned =
4020 (Subtarget.getFrameLowering()->getStackAlign() >= Alignment) ||
4021 (RI.canRealignStack(MF) && !MFI.isFixedObjectIndex(FrameIdx));
4022
4023 unsigned Opc = getStoreRegOpcode(SrcReg, RC, isAligned, Subtarget);
4024 if (isAMXOpcode(Opc))
4025 loadStoreTileReg(MBB, MI, Opc, SrcReg, FrameIdx, isKill);
4026 else
4027 addFrameReference(BuildMI(MBB, MI, DebugLoc(), get(Opc)), FrameIdx)
4028 .addReg(SrcReg, getKillRegState(isKill));
4029}
4030
4033 Register DestReg, int FrameIdx,
4034 const TargetRegisterClass *RC,
4035 const TargetRegisterInfo *TRI,
4036 Register VReg) const {
4037 const MachineFunction &MF = *MBB.getParent();
4038 const MachineFrameInfo &MFI = MF.getFrameInfo();
4039 assert(MFI.getObjectSize(FrameIdx) >= TRI->getSpillSize(*RC) &&
4040 "Load size exceeds stack slot");
4041 unsigned Alignment = std::max<uint32_t>(TRI->getSpillSize(*RC), 16);
4042 bool isAligned =
4043 (Subtarget.getFrameLowering()->getStackAlign() >= Alignment) ||
4044 (RI.canRealignStack(MF) && !MFI.isFixedObjectIndex(FrameIdx));
4045
4046 unsigned Opc = getLoadRegOpcode(DestReg, RC, isAligned, Subtarget);
4047 if (isAMXOpcode(Opc))
4048 loadStoreTileReg(MBB, MI, Opc, DestReg, FrameIdx);
4049 else
4050 addFrameReference(BuildMI(MBB, MI, DebugLoc(), get(Opc), DestReg),
4051 FrameIdx);
4052}
4053
4055 Register &SrcReg2, int64_t &CmpMask,
4056 int64_t &CmpValue) const {
4057 switch (MI.getOpcode()) {
4058 default: break;
4059 case X86::CMP64ri32:
4060 case X86::CMP32ri:
4061 case X86::CMP16ri:
4062 case X86::CMP8ri:
4063 SrcReg = MI.getOperand(0).getReg();
4064 SrcReg2 = 0;
4065 if (MI.getOperand(1).isImm()) {
4066 CmpMask = ~0;
4067 CmpValue = MI.getOperand(1).getImm();
4068 } else {
4069 CmpMask = CmpValue = 0;
4070 }
4071 return true;
4072 // A SUB can be used to perform comparison.
4073 case X86::SUB64rm:
4074 case X86::SUB32rm:
4075 case X86::SUB16rm:
4076 case X86::SUB8rm:
4077 SrcReg = MI.getOperand(1).getReg();
4078 SrcReg2 = 0;
4079 CmpMask = 0;
4080 CmpValue = 0;
4081 return true;
4082 case X86::SUB64rr:
4083 case X86::SUB32rr:
4084 case X86::SUB16rr:
4085 case X86::SUB8rr:
4086 SrcReg = MI.getOperand(1).getReg();
4087 SrcReg2 = MI.getOperand(2).getReg();
4088 CmpMask = 0;
4089 CmpValue = 0;
4090 return true;
4091 case X86::SUB64ri32:
4092 case X86::SUB32ri:
4093 case X86::SUB16ri:
4094 case X86::SUB8ri:
4095 SrcReg = MI.getOperand(1).getReg();
4096 SrcReg2 = 0;
4097 if (MI.getOperand(2).isImm()) {
4098 CmpMask = ~0;
4099 CmpValue = MI.getOperand(2).getImm();
4100 } else {
4101 CmpMask = CmpValue = 0;
4102 }
4103 return true;
4104 case X86::CMP64rr:
4105 case X86::CMP32rr:
4106 case X86::CMP16rr:
4107 case X86::CMP8rr:
4108 SrcReg = MI.getOperand(0).getReg();
4109 SrcReg2 = MI.getOperand(1).getReg();
4110 CmpMask = 0;
4111 CmpValue = 0;
4112 return true;
4113 case X86::TEST8rr:
4114 case X86::TEST16rr:
4115 case X86::TEST32rr:
4116 case X86::TEST64rr:
4117 SrcReg = MI.getOperand(0).getReg();
4118 if (MI.getOperand(1).getReg() != SrcReg)
4119 return false;
4120 // Compare against zero.
4121 SrcReg2 = 0;
4122 CmpMask = ~0;
4123 CmpValue = 0;
4124 return true;
4125 }
4126 return false;
4127}
4128
4129bool X86InstrInfo::isRedundantFlagInstr(const MachineInstr &FlagI,
4130 Register SrcReg, Register SrcReg2,
4131 int64_t ImmMask, int64_t ImmValue,
4132 const MachineInstr &OI, bool *IsSwapped,
4133 int64_t *ImmDelta) const {
4134 switch (OI.getOpcode()) {
4135 case X86::CMP64rr:
4136 case X86::CMP32rr:
4137 case X86::CMP16rr:
4138 case X86::CMP8rr:
4139 case X86::SUB64rr:
4140 case X86::SUB32rr:
4141 case X86::SUB16rr:
4142 case X86::SUB8rr: {
4143 Register OISrcReg;
4144 Register OISrcReg2;
4145 int64_t OIMask;
4146 int64_t OIValue;
4147 if (!analyzeCompare(OI, OISrcReg, OISrcReg2, OIMask, OIValue) ||
4148 OIMask != ImmMask || OIValue != ImmValue)
4149 return false;
4150 if (SrcReg == OISrcReg && SrcReg2 == OISrcReg2) {
4151 *IsSwapped = false;
4152 return true;
4153 }
4154 if (SrcReg == OISrcReg2 && SrcReg2 == OISrcReg) {
4155 *IsSwapped = true;
4156 return true;
4157 }
4158 return false;
4159 }
4160 case X86::CMP64ri32:
4161 case X86::CMP32ri:
4162 case X86::CMP16ri:
4163 case X86::CMP8ri:
4164 case X86::SUB64ri32:
4165 case X86::SUB32ri:
4166 case X86::SUB16ri:
4167 case X86::SUB8ri:
4168 case X86::TEST64rr:
4169 case X86::TEST32rr:
4170 case X86::TEST16rr:
4171 case X86::TEST8rr: {
4172 if (ImmMask != 0) {
4173 Register OISrcReg;
4174 Register OISrcReg2;
4175 int64_t OIMask;
4176 int64_t OIValue;
4177 if (analyzeCompare(OI, OISrcReg, OISrcReg2, OIMask, OIValue) &&
4178 SrcReg == OISrcReg && ImmMask == OIMask) {
4179 if (OIValue == ImmValue) {
4180 *ImmDelta = 0;
4181 return true;
4182 } else if (static_cast<uint64_t>(ImmValue) ==
4183 static_cast<uint64_t>(OIValue) - 1) {
4184 *ImmDelta = -1;
4185 return true;
4186 } else if (static_cast<uint64_t>(ImmValue) ==
4187 static_cast<uint64_t>(OIValue) + 1) {
4188 *ImmDelta = 1;
4189 return true;
4190 } else {
4191 return false;
4192 }
4193 }
4194 }
4195 return FlagI.isIdenticalTo(OI);
4196 }
4197 default:
4198 return false;
4199 }
4200}
4201
4202/// Check whether the definition can be converted
4203/// to remove a comparison against zero.
4204inline static bool isDefConvertible(const MachineInstr &MI, bool &NoSignFlag,
4205 bool &ClearsOverflowFlag) {
4206 NoSignFlag = false;
4207 ClearsOverflowFlag = false;
4208
4209 // "ELF Handling for Thread-Local Storage" specifies that x86-64 GOTTPOFF, and
4210 // i386 GOTNTPOFF/INDNTPOFF relocations can convert an ADD to a LEA during
4211 // Initial Exec to Local Exec relaxation. In these cases, we must not depend
4212 // on the EFLAGS modification of ADD actually happening in the final binary.
4213 if (MI.getOpcode() == X86::ADD64rm || MI.getOpcode() == X86::ADD32rm) {
4214 unsigned Flags = MI.getOperand(5).getTargetFlags();
4215 if (Flags == X86II::MO_GOTTPOFF || Flags == X86II::MO_INDNTPOFF ||
4216 Flags == X86II::MO_GOTNTPOFF)
4217 return false;
4218 }
4219
4220 switch (MI.getOpcode()) {
4221 default: return false;
4222
4223 // The shift instructions only modify ZF if their shift count is non-zero.
4224 // N.B.: The processor truncates the shift count depending on the encoding.
4225 case X86::SAR8ri: case X86::SAR16ri: case X86::SAR32ri:case X86::SAR64ri:
4226 case X86::SHR8ri: case X86::SHR16ri: case X86::SHR32ri:case X86::SHR64ri:
4227 return getTruncatedShiftCount(MI, 2) != 0;
4228
4229 // Some left shift instructions can be turned into LEA instructions but only
4230 // if their flags aren't used. Avoid transforming such instructions.
4231 case X86::SHL8ri: case X86::SHL16ri: case X86::SHL32ri:case X86::SHL64ri:{
4232 unsigned ShAmt = getTruncatedShiftCount(MI, 2);
4233 if (isTruncatedShiftCountForLEA(ShAmt)) return false;
4234 return ShAmt != 0;
4235 }
4236
4237 case X86::SHRD16rri8:case X86::SHRD32rri8:case X86::SHRD64rri8:
4238 case X86::SHLD16rri8:case X86::SHLD32rri8:case X86::SHLD64rri8:
4239 return getTruncatedShiftCount(MI, 3) != 0;
4240
4241 case X86::SUB64ri32: case X86::SUB32ri: case X86::SUB16ri:
4242 case X86::SUB8ri: case X86::SUB64rr: case X86::SUB32rr:
4243 case X86::SUB16rr: case X86::SUB8rr: case X86::SUB64rm:
4244 case X86::SUB32rm: case X86::SUB16rm: case X86::SUB8rm:
4245 case X86::DEC64r: case X86::DEC32r: case X86::DEC16r: case X86::DEC8r:
4246 case X86::ADD64ri32: case X86::ADD32ri: case X86::ADD16ri:
4247 case X86::ADD8ri: case X86::ADD64rr: case X86::ADD32rr:
4248 case X86::ADD16rr: case X86::ADD8rr: case X86::ADD64rm:
4249 case X86::ADD32rm: case X86::ADD16rm: case X86::ADD8rm:
4250 case X86::INC64r: case X86::INC32r: case X86::INC16r: case X86::INC8r:
4251 case X86::ADC64ri32: case X86::ADC32ri: case X86::ADC16ri:
4252 case X86::ADC8ri: case X86::ADC64rr: case X86::ADC32rr:
4253 case X86::ADC16rr: case X86::ADC8rr: case X86::ADC64rm:
4254 case X86::ADC32rm: case X86::ADC16rm: case X86::ADC8rm:
4255 case X86::SBB64ri32: case X86::SBB32ri: case X86::SBB16ri:
4256 case X86::SBB8ri: case X86::SBB64rr: case X86::SBB32rr:
4257 case X86::SBB16rr: case X86::SBB8rr: case X86::SBB64rm:
4258 case X86::SBB32rm: case X86::SBB16rm: case X86::SBB8rm:
4259 case X86::NEG8r: case X86::NEG16r: case X86::NEG32r: case X86::NEG64r:
4260 case X86::LZCNT16rr: case X86::LZCNT16rm:
4261 case X86::LZCNT32rr: case X86::LZCNT32rm:
4262 case X86::LZCNT64rr: case X86::LZCNT64rm:
4263 case X86::POPCNT16rr:case X86::POPCNT16rm:
4264 case X86::POPCNT32rr:case X86::POPCNT32rm:
4265 case X86::POPCNT64rr:case X86::POPCNT64rm:
4266 case X86::TZCNT16rr: case X86::TZCNT16rm:
4267 case X86::TZCNT32rr: case X86::TZCNT32rm:
4268 case X86::TZCNT64rr: case X86::TZCNT64rm:
4269 return true;
4270 case X86::AND64ri32: case X86::AND32ri: case X86::AND16ri:
4271 case X86::AND8ri: case X86::AND64rr: case X86::AND32rr:
4272 case X86::AND16rr: case X86::AND8rr: case X86::AND64rm:
4273 case X86::AND32rm: case X86::AND16rm: case X86::AND8rm:
4274 case X86::XOR64ri32: case X86::XOR32ri: case X86::XOR16ri:
4275 case X86::XOR8ri: case X86::XOR64rr: case X86::XOR32rr:
4276 case X86::XOR16rr: case X86::XOR8rr: case X86::XOR64rm:
4277 case X86::XOR32rm: case X86::XOR16rm: case X86::XOR8rm:
4278 case X86::OR64ri32: case X86::OR32ri: case X86::OR16ri:
4279 case X86::OR8ri: case X86::OR64rr: case X86::OR32rr:
4280 case X86::OR16rr: case X86::OR8rr: case X86::OR64rm:
4281 case X86::OR32rm: case X86::OR16rm: case X86::OR8rm:
4282 case X86::ANDN32rr: case X86::ANDN32rm:
4283 case X86::ANDN64rr: case X86::ANDN64rm:
4284 case X86::BLSI32rr: case X86::BLSI32rm:
4285 case X86::BLSI64rr: case X86::BLSI64rm:
4286 case X86::BLSMSK32rr: case X86::BLSMSK32rm:
4287 case X86::BLSMSK64rr: case X86::BLSMSK64rm:
4288 case X86::BLSR32rr: case X86::BLSR32rm:
4289 case X86::BLSR64rr: case X86::BLSR64rm:
4290 case X86::BLCFILL32rr: case X86::BLCFILL32rm:
4291 case X86::BLCFILL64rr: case X86::BLCFILL64rm:
4292 case X86::BLCI32rr: case X86::BLCI32rm:
4293 case X86::BLCI64rr: case X86::BLCI64rm:
4294 case X86::BLCIC32rr: case X86::BLCIC32rm:
4295 case X86::BLCIC64rr: case X86::BLCIC64rm:
4296 case X86::BLCMSK32rr: case X86::BLCMSK32rm:
4297 case X86::BLCMSK64rr: case X86::BLCMSK64rm:
4298 case X86::BLCS32rr: case X86::BLCS32rm:
4299 case X86::BLCS64rr: case X86::BLCS64rm:
4300 case X86::BLSFILL32rr: case X86::BLSFILL32rm:
4301 case X86::BLSFILL64rr: case X86::BLSFILL64rm:
4302 case X86::BLSIC32rr: case X86::BLSIC32rm:
4303 case X86::BLSIC64rr: case X86::BLSIC64rm:
4304 case X86::BZHI32rr: case X86::BZHI32rm:
4305 case X86::BZHI64rr: case X86::BZHI64rm:
4306 case X86::T1MSKC32rr: case X86::T1MSKC32rm:
4307 case X86::T1MSKC64rr: case X86::T1MSKC64rm:
4308 case X86::TZMSK32rr: case X86::TZMSK32rm:
4309 case X86::TZMSK64rr: case X86::TZMSK64rm:
4310 // These instructions clear the overflow flag just like TEST.
4311 // FIXME: These are not the only instructions in this switch that clear the
4312 // overflow flag.
4313 ClearsOverflowFlag = true;
4314 return true;
4315 case X86::BEXTR32rr: case X86::BEXTR64rr:
4316 case X86::BEXTR32rm: case X86::BEXTR64rm:
4317 case X86::BEXTRI32ri: case X86::BEXTRI32mi:
4318 case X86::BEXTRI64ri: case X86::BEXTRI64mi:
4319 // BEXTR doesn't update the sign flag so we can't use it. It does clear
4320 // the overflow flag, but that's not useful without the sign flag.
4321 NoSignFlag = true;
4322 return true;
4323 }
4324}
4325
4326/// Check whether the use can be converted to remove a comparison against zero.
4328 switch (MI.getOpcode()) {
4329 default: return X86::COND_INVALID;
4330 case X86::NEG8r:
4331 case X86::NEG16r:
4332 case X86::NEG32r:
4333 case X86::NEG64r:
4334 return X86::COND_AE;
4335 case X86::LZCNT16rr:
4336 case X86::LZCNT32rr:
4337 case X86::LZCNT64rr:
4338 return X86::COND_B;
4339 case X86::POPCNT16rr:
4340 case X86::POPCNT32rr:
4341 case X86::POPCNT64rr:
4342 return X86::COND_E;
4343 case X86::TZCNT16rr:
4344 case X86::TZCNT32rr:
4345 case X86::TZCNT64rr:
4346 return X86::COND_B;
4347 case X86::BSF16rr:
4348 case X86::BSF32rr:
4349 case X86::BSF64rr:
4350 case X86::BSR16rr:
4351 case X86::BSR32rr:
4352 case X86::BSR64rr:
4353 return X86::COND_E;
4354 case X86::BLSI32rr:
4355 case X86::BLSI64rr:
4356 return X86::COND_AE;
4357 case X86::BLSR32rr:
4358 case X86::BLSR64rr:
4359 case X86::BLSMSK32rr:
4360 case X86::BLSMSK64rr:
4361 return X86::COND_B;
4362 // TODO: TBM instructions.
4363 }
4364}
4365
4366/// Check if there exists an earlier instruction that
4367/// operates on the same source operands and sets flags in the same way as
4368/// Compare; remove Compare if possible.
4370 Register SrcReg2, int64_t CmpMask,
4371 int64_t CmpValue,
4372 const MachineRegisterInfo *MRI) const {
4373 // Check whether we can replace SUB with CMP.
4374 switch (CmpInstr.getOpcode()) {
4375 default: break;
4376 case X86::SUB64ri32:
4377 case X86::SUB32ri:
4378 case X86::SUB16ri:
4379 case X86::SUB8ri:
4380 case X86::SUB64rm:
4381 case X86::SUB32rm:
4382 case X86::SUB16rm:
4383 case X86::SUB8rm:
4384 case X86::SUB64rr:
4385 case X86::SUB32rr:
4386 case X86::SUB16rr:
4387 case X86::SUB8rr: {
4388 if (!MRI->use_nodbg_empty(CmpInstr.getOperand(0).getReg()))
4389 return false;
4390 // There is no use of the destination register, we can replace SUB with CMP.
4391 unsigned NewOpcode = 0;
4392 switch (CmpInstr.getOpcode()) {
4393 default: llvm_unreachable("Unreachable!");
4394 case X86::SUB64rm: NewOpcode = X86::CMP64rm; break;
4395 case X86::SUB32rm: NewOpcode = X86::CMP32rm; break;
4396 case X86::SUB16rm: NewOpcode = X86::CMP16rm; break;
4397 case X86::SUB8rm: NewOpcode = X86::CMP8rm; break;
4398 case X86::SUB64rr: NewOpcode = X86::CMP64rr; break;
4399 case X86::SUB32rr: NewOpcode = X86::CMP32rr; break;
4400 case X86::SUB16rr: NewOpcode = X86::CMP16rr; break;
4401 case X86::SUB8rr: NewOpcode = X86::CMP8rr; break;
4402 case X86::SUB64ri32: NewOpcode = X86::CMP64ri32; break;
4403 case X86::SUB32ri: NewOpcode = X86::CMP32ri; break;
4404 case X86::SUB16ri: NewOpcode = X86::CMP16ri; break;
4405 case X86::SUB8ri: NewOpcode = X86::CMP8ri; break;
4406 }
4407 CmpInstr.setDesc(get(NewOpcode));
4408 CmpInstr.removeOperand(0);
4409 // Mutating this instruction invalidates any debug data associated with it.
4410 CmpInstr.dropDebugNumber();
4411 // Fall through to optimize Cmp if Cmp is CMPrr or CMPri.
4412 if (NewOpcode == X86::CMP64rm || NewOpcode == X86::CMP32rm ||
4413 NewOpcode == X86::CMP16rm || NewOpcode == X86::CMP8rm)
4414 return false;
4415 }
4416 }
4417
4418 // The following code tries to remove the comparison by re-using EFLAGS
4419 // from earlier instructions.
4420
4421 bool IsCmpZero = (CmpMask != 0 && CmpValue == 0);
4422
4423 // Transformation currently requires SSA values.
4424 if (SrcReg2.isPhysical())
4425 return false;
4426 MachineInstr *SrcRegDef = MRI->getVRegDef(SrcReg);
4427 assert(SrcRegDef && "Must have a definition (SSA)");
4428
4429 MachineInstr *MI = nullptr;
4430 MachineInstr *Sub = nullptr;
4431 MachineInstr *Movr0Inst = nullptr;
4432 bool NoSignFlag = false;
4433 bool ClearsOverflowFlag = false;
4434 bool ShouldUpdateCC = false;
4435 bool IsSwapped = false;
4437 int64_t ImmDelta = 0;
4438
4439 // Search backward from CmpInstr for the next instruction defining EFLAGS.
4441 MachineBasicBlock &CmpMBB = *CmpInstr.getParent();
4443 std::next(MachineBasicBlock::reverse_iterator(CmpInstr));
4444 for (MachineBasicBlock *MBB = &CmpMBB;;) {
4445 for (MachineInstr &Inst : make_range(From, MBB->rend())) {
4446 // Try to use EFLAGS from the instruction defining %SrcReg. Example:
4447 // %eax = addl ...
4448 // ... // EFLAGS not changed
4449 // testl %eax, %eax // <-- can be removed
4450 if (&Inst == SrcRegDef) {
4451 if (IsCmpZero &&
4452 isDefConvertible(Inst, NoSignFlag, ClearsOverflowFlag)) {
4453 MI = &Inst;
4454 break;
4455 }
4456
4457 // Look back for the following pattern, in which case the
4458 // test16rr/test64rr instruction could be erased.
4459 //
4460 // Example for test16rr:
4461 // %reg = and32ri %in_reg, 5
4462 // ... // EFLAGS not changed.
4463 // %src_reg = copy %reg.sub_16bit:gr32
4464 // test16rr %src_reg, %src_reg, implicit-def $eflags
4465 // Example for test64rr:
4466 // %reg = and32ri %in_reg, 5
4467 // ... // EFLAGS not changed.
4468 // %src_reg = subreg_to_reg 0, %reg, %subreg.sub_index
4469 // test64rr %src_reg, %src_reg, implicit-def $eflags
4470 MachineInstr *AndInstr = nullptr;
4471 if (IsCmpZero &&
4472 findRedundantFlagInstr(CmpInstr, Inst, MRI, &AndInstr, TRI,
4473 NoSignFlag, ClearsOverflowFlag)) {
4474 assert(AndInstr != nullptr && X86::isAND(AndInstr->getOpcode()));
4475 MI = AndInstr;
4476 break;
4477 }
4478 // Cannot find other candidates before definition of SrcReg.
4479 return false;
4480 }
4481
4482 if (Inst.modifiesRegister(X86::EFLAGS, TRI)) {
4483 // Try to use EFLAGS produced by an instruction reading %SrcReg.
4484 // Example:
4485 // %eax = ...
4486 // ...
4487 // popcntl %eax
4488 // ... // EFLAGS not changed
4489 // testl %eax, %eax // <-- can be removed
4490 if (IsCmpZero) {
4491 NewCC = isUseDefConvertible(Inst);
4492 if (NewCC != X86::COND_INVALID && Inst.getOperand(1).isReg() &&
4493 Inst.getOperand(1).getReg() == SrcReg) {
4494 ShouldUpdateCC = true;
4495 MI = &Inst;
4496 break;
4497 }
4498 }
4499
4500 // Try to use EFLAGS from an instruction with similar flag results.
4501 // Example:
4502 // sub x, y or cmp x, y
4503 // ... // EFLAGS not changed
4504 // cmp x, y // <-- can be removed
4505 if (isRedundantFlagInstr(CmpInstr, SrcReg, SrcReg2, CmpMask, CmpValue,
4506 Inst, &IsSwapped, &ImmDelta)) {
4507 Sub = &Inst;
4508 break;
4509 }
4510
4511 // MOV32r0 is implemented with xor which clobbers condition code. It is
4512 // safe to move up, if the definition to EFLAGS is dead and earlier
4513 // instructions do not read or write EFLAGS.
4514 if (!Movr0Inst && Inst.getOpcode() == X86::MOV32r0 &&
4515 Inst.registerDefIsDead(X86::EFLAGS, TRI)) {
4516 Movr0Inst = &Inst;
4517 continue;
4518 }
4519
4520 // Cannot do anything for any other EFLAG changes.
4521 return false;
4522 }
4523 }
4524
4525 if (MI || Sub)
4526 break;
4527
4528 // Reached begin of basic block. Continue in predecessor if there is
4529 // exactly one.
4530 if (MBB->pred_size() != 1)
4531 return false;
4532 MBB = *MBB->pred_begin();
4533 From = MBB->rbegin();
4534 }
4535
4536 // Scan forward from the instruction after CmpInstr for uses of EFLAGS.
4537 // It is safe to remove CmpInstr if EFLAGS is redefined or killed.
4538 // If we are done with the basic block, we need to check whether EFLAGS is
4539 // live-out.
4540 bool FlagsMayLiveOut = true;
4542 MachineBasicBlock::iterator AfterCmpInstr =
4543 std::next(MachineBasicBlock::iterator(CmpInstr));
4544 for (MachineInstr &Instr : make_range(AfterCmpInstr, CmpMBB.end())) {
4545 bool ModifyEFLAGS = Instr.modifiesRegister(X86::EFLAGS, TRI);
4546 bool UseEFLAGS = Instr.readsRegister(X86::EFLAGS, TRI);
4547 // We should check the usage if this instruction uses and updates EFLAGS.
4548 if (!UseEFLAGS && ModifyEFLAGS) {
4549 // It is safe to remove CmpInstr if EFLAGS is updated again.
4550 FlagsMayLiveOut = false;
4551 break;
4552 }
4553 if (!UseEFLAGS && !ModifyEFLAGS)
4554 continue;
4555
4556 // EFLAGS is used by this instruction.
4557 X86::CondCode OldCC = X86::getCondFromMI(Instr);
4558 if ((MI || IsSwapped || ImmDelta != 0) && OldCC == X86::COND_INVALID)
4559 return false;
4560
4561 X86::CondCode ReplacementCC = X86::COND_INVALID;
4562 if (MI) {
4563 switch (OldCC) {
4564 default: break;
4565 case X86::COND_A: case X86::COND_AE:
4566 case X86::COND_B: case X86::COND_BE:
4567 // CF is used, we can't perform this optimization.
4568 return false;
4569 case X86::COND_G: case X86::COND_GE:
4570 case X86::COND_L: case X86::COND_LE:
4571 // If SF is used, but the instruction doesn't update the SF, then we
4572 // can't do the optimization.
4573 if (NoSignFlag)
4574 return false;
4575 [[fallthrough]];
4576 case X86::COND_O: case X86::COND_NO:
4577 // If OF is used, the instruction needs to clear it like CmpZero does.
4578 if (!ClearsOverflowFlag)
4579 return false;
4580 break;
4581 case X86::COND_S: case X86::COND_NS:
4582 // If SF is used, but the instruction doesn't update the SF, then we
4583 // can't do the optimization.
4584 if (NoSignFlag)
4585 return false;
4586 break;
4587 }
4588
4589 // If we're updating the condition code check if we have to reverse the
4590 // condition.
4591 if (ShouldUpdateCC)
4592 switch (OldCC) {
4593 default:
4594 return false;
4595 case X86::COND_E:
4596 ReplacementCC = NewCC;
4597 break;
4598 case X86::COND_NE:
4599 ReplacementCC = GetOppositeBranchCondition(NewCC);
4600 break;
4601 }
4602 } else if (IsSwapped) {
4603 // If we have SUB(r1, r2) and CMP(r2, r1), the condition code needs
4604 // to be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc.
4605 // We swap the condition code and synthesize the new opcode.
4606 ReplacementCC = getSwappedCondition(OldCC);
4607 if (ReplacementCC == X86::COND_INVALID)
4608 return false;
4609 ShouldUpdateCC = true;
4610 } else if (ImmDelta != 0) {
4611 unsigned BitWidth = TRI->getRegSizeInBits(*MRI->getRegClass(SrcReg));
4612 // Shift amount for min/max constants to adjust for 8/16/32 instruction
4613 // sizes.
4614 switch (OldCC) {
4615 case X86::COND_L: // x <s (C + 1) --> x <=s C
4616 if (ImmDelta != 1 || APInt::getSignedMinValue(BitWidth) == CmpValue)
4617 return false;
4618 ReplacementCC = X86::COND_LE;
4619 break;
4620 case X86::COND_B: // x <u (C + 1) --> x <=u C
4621 if (ImmDelta != 1 || CmpValue == 0)
4622 return false;
4623 ReplacementCC = X86::COND_BE;
4624 break;
4625 case X86::COND_GE: // x >=s (C + 1) --> x >s C
4626 if (ImmDelta != 1 || APInt::getSignedMinValue(BitWidth) == CmpValue)
4627 return false;
4628 ReplacementCC = X86::COND_G;
4629 break;
4630 case X86::COND_AE: // x >=u (C + 1) --> x >u C
4631 if (ImmDelta != 1 || CmpValue == 0)
4632 return false;
4633 ReplacementCC = X86::COND_A;
4634 break;
4635 case X86::COND_G: // x >s (C - 1) --> x >=s C
4636 if (ImmDelta != -1 || APInt::getSignedMaxValue(BitWidth) == CmpValue)
4637 return false;
4638 ReplacementCC = X86::COND_GE;
4639 break;
4640 case X86::COND_A: // x >u (C - 1) --> x >=u C
4641 if (ImmDelta != -1 || APInt::getMaxValue(BitWidth) == CmpValue)
4642 return false;
4643 ReplacementCC = X86::COND_AE;
4644 break;
4645 case X86::COND_LE: // x <=s (C - 1) --> x <s C
4646 if (ImmDelta != -1 || APInt::getSignedMaxValue(BitWidth) == CmpValue)
4647 return false;
4648 ReplacementCC = X86::COND_L;
4649 break;
4650 case X86::COND_BE: // x <=u (C - 1) --> x <u C
4651 if (ImmDelta != -1 || APInt::getMaxValue(BitWidth) == CmpValue)
4652 return false;
4653 ReplacementCC = X86::COND_B;
4654 break;
4655 default:
4656 return false;
4657 }
4658 ShouldUpdateCC = true;
4659 }
4660
4661 if (ShouldUpdateCC && ReplacementCC != OldCC) {
4662 // Push the MachineInstr to OpsToUpdate.
4663 // If it is safe to remove CmpInstr, the condition code of these
4664 // instructions will be modified.
4665 OpsToUpdate.push_back(std::make_pair(&Instr, ReplacementCC));
4666 }
4667 if (ModifyEFLAGS || Instr.killsRegister(X86::EFLAGS, TRI)) {
4668 // It is safe to remove CmpInstr if EFLAGS is updated again or killed.
4669 FlagsMayLiveOut = false;
4670 break;
4671 }
4672 }
4673
4674 // If we have to update users but EFLAGS is live-out abort, since we cannot
4675 // easily find all of the users.
4676 if ((MI != nullptr || ShouldUpdateCC) && FlagsMayLiveOut) {
4677 for (MachineBasicBlock *Successor : CmpMBB.successors())
4678 if (Successor->isLiveIn(X86::EFLAGS))
4679 return false;
4680 }
4681
4682 // The instruction to be updated is either Sub or MI.
4683 assert((MI == nullptr || Sub == nullptr) && "Should not have Sub and MI set");
4684 Sub = MI != nullptr ? MI : Sub;
4685 MachineBasicBlock *SubBB = Sub->getParent();
4686 // Move Movr0Inst to the appropriate place before Sub.
4687 if (Movr0Inst) {
4688 // Only move within the same block so we don't accidentally move to a
4689 // block with higher execution frequency.
4690 if (&CmpMBB != SubBB)
4691 return false;
4692 // Look backwards until we find a def that doesn't use the current EFLAGS.
4694 InsertE = Sub->getParent()->rend();
4695 for (; InsertI != InsertE; ++InsertI) {
4696 MachineInstr *Instr = &*InsertI;
4697 if (!Instr->readsRegister(X86::EFLAGS, TRI) &&
4698 Instr->modifiesRegister(X86::EFLAGS, TRI)) {
4699 Movr0Inst->getParent()->remove(Movr0Inst);
4700 Instr->getParent()->insert(MachineBasicBlock::iterator(Instr),
4701 Movr0Inst);
4702 break;
4703 }
4704 }
4705 if (InsertI == InsertE)
4706 return false;
4707 }
4708
4709 // Make sure Sub instruction defines EFLAGS and mark the def live.
4710 MachineOperand *FlagDef = Sub->findRegisterDefOperand(X86::EFLAGS);
4711 assert(FlagDef && "Unable to locate a def EFLAGS operand");
4712 FlagDef->setIsDead(false);
4713
4714 CmpInstr.eraseFromParent();
4715
4716 // Modify the condition code of instructions in OpsToUpdate.
4717 for (auto &Op : OpsToUpdate) {
4718 Op.first->getOperand(Op.first->getDesc().getNumOperands() - 1)
4719 .setImm(Op.second);
4720 }
4721 // Add EFLAGS to block live-ins between CmpBB and block of flags producer.
4722 for (MachineBasicBlock *MBB = &CmpMBB; MBB != SubBB;
4723 MBB = *MBB->pred_begin()) {
4724 assert(MBB->pred_size() == 1 && "Expected exactly one predecessor");
4725 if (!MBB->isLiveIn(X86::EFLAGS))
4726 MBB->addLiveIn(X86::EFLAGS);
4727 }
4728 return true;
4729}
4730
4731/// Try to remove the load by folding it to a register
4732/// operand at the use. We fold the load instructions if load defines a virtual
4733/// register, the virtual register is used once in the same BB, and the
4734/// instructions in-between do not load or store, and have no side effects.
4736 const MachineRegisterInfo *MRI,
4737 Register &FoldAsLoadDefReg,
4738 MachineInstr *&DefMI) const {
4739 // Check whether we can move DefMI here.
4740 DefMI = MRI->getVRegDef(FoldAsLoadDefReg);
4741 assert(DefMI);
4742 bool SawStore = false;
4743 if (!DefMI->isSafeToMove(nullptr, SawStore))
4744 return nullptr;
4745
4746 // Collect information about virtual register operands of MI.
4747 SmallVector<unsigned, 1> SrcOperandIds;
4748 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
4749 MachineOperand &MO = MI.getOperand(i);
4750 if (!MO.isReg())
4751 continue;
4752 Register Reg = MO.getReg();
4753 if (Reg != FoldAsLoadDefReg)
4754 continue;
4755 // Do not fold if we have a subreg use or a def.
4756 if (MO.getSubReg() || MO.isDef())
4757 return nullptr;
4758 SrcOperandIds.push_back(i);
4759 }
4760 if (SrcOperandIds.empty())
4761 return nullptr;
4762
4763 // Check whether we can fold the def into SrcOperandId.
4764 if (MachineInstr *FoldMI = foldMemoryOperand(MI, SrcOperandIds, *DefMI)) {
4765 FoldAsLoadDefReg = 0;
4766 return FoldMI;
4767 }
4768
4769 return nullptr;
4770}
4771
4772/// Expand a single-def pseudo instruction to a two-addr
4773/// instruction with two undef reads of the register being defined.
4774/// This is used for mapping:
4775/// %xmm4 = V_SET0
4776/// to:
4777/// %xmm4 = PXORrr undef %xmm4, undef %xmm4
4778///
4780 const MCInstrDesc &Desc) {
4781 assert(Desc.getNumOperands() == 3 && "Expected two-addr instruction.");
4782 Register Reg = MIB.getReg(0);
4783 MIB->setDesc(Desc);
4784
4785 // MachineInstr::addOperand() will insert explicit operands before any
4786 // implicit operands.
4788 // But we don't trust that.
4789 assert(MIB.getReg(1) == Reg &&
4790 MIB.getReg(2) == Reg && "Misplaced operand");
4791 return true;
4792}
4793
4794/// Expand a single-def pseudo instruction to a two-addr
4795/// instruction with two %k0 reads.
4796/// This is used for mapping:
4797/// %k4 = K_SET1
4798/// to:
4799/// %k4 = KXNORrr %k0, %k0
4801 Register Reg) {
4802 assert(Desc.getNumOperands() == 3 && "Expected two-addr instruction.");
4803 MIB->setDesc(Desc);
4805 return true;
4806}
4807
4809 bool MinusOne) {
4810 MachineBasicBlock &MBB = *MIB->getParent();
4811 const DebugLoc &DL = MIB->getDebugLoc();
4812 Register Reg = MIB.getReg(0);
4813
4814 // Insert the XOR.
4815 BuildMI(MBB, MIB.getInstr(), DL, TII.get(X86::XOR32rr), Reg)
4816 .addReg(Reg, RegState::Undef)
4817 .addReg(Reg, RegState::Undef);
4818
4819 // Turn the pseudo into an INC or DEC.
4820 MIB->setDesc(TII.get(MinusOne ? X86::DEC32r : X86::INC32r));
4821 MIB.addReg(Reg);
4822
4823 return true;
4824}
4825
4827 const TargetInstrInfo &TII,
4828 const X86Subtarget &Subtarget) {
4829 MachineBasicBlock &MBB = *MIB->getParent();
4830 const DebugLoc &DL = MIB->getDebugLoc();
4831 int64_t Imm = MIB->getOperand(1).getImm();
4832 assert(Imm != 0 && "Using push/pop for 0 is not efficient.");
4834
4835 int StackAdjustment;
4836
4837 if (Subtarget.is64Bit()) {
4838 assert(MIB->getOpcode() == X86::MOV64ImmSExti8 ||
4839 MIB->getOpcode() == X86::MOV32ImmSExti8);
4840
4841 // Can't use push/pop lowering if the function might write to the red zone.
4842 X86MachineFunctionInfo *X86FI =
4844 if (X86FI->getUsesRedZone()) {
4845 MIB->setDesc(TII.get(MIB->getOpcode() ==
4846 X86::MOV32ImmSExti8 ? X86::MOV32ri : X86::MOV64ri));
4847 return true;
4848 }
4849
4850 // 64-bit mode doesn't have 32-bit push/pop, so use 64-bit operations and
4851 // widen the register if necessary.
4852 StackAdjustment = 8;
4853 BuildMI(MBB, I, DL, TII.get(X86::PUSH64i32)).addImm(Imm);
4854 MIB->setDesc(TII.get(X86::POP64r));
4855 MIB->getOperand(0)
4856 .setReg(getX86SubSuperRegister(MIB.getReg(0), 64));
4857 } else {
4858 assert(MIB->getOpcode() == X86::MOV32ImmSExti8);
4859 StackAdjustment = 4;
4860 BuildMI(MBB, I, DL, TII.get(X86::PUSH32i)).addImm(Imm);
4861 MIB->setDesc(TII.get(X86::POP32r));
4862 }
4863 MIB->removeOperand(1);
4865
4866 // Build CFI if necessary.
4867 MachineFunction &MF = *MBB.getParent();
4868 const X86FrameLowering *TFL = Subtarget.getFrameLowering();
4869 bool IsWin64Prologue = MF.getTarget().getMCAsmInfo()->usesWindowsCFI();
4870 bool NeedsDwarfCFI = !IsWin64Prologue && MF.needsFrameMoves();
4871 bool EmitCFI = !TFL->hasFP(MF) && NeedsDwarfCFI;
4872 if (EmitCFI) {
4873 TFL->BuildCFI(MBB, I, DL,
4874 MCCFIInstruction::createAdjustCfaOffset(nullptr, StackAdjustment));
4875 TFL->BuildCFI(MBB, std::next(I), DL,
4876 MCCFIInstruction::createAdjustCfaOffset(nullptr, -StackAdjustment));
4877 }
4878
4879 return true;
4880}
4881
4882// LoadStackGuard has so far only been implemented for 64-bit MachO. Different
4883// code sequence is needed for other targets.
4885 const TargetInstrInfo &TII) {
4886 MachineBasicBlock &MBB = *MIB->getParent();
4887 const DebugLoc &DL = MIB->getDebugLoc();
4888 Register Reg = MIB.getReg(0);
4889 const GlobalValue *GV =
4890 cast<GlobalValue>((*MIB->memoperands_begin())->getValue());
4891 auto Flags = MachineMemOperand::MOLoad |
4895 MachinePointerInfo::getGOT(*MBB.getParent()), Flags, 8, Align(8));
4897
4898 BuildMI(MBB, I, DL, TII.get(X86::MOV64rm), Reg).addReg(X86::RIP).addImm(1)
4900 .addMemOperand(MMO);
4901 MIB->setDebugLoc(DL);
4902 MIB->setDesc(TII.get(X86::MOV64rm));
4903 MIB.addReg(Reg, RegState::Kill).addImm(1).addReg(0).addImm(0).addReg(0);
4904}
4905
4907 MachineBasicBlock &MBB = *MIB->getParent();
4908 MachineFunction &MF = *MBB.getParent();
4909 const X86Subtarget &Subtarget = MF.getSubtarget<X86Subtarget>();
4910 const X86RegisterInfo *TRI = Subtarget.getRegisterInfo();
4911 unsigned XorOp =
4912 MIB->getOpcode() == X86::XOR64_FP ? X86::XOR64rr : X86::XOR32rr;
4913 MIB->setDesc(TII.get(XorOp));
4914 MIB.addReg(TRI->getFrameRegister(MF), RegState::Undef);
4915 return true;
4916}
4917
4918// This is used to handle spills for 128/256-bit registers when we have AVX512,
4919// but not VLX. If it uses an extended register we need to use an instruction
4920// that loads the lower 128/256-bit, but is available with only AVX512F.
4922 const TargetRegisterInfo *TRI,
4923 const MCInstrDesc &LoadDesc,
4924 const MCInstrDesc &BroadcastDesc,
4925 unsigned SubIdx) {
4926 Register DestReg = MIB.getReg(0);
4927 // Check if DestReg is XMM16-31 or YMM16-31.
4928 if (TRI->getEncodingValue(DestReg) < 16) {
4929 // We can use a normal VEX encoded load.
4930 MIB->setDesc(LoadDesc);
4931 } else {
4932 // Use a 128/256-bit VBROADCAST instruction.
4933 MIB->setDesc(BroadcastDesc);
4934 // Change the destination to a 512-bit register.
4935 DestReg = TRI->getMatchingSuperReg(DestReg, SubIdx, &X86::VR512RegClass);
4936 MIB->getOperand(0).setReg(DestReg);
4937 }
4938 return true;
4939}
4940
4941// This is used to handle spills for 128/256-bit registers when we have AVX512,
4942// but not VLX. If it uses an extended register we need to use an instruction
4943// that stores the lower 128/256-bit, but is available with only AVX512F.
4945 const TargetRegisterInfo *TRI,
4946 const MCInstrDesc &StoreDesc,
4947 const MCInstrDesc &ExtractDesc,
4948 unsigned SubIdx) {
4949 Register SrcReg = MIB.getReg(X86::AddrNumOperands);
4950 // Check if DestReg is XMM16-31 or YMM16-31.
4951 if (TRI->getEncodingValue(SrcReg) < 16) {
4952 // We can use a normal VEX encoded store.
4953 MIB->setDesc(StoreDesc);
4954 } else {
4955 // Use a VEXTRACTF instruction.
4956 MIB->setDesc(ExtractDesc);
4957 // Change the destination to a 512-bit register.
4958 SrcReg = TRI->getMatchingSuperReg(SrcReg, SubIdx, &X86::VR512RegClass);
4960 MIB.addImm(0x0); // Append immediate to extract from the lower bits.
4961 }
4962
4963 return true;
4964}
4965
4967 MIB->setDesc(Desc);
4968 int64_t ShiftAmt = MIB->getOperand(2).getImm();
4969 // Temporarily remove the immediate so we can add another source register.
4970 MIB->removeOperand(2);
4971 // Add the register. Don't copy the kill flag if there is one.
4972 MIB.addReg(MIB.getReg(1),
4974 // Add back the immediate.
4975 MIB.addImm(ShiftAmt);
4976 return true;
4977}
4978
4980 bool HasAVX = Subtarget.hasAVX();
4981 MachineInstrBuilder MIB(*MI.getParent()->getParent(), MI);
4982 switch (MI.getOpcode()) {
4983 case X86::MOV32r0:
4984 return Expand2AddrUndef(MIB, get(X86::XOR32rr));
4985 case X86::MOV32r1:
4986 return expandMOV32r1(MIB, *this, /*MinusOne=*/ false);
4987 case X86::MOV32r_1:
4988 return expandMOV32r1(MIB, *this, /*MinusOne=*/